WO2022012453A1 - 智能热触发灭火装置、方法、电池包、储能系统及车辆 - Google Patents

智能热触发灭火装置、方法、电池包、储能系统及车辆 Download PDF

Info

Publication number
WO2022012453A1
WO2022012453A1 PCT/CN2021/105663 CN2021105663W WO2022012453A1 WO 2022012453 A1 WO2022012453 A1 WO 2022012453A1 CN 2021105663 W CN2021105663 W CN 2021105663W WO 2022012453 A1 WO2022012453 A1 WO 2022012453A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire extinguishing
extinguishing agent
preset
temperature
flow pipeline
Prior art date
Application number
PCT/CN2021/105663
Other languages
English (en)
French (fr)
Inventor
李飞
陈艺宗
张尧
周天野
姜乃文
赵艳春
王宇豪
Original Assignee
哲弗智能系统(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010688155.4A external-priority patent/CN113941105B/zh
Priority claimed from CN202021407074.4U external-priority patent/CN212700168U/zh
Application filed by 哲弗智能系统(上海)有限公司 filed Critical 哲弗智能系统(上海)有限公司
Publication of WO2022012453A1 publication Critical patent/WO2022012453A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways

Definitions

  • the present application relates to the technical field of fire extinguishing, and in particular, to an intelligent heat-triggered fire-extinguishing device, an intelligent heat-triggered fire-extinguishing method, and a battery pack, an energy storage system, and a vehicle including the intelligent heat-triggered fire-extinguishing device.
  • a plurality of battery cells are generally arranged inside the battery module.
  • the traditional fire extinguishing device cannot perform fixed-point fire-fighting on different parts inside the battery pack, and therefore cannot fire-off the battery cells inside the battery pack at fixed-point locations.
  • the sensor detection device is used to cooperate with the fire extinguishing device to realize intelligent fire extinguishing, it will undoubtedly reduce the reliability of the system, and the installation of the sensor will not only increase the space occupied by the lithium battery, but also increase the fire extinguishing cost.
  • an intelligent heat-triggered fire extinguishing device an intelligent heat-triggered fire-extinguishing method, and a battery pack, an energy storage system, and a vehicle including the intelligent heat-triggered fire-extinguishing device.
  • the present application provides an intelligent thermally triggered fire extinguishing device, comprising:
  • Extinguishing agent storage unit for storing and supplying extinguishing agent
  • a pressure balance valve connected in series between the liquid outlet of the fire extinguishing agent storage unit and the liquid inlet of the fire extinguishing agent flow pipeline, for detecting the real-time fluid pressure at the liquid inlet of the fire extinguishing agent flow pipeline value;
  • a temperature-sensing nozzle is arranged at the liquid outlet of the fire extinguishing agent flow pipeline, and a temperature-sensing element is arranged inside the temperature-sensing nozzle, and the temperature-sensing element blocks the flow of the fire-extinguishing agent within a preset normal working temperature range
  • the liquid outlet of the pipeline, the temperature sensing element deforms when sensing that the real-time temperature value at the preset position belongs to the preset deformation temperature threshold range, so that the fluid is ejected through the temperature sensing nozzle, thereby reducing the real-time fluid pressure value;
  • the liquid supply passage from the fire extinguishing agent storage unit to the fire extinguishing agent flow pipeline is opened, so that the fire extinguishing agent in the fire extinguishing agent storage unit passes through the The temperature-sensing nozzles are sprayed to extinguish fires in a fixed and directional manner.
  • the temperature-sensing nozzle at the liquid outlet of the fire-extinguishing agent flow pipeline can be extended to a preset position.
  • the temperature sensing element in the temperature sensing nozzle at the preset position is deformed when it is sensed that the real-time temperature value at the preset position belongs to the preset deformation temperature threshold range, the fluid in the fire extinguishing agent flow pipeline passes through the The temperature-sensing nozzles are sprayed out, thereby reducing the real-time fluid pressure value in the fire-extinguishing agent flow pipeline, so that the fire-extinguishing agent in the fire-extinguishing agent storage unit is sprayed out through the temperature-sensing nozzles for fixed-point and directional fire-extinguishing.
  • targeted and intelligent fire extinguishing is performed on the parts where thermal runaway occurs without additional sensors, so as to improve fire extinguishing efficiency and reduce the amount of fire extinguishing agent used. Since the present application adopts the function of intelligent fire-extinguishing triggered by temperature induction, it can realize fixed-point and directional fire-extinguishing, so the intelligence, efficiency and safety of fire-extinguishing can be improved while reducing labor cost.
  • the pressure balancing valve is further configured to:
  • the pressure balance valve blocks the liquid supply passage from the fire extinguishing agent storage unit to the fire extinguishing agent flow pipeline.
  • the pressure balancing valve includes:
  • valve body has a hollow cylinder
  • a piston located inside the cylinder, dividing the cylinder into an isolated first cylinder chamber and a second cylinder chamber;
  • the piston is configured to: when the real-time fluid pressure value in the second cylinder chamber is less than or equal to a preset hydraulic supply pressure threshold, decrease the volume of the second cylinder chamber and increase the first cylinder chamber The direction of the volume of a cylinder chamber is moved, so that the liquid outlet port is located inside the first cylinder chamber, and the fire extinguishing agent in the fire extinguishing agent storage unit flows through the first cylinder chamber and the outlet in sequence. After the liquid port, it flows into the fire extinguishing agent flow pipeline.
  • the piston inside the pressure balance valve can move dynamically based on the pressure difference between the inside of the first cylinder chamber and the inside of the second cylinder chamber on both sides of the piston.
  • the piston moves in the direction of reducing the volume of the second cylinder chamber and increasing the volume of the first cylinder chamber , so that the liquid outlet port is located inside the first cylinder chamber, and the fire extinguishing agent in the fire extinguishing agent storage unit flows through the first cylinder chamber and the liquid outlet port in sequence and then flows into the fire extinguishing agent
  • the flow pipeline enables the fire extinguishing agent storage unit to intelligently supply the fire extinguishing agent to the fire extinguishing agent flow pipeline, thereby realizing intelligent, fixed-point and directional fire extinguishing.
  • the temperature sensing element includes at least one of fusible alloy, memory alloy, thermoplastic resin, heat-sensitive sealing powder or thermoplastic glass, so that the temperature sensing element can be selected according to different requirements of different application scenarios The type of temperature sensing element in the printhead.
  • the fluid is a fire extinguishing agent
  • the preset initial pressure value is greater than the preset liquid supply pressure threshold value, so that the temperature sensing element in the temperature sensing nozzle senses the preset position
  • the real-time temperature value at the location belongs to the preset deformation temperature threshold range and the deformation occurs, it will rupture under the extrusion of the initial high-pressure fluid inside the fire extinguishing agent flow pipeline.
  • the pressure balance valve opens the liquid supply passage from the fire extinguishing agent storage unit to the fire extinguishing agent flow pipeline, so that The fire-extinguishing agent in the fire-extinguishing agent storage unit is sprayed out through the temperature-sensing nozzle to extinguish the fire in a fixed and directional manner.
  • the intelligent heat-triggered fire extinguishing device further includes:
  • an overpressure relief valve arranged in the fire extinguishing agent flow pipeline, and used to limit the real-time air pressure value inside the fire extinguishing agent flow pipeline;
  • the intelligent heat-triggered fire extinguishing device further includes a pressure sensor, the pressure sensor is used to detect the real-time pressure value inside the fire extinguishing agent storage unit, and to provide the real-time pressure value to the microcomputer
  • the control unit and/or the vehicle-mounted control center so that the micro-control unit and/or the vehicle-mounted control center can control the execution of preset actions in time according to the real-time pressure value, so as to further improve the intelligence of fire fighting.
  • the intelligent heat-triggered fire extinguishing device further includes:
  • a micro-control unit connected with the pressure sensor, for receiving the real-time pressure value, and generating an alarm control signal according to the real-time pressure value;
  • the alarm device is connected with the micro-control unit, and is used for receiving the alarm control signal, and executes a preset alarm action according to the alarm control signal, and promptly reminds the user to take corresponding safety measures, so as to further improve the timeliness and efficiency of fire extinguishing. intelligence.
  • the micro-control unit is configured to generate the alarm control signal when the real-time pressure value in the fire extinguishing agent storage unit is less than or equal to a preset leakage pressure threshold.
  • the user can be reminded in time that there is liquid leakage in the fire extinguishing agent storage unit, so as to avoid unnecessary economic losses caused by liquid leakage.
  • the preset alarm action includes generating at least one of alarm sound information, alarm image information or alarm smell information, so as to improve the diversity and visualization of the alarm.
  • the intelligent heat-triggered fire extinguishing device further includes:
  • a first filling core for evacuating the fire extinguishing agent storage unit and for filling the fire extinguishing agent storage unit with fire extinguishing agent
  • the first sealing valve is used for sealing the fire extinguishing agent storage unit after completing the action of filling the fire extinguishing agent.
  • the intelligent heat-triggered fire extinguishing device further includes:
  • a second filling core for evacuating the fire extinguishing agent flow pipeline and for filling fluid into the inside of the fire extinguishing agent flow pipeline;
  • the second sealing valve is used for sealing the flow pipeline of the fire extinguishing agent after completing the action of filling the fluid.
  • the fire extinguishing agent flow line includes:
  • the liquid inlet of the trunk passage pipe is communicated with the interior of the fire extinguishing agent storage unit;
  • each branch passage pipe is communicated with the interior of the trunk passage pipe, and the liquid outlet of each branch passage pipe is used to extend to different preset positions respectively ;
  • each branch passage pipe is provided with the temperature sensing nozzle, and the temperature sensing element in the temperature sensing nozzle at any preset position, when the temperature sensing element senses the temperature sensing
  • the deformation is performed, so that the fire extinguishing agent in the fire extinguishing agent storage unit is ejected through the temperature sensing nozzle, and the fire extinguishing agent is sprayed in a fixed and directional manner to extinguish the fire.
  • the intelligent heat-triggered fire-extinguishing device in the above-mentioned embodiment, by setting the fire-extinguishing agent flow pipeline to include a main channel channel and a plurality of branch channel channels, it is convenient to extend the temperature sensing nozzles at the liquid outlet of each branch channel channel to different locations.
  • the preset position of the intelligent heat-triggered fire extinguishing device can be realized, and the application field and application scope of the intelligent thermally triggered fire extinguishing device can be expanded.
  • At least one of the bypass conduits includes:
  • the secondary branch passage pipes, the liquid inlets of the secondary branch passage pipes are all communicated with the interior of the primary branch passage pipes, and the liquid outlets of the secondary branch passage pipes are respectively extended to each preset position;
  • each secondary branch passage pipe is provided with the temperature sensing nozzle.
  • the intelligent heat-triggered fire extinguishing device in the above-mentioned embodiment, by setting the branch pipes including the primary branch pipes and several secondary branch pipes, it is convenient to adjust the temperature at the liquid outlet of each secondary branch pipe.
  • the induction nozzles extend to different preset positions to realize intelligent fixed-point and directional fire-extinguishing, which broadens the application field and scope of intelligent thermal-triggered fire-extinguishing devices.
  • the form of the fire extinguishing agent is at least one of a gaseous state, a liquid state, a gas-liquid mixed state, a solid-liquid mixed state, or a gas-solid-liquid mixed state.
  • the fire extinguishing agent includes at least one of hexafluoropropane, heptafluoropropane, perfluorohexanone, carbon dioxide, nitrogen, helium or argon.
  • composition of the fire extinguishing agent can be selected according to the different needs of the specific application scenarios of the intelligent thermally triggered fire extinguishing device, so as to improve the fire extinguishing efficiency while avoiding the adverse effects of the sprayed fire extinguishing agent on the vehicle components or surrounding items.
  • a second aspect of the present application provides a battery pack, the battery pack includes a plurality of battery modules; and the intelligent heat-triggered fire extinguishing device as described in any of the above embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow pipeline extends to a preset position inside and/or outside the battery module.
  • a third aspect of the present application provides an energy storage system, the energy storage system includes several energy storage modules; and the intelligent thermally triggered fire extinguishing device as described in any of the above embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow pipeline extends to a preset position inside and/or outside the energy storage module.
  • a fourth aspect of the present application provides a vehicle including the intelligent thermally triggered fire extinguishing device as described in any of the above embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow line extends to a predetermined position inside and/or outside the vehicle.
  • a fifth aspect of the present application provides an intelligent heat-triggered fire-extinguishing method, the intelligent thermal-triggered fire-extinguishing method comprising:
  • a temperature-sensing nozzle to detect the real-time temperature value at a preset position, wherein the temperature-sensing nozzle is arranged at the liquid outlet of the fire extinguishing agent flow pipeline, and a temperature-sensing element is arranged inside the temperature-sensing nozzle, and the temperature-sensing element
  • the liquid outlet of the fire extinguishing agent flow pipeline is blocked within the preset normal working temperature range, the liquid inlet of the fire extinguishing agent flow pipeline is communicated with the interior of the fire extinguishing agent storage unit, and the outlet of the fire extinguishing agent flow pipeline
  • the liquid port extends to the preset position, and the fire extinguishing agent storage unit is used for storing and supplying fire extinguishing agent;
  • a pressure balance valve to detect the real-time fluid pressure value at the liquid inlet of the fire extinguishing agent flow pipeline, wherein the pressure balance valve is connected in series between the liquid outlet of the fire extinguishing agent storage unit and the liquid inlet of the fire extinguishing agent flow pipeline.
  • the inside of the fire extinguishing agent flow pipeline is provided with a fluid with a preset initial pressure value;
  • the pressure balance valve opens the liquid supply passage from the fire extinguishing agent storage unit to the fire extinguishing agent flow pipeline, so that the fire extinguishing agent storage unit The fire-extinguishing agent inside is sprayed out through the temperature-sensing nozzle to extinguish fire in a fixed and directional manner.
  • FIG. 1 is a schematic structural diagram of an intelligent thermally triggered fire extinguishing device provided in the first embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an intelligent thermally triggered fire extinguishing device provided in a second embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an intelligent thermally triggered fire extinguishing device provided in a fifth embodiment of the application.
  • FIG. 6 is a schematic diagram of an application scenario of an intelligent thermally triggered fire extinguishing device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario of an intelligent thermally triggered fire extinguishing device provided in another embodiment of the present application.
  • FIG. 8 is a schematic diagram of an application scenario of an intelligent thermally triggered fire extinguishing device provided in another embodiment of the present application.
  • FIG. 9 is a schematic diagram of an application scenario of an intelligent thermally triggered fire extinguishing device provided in another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a battery pack provided in an embodiment of the present application.
  • FIG. 11 is a schematic view of the cross-sectional structure of the components shown in FIG. 10 along A-A.
  • FIG. 12 is a schematic structural diagram of a temperature sensing nozzle in an intelligent thermally triggered fire extinguishing device provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a temperature sensing nozzle in an intelligent thermally triggered fire extinguishing device provided in another embodiment of the present application.
  • FIG. 14 is a schematic flowchart of an intelligent heat-triggered fire extinguishing method provided in an embodiment of the present application.
  • an intelligent thermally triggered fire extinguishing device includes a fire extinguishing agent storage unit 10 , a pressure balance valve 20 , a fire extinguishing agent flow pipeline 30 and a temperature sensing nozzle 40 .
  • the fire extinguishing agent storage unit 10 is used for storing and supplying fire extinguishing agents.
  • the liquid inlet of the fire extinguishing agent flow pipeline 30 is communicated with the interior of the fire extinguishing agent storage unit 10, and the liquid outlet of the fire extinguishing agent flow pipeline 30 is used to extend to a preset position.
  • a fluid with a preset initial pressure value is set in the fire extinguishing agent flow pipeline 30 .
  • the pressure balance valve 20 is connected in series between the liquid outlet of the fire extinguishing agent storage unit 10 and the liquid inlet of the fire extinguishing agent flow pipeline 30 , and is used to detect the real-time fluid pressure value at the liquid inlet of the fire extinguishing agent flow pipeline 30 .
  • the temperature sensing nozzle 40 is disposed at the liquid outlet of the fire extinguishing agent flow pipeline 30 .
  • a temperature sensing element is provided inside the temperature sensing nozzle 40 . The temperature sensing element blocks the liquid outlet of the fire extinguishing agent flow pipeline within a preset normal working temperature range.
  • the temperature sensing element deforms when sensing that the real-time temperature value at the preset position belongs to a preset deformation temperature threshold range, so that the fluid is ejected through the temperature-sensing nozzle and reduces the real-time fluid pressure value .
  • the deformation includes at least one of melting, softening, or embrittlement.
  • the pressure balance valve 20 is configured to: when the real-time fluid pressure value is less than or equal to the preset liquid supply pressure threshold, open the liquid supply passage from the fire extinguishing agent storage unit 10 to the fire extinguishing agent flow pipeline 30, so that the fire extinguishing agent is stored The fire extinguishing agent in the unit 10 is sprayed through the temperature sensing nozzle 40 to extinguish the fire in a fixed and directional manner.
  • the pressure balance valve is further configured to: when the real-time fluid pressure value is greater than a preset hydraulic supply pressure threshold, the pressure balance valve blocks the flow of the fire extinguishing agent storage unit to the The liquid supply path of the fire extinguishing agent flow line. Therefore, the pressure balance valve can dynamically open or block the flow of the fire extinguishing agent storage unit to the fire extinguishing agent flow pipe according to the detected real-time fluid pressure value at the liquid inlet of the fire extinguishing agent flow pipe. Liquid supply path.
  • targeted and intelligent fire extinguishing can be performed on the parts where thermal runaway occurs, thereby reducing the consumption of fire extinguishing agents while improving the fire extinguishing efficiency. Since the present application adopts the function of intelligent fire extinguishing triggered by temperature sensing, fixed-point and directional fire-extinguishing is realized, and the intelligence, efficiency and safety of fire-extinguishing are improved while reducing labor costs.
  • the pressure balance valve 20 includes a valve body, a piston 21 , a first cylinder chamber 22 , a second cylinder chamber 23 , a liquid inlet port 24 and a liquid outlet port 25 .
  • the valve body has a hollow cylinder.
  • the piston 21 is located inside the cylinder and divides the cylinder into an isolated first cylinder chamber 22 and a second cylinder chamber 23 adjacent to the fire extinguishing agent flow line.
  • the first cylinder chamber 22 communicates with the interior of the extinguishing agent storage unit 10 via the liquid inlet port 24 .
  • the second cylinder chamber 23 communicates with the inside of the fire extinguishing agent flow line 30 via the liquid outlet port 25 .
  • the piston 21 inside the pressure balance valve 20 can move dynamically based on the pressure difference between the inside of the first cylinder chamber 22 and the inside of the second cylinder chamber 23 on both sides of the piston 21 .
  • the temperature sensing element in the temperature sensing nozzle 40 includes at least one of fusible alloy, memory alloy, thermoplastic resin, heat-sensitive sealing powder or thermoplastic glass, so as to facilitate According to the different needs of different application scenarios, select the type of temperature sensing element in the temperature sensing nozzle.
  • a fire extinguishing agent with a preset initial pressure value (not shown in FIG. 1 ) is provided inside the fire extinguishing agent flow pipeline 30 .
  • the fire-extinguishing agent may be a gas fire-extinguishing agent, a liquid fire-extinguishing agent or a gas-liquid mixed fire-extinguishing agent.
  • the preset initial pressure value is greater than the preset hydraulic supply pressure threshold value, so that the temperature sensing element in the temperature sensing nozzle is deformed when the real-time temperature value at the preset position is sensed to belong to the preset deformation temperature threshold value range can rupture under the initial pressure of the high pressure fluid inside the fire extinguishing agent flow line.
  • the pressure balance valve opens the liquid supply passage from the fire extinguishing agent storage unit to the fire extinguishing agent flow pipeline , so that the fire-extinguishing agent in the fire-extinguishing agent storage unit is sprayed out through the temperature-sensing nozzle to extinguish the fire in a fixed and directional manner.
  • the fluid includes an inert gas
  • the fluid can be set to include one or more of nitrogen, argon, or helium; the fluid can also be set to include an inert gas and a fire extinguishing agent. mixture.
  • the preset initial pressure value is greater than the preset hydraulic supply pressure threshold value. Compared with the fire extinguishing agent with a preset initial pressure value in the inside of the fire extinguishing agent flow pipeline, the aging of the pipeline caused by the long-term corrosion of the fire extinguishing agent to the fire extinguishing agent flow pipeline and the temperature-sensing nozzle is avoided or reduced. The service life and working stability of the intelligent heat-triggered fire extinguishing device are improved.
  • an intelligent thermally triggered fire extinguishing device is provided.
  • the structure of the intelligent heat-triggered fire extinguishing device is the same as that of the intelligent heat-triggered fire-extinguishing device according to the first embodiment, except that the intelligent heat-triggered fire-extinguishing device according to the second embodiment further includes an overpressure relief valve 50 .
  • the overpressure relief valve 50 is disposed in the fire extinguishing agent flow pipeline 30 .
  • an overpressure relief valve 50 may be disposed on the outer surface of the fire extinguishing agent flow pipeline 30 to limit the real-time air pressure value inside the fire extinguishing agent flow pipeline.
  • the overpressure relief valve is configured to: when the real-time air pressure value is greater than or equal to a preset safety pressure threshold, open a passage for the fire extinguishing agent flow line 30 to vent air to the outside of the fire extinguishing agent flow pipe 30 .
  • the overpressure relief valve 50 can limit the real-time air pressure value inside the fire extinguishing agent flow pipeline 30 to be below the preset safety pressure threshold, so as to avoid fire extinguishing.
  • the real-time air pressure value inside the agent flow pipe 30 is too high, which causes the temperature-sensing nozzle to spray by mistake.
  • an intelligent thermally triggered fire extinguishing device is provided.
  • the structure of the intelligent heat-triggered fire extinguishing device is basically the same as that of the intelligent heat-triggered fire-extinguishing device according to the second embodiment, except that the intelligent heat-triggered fire-extinguishing device according to the third embodiment further includes a pressure sensor 11 .
  • the intelligent thermal-triggered fire-extinguishing device further includes a micro-control unit (not shown) and an alarm device (not shown).
  • the micro-control unit is connected to the pressure sensor 11 for receiving the real-time pressure value and generating an alarm control signal according to the real-time pressure value.
  • the alarm device is connected to the micro-control unit for receiving the alarm control signal, and executes a preset alarm action according to the alarm control signal, timely reminding the user to take corresponding safety measures, and further improving the timeliness of fire extinguishing with intelligence.
  • the preset alarm action includes generating at least one of alarm sound information, alarm image information or alarm smell information, so as to improve the diversity and visualization of the alarm.
  • an intelligent thermally triggered fire extinguishing device is provided.
  • the structure of the intelligent heat-triggered fire extinguishing device is basically the same as that of the intelligent heat-triggered fire-extinguishing device according to the third embodiment, except that the intelligent heat-triggered fire-extinguishing device according to the fourth embodiment further includes a first filling core 12 and a first sealing valve 13 and beyond.
  • the first filling core 12 is used for evacuating the fire extinguishing agent storage unit 10 and for filling the fire extinguishing agent storage unit 10 with fire extinguishing agent.
  • the first sealing valve 13 is used for sealing the extinguishing agent storage unit 10 after the filling of the extinguishing agent is completed.
  • the intelligent heat-triggered fire extinguishing device further includes a second filling core 31 and a second sealing valve 32 .
  • the second filling core 31 is used for evacuating the fire extinguishing agent flow line 30 and for filling the inside of the fire extinguishing agent flow line 30 with fluid.
  • the second sealing valve 32 is used to seal the flow line 30 of the extinguishing agent after the filling of the fluid is completed.
  • an intelligent heat-triggered fire extinguishing device is provided.
  • the structure of the intelligent heat-triggered fire extinguishing device is basically the same as that of the intelligent heat-triggered fire-extinguishing device according to the fourth embodiment, except for the flow line of the fire extinguishing agent.
  • the fire-extinguishing agent flow pipeline includes a main channel channel 34 and a plurality of branch channel channels 35 .
  • the liquid inlet of the main passage pipe 34 communicates with the inside of the fire extinguishing agent storage unit 10 .
  • the liquid inlet of each of the branch passage pipes 35 communicates with the interior of the main passage passage pipe 34 .
  • each branch through-pipe 35 is used to extend to different preset positions respectively.
  • the liquid outlet of each branch through-pipe 35 is provided with a temperature-sensing nozzle 40 .
  • the temperature sensing element in the temperature sensing nozzle 40 at any preset position can be deformed when it senses that the real-time temperature value at the preset position belongs to the preset deformation temperature threshold range, so that the The fire extinguishing agent is sprayed through the temperature sensing nozzle 40, and the fire extinguishing agent is sprayed in a fixed and directional manner to extinguish the fire.
  • the intelligent heat-triggered fire-extinguishing device in the above-mentioned embodiment, by setting the fire-extinguishing agent flow pipeline to include a main channel channel and a plurality of branch channel channels, it is convenient to extend the temperature sensing nozzles at the liquid outlet of each branch channel channel to different locations. It can realize intelligent fixed-point and directional fire extinguishing, which broadens the application field and application scope of intelligent thermal trigger fire extinguishing device.
  • At least one of the branch passages includes a primary branch passage (not shown) and a secondary branch passage (not shown).
  • the liquid inlet of each secondary branch passage pipe is communicated with the interior of the primary branch passage pipe, and the liquid outlet of each secondary branch passage pipe extends to each preset position respectively.
  • the liquid outlet of each secondary branch passage pipe is provided with the temperature sensing nozzle.
  • the intelligent heat-triggered fire extinguishing device in the above-mentioned embodiment, by setting the branch pipes including the primary branch pipes and several secondary branch pipes, it is convenient to adjust the temperature at the liquid outlet of each secondary branch pipe.
  • the induction nozzles extend to different preset positions to realize intelligent fixed-point and directional fire-extinguishing, which broadens the application field and scope of intelligent thermal-triggered fire-extinguishing devices.
  • a channel may be provided on the battery pack body for accommodating the fire extinguishing agent flow pipe 30 , so that the fire extinguishing agent flow pipe 30 is embedded on the battery pack body.
  • the fire extinguishing agent flow pipeline 30 may also be fixed on the battery pack body by one or more connection methods of clipping, screwing or welding.
  • the fire extinguishing agent flow pipeline 30 can also be indirectly fixed on the battery pack body through a bracket.
  • the connection method of the fire extinguishing agent flow pipeline 30 and the battery pack body 100 is only schematically shown here, and is not intended to limit the application.
  • the fire extinguishing agent flow pipeline 30 is arranged on the upper cover of the battery pack body 100 , and the fire extinguishing agent flows when the fire extinguishing agent flows.
  • a plurality of temperature-sensing spray heads (not shown in FIG. 7 ) are arranged on the pipeline 30 .
  • the fire extinguishing agent flow line 30 can be arranged to be distributed on the upper cover of the battery pack body in a wavy form such as a pulse waveform or a sine wave, so that the temperature sensing nozzle on the fire extinguishing agent flow line 30 can fully cover or be close to all battery modules as much as possible.
  • the set 102 is such that when any battery module 102 is triggered by thermal runaway to trigger the temperature sensing element (such as a fusible alloy) in the adjacent temperature sensing nozzle to melt, the fire extinguishing agent in the fire extinguishing agent flow line 30 can pass through the temperature sensing nozzle. To spray fire extinguishing agent to the battery module that has thermal runaway.
  • the temperature sensing element such as a fusible alloy
  • the fire extinguishing agent flow pipeline 30 may include a plurality of fire extinguishing agent passage pipes 301 . At least one fire extinguishing agent through pipe 301 can be arranged to be distributed on the battery pack body 100, for example, on the upper cover, in a wavy form such as a pulse waveform or a sinusoidal waveform.
  • the intelligent heat-triggered fire extinguishing device is applied to the battery pack of the electric vehicle.
  • the casing 100 of the battery pack includes four hollow cavities 101 for accommodating battery modules. Each cavity body 101 is provided with two battery modules.
  • the intelligent heat-triggered fire extinguishing device includes four branch pipes 35 .
  • the liquid outlet of each branch through-pipe 35 is provided with a temperature-sensing nozzle.
  • the temperature-sensitive fluid is sprayed out through the temperature-sensing nozzle, reducing the real-time fluid pressure value in the fire-extinguishing agent flow pipeline, so that the pressure balance valve opens the liquid supply path, and the fire-extinguishing agent in the fire-extinguishing agent storage unit 10 passes through the temperature-sensing nozzle.
  • the sprinkler sprays out to put out the fire in a fixed and directional manner. In the present application, without additional sensors, targeted and intelligent fire extinguishing can be performed on the parts where thermal runaway occurs, thereby reducing the consumption of fire extinguishing agents while improving the fire extinguishing efficiency.
  • the present application adopts the function of intelligent fire extinguishing triggered by temperature sensing, fixed-point and directional fire-extinguishing can be realized, and targeted fire-extinguishing can be carried out for the battery module in which thermal runaway occurs.
  • the spray rate of high-pressure fire extinguishing agent is greater than the heat spread rate caused by the release of high temperature impurities from the thermally runaway battery module, thus effectively improving the speed and efficiency of fire extinguishing and cooling, thereby improving fire extinguishing efficiency without additional sensors.
  • the use of fire extinguishing agents is reduced to avoid adverse effects on other normal battery modules or body parts due to excessive use of fire extinguishing agents.
  • the automatic shut-off effect of the battery separator will be temporarily suppressed.
  • the real-time temperature value reaches about 150°C
  • the automatic shutdown effect of the battery diaphragm begins to weaken, and the heat increases sharply.
  • the real-time temperature value reaches about 180°C
  • the positive electrode of the battery is decomposed to generate oxygen. If the heat continues to increase sharply, the ternary lithium battery will enter a thermal runaway state, resulting in fire or explosion. Therefore, the real-time temperature value of the ternary lithium battery in a thermal runaway state is 150°C-180°C.
  • the real-time temperature value is 200°C-240°C.
  • the upper limit of the working temperature of automotive-grade components is 85°C. If the lower limit of the melting point of the temperature sensing element is less than 85°C, it will not meet the requirements of automotive-grade components, conflict with automotive-grade standards, and may cause false injection. If the thermal runaway temperature value of the lithium battery is selected as the upper limit of the melting point of the temperature sensing element, it is difficult to ensure that the temperature sensing nozzle is deformed in time before the thermal runaway, and the fire extinguishing agent is sprayed in a fixed and directional manner.
  • the temperature sensing element in the temperature sensing nozzle cannot be deformed in time, it may miss the best time to extinguish the fire, resulting in the failure of the fire extinguishing. Therefore, setting the preset deformation temperature threshold in the range of 85°C to 180°C can not only avoid accidental spraying, but also ensure that the adjacent temperature sensing nozzles can be triggered in time to spray fire extinguishing agents before the thermal runaway of the battery cell occurs, so as to achieve Fixed-point and directional fire-fighting can improve fire-fighting efficiency while reducing the use of fire-extinguishing agents.
  • the preset initial pressure value is 0.8MPa-4.5MPa, so that after the temperature sensing element in the temperature sensing nozzle is deformed, the high-pressure extinguishing agent can pass through the liquid outlet of the temperature sensing nozzle It is sprayed in a predetermined direction to achieve fixed-point and directional fire-fighting, and while improving the fire-fighting efficiency, it reduces the amount of fire-extinguishing agent used.
  • a battery pack is provided, the battery pack includes several battery modules; and the intelligent heat-triggered fire extinguishing device as described in any of the embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow pipeline extends to a preset position inside and/or outside the battery module.
  • the branch passages include m primary branch passages and n secondary branch passages.
  • m is the total number of cavities included in the casing of the battery pack for accommodating battery modules
  • n is the total number of battery modules inside one of the cavities.
  • the i-th primary branch passage pipe Li is used to be disposed on the side wall surface of the i-th cavity body, and the liquid inlets of the secondary branch passage pipe Lij are all communicated with the interior of the primary branch passage pipe Li , and the liquid outlet of the secondary branch passage pipe Lij is used to extend to a preset position in the cavity; the liquid outlet of any secondary branch passage pipe Lij is provided with the temperature sensing nozzle; wherein, i ⁇ [1, m], j ⁇ [1, n], i is a positive integer, j is a positive integer, m is an integer greater than or equal to 1, and n is an integer greater than or equal to 1.
  • the battery pack includes 8 hollow cavities 101 .
  • Two battery modules 102 are disposed in any cavity 101 .
  • the branch passages include 8 primary branch passages 35 and 16 secondary branch passages.
  • the side wall surface of the first cavity body is provided with the first primary branch passage pipe L1, and the interior of the first hollow body is provided with the secondary branch passage passage pipe L11 and the secondary branch passage passage pipe L12 .
  • the side wall surface of the second cavity body is provided with a second primary branch passage pipe L2, and a secondary branch passage passage pipe L21 and a secondary branch passage passage pipe L22 are provided inside the second cavity body .
  • the side wall surface of the third cavity body is provided with a third primary branch passage pipe L3, and the interior of the third hollow body is provided with a secondary branch passage passage pipe L31 (not shown in FIG. 10 ) And the secondary branch through pipe L32.
  • the side wall surface of the fourth cavity body is provided with a fourth primary branch passage pipe L4, and the inside of the fourth hollow body is provided with a secondary branch passage passage pipe L41 and a secondary branch passage passage pipe L42 .
  • a fifth primary branch passage pipe L5 is provided on the side wall surface of the fifth cavity body, and a secondary branch passage passage pipe L51 and a secondary branch passage passage pipe L52 are provided inside the fifth hollow body .
  • a sixth primary branch passage pipe L6 is provided on the side wall surface of the sixth cavity body, and a secondary branch passage passage pipe L61 and a secondary branch passage passage pipe L62 are provided inside the sixth hollow body .
  • a seventh primary branch passage pipe L7 is provided on the side wall surface of the seventh hollow body, and a secondary branch passage passage L71 and a secondary branch passage passage pipe L72 are provided inside the seventh hollow body .
  • the eighth first-level branch through-pipe L8 is provided on the side wall surface of the eighth cavity body, and the second-level branch through-pipe L81 and the second-level branch through-pipe L82 are arranged inside the eighth cavity body .
  • each secondary branch passage pipe is communicated with the interior of the primary branch passage pipe, and the liquid outlet of the secondary branch passage pipe extends to different preset positions inside the cavity body, any one of them.
  • the liquid outlet of the secondary branch passage pipe is provided with the temperature sensing nozzle.
  • the liquid outlet of the secondary branch channel extends to different preset positions inside the cavity body in the battery pack, so that all the Each battery module is equipped with a temperature sensing nozzle, which is used to sense the real-time temperature value near each battery module in real time, and when any battery module is thermally out of control, the temperature sensing element in the corresponding temperature sensing nozzle can timely The real-time temperature value near the thermal runaway battery module is sensed, and the fire extinguishing agent is automatically and directionally sprayed to carry out targeted fire extinguishing of the thermal runaway battery module.
  • the temperature sensing in the temperature sensing nozzle at the liquid outlet of the secondary branch channel L11 The element is deformed, so that the fire extinguishing agent in the secondary branch channel L11 flows out through the liquid outlet of the temperature sensing nozzle, and is sprayed on the surface of the battery module 11 where thermal runaway occurs, so as to target the battery module 11. Extinguishing.
  • At least one surface of the secondary branch passage pipe is provided with q tertiary branch passage pipes Lijk.
  • the liquid inlets of the tertiary branch passage pipe Lijk are all communicated with the interior of the secondary branch passage pipe Lij, and the liquid outlet of the tertiary branch passage pipe Lijk is used to extend to the preheater in the battery module in the battery pack. set location.
  • q is the total number of battery cells in a battery module in a battery pack.
  • the liquid outlet of any three-stage branch through-pipe Lijk is provided with the temperature-sensing nozzle. Among them, k ⁇ [1, q], k is a positive integer, and q is an integer greater than or equal to 1.
  • the liquid outlet of the tertiary branch conduit can extend to the preset positions inside different battery modules in the battery pack, so that all the battery cells in the battery pack are
  • a temperature sensing nozzle is provided for sensing the real-time temperature value near each battery cell in real time. Therefore, when thermal runaway occurs in any battery cell, the temperature sensing element in the corresponding temperature sensing nozzle can timely sense the real-time temperature value near the thermally runaway battery cell, so that the temperature sensing nozzle can automatically and automatically Fire extinguishing agent is sprayed to carry out targeted fire extinguishing of thermal runaway battery cells.
  • the total number of battery cells in a battery module inside the battery pack is six.
  • the inside of the first battery module 11 includes battery cells 111 , battery cells 112 , battery cells 113 , battery cells 114 , battery cells 115 , and battery cells 116 .
  • the liquid inlets of the through-pipe L113, the third-stage branch through-pipe L114, the third-stage branch through-pipe L115, and the third-stage branch through-pipe L116 are all communicated with the interior of the second-stage branch through-pipe L11.
  • the liquid outlet of the tertiary branch channel L111 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 111 .
  • the liquid outlet of the tertiary branch through-pipe L112 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 112 .
  • the liquid outlet of the tertiary branch channel L113 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 113 .
  • the liquid outlet of the tertiary branch channel L114 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 114 .
  • the liquid outlet of the tertiary branch channel L115 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 115 .
  • the liquid outlet of the tertiary branch channel L116 extends to the inside of the first battery module 11 inside the first cavity body, and is adjacent to the position of the battery cells 116 .
  • the tertiary branch pipe when thermal runaway occurs in the first battery cell 111 inside the first battery module 11 inside the first cavity body, the tertiary branch pipe
  • the temperature sensing element in the temperature sensing nozzle at the liquid outlet of L111 is deformed, so that the fire extinguishing agent in the tertiary branch pipe L111 flows out through the liquid outlet of the temperature sensing nozzle, and is directed to the battery cell where thermal runaway occurs.
  • the surface of 111 is sprayed to carry out targeted fire extinguishing of battery cells 111 .
  • the liquid outlet of the temperature-sensing nozzle is arranged opposite to the exhaust valve of the battery cell, so that the spray area of the fire extinguishing agent can cover the maximum range of heat The area where heat spreads during runaway, so that the fire extinguishing agent can cover from the location where thermal runaway occurs to the location where thermal runaway does not occur.
  • the temperature sensing nozzle sprays the fire extinguishing agent ahead of the time when the thermal runaway occurs in the battery cell, so that the The extinguishing agent fills the confined space around the entire thermal runaway cell.
  • the extinguishing agent Due to the positive promotion of the geometric size of the confined space and the surface tension of the extinguishing agent, and the reverse limitation of the saturated vapor pressure of the extinguishing agent, the extinguishing agent can effectively reside in the adjacent space of the monomer where thermal runaway occurs, and fully absorb the The energy released by the thermally runaway monomer reduces the accumulation and spread of heat and prevents the spread of thermal runaway.
  • the temperature sensing nozzle 40 includes a liquid inlet portion 41 , a liquid outlet portion 42 and a temperature sensing element 43 .
  • the liquid inlet of the liquid inlet part 41 is communicated with the liquid outlet of the branch passage pipe.
  • the liquid inlet of the liquid outlet part 42 communicates with the liquid outlet of the liquid inlet part.
  • the maximum value of the inner diameter d of the liquid inlet portion 41 is smaller than or equal to the minimum value of the inner diameter D of the liquid outlet portion 42 .
  • the liquid outlet 42 is flared in the direction in which the extinguishing agent flows out of the liquid outlet 42, as shown in FIG. 12 .
  • the temperature-sensing shower head 40 can also be set in a T-shape as shown in FIG. 13 .
  • the temperature sensing nozzle 40 may also be arranged in other columnar shapes.
  • the value of the inner diameter d of the liquid inlet portion 41 is 1.5 mm-2.4 mm.
  • the value of the inner diameter D of the liquid outlet portion 42 is 2.4 mm-6 mm.
  • the maximum value of the inner diameter d of the liquid inlet portion 41 is set to be less than or equal to the minimum value of the inner diameter D of the liquid outlet portion 42, and the liquid outlet portion 42 is set along the fire extinguishing
  • the direction in which the agent flows out of the liquid outlet 42 is trumpet-shaped or T-shaped, etc., so that the high-pressure extinguishing agent in the liquid inlet 41 flows out through the trumpet-shaped liquid outlet 42 and spreads and covers the heat generated. Out of control objects, this effectively improves the speed and efficiency of fire extinguishing and cooling, and reduces the use of fire extinguishing agents while improving fire extinguishing efficiency.
  • the branch passage is a hose; and/or the main passage is a hose, so as to optimize the branch passage according to different shapes or volumes inside different battery modules
  • the layout design of the pipes and the trunk pipes can save the material cost of the pipes and reduce the installation and use costs, and at the same time, it can improve the working stability of the fire extinguishing device.
  • the form of the fire extinguishing agent is at least one of a gaseous state, a liquid state, a gas-liquid mixed state, a solid-liquid mixed state, or a gas-solid-liquid mixed state.
  • the fire extinguishing agent includes at least one of hexafluoropropane, heptafluoropropane, perfluorohexanone, carbon dioxide, nitrogen, helium or argon.
  • the fire extinguishing agent comprises: heptafluoropropane, 3% (by weight) of the mixture; carbon dioxide, 17% (by weight) of the mixture; and perfluorohexane Ketone, 80% by weight of the mixture.
  • the storage state of the extinguishing agent is pressurized storage.
  • Heptafluoropropane, carbon dioxide and perfluorohexanone are pre-mixed and canned in a fire extinguishing agent storage unit for storage.
  • the fire extinguishing agent includes: hexafluoropropane, accounting for 3% to 40% (by volume) of the fire extinguishing agent; heptafluoropropane, accounting for 3% to 40% of the fire extinguishing agent (in terms of volume) volume meter); and carbon dioxide.
  • the fire extinguishing agent includes liquid heptafluoropropane and liquid carbon dioxide.
  • Heptafluoropropane constitutes 3% to 80% (by volume) of the mixture with the balance being carbon dioxide.
  • the fire extinguishing agent comprises: heptafluoropropane, 25% by weight of the mixture; carbon dioxide, 50% by weight of the mixture; and perfluorohexane Ketone, 25% by weight of the mixture.
  • the storage state of the fire extinguishing agent is normal temperature, and it is stored under pressure.
  • the fire extinguishing agent includes: a solution of perfluorohexanone with a molar concentration exceeding 95%; and helium.
  • composition of the fire extinguishing agent can be selected according to the different needs of the specific application scenarios of the intelligent thermally triggered fire extinguishing device, so as to improve the fire extinguishing efficiency and avoid the adverse effects of the sprayed fire extinguishing agent on the items.
  • an energy storage system includes several energy storage modules; and the intelligent heat-triggered fire extinguishing device as described in any of the embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow pipeline extends to the inside of the energy storage module, or extends to the outside of the energy storage module, and is located at a preset distance from the outer surface of the energy storage system the preset position within.
  • the temperature-sensing nozzles at the liquid outlet of the fire extinguishing agent flow pipeline can also be simultaneously extended to the interior and exterior of the energy storage module within a preset distance from the outer surface of the energy storage system preset position.
  • a vehicle comprising the intelligent thermally triggered fire extinguishing device as described in any of the embodiments of the present application.
  • the temperature sensing nozzle at the liquid outlet of the fire extinguishing agent flow line extends to the interior of the vehicle, or extends to the exterior of the vehicle at a preset position within a preset distance from the outer surface of the vehicle.
  • the temperature-sensing nozzles at the liquid outlet of the fire extinguishing agent flow pipeline can also be simultaneously extended to a preset distance inside and outside the vehicle within a preset distance from the outer surface of the energy storage system Location.
  • the vehicle includes, but is not limited to, an intelligent heat-triggered fire extinguishing device that needs to use an intelligent fixed-point heat-triggered fire-extinguishing function in a two-wheeled vehicle, a tricycle or a multi-wheeled vehicle.
  • a perfluorohexanone solution may be provided inside the battery pack casing, so that the battery module is immersed in the perfluorohexanone solution to realize immersion fire extinguishing.
  • a perfluorohexanone solution may be provided inside the battery module, so that the battery module is immersed in the perfluorohexanone solution, so as to realize immersion fire extinguishing.
  • an intelligent heat-triggered fire extinguishing method includes the following steps 202 to 208.
  • the temperature sensing nozzle is used to detect the real-time temperature value at the preset position.
  • the temperature sensing nozzle is arranged at the liquid outlet of the fire extinguishing agent flow pipeline.
  • a temperature sensing element is arranged inside the temperature sensing nozzle. The temperature sensing element blocks the liquid outlet of the fire extinguishing agent flow pipeline within a preset normal working temperature range.
  • the liquid inlet of the fire extinguishing agent flow pipeline is communicated with the interior of the fire extinguishing agent storage unit, and the liquid outlet of the fire extinguishing agent flow pipeline extends to the preset position.
  • the fire extinguishing agent storage unit is used for storing and supplying fire extinguishing agent.
  • the real-time fluid pressure value at the liquid inlet of the fire extinguishing agent flow line is detected using a pressure balance valve.
  • the pressure balance valve is connected in series between the liquid outlet of the fire extinguishing agent storage unit and the liquid inlet of the fire extinguishing agent flow pipeline.
  • the inside of the fire extinguishing agent flow pipeline is provided with a fluid with a preset initial pressure value.
  • the temperature-sensing element is deformed, so that the fluid is ejected through the temperature-sensing nozzle, thereby reducing the real-time fluid pressure value .
  • the deformation includes at least one of melting, softening, or embrittlement.
  • steps described are not strictly limited to the order in which they are performed, and that the steps may be performed in other orders, unless explicitly stated herein. Moreover, at least a part of the described steps may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The order of execution is also not necessarily sequential, but may be performed alternately or alternately with other steps or sub-steps of other steps or at least a portion of a phase.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

本申请涉及一种智能热触发灭火装置、智能热触发灭火方法以及包含智能热触发灭火装置的电池包、储能系统和车辆。灭火剂流动管路的进液口与灭火剂存储单元的内部连通,灭火剂流动管路的出液口设置有温度感应喷头,灭火剂流动管路内设置有预设初始压力值的流体。温度感应喷头的内部设置有温度感应元件。温度感应元件在感测到预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得流体经由温度感应喷头喷出,从而减小实时流体压力值。当实时流体压力值小于或等于预设供液压力阈值时,压力平衡阀开通灭火剂存储单元向灭火剂流动管路的供液通路,使得灭火剂存储单元内的灭火剂经由温度感应喷头喷出,实现智能定点并定向灭火。

Description

智能热触发灭火装置、方法、电池包、储能系统及车辆
相关申请的交叉引用
本申请要求于2020年7月16日提交中国专利局、申请号为2020106881554的中国专利申请以及于2020年7月16日提交中国专利局、申请号为2020214070744的中国专利申请的优先权,所述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及灭火技术领域,特别是涉及一种智能热触发灭火装置、智能热触发灭火方法以及包含智能热触发灭火装置的电池包、储能系统和车辆。
背景技术
随着市场对电动车辆的需求量逐渐增大,电动车辆逐渐成为取代原有燃油车辆的主要交通工具之一。在此背景下,新能源电动车所用的锂离子电池的能量密度不断提高,电池包的体积和容量不断扩大。在提升新能源电动车的续航里程的同时,也使得锂离子电池的热失控风险和危害程度越来越大。目前,锂离子电池热失控风险已被广泛认为是限制新能源车辆发展的关键问题之一。如何确保锂离子电池系统在外部作用或者内部触发进而发生热失控的情况下,依然能够保证电池包外部、车辆和人员的安全已迫在眉睫。
然而,以传统的动力锂电池为例,锂电池包的体积和容量越大,锂电池包内部的电池模组也越多。电池模组的内部一般设置有多个电池单体。传统的灭火装置不能对电池包内部的不同部位进行定点灭火,因此也不能够对电池包内部的电池单体进行定点灭火。并且,若借助于传感器检测装置来配合灭火装置以实现智能灭火,这无疑会降低系统的可靠性,并且传感器的设置不仅会增加锂电池所占用的空间体积,还会增加灭火成本。
发明内容
根据本申请的各种实施例,提供一种智能热触发灭火装置、智能热触发灭火方法以及包含智能热触发灭火装置的电池包、储能系统和车辆。
根据本申请的一个方面,本申请提供一种智能热触发灭火装置,包括:
灭火剂存储单元,用于储存并供给灭火剂;
灭火剂流动管路,所述灭火剂流动管路的进液口与所述灭火剂存储单元的内部连通,所述灭火剂流动管路的出液口用于延伸至预设位置,所述灭火剂流动管路内设置有预设初始压力值的流体;
压力平衡阀,串联于所述灭火剂存储单元的出液口与所述灭火剂流动管路的进液口之间,用于检测所述灭火剂流动管路的进液口处的实时流体压力值;
温度感应喷头,设置于所述灭火剂流动管路的出液口,所述温度感应喷头的内部设置有温度感应元件,所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口,所述温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得所述流体经由所述温度感应喷头喷出,从而减小所述实时流体压力值;
其中,所述变形包括熔化、软化或脆化中的至少一种,所述压力平衡阀被配置为:
当所述实时流体压力值小于或等于预设供液压力阈值时,开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
于上述实施例中的智能热触发灭火装置中,能够将灭火剂流动管路出液口处的温度感应喷头延伸至预设位置。当预设位置处的温度感应喷头内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得灭火剂流动管路内的流体经由所述温度感应喷头喷出,从而减小灭火剂流动管路内的实时流体压力值,从而使得灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。本申请在没有增设传感器的情况下,对产生热失控的部位进行针对性智能灭火,从而在提高灭火效率的同时减少灭火剂的使用量。由于本 申请采用了温度感应触发智能灭火功能,能够实现定点、定向灭火,因此可在降低人工成本的同时提高灭火的智能性、高效性与安全性。
在其中一个实施例中,所述压力平衡阀还被配置为:
当所述实时流体压力值大于预设供液压力阈值时,所述压力平衡阀闭塞所述灭火剂存储单元向所述灭火剂流动管路的供液通路。
在其中一个实施例中,所述压力平衡阀包括:
阀本体,所述阀本体具有中空的气缸;
活塞,位于所述气缸的内部,将所述气缸划分为隔离的第一气缸腔与第二气缸腔;
进液端口,所述第一气缸腔经由所述进液端口与所述灭火剂存储单元的内部连通;
出液端口,所述气缸经由所述出液端口与所述灭火剂流动管路的内部连通,所述出液端口的初始位置为位于所述第二气缸腔的内部;
其中,所述活塞被配置为:当所述第二气缸腔内的实时流体压力值小于或等于预设供液压力阈值时,向减小所述第二气缸腔的体积并增大所述第一气缸腔的体积的方向移动,使得所述出液端口位于所述第一气缸腔的内部,并使得所述灭火剂存储单元内的灭火剂依次流经所述第一气缸腔和所述出液端口后流入所述灭火剂流动管路。
于上述实施例中的智能热触发灭火装置中,压力平衡阀内部的活塞能够基于活塞两侧的第一气缸腔内部与第二气缸腔内部的压力差而动态移动。当所述第二气缸腔内的实时流体压力值小于或等于预设供液压力阈值时,活塞向减小所述第二气缸腔的体积并增大所述第一气缸腔的体积的方向移动,使得所述出液端口位于所述第一气缸腔的内部,并使得所述灭火剂存储单元内的灭火剂依次流经所述第一气缸腔和所述出液端口后流入所述灭火剂流动管路,使得所述灭火剂存储单元智能地向所述灭火剂流动管路供给灭火剂,从而实现智能、定点及定向灭火。
在其中一个实施例中,所述温度感应元件包括易熔合金、记忆合金、热塑性树脂、热敏密封火药或热塑性玻璃中的至少一种,从而可根据不同应用场景的不同需求,来选择温度感应喷头中的温度感应元件的类型。
在其中一个实施例中,所述流体为灭火剂,所述预设初始压力值大于所述预设供液压力阈值,以使得温度感应喷头内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围而变形时,在灭火剂流动管路内部的初始的高压流体的挤压下破裂。当所述第二气缸腔内的实时流体压力值小于或等于预设供液压力阈值时,所述压力平衡阀开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
在其中一个实施例中,所述流体包括惰性气体。所述预设初始压力值大于所述预设供液压力阈值。相比于在灭火剂流动管路的内部仅仅设置有预设初始压力值的灭火剂,根据本申请的方案减轻或避免了因灭火剂长期对灭火剂流动管路及温度感应喷头腐蚀导致管路老化的情况发生,提高了智能热触发灭火装置的使用寿命及工作的稳定性。
在其中一个实施例中,所述智能热触发灭火装置还包括:
超压泄气阀,设置于所述灭火剂流动管路,用于限制所述灭火剂流动管路的内部的实时气压值;
所述超压泄气阀被配置为:
当所述实时气压值大于或等于预设的安全压力阈值时,开通所述灭火剂流动管路向所述灭火剂流动管路的外部进行泄气的通路。
于上述实施例中的智能热触发灭火装置中,超压泄气阀能够限制灭火剂流动管路的内部的实时气压值位于预设的安全压力阈值以下,避免因灭火剂流动管路的内部的实时气压值过高导致温度感应喷头误喷发的情况发生。
在其中一个实施例中,所述智能热触发灭火装置还包括压力传感器,所述压力传感器用于检测所述灭火剂存储单元的内部的实时压力值,并用于将所述实时压力值提供给微控制单元及/或车载控制中心,以使得微控制单元及/或车载控制中心能够及时地根据所述实时压力值控制执行预设的动作,进一步提高灭火的智能性。
在其中一个实施例中,所述智能热触发灭火装置还包括:
微控制单元,与所述压力传感器连接,用于接收所述实时压力值,并根据所述实时压力值生成报警控制信号;
报警装置,与所述微控制单元连接,用于接收所述报警控制信号,并根据所述报警控制信号执行预设报警动作,以及时提醒用户采取相应的安全措施,进一步提高灭火的及时性与智能性。
在其中一个实施例中,所述微控制单元被配置为当所述灭火剂存储单元内的实时压力值小于或等于预设漏液压力阈值时,生成所述报警控制信号。此外,还可以及时地提醒用户灭火剂存储单元存在漏液情况,避免因漏液导致不必要的经济损失。
在其中一个实施例中,所述预设报警动作包括生成报警声音信息、报警图像信息或报警气味信息中的至少一种,以提高报警的多样性及可视化程度。
在其中一个实施例中,所述智能热触发灭火装置还包括:
第一充装芯,用于对所述灭火剂存储单元抽真空,并用于向所述灭火剂存储单元充装灭火剂;
第一密封阀,用于在完成充装灭火剂动作后,密封所述灭火剂存储单元。
在其中一个实施例中,所述智能热触发灭火装置还包括:
第二充装芯,用于对所述灭火剂流动管路抽真空,并用于向所述灭火剂流动管路的内部充装流体;
第二密封阀,用于在完成充装流体动作后,密封所述灭火剂流动管路。
在其中一个实施例中,所述灭火剂流动管路包括:
干路通管,所述干路通管的进液口与所述灭火剂存储单元的内部连通;
若干支路通管,各所述支路通管的进液口均与所述干路通管的内部连通,各所述支路通管的出液口用于分别延伸至不同的预设位置;
其中,各所述支路通管的出液口均设置有所述温度感应喷头,任一预设位置处的温度感应喷头内的温度感应元件,所述温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得灭火剂存储单元中的灭火剂经由所述温度感应喷头喷出,以定点并定向喷射灭火剂灭火。
于上述实施例中的智能热触发灭火装置中,通过设置灭火剂流动管路包括干路通管及若干支路通管,便于将各支路通管出液口处的温度感应喷头延伸至不同的预设位置,实现智能定点、定向灭火,拓宽了智能热触发灭火装置的应用领域与应用范围。
在其中一个实施例中,至少一所述支路通管包括:
一级支路通管;
二级支路通管,各所述二级支路通管的进液口均与所述一级支路通管的内部连通,各所述二级支路通管的出液口分别延伸至各预设位置;
其中,各所述二级支路通管的出液口均设置有所述温度感应喷头。
于上述实施例中的智能热触发灭火装置中,通过设置支路通管包括一级支路通管及若干二级支路通管,便于将各二级支路通管出液口处的温度感应喷头延伸至不同的预设位置,实现智能定点、定向灭火,拓宽了智能热触发灭火装置的应用领域与应用范围。
在其中一个实施例中,所述灭火剂的形态为气态、液态、气液混合态、固液混合态或气固液混合态中的至少一种。所述灭火剂包括六氟丙烷、七氟丙烷、全氟已酮、二氧化碳、氮气、氦气或氩气中的至少一种。可以根据智能热触发灭火装置具体应用场景的不同需求,选择灭火剂的成分,从而在提高灭火效率的同时,避免喷放的灭火剂对车载元件或周边物品造成不良影响。
本申请的第二方面提供一种电池包,所述电池包包括若干个电池模组;以及如以上任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述电池模组的内部及/或外部的预设位置。
本申请的第三方面提供一种储能系统,所述储能系统包括若干个储能模组;以及如以上任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述储能模组的内部及/或外部的预设位置。
本申请的第四方面提供一种车辆,所述车辆包括如以上任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述车辆的内部及/或外部的预设位置。
本申请的第五方面提供一种智能热触发灭火方法,所述智能热触发灭火方法包括:
使用温度感应喷头检测预设位置处的实时温度值,其中所述温度感应喷头设置于灭火剂流动管路的出液口,所 述温度感应喷头的内部设置有温度感应元件,所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口,所述灭火剂流动管路的进液口与灭火剂存储单元的内部连通,所述灭火剂流动管路的出液口延伸至所述预设位置,所述灭火剂存储单元用于储存并供给灭火剂;
使用压力平衡阀检测灭火剂流动管路的进液口处的实时流体压力值,其中所述压力平衡阀串联于灭火剂存储单元的出液口与所述灭火剂流动管路的进液口之间,所述灭火剂流动管路的内部设置有预设初始压力值的流体;
当所述实时温度值属于预设变形温度阈值范围时,所述温度感应元件变形,使得所述流体经由所述温度感应喷头喷出,从而减小所述实时流体压力值,其中所述变形包括熔化、软化或脆化中的至少一种;
当所述实时流体压力值小于或等于预设供液压力阈值时,所述压力平衡阀开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请第一实施例中提供的一种智能热触发灭火装置的结构示意图。
图2为本申请第二实施例中提供的一种智能热触发灭火装置的结构示意图。
图3为本申请第三实施例中提供的一种智能热触发灭火装置的结构示意图。
图4为本申请第四实施例中提供的一种智能热触发灭火装置的结构示意图。
图5为本申请第五实施例中提供的一种智能热触发灭火装置的结构示意图。
图6为本申请的一个实施例中提供的一种智能热触发灭火装置的应用场景示意图。
图7为本申请的另一实施例中提供的一种智能热触发灭火装置的应用场景示意图。
图8为本申请的另一实施例中提供的一种智能热触发灭火装置的应用场景示意图。
图9为本申请的另一实施例中提供的一种智能热触发灭火装置的应用场景示意图。
图10为本申请的一个实施例中提供的一种电池包的结构示意图。
图11为图10中示意的部件沿A-A的剖面结构示意图。
图12为本申请的一个实施例中提供的一种智能热触发灭火装置中的温度感应喷头的结构示意图。
图13为本申请的另一实施例中提供的一种智能热触发灭火装置中的温度感应喷头的结构示意图。
图14为本申请的一个实施例中提供的一种智能热触发灭火方法的流程示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
应当理解,尽管本文可以使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件和另一个元件区分开。例如,在不脱离本申请的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
在本申请中,术语“若干个”表示一个或多个。
在本申请中,除非另有明确的规定和限定,术语“连通”、“相连”、“连接”等术语应做广义理解,例如,可以是直接连通,也可以通过中间媒介间接连通,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参考图1,在本申请的第一实施例中,提供一种智能热触发灭火装置。该智能热触发灭火装置包括灭火剂存储单元10、压力平衡阀20、灭火剂流动管路30及温度感应喷头40。灭火剂存储单元10用于储存并供给灭火剂。灭火剂流动管路30的进液口与灭火剂存储单元10的内部连通,灭火剂流动管路30的出液口用于延伸至预设位置。灭火剂流动管路30内设置有预设初始压力值的流体。压力平衡阀20串联于灭火剂存储单元10的出液口与灭火剂流动管路30的进液口之间,用于检测灭火剂流动管路30的进液口处的实时流体压力值。温度感应喷头40设置于灭火剂流动管路30的出液口。温度感应喷头40的内部设置有温度感应元件。所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口。所述温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得所述流体经由所述温度感应喷头喷出并减小所述实时流体压力值。所述变形包括熔化、软化或脆化中的至少一种。其中,压力平衡阀20被配置为:当所述实时流体压力值小于或等于预设供液压力阈值时,开通灭火剂存储单元10向灭火剂流动管路30的供液通路,使得灭火剂存储单元10内的灭火剂经由温度感应喷头40喷出,以定点并定向灭火。
在本申请的一个实施例中,所述压力平衡阀还被配置为:当所述实时流体压力值大于预设供液压力阈值时,所述压力平衡阀闭塞所述灭火剂存储单元向所述灭火剂流动管路的供液通路。因此,所述压力平衡阀可以根据所检测的所述灭火剂流动管路的进液口处的实时流体压力值,动态地开通或闭塞所述灭火剂存储单元向所述灭火剂流动管路的供液通路。
具体地,于上述实施例中的智能热触发灭火装置中,可以将灭火剂流动管路出液口处的温度感应喷头延伸至预设位置。当预设位置处的温度感应喷头内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得灭火剂流动管路内的流体经由所述温度感应喷头喷出,减小了灭火剂流动管路内的实时流体压力值,从而使得压力平衡阀开通供液通路,灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。本申请在没有增设传感器的情况下,可对产生热失控的部位进行针对性智能灭火,从而在提高灭火效率的同时减少灭火剂的使用量。由于本申请采用了温度感应触发智能灭火功能,实现定点、定向灭火,在降低人工成本的同时提高了灭火的智能性、高效性与安全性。
进一步地,在本申请的一个实施例中,请继续参考图1,压力平衡阀20包括阀本体、活塞21、第一气缸腔22、第二气缸腔23、进液端口24及出液端口25。所述阀本体具有中空的气缸。活塞21位于所述气缸的内部,将所述气缸划分为隔离的第一气缸腔22与临近所述灭火剂流动管路的第二气缸腔23。第一气缸腔22经由进液端口24与灭火剂存储单元10的内部连通。第二气缸腔23经由出液端口25与灭火剂流动管路30的内部连通。出液端口25的初始位置为位于第二气缸腔23的内部。其中,活塞21被配置为:当第二气缸腔23内的实时流体压力值小于或等于预设供液压力阈值时,向减小第二气缸腔23的体积并增大第一气缸腔22的体积的方向移动,使得出液端口25位于第一气缸腔22的内部,并使得灭火剂存储单元10的内部的灭火剂依次流经第一气缸腔22和出液端口25后流入灭火剂流动管路30。
具体地,于上述实施例中的智能热触发灭火装置中,压力平衡阀20内部的活塞21能够基于活塞21两侧的第一气缸腔22内部与第二气缸腔23内部的压力差动态移动。当第二气缸腔23内的实时流体压力值小于或等于预设供液压力阈值时,活塞21向减小第二气缸腔23的体积并增大第一气缸腔22的体积的方向移动,使得出液端口25位于第一气缸腔22的内部,并使得所述灭火剂存储单元内的灭火剂依次流经所述第一气缸腔和所述出液端口后流入所述灭火剂流动管路,使得所述灭火剂存储单元智能地向所述灭火剂流动管路供给灭火剂,实现智能、定点及定向灭火。
在本申请的一个实施例中,请继续参考图1,温度感应喷头40内的温度感应元件包括易熔合金、记忆合金、热塑性树脂、热敏密封火药或热塑性玻璃中的至少一种,以便于根据不同应用场景的不同需求,选择温度感应喷头中的温度感应元件的类型。
在本申请的一个实施例中,请继续参考图1,灭火剂流动管路30的内部设置有具有预设初始压力值的灭火剂(图 1中未示出)。所述灭火剂可以为气体灭火剂、液体灭火剂或气液混合态的灭火剂。所述预设初始压力值大于所述预设供液压力阈值,以使得温度感应喷头内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围而变形时,可在灭火剂流动管路内部的初始的高压流体的挤压下破裂。进而,当所述第二气缸腔内的实时流体压力值小于或等于预设供液压力阈值时,所述压力平衡阀开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
在其中一个实施例中,所述流体包括惰性气体,例如可以设置所述流体包括氮气、氩气或氦气等中的一种或多种;也可以设置所述流体包括惰性气体及灭火剂的混合物。所述预设初始压力值大于所述预设供液压力阈值。相比于在灭火剂流动管路的内部仅仅设置有预设初始压力值的灭火剂,避免或减轻了因灭火剂长期对灭火剂流动管路及温度感应喷头腐蚀导致管路老化的情况发生,提高了智能热触发灭火装置的使用寿命及工作的稳定性。
请参考图2,在本申请的第二实施例中,提供一种智能热触发灭火装置。该智能热触发灭火装置的结构与根据第一实施例的智能热触发灭火装置的结构相同,除了根据第二实施例的智能热触发灭火装置还包括超压泄气阀50之外。超压泄气阀50设置于灭火剂流动管路30。例如,可以将超压泄气阀50设置于灭火剂流动管路30的外表面,用于限制所述灭火剂流动管路的内部的实时气压值。所述超压泄气阀被配置为:当所述实时气压值大于或等于预设的安全压力阈值时,开通灭火剂流动管路30向灭火剂流动管路30的外部泄气的通路。
于上述实施例中的智能热触发灭火装置中,请继续参考图2,超压泄气阀50能够限制灭火剂流动管路30的内部的实时气压值位于预设的安全压力阈值以下,避免因灭火剂流动管路30的内部的实时气压值过高导致温度感应喷头误喷发的情况发生。
请参考图3,在本申请的第三实施例中,提供的一种智能热触发灭火装置。该智能热触发灭火装置的结构与根据第二实施例的智能热触发灭火装置的结构基本相同,除了根据第三实施例的智能热触发灭火装置还包括压力传感器11之外。压力传感器11用于检测灭火剂存储单元10的内部的实时压力值,并用于将所述实时压力值提供给微控制单元及/或车载控制中心,以使得微控制单元及/或车载控制中心能够及时地根据所述实时压力值控制执行预设的动作,进一步提高灭火的智能性。
进一步地,在本申请的一个实施例中提供的一种智能热触发灭火装置中,所述智能热触发灭火装置还包括微控制单元(未图示)及报警装置(未图示)。所述微控制单元与所述压力传感器11连接,用于接收所述实时压力值,并根据所述实时压力值生成报警控制信号。所述报警装置与所述微控制单元连接,用于接收所述报警控制信号,并根据所述报警控制信号执行预设报警动作,以及时提醒用户采取相应的安全措施,进一步提高灭火的及时性与智能性。
在本申请的一个实施例中,所述微控制单元被配置为当所述灭火剂存储单元内的实时压力值小于或等于预设漏液压力阈值时,生成所述报警控制信号。以及时地提醒用户灭火剂存储单元存在漏液情况,避免因漏液导致不必要的经济损失。
在本申请的一个实施例中,所述预设报警动作包括生成报警声音信息、报警图像信息或报警气味信息中的至少一种,以提高报警的多样性及可视化程度。
请参考图4,在本申请的第四实施例中,提供一种智能热触发灭火装置。该智能热触发灭火装置的结构与根据第三实施例的智能热触发灭火装置的结构基本相同,除了根据第四实施例的智能热触发灭火装置还包括第一充装芯12及第一密封阀13之外。第一充装芯12用于对灭火剂存储单元10抽真空,并用于向灭火剂存储单元10充装灭火剂。第一密封阀13用于在完成充装灭火剂动作后,密封灭火剂存储单元10。
进一步地,请继续参考图4,在本申请的一个实施例中,智能热触发灭火装置还包括第二充装芯31及第二密封阀32。第二充装芯31用于对灭火剂流动管路30抽真空,并用于向灭火剂流动管路30的内部充装流体。第二密封阀32用于在完成充装流体动作后,密封灭火剂流动管路30。
进一步地,请继续参考图4,在本申请的一个实施例中,智能热触发灭火装置还包括第一气密接头26、安装软管27及第二气密接头33。第一气密接头26连接压力平衡阀20的出液端口25与安装软管27的一端,以确保连接管路的气密性。第二气密接头33连接安装软管27的另一端与灭火剂流动管路30的进液口,实现安装软管27与灭火剂流动管路30的密封连接。
请参考图5,在本申请的第五实施例中,提供一种智能热触发灭火装置。该智能热触发灭火装置的结构与根据第四实施例的智能热触发灭火装置的结构基本相同,除了灭火剂流动管路之外。所述灭火剂流动管路包括干路通管34及若干支路通管35。干路通管34的进液口与灭火剂存储单元10的内部连通。各所述支路通管35的进液口均与干路通管34的内部连通。各支路通管35的出液口用于分别延伸至不同的预设位置。其中,各支路通管35的出液口均设置有温度感应喷头40。任一预设位置处的温度感应喷头40内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时可进行变形,使得灭火剂存储单元10中的灭火剂经由温度感应喷头40喷出,以定点并定向喷射灭火剂灭火。
于上述实施例中的智能热触发灭火装置中,通过设置灭火剂流动管路包括干路通管及若干支路通管,便于将各支路通管出液口处的温度感应喷头延伸至不同的预设位置,实现智能定点、定向灭火,这拓宽了智能热触发灭火装置的应用领域与应用范围。
在本申请的一个实施例中,至少一所述支路通管包括一级支路通管(未图示)及二级支路通管(未图示)。各所述二级支路通管的进液口均与所述一级支路通管的内部连通,各所述二级支路通管的出液口分别延伸至各预设位置。其中,各所述二级支路通管的出液口均设置有所述温度感应喷头。
于上述实施例中的智能热触发灭火装置中,通过设置支路通管包括一级支路通管及若干二级支路通管,便于将各二级支路通管出液口处的温度感应喷头延伸至不同的预设位置,实现智能定点、定向灭火,这拓宽了智能热触发灭火装置的应用领域与应用范围。
请参考图6,在本申请的一个实施例中提供的一种智能热触发灭火装置中,可以将灭火剂流动管路30设置于电池包本体100上,例如可以设置在电池包本体100的上盖上,并在灭火剂流动管路30上设置多个温度感应喷头(图6中未示出),使得任一电池模组102因热失控触发临近的温度感应喷头中的温度感应元件(例如是易熔合金)融化时,灭火剂流动管路30中的灭火剂可经由该温度感应喷头喷出,以对发生热失控的电池模组喷淋灭火剂灭火。在本申请的其他实施例中,也可以将灭火剂流动管路30设置于电池包本体的壳体的内部底面上,以实现对发生热失控的电池模组喷淋灭火剂灭火。
在本申请的一个实施例中,请继续参考图6,可以在电池包本体上设置通道,用于容纳灭火剂流动管路30,以使得灭火剂流动管路30镶嵌在电池包本体上。在本申请的其他实施例中,也可以将灭火剂流动管路30通过卡接、螺接或焊接中的一种或多种连接方式固定于电池包本体上。当然,也可以通过支架间接将灭火剂流动管路30固定于电池包本体上。这里只是示意性给出灭火剂流动管路30与电池包本体100的连接方式,并不作为对申请的限制。
请参考图7与图8,在本申请的一个实施例中提供的一种智能热触发灭火装置中,将灭火剂流动管路30设置在电池包本体100的上盖上,并在灭火剂流动管路30上设置多个温度感应喷头(图7中未示出)。可以设置灭火剂流动管路30呈脉冲波形或正弦波形等波浪状形式分布于电池包本体的上盖上,使得灭火剂流动管路30上的温度感应喷头尽可能全面覆盖或临近所有的电池模组102,使得任一电池模组102因热失控触发临近的温度感应喷头中的温度感应元件(例如是易熔合金)融化时,灭火剂流动管路30中的灭火剂可经由该温度感应喷头喷出,以对发生热失控的电池模组喷淋灭火剂灭火。
在本申请的一个实施例中,请参考图9,灭火剂流动管路30可以包括多条灭火剂通管301。至少一条灭火剂通管301可被设置为呈脉冲波形或正弦波形等波浪状形式分布于电池包本体100例如是上盖上。
,请参考图10,在本申请的一个实施例中,将智能热触发灭火装置应用于电动车的电池包中。电池包的壳体100包括4个用于容纳电池模组的空腔体101。各空腔体101内设置有2个电池模组。所述智能热触发灭火装置包括4条支路通管35。各支路通管35的出液口均设置有温度感应喷头。当预设位置处的温度感应喷头内的温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得所述预设位置处的支路通管内的流体经由所述温度感应喷头喷出,减小了灭火剂流动管路内的实时流体压力值,从而使得压力平衡阀开通供液通路,灭火剂存储单元10内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。本申请在没有增设传感器的情况下,可对产生热失控的部位进行针对性智能灭火,从而在提高灭火效率的同时减少灭火剂的使用量。由于本申请采用了温度感应触发智能灭火功能,实现定点、定向灭火,可对发生热失控的电池模组进行针对性灭火。此外,高压灭火剂喷放的速度大于热失控的电池模组释放高温杂质引起的热蔓延速度,因而有效地提高了灭火降温的速度 和效率,从而在没有增设传感器的情况下提高了灭火效率,且减少灭火剂的使用量,避免因过量使用灭火剂对其他功能正常的电池模组或车身部件产生不良影响。
具体地,由于实验表明,三元锂电池在120℃左右时,其电池隔膜溶解,从而电池隔膜的自动关断效果会暂时抑制。当温度持续上升,且实时温度值达到150℃左右时,电池隔膜的自动关断效果开始减弱,受热剧增。当实时温度值达到180℃左右时,电池正极分解,产生氧气。若继续受热剧增,三元锂电池会进入热失控状态,导致起火或爆炸等情况发生。因此,三元锂电池处于热失控状态时的实时温度值为150℃-180℃。磷酸铁锂电池处于热失控状态时的实时温度值为200℃-240℃。车规级零部件的工作温度上限85℃。若温度感应元件熔点的下限值小于85℃会不满足车规级零部件的要求,与车规级标准冲突,并且会引起误喷射。若选择锂电池的热失控温度值作为温度感应元件熔点的上限,很难保证温度感应喷头在热失控之前及时变形,定点并定向喷放灭火剂。若温度感应喷头内的温度感应元件不能及时变形,则有可能错过灭火的最佳时机,导致灭火失效。因此,设置所述预设变形温度阈值范围为85℃-180℃,既可以避免误喷,又能够保证电池单体发生热失控之前能够及时地触发临近的温度感应喷头以喷放灭火剂,实现定点定向灭火,从而可在提高灭火效率的同时,减少灭火剂的使用量。
在本申请的一个实施例中,所述预设初始压力值为0.8MPa-4.5MPa,以使得温度感应喷头内的温度感应元件变形后,高压灭火剂能够经由所述温度感应喷头的出液口沿预定的方向喷出,实现定点定向灭火,在提高灭火效率的同时,减少灭火剂的使用量。
在本申请的一个实施例中提供一种电池包,该电池包包括若干个电池模组;以及如任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述电池模组的内部及/或外部的预设位置。
在本申请的一个实施例中提供的一种电池包中,所述支路通管包括m条一级支路通管和n条二级支路通管。m为电池包的外壳的内部包括的用于容纳电池模组的空腔体的总数,n为一个所述空腔体的内部的电池模组的总数。例如,第i条一级支路通管Li用于设置在第i个空腔体的侧壁表面,二级支路通管Lij的进液口均与一级支路通管Li的内部连通,且二级支路通管Lij的出液口用于延伸至空腔体内的预设位置;任一二级支路通管Lij的出液口设置有所述温度感应喷头;其中,i∈[1,m],j∈[1,n],i为正整数,j为正整数,m为大于或等于1的整数,n为大于或等于1的整数。
作为示例,请参考图10,在本申请的一个实施例中,所述电池包中包括8个空腔体101。任一空腔体101内设置有2个电池模组102。所述支路通管包括8条一级支路通管35及16条二级支路通管。第1个空腔体的侧壁表面设置有第1条一级支路通管L1,且第1个空腔体的内部的设置有二级支路通管L11和二级支路通管L12。第2个空腔体的侧壁表面设置有第2条一级支路通管L2,且第2个空腔体的内部的设置有二级支路通管L21和二级支路通管L22。第3个空腔体的侧壁表面设置有第3条一级支路通管L3,且第3个空腔体的内部的设置有二级支路通管L31(图10中未示出)和二级支路通管L32。第4个空腔体的侧壁表面设置有第4条一级支路通管L4,且第4个空腔体的内部的设置有二级支路通管L41和二级支路通管L42。第5个空腔体的侧壁表面设置有第5条一级支路通管L5,且第5个空腔体的内部的设置有二级支路通管L51和二级支路通管L52。第6个空腔体的侧壁表面设置有第6条一级支路通管L6,且第6个空腔体的内部的设置有二级支路通管L61和二级支路通管L62。第7个空腔体的侧壁表面设置有第7条一级支路通管L7,且第7个空腔体的内部的设置有二级支路通管L71和二级支路通管L72。第8个空腔体的侧壁表面设置有第8条一级支路通管L8,且第8个空腔体的内部的设置有二级支路通管L81和二级支路通管L82。各二级支路通管的进液口均与一级支路通管的内部连通,且二级支路通管的出液口延伸至空腔体的内部的不同的预设位置、任一二级支路通管的出液口设置有所述温度感应喷头。
具体地,于上述实施例中的智能热触发灭火装置中,二级支路通管的出液口延伸至电池包内的空腔体的内部的不同的预设位置,使得电池包内所有的电池模组均对应设置有温度感应喷头,用于实时感测各电池模组附近的实时温度值,并在任一电池模组发生热失控时,对应的温度感应喷头内的温度感应元件能够及时地感测到发生热失控的电池模组附近的实时温度值,并自动定向地喷放灭火剂,以对发生热失控的电池模组进行针对性灭火。
作为示例,请继续参考图10,若第1个空腔体101内的第1个电池模组11发生热失控时,二级支路通管L11出液口处的温度感应喷头内的温度感应元件变形,使得二级支路通管L11内的灭火剂经由所述温度感应喷头的出液 口流出,并向发生热失控的电池模组11的表面喷洒,以对电池模组11进行针对性灭火。
进一步地,在本申请的一个实施例中提供的一种电池包中,至少一所述二级支路通管的表面设置有q条三级支路通管Lijk。三级支路通管Lijk的进液口均与二级支路通管Lij的内部连通,且三级支路通管Lijk的出液口用于延伸至电池包内的电池模组内的预设位置。q为一电池包内的一个电池模组内的电池单体的总数。任一三级支路通管Lijk的出液口设置有所述温度感应喷头。其中,k∈[1,q],k为正整数,q为大于或等于1的整数。
具体地,于上述实施例中的电池包中,三级支路通管的出液口能够延伸至电池包内不同电池模组的内部的预设位置,使得电池包内所有的电池单体均对应设置有温度感应喷头,用于实时感测各电池单体附近的实时温度值。因此,在任一电池单体发生热失控时,对应的温度感应喷头内的温度感应元件能够及时地感测到发生热失控的电池单体附近的实时温度值,使得所述温度感应喷头及时地自动喷放灭火剂,以对发生热失控的电池单体进行针对性灭火。
作为示例,请参考图10和图11,在本申请的一个实施例中,所述电池包的内部的一电池模组的内部的电池单体的总数为6。第1个空腔体的内部的第1个电池模组11的内部包括电池单体111、电池单体112、电池单体113、电池单体114、电池单体115和电池单体116。第1个空腔体的内部的第1条二级支路通管L11的出液口临近的电池模组11内设置有三级支路通管L111、三级支路通管L112、三级支路通管L113、三级支路通管L114、三级支路通管L115及三级支路通管L116,三级支路通管L111、三级支路通管L112、三级支路通管L113、三级支路通管L114、三级支路通管L115及三级支路通管L116的进液口均与二级支路通管L11的内部连通。三级支路通管L111的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体111的位置。三级支路通管L112的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体112的位置。三级支路通管L113的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体113的位置。三级支路通管L114的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体114的位置。三级支路通管L115的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体115的位置。三级支路通管L116的出液口延伸至第1个空腔体的内部的第1个电池模组11的内部,且临近电池单体116的位置。三级支路通管L111、三级支路通管L112、三级支路通管L113、三级支路通管L114、三级支路通管L115及三级支路通管L116的出液口均设置有温度感应喷头。
作为示例,请继续参考图10和图11,当第1个空腔体的内部的第1个电池模组11的内部的第1个电池单体111发生热失控时,三级支路通管L111的出液口处的温度感应喷头内的温度感应元件变形,使得三级支路通管L111内的灭火剂经由所述温度感应喷头的出液口流出,并向发生热失控的电池单体111的表面喷洒,以对电池单体111进行针对性灭火。
在本申请的一个实施例中提供的一种电池包中,所述温度感应喷头的出液口与所述电池单体的排气阀相对设置,使得灭火剂的喷射区域可最大范围地覆盖热失控时热蔓延的区域,从而可使灭火剂从热失控发生位置向未发生热失控位置进行覆盖。由于温度感应喷头内温度感应元件的融化温度值小于或等于所述电池单体发生热失控的温度的起始值,使得温度感应喷头提前于电池单体发生热失控的时刻喷放灭火剂,使得灭火剂充满整个发生热失控的单体附近的受限空间。由于受限空间的几何尺寸和灭火剂的表面张力能够互相正向促进,以及灭火剂的饱和蒸汽压的反向限制,灭火剂能够有效驻留于发生热失控的单体的临近空间,充分吸收热失控的单体释放的能量,降低热量的累积与传播,阻止热失控蔓延。
请参考图12和图13,在本申请的一个实施例中,温度感应喷头40包括进液部41、出液部42及温度感应元件43。进液部41的进液口与所述支路通管的出液口连通。出液部42的进液口与所述进液部的出液口连通。其中,进液部41的内径d的最大值小于或等于出液部42的内径D的最小值。出液部42沿灭火剂从出液部42流出的方向呈喇叭状,如图12中所示。也可以将温度感应喷头40设置成如图13所示的T型。当然在本申请的其他实施例中,也可以将温度感应喷头40设置成其他柱状。
在本申请的一个实施例中,所述进液部41的内径d的值为1.5mm-2.4mm。所述出液部42的内径D的值为2.4mm-6mm。
具体地,于上述实施例中的智能热触发灭火装置中,通过设置进液部41的内径d的最大值小于或等于出液部42的内径D的最小值,并设置出液部42沿灭火剂从出液部42流出的方向呈喇叭状或T型形状等,可使得进液部 41内的高压灭火剂经由所述喇叭状的出液部42流出并呈扩散包覆的趋势覆盖发生热失控的物体,这有效地提高了灭火降温的速度和效率,病在提高灭火效率的同时减少灭火剂的使用量。
在本申请的一个实施例中,所述支路通管为软管;及/或所述干路通管为软管,以便于根据不同电池模组内部的不同形状或体积,优化支路通管与干路通管的布局设计,在节省通管的用料成本并降低安装使用成本的同时,可提高灭火装置的工作稳定性。
在本申请的一个实施例中,所述灭火剂的形态为气态、液态、气液混合态、固液混合态或气固液混合态中的至少一种。所述灭火剂包括六氟丙烷、七氟丙烷、全氟已酮、二氧化碳、氮气、氦气或氩气中的至少一种。
作为示例,在本申请的一个实施例中,所述灭火剂包括:七氟丙烷,占混合剂的3%(以重量计);二氧化碳,占混合剂的17%(以重量计);和全氟已酮,占混合剂的80%(以重量计)。灭火剂的存储状态为加压存储。七氟丙烷、二氧化碳和全氟已酮预先混合后罐装至灭火剂存储单元内存储。
作为示例,在本申请的一个实施例中,所述灭火剂包括:六氟丙烷,占灭火剂的3%至40%(以体积计);七氟丙烷,占灭火剂的3%至40%(以体积计);以及二氧化碳。
作为示例,在本申请的一个实施例中,所述灭火剂包括液态七氟丙烷和液态二氧化碳。七氟丙烷占混合剂的3%至80%(以体积计),余量为二氧化碳。
作为示例,在本申请的一个实施例中,所述灭火剂包括:七氟丙烷,占混合剂的25%(以重量计);二氧化碳,占混合剂的50%(以重量计);和全氟已酮,占混合剂的25%(以重量计)。灭火剂的存储状态为常温,并且被加压存储。
作为示例,在本申请的一个实施例中,所述灭火剂包括:全氟己酮溶液,摩尔浓度超过95%;和氦气。
可以根据智能热触发灭火装置具体应用场景的不同需求,选择灭火剂的成分,从而在提高灭火效率的同时,避免喷放的灭火剂对物品造成不良影响。
在本申请的一个实施例中,提供一种储能系统。该储能系统包括若干个储能模组;以及如任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述储能模组的内部,或延伸至所述储能模组的外部、位于距离储能系统的外表面预设距离内的预设位置。在本申请的其他实施例中,也可以同时将灭火剂流动管路的出液口处的温度感应喷头同时延伸至储能模组的内部及外部的距离储能系统的外表面预设距离内的预设位置。
在本申请的一个实施例中,提供一种车辆,该车辆包括如任一本申请实施例中所述的智能热触发灭火装置。所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述车辆的内部,或延伸至所述车辆的外部、位于距离车辆的外表面预设距离内的预设位置。在本申请的其他实施例中,也可以同时将灭火剂流动管路的出液口处的温度感应喷头同时延伸至车辆的内部及外部的距离储能系统的外表面预设距离内的预设位置。
在本申请的一个实施例中,所述车辆包括但不限于两轮车、三轮车或多轮车中需要使用智能定点热触发灭火功能的智能热触发灭火装置。
在本申请的一个实施例中,可以在电池包壳体的内部设置全氟己酮溶液,使得电池模组沉浸在全氟己酮溶液中,实现浸入式灭火。
在本申请的一个实施例中,可以在电池模组的内部设置全氟己酮溶液,使得电池模组沉浸在全氟己酮溶液中,实现浸入式灭火。
进一步地,在本申请的一个实施例中,提供一种智能热触发灭火方法。该智能热触发灭火方法包括如下步骤202至208.
在步骤202处,使用温度感应喷头来检测预设位置处的实时温度值。所述温度感应喷头设置于灭火剂流动管路的出液口。所述温度感应喷头的内部设置有温度感应元件。所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口。所述灭火剂流动管路的进液口与灭火剂存储单元的内部连通、所述灭火剂流动管路的出液口延伸至所述预设位置。所述灭火剂存储单元用于储存并供给灭火剂。
在步骤204处,使用压力平衡阀检测灭火剂流动管路的进液口处的实时流体压力值。所述压力平衡阀串联于灭火剂存储单元的出液口与所述灭火剂流动管路的进液口之间。所述灭火剂流动管路的内部设置有预设初始压力值的 流体。
在步骤206处,当所述实时温度值属于预设变形温度阈值范围时,所述温度感应元件变形,使得所述流体经由所述温度感应喷头喷出,从而减小了所述实时流体压力值。所述变形包括熔化、软化或脆化中的至少一种。
在步骤208处,当所述实时流体压力值小于或等于预设供液压力阈值时,所述压力平衡阀开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
关于上述实施例中的智能热触发灭火方法的具体限定可以参见上文中对于智能热触发灭火装置的限定,在此不再赘述。
应该理解的是,除非本文中有明确的说明,所述的步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,所述的步骤的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种智能热触发灭火装置,其特征在于,包括:
    灭火剂存储单元,用于储存并供给灭火剂;
    灭火剂流动管路,所述灭火剂流动管路的进液口与所述灭火剂存储单元的内部连通,所述灭火剂流动管路的出液口用于延伸至预设位置,所述灭火剂流动管路内设置有预设初始压力值的流体;
    压力平衡阀,串联于所述灭火剂存储单元的出液口与所述灭火剂流动管路的进液口之间,用于检测所述灭火剂流动管路的进液口处的实时流体压力值;
    温度感应喷头,设置于所述灭火剂流动管路的出液口,所述温度感应喷头的内部设置有温度感应元件,所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口,所述温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得所述流体经由所述温度感应喷头喷出,从而减小所述实时流体压力值;
    其中,所述变形包括熔化、软化或脆化中的至少一种,所述压力平衡阀被配置为:
    当所述实时流体压力值小于或等于预设供液压力阈值时,开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
  2. 根据权利要求1所述的智能热触发灭火装置,其特征在于,所述压力平衡阀还被配置为:
    当所述实时流体压力值大于预设供液压力阈值时,所述压力平衡阀闭塞所述灭火剂存储单元向所述灭火剂流动管路的供液通路。
  3. 根据权利要求2所述的智能热触发灭火装置,其特征在于,所述压力平衡阀包括:
    阀本体,所述阀本体具有中空的气缸;
    活塞,位于所述气缸的内部,将所述气缸划分为隔离的第一气缸腔与第二气缸腔;
    进液端口,所述第一气缸腔经由所述进液端口与所述灭火剂存储单元的内部连通;
    出液端口,所述气缸经由所述出液端口与所述灭火剂流动管路的内部连通,所述出液端口的初始位置位于所述第二气缸腔的内部;
    其中,所述活塞被配置为:当所述第二气缸腔内的实时流体压力值小于或等于预设供液压力阈值时,向减小所述第二气缸腔的体积并增大所述第一气缸腔的体积的方向移动,使得所述出液端口位于所述第一气缸腔的内部,并使得所述灭火剂存储单元内的灭火剂依次流经所述第一气缸腔和所述出液端口后流入所述灭火剂流动管路。
  4. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,所述温度感应元件包括易熔合金、记忆合金、热塑性树脂、热敏密封火药或热塑性玻璃中的至少一种。
  5. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,所述流体为灭火剂,所述预设初始压力值大于所述预设供液压力阈值。
  6. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,所述流体包括惰性气体,所述预设初始压力值大于所述预设供液压力阈值。
  7. 根据权利要求6所述的智能热触发灭火装置,其特征在于,还包括:
    超压泄气阀,设置于所述灭火剂流动管路,用于限制所述灭火剂流动管路的内部的实时气压值;
    所述超压泄气阀被配置为:
    当所述实时气压值大于或等于预设的安全压力阈值时,开通所述灭火剂流动管路向所述灭火剂流动管路的外部进行泄气的通路。
  8. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,还包括:
    压力传感器,用于检测所述灭火剂存储单元的内部的实时压力值,并用于将所述实时压力值提供给微控制单元及/或车载控制中心。
  9. 根据权利要求8所述的智能热触发灭火装置,其特征在于,还包括:
    微控制单元,与所述压力传感器连接,用于接收所述实时压力值,并根据所述实时压力值生成报警控制信号;
    报警装置,与所述微控制单元连接,用于接收所述报警控制信号,并根据所述报警控制信号执行预设报警动作。
  10. 根据权利要求9所述的智能热触发灭火装置,其特征在于,所述微控制单元被配置为:
    当所述灭火剂存储单元内的实时压力值小于或等于预设漏液压力阈值时,生成所述报警控制信号。
  11. 根据权利要求9所述的智能热触发灭火装置,其特征在于,所述预设报警动作包括生成报警声音信息、报警图像信息或报警气味信息中的至少一种。
  12. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,还包括:
    第一充装芯,用于对所述灭火剂存储单元抽真空,并用于向所述灭火剂存储单元充装灭火剂;
    第一密封阀,用于在完成充装灭火剂动作后,密封所述灭火剂存储单元。
  13. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,还包括:
    第二充装芯,用于对所述灭火剂流动管路抽真空,并用于向所述灭火剂流动管路的内部充装流体;
    第二密封阀,用于在完成充装流体动作后,密封所述灭火剂流动管路。
  14. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,所述灭火剂流动管路包括:
    干路通管,所述干路通管的进液口与所述灭火剂存储单元的内部连通;
    若干支路通管,各所述支路通管的进液口均与所述干路通管的内部连通,各所述支路通管的出液口用于分别延伸至不同的预设位置;
    其中,各所述支路通管的出液口均设置有所述温度感应喷头,任一预设位置处的温度感应喷头内的温度感应元件,所述温度感应元件在感测到所述预设位置处的实时温度值属于预设变形温度阈值范围时变形,使得灭火剂存储单元中的灭火剂经由所述温度感应喷头喷出,以定点并定向喷射灭火剂灭火。
  15. 根据权利要求14所述的智能热触发灭火装置,其特征在于,至少一所述支路通管包括:
    一级支路通管;
    二级支路通管,各所述二级支路通管的进液口均与所述一级支路通管的内部连通,各所述二级支路通管的出液口分别延伸至各预设位置;
    其中,各所述二级支路通管的出液口均设置有所述温度感应喷头。
  16. 根据权利要求1-3任一项所述的智能热触发灭火装置,其特征在于,所述灭火剂的形态为气态、液态、气液混合态、固液混合态或气固液混合态中的至少一种;所述灭火剂包括六氟丙烷、七氟丙烷、全氟已酮、二氧化碳、氮气、氦气或氩气中的至少一种。
  17. 一种电池包,其特征在于,包括:
    若干个电池模组;以及
    如权利要求1-16任一项所述的智能热触发灭火装置,所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述电池模组的内部及/或外部的预设位置。
  18. 一种储能系统,其特征在于,包括:
    若干个储能模组;以及
    如权利要求1-16任一项所述的智能热触发灭火装置,所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述储能模组的内部及/或外部的预设位置。
  19. 一种车辆,其特征在于,包括:
    如权利要求1-16任一项所述的智能热触发灭火装置,所述灭火剂流动管路的出液口处的温度感应喷头延伸至所述车辆的内部及/或外部的预设位置。
  20. 一种智能热触发灭火方法,其特征在于,包括:
    使用温度感应喷头检测预设位置处的实时温度值,其中所述温度感应喷头设置于灭火剂流动管路的出液口,所述温度感应喷头的内部设置有温度感应元件,所述温度感应元件在预设正常工作温度范围内堵塞所述灭火剂流动管路的出液口,所述灭火剂流动管路的进液口与灭火剂存储单元的内部连通,所述灭火剂流动管路的出液口延伸至所述预设位置,所述灭火剂存储单元用于储存并供给灭火剂;
    使用压力平衡阀检测灭火剂流动管路的进液口处的实时流体压力值,其中所述压力平衡阀串联于灭火剂存储单元的出液口与所述灭火剂流动管路的进液口之间,所述灭火剂流动管路的内部设置有预设初始压力值的流体;
    当所述实时温度值属于预设变形温度阈值时,所述温度感应元件变形,使得所述流体经由所述温度感应喷头喷 出,从而减小所述实时流体压力值,其中所述变形包括熔化、软化或脆化中的至少一种;
    当所述实时流体压力值小于或等于预设供液压力阈值时,所述压力平衡阀开通所述灭火剂存储单元向所述灭火剂流动管路的供液通路,使得所述灭火剂存储单元内的灭火剂经由所述温度感应喷头喷出,以定点并定向灭火。
PCT/CN2021/105663 2020-07-16 2021-07-12 智能热触发灭火装置、方法、电池包、储能系统及车辆 WO2022012453A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010688155.4A CN113941105B (zh) 2020-07-16 2020-07-16 智能热触发灭火装置、方法、电池包、储能系统及车辆
CN202021407074.4 2020-07-16
CN202021407074.4U CN212700168U (zh) 2020-07-16 2020-07-16 智能热触发灭火装置、电池包、储能系统及车辆
CN202010688155.4 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022012453A1 true WO2022012453A1 (zh) 2022-01-20

Family

ID=79555056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105663 WO2022012453A1 (zh) 2020-07-16 2021-07-12 智能热触发灭火装置、方法、电池包、储能系统及车辆

Country Status (1)

Country Link
WO (1) WO2022012453A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470568A (zh) * 2022-01-28 2022-05-13 山东雷纳新材料工程有限公司 一种贮压式雾化灭火装置
CN115114779A (zh) * 2022-06-24 2022-09-27 中国科学技术大学 气体灭火剂喷射流动特性的分析方法及其终端、存储介质
CN118937081A (zh) * 2024-09-02 2024-11-12 深圳瑞佳达新能源科技有限公司 电池包挤压试验台用挤压试验装置
WO2024244184A1 (zh) * 2023-06-02 2024-12-05 西安快舟机电科技有限公司 一种阻止锂电池组热失控蔓延的消防装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698198B2 (ja) * 1990-06-07 1994-12-07 日本ドライケミカル株式会社 消防車用圧力調整器と消防車
US5979564A (en) * 1995-04-24 1999-11-09 Willaims Fire & Hazard Control, Inc. Fluid additive supply system for fire fighting mechanisms
CN202605572U (zh) * 2012-04-12 2012-12-19 杭州荣和电气有限公司 一种灭火系统
CN103212172A (zh) * 2012-11-13 2013-07-24 西安新竹防灾救生设备有限公司 电动汽车自动灭火防火装置
CN206063594U (zh) * 2016-09-12 2017-04-05 北京利达海鑫灭火系统设备有限公司 电爆型远程启动探火管式灭火装置
CN206295526U (zh) * 2016-09-28 2017-07-04 江门市地尔汉宇电器股份有限公司 一种带灭火装置的动力电池包
CN106975190A (zh) * 2017-05-31 2017-07-25 湖南磐龙安全系统股份有限公司 一种用于七氟丙烷灭火系统的容器阀防泄漏开关装置
CN107398049A (zh) * 2017-06-22 2017-11-28 哲弗智能系统(上海)有限公司 一种使用混合灭火剂的车载电池灭火结构
CN208694090U (zh) * 2018-04-25 2019-04-05 南京都盟消防技术有限公司 一种采用全氟已酮灭火剂的灭火系统
CN212700168U (zh) * 2020-07-16 2021-03-16 哲弗智能系统(上海)有限公司 智能热触发灭火装置、电池包、储能系统及车辆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698198B2 (ja) * 1990-06-07 1994-12-07 日本ドライケミカル株式会社 消防車用圧力調整器と消防車
US5979564A (en) * 1995-04-24 1999-11-09 Willaims Fire & Hazard Control, Inc. Fluid additive supply system for fire fighting mechanisms
CN202605572U (zh) * 2012-04-12 2012-12-19 杭州荣和电气有限公司 一种灭火系统
CN103212172A (zh) * 2012-11-13 2013-07-24 西安新竹防灾救生设备有限公司 电动汽车自动灭火防火装置
CN206063594U (zh) * 2016-09-12 2017-04-05 北京利达海鑫灭火系统设备有限公司 电爆型远程启动探火管式灭火装置
CN206295526U (zh) * 2016-09-28 2017-07-04 江门市地尔汉宇电器股份有限公司 一种带灭火装置的动力电池包
CN106975190A (zh) * 2017-05-31 2017-07-25 湖南磐龙安全系统股份有限公司 一种用于七氟丙烷灭火系统的容器阀防泄漏开关装置
CN107398049A (zh) * 2017-06-22 2017-11-28 哲弗智能系统(上海)有限公司 一种使用混合灭火剂的车载电池灭火结构
CN208694090U (zh) * 2018-04-25 2019-04-05 南京都盟消防技术有限公司 一种采用全氟已酮灭火剂的灭火系统
CN212700168U (zh) * 2020-07-16 2021-03-16 哲弗智能系统(上海)有限公司 智能热触发灭火装置、电池包、储能系统及车辆

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470568A (zh) * 2022-01-28 2022-05-13 山东雷纳新材料工程有限公司 一种贮压式雾化灭火装置
CN115114779A (zh) * 2022-06-24 2022-09-27 中国科学技术大学 气体灭火剂喷射流动特性的分析方法及其终端、存储介质
CN115114779B (zh) * 2022-06-24 2024-03-29 中国科学技术大学 气体灭火剂喷射流动特性的分析方法及其终端、存储介质
WO2024244184A1 (zh) * 2023-06-02 2024-12-05 西安快舟机电科技有限公司 一种阻止锂电池组热失控蔓延的消防装置及方法
CN118937081A (zh) * 2024-09-02 2024-11-12 深圳瑞佳达新能源科技有限公司 电池包挤压试验台用挤压试验装置

Similar Documents

Publication Publication Date Title
WO2022012453A1 (zh) 智能热触发灭火装置、方法、电池包、储能系统及车辆
WO2022012450A1 (zh) 防灭火电池包及车辆
CN212700168U (zh) 智能热触发灭火装置、电池包、储能系统及车辆
WO2022012465A1 (zh) 具有智能定点灭火功能的电池包
CN112331990B (zh) 电池包、车辆及缓解电池包热失控蔓延的控制方法
CN107910606B (zh) 一种锂离子电池包热失控控制装置
CN213131696U (zh) 智能热触发灭火装置、电池包、储能系统及车辆
CN212542540U (zh) 控制锂离子电池模组热扩散的系统及锂离子电池模组
CN106571503A (zh) 一种电动汽车电池模组热失控安全消防系统及方法
CN109552080B (zh) 车辆
CA3062702A1 (en) Electrochemical cell housing including at least one catalyst and method of mitigating a venting and/or thermal runaway event
US20170043194A1 (en) Integrated thermal event suppression system
JP7536879B2 (ja) 筐体、電池、電気設備および電池の製造方法
CN211561654U (zh) 一种电池仓混合灭火系统
CN114614161A (zh) 一种基于换热、消防及热安全一体的电池系统
CN114597519A (zh) 一种动力电池包及其热管理系统
CN110429217B (zh) 一种可有效灭火的充电仓
WO2023093233A1 (zh) 储能装置
CN116315501A (zh) 一种锂电池系统热安全管理装置及方法
CN212303802U (zh) 一种用于锂离子电池的对向流液冷电池管理及灭火系统
CN113941105B (zh) 智能热触发灭火装置、方法、电池包、储能系统及车辆
CN212700169U (zh) 智能热触发喷头及灭火装置
CN113937377A (zh) 一种可被动处理热失控的动力电池热管理系统
CN113948807B (zh) 具有智能定点灭火功能的电池包
CN217387292U (zh) 一种基于换热、消防及热安全一体的电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842788

Country of ref document: EP

Kind code of ref document: A1