WO2022012406A1 - 通信方法、相关装置设备以及计算机可读存储介质 - Google Patents

通信方法、相关装置设备以及计算机可读存储介质 Download PDF

Info

Publication number
WO2022012406A1
WO2022012406A1 PCT/CN2021/105210 CN2021105210W WO2022012406A1 WO 2022012406 A1 WO2022012406 A1 WO 2022012406A1 CN 2021105210 W CN2021105210 W CN 2021105210W WO 2022012406 A1 WO2022012406 A1 WO 2022012406A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
beams
symbols
cell
system load
Prior art date
Application number
PCT/CN2021/105210
Other languages
English (en)
French (fr)
Inventor
王曼
邹志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21843102.1A priority Critical patent/EP4185018A4/en
Publication of WO2022012406A1 publication Critical patent/WO2022012406A1/zh
Priority to US18/154,612 priority patent/US20230147737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of computers, and in particular, to a communication method, related apparatus and computer-readable storage medium.
  • the new generation of mobile communication system is a network with higher speed, larger bandwidth, stronger capability, multi-service and multi-technology integration, bringing more than 100 times the energy efficiency improvement and bit cost reduction.
  • the basic characteristics and main goals of current networks are: high speed, low latency, massive device connections, and low power consumption.
  • the main goal is that the base station is more energy-efficient and the terminal is more power-efficient. Therefore, it is particularly important to design a more energy-efficient base station transmission scheme.
  • the present application discloses a communication method, a communication device, a communication device and a computer-readable storage medium, which can solve the technical problem of high energy consumption of a base station in the prior art and make the base station more energy-saving.
  • an embodiment of the present application provides a communication method, which is applied to beam scanning, and the method includes:
  • An interface device (such as a base station) working in a wireless environment acquires the system load at the current moment of the cell;
  • the number of turn-off symbols is configured according to the number of the scanning beams.
  • the number of scanning beams is configured according to the system load at the current moment, and the system load at the current moment is directly related to the number of RBs used by the system at the current moment, so the available power for beam scanning can be estimated according to the system load at the current moment.
  • the smaller the system load at the current moment the greater the available power, that is to say, the power on more spare RBs can be aggregated into the RB of the scanning beam according to the specific situation, so that the scanning beam can cover the same distance. the wider the coverage. That is to say, when the system load at the current moment is small, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved.
  • the symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problem in the prior art.
  • a fixed number of beam scans are used, resulting in the technical problem that multiple symbols are always in a power consumption state and the energy overhead is large, which makes the base station more energy-saving.
  • the communication method of the embodiment of the present application further includes:
  • the power on the spare resource block RB is concentrated to the RB to be occupied.
  • the scanning beams can cover a wider range under the condition that the coverage distance is the same. Then, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved. Therefore, the number of configured scanning beams can be reduced, and symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problems in the prior art.
  • a fixed number of beam scans is used, which causes multiple symbols to be in a power consumption state all the time, and the technical problem of high energy overhead makes the base station more energy-saving.
  • an interface device working in a wireless environment can be set to monitor the system load at the current moment at a certain period, or keep monitoring the system load at the current moment to obtain the system load at the current moment; Configure the number of scan beams in the scan period and the beam width of each scan beam.
  • the adjustment of the scanning beams can be completed more adaptively, and the energy cost of the base station can be adjusted more timely and evenly.
  • the lower the current load level the less the number of scanning beams in the configured period; the current load level is the load level to which the system load at the current moment belongs; wherein, the belonging load The system load of the lower class is smaller than the system load of the higher class.
  • the above-mentioned configuration of the number of scanning beams in the scanning period according to the system load at the current moment may include:
  • the number of scanning beams in the scanning period is configured.
  • the available power for beam scanning may include the power of the RB to be occupied after the power on the spare RB is aggregated to the RB to be occupied.
  • the available power is estimated first by knowing the system load at the current moment, and then the number of scanning beams in the scanning period is configured according to the available power, so that the adjustment of the scanning beams can be completed more accurately, and the problems in the prior art can be better solved.
  • a fixed number of beam scans are used, resulting in the technical problem that multiple symbols are always in a power consumption state and the energy consumption is large, so that the base station can be more energy-saving.
  • the available power is greater than the available power in the lower power class to which it belongs.
  • the method before configuring the number of scanning beams in the scanning period, the beam direction and beam width of each scanning beam according to the system load at the current moment, the method further includes: predicting the system at the current moment according to the historical system load load.
  • the system load at the current moment can be predicted by performing statistics on the historical load to obtain the distribution law of the system load in the time period. Or predict the system load at the current moment according to the distribution of the system load in the preset previous time period. Therefore, the system load at the current moment can be accurately obtained, so that the symbols that are not currently used for beam scanning can be turned off when the system load at the current moment is small, so as to realize beam scanning with fewer symbols, increase the number of symbols turned off, and reduce the number of symbols turned off. Number of transmitted symbols.
  • the communication method of the embodiment of the present application further includes: configuring the beam width of each scanning beam according to the number of the scanning beams.
  • the beam scanning coverage can be better performed when the number of scanning beam configurations in the scanning period is less than the original, so as to achieve the original coverage.
  • configuring the beam width of the scanning beams according to the number of the scanning beams may include: determining one or more resource elements RE corresponding to each scanning beam according to the number of the scanning beams ; The width of each of the scanning beams is superimposed by the beams corresponding to the corresponding one or more REs.
  • the beam width of each scanning beam is formed by superimposing the beams corresponding to the respective REs, and finally a scanning beam can be generated desired beamwidth. Therefore, the configuration of the beam width of the scanning beam can be completed by controlling the phase deviation of the beam corresponding to each RE, and the coverage of the scanning beam can be improved.
  • Weighted traversal is performed on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the delay step size is adjusted by the scheduling bandwidth, and then the precoding matrix weights of the REs corresponding to the scanning beam are obtained according to the delay step size, that is, a set of precodings configured for different resource elements REs are obtained Matrix weights, and then weighted traversal of the REs corresponding to the scanning beams based on the precoding matrix weights, so that wide beams with arbitrary bandwidths can be generated.
  • the delay step size that is, a set of precodings configured for different resource elements REs are obtained Matrix weights, and then weighted traversal of the REs corresponding to the scanning beams based on the precoding matrix weights, so that wide beams with arbitrary bandwidths can be generated.
  • S(k) is the signal after passing through the precoding matrix
  • s(k) is the transmitted signal
  • W PSD (k) is the different precoding matrix weights traversed by different REs in the frequency domain.
  • N TRX is the number of antennas.
  • N RE is the number of REs.
  • k is the RE number.
  • the value of the delay step D is mainly related to the number of RBs (N RE ) and the FFT specification (N FFT ). Adjust the D value according to the scheduling bandwidth to ensure that the D value matches the scheduling bandwidth, and the phase within the scheduling bandwidth rotates for one cycle to avoid beam coverage holes. Finally, a broad beam within a certain bandwidth can be generated.
  • the communication method of the embodiment of the present application further includes:
  • An interface device (such as a base station) operating in a wireless environment controls the beam direction of the scanning beam according to the orientation of the terminal device.
  • the orientation of the terminal device when the orientation of the terminal device is known, for example, the orientation of the terminal device is known or acquired according to historical user data statistics, long-term analysis or perception of user data patterns, or terrain location statistics. Then, according to the orientation of the terminal device, the fixed position of the beam direction can be determined, and the beam direction of the scanning beam can be controlled by configuring the phase difference between channels or selecting one or several beams in the basic beam, so that the beam faces the expected direction.
  • the beam direction of the scanning beam can be determined according to the azimuth of the terminal device, there is no need to cover the scanning in all directions, and a narrower beam can be designed, thereby further reducing the number of scanning beams, further increasing the number of symbols turned off, and reducing the number of transmitted symbols to reduce the number of transmitted symbols.
  • the base station is more energy-efficient.
  • the configured beam direction of the scanning beam is staggered or different from the beam direction of the adjacent cells of the cell.
  • the beam directions of adjacent cells can be staggered by adjusting the phase difference between channels or designing different weights, so that adjacent cells form beam differences and reduce inter-cell interference.
  • it is designed to transmit the symbols of the common channel and carry data at the same time, resulting in the problem of easy formation of interference between cells.
  • the time-domain symbol of the transmit beam is staggered or different from the time-domain symbol of the transmit beam of a neighboring cell of the cell.
  • the turned-off scanning symbols are configured in the scanning period, by staggering the time-domain symbols of the beams between adjacent cells, that is to say, the time-domain symbols of the beams between the adjacent cells are different, the reduction can be further reduced. Inter-cell interference improves system efficiency.
  • an embodiment of the present application provides a communication method, characterized in that it includes:
  • One or more resource element REs corresponding to each scanning beam are determined according to the number of scanning beams; the width of each scanning beam is superimposed by the beams corresponding to the corresponding one or more REs.
  • This embodiment of the present application learns or acquires the orientation of the terminal device when the orientation of the terminal device is known, for example, according to historical user data statistics, long-term analysis or perception of user data patterns, or terrain location statistics. Then, the fixed position of the beam direction can be determined according to the orientation of the terminal device, and the beam direction can be controlled by configuring the phase difference between the channels or selecting one or several beams in the basic beam.
  • the beam direction of the scanning beam and the number of scanning beams can be determined according to the azimuth of the terminal device, there is no need for omnidirectional coverage scanning, and a narrower beam is designed, so that beam scanning can be avoided or the number of scanning beams can be reduced, and if When the number of scanning beams is reduced, the number of off symbols can be configured according to the number of said scanning beams, thereby increasing the number of symbols to be off, reducing the number of transmitted symbols, and solving the problem of using a fixed number of symbols in order to enhance coverage in the prior art.
  • the beam scanning caused by multiple symbols is always in a power consumption state, and the technical problem of high energy overhead makes the base station more energy-saving.
  • the beam width of each scanning beam is superimposed by the beams corresponding to the respective REs, and finally the required scanning beams can be generated. beam width. Therefore, the configuration of the beam width of the scanning beam can be completed by controlling the phase deviation of the beam corresponding to each RE, and the coverage of the scanning beam can be improved.
  • Weighted traversal is performed on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the delay step size is adjusted by the scheduling bandwidth, and then the precoding matrix weights of the REs corresponding to the scanning beam are obtained according to the delay step size, that is, a set of precodings configured for different resource elements REs are obtained Matrix weights, and then weighted traversal of the REs corresponding to the scanning beams based on the precoding matrix weights, so that wide beams with arbitrary bandwidths can be generated.
  • the delay step size that is, a set of precodings configured for different resource elements REs are obtained Matrix weights, and then weighted traversal of the REs corresponding to the scanning beams based on the precoding matrix weights, so that wide beams with arbitrary bandwidths can be generated.
  • S(k) is the signal after passing through the precoding matrix
  • s(k) is the transmitted signal
  • W PSD (k) is the different precoding matrix weights traversed by different REs in the frequency domain.
  • N TRX is the number of antennas.
  • N RE is the number of REs.
  • k is the RE number.
  • the value of the delay step D is mainly related to the number of RBs (N RE ) and the FFT specification (N FFT ). Adjust the D value according to the scheduling bandwidth to ensure that the D value matches the scheduling bandwidth, and the phase within the scheduling bandwidth rotates for one cycle to avoid beam coverage holes. Finally, a broad beam within a certain bandwidth can be generated.
  • the communication method of the embodiment of the present application further includes:
  • the power on the spare resource block RB is concentrated to the RB to be occupied.
  • the scanning beams can cover a wider range under the condition that the coverage distance is the same. Then, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved. Therefore, the number of configured scanning beams can be further reduced, and symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problem of the prior art.
  • a fixed number of beam scans are used, resulting in the technical problem that multiple symbols are always in a power consumption state and the energy overhead is large, which makes the base station more energy-saving.
  • the controlling the beam direction according to the azimuth of the terminal device in the cell and confirming the number of scanning beams includes:
  • the first load level is lower than the second load level, that is, when the current system load is small and the azimuth of the terminal device is known
  • the phase difference between channels can be configured or one of the basic beams can be selected or Several beams are used to control the beam direction, and beam scanning can be eliminated, thereby saving the number of transmitted symbols and increasing the number of symbols turned off.
  • the beam direction can also be controlled by configuring the phase difference between channels or selecting one or several beams in the basic beam, so that beam scanning is not required, thereby saving transmission. number of symbols, increasing the number of symbol turn-offs.
  • the configured beam direction is staggered from the beam direction of adjacent cells of the cell.
  • the beam directions of adjacent cells can be staggered by adjusting the phase difference between channels or designing different weights, so that adjacent cells form beam differences and reduce inter-cell interference.
  • it is designed to transmit the symbols of the common channel and carry data at the same time, resulting in the problem of easy formation of interference between cells.
  • the time domain symbol of the transmit beam is staggered from the time domain symbol of the transmit beam of the adjacent cell.
  • the time-domain symbols of the beams between adjacent cells are staggered, that is, the time-domain symbols of the beams between adjacent cells are different, so that the different cells are There is no interference between the synchronous and broadcast beams of the system, which can further reduce the interference between cells and improve the system efficiency.
  • an embodiment of the present application provides a communication method, including:
  • An interface device (such as a base station) operating in a wireless environment in a cell configures a scanning symbol that is turned off in the period of the transmission beam;
  • the time domain symbols of the transmit beams are staggered from the time domain symbols of the transmit beams of neighboring cells of the cell.
  • the turned-off scanning symbols are configured in the scanning period, by staggering the time-domain symbols of the beams between adjacent cells, that is to say, the time-domain symbols of the beams between the adjacent cells are different, the reduction can be further reduced. Inter-cell interference improves system efficiency.
  • the communication method of the embodiment of the present application further includes:
  • the power on the spare resource block RB is concentrated to the RB to be occupied.
  • the scanning beams can cover a wider range under the condition that the coverage distance is the same. Then, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved. Therefore, the number of configured scanning beams can be reduced, and symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problems in the prior art.
  • a fixed number of beam scans is used, which causes multiple symbols to be in a power consumption state all the time, and the technical problem of high energy overhead makes the base station more energy-saving.
  • an embodiment of the present application provides a communication device, which is applied to beam scanning, including:
  • an obtaining unit used to obtain the system load at the current moment of the cell
  • a first configuration unit configured to configure the number of scanning beams in a scanning period according to the system load at the current moment
  • the second configuration unit is configured to configure the number of turn-off symbols according to the number of the scanning beams.
  • the apparatus further includes:
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • the lower the current load level the less the number of scanning beams in the configured period; the current load level is the load level to which the system load at the current moment belongs; wherein, the belonging load The system load of the lower class is smaller than the system load of the higher class.
  • the first configuration unit includes:
  • an estimation unit configured to estimate the available power for beam scanning according to the system load at the current moment
  • a beam configuration unit configured to configure the number of scanning beams in the scanning period and the beam width of each scanning beam according to the available power.
  • the available power for beam scanning includes the power of the RB to be occupied after the power on the spare RB is aggregated to the RB to be occupied.
  • the first configuration unit is further configured to configure the beam width of each scanning beam according to the number of the scanning beams.
  • the first configuration unit further includes:
  • a resource element determination unit configured to determine one or more resource element REs corresponding to each scanning beam according to the number of the scanning beams; the width of each scanning beam is determined by the beam corresponding to the corresponding one or more REs overlay.
  • the first configuration unit further includes:
  • a delay step size adjustment unit which is used to adjust the delay step size according to the scheduling bandwidth
  • a weight configuration unit configured to obtain the precoding matrix weight of the RE corresponding to the scanning beam according to the delay step
  • a weighted traversal unit configured to perform weighted traversal on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the apparatus further includes:
  • the beam direction control unit is configured to control the beam direction of the scanning beam according to the azimuth of the terminal equipment in the cell.
  • a beam direction of the configured scanning beam is staggered from a beam direction of a neighboring cell of the cell.
  • the apparatus further includes:
  • the symbol staggering unit is configured to stagger the time-domain symbols of the transmit beams from the time-domain symbols of the transmit beams of adjacent cells of the cell if the off scan symbols are configured in the scan period.
  • an embodiment of the present application provides a communication device, including:
  • the beam direction control unit is used to control the beam direction of the scanning beam and confirm the number of the scanning beam according to the orientation of the terminal equipment in the cell;
  • a resource element determination unit configured to determine one or more resource element REs corresponding to each scanning beam according to the number of the scanning beams; the width of each scanning beam is determined by the beam corresponding to the corresponding one or more REs overlay.
  • the apparatus may further include:
  • a delay step size adjustment unit which is used to adjust the delay step size according to the scheduling bandwidth
  • a weight configuration unit configured to obtain the precoding matrix weight of the RE corresponding to the scanning beam according to the delay step
  • a weighted traversal unit configured to perform weighted traversal on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the apparatus may further include:
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • the beam direction control unit controls the beam direction of the scanning beam and confirms the number of scanning beams according to the orientation of the terminal device in the cell;
  • the beam direction control unit controls the beam direction of the scanning beam according to the orientation of the terminal equipment in the cell And confirm the number of scanning beams.
  • the configured beam direction is staggered from the beam direction of adjacent cells of the cell.
  • the apparatus may further include:
  • the symbol staggering unit is configured to stagger the time-domain symbols of the transmission beam from the time-domain symbols of the transmission beams of adjacent cells of the cell if the off scanning symbols are configured in the period of the transmission beam.
  • an embodiment of the present application provides a communication device, including:
  • a symbol turn-off configuration unit configured to configure the turned-off scanning symbols within the period of the transmit beam
  • the symbol staggering unit is used to stagger the time domain symbols of the transmit beams from the time domain symbols of the transmit beams of neighboring cells of the current cell during the process of configuring the scanning beam.
  • the apparatus may further include:
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • an embodiment of the present application provides a communication device, including a processor and a memory; the memory is used for storing a program; the processor is used for executing the program stored in the memory, when the When the program is executed, the processor is configured to execute the first aspect or any implementation manner of the first aspect, the second aspect or any implementation manner of the second aspect, or the third aspect or the third aspect of the embodiments of the present application.
  • a communication device including a processor and a memory; the memory is used for storing a program; the processor is used for executing the program stored in the memory, when the When the program is executed, the processor is configured to execute the first aspect or any implementation manner of the first aspect, the second aspect or any implementation manner of the second aspect, or the third aspect or the third aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer is made to execute the first aspect or any one of the first aspects.
  • the embodiments of the present application provide a computer program product, which, when running on a computer, enables the computer to execute the first aspect or any implementation manner of the first aspect, the second aspect or the second aspect. Any one of the implementation manners, or the third aspect or the method provided by any one of the implementation manners of the third aspect.
  • the fourth aspect provided above, the communication device provided in the fifth aspect, the communication device provided in the sixth aspect, the computer-readable storage medium provided in the seventh aspect, and the computer program product provided in the eighth aspect are all The method provided for performing the first aspect or any implementation manner of the first aspect, the second aspect or any implementation manner of the second aspect, or the third aspect or any implementation manner of the third aspect. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the communication method provided in the first aspect, the second aspect, or the third aspect, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another embodiment of the communication system provided by the present application.
  • FIG. 3 is a schematic diagram of the principle of beam scanning provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the principle of configuring the number of beams provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of beam adjustment provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of beam direction adjustment between cells provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of beam direction adjustment between cells according to another embodiment provided by the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to another embodiment provided by the present application.
  • FIG. 10 is a schematic flowchart of a communication method according to another embodiment provided by the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 13 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a chip further provided by an embodiment of the present application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the interface devices that work in the wireless environment involved in the embodiments of this application may include, but are not limited to, general-form base stations, high-frequency stations, low-frequency stations, large stations, small stations, repeaters, relay stations, and various forms of base stations Or a part of the base station, and various forms of base station units in the Cloud Radio Access Network (CRAN).
  • CRAN Cloud Radio Access Network
  • the base station involved in the embodiments of this application may also refer to a radio access network (Radio Access Network, RAN) node of a wireless network, for example, a gNB, a transmission reception point (TRP), an evolved node B (evolved node B) Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (For example, homeevolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, WiFi) access point (access point, AP), etc.
  • a radio access network Radio Access Network, RAN
  • a radio access network Radio Access Network, RAN
  • gNB transmission reception point
  • TRP transmission reception point
  • eNB evolved node B
  • RNC Radio Network Controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • a network structure it may also be a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • centralized unit centralized unit, CU
  • distributed unit distributed unit
  • RAN device including a CU node and a DU node.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • Data connectivity devices such as handheld devices with wireless connectivity, in-vehicle devices, etc.
  • Some examples of terminal devices are: mobile phone (mobilephone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (VR) device, augmented reality (augmented reality) reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid) Terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, vehicles with cockpit domain controllers, etc.
  • FIG. 1 a schematic diagram of a communication system architecture provided by an embodiment of the present application is first introduced with reference to FIG. 1 to illustrate a wireless communication scenario to which the communication method of the present application is applied.
  • the communication methods in the embodiments of the present application can be applied to any system that applies multiple antennas, as well as a communication system that applies beam scanning, such as 3G/4G/5G and next-generation communication systems.
  • UMTS Universal Mobile Telecommunications System
  • 4G fourth generation mobile communication system
  • evolution system such as LTE (Long Term Evolution, long term evolution) system
  • 5G fifth generation mobile communication system
  • Mobile communication system Mobile communication system
  • CRAN Cloud Radio Access Network, Cloud Radio Access Network
  • Coexistence scenarios of different systems/standards are also applicable to the scope of this application.
  • FIG. 1 specifically takes a transceiver system composed of a base station and a terminal device (mobile intelligent terminal) as an example, and on the basis of a transceiver system composed of a base station and a terminal device, the base station and the base station perform coordination.
  • FIG. 2 is a schematic diagram of the architecture of another embodiment of the communication system provided by the present application.
  • a transceiver system composed of a base station and a terminal device specifically includes a base station applying multi-antenna technology and information exchange between the terminal device. Specifically, for example, after adopting the beamforming technology, the base station often uses multiple beams with different directions to completely cover the cell. As shown in Figure 2, the base station uses 8 beams to cover the cells it serves.
  • the base station uses beams of different directions to transmit wireless signals in turn, and this process is called beam sweeping; at the same time, the terminal device measures the wireless signals emitted by different beams (Beam measurement), and sends them to the base station. Report related information (Beam reporting); the base station determines the best transmit beam (Beam determination) aimed at the terminal device according to the terminal device report.
  • Beam reporting the base station determines the best transmit beam (Beam determination) aimed at the terminal device according to the terminal device report.
  • the current SSB scan is performed in turn to transmit beams in turn at different times.
  • SS Synchronization Signal
  • PBCH Physical broadcast channel Block
  • the system will scan the first 4 time slots of the first 5ms within 20ms, and the 8 beams will scan once in turn in time.
  • Two beam scans occur, for a total of 8 beam scans for 4 slots.
  • Each beam occupies 4 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols, and 8 ⁇ 4 OFDM symbols are required in the time domain of 8 beams.
  • OFDM Orthogonal frequency division multiplexing
  • the communication method in the embodiment of the present application can be specifically applied to scenarios such as downlink broadcasting, synchronization and data transmission, and uplink access and data transmission.
  • the downlink broadcast and synchronization process may include downlink synchronization and broadcast using SSB scanning, but it is also applicable to the synchronization process in LTE; it may also include a common control channel (CommonPhysical Downlink Control Channel, CommonPDCCH) transmission process using multiple beam scanning.
  • Uplink access and data transmission may include the process of uplink initial access.
  • the first step of random access carries data transmission scenarios, which are applicable to the implementation of this application. example communication method.
  • the base station of the embodiment of the present application can always send energy-saving super beams at a certain period to achieve full coverage, and the terminal device can realize two-step access anytime, anywhere, data transmission without access, and random access preamble (preamble) carry data sent.
  • the following is a schematic flowchart of the communication method provided by the embodiment of the present application as shown in FIG. 4 , taking SSB scanning performed by the base station as an example, to illustrate how the base station interacts with the terminal device, which may include the following steps:
  • Step S400 the base station obtains the system load of the cell at the current moment
  • the system in this embodiment of the present application may be a base station, and acquiring the system load at the current moment means determining the load of the base station.
  • the base station can directly count the system load at the current time to obtain the system load at the current time; it can also predict the system load at the current time of the cell with its own historical system load, so as to obtain the system load at the current time with higher efficiency.
  • the base station can perform statistics on the historical system load to obtain the distribution law of the system load in the time period to predict the system load at the current moment.
  • the base station predicts the system load at the current moment according to the preset distribution of the system load in the previous time period.
  • the system load at the current moment is obtained by predicting the system load at the current moment.
  • a system load prediction model can be pre-established on the base station side, and then the collected samples are trained by machine learning, and historical samples are input to predict the system load.
  • the machine learning algorithm can make predictions directly according to the distribution of the system load in the previous time period, or make predictions according to the distribution law of the historical system load in the time period through statistical analysis.
  • the base station can input the currently recorded historical system load based on the trained system load prediction model, and obtain the predicted system load at the current moment, that is, obtain the system load at the current moment.
  • Step S402 the base station determines the number of scanning beams in the scanning period according to the system load at the current moment;
  • multiple load levels may be set to correspond to the number of scan beams configured, and different load levels may correspond to different numbers of scan beams.
  • the lower the current load level the less the number of scanning beams in the configured period.
  • the current load level is the load level to which the system load at the current moment belongs; wherein, the system load with a lower load level is smaller than the system load with a higher load level.
  • the load level 1 in Table 1 is the highest level, and the corresponding system load at the current moment is 0 to 10%, where (* indicates that the value range does not include the value corresponding to *, and [* or *] indicates that the value range includes *The corresponding values are arranged in the descending order.
  • the number of scanning beams can be determined by setting multiple load levels. Different load levels can correspond to different numbers of scanning beams, and the adjustment of scanning beams can be quickly completed to solve the problem of the current situation.
  • a fixed number of beam scans are used, causing multiple symbols to be in a power consumption state all the time, and the technical problem of high energy overhead makes the base station more energy-saving.
  • the base station determines the number of scanning beams in the scanning period according to the system load at the current moment, which may specifically include: the base station estimates the available power for beam scanning according to the number of RBs to be occupied; Then the base station determines the number of scanning beams according to the available power.
  • the base station can estimate the number of RBs vacant on the common channel according to the system load at the current moment.
  • the power originally used for allocating the vacant RBs may be aggregated to the RBs occupied by the common channel.
  • the system has no other RB overhead except for common channels such as SSB, and the system load is 1% at this time.
  • a system bandwidth (or scheduling bandwidth) of 20M a total of 106RBs are available.
  • the SSB needs to occupy 20RB, that is, the power of the remaining 86RB can be converged to the SSB of 20RB.
  • the power of the SSB can be increased by about 5 times and increased by about 4 times, that is, the power of the SSB can be increased by about 6 dB.
  • the available power for beam scanning can be estimated according to the number of RBs to be occupied.
  • the available power in this embodiment of the present application may refer to the power of the RB to be occupied after the power on the spare resource block RB is aggregated to the RB to be occupied.
  • the available power is the total power after the RB to be occupied (the RB to be overhead on a common channel such as SSB) is increased by 6dB.
  • the data symbols also occupy a part of RBs (for example, about 10% of the RBs are to be occupied), and the system load is 10% at this time.
  • a system bandwidth (or scheduling bandwidth) of 20M a total of 106RBs are available.
  • the SSB needs to occupy 20 RBs, and the data needs to occupy about 10 RBs, that is, the remaining power of about 76 RBs can be aggregated into the SSBs of 20 RBs (the RBs that the SSB and other common channels need to spend).
  • the power of the SSB can be approximately 4 times that of the original, that is, an increase of approximately 5dB of power. That is to say, the available power is the total power after the RB to be occupied (the RB to be spent on common channels such as SSB) is increased by 5dB.
  • the power on the spare resource block RB is aggregated to the RB to be occupied.
  • the power on the spare RB can be aggregated only to the RB to be occupied by common channels such as SSB. .
  • the power on the spare RB can also be aggregated to all the RBs to be occupied, that is, if the SSB occupies 20 RBs and the data occupies about 10 RBs, for example, the remaining power of about 76 RBs can be aggregated to 30 RBs (SSB and other common channels require overhead). RB, plus the RB to be occupied by the data).
  • multiple power levels may be set to correspond to the number of scan beams configured, and different power levels may correspond to different numbers of scan beams.
  • the higher the current power level the fewer the configured scanning beams.
  • the current power level is the power level to which the available power belongs; wherein, the available power with a high power level is greater than the available power with a low power level.
  • the power level 1 in Table 2 is the highest level, which is arranged in the descending order.
  • different power levels can be configured with different numbers of scanning beams, and the adjustment of scanning beams can be quickly completed, which solves the problem of using fixed beams to enhance coverage in the prior art.
  • the number of beam scans causes multiple symbols to be in a power consumption state all the time, and the technical problem of high energy overhead makes the base station more energy-saving.
  • Step S404 the base station configures the number of scanning beams and the number of off symbols
  • the scanning beams are configured according to the number of scanning beams determined in step S402.
  • the number of off symbols is configured according to the number of scanning beams.
  • the system ie, the base station
  • the system may define or set a default number of scanning beams according to the number of antennas. Then, when the number of turn-off symbols is configured according to the number of scanning beams, the number of turn-off symbols may be configured specifically according to the number of scanning beams and the predefined or set number of scanning beams.
  • the turned-off symbol in this embodiment of the present application may specifically refer to a symbol that is turned off for an OFDM symbol originally defined or used for beam scanning, and the turned-off symbol is no longer used for beam scanning.
  • G is the number of configured shutdown symbols
  • y is the number of scanning beams pre-defined by the system
  • q is the number of scanning beams determined in step S402.
  • the super beam is configured. For example, 2 scanning beams are currently configured, which are lower than the original 8 scanning beams, so the symbols originally used for SSB scanning, but there are currently no beam scanning symbols can be configured to be turned off, which is equivalent to configuring 24 turned off. number of symbols.
  • the following is an example for description with reference to the schematic schematic diagram of the configuration of the number of beams provided by the embodiment of the present application shown in FIG. 5 .
  • one scanning beam larger power amplifier
  • 2 scanning beams can be configured.
  • 4 scanning beams small power amplifiers
  • the coverage of the leftmost 1 scanning beam is the same as that of the middle 2 scanning beams and the rightmost 4 scanning beams.
  • the leftmost scanning beam converges to obtain the maximum power.
  • the number of turn-off symbols is also the largest, that is, the number of transmitted symbols is reduced, the optimal power transmission is designed, and the number of symbol turn-offs is increased.
  • the base station may further configure the beam width of each scanning beam according to the number of scanning beams.
  • the base station may further configure the beam width of each scanning beam according to the number of scanning beams.
  • 2 scanning beams are configured.
  • the beam widths of the 2 scanning beams are configured to achieve the original 8 scanning beams. coverage.
  • two scanning beams are configured in step S404 and only need to cover the coverage of a certain two scanning beams among the original eight scanning beams, it is equivalent to configuring the two scanning beams configured in the present application as the original scanning beams.
  • the beam width of the beam that is, the beam width configuration, does not change.
  • Step S406 the base station aggregates the available power in the symbol into the RB of the scanning beam.
  • the base station may perform power aggregation of other idle RBs other than the RB to be occupied within the symbol of the super beam (for example, within a certain OFDM symbol), and aggregate the power to the RB to be occupied. so that the current scanning beam can reach the predetermined coverage.
  • the available power in the aggregated symbol in the embodiment of the present application may specifically refer to the symbol interior included in each time slot in FIG. 3 .
  • time slot 0 contains two different symbols on the left and right, and each symbol corresponds to a scanning beam.
  • Each symbol may specifically include 4 OFDM symbols.
  • the number of scanning beams is configured according to the system load at the current moment, and the system load at the current moment is directly related to the number of RBs used by the system at the current moment, so the available power for beam scanning can be estimated according to the system load at the current moment.
  • the smaller the system load at the current moment the greater the available power, that is to say, the power on more spare RBs can be aggregated into the RBs of the scanning beam, so as to prevent the base station from directly allocating power according to the number of RBs in the prior art, If some RBs are vacant, the corresponding power allocated by them is wasted.
  • the power on the spare resource block RB is aggregated to the RB to be occupied, so that the scanning beam can cover a wider range with the same coverage distance. That is to say, when the system load at the current moment is small, the number of scanning beams in the scanning period is configured to be less than the original, and the original coverage can also be achieved. When the number of configured scanning beams is reduced, the symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols to be turned off, reducing the number of transmitted symbols, and solving the problem in the prior art. Enhanced coverage uses a fixed number of beam scans, causing multiple symbols to be in a power consumption state all the time, and the technical problem of high energy overhead makes the base station more energy-efficient.
  • each of the foregoing embodiments may further include a step of configuring the beam direction of the scanning beam.
  • the process of configuring the beam direction of the scanning beam may specifically include:
  • the base station controls the beam direction of the scanning beam according to the azimuth of the terminal equipment in the cell.
  • the base station learns the orientation of the terminal equipment in the cell, for example, according to historical user data statistics, long-term analysis or perception of the regularity of user data, or according to terrain location statistics, to learn or obtain the orientation of the terminal equipment.
  • the azimuth of the terminal equipment may refer to the azimuth where all terminal equipments in the cell are located.
  • the fixed position of the beam direction can be determined according to the orientation of the terminal device, and the beam direction of the scanning beam can be controlled by configuring the phase difference between channels or selecting one or several beams in the basic beam.
  • the basic beam may refer to the original preset maximum number of beams in the system. As shown in FIG. 2 , the original preset maximum number of beams is 8 beams.
  • one beam in one of the directions can be selected according to the orientation of the terminal device, or multiple beams in one of the directions (such as the labeled #L-3, #L- 2 and #L-1 beam), to control the beam direction of the scanning beam to hit the direction of the selected beam.
  • the historical user data in the embodiment of the present application may specifically refer to the orientation data of all terminal devices in the cell within a certain historical time period before the current time. Then, the location of the terminal equipment in the current cell is estimated by statistics of the historical user data.
  • the beam direction of the scanning beam can be determined according to the azimuth of the terminal device, there is no need to cover the scanning in all directions, and a narrower beam can be designed, thereby further reducing the number of scanning beams, further increasing the number of symbols turned off, and reducing the number of transmitted symbols to reduce the number of transmitted symbols.
  • the base station is more energy-efficient.
  • configuring the beam width of the scanning beams according to the number of scanning beams may include:
  • One or more resource element REs corresponding to each scanning beam are determined according to the number of the scanning beams; the width of each scanning beam is superimposed by the beams corresponding to the corresponding one or more REs.
  • the configuration of the beam widths of the scanning beams can be completed by controlling the phase deviation of the beams corresponding to each RE, which can improve the coverage of the scanning beams.
  • the embodiments of the present application include, but are not limited to, configuring the beam width of the scanning beam in the following ways:
  • Weighted traversal is performed on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the phase deviation of the beam corresponding to each RE is determined by the precoding matrix weights configured for it.
  • Adjust the delay step size by scheduling the bandwidth, and then obtain the precoding matrix weights of the REs corresponding to the scanning beams according to the delay step size, that is, obtain a set of precoding matrix weights configured for different resource elements REs,
  • the deviation between different weights can be adjusted, for example, by controlling the slight shift of the phase of the beam corresponding to each RE, so as to achieve wide coverage of the beam within a certain bandwidth, and further improve the coverage angle.
  • S(k) is the signal after passing through the precoding matrix
  • s(k) is the transmitted signal
  • W PSD (k) is the different precoding matrix weights traversed by different REs in the frequency domain.
  • N TRX is the number of antennas.
  • N RE is the number of REs.
  • k is the RE number. for the phase.
  • N TRX 8 if N TRX is 8, that is, the number of 8 antennas. So:
  • k 0,1,...,N RE -1. It shows that adding a delay to each antenna is equivalent to configuring a different precoding matrix for each RE.
  • the precoding matrix of the first RE configuration is The precoding matrix of the second RE configuration is And so on.
  • the value of the delay step D is mainly related to the number of RBs (N RE ) and the FFT specification (N FFT ). Adjust the D value according to the scheduling bandwidth to ensure that the D value matches the scheduling bandwidth, and the phase within the scheduling bandwidth rotates for one cycle to avoid beam coverage holes. Finally, a broad beam within a certain bandwidth can be generated.
  • the schematic diagram of beam adjustment provided by the embodiment of the present application, after the orientation of the terminal device is known, the number of scanning beams can also be reduced. No beam scanning is required. Then, the beam direction of the scanning beam is controlled by configuring the phase difference between channels or selecting one or several beams in the basic beam, and then through the adjustment of the D value, the slight shift of the phase of the beam corresponding to each RE can be controlled to further Adjust the coverage of the beam.
  • each RE is configured with different precoding matrix weights, each RE corresponds to a narrow beam, and these narrow beams have a slight phase offset, and then each RE is weighted and superimposed into a wide beam effect, In other words, the envelope of all these narrow beams forms a wide beam, resulting in 1 scanning beam configured.
  • the corresponding REs are divided into two groups, for example, 130 REs in each group.
  • the D value is calculated separately for each group of REs, and each RE in each group of REs is configured with different precoding matrix weights to form two corresponding sub-wide beams; or the D value can be increased for all REs first, and then divided into two groups. Two independent beams.
  • different basic beams may also be designed, for example, 8 basic beams are preset, including 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, and 8/8 beams, these 8 basic beams have different beam widths, then you can take n/8 (n is less than or equal to 8) beams to achieve full coverage with fewer beams.
  • beams with a width of 1/8, or 1/4, or 1/2 can also be designed through basic weights, and full coverage can be formed by flexible combination of these beams. For example, a combination of two 1/2 beams, or a combination of two 1/4 beams, a 1/2 beam, and so on.
  • the configuration may further include: the configured beam direction of the scanning beam is staggered from the beam direction of the adjacent cells of the current cell or different.
  • the inter-channel phase difference can be adjusted or different weights can be designed to form a beam difference with neighboring cells of the current cell to reduce the inter-cell interference.
  • each AP performs SSB scanning in the same time slot and symbol.
  • the symbols of the common channel are designed to carry data at the same time, which easily causes mutual interference between cells. Therefore, it is particularly important to control the inter-cell interference.
  • the beam directions of the adjacent cells of the current cell can be staggered by adjusting the phase difference between the channels or designing different weights, so that the adjacent cells form beam differences and reduce the interference between the cells.
  • it is designed to transmit the symbols of the common channel and carry data at the same time, resulting in the problem of easy formation of interference between cells.
  • the process of configuring the beam direction of the scanning beam may further specifically include: if the turned-off scanning symbol is configured in the scanning period, the base station (that is, in this cell) will send the time domain symbol of the beam It is staggered or different from the time domain symbols of the transmission beams of the adjacent cells of the current cell.
  • the beam in this embodiment of the present application may be an SSB beam, that is, a synchronization and broadcast beam.
  • FIG. 8 is a schematic diagram of beam direction adjustment between cells according to another embodiment provided by the present application. Through joint design between multiple cells, on the premise that the number of beams is reduced, and the scanning symbols that are turned off are configured Next, it is designed that the time domain symbol of AP1 sending the SSB beam is S1, and the time domain symbol of AP2 sending the SSB beam is S2.
  • S1 and S2 are different symbols, that is, the time slots of the scanning beams of adjacent cells are staggered to avoid inter-cell interference, that is, there is no interference between synchronization and broadcast beams of different cells.
  • the time-domain symbols of the beams between adjacent cells of the current cell are shifted by staggering the time-domain symbols of the beams between adjacent cells. Different, so that there is no interference between the synchronization and broadcast beams of different cells, which can further reduce the interference between cells and improve the system efficiency.
  • the base station may be set to monitor the system load at the current moment in a certain period, or keep monitoring the system load at the current moment, to configure the number of scanning beams in the scanning period, each scanning beam The beam direction and beam width of the beam. That is to say, the steps of the above-mentioned steps S400 to S406 may be set to be executed at a certain period or always.
  • the adjustment of the scanning beams can be completed more adaptively, and the energy cost of the base station can be adjusted in a more timely and balanced manner.
  • the communication method of the embodiment of the present application can be a full-power adaptive two-dimensional dynamic beam scanning method in space and time.
  • the number of scanning beams in the scanning period and the beam direction and the beam direction of each scanning beam are dynamically configured.
  • beam width is adaptively and dynamically adjusted, so that each beam can be oriented in any direction and cover any wave width.
  • the beams between the cells stagger the coverage direction and transmit symbols, thereby reducing inter-cell interference.
  • FIG. 9 is a schematic flowchart of a communication method according to another embodiment of the present application shown in FIG. 9 , also taking the SSB scan performed by the base station as an example, and then illustrating how the base station interacts with the terminal equipment, which may include the following steps:
  • Step S900 the base station controls the beam direction according to the azimuth of the terminal equipment in the cell and confirms the number of scanning beams;
  • the base station can know or acquire the orientation of the terminal device according to historical user data statistics, long-term analysis or perception of user data rules, or according to terrain location statistics. Then, the fixed position of the beam direction can be determined according to the orientation of the terminal device, and the beam direction of the scanning beam can be controlled by configuring the phase difference between channels or selecting one or several beams in the basic beam.
  • Step S902 Determine one or more resource element REs corresponding to each scanning beam according to the number of scanning beams; the width of each scanning beam is superimposed by the beam corresponding to the corresponding one or more REs;
  • Step S904 adjust the delay step size according to the scheduling bandwidth
  • Step S906 obtaining the precoding matrix weight of the RE corresponding to the scanning beam according to the delay step;
  • Step S908 Perform weighted traversal on the REs corresponding to the scanning beams based on the precoding matrix weights
  • the phase deviation of the beam corresponding to each RE is determined by the precoding matrix weights configured for it. Adjust the delay step size by scheduling the bandwidth, and then obtain the precoding matrix weights of the REs corresponding to the scanning beams according to the delay step size, that is, obtain a set of precoding matrix weights configured for different resource elements REs,
  • the deviation between different weights can be adjusted, for example, by controlling the slight shift of the phase of the beam corresponding to each RE, so as to achieve wide coverage of the beam within a certain bandwidth, and further improve the coverage angle.
  • S(k) is the signal after passing through the precoding matrix
  • s(k) is the transmitted signal
  • W PSD (k) is the different precoding matrix weights traversed by different REs in the frequency domain.
  • N TRX is the number of antennas.
  • N RE is the number of REs.
  • k is the RE number. for the phase.
  • the value of the delay step D is mainly related to the number of RBs (N RE ) and the FFT specification (N FFT ). Adjust the D value according to the scheduling bandwidth to ensure that the D value matches the scheduling bandwidth, and the phase within the scheduling bandwidth rotates for one cycle to avoid beam coverage holes. Finally, a broad beam within a certain bandwidth can be generated.
  • step S910 may be performed: configure the number of off symbols according to the number of scanning beams. Referring to the description about configuring the number of shutdown symbols in step S404 in the embodiment of FIG. 4 , details are not repeated here.
  • the above-mentioned embodiment of FIG. 9 may further include:
  • the power on the spare resource block RB is concentrated to the RB to be occupied.
  • the scanning beams can cover a wider area under the same coverage distance. Then, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved. Therefore, the number of configured scanning beams can be further reduced, and symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problem of the prior art.
  • a fixed number of beam scans are used, resulting in the technical problem that multiple symbols are always in a power consumption state and the energy overhead is large, which makes the base station more energy-saving.
  • the base station can determine the fixed position of the beam direction according to the orientation of the terminal device, and control the beam direction of the scanning beam by configuring the phase difference between channels or selecting one or several beams in the basic beam. Since the beam direction of the scanning beam can be determined according to the azimuth of the terminal device, there is no need for omnidirectional coverage scanning, and a narrower beam can be designed, and the power can be concentrated into the RB of the scanning beam, so that beam scanning can be avoided or the scanning beam can be reduced.
  • the number of symbols can be increased, the number of symbols to be turned off can be increased, the number of transmitted symbols can be reduced, and the technical problems of using a fixed number of beam scans in order to enhance coverage in the prior art, causing multiple symbols to be in a power consumption state all the time and high energy overhead, are solved.
  • Base stations are more energy efficient.
  • step S900 in the foregoing embodiment may be specifically performed when the current system load is at the first load level.
  • step S900 may be specifically performed when the current system load is at the second load level, and the proportion of the terminal device falling within the first geographic area reaches a threshold.
  • the first load level is lower than the second load level, that is, when the current system load is small and the azimuth of the terminal device is known
  • the phase difference between channels can be configured or one of the basic beams can be selected or Several beams are used to control the beam direction, and beam scanning can be eliminated, thereby saving the number of transmitted symbols and increasing the number of symbols turned off.
  • the above-mentioned first geographic area can be set according to the cell area covered by the base station.
  • the technical personnel can set the size of the first geographic area according to actual needs or analysis of historical data, for example, 50% of the cell area covered by the base station.
  • Technicians can also set the above threshold according to actual needs or according to historical data analysis, for example, the threshold is 100%.
  • the proportion of the terminal devices falling within the first geographical area reaches the threshold, which means that the locations of the terminal devices are concentrated.
  • the phase difference between channels can be configured or selected in the basic beam. One or several beams are used to control the beam direction, and beam scanning is not required, thereby saving the number of transmitted symbols and increasing the number of symbols turned off.
  • the configured beam direction is staggered from the beam direction of neighboring cells of the current cell.
  • the beam directions of adjacent cells can be staggered by adjusting the phase difference between channels or designing different weights, so that adjacent cells form beam differences and reduce inter-cell interference.
  • it is designed to transmit the symbols of the common channel and carry data at the same time, resulting in the problem of easy formation of interference between cells.
  • the time domain symbol of the transmit beam is staggered from the time domain symbol of the transmit beam of the adjacent cell.
  • the turned-off scanning symbols are configured in the scanning period, by staggering the time-domain symbols of the beams between adjacent cells, that is to say, the time-domain symbols of the beams between the adjacent cells are different, the reduction can be further reduced. Inter-cell interference improves system efficiency.
  • Step S1000 the base station configures the turned-off scanning symbols in the period of the transmission beam
  • Step S1002 In the process of configuring the scanning beam, the time domain symbols of the transmit beams are shifted from the time domain symbols of the transmit beams of neighboring cells of the cell.
  • the base station configures the turned-off scanning symbols in the period of sending beams, and how to stagger the time-domain symbols of the sending beams from the time-domain symbols of the sending beams of neighboring cells in the cell during the process of configuring the scanning beams, please refer to The descriptions of the above embodiments in FIG. 4 and FIG. 8 will not be repeated here.
  • the above-mentioned embodiment of FIG. 10 may further include:
  • the scanning beams can cover a wider area under the same coverage distance. Then, the number of scanning beam configurations in the scanning period is less than the original, and the original coverage can also be achieved. Therefore, the number of configured scanning beams can be further reduced, and symbols that are not currently used for beam scanning can be turned off, thereby realizing beam scanning with fewer symbols, increasing the number of symbols turned off, reducing the number of transmitted symbols, and solving the problem of the prior art.
  • a fixed number of beam scans are used, resulting in the technical problem that multiple symbols are always in a power consumption state and the energy overhead is large, which makes the base station more energy-saving.
  • the turned-off scanning symbols are configured in the scanning period, by staggering the time-domain symbols of the beams between adjacent cells, that is to say, the time-domain symbols of the beams between the adjacent cells are different, the reduction can be further reduced. Inter-cell interference improves system efficiency.
  • An embodiment of the present application further provides a communication device, which is applied to beam scanning.
  • a schematic structural diagram of the communication device provided by the embodiment of the present application is shown.
  • the communication device 11 may include an acquisition unit 110, a first configuration unit 112 and The second configuration unit 114, wherein:
  • the obtaining unit 110 is configured to obtain the system load of the cell at the current moment
  • the first configuration unit 112 is configured to configure the number of scanning beams in the scanning period according to the system load at the current moment;
  • the second configuration unit 114 is configured to configure the number of off symbols according to the number of the scanning beams.
  • the communication device 11 may further include:
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • the lower the current load level the less the number of scanning beams in the configured period; the current load level is the load level to which the system load at the current moment belongs; wherein, the belonging load The system load of the lower class is smaller than the system load of the higher class.
  • the first configuration unit 112 may include an estimation unit and a beam configuration unit, wherein:
  • an estimation unit configured to estimate the available power for beam scanning according to the system load at the current moment
  • a beam configuration unit configured to configure the number of scanning beams in the scanning period and the beam width of each scanning beam according to the available power.
  • the available power for beam scanning includes the power of the RB to be occupied after the power on the spare RB is aggregated to the RB to be occupied.
  • the first configuration unit 112 may also be configured to configure the beam width of each scanning beam according to the number of the scanning beams.
  • the communication device 11 may further include:
  • the beam direction control unit is configured to control the beam direction of the scanning beam according to the azimuth of the terminal equipment in the cell.
  • the first configuration unit 112 may further include a resource element determination unit, a delay step size adjustment unit, a weight configuration unit, and a weighted traversal unit, wherein:
  • a resource element determination unit configured to determine one or more resource element REs corresponding to each scanning beam according to the number of the scanning beams; the width of each scanning beam is determined by the beam corresponding to the corresponding one or more REs superimpose;
  • the delay step size adjustment unit is used to adjust the delay step size according to the scheduling bandwidth
  • the weight configuration unit is configured to obtain the precoding matrix weight of the RE corresponding to the scanning beam according to the delay step;
  • the weighted traversal unit is configured to perform weighted traversal on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • a beam direction of the configured scanning beam is staggered from a beam direction of a neighboring cell of the cell.
  • the communication device 11 may further include:
  • the symbol staggering unit is configured to stagger the time-domain symbols of the transmit beams from the time-domain symbols of the transmit beams of adjacent cells if the off scan symbols are configured in the scan period.
  • each unit in the communication apparatus 11 may also correspond to the embodiment of the reference communication method, and will not be described in detail here.
  • An embodiment of the present application further provides a communication device.
  • a schematic structural diagram of another embodiment of the communication device provided by the present application is shown.
  • the communication device 12 may include a beam direction control unit 120 and a resource element determination unit 122. in:
  • the beam direction control unit 120 is configured to control the beam direction of the scanning beam and confirm the number of the scanning beam according to the orientation of the terminal equipment in the cell;
  • the resource element determining unit 122 is configured to determine one or more resource elements RE corresponding to each scanning beam according to the number of the scanning beams; the width of each scanning beam is determined by the corresponding one or more REs. beam stacking;
  • the communication device 12 may further include an off-symbol configuration unit configured to configure the number of off-symbols according to the number of the scanning beams.
  • the communication apparatus 12 may further include a delay step size adjustment unit, a weight configuration unit and a weighted traversal unit, wherein:
  • the delay step adjustment unit is configured to adjust the delay step according to the scheduling bandwidth after the resource element determining unit 122 determines one or more resource elements RE corresponding to each scanning beam according to the number of the scanning beams;
  • the weight configuration unit is configured to obtain the precoding matrix weight of the RE corresponding to the scanning beam according to the delay step;
  • the weighted traversal unit is configured to perform weighted traversal on the REs corresponding to the scanning beams based on the precoding matrix weights.
  • the communication apparatus 12 may further include: a power aggregation unit, configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • the communication device 11 when the current system load is at the first load level, the communication device 11 triggers the beam direction control unit 120 to control the beam direction of the scanning beam and confirm the direction of the scanning beam according to the azimuth of the terminal device in the cell. number; or,
  • the communication device 11 triggers the beam direction control unit 120 to control the scanning beam according to the orientation of the terminal equipment in the cell the beam direction and confirm the number of scanning beams.
  • the configured beam direction is staggered from the beam direction of adjacent cells of the cell.
  • the communication device 11 may further include: a symbol staggering unit, configured to align the time domain symbol of the transmit beam with the phase of the cell if the off scan symbol is configured in the period of the transmit beam The time-domain symbols of the transmit beams of neighboring cells are staggered.
  • each unit in the communication apparatus 12 may also correspond to the embodiment of the reference communication method, and will not be described in detail here.
  • An embodiment of the present application also provides a communication device. As shown in FIG. 13, a schematic structural diagram of another embodiment of the communication device provided by the present application is shown.
  • the communication device 13 may include a symbol turn-off configuration unit 130 and a symbol stagger unit 132. in:
  • the symbol turn-off configuration unit 130 is configured to configure the turned-off scanning symbols in the period of the transmission beam
  • the symbol staggering unit 132 is configured to stagger the time-domain symbols of the transmit beams from the time-domain symbols of the transmit beams of neighboring cells of the current cell during the process of configuring the scanning beam.
  • the communication device 13 may further include:
  • a power aggregation unit configured to aggregate the power on the spare resource block RB to the RB to be occupied within the configured symbol of the scanning beam.
  • each unit in the communication device 13 may also correspond to the embodiment of the reference communication method, which will not be described in detail here.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 140 can execute the communication method provided by the embodiment of the present invention.
  • the communication device 140 may include at least one processor 1401 and a memory 1402, the processor 1400 and the memory 1402 being connected to each other, wherein,
  • the processor 1401 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 1401 may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract the information or data bits conveyed in the signal.
  • BBPs are typically implemented in one or more digital signal processors (DSPs) or as separate integrated circuits (ICs) in modulation and demodulation as needed or desired.
  • DSPs digital signal processors
  • ICs integrated circuits
  • the memory 1402 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions
  • ROM read-only memory
  • RAM random access memory
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a magnetic disk storage medium or other magnetic storage device, or can be used to carry or store instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the communication device 140 may also include general components such as antennas, transceivers, etc., which will not be repeated here.
  • the communication device 140 may also include a bus.
  • the transceiver, the memory 1402 and the like may be connected to the processor 1401 through a bus.
  • the above-mentioned memory 1402 may be used to store program codes for executing the communication method of the above solution, and the execution is controlled by the processor 1401 .
  • the code stored in the memory 1402 may be used to perform the steps in the communication methods provided above in FIGS. 1-10 .
  • an embodiment of the present application further provides a chip 1500 including one or more processors 1501 and an interface circuit 1502 .
  • the above-mentioned chip 1500 may further include a bus 1503 . in:
  • the processor 1501 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1501 or an instruction in the form of software.
  • the above-mentioned processor 1501 may be a general purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the interface circuit 1502 can complete the sending or receiving of data, instructions or information.
  • the processor 1501 can use the data, instructions or other information received by the interface circuit 1502 to process, and can send the processing completion information through the interface circuit 1502.
  • the chip further includes a memory, which may include a read-only memory and a random access memory, and provides operation instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory stores executable software modules or data structures, and the processor can execute the above communication methods provided by FIG. 1 to FIG. step.
  • the chip may be used in an electronic device or a network device or a multi-node distributed system involved in the embodiments of the present application.
  • the interface circuit 1502 may be used to output the execution result of the processor 1501 .
  • processor 1501 and the interface circuit 1502 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer or the processor is run on the computer, the computer or the processor causes the computer or the processor to execute any one of the above methods. or multiple steps. If each component module of the above signal processing device is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in the computer-readable storage medium.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法,应用于波束扫描,包括:获取小区当前时刻系统负载;根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数;根据所述扫描波束的个数配置关断符号的个数。本申请还提供了一种通信装置、通信设备和计算机可读存储介质,可以解决现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。

Description

通信方法、相关装置设备以及计算机可读存储介质
本申请要求于2020年07月15日提交中国专利局、申请号为202010685117.3、申请名称为“通信方法、相关装置设备以及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机领域,尤其涉及一种通信方法、相关装置设备以及计算机可读存储介质。
背景技术
随着移动通信系统带宽和能力的增加,移动网络的速率也飞速提升,新一代的移动通信系统是一个更高速率、更大带宽、更强能力多业务多技术融合的网络,带来超百倍的能效提升和比特成本降低。
随之而来的,基站的能量消耗问题就显得更加突出。当前网络的基本特征和主要目标:高速率、低时延、海量设备连接、低功耗。对于低功耗,主要的目标是基站更节能,终端更省电。因此,设计更加节能的基站发送方案就尤为重要。
发明内容
本申请公开了一种通信方法、通信装置、通信设备及计算机可读存储介质,可以解决现有技术中基站能耗大的技术问题,使得基站更加节能。
第一方面,本申请实施例提供一种通信方法,应用于波束扫描,所述方法包括:
在无线环境中工作的接口设备(例如基站)获取小区当前时刻系统负载;
根据当前时刻系统负载,配置扫描周期内扫描波束的个数;
根据所述扫描波束的个数配置关断符号的个数。
本申请实施例根据当前时刻系统负载来配置扫描波束的个数,而当前时刻系统负载与当前时刻系统已使用的RB数直接关联,那么根据当前时刻系统负载可以预估用于波束扫描的可用功率,其中当前时刻系统负载越小,可用功率越大,也就是说后续可以根据具体情况将将更多空余RB上的功率汇聚到扫描波束的RB内,使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。也就是说,在当前时刻系统负载小的情况下,扫描周期内扫描波束配置的个数比原来少,同样可以达到原来的覆盖度。而配置的扫描波束个数减少,即可关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,本申请实施例的通信方法还包括:
在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
本申请实施例通过将扫描波束的符号内空余RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。那么扫描周期内扫描波束配置的个数比原来少,同样可以达到原来的覆盖度。因此可以减少配置扫描波束的个数,关断当前 不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,在无线环境中工作的接口设备(例如基站)可以设定以一定周期监测当前时刻系统负载,或者一直保持监测当前时刻系统负载,来获取当前时刻系统负载;以配置扫描周期内扫描波束的个数以及每个扫描波束的波束宽度。
那么,按周期或保持监测当前时刻系统负载,来动态配置或调整扫描波束个数以及动态配置关断符号数,可以更加自适应地完成扫描波束的调整,更加及时更加均衡地调整基站的能量开销。
在一种可能的实现方式中,当前负载等级越低,配置的所述周期内扫描波束的个数越少;所述当前负载等级为所述当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
通过设置多个负载等级来对应配置的扫描波束的个数,不同的负载等级可以对应配置不同的扫描波束个数,可以快速完成扫描波束的调整,以解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,上述根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数,可以包括:
根据所述当前时刻系统负载,预估用于波束扫描的可用功率;
根据所述可用功率,配置扫描周期内扫描波束的个数。
其中,所述用于波束扫描的可用功率可以包括将空余RB上的功率汇聚到要占用RB上之后,所述要占用RB的功率。
本申请实施例通过获知当前时刻系统负载先来预估可用功率,然后根据可用功率来配置扫描周期内扫描波束的个数,可以更加精确地完成扫描波束的调整,更好地解决现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,实现基站更加节能。
在一种可能的实现方式中,当前功率等级越高,配置的所述扫描波束的个数越少;所述当前功率等级为所述可用功率所属的功率等级;其中,所属的功率等级高的可用功率大于所属的功率等级低的可用功率。
通过设置多个功率等级来对应配置的扫描波束的个数,不同的功率等级可以对应配置不同的扫描波束个数,可以快速完成扫描波束的调整,以解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,上述根据当前时刻系统负载,配置扫描周期内扫描波束的个数、每个扫描波束的波束方向以及波束宽度之前,还包括:根据历史系统负载预测得到当前时刻系统负载。
具体可以通过依据历史负载进行统计,得到系统负载在时间周期上的分布规律来预测当前时刻系统负载。或者根据预设的前一时间段的系统负载的分布,来预测当前时刻系统 负载。从而精确地获取当前时刻系统负载,以在当前时刻系统负载小的情况下可关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数。
在一种可能的实现方式中,本申请实施例的通信方法还包括:根据所述扫描波束的个数配置每个扫描波束的波束宽度。本申请实施例通过配置每个扫描波束的波束宽度可以在扫描周期内扫描波束配置的个数比原来少的情况下,更好地进行波束扫描覆盖,以达到原来的覆盖度。
在一种可能的实现方式中,根据所述扫描波束的个数配置扫描波束的波束宽度,可以包括:根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
本申请实施例由扫描波束的个数确定每个扫描波束分别对应的一个或多个RE后,每个扫描波束的波束宽度由各自对应的RE所对应的波束叠加而成,最终可生成扫描波束所需的波束宽度。因此,可以通过控制每个RE对应的波束的相位偏差来完成扫描波束的波束宽度的配置,可以提升扫描波束的覆盖度。
在一种可能的实现方式中,根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE之后,还可以包括:
根据调度带宽调整时延步长;
根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
本申请实施例通过调度带宽调整时延步长,然后根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值,即得到一组针对不同的资源元素RE配置的预编码矩阵权值,再基于预编码矩阵权值对扫描波束对应的RE进行加权遍历,从而可以生成任意带宽的广波束。通过调整不同权值之间的偏差,可以达到一定带宽内波束的广覆盖,进一步提升覆盖角度。
具体地,可以通过以下公式来实现:
Figure PCTCN2021105210-appb-000001
Figure PCTCN2021105210-appb-000002
Figure PCTCN2021105210-appb-000003
其中,S(k)是通过预编码矩阵后的信号,s(k)是发送信号,W PSD(k)是频域上在不同的RE遍历的不同的预编码矩阵权值。N TRX是天线个数。N RE是RE个数。k为RE编号。
时延步长D值主要跟RB数(N RE),FFT规格(N FFT)有关。根据调度带宽调整D值,保证D值跟调度带宽匹配,调度带宽内相位完整旋转一个周期,避免波束覆盖空洞。最终即可产生一定带宽内的广波束。
在一种可能的实现方式中,本申请实施例的通信方法还包括:
在无线环境中工作的接口设备(例如基站)根据终端设备的方位,控制扫描波束的波 束方向。
本申请实施例在获知到终端设备的方位的情况下,例如根据历史用户数据统计,长期分析或感知用户数据的规律,或者根据地形位置统计,来获知或获取到终端设备的方位。然后根据该终端设备的方位可以确定波束朝向的固定位置,并通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制扫描波束的波束方向,使波束朝向预期的方向。由于根据终端设备的方位可以确定扫描波束的波束方向,无需全方位覆盖扫描,并可以设计较窄的波束,从而进一步减少扫描波束的个数,进一步提高符号关断数,减少发射符号数,以解决现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,配置的所述扫描波束的波束方向与所述小区的相邻小区的波束方向错开或不同。
本申请实施例可以通过调整通道间相位差或设计不同的权值,来错开相邻小区的波束方向,使得相邻小区形成波束差异,降低小区间的干扰。避免为了节省资源以及关断符号,会设计在发送公共信道的符号同时携带数据,导致的小区间容易形成干扰的问题。
在一种可能的实现方式中,若在扫描周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开或不同。
本申请实施例在扫描周期内配置了关断的扫描符号的情况下,通过错开相邻小区之间波束的时域符号,也就是说相邻小区之间波束的时域符号不同,可以进一步降低小区间的干扰,提升系统效率。
第二方面,本申请实施例提供了一种通信方法,其特征在于,包括:
根据小区内终端设备的方位控制波束方向并确认扫描波束的个数;
根据扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
本申请实施例通过在获知到终端设备的方位的情况下,例如根据历史用户数据统计,长期分析或感知用户数据的规律,或者根据地形位置统计,来获知或获取到终端设备的方位。然后根据该终端设备的方位可以确定波束朝向的固定位置,并通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制波束方向。由于根据终端设备的方位可以确定扫描波束的波束方向并确认扫描波束的个数,无需全方位覆盖扫描,设计出较窄的波束,从而可以避免进行波束扫描或者减少扫描波束的个数,并且若减少了扫描波束的个数时可以根据所述扫描波束的个数配置关断符号的个数,从而提高符号关断数,减少发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。另外,由扫描波束的个数确定每个扫描波束分别对应的一个或多个RE后,每个扫描波束的波束宽度由各自对应的RE所对应的波束叠加而成,最终可生成扫描波束所需的波束宽度。因此,可以通过控制每个RE对应的波束的相位偏差来完成扫描波束的波束宽度的配置,可以提升扫描波束的覆盖度。
在一种可能的实现方式中,根据扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE之后,还可以包括:
根据调度带宽调整时延步长;
根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
本申请实施例通过调度带宽调整时延步长,然后根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值,即得到一组针对不同的资源元素RE配置的预编码矩阵权值,再基于预编码矩阵权值对扫描波束对应的RE进行加权遍历,从而可以生成任意带宽的广波束。通过调整不同权值之间的偏差,可以达到一定带宽内波束的广覆盖,进一步提升覆盖角度。
具体地,可以通过以下公式来实现:
Figure PCTCN2021105210-appb-000004
Figure PCTCN2021105210-appb-000005
Figure PCTCN2021105210-appb-000006
其中,S(k)是通过预编码矩阵后的信号,s(k)是发送信号,W PSD(k)是频域上在不同的RE遍历的不同的预编码矩阵权值。N TRX是天线个数。N RE是RE个数。k为RE编号。
时延步长D值主要跟RB数(N RE),FFT规格(N FFT)有关。根据调度带宽调整D值,保证D值跟调度带宽匹配,调度带宽内相位完整旋转一个周期,避免波束覆盖空洞。最终即可产生一定带宽内的广波束。
在一种可能的实现方式中,本申请实施例的通信方法还包括:
在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
本申请实施例通过将扫描波束的符号内空余RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。那么扫描周期内扫描波束配置的个数比原来少,同样可以达到原来的覆盖度。因此可以进一步减少配置扫描波束的个数,关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,所述根据小区内终端设备的方位控制波束方向并确认扫描波束的个数,包括:
在当前系统负载处于第一负载等级的情况下,或者在当前系统负载处于第二负载等级、且所述终端设备落在第一地理区域内的比例达到阈值的情况下,根据小区内终端设备的方位控制波束方向并确认扫描波束的个数。
具体地,第一负载等级小于第二负载等级,也就是说,在当前系统负载较小且获知到终端设备的方位的情况下,可以通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制波束方向,可以无需进行波束扫描,从而节省发射符号数,提高了符号关断数。在当前系统负载较大且终端设备的位置集中的情况下,同样可以通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制波束方向,可以无需进行波束扫描, 从而节省发射符号数,提高了符号关断数。
在一种可能的实现方式中,配置的所述波束方向与所述小区的相邻小区的波束方向错开。
本申请实施例可以通过调整通道间相位差或设计不同的权值,来错开相邻小区的波束方向,使得相邻小区形成波束差异,降低小区间的干扰。避免为了节省资源以及关断符号,会设计在发送公共信道的符号同时携带数据,导致的小区间容易形成干扰的问题。
在一种可能的实现方式中,若在发送波束的周期内配置了关断的扫描符号,将发送波束的时域符号与相邻小区发送波束的时域符号错开。
本申请实施例在扫描周期内配置了关断的扫描符号的情况下,通过错开相邻小区之间波束的时域符号,也就是说相邻小区之间波束的时域符号不同,使得不同小区的同步和广播波束之间没有干扰,从而可以进一步降低小区间的干扰,提升系统效率。
第三方面,本申请实施例提供了一种通信方法,包括:
小区内无线环境中工作的接口设备(例如基站)在发送波束的周期内配置关断的扫描符号;
在配置扫描波束的过程中,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
本申请实施例在扫描周期内配置了关断的扫描符号的情况下,通过错开相邻小区之间波束的时域符号,也就是说相邻小区之间波束的时域符号不同,可以进一步降低小区间的干扰,提升系统效率。
在一种可能的实现方式中,本申请实施例的通信方法还包括:
在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
本申请实施例通过将扫描波束的符号内空余RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。那么扫描周期内扫描波束配置的个数比原来少,同样可以达到原来的覆盖度。因此可以减少配置扫描波束的个数,关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
第四方面,本申请实施例提供了一种通信装置,应用于波束扫描,包括:
获取单元,用于获取小区当前时刻系统负载;
第一配置单元,用于根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数;
第二配置单元,用于根据所述扫描波束的个数配置关断符号的个数。
在一种可能的实现方式中,所述装置还包括:
功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
在一种可能的实现方式中,当前负载等级越低,配置的所述周期内扫描波束的个数越少;所述当前负载等级为所述当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
在一种可能的实现方式中,所述第一配置单元包括:
预估单元,用于根据所述当前时刻系统负载,预估用于波束扫描的可用功率;
波束配置单元,用于根据所述可用功率,配置扫描周期内扫描波束的个数以及每个扫描波束的波束宽度。
在一种可能的实现方式中,所述用于波束扫描的可用功率包括将空余RB上的功率汇聚到要占用RB上之后,所述要占用RB的功率。
在一种可能的实现方式中,所述第一配置单元还用于根据所述扫描波束的个数配置每个扫描波束的波束宽度。
在一种可能的实现方式中,所述第一配置单元还包括:
资源元素确定单元,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
在一种可能的实现方式中,所述第一配置单元还包括:
时延步长调整单元,用于根据调度带宽调整时延步长;
权值配置单元,用于根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
加权遍历单元,用于基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
在一种可能的实现方式中,所述装置还包括:
波束方向控制单元,用于根据所述小区内终端设备的方位,控制扫描波束的波束方向。
在一种可能的实现方式中,配置的所述扫描波束的波束方向与所述小区的相邻小区的波束方向错开。
在一种可能的实现方式中,所述装置还包括:
符号错开单元,用于若在扫描周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
第五方面,本申请实施例提供了一种通信装置,包括:
波束方向控制单元,用于根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数;
资源元素确定单元,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
在一种可能的实现方式中,所述装置还可以包括:
时延步长调整单元,用于根据调度带宽调整时延步长;
权值配置单元,用于根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
加权遍历单元,用于基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
在一种可能的实现方式中,所述装置还可以包括:
功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
在一种可能的实现方式中,在当前系统负载处于第一负载等级的情况下,所述波束方向控制单元根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数;或者,
在当前系统负载处于第二负载等级、且所述终端设备落在第一地理区域内的比例达到阈值的情况下,所述波束方向控制单元根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数。
在一种可能的实现方式中,配置的所述波束方向与所述小区的相邻小区的波束方向错开。
在一种可能的实现方式中,所述装置还可以包括:
符号错开单元,用于若在发送波束的周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
第六方面,本申请实施例提供了一种通信装置,包括:
符号关断配置单元,用于在发送波束的周期内配置关断的扫描符号;
符号错开单元,用于在配置扫描波束的过程中,将发送波束的时域符号与本小区的相邻小区发送波束的时域符号错开。
在一种可能的实现方式中,所述装置还可以包括:
功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
第七方面,本申请实施例提供了一种通信设备,包括处理器和存储器;所述存储器,用于存储程序;所述处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行本申请实施例第一方面或第一方面的任意一种实现方式、第二方面或第二方面的任意一种实现方式、或第三方面或第三方面的任意一种实现方式提供的方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或者第一方面的任意一种实现方式、第二方面或第二方面的任意一种实现方式、或第三方面或第三方面的任意一种实现方式提供的方法。
第九方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或者第一方面的任意一种实现方式、第二方面或第二方面的任意一种实现方式、或第三方面或第三方面的任意一种实现方式提供的方法。
可以理解地,上述提供的第四方面、第五方面提供的通信装置、第六方面提供的通信设备、第七方面提供的一种计算机可读存储介质,以及第八方面提供的计算机程序产品均用于执行上述第一方面或者第一方面的任意一种实现方式、第二方面或第二方面的任意一种实现方式、或第三方面或第三方面的任意一种实现方式提供的方法。因此,其所能达到的有益效果可参考第一方面或第二方面或第三方面所提供的通信方法中的有益效果,此处不再赘述。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的通信系统架构示意图;
图2是本申请提供的通信系统的另一实施例的架构示意图;
图3是本申请实施例提供的波束扫描的原理示意图;
图4是本申请实施例提供的通信方法的流程示意图;
图5是本申请实施例提供的波束个数配置的原理示意图;
图6是本申请实施例提供的波束调整的示意图;
图7是本申请实施例提供的小区间波束方向调整的示意图;
图8是本申请提供的另一实施例的小区间波束方向调整的示意图;
图9是本申请提供的另一实施例的通信方法的流程示意图;
图10是本申请提供的另一实施例的通信方法的流程示意图;
图11是本申请实施例提供的通信装置的结构示意图;
图12是本申请提供的通信装置的另一实施例的结构示意图;
图13是本申请提供的通信装置的另一实施例的结构示意图;
图14是本申请实施例提供的一种通信设备的结构示意图;
图15是本申请实施例还提供的芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请实施例中涉及的在无线环境中工作的接口设备,可以包括但不限于一般形态的基站,高频站,低频站,大站,小站,直放站,中继站以及各种形态的基站或者基站的一部分,和云无线接入网(Cloud Radio Access Network,CRAN)中的各种形态的基站单元。
本申请实施例中涉及的基站同样可以指代无线网络的无线接入网(Radio Access  Network,RAN)节点,例如可以为gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。在一种网络结构中,也可以为集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例中涉及的终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。一些终端设备的举例为:手机(mobilephone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、含有驾驶舱域控制器的车辆等。
下面,先结合图1介绍本申请实施例提供的通信系统架构示意图,来举例说明本申请的通信方法所应用的无线通信场景。本申请实施例的通信方法可以适用于任意应用多天线的系统,以及应用波束扫描的通信系统,比如3G/4G/5G以及更下一代的通信系统。包含但不限于,3G中的通用移动通信系统(Universal Mobile Telecommunications System,UMTS),4G(第四代移动通信系统)演进系统,如LTE(Long Term Evolution,长期演进)系统;5G(第五代移动通信系统)系统;CRAN(Cloud Radio Access Network,云无线接入网)等通信网络。不同系统/制式共存场景也可在本申请适用的范围。
图1具体以基站与终端设备(移动智能终端)为例组成的收发系统,以及包括在基站与终端设备组成的收发系统的基础上,基站和基站之间进行协同。如图2示出的本申请提供的通信系统的另一实施例的架构示意图,基站和终端设备组成的收发系统,具体是包括应用多天线技术的基站,和终端设备之间的信息交互。具体地,例如在采用波束成形技术之后,基站往往使用多个不同指向的波束才能完全覆盖小区。如图2所示,基站使用了8个波束覆盖其服务的小区。在下行过程中,基站依次使用不同指向的波束发射无线信号,该过程被称作波束扫描(Beam sweeping);与此同时,终端设备测量不同波束发射出的无线信号(Beam measurement),并向基站报告相关信息(Beam reporting);基站根据终端设备报告确定对准该终端设备的最佳发射波束(Beam determination)。
例如,针对同步广播模块(SS(Synchronization Signal)/PBCH(Physical broadcast channel)Block,SSB),当前的SSB扫描在不同的时间进行波束的依次轮换发送。如图3所示,假设8个波束,周期为20ms的波束扫描,那么系统将在20ms内的前5ms的前4个时隙slot中,由8个波束在时间上轮换扫描一次,每个slot发生两次波束扫描,4个slot总共8次波束扫描。每个波束占据4个正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号,8个波束时域上需要8x4个OFDM符号。
那么现有技术中,不管系统负载和功率如何,对于8个波束扫描的系统,在20ms的扫描周期中的8x4,即32个OFDM符号内,这些符号一直处于通电状态,系统能量开销大。通过本申请实施例的通信方法,可以解决现有技术中基站能耗大的技术问题,使得基站更加节能。
需要说明的是,本申请实施例的通信方法可以具体应用在下行广播、同步和数据发送,以及上行接入和数据发送等场景。其中,下行广播和同步过程可以包括采用SSB扫描的下行同步和广播,但是也适用于LTE中同步过程;也可以包括采用多个波束扫描的公共控制信道(CommonPhysical Downlink Control Channel,CommonPDCCH)发送过程。上行接入和数据发送可以包括上行初始接入的过程,例如对于简化的随机接入系统,以及免接入数据发送,在随机接入的第一步携带数据发送的场景,都适用本申请实施例的通信方法。本申请实施例的基站可一直在以一定周期发送节能的超级波束,达到全覆盖,终端设备即可实现随时随地两步接入,免接入数据发送,以及随机接入前导码(preamble)携带数据发送。
下面如图4示出的本申请实施例提供的通信方法的流程示意图,以基站进行SSB扫描为例,说明基站如何与终端设备进行交互,可以包括以下步骤:
步骤S400:基站获取小区当前时刻系统负载;
具体地,本申请实施例的系统即可以为基站,那么获取当前时刻系统负载也就是确定基站的负载。基站可以直接统计当前时刻系统负载,以获取当前时刻系统负载;也可以自身的历史系统负载来预测本小区当前时刻系统负载,从而以更高的效率获取当前时刻系统负载。例如基站可以通过历史系统负载进行统计,得到系统负载在时间周期上的分布规律来预测当前时刻系统负载。或者基站根据预设的前一时间段的系统负载的分布,来预测当前时刻系统负载。预测出当前时刻系统负载即获取到当前时刻系统负载。
例如,可以在基站侧预先建立系统负载预测模型,然后将搜集样本通过机器学习的方式,对该系统负载预测模型进行训练,输入历史样本以预测系统负载。该机器学习的算法可以直接根据前一时间段的系统负载的分布来进行预测,或者依据统计分析的历史系统负载在时间周期上的分布规律来预测。那么基站即可基于训练后的系统负载预测模型,输入当前记录的历史系统负载,得到预测的当前时刻系统负载,即获取到当前时刻系统负载。
步骤S402:基站根据当前时刻系统负载,确定扫描周期内扫描波束的个数;
在一种可能的实现方式中,可以通过设置多个负载等级来对应配置的扫描波束的个数,不同的负载等级可以对应配置不同的扫描波束个数。当前负载等级越低,配置的所述周期内扫描波束的个数越少。该当前负载等级为该当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
例如,如下表1所示的对应关系:
当前时刻系统负载 负载等级 扫描波束个数
[0%,10%] 1级 1
(10%,30%] 2级 2
(30%,50%] 3级 4
表1
其中,表1中负载等级1级为最高级,其对应的当前时刻系统负载为0至10%,其中(*表示取值范围不包括*对应的数值,[*或者*]表示取值范围包括*对应的数值,依次往下排列。通过设置多个负载等级来对应确定扫描波束的个数,不同的负载等级可以对应不同的扫描波束个数,可以快速完成扫描波束的调整,以解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,步骤S402基站根据当前时刻系统负载,确定扫描周期内扫描波束的个数,具体可以包括:基站根据要占用的RB数,预估用于波束扫描的可用功率;然后基站根据可用功率确定扫描波束个数。
具体地,基站根据当前时刻的系统负载,可以预估在公共信道上空余的RB数。作为其中一个实施例,这些原用于分配给空余的RB数的功率,可以汇聚到公共信道占用的RB上。
举例说明,系统除去SSB等公共信道外没有其他RB开销,此时系统负载为1%。对于20M的系统带宽(或调度带宽),总共有106RB可用。那么SSB要占用20RB,即有剩余的86RB的功率可以汇聚到20RB的SSB。若系统按照RB数来平均分配功率,则SSB的功率可以达到原来的大约5倍,增加约4倍,即增加约6dB的功率。
那么根据要占用的RB数即可预估用于波束扫描的可用功率。本申请实施例中的可用功率可以指将空余资源块RB上的功率汇聚到要占用RB上之后,该要占用RB的功率。如上例,该可用功率即为要占用RB(SSB等公共信道上要开销的RB)增加了6dB后总的功率。
又如,系统除去SSB等公共信道外,数据符号还要占用一部分RB(如要占用约10%的RB数),此时系统负载为10%。对于20M的系统带宽(或调度带宽),总共有106RB可用。那么SSB要占用20RB,数据要占用约10RB,即可以剩余约76RB的功率可以汇聚到20RB(SSB等公共信道要开销的RB)的SSB。这样,SSB的功率可以达到原来的大约4倍,即约增加5dB的功率。也就是说,该可用功率即为要占用RB(SSB等公共信道要开销的RB,)增加了5dB后总的功率。
需要说明的是,本申请实施例将空余资源块RB上的功率汇聚到要占用RB上,具体如上述例子所述,可以将空余RB上的功率只汇聚到SSB等公共信道要占用的RB上。也可以将空余RB上的功率汇聚到所有要占用的RB上,即若SSB要占用20RB,数据要占用约10RB为例,可以剩余约76RB的功率可以汇聚到30RB(SSB等公共信道要开销的RB,加上数据要占用的RB)上。
生成波束的阵子越多,波束越汇聚,增益越大;但同时,覆盖波宽会缩小。因此,需 要多次扫描来达到覆盖波宽,与此同时,占用的符号数就相应增加。那么,如果可用功率或者说汇聚功率较大,可以设计更少的超级波束;如果可用功率有限,可以相应增加超级波束个数。
以8个波束的SSB扫描为例。对于10%系统负载,假如预估可以增加6dBm的功率的话,那么可以配置一个广波束,或者两个波束,来达到原来8个波束的覆盖。对于更高的负载,相应地增加的功率会下降,可以设计两个波束或者4个波束,通过功率汇聚,来达到8个波束的覆盖。
在一种可能的实现方式中,可以通过设置多个功率等级来对应配置的扫描波束的个数,不同的功率等级可以对应配置不同的扫描波束个数。当前功率等级越高,配置的所述扫描波束的个数越少。该当前功率等级为该可用功率所属的功率等级;其中,所属的功率等级高的可用功率大于所属的功率等级低的可用功率。
例如,如下表2所示的对应关系:
可用功率 功率等级 扫描波束个数
大于9dBm 1级 1
(6dBm,9dBm] 2级 2
(3dBm,6dBm] 3级 4
表2
其中,表2中功率等级1级为最高级,依次往下排列。通过设置多个功率等级来对应配置的扫描波束的个数,不同的功率等级可以对应配置不同的扫描波束个数,可以快速完成扫描波束的调整,以解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
步骤S404:基站配置扫描波束个数以及关断符号数;
具体地,根据步骤S402中确定的扫描波束个数,来配置扫描波束。并根据扫描波束的个数来配置关断符号的个数。
其中,系统(即如基站)可以根据天线的数量定义或设置一个默认的扫描波束的个数。那么根据扫描波束的个数来配置关断符号的个数时,可以具体根据所述扫描波束的个数以及该预先定义或设置的扫描波束的个数来配置关断符号的个数。本申请实施例中的关断符号具体可以指对原来定义或默认的用于波束扫描的OFDM符号进行了关断的符号,该关断的符号不再用于波束扫描。例如,预先定义8个扫描波束的个数,每个波束占据4个OFDM符号,步骤S404中确定的扫描波束个数为2,那么可以配置关断符号的个数,可以通过如下公式G=4y-4q确定。其中,G为配置关断符号的个数,y为系统预先定义的扫描波束个数,q为骤S402中确定的扫描波束个数。
也就是说,若配置的扫描波束个数低于原来的数目,即配置了超级波束。例如当前配置了2个扫描波束,相对于原来的8个扫描波束下降了,那么原先用于SSB扫描,而当前没有波束扫描的符号即可配置符号关断,即相当于配置了24个关断符号数。
下面结合图5示出的本申请实施例提供的波束个数配置的原理示意图,来举例说明。当系统负载较低时,可以配置1个扫描波束(较大功放)。当系统负载中等时,可以配置2 个扫描波束。当系统负载较高时,可以配置4个扫描波束(较小功放)。其中,最左侧的1个扫描波束的覆盖范围与中间的2个扫描波束以及最右侧的4个扫描波束的相同。最左侧的1个扫描波束汇聚得到功率最大。而在配置了最左侧的扫描波束的情况下,其关断符号数也最多,即减少了发射符号数,设计出了最优功率发送,提升了符号关断数。
在一种可能的实现方式中,步骤S404基站在配置扫描波束个数后,还可以根据扫描波束的个数配置每个扫描波束的波束宽度。例如步骤S404配置了2个扫描波束,在需要通过该2个扫描波束来达到原来8个扫描波束的覆盖范围的情况下,即通过配置这2个扫描波束的波束宽度来达到原来8个扫描波束的覆盖。又如,步骤S404配置了2个扫描波束,并且只需覆盖原来8个扫描波束中某2个扫描波束的覆盖范围的情况下,相当于将本申请配置的该2个扫描波束配置为原来扫描波束的波束宽度,即波束宽度配置不变。
步骤S406:基站汇聚符号内可用功率到扫描波束的RB内。
具体地,基站可在超级波束的符号内部(例如某个OFDM符号内),将要占用的RB以外的其他空闲的RB进行功率汇聚,汇聚到要占用的RB上。以使当前扫描波束可以达到预定覆盖。本申请实施例中的汇聚符号内可用功率,该符号内具体可以指图3中每个时隙所包含的符号内部。例如在时隙0中包含了左右两个不同的符号,每个符号即对应一个扫描波束。每个符号可具体包括4个OFDM符号。
以图3中时隙0的左侧符号为例。若系统除去SSB等公共信道外没有其他RB开销,即该左侧符号内空白的RB即为剩余的或空余的RB。假如图中总共有80RB可用,SSB等公共信道要占用28RB,即有剩余的52RB的功率可以汇聚到20RB的SSB等公共信道上。
本申请实施例根据当前时刻系统负载来配置扫描波束的个数,而当前时刻系统负载与当前时刻系统已使用的RB数直接关联,那么根据当前时刻系统负载可以预估用于波束扫描的可用功率,其中当前时刻系统负载越小,可用功率越大,也就是说可以将将更多空余RB上的功率汇聚到扫描波束的RB内,避免现有技术中基站直接按照RB数来平均分配功率,若某些RB是空余,则其分配到的相应的功率就浪费了。应用功率汇聚的策略以后,在扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。也就是说,在当前时刻系统负载小的情况下,扫描周期内扫描波束的个数配置得比原来少,同样可以达到原来的覆盖度。而配置的扫描波束减少,即可关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
例如,以图3为例,若系统预先定义或默认每周期8个扫描波束,而根据当前系统负载确认2个扫描波束即可,配置了24个关断符号数。那么原有周期的前5ms中前4个slot中,只需1个slot来进行扫描波束,其余slot可以用于传输其他数据。
在一种可能的实现方式中,上述各个实施例在步骤S406之前,还可以包括配置扫描波束的波束方向的步骤。其中,在配置扫描波束的波束方向的过程中,可以具体包括:
基站根据小区内终端设备的方位控制扫描波束的波束方向。
基站在获知到小区内终端设备的方位的情况下,例如根据历史用户数据统计,长期分 析或感知用户数据的规律,或者根据地形位置统计,来获知或获取到终端设备的方位。其中,该终端设备的方位可以指小区内的所有终端设备所在的方位。然后根据该终端设备的方位可以确定波束朝向的固定位置,并通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制扫描波束的波束方向。该基础波束可以指系统中原来预设的最大个数的波束,如图2所示,原来预设的最大个数的波束为8个波束。那么可以根据终端设备的方位来选取其中的某一个方向的一个波束(如标号为#2的波束),或者选取其中的某一个方向的多个波束(如标号为#L-3、#L-2和#L-1的波束),来控制扫描波束的波束方向打到选取的波束的方向。
本申请实施例中的历史用户数据,具体可以指在当前时刻以前的某一段历史时间段内,在小区内的所有终端设备的方位数据。那么通过对该历史用户数据的统计来预估当前小区内的终端设备的方位。
由于根据终端设备的方位可以确定扫描波束的波束方向,无需全方位覆盖扫描,并可以设计较窄的波束,从而进一步减少扫描波束的个数,进一步提高符号关断数,减少发射符号数,以解决现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,根据扫描波束的个数配置扫描波束的波束宽度,可以包括:
根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
由于每个扫描波束的波束宽度由各自对应的RE所对应的波束叠加而成,那么可以通过控制每个RE对应的波束的相位偏差来完成扫描波束的波束宽度的配置,可以提升扫描波束的覆盖度。
本申请实施例包括但不限于通过以下方式来配置扫描波束的波束宽度:
根据调度带宽调整时延步长;
根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
本申请实施例中,根据配置的扫描波束个数确定每个扫描波束对应的RE数之后,每个RE对应的波束的相位偏差由对其配置的预编码矩阵权值决定。通过调度带宽调整时延步长,然后根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值,即得到一组针对不同的资源元素RE配置的预编码矩阵权值,从而可调整不同权值之间的偏差,例如通过控制每个RE对应波束的相位的微小偏移,以达到一定带宽内波束的广覆盖,进一步提升覆盖角度。
具体地,可以通过以下公式1来实现:
Figure PCTCN2021105210-appb-000007
Figure PCTCN2021105210-appb-000008
Figure PCTCN2021105210-appb-000009
其中,S(k)是通过预编码矩阵后的信号,s(k)是发送信号,W PSD(k)是频域上在不同的RE遍历的不同的预编码矩阵权值。N TRX是天线个数。N RE是RE个数。k为RE编号。
Figure PCTCN2021105210-appb-000010
为相位。
例如,若N TRX为8,即8个天线个数。那么:
Figure PCTCN2021105210-appb-000011
Figure PCTCN2021105210-appb-000012
k=0,1,…,N RE-1。表明给每个天线增加一个时延,相当于对每个RE配置不同的预编码矩阵。
其中,第1个RE配置的预编码矩阵为
Figure PCTCN2021105210-appb-000013
第2个RE配置的预编码矩阵为
Figure PCTCN2021105210-appb-000014
以此类推。
时延步长D值主要跟RB数(N RE),FFT规格(N FFT)有关。根据调度带宽调整D值,保证D值跟调度带宽匹配,调度带宽内相位完整旋转一个周期,避免波束覆盖空洞。最终即可产生一定带宽内的广波束。
例如,如图6示出的本申请实施例提供的波束调整的示意图,在获知终端设备的方位后,也可以减少扫描波束的个数,如图中3个波束减少为1个,或者还可以无需进行波束扫描。然后通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制扫描波束的波束方向,再通过D值的调整,可控制每个RE对应波束的相位的微小偏移,以进一步调整波束的覆盖。
在一种可能的实现方式中,以RE总数为260个为例,如果配置了1个扫描波束,那么1个扫描波束的波束宽度即由该260个RE各自对应的波束叠加而成。根据公式,每个RE配置不同的预编码矩阵权值,每个RE对应一个窄波束,这些窄波束有着微小的相位偏移,然后对每个RE进行加权后,叠加成一个宽波束的效果,或者说所有这些窄波束的包络形成一个宽波束,从而得到配置的1个扫描波束。
如果配置了2个扫描波束,将相应RE分成两组,例如每组130个RE。每组RE分别计算D值,每组RE中的每个RE配置不同的预编码矩阵权值,形成两个相应的次宽波束;或者也可以先针对所有的RE增大D值,然后再分成两个独立的波束。
在一种可能的实现方式中,本申请实施例在配置扫描波束的波束宽度的过程中,也可以通过设计不同的基础波束,比如预设8个基础波束,包括1/8、2/8、3/8、4/8、5/8、6/8、7/8、和8/8个波束,这8个基础波束分别有不同的波束宽度,那么可以通过取n/8(n小于等于8)个波束来实现用更少的波束实现全覆盖。或者,还可以通过基本权值设计1/8、或1/4、或1/2宽的波束,通过这些波束的灵活组合形成全覆盖。比如,两个1/2波束组合,或者两个1/4波束,一个1/2波束的组合,等等。
在一种可能的实现方式中,上述各个实施例在配置扫描波束的波束方向的过程中,还可以具体包括:配置的所述扫描波束的波束方向与本小区的相邻小区的波束方向错开或不 同。
具体地,在考虑多小区波束之间的干扰时,可以通过调整通道间相位差,或者设计不同的权值,使得与本小区的相邻小区形成波束差异,降低小区间的干扰。
例如,如图7示出的本申请实施例提供的小区间波束方向调整的示意图,以相邻的AP1和AP2为例,每个AP在相同的时隙以及符号进行SSB扫描。为了节省资源以及关断符号,会设计在发送公共信道的符号同时携带数据,从而容易引起小区间的相互干扰。因此控制小区间干扰就显得尤为重要。
本申请实施例可以通过调整通道间相位差或设计不同的权值,来错开与本小区的相邻小区的波束方向,使得相邻小区形成波束差异,降低小区间的干扰。避免为了节省资源以及关断符号,会设计在发送公共信道的符号同时携带数据,导致的小区间容易形成干扰的问题。
另一种实施方式中,在配置扫描波束的波束方向的过程中,还可以具体包括:若在扫描周期内配置了关断的扫描符号,基站(即在本小区)将发送波束的时域符号与本小区的相邻小区发送波束的时域符号错开或不同。
具体地,本申请实施例的波束可以为SSB波束,即同步和广播波束。如图8示出的本申请提供的另一实施例的小区间波束方向调整的示意图,通过多个小区间联合设计,在波束个数减少的前提下,并配置了关断的扫描符号的情况下,设计AP1发送SSB波束的时域符号为S1,AP2发送SSB波束的时域符号为S2。其中S1和S2为不同的符号,即相邻小区扫描波束的时隙错开,来避免小区间的干扰,即使得不同小区的同步和广播波束之间没有干扰。
也就是说,在扫描周期内配置了关断的扫描符号的情况下,通过错开与本小区的相邻小区之间波束的时域符号,也就是说相邻的小区之间波束的时域符号不同,使得不同小区的同步和广播波束之间没有干扰,从而可以进一步降低小区间的干扰,提升系统效率。
在一种可能的实现方式中,在上述实施例中基站可以设定以一定周期监测当前时刻系统负载,或者一直保持监测当前时刻系统负载,来配置扫描周期内扫描波束的个数、每个扫描波束的波束方向以及波束宽度。也就是说,可以设定以一定周期或者一直保持执行上述步骤S400至步骤S406的步骤。
那么,按周期或保持监测当前时刻系统负载,来动态配置或调整扫描波束个数以及动态配置关断符号数,可以更加自适应地完成扫描波束的调整,更加及时更加均衡地调整基站的能量开销。
本申请实施例的通信方法,即可以为全功率自适应的时空两维的动态波束扫描方法,根据系统负载以及可用功率,动态配置扫描周期内扫描波束个数和每个扫描波束的波束方向和波束宽度。进一步地,针对特定时隙中的某个特定波束,根据当前负载以及可用功率,自适应动态调整波束方向以及波宽,使得每个波束可以朝向任意方向,覆盖任意波宽。此外,通过小区间联合设计波束扫描,小区间的波束错开覆盖方向和发送符号,从而减少小区间干扰。
下面结合图9示出的本申请提供的另一实施例的通信方法的流程示意图,同样以基站进行SSB扫描为例,再举例说明基站如何与终端设备进行交互,可以包括以下步骤:
步骤S900:基站根据小区内终端设备的方位控制波束方向并确认扫描波束的个数;
具体地,基站可以根据历史用户数据统计,长期分析或感知用户数据的规律,或者根据地形位置统计,来获知或获取到终端设备的方位。然后根据该终端设备的方位可以确定波束朝向的固定位置,并通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制扫描波束的波束方向。
步骤S902:根据扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加;
步骤S904:根据调度带宽调整时延步长;
步骤S906:根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
步骤S908:基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历;
本申请实施例根据配置的扫描波束个数确定每个扫描波束对应的RE数之后,每个RE对应的波束的相位偏差由对其配置的预编码矩阵权值决定。通过调度带宽调整时延步长,然后根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值,即得到一组针对不同的资源元素RE配置的预编码矩阵权值,从而可调整不同权值之间的偏差,例如通过控制每个RE对应波束的相位的微小偏移,以达到一定带宽内波束的广覆盖,进一步提升覆盖角度。
具体地,可以通过以下公式来实现:
Figure PCTCN2021105210-appb-000015
Figure PCTCN2021105210-appb-000016
Figure PCTCN2021105210-appb-000017
其中,S(k)是通过预编码矩阵后的信号,s(k)是发送信号,W PSD(k)是频域上在不同的RE遍历的不同的预编码矩阵权值。N TRX是天线个数。N RE是RE个数。k为RE编号。
Figure PCTCN2021105210-appb-000018
为相位。
时延步长D值主要跟RB数(N RE),FFT规格(N FFT)有关。根据调度带宽调整D值,保证D值跟调度带宽匹配,调度带宽内相位完整旋转一个周期,避免波束覆盖空洞。最终即可产生一定带宽内的广波束。
具体地,若减少了扫描波束的个数时,可以可执行步骤S910:根据所述扫描波束的个数配置关断符号的个数。参考图4实施例步骤S404中关于配置关断符号数的描述,这里不再赘述。
在一种可能的实现方式中,上述图9实施例还可以包括:
在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
具体地,本申请实施例通过将扫描波束的符号内空余RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。那么扫描周期内扫描波束配 置的个数比原来少,同样可以达到原来的覆盖度。因此可以进一步减少配置扫描波束的个数,关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
本申请实施例通基站根据终端设备的方位可以确定波束朝向的固定位置,并通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制扫描波束的波束方向。由于根据终端设备的方位可以确定扫描波束的波束方向,无需全方位覆盖扫描,设计出较窄的波束,并可以将功率汇聚到扫描波束的RB内,从而可以避免进行波束扫描或者减少扫描波束的个数,可以提高符号关断数,减少发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
在一种可能的实现方式中,上述实施例中步骤S900可以具体在当前系统负载处于第一负载等级的情况下执行。
或者,步骤S900可以具体在当前系统负载处于第二负载等级、且所述终端设备落在第一地理区域内的比例达到阈值的情况下执行。
具体地,第一负载等级小于第二负载等级,也就是说,在当前系统负载较小且获知到终端设备的方位的情况下,可以通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制波束方向,可以无需进行波束扫描,从而节省发射符号数,提高了符号关断数。
上述第一地理区域可以为按基站覆盖的小区面积来设置,具体地技术人员可以实际需求或根据历史数据分析来设置第一地理区域的大小,例如按基站覆盖的小区面积的50%。技术人员也可以根据实际需求或根据历史数据分析来设置上述阈值,例如阈值为100%。
本申请实施例中所述终端设备落在第一地理区域内的比例达到阈值,即表明终端设备的位置集中,那么即便当前系统负载较大,同样可以通过配置通道间相位差或者选取基础波束中的某一个或者几个波束来控制波束方向,可以无需进行波束扫描,从而节省发射符号数,提高了符号关断数。
在一种可能的实现方式中,配置的所述波束方向与本小区的相邻小区的波束方向错开。具体可以参考上述图4和图7实施例的说明,这里不再赘述。
本申请实施例可以通过调整通道间相位差或设计不同的权值,来错开相邻小区的波束方向,使得相邻小区形成波束差异,降低小区间的干扰。避免为了节省资源以及关断符号,会设计在发送公共信道的符号同时携带数据,导致的小区间容易形成干扰的问题。
在一种可能的实现方式中,若在发送波束的周期内配置了关断的扫描符号,将发送波束的时域符号与相邻小区发送波束的时域符号错开。具体可以参考上述图4和图8实施例的说明,这里不再赘述。
本申请实施例在扫描周期内配置了关断的扫描符号的情况下,通过错开相邻小区之间波束的时域符号,也就是说相邻小区之间波束的时域符号不同,可以进一步降低小区间的 干扰,提升系统效率。
下面结合图10示出的本申请提供的另一实施例的通信方法的流程示意图,再举例说明基站如何与终端设备进行交互,可以包括以下步骤:
步骤S1000:基站在发送波束的周期内配置关断的扫描符号;
步骤S1002:在配置扫描波束的过程中,将发送波束的时域符号与小区的相邻小区发送波束的时域符号错开。
具体基站如何在发送波束的周期内配置关断的扫描符号,以及如何在配置扫描波束的过程中,将发送波束的时域符号与本小区的相邻小区发送波束的时域符号错开,可以参考上述图4和图8实施例的说明,这里不再赘述。
在一种可能的实现方式中,上述图10实施例还可以包括:
具体地,本申请实施例通过将扫描波束的符号内空余RB上的功率汇聚到要占用RB上,可以使得扫描波束在覆盖距离一样的情况下可以覆盖得越广。那么扫描周期内扫描波束配置的个数比原来少,同样可以达到原来的覆盖度。因此可以进一步减少配置扫描波束的个数,关断当前不用于波束扫描的符号,从而实现以更少的符号进行波束扫描,提高了符号关断数,减少了发射符号数,解决了现有技术中为了增强覆盖使用固定个数的波束扫描,造成多个符号一直处于功耗状态,能量开销大的技术问题,使得基站更加节能。
本申请实施例在扫描周期内配置了关断的扫描符号的情况下,通过错开相邻小区之间波束的时域符号,也就是说相邻小区之间波束的时域符号不同,可以进一步降低小区间的干扰,提升系统效率。
本申请实施例还提供了一种通信装置,应用于波束扫描,如图11示出的本申请实施例提供的通信装置的结构示意图,通信装置11可以包括获取单元110、第一配置单元112和第二配置单元114,其中:
获取单元110用于获取小区当前时刻系统负载;
第一配置单元112用于根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数;
第二配置单元114用于根据所述扫描波束的个数配置关断符号的个数。
在一种可能的实现方式中,通信装置11还可以包括:
功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
在一种可能的实现方式中,当前负载等级越低,配置的所述周期内扫描波束的个数越少;所述当前负载等级为所述当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
在一种可能的实现方式中,第一配置单元112可以包括预估单元和波束配置单元,其中:
预估单元,用于根据所述当前时刻系统负载,预估用于波束扫描的可用功率;
波束配置单元,用于根据所述可用功率,配置扫描周期内扫描波束的个数以及每个扫描波束的波束宽度。
在一种可能的实现方式中,所述用于波束扫描的可用功率包括将空余RB上的功率汇聚到要占用RB上之后,所述要占用RB的功率。
在一种可能的实现方式中,第一配置单元112还可以用于根据所述扫描波束的个数配置每个扫描波束的波束宽度。
在一种可能的实现方式中,通信装置11还可以包括:
波束方向控制单元,用于根据所述小区内终端设备的方位,控制扫描波束的波束方向。
在一种可能的实现方式中,第一配置单元112还可以包括资源元素确定单元、时延步长调整单元、权值配置单元和加权遍历单元,其中:
资源元素确定单元,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加;
时延步长调整单元用于根据调度带宽调整时延步长;
权值配置单元用于根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
加权遍历单元用于基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
在一种可能的实现方式中,配置的所述扫描波束的波束方向与所述小区的相邻小区的波束方向错开。
在一种可能的实现方式中,通信装置11还可以包括:
符号错开单元,用于若在扫描周期内配置了关断的扫描符号,将发送波束的时域符号与相邻小区发送波束的时域符号错开。
可以理解的是,通信装置11中各个单元的描述还可以对应参考通信方法的实施例,这里不再一一详述。
本申请实施例还提供了一种通信装置,如图12示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置12可以包括波束方向控制单元120和资源元素确定单元122,其中:
波束方向控制单元120用于根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数;
资源元素确定单元122,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加;
其中,若减少了扫描波束的个数时,通信装置12还可以包括关断符号配置单元,用于根据所述扫描波束的个数配置关断符号的个数。
在一种可能的实现方式中,通信装置12还可以包括时延步长调整单元、权值配置单元和加权遍历单元,其中:
时延步长调整单元用于在资源元素确定单元122根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE之后,根据调度带宽调整时延步长;
权值配置单元用于根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
加权遍历单元用于基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
在一种可能的实现方式中,通信装置12还可以包括:功率汇聚单元,用于在配置的所 述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
在一种可能的实现方式中,在当前系统负载处于第一负载等级的情况下,通信装置11触发波束方向控制单元120根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数;或者,
在当前系统负载处于第二负载等级、且所述终端设备落在第一地理区域内的比例达到阈值的情况下,通信装置11触发波束方向控制单元120根据小区内终端设备的方位,控制扫描波束的波束方向并确认扫描波束的个数。
在一种可能的实现方式中,配置的所述波束方向与所述小区的相邻小区的波束方向错开。
在一种可能的实现方式中,通信装置11还可以包括:符号错开单元,用于若在发送波束的周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
可以理解的是,通信装置12中各个单元的描述还可以对应参考通信方法的实施例,这里不再一一详述。
本申请实施例还提供了一种通信装置,如图13示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置13可以包括符号关断配置单元130和符号错开单元132,其中:
符号关断配置单元130用于在发送波束的周期内配置关断的扫描符号;
符号错开单元132用于在配置扫描波束的过程中,将发送波束的时域符号与本小区的相邻小区发送波束的时域符号错开。
在一种可能的实现方式中,通信装置13还可以包括:
功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
可以理解的是,通信装置13中各个单元的描述还可以对应参考通信方法的实施例,这里不再一一详述。
如图14所示,图14是本申请实施例提供的一种通信设备的结构示意图,该通信设备140能够执行本发明实施例提供的通信方法。通信设备140可以包括至少一个处理器1401和存储器1402,处理器1400和存储器1402相互连接,其中,
处理器1401可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
处理器1401可以包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调中的一个或多个数字信号处理器(digitalsignal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
存储器1402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令 的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
通信设备140还可以包括天线、收发器等通用部件,这里不再赘述。其中通信设备140还可以包括总线。其中,收发器、存储器1402等可以通过总线与处理器1401连接。
上述存储器1402可以用于存储执行以上方案的通信方法的程序代码,并由处理器1401来控制执行。存储器1402存储的代码可用于执行以上图1-图10提供的通信方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
参见图15,本申请实施例还提供的一种芯片1500,包括一个或多个处理器1501以及接口电路1502。可选的,上述芯片1500还可以包含总线1503。其中:
处理器1501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1501可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路1502可以完成数据、指令或者信息的发送或者接收,处理器1501可以利用接口电路1502接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路1502发送出去。
可选的,芯片还包括存储器,存储器可以包括只读存储器和随机存取存储器,并向处理器提供操作指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(NVRAM)。
可选的,存储器存储了可执行软件模块或者数据结构,处理器可以通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行以上图1-图10提供的通信方法中的步骤。
可选的,芯片可以使用在本申请实施例涉及的电子设备或网络设备或多节点分布式系统中。可选的,接口电路1502可用于输出处理器1501的执行结果。关于本申请的一个或多个实施例提供的通信方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1501、接口电路1502各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个方法中的一个或多个步骤。上述信号处理装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (31)

  1. 一种通信方法,其特征在于,应用于波束扫描,所述方法包括:
    获取小区当前时刻系统负载;
    根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数;
    根据所述扫描波束的个数配置关断符号的个数。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
  3. 如权利要求1或2所述的方法,其特征在于,当前负载等级越低,配置的所述周期内扫描波束的个数越少;所述当前负载等级为所述当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
  4. 如权利要求1或2所述的方法,其特征在于,所述根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数,包括:
    根据所述当前时刻系统负载,预估用于波束扫描的可用功率;
    根据所述可用功率,配置扫描周期内扫描波束的个数。
  5. 如权利要求4所述的方法,其特征在于,所述用于波束扫描的可用功率包括将空余RB上的功率汇聚到要占用RB上之后,所述要占用RB的功率。
  6. 如权利要求1-5任一项所述的方法,其他特征于,所述方法还包括:根据所述扫描波束的个数配置每个扫描波束的波束宽度。
  7. 如权利要求6所述的方法,其特征在于,所述根据所述扫描波束的个数配置扫描波束的波束宽度,包括:
    根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE之后,还包括:
    根据调度带宽调整时延步长;
    根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
    基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    根据所述小区内终端设备的方位,控制扫描波束的波束方向。
  10. 如权利要求1-9任一项所述的方法,其特征在于,配置的所述扫描波束的波束方向与所述小区的相邻小区的波束方向错开。
  11. 如权利要求1-10任一项所述的方法,其特征在于,还包括:若在扫描周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
  12. 一种通信方法,其特征在于,包括:
    根据小区内终端设备的方位控制波束方向并确认扫描波束的个数;
    根据扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
  13. 如权利要求12所述的方法,其特征在于,所述根据扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE之后,还包括:
    根据调度带宽调整时延步长;
    根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
    基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
  15. 如权利要求12-14任一项所述的方法,其特征在于,所述根据小区内终端设备的方位控制波束方向并确认扫描波束的个数,包括:
    在当前系统负载处于第一负载等级的情况下,或者在当前系统负载处于第二负载等级、且所述终端设备落在第一地理区域内的比例达到阈值的情况下,根据小区内终端设备的方位控制波束方向并确认扫描波束的个数。
  16. 如权利要求12-15任一项所述的方法,其特征在于,配置的所述波束方向与所述小区的相邻小区的波束方向错开。
  17. 如权利要求12-16任一项所述的方法,其特征在于,若在发送波束的周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
  18. 一种通信装置,其特征在于,应用于波束扫描,包括:
    获取单元,用于获取小区当前时刻系统负载;
    第一配置单元,用于根据所述当前时刻系统负载,配置扫描周期内扫描波束的个数;
    第二配置单元,用于根据所述扫描波束的个数配置关断符号的个数。
  19. 如权利要求18所述的装置,其特征在于,所述装置还包括:
    功率汇聚单元,用于在配置的所述扫描波束的符号内,将空余资源块RB上的功率汇聚到要占用RB上。
  20. 如权利要求18或19所述的装置,其特征在于,当前负载等级越低,配置的所述周期内扫描波束的个数越少;所述当前负载等级为所述当前时刻系统负载所属的负载等级;其中,所属负载等级低的系统负载小于所属负载等级高的系统负载。
  21. 如权利要求18或19所述的装置,其特征在于,所述第一配置单元包括:
    预估单元,用于根据所述当前时刻系统负载,预估用于波束扫描的可用功率;
    波束配置单元,用于根据所述可用功率,配置扫描周期内扫描波束的个数以及每个扫描波束的波束宽度。
  22. 如权利要求21所述的装置,其特征在于,所述用于波束扫描的可用功率包括将空余RB上的功率汇聚到要占用RB上之后,所述要占用RB的功率。
  23. 如权利要求18-22任一项所述的装置,其特征在于,所述第一配置单元还用于根据所述扫描波束的个数配置每个扫描波束的波束宽度。
  24. 如权利要求23所述的装置,其特征在于,所述第一配置单元还包括:
    资源元素确定单元,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
  25. 如权利要求24所述的装置,其特征在于,所述第一配置单元还包括:
    时延步长调整单元,用于根据调度带宽调整时延步长;
    权值配置单元,用于根据所述时延步长得到所述扫描波束对应的RE的预编码矩阵权值;
    加权遍历单元,用于基于所述预编码矩阵权值对所述扫描波束对应的RE进行加权遍历。
  26. 如权利要求18-25任一项所述的装置,其特征在于,所述装置还包括:
    波束方向控制单元,用于根据所述小区内终端设备的方位,控制扫描波束的波束方向。
  27. 如权利要求18-26任一项所述的装置,其特征在于,配置的所述扫描波束的波束方向与所述小区的相邻小区的波束方向错开。
  28. 如权利要求18-27任一项所述的装置,其特征在于,所述装置还包括:
    符号错开单元,用于若在扫描周期内配置了关断的扫描符号,将发送波束的时域符号与所述小区的相邻小区发送波束的时域符号错开。
  29. 一种通信装置,其特征在于,包括:
    波束方向控制单元,用于根据小区内终端设备的方位控制扫描波束的波束方向并确认扫描波束的个数;
    资源元素确定单元,用于根据所述扫描波束的个数确定每个扫描波束分别对应的一个或多个资源元素RE;每个所述扫描波束的宽度由对应的一个或多个RE对应的波束叠加。
  30. 一种通信设备,其特征在于,包括处理器和存储器;所述存储器,用于存储程序;所述处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1至17任一项所述的方法。
  31. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令在计算机或处理器上运行时,使得所述计算机或处理器执行如权利要求1至17任一项所述的方法。
PCT/CN2021/105210 2020-07-15 2021-07-08 通信方法、相关装置设备以及计算机可读存储介质 WO2022012406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21843102.1A EP4185018A4 (en) 2020-07-15 2021-07-08 COMMUNICATION METHOD, ASSOCIATED DEVICE AND DEVICE AND COMPUTER-READABLE STORAGE MEDIUM
US18/154,612 US20230147737A1 (en) 2020-07-15 2023-01-13 Communication Method, Related Apparatus Device, and Computer-Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010685117.3A CN113950127B (zh) 2020-07-15 2020-07-15 通信方法、相关装置设备以及计算机可读存储介质
CN202010685117.3 2020-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,612 Continuation US20230147737A1 (en) 2020-07-15 2023-01-13 Communication Method, Related Apparatus Device, and Computer-Readable Storage Medium

Publications (1)

Publication Number Publication Date
WO2022012406A1 true WO2022012406A1 (zh) 2022-01-20

Family

ID=79326621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105210 WO2022012406A1 (zh) 2020-07-15 2021-07-08 通信方法、相关装置设备以及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230147737A1 (zh)
EP (1) EP4185018A4 (zh)
CN (1) CN113950127B (zh)
WO (1) WO2022012406A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001550B (zh) * 2022-05-26 2023-11-14 西安电子科技大学 毫米波系统的多用户波束快速对准方法
WO2024065371A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种波束扫描方法、装置、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945393A (zh) * 2013-01-22 2014-07-23 华为技术有限公司 一种利用波束激活容量站的方法及装置
CN106817762A (zh) * 2015-11-30 2017-06-09 华为技术有限公司 一种随机接入方法和基站以及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3084980B1 (en) * 2013-12-16 2020-07-08 Huawei Technologies Co., Ltd. Methods and devices for adjusting beam width in a wireless communication system
US10003986B2 (en) * 2014-09-26 2018-06-19 Futurewei Technologies, Inc. Device, network, and method for communications with variable-duration reference signals
CN106793059B (zh) * 2017-01-10 2020-06-02 北京小米移动软件有限公司 发送同步信息块的方法及装置
CN109039530A (zh) * 2017-06-09 2018-12-18 索尼公司 无线通信系统中的装置和方法
CN107819200B (zh) * 2017-10-23 2019-12-10 东南大学 一种宽扫描角度的折合式反射阵多波束天线
CN111225433B (zh) * 2018-11-26 2021-11-19 华为技术有限公司 一种信息处理方法及信息处理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945393A (zh) * 2013-01-22 2014-07-23 华为技术有限公司 一种利用波束激活容量站的方法及装置
CN106817762A (zh) * 2015-11-30 2017-06-09 华为技术有限公司 一种随机接入方法和基站以及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of Potential Techniques for NR Positioning", 3GPP DRAFT; R1-1812615, 3 November 2018 (2018-11-03), Spokane USA, pages 1 - 13, XP051478856 *
See also references of EP4185018A4

Also Published As

Publication number Publication date
CN113950127A (zh) 2022-01-18
EP4185018A1 (en) 2023-05-24
US20230147737A1 (en) 2023-05-11
CN113950127B (zh) 2023-11-03
EP4185018A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
US20220053546A1 (en) Data receiving method and apparatus and data sending method and apparatus
US10693690B2 (en) Data symbol transmission method and wireless device
US9641230B2 (en) Base station and signal transmitting control method of the same, and wireless communication system
US11019499B2 (en) Signal transmission apparatus and method, and wireless access node
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
JP2020529752A (ja) 電力配分方法及び装置
EP3065437B1 (en) Signal processing method and base station
EP3264818A1 (en) Method and system for dynamic cell configuration
WO2021213364A1 (zh) 指示方法、上行传输方法、装置、服务节点、终端及介质
WO2022012406A1 (zh) 通信方法、相关装置设备以及计算机可读存储介质
TWI753175B (zh) 用於無線通訊的電子裝置和方法以及電腦可讀儲存媒體
US20220216905A1 (en) Methods and devices for radio beam determination
US11121781B2 (en) Calibration method and apparatus
US11290994B2 (en) Signal transmission method, terminal device, and network device
KR20220044585A (ko) Dl 및 ul 송신을 위한 패널-특정 보고의 방법
WO2020030152A1 (zh) 系统信息传输方法、相关设备及系统
JP5687089B2 (ja) 無線通信システムおよびマクロ基地局の送信アンテナのチルト角制御方法
CN111771338B (zh) 用于物理上行链路共享信道跳频分配的方法和装置
US20230164688A1 (en) Method and system for managing power of radio unit (ru)
WO2019062345A1 (zh) 下行数据的发送方法及装置、接收方法及装置、存储介质
WO2022151494A1 (zh) 一种传输参数确定方法及装置
CN111800793B (zh) 一种干扰的优化方法、装置
JP7450533B2 (ja) 基地局装置、通信方法及び無線通信システム
WO2022257650A1 (zh) 一种小区调整的方法、相关装置以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843102

Country of ref document: EP

Effective date: 20230214