WO2019062345A1 - 下行数据的发送方法及装置、接收方法及装置、存储介质 - Google Patents

下行数据的发送方法及装置、接收方法及装置、存储介质 Download PDF

Info

Publication number
WO2019062345A1
WO2019062345A1 PCT/CN2018/099714 CN2018099714W WO2019062345A1 WO 2019062345 A1 WO2019062345 A1 WO 2019062345A1 CN 2018099714 W CN2018099714 W CN 2018099714W WO 2019062345 A1 WO2019062345 A1 WO 2019062345A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
downlink
channel
level
downlink data
Prior art date
Application number
PCT/CN2018/099714
Other languages
English (en)
French (fr)
Inventor
李斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18860278.3A priority Critical patent/EP3691322A4/en
Priority to US16/627,730 priority patent/US11502802B2/en
Publication of WO2019062345A1 publication Critical patent/WO2019062345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communications, but is not limited to the field of communications, and in particular, to a method and apparatus for transmitting downlink data, a method and apparatus for receiving the data, and a storage medium.
  • the Wireless Fidelity (WIFI) system based on the IEEE802.11 series of protocols usually occupies 2.4G and 5G spectrum resources.
  • the spectrum range is 2.4GHz. -2.4835 GHz, occupying a total of 83.5 MHz bandwidth, divided into 14 subchannels, each subchannel width is 22 MHz, the center frequency of adjacent channels is 5 MHz apart, and adjacent channels have overlapping frequencies.
  • the spectrum range is 2.150GHz-2.850GHz, occupying a total of 70MHz bandwidth.
  • IEEE802.11n is the mainstream standard of current WIFI devices, that is, existing WIFI devices need to support both 2.4G and 5G frequency bands, and both frequency bands include multiple subchannel resources, usually only need to select one or partial subchannels to meet Communication requirements for WIFI systems.
  • the spectrum resources occupied by the WIFI system are basically in the ISM band.
  • the ISM (Industrial Scientific Medical) Band is defined by the ITU Radio Communication Sector (ITU-R). Some wireless bands have been reserved for industrial, scientific, and microwave medical applications. The application of these frequency bands does not require a license, only a certain transmission power (generally less than 1W), and do not cause interference to other frequency bands.
  • the specific ISM frequency band settings can be configured according to the actual situation of each country, but the positioning for the 2.4 GHz frequency band is The common ISM band of countries around the world.
  • the coverage distance of the cell is relatively high.
  • the coverage distance of the single cell is usually above 100 Km.
  • How to meet the requirements of coverage distance is a difficult problem to be solved in the industry, and it is also a major obstacle to the realization of the ISM band for ultra-long-coverage wireless communication systems.
  • the embodiments of the present disclosure provide a method and device for transmitting downlink data, a receiving method and device, and a storage medium, so as to at least solve the problem that the coverage in the related art cannot meet the coverage requirement in the case of limited transmission power. problem.
  • a method for transmitting downlink data including: transmitting downlink data by using a cell-level common channel in a downlink channel and/or a downlink user-level channel in a downlink channel, where the cell level The common channel and the downstream user level channel occupy different time domain locations.
  • a method for receiving downlink data including: receiving downlink data sent by a base station through a cell-level common channel and/or a downlink user-level channel in a downlink channel, where the base station is received
  • the downlink data sent by the cell-level common channel is different from the time domain location of receiving the downlink data sent by the base station by using the downlink user-level channel.
  • a device for transmitting downlink data including: a sending module, configured to send downlink data by using a cell-level common channel in a downlink channel and/or a downlink user-level channel in a downlink channel, where The cell-level common channel and the downlink user-level channel occupy different time domain locations.
  • a receiving apparatus for downlink data comprising: a receiving module, configured to receive, by a base station, a cell-level common channel and/or a downlink in a downlink channel Downlink data sent by the user-level channel, wherein the downlink data sent by the receiving base station by using the cell-level common channel is different from the time-domain location of receiving downlink data sent by the base station by using the downlink user-level channel.
  • a storage medium comprising a stored program, wherein the program, when executed, performs the method of any of the above.
  • a communication device comprising: a memory; a processor coupled to the memory; the processor configured to execute a program stored on the memory, wherein the program runs The method of any of the above is performed.
  • the downlink data is sent by using a cell-level common channel and a downlink user-level channel in a time division manner, and the cell-level common channel and the downlink user-level channel are all mixed in the same state in the related art.
  • the manner of transmitting in the time domain position can effectively increase the power by using the solution in the present disclosure, thereby achieving the purpose of supporting a longer coverage distance, thereby solving the problem that the related technology cannot realize a longer distance under the condition that the transmission power is limited. Covering the required problem, and then achieving the effect of distributing the power to increase the transmission power of the broadcast channel and achieving coverage over a longer distance when the total power is constant.
  • FIG. 1 is a flowchart of a method of transmitting downlink data according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a hardware configuration of a mobile terminal for receiving a downlink data according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method of transmitting downlink data according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a radio frame structure of a TDD air-to-air coverage system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a time-frequency domain mapping position of a TDD air-to-air coverage system including a downlink cell-level control channel and its demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram showing the pointing of two independent beams on the terminal side in the case where the airborne terminal is inside the cell according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing the pointing of two independent beams on the terminal side in the case where the airborne terminal is in the cell edge according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a radio frame structure of an FDD super far coverage system according to an embodiment of the present disclosure
  • FIG. 13 is a structural block diagram of a transmitting apparatus of downlink data according to an embodiment of the present disclosure.
  • FIG. 14 is a structural block diagram of a receiving apparatus of downlink data according to an embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a wireless communication system in which the WIFI system uses the same radio frequency band resource, and supports a cell coverage radius exceeding 100 Km under the premise of observing a small transmission power, in order to solve the above problems in the related art.
  • the wireless communication system can operate normally and does not interact with other systems in the frequency band.
  • FIG. 1 is a flowchart of a method for transmitting downlink data according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes:
  • Step S102 Send downlink data by using a cell-level common channel in the downlink channel and/or a downlink user-level channel in the downlink channel, where the cell-level common channel and the downlink user-level channel occupy different time domain locations.
  • the base station side downlink transmission data may be divided into a cell level common channel and a downlink user level channel, where the cell level common channel may be defined as data transmitted by the base station side. All users belonging to the cell (corresponding to user equipment, referred to as users) can receive and demodulate all users in the cell.
  • the cell-level common channel may include, but is not limited to, a downlink broadcast channel, a downlink synchronization signal, and a corresponding cell-level reference signal, etc.; the downlink user-level channel may be defined as the transmitted data belongs only to a certain end user (for example, the above-mentioned target user equipment) ), may include a downlink user level traffic channel, a control channel, and its downlink user level reference signals.
  • the time-division manner may be adopted for the above two channels, that is, in one time resource unit (slot/time domain symbol), the two channels only exist therein.
  • the two channels only exist therein.
  • All the total transmit power is occupied by the resource unit, thereby increasing the transmit power of the data transmitted by the single channel.
  • the coverage of the wireless signal transmitted by the single channel is improved, thereby increasing the coverage distance and realizing the long distance. Coverage and wide range of wireless coverage.
  • the downlink data is transmitted by using the cell-level common channel and the downlink user-level channel in a time division manner, and the cell-level common channel and the downlink user-level channel are all mixed in the same time domain position and transmitted in the related art.
  • the method of the present disclosure can effectively increase the power, thereby achieving the purpose of supporting a longer coverage distance, thereby solving the problem that the coverage requirement of the longer distance cannot be realized in the case where the transmission power is limited in the related art.
  • the power is allocated to increase the transmission power of the broadcast channel.
  • transmitting the downlink data by using the cell-level common channel includes: transmitting downlink data in a dedicated time domain and a dedicated frequency domain location by using a cell-level common channel, where the bandwidth corresponding to the dedicated frequency domain location is smaller than The total downlink bandwidth of the system is not transmitted on the bandwidth other than the corresponding bandwidth (the corresponding bandwidth is the bandwidth corresponding to the dedicated frequency domain location), and the rated transmission power corresponding to the total downlink bandwidth of the system is allocated in the cell. On the common channel.
  • the downlink data when transmitted by using the cell-level common channel, it can be set to transmit in a fixed time domain and a frequency domain location, and the time domain in which it is located will not transmit other channel data at the same time, occupying all the transmissions.
  • the power data, and the rated transmit power corresponding to the total downlink bandwidth of the system is allocated on the cell-level common channel to improve the transmit power.
  • the bandwidth occupied by the dedicated frequency domain location may be referred to as a first bandwidth: the first bandwidth is less than the total system bandwidth; the total system bandwidth herein is the sum of the bandwidths that can be allocated to the communication system.
  • the total system bandwidth includes a first bandwidth and a second bandwidth.
  • the second bandwidth may be a bandwidth other than the first bandwidth.
  • the second bandwidth may not be used for transmitting data, and thus, the rated transmission power of the total bandwidth of the system may be concentrated for data transmission of the first bandwidth, and thus equivalent to using the rated transmission power usable for the second bandwidth.
  • the transmit power of the first bandwidth is increased, thus increasing the transmit power of the first bandwidth.
  • the first bandwidth is the bandwidth occupied by the cell-level common channel, which is equivalent to increasing the transmission power of the cell-level common channel, thereby improving the coverage of the cell.
  • the dedicated frequency domain location is determined in a fixed manner or in a time domain by means of a time domain in the case of a single carrier, or in a fixed manner or in the case of multiple carriers.
  • the multi-carrier is determined by the way of time domain rotation.
  • the dedicated frequency domain location (also referred to as a fixed frequency domain) is supported by time-domain rotations between carriers or carriers.
  • one carrier in the case of a single carrier, one carrier may be divided into a plurality of sub-bands; then, the manner of determining the time-domain rotation within the single carrier may include: transmitting data by using a plurality of sub-bands in the time domain.
  • the subbands herein may be one or more subcarriers, or other divisions.
  • multiple carriers multiple carriers are transmitted through the time domain, and different carriers are selected at different time domain locations to transmit data.
  • transmitting the downlink data by using the cell-level common channel includes: transmitting, by using the broadcast beam beam, the downlink data by using the cell-level common channel.
  • the broadcast beam refers to a broadcast direction shaping covering all receiving locations within the cell.
  • the method before the transmitting the downlink data by using a cell-level common channel by using a broadcast beam transmission, the method further includes: performing beamforming on the broadcast beam on a baseband side.
  • beamforming can also be performed on the radio frequency side, or on the baseband side and the radio frequency side.
  • the following embodiment of beamforming on the baseband side can also be performed on the radio frequency side or on the baseband side. Beamforming is performed on the radio frequency side, which will not be described below.
  • the downlink data is transmitted on the cell-level common channel by using the shaped broadcast beam transmission.
  • the time domain location of the cell-level common channel and the time domain location of the demodulation reference signal time domain location corresponding to the cell-level common channel are less than a predetermined threshold.
  • the cell-level common channel and the demodulation reference signal corresponding to the cell-level common channel are mapped by a fixed mapping rule, and the two (refer to the demodulation reference signal of the cell-level common channel and the cell-level common channel) ) Maps in different time domain locations.
  • the time domain location of the cell-level downlink broadcast channel and its corresponding demodulation reference signal may be as close as possible (ie, the time domain location of the cell-level common channel and the demodulation reference corresponding to the cell-level common channel)
  • the time domain interval of the signal time domain position is less than a predetermined threshold) to ensure better demodulation performance
  • the cell level downlink broadcast channel and its corresponding demodulation reference signal may be fixed in order to resist possible fixed position interference.
  • the mapping rules are mapped, and the cell-level downlink broadcast channel and its corresponding demodulation reference signal are mapped at different time domain locations.
  • transmitting downlink data by using the downlink user-level channel includes: transmitting, by using the first narrow beam transmission, the downlink data by using the downlink user-level channel.
  • a narrow beam ie, the first narrow beam described above
  • the narrow beam refers to a directional beam with a shaping effect directed by the base station to the user; Compared to the broadcast beam, there is a shaping gain because the narrow beam has a shaping effect.
  • a narrow beam may include a user-level beam that typically does not cover the entire cell.
  • a narrow beam with respect to a wide beam, the wide beam may include: a broadcast beam covering the entire cell.
  • the method before the downlink data is transmitted by using the downlink user-level channel, the method further includes: performing beamforming on the first narrow beam on the baseband side.
  • beamforming the first narrow beam on the baseband side includes beamforming the first narrow beam based on frequency domain beamforming on the baseband side.
  • performing beamforming on the first narrow beam on the baseband side includes: determining shaping information of the target user equipment; performing beaming on the first narrow beam on the baseband side according to the shaping information of the target user equipment. Forming.
  • determining the shaping information of the target user equipment comprises at least one of: determining a DOA angle according to a location of the base station and a location of the target user equipment, and determining a shape of the target user equipment according to the DOA angle.
  • the base station is configured to determine a cell-level common channel and a downlink user-level channel in the downlink channel, and transmit the downlink data by using a cell-level common channel and a downlink user-level channel in a time division manner;
  • the uplink data of the user equipment or the demodulation reference signal corresponding to the received uplink data from the target user equipment determines the weighting value of the target user equipment; and receives the weighting value of the target user equipment reported by the target user equipment, where The weighting value is determined by the target user equipment based on the received downlink data or a demodulation reference signal corresponding to the received downlink data.
  • the sending the downlink data by using the downlink user-level channel includes: determining, according to the interference level and/or scheduling policy of the downlink data received by the target user equipment, a time domain location and a frequency domain location for transmitting downlink data by using a downlink user-level channel. And transmitting the downlink data in the determined time domain location and the frequency domain location by using the downlink user level channel.
  • transmitting the downlink data by using the cell-level common channel and/or the downlink user-level channel in the downlink channel comprises: utilizing the cell-level common channel and/or if the transmit power resource is boosted
  • the downlink user level channel in the downlink channel transmits downlink data.
  • the power resource allocated to the base station is smaller than the total power resource of the system.
  • the unallocated power resource is not occupied, so when the data transmission is actually performed, the data resource can be upgraded.
  • the transmission power resources of the base station achieve the purpose of making full use of the power resources.
  • transmitting the downlink data by using the cell-level common channel includes: adjusting a time domain location and a frequency domain location when the downlink data is transmitted by using the cell-level common channel according to a predetermined rule at a predetermined time; and adjusting the time domain location and The downlink data is transmitted using the cell-level common channel at the frequency domain location.
  • the main purpose is the downlink cell-level channel and data of the base station side, because the time-frequency domain of the transmission is fixed, and in order to avoid fixed interference, the time-frequency domain of the transmission is adjusted according to rules at different times. position.
  • the performance of the wireless communication system in the ISM band can be effectively avoided, and the performance of the designed wireless communication system is degraded or deteriorated.
  • the control channel and the service channel based on the power boost are respectively used to avoid interference and improve system performance.
  • the following manner may also be adopted: measuring signal-to-noise noise on resources other than time-frequency domain resources occupied by the cell-level common channel. Ratio level; downlink data is transmitted on the downlink user level channel at the resource location with the highest signal to interference and noise ratio among the other resources mentioned above.
  • FIG. 2 is a hardware block diagram of a mobile terminal of a method for receiving downlink data according to an embodiment of the present disclosure.
  • mobile terminal 20 may include one or more (only one of which is shown in FIG. 2) processor 202 (processor 202 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) a memory 204 for storing data, and a transmission device 206 for communication functions.
  • processor 202 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA.
  • memory 204 for storing data
  • a transmission device 206 for communication functions.
  • the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 20 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the memory 204 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the receiving method of the downlink data in the embodiment of the present disclosure, and the processor 202 executes the software program and the module stored in the memory 204, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 204 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 204 can include memory remotely located relative to processor 202, which can be connected to mobile terminal 20 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 206 is configured to receive or transmit data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the mobile terminal 20.
  • the transmission device 206 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 206 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 3 is a flowchart of a method for transmitting downlink data according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • Step S302 receiving downlink data that is sent by the base station by using the cell-level common channel and/or the downlink user-level channel in the downlink channel, where receiving the downlink data sent by the base station by using the cell-level common channel and receiving the base station utilization
  • the time domain location of the downlink data sent by the downlink user level channel is different.
  • the above operation may be performed by a user equipment (for example, the target user equipment described above).
  • the base station can use the cell-level common channel and the downlink user-level channel to transmit downlink data in a time division manner, and the cell-level common channel and the downlink user-level channel are all mixed in the same time domain position and transmitted in the related art.
  • the method of the present disclosure can effectively increase the power, thereby achieving the purpose of supporting a longer coverage distance, thereby solving the problem that the coverage requirement of the longer distance cannot be realized in the case where the transmission power is limited in the related art. In turn, the effect of increasing the transmission power and achieving coverage over a longer distance is achieved.
  • receiving the downlink data sent by the base station by using the cell-level common channel and/or the downlink user-level channel in the downlink channel comprises: using the third narrow beam receiving base station to utilize the cell-level common channel in the downlink channel, and/or Downlink data sent by the downlink user level channel.
  • a narrow beam (for example, the third narrow beam described above) may always be used for data reception, and the narrow beam refers to an antenna shaping direction of the user equipment pointing to the base station.
  • the number of the third narrow beams is at least two, and when the target user equipment for receiving the downlink data by using the third narrow beam moves to the cell edge, the at least one third narrow beam is used to continue pointing.
  • the source serving cell of the target user equipment, at least one other third narrow beam is used to point to the neighboring cell of the source serving cell.
  • the terminal side ie, the user equipment side
  • the terminal side needs to support at least two beam directions at the same time, and the two beam directions may be different by two pairs.
  • the antennas are generated at the same time, and two beam directions can also be generated simultaneously by the same antenna.
  • the two beams of the terminal are simultaneously directed to the base station.
  • the terminal side can adopt the method of combined reception to improve the downlink data receiving SINR.
  • the terminal moves to the cell edge, one beam continues to be directed to the serving cell (ie, the original serving cell described above), and the other beam sequentially points to the relevant neighboring cell of the serving cell.
  • the terminal receives the cell common reference signal of the neighboring cell through the beam pointing to the neighboring cell, and measures the receiving level and the SINR and the like, and prepares for triggering the cell handover and the like.
  • the cell edge may be a logical concept. If a user equipment moves to receive the difference between the received power of the local cell and the received power of the neighboring cell is less than a specific threshold, the user equipment is considered to have moved to the local cell. At the cell edge, the user equipment is a cell edge device. If the difference between the received power of the local cell and the received power of the neighboring cell is greater than the specific advance, the user equipment is considered to be in the center of the cell, and the user equipment is the user equipment of the cell center.
  • the current cell here may be the current serving cell of the user equipment.
  • the number of the neighboring cells is more than two, and the number of the at least one other third narrow beam is smaller than the number of the neighboring cells, by changing some or all of the at least one other third narrow beam
  • the direction of the beam is such that the at least one other third narrow beam is directed to the neighboring cell of the source serving cell.
  • the number of the third narrow beams used for the neighboring cells does not correspond to the number of neighboring cells, some narrow beams need to point to more than two neighboring cells, and need to point to more than two neighboring cells.
  • the narrow beam needs to be directed to more than two neighbors by changing direction.
  • the third narrow beam has a one-to-one correspondence with the neighboring cells, it is not necessary to change the direction of the narrow beam.
  • whether the target user equipment moves to the cell edge may be determined by: determining, according to the received power level and/or the signal dry ratio SINR level of the downlink data sent by the source serving base station, the target user equipment. Whether to move to the edge of the cell.
  • the foregoing method before the downlink data received by the base station by using the cell-level common channel and/or the downlink user-level channel in the downlink channel by using the foregoing third narrow beam, the foregoing method further The method includes: beamforming the third narrow beam on the baseband side.
  • performing beamforming on the third narrow beam on the baseband side includes: determining shaping information of a target user equipment for receiving downlink data by using the third narrow beam; and forming information according to the target user equipment The third narrow beam is beamformed on the baseband side.
  • the method further includes: transmitting the uplink data to the base station by using the fourth narrow beam.
  • narrow beam transmission is always used for the uplink data channel, the uplink control channel, and the corresponding uplink reference signal.
  • the method before the sending the uplink data to the base station by using the fourth narrow beam, the method further includes: performing beamforming on the fourth narrow beam on the baseband side.
  • performing beamforming on the fourth narrow beam on the baseband side includes: determining shaping information of a target user equipment for transmitting uplink data to the base station by using the fourth narrow beam; The shape information beamforms the fourth narrow beam on the baseband side.
  • transmitting the uplink data to the base station by using the fourth narrow beam includes: measuring a signal to interference and noise ratio level on resources other than the time-frequency domain resource occupied by the cell-level common channel; and performing signal-to-interference noise in other resources.
  • the uplink data is transmitted using the fourth narrow beam at the highest resource location.
  • determining the shaping information of the target user equipment comprises at least one of: determining a DOA angle of the direction of arrival based on the location of the base station and the location of the target user equipment, and determining the shaping right of the target user equipment according to the DOA angle And traversing a fixed set of shaped weights, selecting a shaped weight having a downlink maximum received SINR; determining a weight based on the received downlink data or a demodulation reference signal corresponding to the received downlink data; receiving The weighting value from the base station, wherein the weighting value is determined by the base station to send uplink data according to the received target user equipment or a demodulation reference signal corresponding to the received target user equipment to send uplink data.
  • the terminal type is an airborne terminal installed on the aircraft, working In the frequency band 2.412 ⁇ 2.432GHz, if there is WIFI system interference in this frequency band, the wireless communication system supported by the method for supporting ultra-long coverage is as follows;
  • Step 1 Referring to FIG. 4, the radio frame structure of the designed TDD radio communication system is 20 ms, wherein the guard slot is 2 ms, and the cell coverage radius of 300 km can be supported, and the number of uplink subframes is 5, and each uplink sub-sub The frame occupies 1 ms, the number of downlink subframes is 13, and each downlink subframe occupies 1 ms.
  • the resource block (Resource Block, RB for short) and the Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the definition is consistent with the 3GPP LTE protocol;
  • Step 2 The downlink common control channel included in the LTE protocol includes a physical broadcast channel (PBCH), a primary synchronization signal (PSS), and a secondary synchronization signal (SSS). And the corresponding demodulation reference signal cell reference signal (Cell Reference Signal, CRS for short), according to the method described in the embodiment of the present disclosure, the data is performed in a manner of exclusively transmitting the time domain position and increasing the transmission power. Modified, the obtained symbol structure is as shown in Figure 5:
  • the first 7 symbols of the subframe are used to carry downlink cell-level control channel data and its demodulation reference signal, and the last 7 symbols are used to carry downlink user-level channel data and its demodulation reference signal.
  • the subframe is labeled as a C subframe and is mapped on the 18th subframe as shown in FIG.
  • the first symbol Sym#1 is used to carry the cell-level data demodulation reference signal CRS, wherein there are 1200 subcarriers in Sym#1, but only 100 CRSs (one per RB), and other RE locations are set to be unavailable.
  • This design allows all transmit power to be used for CRS RE data transmission. Compared with the LTE protocol, the downlink maximum transmit power is evenly distributed to all subcarriers, and the transmit power of the CRS can be increased by 10*log10 (1200/100). 10.8dB;
  • the second to fifth symbols Sym#2 ⁇ #5 are used to carry the downlink broadcast channel PBCH, occupying the middle 6 RBs (RB47-RB52), and the other RE positions are set to be unavailable.
  • the sixth and seventh symbols Sym#6#7 are respectively used to carry the primary and secondary downlink synchronization signals PSS/SSS, occupying the middle 6 RBs (RB47 to RB52), and other RE positions are set to be unavailable, at this time, PSS
  • the system adopts a single-station three-cell networking, so the horizontal angle range covered by each cell is 120 degrees, and the broadcast beam pattern adopted is shown in FIG. 6.
  • the RB position of the above PBCH/PSS/SSS mapping may be determined according to the remainder of the radio frame number modulo 16 on the C subframe of each radio frame. Any 6 RBs out of 100 RBs.
  • the uplink data transmitted by the terminal includes a Physical Uplink Control Channel (PUCCH)/Physical Uplink Shared Channel (PUSCH)/Sounding Reference Signal (Sounding Reference Signal).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • DMRS Demodulation Reference Signal
  • the specific acquisition method is based on the base station global positioning system ( Global Position System (GPS) position and GPS position on the terminal side.
  • GPS Global Position System
  • the GPS information of the ground base station is stored in the ROM of the airborne terminal, and the airborne terminal is identified according to the physical layer of the accessing cell (Physical Cell).
  • PCI Physical Layer of the accessing cell
  • the SINR level of each uplink is calculated according to the SRS/DMRS, and the uplink data is transmitted according to the base station scheduler to select an appropriate RB location.
  • Step 4 The user-level uplink data transmitted by the base station includes an Enhanced Physical Downlink Control Channel (EPDCCH)/PDSCH/DMRS, and the mapping manner is the same as that of the LTE protocol, but the Baseband airspace narrow beam transmission.
  • the specific acquisition method adopts the method of calculating the DOA angle based on the GPS position of the base station and the GPS position of the terminal side.
  • the airborne terminal periodically reports its GPS information through dedicated air interface signaling, and the base station calculates according to its own GPS information.
  • the direction of the radio wave which is shaped according to this direction;
  • the user-level narrow beam pattern used after calculating the GPS information for the terminal is shown in FIGS. 6 and 7.
  • the terminal supports calculating the SINR level of the downlink per RB according to the DMRS/CRS, and notifying the base station according to the sub-band CQI feedback or the like and selecting the appropriate RB position to transmit the downlink data by using the base station scheduler.
  • the aircraft installed terminal in order to support mobility, the aircraft installed terminal is required to support two narrow beams at the same time.
  • the beam pointing can be based on the following principles:
  • the terminal In an access cell, when the downlink received power level RSRP of the serving cell received by the terminal side is greater than or equal to -90 dBm, the terminal is considered to be inside the cell, and all two narrow beams are pointed to the serving cell at this time.
  • the beam 1 can be used for uplink transmission and downlink reception, and the beam 2 is only used for downlink reception.
  • the terminal for the downlink reception, the terminal is equivalent to adopting two beams for simultaneous reception, and the method based on the maximum signal to interference and noise ratio combining can be adopted.
  • Downlink receiving data of two beams is demodulated to optimize system downlink performance;
  • the terminal When the downlink receiving power level RSRP of the serving cell received by the terminal side is less than -90 dBm, the terminal is considered to have left the cell internal area, and cell handover may occur.
  • the terminal side still uses the beam 1 to point to the serving cell.
  • beam 2 Performing uplink transmission and downlink reception, and beam 2 sequentially points to the neighboring cell of the serving cell according to the neighboring cell data, and receives the downlink receiving power level of the neighboring cell through the beam 2; assuming that the serving cell includes two neighboring cells, The two neighboring areas perform the downlink receiving power level measurement.
  • the downlink cell reference signal CRS is transmitted once within 20 ms of one radio frame, so the neighboring area sequentially measures the minimum period of positioning for 20 ms, in the odd radio frame.
  • the neighboring area sequentially measures the minimum period of positioning for 20 ms, in the odd radio frame.
  • beam 2 points to neighboring area 1 for measurement.
  • beam 2 points to neighboring area 2 for measurement.
  • beam 1 always points to the serving cell.
  • the FDD LTE system is adopted, and the uplink-downlink subframe ratio in this embodiment is as shown in FIG. 10, and in this embodiment, multi-carrier aggregation CA is supported, and a total of five carriers are implemented.
  • the transmit power is unchanged. Therefore, in order to ensure cell coverage, it is necessary to adopt a time domain rounding method in the subframe data of the cell broadcast channel of each carrier to ensure that the total transmit power of the channel remains unchanged.
  • the rounding method can be as shown in FIG. 11 and FIG. 12, and it can be seen from FIG. 11 and FIG. 12 that in different wireless subframes, one and only one carrier respectively transmits a downlink broadcast waveform cell level channel, each carrier.
  • the transmission is performed twice, and the remaining carriers are transmitted in turn according to a fixed rule.
  • the specific carrier rotation formula is as follows:
  • i denotes carriers 1 to 5.
  • the transmission carrier rotations of the different cell based on the cell physical ID PCI are mutually offset, with specific reference to the above formula.
  • a device for transmitting downlink data and a device for receiving downlink data are provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described herein again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 13 is a structural block diagram of a transmitting apparatus for downlink data according to an embodiment of the present disclosure. As shown in FIG. 13, the apparatus includes a transmitting module 132, which is described below:
  • the sending module 132 is configured to send downlink data by using a cell-level common channel in the downlink channel and/or a downlink user-level channel in the downlink channel, where the cell-level common channel and the downlink user-level channel occupy different time domain locations.
  • the sending module 132 when the downlink data is sent by using the cell-level common channel, includes: a sending unit, configured to send downlink data in a dedicated time domain and a dedicated frequency domain location by using the cell-level common channel.
  • the bandwidth corresponding to the dedicated frequency domain location is smaller than the total downlink bandwidth of the system, and no data is transmitted on other bandwidths except the corresponding bandwidth.
  • the dedicated frequency domain location is determined by a time domain rounding in a single carrier in a single carrier, and a time domain rounding manner in multiple carriers in the case of multiple carriers. determine.
  • the sending module 132 may send the downlink data by using a cell-level common channel by using a cell-level common channel to transmit downlink data by using a shaped broadcast beam transmission.
  • the transmitting device of the downlink data is further configured to perform beamforming on the broadcast beam on a baseband side before transmitting the downlink data by using a cell-level common channel by using a broadcast beam transmission.
  • the sending module 132 when the downlink data is sent by using the cell-level common channel, the sending module 132 may be configured to: use the cell-level common channel to send downlink data in a dedicated time domain and a dedicated frequency domain location.
  • the time domain interval between the time domain location of the cell-level common channel and the time domain location of the demodulation reference signal corresponding to the cell-level common channel is less than a predetermined threshold; in another embodiment, The cell-level common channel and the demodulation reference signal corresponding to the cell-level common channel are mapped by a fixed mapping rule, and the two are mapped at different time domain locations.
  • the sending module 132 may be configured to send downlink data by using the downlink user-level channel by using a method of transmitting the first narrow beam.
  • the downlink data sending apparatus is further configured to perform beamforming on the first narrow beam on the baseband side before transmitting the downlink data by using the downlink user-level channel by using the first narrow beam transmission method.
  • the transmitting device for the downlink data is configured to perform beamforming on the first narrow beam based on frequency domain beamforming on the baseband side.
  • the transmitting device of the downlink data is configured to: determine shaping information of the target user equipment; and perform beamforming on the first narrow beam on the baseband side according to the shaping information of the target user equipment.
  • determining the shaping information of the target user equipment comprises at least one of: determining a DOA angle according to a location of the base station and a location of the target user equipment, and determining a shape of the target user equipment according to the DOA angle.
  • the base station is configured to determine a cell-level common channel and a downlink user-level channel in the downlink channel, and transmit the downlink data by using a cell-level common channel and a downlink user-level channel in a time division manner;
  • the uplink data of the user equipment or the demodulation reference signal corresponding to the received uplink data from the target user equipment determines the weighting value of the target user equipment; and receives the weighting value of the target user equipment reported by the target user equipment, where The weighting value is determined by the target user equipment based on the received downlink data or a demodulation reference signal corresponding to the received downlink data.
  • the sending module 132 when the downlink data is sent by using the downlink user-level channel, is configured to: determine, according to the interference level and/or the scheduling policy of the downlink data received by the target user equipment, to send downlink data by using a downlink user-level channel. The time domain location and the frequency domain location; using the downlink user level channel to transmit downlink data in the determined time domain location and the frequency domain location.
  • the sending module 132 is configured to: use the cell-level common channel and/or the downlink user-level channel in the downlink channel to send downlink data when the transmit power resource is boosted.
  • the sending module 132 when the downlink data is sent by using the cell-level common channel, is configured to adjust a time domain location and a frequency domain location when the downlink data is transmitted by using the cell-level common channel according to a predetermined rule at a predetermined time; The adjusted time domain location and the frequency domain location use the cell level common channel to transmit downlink data.
  • the sending module 132 when the downlink data is sent by using the downlink user-level channel, is configured to: measure a signal to interference and noise ratio level on resources other than the time-frequency domain resource occupied by the cell-level common channel; The downlink resource level is used to transmit downlink data by using the downlink user level channel at the resource location with the highest signal-to-noise ratio.
  • FIG. 14 is a structural block diagram of a receiving apparatus for downlink data according to an embodiment of the present disclosure. As shown in FIG. 14, the apparatus includes a receiving module 142, which is described below:
  • the receiving module 142 is configured to receive downlink data that is sent by the base station by using the cell-level common channel and/or the downlink user-level channel in the downlink channel, where the receiving the downlink data sent by the base station by using the cell-level common channel and the receiving base station using the downlink user-level The time domain location of the downlink data transmitted by the channel is different.
  • the receiving module 142 includes: a receiving unit configured to receive, by using a third narrow beam, the base station by using the cell-level common channel and/or the downlink user-level channel in the downlink channel.
  • the downlink data is configured to be received from the base station.
  • the number of the third narrow beams is at least two, and when the target user equipment for receiving the downlink data by using the third narrow beam moves to the cell edge, the at least one third narrow beam is used to continue pointing.
  • the source serving cell of the target user equipment, at least one other third narrow beam is used to point to the neighboring cell of the source serving cell.
  • the terminal side ie, the user equipment side
  • the terminal side needs to support at least two beam directions at the same time, and the two beam directions can be different by two.
  • the antennas are generated at the same time, and two beam directions can also be generated simultaneously by the same antenna.
  • the two beams of the terminal are simultaneously directed to the base station.
  • the terminal side can adopt the method of combined reception to improve the downlink data receiving SINR.
  • the terminal moves to the cell edge, one beam continues to be directed to the serving cell (ie, the original serving cell described above), and the other beam sequentially points to the relevant neighboring cell of the serving cell.
  • the terminal receives the cell common reference signal of the neighboring cell through the beam pointing to the neighboring cell, and measures the receiving level and the SINR and the like, and prepares for triggering the cell handover and the like.
  • the number of the neighboring cells is more than two, and the number of the at least one other third narrow beam is smaller than the number of the neighboring cells, by changing a part of the at least one other third narrow beam or The direction of all beams is such that at least one other third narrow beam is directed to the neighboring cell of the source serving cell.
  • the receiving device of the downlink data is further configured to determine whether the target user equipment moves to the cell edge by: receiving power level and/or signal dry ratio SINR according to downlink data sent by the received source serving base station. The level determines whether the target user equipment moves to the cell edge.
  • the receiving device for the downlink data is further configured to: receive, by using the third narrow beam, the base station, by using the cell-level common channel and/or the downlink user-level channel in the downlink channel, Before the downlink data, the third narrow beam is beamformed on the baseband side.
  • the receiving device of the downlink data is configured to perform beamforming on the third narrow beam on the baseband side by determining a shape of a target user equipment for receiving downlink data by using the third narrow beam. Information; beamforming the third narrow beam on the baseband side according to the shaping information of the target user equipment.
  • the receiving device for the downlink data is further configured to: send the uplink data to the base station by using the fourth narrow beam.
  • the receiving device for the downlink data is further configured to perform beamforming on the fourth narrow beam on the baseband side before transmitting the uplink data to the base station by using the fourth narrow beam.
  • the receiving device of the downlink data is configured to perform beamforming on the fourth narrow beam on the baseband side by determining a target user equipment for transmitting uplink data to the base station by using the fourth narrow beam. Shape information; beamforming the fourth narrow beam on the baseband side according to the shaping information of the target user equipment.
  • the receiving device of the downlink data is configured to send uplink data to the base station by using the fourth narrow beam by: measuring a signal on a resource other than the time-frequency domain resource occupied by the cell-level common channel.
  • the noise ratio level is used to transmit uplink data by using the fourth narrow beam at the resource location with the highest signal to interference and noise ratio among other resources.
  • determining the shaping information of the target user equipment comprises at least one of: determining a DOA angle of the direction of arrival based on the location of the base station and the location of the target user equipment, and determining the shaping right of the target user equipment according to the DOA angle And traversing a fixed set of shaped weights, selecting a shaped weight having a downlink maximum received SINR; determining a weight based on the received downlink data or a demodulation reference signal corresponding to the received downlink data; receiving The weighting value from the base station, wherein the weighting value is determined by the base station to send uplink data according to the received target user equipment or a demodulation reference signal corresponding to the received target user equipment to send uplink data.
  • a wireless communication system includes a base station and a terminal, wherein the base station is configured to perform any one of the foregoing methods for transmitting downlink data, and the terminal may be configured to perform the foregoing A method of receiving downlink data.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM). ), removable hard disk, disk or optical disk, and other media that can store program code.
  • the storage medium can be a non-transitory storage medium.
  • Embodiments of the present disclosure also provide a communication device, which may include a memory and a processor, the processor being coupled to a memory, the processor being configured to execute a program stored on the memory, wherein the program is executed while running The steps in any of the above methods.
  • a wireless communication system supporting ultra-long coverage is also provided.
  • the principle of small transmission power is followed. Under the extreme distance coverage.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may differ from this
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种下行数据的发送方法及装置、接收方法及装置、存储介质,其中,该下行数据的发送方法包括:利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。

Description

下行数据的发送方法及装置、接收方法及装置、存储介质
相关申请的交叉引用
本申请基于申请号为201710890450.6、申请日为2017年09月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信领域但不限于通信领域,尤其涉及一种下行数据的发送方法及装置、接收方法及装置、存储介质。
背景技术
在无线通信技术高速发展的今天,频谱资源变的越发宝贵,各国政府对频谱资源的授权使用管理越来越严格,频谱资源的授权费用等也日益高昂,在全球很多地区,无线频谱资源相对稀缺且价格昂贵,很多中小运营商无法获得足够多优质且连续的频谱资源,这加大了其对于无线通信系统,尤其是一些专用网络(例如,面对海洋、高速铁路以及地对空无线通信网络)建设的难度,网络容量也因此受到限制。
基于IEEE802.11系列协议的无线保真(Wireless Fidelity,简称为WIFI)系统通常占用2.4G和5G两段频谱资源,对于2.4G频段(IEEE802.11b/g/n),其频谱范围为2.4GHz-2.4835GHz,共占用83.5MHz带宽,划分为14个子信道,每个子信道宽度为22MHz,相邻信道的中心频点间隔5MHz,相邻的多个信道存在频率重叠。对于5G频段(IEEE802.11n),其频谱范围为2.150GHz-2.850GHz,共占用70MHz带宽。其中IEEE802.11n为目前WIFI设备的主流标准,即现有WIFI设备需要同时支持2.4G及5G频段,且两个频段都是包括多个子信道资源,通常只需要选择一个或部分子信道就可以满足WIFI系统的通信要求。
WIFI系统占用的频谱资源基本都属于ISM频段,其中ISM(Industrial Scientific Medical)Band,是由国际通信联盟无线电通信局(ITU Radio communication Sector,简称为ITU-R)定义的,具体是指世界各国均保留了一些无线频段,以用于工业,科学研究,和微波医疗方面的应用。应用这些频段无需许可证,只需要遵守一定的发射功率(一般低于1W),并且不要对其它频段造成干扰即可,具体ISM频段的设置可根据各国实际情况配置,但对于2.4GHz频段定位为全球各国共同的ISM频段。
基于上述,在ISM频谱上建立与WIFI系统使用相同频谱的其他无线通信系统是完全可行的,但需要所设计的无线系统遵守各国法律,发射功率需要低于固定的门限,以满足不同系统间的相互干扰问题。
但对于以地对空覆盖、海洋覆盖为代表的专用网络,其对于小区的覆盖距离要求较高,为了节省建站成本,通常单小区覆盖距离都在100Km以上,在发射功率受限的情况下,如何满足覆盖距离的要求,是业界亟待解决的难点问题,也是ISM频段用于超远覆盖无线通信系统得以实现的主要障碍。
发明内容
本公开实施例提供了一种下行数据的发送方法及装置、接收方法及装置、存储介质,以至少解决相关技术中存在的在发射功率受限的情况下,无法实现更远距离的覆盖要求的问题。
根据本公开的一个实施例,提供了一种下行数据的发送方法,包括:利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。
在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中根据本公开的另一方面,还提供了一种下行数据的接收方法,包括:接收基站通过下行信道中的小区级公共信道和/或下行用户级 信道发送的下行数据,其中,接收所述基站通过所述小区级公共信道发送的下行数据与接收所述基站利用所述下行用户级信道发送的下行数据的时域位置不同。
在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中在一些实施例中根据本公开的另一方面,提供了一种下行数据的发送装置,包括:发送模块,用于利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。
在一些实施例中在一些实施例中根据本公开的另一方面,提供了一种下行数据的接收装置,包括:接收模块,用于接收基站利用下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据,其中,接收所述基站利用所述小区级公共信道发送的下行数据与接收所述基站利用所述下行用户级信道发送的下行数据的时域位置不同。
在一些实施例中根据本公开的另一方面,提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本公开的另一方面,提供了一种通信设备,包括:存储器;处理器,与所述存储器连接;所述处理器配置为运行存储在所述存储器上的程序,其中,所述程序运行时执行上述任一项所述的方法。
在本公开实施例提供的方案中,采用的是通过时分的方式利用小区级公共信道和下行用户级信道发送下行数据,相对于相关技术中小区级公共信道和下行用户级信道都是混在相同的时域位置发射的方式,采用本公开中的方案能够有效提升功率,从而实现支持更远覆盖距离的目的,从而解决相关技术中存在的在发射功率受限的情况下,无法实现更远距离的覆盖要求的问题,进而达到在总功率不变的情况下,对功率进行分配从而提升广播信道的发射功率,实现更远距离的覆盖的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的下行数据的发送方法的流程图;
图2是本公开实施例的下行数据的接收方法的移动终端的硬件结构框图;
图3是根据本公开实施例的下行数据的发送方法的流程图;
图4是根据本公开实施例的TDD对空覆盖系统的无线帧结构示意图;
图5是根据本公开实施例的TDD对空覆盖系统的包括下行小区级控制信道及其解调参考信号的时频域映射位置示意图;
图6是根据本公开实施例的业务波束赋形方向图;
图7是根据本公开实施例的广播波束赋形方向图;
图8是根据本公开实施例的机载终端处于小区内部情况下终端侧的两个独立波束的指向示意图;
图9是根据本公开实施例的机载终端处于小区边缘情况下终端侧的两个独立波束的指向示意图;
图10是根据本公开实施例的FDD超远覆盖系统的无线帧结构示意图;
图11是根据本公开实施例的PCI=0的小区下行广播信道按无线帧级时域资源映射示意图;
图12是根据本公开实施例的PCI=4的小区下行广播信道按无线帧级时域资源映射示意图;
图13是根据本公开实施例的下行数据的发送装置的结构框图;
图14是根据本公开实施例的下行数据的接收装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例针对相关技术中存在的上述问题,给出一种WIFI系统使用相同的无线频段资源的一种无线通信系统,在遵守较小发射功率的前提下支持超过100Km的小区覆盖半径,使得该无线通信系统可以正常工作,且与该频段其他系统不互相影响的方法。下面结合实施例对本公开进行说明:
在本实施例中提供了一种下行数据的发送方法,图1是根据本公开实施例的下行数据的发送方法的流程图,如图1所示,包括:
步骤S102,利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。
其中,执行上述操作的可以是基站,在本实施例中,是可以将基站侧下行发射数据分为小区级公共信道及下行用户级信道,其中,小区级公共信道可以定义为基站侧发射的数据归属于本小区所有用户(对应于用户设备,简称为用户),本小区的所有用户都可以对其进行接收解调。小区级公共信道可包括但不限于下行广播信道、下行同步信号以及对应的小区级参考信号等;下行用户级信道可以定义为发射的数据仅归属于某个终端用户(例如,上述的目标用户设备),可包括下行用户级业务信道、控制信道及其下行用户级参考信号。并且,在本实施例中,为支持小区超远覆盖要求,可以对上述两种信道始终采用时分的方式,即在一个时间资源单位(时隙/时域符号)内,两种信道仅存在其中一种。由于在一个时间资源单位内,两种信道仅存在一种,如此,在总发射功率受限的情况下,无需在两种信 道上分配所述总发射功率,如此,一个信道就可以在该时间资源单位内占用所有的所述总发射功率,从而提升单一信道发送数据的发射功率,如此,相当于提升了单一信道发射无线信号的覆盖范围,从而提升了增大了覆盖距离,实现了远距离覆盖和大范围无线覆盖。
在上述实施例中,采用的是通过时分的方式利用小区级公共信道和下行用户级信道发送下行数据,相对于相关技术中小区级公共信道和下行用户级信道都是混在相同的时域位置发射的方式,采用本公开中的方案能够有效提升功率,从而实现支持更远覆盖距离的目的,从而解决相关技术中存在的在发射功率受限的情况下,无法实现更远距离的覆盖要求的问题,进而达到在总功率不变的情况下,对功率进行分配从而提升广播信道的发射功率,实现更远距离的覆盖的效果。
在一个实施例中,利用上述小区级公共信道发送下行数据包括:利用小区级公共信道在专用的时域以及专用的频域位置上发送下行数据,其中,该专用的频域位置对应的带宽小于系统下行总带宽,在除对应带宽(该对应带宽为前述的专用的频域位置对应的带宽)之外的其他带宽上无数据发送,且系统下行总带宽对应的额定发射功率分配在所述小区级公共信道上。在本实施例中,当利用小区级公共信道发送下行数据时,可以设定其在固定时域及频域位置发射,其所在的时域同时不会再有其他信道数据发射,占用所有的发射功率数据,且系统下行总带宽对应的额定发射功率分配在所述小区级公共信道上是能够提升发射功率的。此处,所述专用的频域位置所占用的带宽可以称之为第一带宽:第一带宽小于系统总带宽;此处的系统总带宽为分配给通信系统可使用的带宽之和。所述系统总带宽包括第一带宽和第二带宽。所述第二带宽可为所述第一带宽以外的带宽。在本实施例中第二带宽可以不用于发射数据,如此,系统总带宽的额定发射功率可以集中用于第一带宽的数据发送,如此,相当于将第二带宽可使用的额定发送功率用于增加第一带宽的发射功率,如此提升了第一带宽的发射功率。而第一带宽即为小区级公共信道所占用的带宽,如此相当于提升了小区级别公共信道的发射功率,从而提升小区的覆盖范围。
在一个实施例中,上述专用的频域位置在单载波的情况下通过固定的 方式或在所述单载波内通过时域轮发的方式确定,在多载波的情况下通过固定的方式或在多载波间通过时域轮发的方式确定。在本实施例中,该专用的频域位置(也可称为固定频域)是由载波间或载波内的时域轮发进行支持的。
在一些实施例中,在单载波的情况下,一个载波可划分为多个子频带;然后所述单载波内通过时域轮发的方式确定可包括:在时域内利用多个子频段轮发数据。此处的子频带可为一个或多个子载波,或者是其他的划分方式。在多载波的情况下,多载波间通过时域轮发,在不同的时域位置上选择不同的载波来发送数据。
在一个实施例中,利用小区级公共信道发送下行数据包括:采用广播波束发射的方式利用所述小区级公共信道发送所述下行数据。在本实施例中,广播波束指覆盖小区内所有接收位置的广播方向赋形。
在一个实施例中,在采用广播波束发射的方式利用小区级公共信道发送上述下行数据之前,上述方法还包括:在基带侧对所述广播波束进行波束赋形。在本实施例中,也可以在射频侧,或者在基带侧和射频侧进行波束赋形,下述的在基带侧进行波束赋形的实施例中同样也可以在射频侧,或者在基带侧和射频侧进行波束赋形,下述不再赘述。
所述采用赋形后的广播波束发射的方式利用所述小区级公共信道发送所述下行数据,包括:
在小区级公共信道上采用赋形后的广播波束发射的方式发送下行数据。
在一个实施例中,上述小区级公共信道的时域位置与对应于所述小区级公共信道的解调参考信号时域位置的时域间隔,小于预定阈值。
上述小区级公共信道与对应于小区级公共信道的解调参考信号之间是以固定的映射规则进行映射的,且二者(指的是小区级公共信道及小区级公共信道的解调参考信号)映射在不同的时域位置。在本实施例中,可以将小区级下行广播信道及其对应解调参考信号时域位置尽量靠近(即,上述小区级公共信道的时域位置与对应于所述小区级公共信道的解调参考信号时域位置的时域间隔,小于预定阈值),以保证更优的解调性能,以及为 了抵抗可能的固定位置的干扰,小区级下行广播信道及其对应的解调参考信号可以以固定的映射规则,且小区级下行广播信道及其对应的解调参考信号映射在不同的时域位置。
在一个实施例中,利用上述下行用户级信道发送下行数据包括:采用第一窄波束发送的方法利用上述下行用户级信道发送下行数据。在本实施例中,在利用下行用户级信道发送下行数据时,始终采用窄波束(即,上述的第一窄波束)发射,该窄波束指基站指向用户的带有赋形效果的方向波束;相比广播波束,因为窄波束带有赋形效果,会有赋形增益。
窄波束可包括:用户级波束,通常不覆盖整个小区的。窄波束相对于宽波束而言的,宽波束可包括:广播波束,广播波束覆盖整个小区的。
在一个实施例中,在采用第一窄波束发送的方法利用上述下行用户级信道发送下行数据之前,上述方法还包括:在基带侧对第一窄波束进行波束赋形。
在一个实施例中,在上述基带侧对第一窄波束进行波束赋形包括:在上述基带侧基于频域波束赋形对第一窄波束进行波束赋形。
在一个实施例中,在上述基带侧对第一窄波束进行波束赋形包括:确定上述目标用户设备的赋形信息;根据上述目标用户设备的赋形信息在基带侧对第一窄波束进行波束赋形。
在一个实施例中,确定上述目标用户设备的赋形信息包括以下方式至少之一:基于基站的位置以及目标用户设备的位置确定波达方向DOA角度,根据该DOA角度确定目标用户设备的赋形权值,其中,该基站用于确定下行信道中的小区级公共信道以及下行用户级信道,以及通过时分的方式利用小区级公共信道以及下行用户级信道发送上述下行数据;基于接收到的来自目标用户设备的上行数据或与接收到的来自目标用户设备的上行数据对应的解调参考信号确定目标用户设备的赋形权值;接收上述目标用户设备上报的目标用户设备的赋形权值,其中,该赋形权值为目标用户设备基于接收到的下行数据或与接收到的下行数据对应的解调参考信号确定的。需要说明的是,上述的几种确定目标用户设备的赋形信息的方式仅是 几种优选的方式,在实际应用中,还可以采用其他的方式进行确定。
在一个实施例中,利用上述下行用户级信道发送下行数据包括:根据上述目标用户设备接收下行数据的干扰水平和/或调度策略确定利用下行用户级信道发送下行数据的时域位置以及频域位置;利用上述下行用户级信道在确定的时域位置以及频域位置上发送下行数据。
在一个实施例中,利用所述小区级公共信道和/或所述下行信道中的下行用户级信道发送下行数据包括:在提升了发射功率资源的情况下利用所述小区级公共信道和/或所述下行信道中的下行用户级信道发送下行数据。在本实施例中,分配给基站使用的功率资源是小于系统总功率资源的,在进行广播信道传输时,未分配的功率资源是不被占用的,所以,在实际进行数据传输时,可以提升基站的发射功率资源,达到充分利用功率资源的目的。
在一个实施例中,利用上述小区级公共信道发送下行数据包括:在预定时刻按照预定规则调整利用小区级公共信道发送下行数据时的时域位置以及频域位置;在调整后的时域位置以及频域位置上利用小区级公共信道发送下行数据。在本实施例中个,主要针对的是基站侧下行小区级信道及数据,因为其发射的时频域位置固定,为了避开固定的干扰,采用在不同时刻按照规则调整其发射的时频域位置。通过本实施例,可以有效规避ISM频段其他通信系统可能产生的干扰导致所设计无线通信系统性能降低或恶化,对基于功率提升的控制信道和业务信道分别采用如下方式尽量规避干扰,提升系统性能。
在一些实施例中,为了提升系统性能,在利用下行用户级信道发送下行数据时,还可以采用如下方式:在除小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;在上述其他资源中信干噪比最高的资源位置上利用下行用户级信道发送下行数据。
本实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本公开实施例的下行数据的接收方法的移动终端的硬件结构框图。如图2所示,移动终端20 可以包括一个或多个(图2中仅示出一个)处理器202(处理器202可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器204、以及用于通信功能的传输装置206。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器204可配置为存储应用软件的软件程序以及模块,如本公开实施例中的下行数据的接收方法对应的程序指令/模块,处理器202通过运行存储在存储器204内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器204可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器204可包括相对于处理器202远程设置的存储器,这些远程存储器可以通过网络连接至移动终端20。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置206配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端20的通信供应商提供的无线网络。在一个实例中,传输装置206包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置206可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种下行数据的接收方法,图3是根据本公开实施例的下行数据的发送方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收基站通过下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据,其中,接收所述基站通过所述小区级公共信道发送的下行数据与接收所述基站利用所述下行用户级信道发送的下行数据的时域位置不同。
其中,执行上述操作的可以是用户设备(例如,上述的目标用户设备)。
在上述实施例中,基站是可以通过时分的方式利用小区级公共信道和 下行用户级信道发送下行数据,相对于相关技术中小区级公共信道和下行用户级信道都是混在相同的时域位置发射的方式,采用本公开中的方案能够有效提升功率,从而实现支持更远覆盖距离的目的,从而解决相关技术中存在的在发射功率受限的情况下,无法实现更远距离的覆盖要求的问题,进而达到提高发射功率,实现更远距离的覆盖的效果。
在一个实施例中,接收上述基站利用下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据包括:利用第三窄波束接收基站利用下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据。在本实施例中,在用户设备侧,可以始终采用窄波束(例如,上述的第三窄波束)进行数据接收,该窄波束指用户设备指向基站的天线赋形方向。
在一个实施例中,上述第三窄波束的数量为至少两个,当用于利用上述第三窄波束接收下行数据的目标用户设备移动到小区边缘时,至少一个第三窄波束用于继续指向目标用户设备的源服务小区,至少一个其他的第三窄波束用于指向源服务小区的邻区。在本实施例中,为保证通信系统能够支持小区测量切换等移动性流程,终端侧(即,上述的用户设备侧)要支持同时至少两个波束指向,此两个波束指向可以由两副不同天线同时生成,也可以由同一天线同时生成两个波束指向。在小区内部,终端(即,用户设备)的两个波束同时指向基站。终端侧可以采用合并接收的方式来提升下行数据接收SINR。当终端移动到小区边缘时,此时一个波束继续保持指向本服务小区(即,上述的原服务小区),而另外一个波束依次指向该服务小区的相关邻区。终端通过这个指向邻区的波束接收邻区的小区公共参考信号,测量其接收电平和、或接收SINR等数据,为触发小区切换等流程进行准备。
在本实施例中所述小区边缘可为逻辑上的概念,若一个用户设备移动到接收到本小区的接收功率与邻小区的接收功率之差小于特定阈值,则认为该用户设备移动到了本小区的小区边缘,该用户设备为小区边缘设备。若,一个用户接收到的本小区的接收功率与邻小区的接收功率之差大于特定预支,则可认为该用户设备在本小区的中心,该用户设备为小区中心的用户设备。此处的本小区可为用户设备当前的服务小区。
在一个实施例中,当上述邻区的数量为两个以上,且至少一个其他的第三窄波束的数量小于邻区的数量时,通过改变至少一个其他的第三窄波束中的部分或全部波束的方向来使该至少一个其他的第三窄波束指向源服务小区的邻区。在本实施例中,当用于指向邻区的第三窄波束的数量与邻区的数量不是一一对应时,有的窄波束需要指向两个以上邻区的,需要指向两个以上邻区的窄波束是需要通过改变方向的方式来指向两个以上邻区。当然,若第三窄波束与邻区均是一一对应的话,无需改变窄波束的方向。
在一个实施例中,还可以通过如下方式确定目标用户设备是否移动到小区边缘:根据接收到的源服务基站发送的下行数据的接收功率水平和/或信干燥比SINR水平确定所述目标用户设备是否移动到小区边缘。
在一个实施例中,在利用上述第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据之前,上述方法还包括:在基带侧对第三窄波束进行波束赋形。
在一个实施例中,在上述基带侧对第三窄波束进行波束赋形包括:确定用于利用上述第三窄波束接收下行数据的目标用户设备的赋形信息;根据目标用户设备的赋形信息在上述基带侧对第三窄波束进行波束赋形。
在一个实施例中,上述方法还包括:利用第四窄波束向基站发送上行数据。在本实施例中,在用户设备侧,对于上行数据信道、上行控制信道及其对应的上行参考信号,始终采用窄波束发射。
在一个实施例中,在利用上述第四窄波束向基站发送上行数据之前,上述方法还包括:在基带侧对第四窄波束进行波束赋形。
在一个实施例中,在上述基带侧对第四窄波束进行波束赋形包括:确定用于利用第四窄波束向基站发送上行数据的目标用户设备的赋形信息;根据上述目标用户设备的赋形信息在基带侧对所述第四窄波束进行波束赋形。
在一个实施例中,利用上述第四窄波束向基站发送上行数据包括:在除小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;在其他资源中信干噪比最高的资源位置上利用第四窄波束发送上行数 据。
在一个实施例中,确定目标用户设备的赋形信息包括以下方式至少之一:基于上述基站的位置以及目标用户设备的位置确定波达方向DOA角度,根据DOA角度确定目标用户设备的赋形权值;遍历固定的赋形权值集合,从中选择具备下行最大接收SINR的赋形权值;基于接收到的下行数据或与接收到的下行数据对应的解调参考信号确定赋形权值;接收来自基站的赋形权值,其中,该赋形权值为基站基于接收到的目标用户设备发送上行数据或与接收到的目标用户设备发送上行数据对应的解调参考信号确定的。
通过改造基于3GPP的标准时分双工(Time Division Duplexing,简称为TDD)长期演进(Long-Term Evolution,简称为LTE)对空覆盖无线通信系统,终端类型为在飞机上安装的机载终端,工作频段2.412~2.432GHz,该频段存在WIFI系统干扰,则按本方法获得的支持超远覆盖的无线通信系统如下;
本实施例提供的技术方案可如下:
步骤步骤1:参考附图4,所设计TDD无线通信系统的无线帧结构为20ms,其中保护时隙为2ms,可以支持最大300km的小区覆盖半径,上行子帧数目为5个,每个上行子帧占用1ms,下行子帧数目为13个,每个下行子帧占用1ms,其中资源块(Resource block,简称为RB)、正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号等的定义与3GPP LTE协议保持一致;
步骤2:LTE协议中包括的下行公共控制信道包括物理广播信道(Physical broadcast channel,简称为PBCH)、主同步序列(Primary synchronization signal,简称为PSS)、辅同步序列(Secondary synchronization signal,简称为SSS)以及其对应的解调参考信号小区参考信号(Cell Reference Signal,简称为CRS),按照本公开实施例中所述的方法,将这些数据按照独占其发射时域位置并提升发射功率的方式进行修改,所获得的符号结构如附图5所示:
其中该子帧的前7个符号用来承载下行小区级控制信道数据及其解调 参考信号,后7个符号用来承载下行用户级信道数据及其解调参考信号。该子帧标记为C子帧,按附图4所示,映射在第18个子帧上。
第一个符号Sym#1用来承载小区级数据解调参考信号CRS,其中Sym#1中共1200个子载波,但仅承载100个CRS(每RB一个),其他RE位置都设定为不可用,此设计可以使得所有的发射功率都用于CRS RE的数据发射,相比于LTE协议将下行最大发射功率均匀分配到所有子载波上,CRS的发射功率可以提升10*log10(1200/100)=10.8dB;
第二到第五个符号Sym#2~#5用来承载下行广播信道PBCH,占用中间6个RB(RB47~RB52),其他RE位置都设定为不可用,此时PBCH RE的发射功率可以提升10*log10(100/6)=12.2dB;
第6个和第7个符号Sym#6#7分别用来承载主辅下行同步信号PSS/SSS,占用中间6个RB(RB47~RB52),其他RE位置都设定为不可用,此时PSS/SSS RE的发射功率可以提升10*log10(100/6)=12.2dB;
该系统采用单站三小区组网,因此每个小区覆盖的水平角度范围为120度,其采用的广播波束方向图参见附图6。
在一些实施例中,为了抵抗可能的其他系统干扰,在每个无线帧的C子帧上,上述PBCH/PSS/SSS映射的RB位置可以根据无线帧号模16,根据余数确定其映射在带宽100个RB中的任意6个RB上。
步骤3:对终端发射的上行数据,包括物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)/物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)/sounding参考信号(Sounding reference signal,简称为SRS)/解调参考信号(Demodulation Reference Signal,简称为DMRS)等,其映射方式与LTE协议保持一致,但对其需要采用基于基带空域窄波束发射,具体获取方式采用基于基站全球定位系统(Global Position System,简称为GPS)位置以及终端侧的GPS位置通过计算DOA角度的方式,地面基站的GPS信息存储在机载终端的ROM内,机载终端根据接入小区的物理层标识(Physical Cell Identifier,简称为PCI)获取基站的GPS信息,再根据其自身GPS信息计算无线电波方向,根据此方向进行赋形;
在一些实施例中,支持根据SRS/DMRS计算上行每RB的SINR水平,并据此通过基站调度器选择合适的RB位置传输上行数据;
假定该系统中某时刻某机载台位置在水平350对于采用单站三小区组网,因此每个小区覆盖的水平角度范围为120度,其采用的广播波束方向图参见附图6。
步骤4:对基站发射的用户级上行数据,包括增强物理下行控制信道(Enhanced Physical Downlink Control Channel,简称为EPDCCH)/PDSCH/DMRS等,其映射方式与LTE协议保持一致,但对其需要采用基于基带空域窄波束发射,具体获取方式采用基于基站GPS位置以及终端侧的GPS位置通过计算DOA角度的方式,机载终端将其GPS信息通过专用空口信令进行周期上报,基站根据其自身GPS信息计算无线电波方向,根据此方向进行赋形;
假定该系统中某时刻某终端位置在水平340度,则对于此终端计算GPS信息后,所采用的用户级窄波束方向图参见附图6和图7。
在一些实施例中,终端支持根据DMRS/CRS计算下行每RB的SINR水平,并据根据子带CQI反馈等方式告知基站并通过基站调度器选择合适的RB位置传输下行数据。
在上述实施例提供的系统中,为了支持移动性,要求飞机安装的终端同时支持两个窄波束,如图8所示,波束指向可基于如下原则:
在某接入小区内,当终端侧接收到的该服务小区的下行接收功率水平RSRP大于等于-90dBm时,认为此终端处于小区内部,此时将所有两个窄波束都指向该服务小区,终端侧可以采用波束1进行上行发射及下行接收,而对于波束2仅用于下行接收,此时对于下行接收该终端相当于采用两波束同时进行接收,可以采用基于最大信干噪比合并的方法对两个波束的下行接收数据进行解调以最优化系统下行性能;
当终端侧接收到的该服务小区的下行接收功率水平RSRP小于-90dBm 时,此时认为该终端已经离开小区内部区域,可能会发生小区切换等,此时终端侧依旧采用波束1指向服务小区,进行上行发射及下行接收,同时波束2根据邻区数据依次指向本服务小区的邻区,通过波束2接收获取邻区的下行接收功率水平;假定该服务小区包括两个邻区,则依次对此两个邻区进行下行接收功率水平测量,基于具体实施例一可知在一个无线帧20ms内,会有一次下行小区参考信号CRS的发射,因此邻区依次测量的最小周期定位20ms,在奇数无线帧内(T1时刻),波束2指向邻区1进行测量,在偶数无线帧内(T2时刻),波束2指向邻区2进行测量,在所有T1+T2时刻期间,波束1始终指向服务小区,具体参考图9。
在本实施例中,采用FDD LTE制式,此实施例中的上下行子帧配比情况如附图10所示,并且在此实施例中支持多载波聚合CA,共有5个载波,与具体实施例一相比,发射功率不变,因此为了保证小区覆盖,需要在各载波的小区广播信道所在子帧数据采取时域轮发的方法,以保证该信道的发射总功率保持不变。
轮发方法可如附图11和附图12所示,从图11和图12中可以看到在不同的无线子帧,分别有且仅有一个载波发射下行广播波形小区级信道,每个载波发射两次,其余的载波依照固定的规律轮流发射,具体的载波轮发公式如下所示:
Figure PCTCN2018099714-appb-000001
其中,freq i=i,i=[1,5]
其中i表示载波1到5。
在一些实施例中,为了规避相邻小区间的下行广播信道在相同时刻及相同载波发射干扰,对于不同的小区基于小区物理ID PCI的发射载波轮发相互错开,具体参照上述公式。附图11表示PCI=0的小区的下行广播信道载波发射位置,附图12表示PCI=4的小区的下行广播信道载波发射位置。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理 解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种下行数据的发送装置,以及下行数据的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图13是根据本公开实施例的下行数据的发送装置的结构框图,如图13所示,该装置包括发送模块132,下面对该装置进行说明:
发送模块132,配置为利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,该小区级公共信道和下行用户级信道占用不同的时域位置。
在一个实施例中,在利用上述小区级公共信道发送下行数据时,上述发送模块132包括:发送单元,配置为利用上述小区级公共信道在专用的时域以及专用的频域位置上发送下行数据,其中,该专用的频域位置对应的带宽小于系统下行总带宽,且在除对应带宽之外的其他带宽上无数据发送。
在一个实施例中,上述专用的频域位置在单载波的情况下是在单载波内通过时域轮发的方式确定,在多载波的情况下是在多载波间通过时域轮发的方式确定。
在一个实施例中,上述发送模块132可以通过如下方式利用小区级公共信道发送所述下行数据:采用赋形后的广播波束发射的方式利用小区级公共信道发送下行数据
在一个实施例中,在采用广播波束发射的方式利用小区级公共信道发 送上述下行数据之前,上述下行数据的发送装置还用于:在基带侧对所述广播波束进行波束赋形。
在一个实施例中,在利用上述小区级公共信道发送下行数据时,上述发送模块132可以配置为:利用小区级公共信道在专用的时域以及专用的频域位置上发送下行数据。
在一个实施例中,上述小区级公共信道的时域位置与对应于所述小区级公共信道的解调参考信号时域位置之间的时域间隔,小于预定阈值;在另一个实施例中,上述小区级公共信道与对应于小区级公共信道的解调参考信号之间是以固定的映射规则进行映射的,且二者映射在不同的时域位置。
在一个实施例中,在利用上述下行用户级信道发送下行数据时,上述发送模块132可以配置为:采用第一窄波束发送的方法利用上述下行用户级信道发送下行数据。
在一个实施例中,上述下行数据的发送装置还用于在采用第一窄波束发送的方法利用上述下行用户级信道发送下行数据之前,在基带侧对第一窄波束进行波束赋形。
在一个实施例中,上述下行数据的发送装置用于:在上述基带侧基于频域波束赋形对第一窄波束进行波束赋形。
在一个实施例中,上述下行数据的发送装置用于:确定上述目标用户设备的赋形信息;根据上述目标用户设备的赋形信息在基带侧对第一窄波束进行波束赋形。
在一个实施例中,确定上述目标用户设备的赋形信息包括以下方式至少之一:基于基站的位置以及目标用户设备的位置确定波达方向DOA角度,根据该DOA角度确定目标用户设备的赋形权值,其中,该基站用于确定下行信道中的小区级公共信道以及下行用户级信道,以及通过时分的方式利用小区级公共信道以及下行用户级信道发送上述下行数据;基于接收到的来自目标用户设备的上行数据或与接收到的来自目标用户设备的上行数据对应的解调参考信号确定目标用户设备的赋形权值;接收上述目标用户设备上报的目标用户设备的赋形权值,其中,该赋形权值为目标用户设 备基于接收到的下行数据或与接收到的下行数据对应的解调参考信号确定的。需要说明的是,上述的几种确定目标用户设备的赋形信息的方式仅是几种优选的方式,在实际应用中,还可以采用其他的方式进行确定。
在一个实施例中,在利用上述下行用户级信道发送下行数据时,上述发送模块132配置为:根据上述目标用户设备接收下行数据的干扰水平和/或调度策略确定利用下行用户级信道发送下行数据的时域位置以及频域位置;利用上述下行用户级信道在确定的时域位置以及频域位置上发送下行数据。
在一个实施例中,上述发送模块132配置为:在提升了发射功率资源的情况下利用所述小区级公共信道和/或所述下行信道中的下行用户级信道发送下行数据。
在一个实施例中,在利用上述小区级公共信道发送下行数据时,上述发送模块132配置为在预定时刻按照预定规则调整利用小区级公共信道发送下行数据时的时域位置以及频域位置;在调整后的时域位置以及频域位置上利用小区级公共信道发送下行数据。
在一个实施例中,在利用下行用户级信道发送下行数据时,上述发送模块132配置为:在除小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;在上述其他资源中信干噪比最高的资源位置上利用下行用户级信道发送下行数据。
图14是根据本公开实施例的下行数据的接收装置的结构框图,如图14所示,该装置包括接收模块142,下面对该装置进行说明:
接收模块142,配置为接收基站利用下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据,其中,接收上述基站利用小区级公共信道发送的下行数据与接收基站利用下行用户级信道发送的下行数据的时域位置不同。
在一个实施例中,上述接收模块142包括:接收单元,配置为利用第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所 述下行用户级信道发送的所述下行数据。
在一个实施例中,上述第三窄波束的数量为至少两个,当用于利用上述第三窄波束接收下行数据的目标用户设备移动到小区边缘时,至少一个第三窄波束用于继续指向目标用户设备的源服务小区,至少一个其他的第三窄波束用于指向源服务小区的邻区。在本实施例中,为保证通信系统能够支持小区测量切换等移动性流程,终端侧(即,上述的用户设备侧)要支持同时至少两个波束指向,此两个波束指向可以由两付不同天线同时生成,也可以由同一天线同时生成两个波束指向。在小区内部,终端(即,用户设备)的两个波束同时指向基站。终端侧可以采用合并接收的方式来提升下行数据接收SINR。当终端移动到小区边缘时,此时一个波束继续保持指向本服务小区(即,上述的原服务小区),而另外一个波束依次指向该服务小区的相关邻区。终端通过这个指向邻区的波束接收邻区的小区公共参考信号,测量其接收电平和、或接收SINR等数据,为触发小区切换等流程进行准备。
在一个实施例中,当上述邻区的数量为两个以上,且至少一个其他的第三窄波束的数量小于上述邻区的数量时,通过改变至少一个其他的第三窄波束中的部分或全部波束的方向来使至少一个其他的第三窄波束指向源服务小区的邻区。
在一个实施例中,上述下行数据的接收装置还用于通过如下方式确定目标用户设备是否移动到小区边缘:根据接收到的源服务基站发送的下行数据的接收功率水平和/或信干燥比SINR水平确定所述目标用户设备是否移动到小区边缘。
在一个实施例中,上述下行数据的接收装置还配置为:在利用上述第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据之前,在基带侧对第三窄波束进行波束赋形。
在一个实施例中,上述下行数据的接收装置配置为通过如下方式在上述基带侧对第三窄波束进行波束赋形:确定用于利用上述第三窄波束接收下行数据的目标用户设备的赋形信息;根据目标用户设备的赋形信息在上 述基带侧对第三窄波束进行波束赋形。
在一个实施例中,上述下行数据的接收装置还配置为:利用第四窄波束向基站发送上行数据。
在一个实施例中,上述下行数据的接收装置还配置为在利用上述第四窄波束向基站发送上行数据之前,在基带侧对第四窄波束进行波束赋形。
在一个实施例中,上述下行数据的接收装置配置为通过如下方式在上述基带侧对第四窄波束进行波束赋形:确定用于利用第四窄波束向基站发送上行数据的目标用户设备的赋形信息;根据上述目标用户设备的赋形信息在基带侧对所述第四窄波束进行波束赋形。
在一个实施例中,上述下行数据的接收装置配置为通过如下方式利用上述第四窄波束向基站发送上行数据:在除小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;在其他资源中信干噪比最高的资源位置上利用第四窄波束发送上行数据。
在一个实施例中,确定目标用户设备的赋形信息包括以下方式至少之一:基于上述基站的位置以及目标用户设备的位置确定波达方向DOA角度,根据DOA角度确定目标用户设备的赋形权值;遍历固定的赋形权值集合,从中选择具备下行最大接收SINR的赋形权值;基于接收到的下行数据或与接收到的下行数据对应的解调参考信号确定赋形权值;接收来自基站的赋形权值,其中,该赋形权值为基站基于接收到的目标用户设备发送上行数据或与接收到的目标用户设备发送上行数据对应的解调参考信号确定的。
在一个实施例中,还提供了一种无线通信系统,该无线通信系统包括基站以及终端,其中,该基站可以用于执行上述任一种下行数据的发送方法,该终端可以用于执行上述任一种下行数据的接收方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序, 其中,上述程序运行时执行上述任一项所述的方法。
在一些实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。该存储介质可为非瞬间存储介质。
本公开的实施例还提供了一种通信设备,该通信设备可包括:存储器及处理器,处理器与存储器连接,该处理器配置为运行存储在存储器上的程序,其中,该程序运行时执行上述任一项方法中的步骤。
采用本公开实施例中的方案,可以支持在ISM频度内,搭建一种支持超远覆盖的无线通信系统,通过重新设计上下行链路专用及小区公共数据及控制信道的发射方式,在遵循发射功率较小的原则下实现超远距离覆盖。
尤其,在本公开实施例中还提供了一种支持超远覆盖的无线通信系统,通过重新设计上下行链路专用及小区公共数据及控制信道的发射方式,从而在遵循发射功率较小的原则下实现超远距离覆盖。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一些实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (28)

  1. 一种下行数据的发送方法,包括:
    利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。
  2. 根据权利要求1所述的方法,其中,利用所述小区级公共信道发送所述下行数据包括:
    利用所述小区级公共信道在专用的时域以及专用的频域位置上发送所述下行数据,其中,所述专用的频域位置对应的带宽小于系统下行总带宽,在除对应带宽之外的其他带宽上无数据发送,且系统下行总带宽对应的额定发射功率分配在所述小区级公共信道上。
  3. 根据权利要求2所述的方法,其中,所述专用的频域位置在单载波的情况下通过固定的方式或在所述单载波内通过时域轮发的方式确定,在多载波的情况下通过固定的方式或在所述多载波间通过时域轮发的方式确定。
  4. 根据权利要求1所述的方法,其中,利用所述小区级公共信道发送所述下行数据包括:
    在基带侧对广播波束进行波束赋形;
    采用赋形后的广播波束发射的方式利用所述小区级公共信道发送所述下行数据。
  5. 根据权利要求1至4中任一项所述的方法,其中,包括以下至少之一:
    所述小区级公共信道的时域位置与对应于所述小区级公共信道的解调参考信号时域位置的时域间隔,小于预定阈值;
    所述小区级公共信道与对应于所述小区级公共信道的解调参考信 号是以固定的映射规则进行映射的,且二者映射在不同的时域位置。
  6. 根据权利要求1所述的方法,其中,利用所述下行用户级信道发送所述下行数据包括:
    在基带侧对第一窄波束进行波束赋形;
    采用赋形后的第一窄波束发送的方法利用所述下行用户级信道发送所述下行数据。
  7. 根据权利要求6所述的方法,其中,包括以下至少之一:
    在所述基带侧对所述第一窄波束进行波束赋形包括:在所述基带侧基于频域波束赋形对所述第一窄波束进行波束赋形;
    在所述基带侧对所述第一窄波束进行波束赋形包括:确定目标用户设备的赋形信息;根据所述目标用户设备的赋形信息在所述基带侧对所述第一窄波束进行波束赋形。
  8. 根据权利要求1所述的方法,其中,利用所述下行用户级信道发送所述下行数据包括:
    根据目标用户设备接收所述下行数据的干扰水平和/或调度策略确定利用所述下行用户级信道发送所述下行数据的时域位置以及频域位置;
    利用所述下行用户级信道在确定的时域位置以及频域位置上发送所述下行数据。
  9. 根据权利要求1所述的方法,其中,利用所述小区级公共信道发送所述下行数据包括:
    在预定时刻按照预定规则调整利用所述小区级公共信道发送所述下行数据时的时域位置以及频域位置;
    在调整后的时域位置以及频域位置上利用所述小区级公共信道发送所述下行数据。
  10. 根据权利要求1所述的方法,其中,利用所述下行用户级信道发送所述下行数据包括:
    在除所述小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;
    在所述其他资源中信干噪比最高的资源位置上利用所述下行用户级信道发送所述下行数据。
  11. 一种下行数据的接收方法,包括:
    接收基站通过下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据,其中,接收所述基站通过所述小区级公共信道发送的下行数据与接收所述基站利用所述下行用户级信道发送的下行数据的时域位置不同。
  12. 根据权利要求11所述的方法,其中,接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据包括:
    利用第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据。
  13. 根据权利要求12所述的方法,其中,所述第三窄波束的数量为至少两个,当用于利用所述第三窄波束接收所述下行数据的目标用户设备移动到小区边缘时,至少一个第三窄波束用于继续指向所述目标用户设备的源服务小区,至少一个其他的第三窄波束用于指向所述源服务小区的邻区。
  14. 根据权利要求13所述的方法,其中,当所述邻区的数量为两个以上,且至少一个其他的第三窄波束的数量小于所述邻区的数量时,通过改变所述至少一个其他的第三窄波束中的部分或全部波束的方向来使所述至少一个其他的第三窄波束指向所述源服务小区的邻区。
  15. 根据权利要求13所述的方法,其中,所述方法还包括,通过如下方式确定所述目标用户设备是否移动到小区边缘:
    根据接收到的源服务基站发送的下行数据的接收功率水平和/或信干燥比SINR水平确定所述目标用户设备是否移动到小区边缘。
  16. 根据权利要求12所述的方法,其中,在利用所述第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据之前,所述方法还包括:
    在基带侧对所述第三窄波束进行波束赋形。
  17. 根据权利要求16所述的方法,其中,在所述基带侧对所述第三窄波束进行波束赋形包括:
    确定用于利用所述第三窄波束接收所述下行数据的目标用户设备的赋形信息;
    根据所述目标用户设备的赋形信息在所述基带侧对所述第三窄波束进行波束赋形。
  18. 根据权利要求11所述的方法,其中,所述方法还包括:
    利用第四窄波束向所述基站发送上行数据。
  19. 根据权利要求18所述的方法,其中,在利用所述第四窄波束向所述基站发送所述上行数据之前,所述方法还包括:
    在基带侧对所述第四窄波束进行波束赋形。
  20. 根据权利要求19所述的方法,其中,在所述基带侧对所述第四窄波束进行波束赋形包括:
    确定用于利用所述第四窄波束向所述基站发送上行数据的目标用户设备的赋形信息;
    根据所述目标用户设备的赋形信息在所述基带侧对所述第四窄波束进行波束赋形。
  21. 根据权利要求18所述的方法,其中,利用所述第四窄波束向所述基站发送所述上行数据包括:
    在除所述小区级公共信道占用的时频域资源之外的其他资源上测量信干噪比水平;
    在所述其他资源中信干噪比最高的资源位置上利用所述第四窄波束发送所述上行数据。
  22. 一种下行数据的发送装置,包括:
    发送模块,配置为利用下行信道中的小区级公共信道和/或下行信道中的下行用户级信道发送下行数据,其中,所述小区级公共信道和所述下行用户级信道占用不同的时域位置。
  23. 根据权利要求22所述的装置,其中,在利用所述小区级公共信道发送所述下行数据时,所述发送模块包括:
    发送单元,配置为利用所述小区级公共信道在专用的时域以及专用的频域位置上发送所述下行数据,其中,所述专用的频域位置对应的带宽小于系统下行总带宽,在除对应带宽之外的其他带宽上无数据发送,且系统下行总带宽对应的额定发射功率分配在所述小区级公共信道上。
  24. 根据权利要求22或23所述的装置,其中,包括以下至少之一:
    所述小区级公共信道的时域位置与对应于所述小区级公共信道的解调参考信号时域位置的时域间隔,小于预定阈值;
    所述小区级公共信道与对应于所述小区级公共信道的解调参考信号是以固定的映射规则进行映射的,且二者映射在不同的时域位置。
  25. 一种下行数据的接收装置,包括:
    接收模块,配置为接收基站利用下行信道中的小区级公共信道和/或下行用户级信道发送的下行数据,其中,接收所述基站利用所述小区 级公共信道发送的下行数据与接收所述基站利用所述下行用户级信道发送的下行数据的时域位置不同。
  26. 根据权利要求25所述的装置,其中,所述接收模块包括:
    接收单元,配置为利用第三窄波束接收所述基站利用所述下行信道中的所述小区级公共信道和/或所述下行用户级信道发送的所述下行数据。
  27. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至10、11至21中任一项所述的方法。
  28. 一种通信设备,包括:
    存储器;
    处理器,与所述存储器连接,所述处理器配置为运行存储在所述存储器上的程序,其中,所述程序运行时执行权利要求1至10、11至21中任一项所述的方法。
PCT/CN2018/099714 2017-09-27 2018-08-09 下行数据的发送方法及装置、接收方法及装置、存储介质 WO2019062345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18860278.3A EP3691322A4 (en) 2017-09-27 2018-08-09 TRANSMISSION METHOD AND DEVICE AND RECEIVING METHOD AND DEVICE FOR DOWNLINK DATA, AND INFORMATION MEDIA
US16/627,730 US11502802B2 (en) 2017-09-27 2018-08-09 Transmission method and device and reception method and device for downlink data, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710890450.6 2017-09-27
CN201710890450.6A CN107635241B (zh) 2017-09-27 2017-09-27 下行数据的发送方法及装置、接收方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2019062345A1 true WO2019062345A1 (zh) 2019-04-04

Family

ID=61101903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099714 WO2019062345A1 (zh) 2017-09-27 2018-08-09 下行数据的发送方法及装置、接收方法及装置、存储介质

Country Status (4)

Country Link
US (1) US11502802B2 (zh)
EP (1) EP3691322A4 (zh)
CN (1) CN107635241B (zh)
WO (1) WO2019062345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107635241B (zh) * 2017-09-27 2021-05-07 中兴通讯股份有限公司 下行数据的发送方法及装置、接收方法及装置、存储介质
CN115884203A (zh) * 2021-09-27 2023-03-31 中国移动通信集团山西有限公司 针对小区边缘用户的上行覆盖增强方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1119113A2 (en) * 2000-01-21 2001-07-25 Lucent Technologies Inc. Method and system for dynamic downlink power control in a timedivision, multiplex wireless system
CN1452326A (zh) * 2002-04-15 2003-10-29 华为技术有限公司 无线局域网系统的移动终端接入和同步方法
CN101453740A (zh) * 2007-12-07 2009-06-10 中兴通讯股份有限公司 一种采用智能天线覆盖高速路的方法
CN101562504A (zh) * 2008-04-18 2009-10-21 中国移动通信集团公司 基于双极化阵列天线的自适应数据发送方法及其系统
CN107295668A (zh) * 2016-04-05 2017-10-24 中兴通讯股份有限公司 数据的传输方法及装置
CN107635241A (zh) * 2017-09-27 2018-01-26 中兴通讯股份有限公司 下行数据的发送方法及装置、接收方法及装置、存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030119452A1 (en) * 2001-10-19 2003-06-26 Samsung Electronics Co., Ltd. Apparatus and method for controlling transmission power of downlink data channel in a mobile communication system supporting MBMS
CN100493060C (zh) * 2004-07-27 2009-05-27 华为技术有限公司 一种通信系统时频资源的分配方法
CN101815047B (zh) * 2009-02-25 2013-12-04 中兴通讯股份有限公司 解调导频和物理资源块的映射方法和装置
CN104348579B (zh) * 2013-08-05 2019-11-19 中兴通讯股份有限公司 下行信道时域位置确定方法和装置
US9847962B2 (en) 2014-07-29 2017-12-19 Futurewei Technologies, Inc. Device, network, and method for communications with spatial-specific sensing
KR20160143093A (ko) * 2015-06-04 2016-12-14 한국전자통신연구원 소형 셀 시스템 및 그 자원 할당 방법
CN110166085B (zh) * 2015-12-29 2020-08-07 华为技术有限公司 一种下行数据传输方法及设备
JP6769160B2 (ja) * 2016-07-29 2020-10-14 ソニー株式会社 端末装置、基地局、方法及び記録媒体
JP7269735B2 (ja) * 2016-08-05 2023-05-09 株式会社Nttドコモ 端末、基地局、通信方法、及び、システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1119113A2 (en) * 2000-01-21 2001-07-25 Lucent Technologies Inc. Method and system for dynamic downlink power control in a timedivision, multiplex wireless system
CN1452326A (zh) * 2002-04-15 2003-10-29 华为技术有限公司 无线局域网系统的移动终端接入和同步方法
CN101453740A (zh) * 2007-12-07 2009-06-10 中兴通讯股份有限公司 一种采用智能天线覆盖高速路的方法
CN101562504A (zh) * 2008-04-18 2009-10-21 中国移动通信集团公司 基于双极化阵列天线的自适应数据发送方法及其系统
CN107295668A (zh) * 2016-04-05 2017-10-24 中兴通讯股份有限公司 数据的传输方法及装置
CN107635241A (zh) * 2017-09-27 2018-01-26 中兴通讯股份有限公司 下行数据的发送方法及装置、接收方法及装置、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3691322A4

Also Published As

Publication number Publication date
CN107635241A (zh) 2018-01-26
EP3691322A1 (en) 2020-08-05
EP3691322A4 (en) 2021-06-30
US20200220690A1 (en) 2020-07-09
US11502802B2 (en) 2022-11-15
CN107635241B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN112567776B (zh) 用于与多天线面板装置进行通信的系统和方法
JP7066699B2 (ja) ビームフォーミング手順において使用するためのミリメートル波長ネットワークマップ
US10575307B2 (en) Restricted set indication in multi-beam operation
US11405926B2 (en) Vision-aided channel sensing and access
CN110602721B (zh) 通信方法及装置
US20220116899A1 (en) Methods for controlling ue synchronization and cell identification in nr
KR20190011699A (ko) Nr 비면허 스펙트럼에 대한 ss 블록 시간 위치들 및 ss 버스트 세트 구성을 위한 장치 및 방법
WO2019160973A1 (en) Methods for v2x autonomous directional resource selection
TW202101023A (zh) 具有半持續性或非週期性時序行為之定位參考信號抹除模式
CN110291751A (zh) 用于在无线通信网络中关联载波的方法和装置
WO2022036541A1 (en) Network coordination for management of sensing interference
TW202125990A (zh) 用於動態天線陣列重配置以及在毫米波頻帶中發信號的方法及裝置
US11502802B2 (en) Transmission method and device and reception method and device for downlink data, and storage medium
US20230006795A1 (en) Method of fast beam refinement and tracking for high mobility wireless communication device
WO2023137665A1 (en) Positioning using reference signals with overlapping resources between adjacent frequency hops
US11765669B2 (en) Network assisted environmental sensing
CN106685505B (zh) 一种载波聚合的实现方法及装置
US20230254702A1 (en) Shared spectrum resource allocation in open radio access networks
WO2024108411A1 (en) Detecting unintended signal reflections in reconfigurable intelligent surfaces
WO2023236073A1 (en) Reference signal associations for predictive beam management
US20240089760A1 (en) Downlink reference signal measurements for supplemental uplink carriers
WO2023184344A1 (en) Metrics and report quantities for cross frequency range predictive beam management
WO2023010533A1 (en) Configuring reference signaling
WO2024102652A1 (en) Interference handling in joint communication and sensing (jcas) systems
KR20240074773A (ko) Prs 리소스 세트 및 trp들의 우선순위화들을 위한 ue 구현

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018860278

Country of ref document: EP

Effective date: 20200428