WO2020030152A1 - 系统信息传输方法、相关设备及系统 - Google Patents

系统信息传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2020030152A1
WO2020030152A1 PCT/CN2019/100094 CN2019100094W WO2020030152A1 WO 2020030152 A1 WO2020030152 A1 WO 2020030152A1 CN 2019100094 W CN2019100094 W CN 2019100094W WO 2020030152 A1 WO2020030152 A1 WO 2020030152A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink signal
network device
terminal
transmitted
qcl
Prior art date
Application number
PCT/CN2019/100094
Other languages
English (en)
French (fr)
Inventor
吴霁
朱俊
贾琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19848253.1A priority Critical patent/EP3836689B1/en
Publication of WO2020030152A1 publication Critical patent/WO2020030152A1/zh
Priority to US17/172,432 priority patent/US11856560B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a system information transmission method, related equipment, and a system.
  • the system information is divided into a master system information block (master information block (MIB)) and several system information blocks (system information block (SIB)).
  • MIB master information block
  • SIB system information block
  • the MIB is carried in a broadcast channel (BCH).
  • BCH broadcast channel
  • the sending method of the MIB is shown in FIG. 1A.
  • the MIB remains unchanged within 80 ms, and is repeatedly transmitted four times within 80 ms, occupying the frequency domain resources of a total of 72 subcarriers on both sides of the channel center bandwidth.
  • the MIB carries the basic information required to access the network, and the indication information of the SIB1, such as the location of time-frequency resources and the size of information resource blocks.
  • the user equipment may further obtain the SIB according to the instruction information.
  • the transmission method of SIB 1 in LTE is shown in FIG. 1B.
  • SIB 1 remains unchanged within 80 ms, and is repeatedly transmitted four times within 80 ms.
  • the transmission time position is always located in the 5th subframe in the 10 ms radio frame.
  • system information is divided into master system information block (MIB), remaining minimum system information (RMSI) and other system information (OSI).
  • MIB master system information block
  • RMSI remaining minimum system information
  • OSI system information
  • the MIB is carried in the physical broadcast channel PBCH
  • the RMSI is carried in the RMSI physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the RMSI is similar to the SIB 1 in LTE. The difference between the two lies in the position of the SIB 1 transmission cycle. Both are fixed, and in order to improve system scheduling flexibility, the time and frequency resource location and size of the RMSI PDSCH are variable. Specific parameters are indicated by the RMSI CORESET (similar to the PDCCH in LTE, which carries DCI information).
  • OSI is similar to SIB 2-13 in LTE, and the specific information and sending cycle carried by it are indicated by RMSI.
  • OSI is divided into broadcast OSI (broadcast OSI) and on-demand OSI (on-demand OSI). Broadcast OSI is the same as PBCH and RMSI.
  • the base station (gNB) broadcasts periodically, and its configuration information is carried in RMSI.
  • the UE may request the gNB to send part of the on-demand OSI, or may request the gNB to send all the on-demand OSI (On-demand OSI includes one or more SIBs).
  • On-demand OSI includes one or more SIBs.
  • the gNB receives all or part of the on-demand OSI sending request, the all or part of the on-demand OSI becomes the broadcast OSI, and the gNB periodically broadcasts and sends repeatedly in all beam directions.
  • the existing on-demand OSI sending method still results in large system overhead.
  • This application provides a system information transmission method, related equipment, and system, which can save system overhead and improve resource utilization.
  • the present application provides a system information transmission method applied to a network device side.
  • the method may include: the network device receives a system information request sent by one or more terminals, and transmits system information SI according to the system information request, where The SI transmitted for one terminal only has a quasi co-location relationship QCL with a part of the downlink signal blocks, which is a subset of all the downlink signal blocks transmitted by the network device.
  • the network device also broadcasts first indication information, and the first indication information indicates a mapping between the downlink signal block and the SI, where the downlink signal block and its corresponding SI have a QCL.
  • the present application provides a system information transmission method, which is applied to a terminal side.
  • the method may include: the terminal receiving first instruction information broadcasted by a network device, where the first instruction information indicates a mapping between a downlink signal block and an SI , Where the downlink signal block and its corresponding SI have QCL.
  • the terminal determines whether the SI having the QCL with the downlink signal block received by the terminal has been transmitted according to the first instruction information.
  • the SI is detected at the time position corresponding to the received downlink signal block for receiving the SI; if it is related to the downlink signal received by the terminal If the SI required by the terminal with the QCL is not sent, the system information request is sent to the network device, and then the SI transmitted by the network device is received.
  • the SI transmitted by a network device for a specific terminal only has a quasi-co-location relationship QCL with a part of the downlink signal blocks, which are a subset of all the downlink signal blocks transmitted by the network device.
  • instructing the base station to transmit a beam may be equivalent to indicating a downlink signal transmitted in the direction of the beam, such as SS / PBCH block, or CSI-RS.
  • this downlink signal may be referred to as a downlink signal block.
  • the SI indicating that a certain base station transmits a beam may be equal to the SI indicating that a downlink signal block transmitted in the direction of the base station transmitting beam has a quasi-co-location relationship QCL.
  • the SI carried by the base station transmitting beam beam1 is an SI having a quasi co-location relationship with the SS / PBCH block1 transmitted in the direction of beam1.
  • the SI corresponding to the downlink signal block is the SI transmitted by the network device in the beam direction in which the downlink signal block is transmitted.
  • the first indication information may indicate a situation in which the transmitted beams of different base stations carry SI, that is, indicate which SIs are carried in different transmitted beams of the base stations or not.
  • the network device For SI requests sent by a specific terminal, the network device only uses a part of the base station transmit beam to transmit the SI, instead of using all the base station transmit beams to transmit the SI. .
  • the terminal does not need to request the network device for the SI requested by other terminals or the terminal itself, and only needs to detect the SI by transmitting the SI of the resource corresponding to the downlink signal block received by the terminal. In this way, the terminal in the cell can avoid repeatedly requesting the SI available in the cell, which saves system overhead.
  • the network device may determine the part of the downlink signal block through, but not limited to:
  • the SI request received by the network device has a QCL downlink signal block. That is to say, for the specific terminal, part of the base station transmitting beams used by the network device to transmit SI may include: the base station receiving beams used by the network device to receive the SI request, and base station transmitting beams with QCL, or the base station transmitting beam P (P is a positive integer) adjacent beams.
  • the SI request transmitted with the specific terminal has a downlink signal block of QCL. That is to say, for the specific terminal, part of the base station transmission beams used by the network device to transmit the SI may include: the terminal transmission beams used by the specific terminal to transmit the SI request, the base station transmission beams with QCL, or the base station transmission beams Q (Q is a positive integer) adjacent beams.
  • Manner 3 The downlink signal block indicated by the specific terminal. That is to say, the specific terminal may indicate to the network device 500 which base station or base stations transmit the beam to transmit the SI.
  • Method four a downlink signal block configured by the system. That is to say, the system can configure the network equipment to transmit SI to some base stations to transmit beams. Optionally, in a scenario where the terminal is stationary or the mobile range of the terminal is very limited, the system can configure the terminal to transmit a part of the base station to transmit the SI beam.
  • the network device will only receive the SI request beam direction, or the beam direction and some adjacent beam directions, or the terminal sends the SI request beam direction, or the beam direction and the neighbor.
  • Some beam directions, or the beam directions configured by the system, or the terminal requesting the beam to send SI upwards greatly reduces the system overhead required to send SI and improves system efficiency.
  • the two main implementation manners of the first indication information may include:
  • the first indication information may include: H groups of bits, each group of bits includes M bits, wherein one bit corresponds to one SI, and the jth bit in the i-th group of bits indicates the corresponding i-th downlink signal block Whether the j-th SI has been transmitted.
  • H is a positive integer
  • M is a positive integer
  • i is a positive integer
  • j is a positive integer.
  • the value of the j-th bit in the i-th group of bits is '1', it may indicate that the j-th SI corresponding to the i-th downlink signal block has been transmitted by the network device;
  • the value of the j-th bit is '0', it can be shown that the j-th SI corresponding to the i-th downlink signal block is not sent by the network device. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the network device, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the network device. In practical applications, multiple bits may be used to correspond to one SI.
  • the first indication information may include: W groups of bits, one group of bits corresponding to one SI, each group of bits including Y bits, and one bit corresponding to one downlink signal block; the nth bit in the m group of bits indicates corresponding Whether the m-th SI of the n-th downlink signal block has been transmitted.
  • W is a positive integer
  • Y is a positive integer
  • m is a positive integer
  • n is a positive integer.
  • the value of the n-th bit in the m-th group of bits is '1', it may indicate that the m-th SI corresponding to the n-th downlink signal block has been transmitted by the network device;
  • the value of the nth bit is '0', it can be shown that the mth SI of the nth downlink signal block is not sent by the network device. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the network device, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the network device. In practical applications, multiple bits may be used to correspond to one downlink signal block.
  • the first indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the first indication information may also be carried in separate signaling.
  • the number of bits required to implement the first indication information may be large.
  • the first indication information may adopt but is not limited to the following implementation manners:
  • the first indication information may indicate the transmission condition of the SI corresponding to only one of the downlink signal blocks.
  • a network device transmits 8 SS / PBCH blocks, among which SS / PBCH block1 and SS / PBCH block2 have QCL, SS / PBCH block3 and SS / PBCH block4 have QCL, SS / PBCH block5 and SS / PBCH block6 have QCL, SS / PBCH block7 and SS / PBCH block8 have QCL.
  • the first indication information only needs to indicate the sending status of the SI corresponding to SS / PBCH block 1, 3, 5, 7, or only SS / PBCH block 2, 4, 6, The sending situation of SI corresponding to 8 and 8.
  • the first indication information may indicate a mapping between only one downlink signal and SI in a plurality of downlink signal blocks. There is a QCL between the plurality of downlink signal blocks. The transmission conditions of the SI corresponding to the downlink signal block with QCL are the same.
  • a downlink signal block with a QCL may be indicated by a network device.
  • the network device may send the second indication information, and the second indication information may indicate a downlink signal block having a QCL.
  • the downlink signal block with QCL can also be statically defined by the protocol or configured by the network device through high-level signaling (such as radio resource control (RRC) signaling).
  • RRC radio resource control
  • the second indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the second indication information may also be carried in separate signaling.
  • the first indication information may indicate a transmission condition of only one SI among the plurality of SIs corresponding to different downlink signal blocks (such as SS / PBCH block).
  • SIB 1-8 For a plurality of SIs with a binding sending relationship, the first indication information may indicate a transmission condition of only one SI among the plurality of SIs corresponding to different downlink signal blocks (such as SS / PBCH block).
  • SIB 1-8 For example, among 8 SIs (SIB 1-8), SIB1 and SIB2 have a binding sending relationship, SIB3 and SIB4 have a binding sending relationship, SIB5 and SIB6 have a binding sending relationship, SIB7 and SIB8 have a binding sending relationship, the An indication information only needs to indicate the transmission conditions of SIBs 1, 3, 5, and 7 corresponding to different SS / PBCH blocks, or only the transmission conditions of SIBs 2, 4, 6, and 8 corresponding to different SS / PBCH blocks.
  • the first indication information may indicate a mapping between one or more downlink signal blocks and only one SI among multiple SIs, where the multiple SIs have a binding sending relationship.
  • the multiple SIs have a binding sending relationship means that the downlink signal blocks corresponding to the multiple SIs are the same and the multiple SIs need to be sent together, that is, the multiple SIs are transmitted together or not together in the same beam direction. Was launched.
  • multiple SIs of the same type have a binding sending relationship and need to be sent together.
  • SIs that need to be sent together may be indicated by the network device.
  • the network device may send the third instruction information, and the third instruction information may indicate the SI that needs to be sent together.
  • the third indication information may indicate SIs of the same type, and SIs of the same type need to be sent together.
  • the SIs that need to be sent together can also be statically defined by the protocol or configured by the network device through high-level signaling (such as RRC signaling).
  • the type of SI is statically defined in the protocol or configured by high-level signaling. SIs of the same type need to be sent together.
  • the third indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the third indication information may also be carried in separate signaling.
  • Method 3 In addition to using the above method 1 or the above method 2 alone to indicate the sending status of the SI, the network device may also use the above method 1 and the second method to indicate the sending status of the SI at the same time, which can save more information. ⁇ overhead.
  • the resource allocation mode of the SI may include:
  • Method 1 The time position corresponding to the downlink signal block for sending SI is pre-configured. Specifically, the time position of the SI having a QCL with the downlink signal block is a preset time position for sending the SI corresponding to the downlink signal block in the first time window.
  • a blank symbol may exist between the downlink signal block corresponding to the SI transmitted by the network device and the corresponding preset time position in the first time window.
  • Blank symbols are symbols not occupied by SI.
  • blank symbols can cause discontinuous transmissions and cause channel loss.
  • the blank symbol can be filled by the second downlink signal to avoid discontinuous data transmission and loss of the channel.
  • the second downlink signal may be a downlink data signal and the like.
  • the terminal may receive SI at a preset time position corresponding to a part of the downlink signal block in the first time window. This part of the downlink signal block and the SI transmitted by the network device for this terminal have QCL.
  • Method 2 The time position of the sent SI is dynamically allocated by the network device. Specifically, the network device dynamically allocates the time position of the SI having the QCL with the downlink signal block, so that the SI is continuously transmitted. That is to say, in the second mode, the time positions of the network devices transmitting SI are continuous. In this way, a blank symbol can be avoided. For an unlicensed spectrum, the network device does not need to fill the second downlink signal during SI transmission.
  • the network device may send fourth instruction information, and the fourth instruction information indicates a time position where the SI having a QCL with a different downlink signal block is actually transmitted by the network device.
  • the terminal may receive the fourth indication information, determine the time position of the SI having QCL with part of the downlink signal block according to the fourth indication information, and receive the SI at the time position. This part of the downlink signal block and the SI transmitted by the network device for this terminal have QCL.
  • the terminal may also receive the SI through the blind detection without the network device sending the fourth instruction information.
  • a network device can perform LBT on an antenna port that has QCL with some downlink signal blocks. If the LBT is passed, the network device only transmits system information SI that has QCL with some downlink signal blocks. That is to say, for a specific terminal, the network device only needs to pass the LBT in the direction of transmitting the beams of some base stations instead of the direction of the transmitting beams of all the base stations, and then can transmit SI in the direction of the transmitting beams of the partial base stations. This can increase the success probability of LBT and the probability of successful SI transmission, because directional LBT is easier than omnidirectional LBT.
  • a network device which includes multiple functional units, and is configured to correspondingly execute the method provided in any one of the possible implementation manners of the first aspect.
  • a terminal including multiple functional units, for correspondingly executing the method provided in any one of the possible implementation manners of the second aspect.
  • a network device for performing the system information transmission method described in the first aspect.
  • the network device may include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein the transmitter is configured to send a signal to another wireless communication device, such as a terminal, and the receiver is configured to: Receiving a signal sent by the another wireless communication device, such as a terminal, the memory used to store implementation code of the system information transmission method described in the first aspect, and the processor used to execute program code stored in the memory, That is, the system information transmission method described in any one of the possible implementation manners of the first aspect is performed.
  • a terminal for performing the system information transmission method described in the second aspect.
  • the terminal may include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein the transmitter is configured to send a signal to another wireless communication device, such as a network device, and the receiver is configured to: Receive a signal sent by the another wireless communication device, such as a network device, the memory is used to store the implementation code of the system information transmission method described in the second aspect, and the processor is used to execute the program code stored in the memory That is, the system information transmission method described in any one of the possible implementation manners of the second aspect is performed.
  • a communication system includes a network device and a terminal, where the network device may be the network device described in the first aspect.
  • the terminal may be the terminal described in the second aspect.
  • a computer-readable storage medium where instructions are stored on the readable storage medium, which when executed on a computer, causes the computer to perform the system information transmission method described in the first aspect above.
  • the readable storage medium stores instructions that, when run on the computer, causes the computer to execute the system information transmission method described in the second aspect.
  • a computer program product containing instructions which, when run on a computer, causes the computer to execute the system information transmission method described in the first aspect above.
  • 1A is a schematic diagram of sending a main system message block in LTE
  • 1B is a schematic diagram of sending a system message block SIB1 in LTE
  • FIG. 2 is a schematic architecture diagram of a wireless communication system provided by the present application.
  • 3A-3B are schematic diagrams of a Type A / Type B multi-carrier LBT mechanism involved in this application;
  • FIG. 5 is a schematic diagram of a gNB directional transmission SI in the present application.
  • FIG. 6 is a schematic diagram of gNB broadcasting first indication information in the present application.
  • FIGS. 7A-7B are schematic diagrams of two implementation manners of the first indication information in this application.
  • FIG. 8 is a schematic diagram of an SI resource configuration provided by the present application.
  • FIG. 9 is a schematic diagram of another SI resource configuration provided in the present application.
  • FIG. 10 is a schematic diagram of another SI resource configuration provided in the present application.
  • FIG. 11 is a schematic diagram of another SI resource configuration provided in the present application.
  • FIG. 12 is a schematic diagram of a hardware architecture of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a hardware architecture of a network device according to an embodiment of the present application.
  • FIG. 14 is a functional block diagram of a wireless communication system, a terminal, and a network device provided by the present application;
  • FIG. 15 is a schematic structural diagram of a processor according to the present application.
  • FIG. 2 shows a wireless communication system 100 according to the present application.
  • the wireless communication system 100 can work in a high-frequency band, not limited to a Long Term Evolution (LTE) system, but also a 5th generation mobile communication (5G) system and a new air interface (NR) that will evolve in the future. Systems, machine-to-machine (M2M) systems, etc.
  • the wireless communication system 100 may work in a licensed frequency band, and may also work in an unlicensed frequency band.
  • the wireless communication system 100 may include: one or more network devices 101, one or more terminals 103, and a core network (not shown). among them:
  • the network device 101 may be a base station, and the base station may be used to communicate with one or more terminals, and may also be used to communicate with one or more base stations with partial terminal functions (such as a macro base station and a micro base station, such as an access point, Communication).
  • the base station can be a base transceiver station (BTS) in a Time Division Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or an evolutionary base station (Evolutional Node B in an LTE system). , ENB), and base stations in 5G systems and New Air Interface (NR) systems.
  • the base station may also be an access point (AP), a transmission node (Trans TRP), a central unit (CU), or other network entities, and may include some or all of the functions of the above network entities .
  • the terminals 103 may be distributed throughout the wireless communication system 100, and may be stationary or mobile.
  • the terminal 103 may be a user equipment (UE), a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a terminal agent, or a mobile client. And so on.
  • UE user equipment
  • the wireless communication system 100 may be an LTE communication system capable of operating in an unlicensed frequency band, such as an LTE-U system, or a new air interface communication system capable of operating in an unlicensed frequency band, such as an NR-U system. It is another communication system working in the unlicensed frequency band in the future.
  • the wireless communication system 100 may further include a WiFi network.
  • the NR-U system uses the LBT channel contention access mechanism, and the LBT process and The parameters are specified.
  • 3A-3B illustrate two types of listen-before-talk (LBT) listening mechanisms.
  • a Type A LBT device can perform independent back-off on multiple component carriers (CCs).
  • CCs component carriers
  • the back-off is completed on a carrier, transmission is delayed to wait for other still back-off. Member carrier.
  • the device needs to do an additional one-shot CCA (25us clear channel assessment) to ensure that all carriers are idle; if all carriers are idle, the eNB simultaneously transmits on the idle carriers.
  • a Type B LBT device performs backoff only on a selected component carrier, and when the backoff ends, it performs a one-shot CCA (25us clear channel assessment) on other component carriers. If the component carrier is idle, data transmission is performed; if the component carrier is not idle, data transmission cannot be performed on the component carrier this time.
  • CCA clear channel assessment
  • the device that performs LBT may be LTE, LAA, WiFi, NR-U, or other communication equipment working in an unlicensed band.
  • the interference received by the device for LBT comes from the WiFi system.
  • the interference received by the device that performs LBT can also come from LTE LAA, NR-U or other communication systems working in unlicensed frequency bands. There are no restrictions.
  • the LBT listening mechanism adopted by the NR-U system may also be changed without affecting the implementation of this application.
  • the wireless communication system 100 is a multi-beam communication system. among them:
  • the network device 101 may be configured with a large-scale antenna array, and uses a beamforming technique to control the antenna array to form beams with different directions. In order to cover the entire cell 107, the network device 101 needs to use multiple beams with different directions.
  • the network device 101 may transmit system information (SI) using beams of different directions. System information is very important for the initial access procedure and normal operation of the terminal 103.
  • the system information is divided into MIB, RMSI and OSI.
  • the MIB is carried in the physical broadcast channel PBCH
  • the RMSI is carried in the RMSI PDSCH.
  • OSI is further divided into broadcast OSI (broadcast OSI) and on-demand OSI (on-demand OSI). Broadcast OSI is the same as PBCH and RMSI.
  • Network device 101 broadcasts periodically, and its configuration information is carried in RMSI. Sending system information periodically increases system overhead and reduces resource utilization. For a multi-beam system, system information needs to be sent repeatedly in all beam directions, further increasing system overhead.
  • the terminal 103 may request the network device 101 to send part of the on-demand OSI, or may request the network device 101 to send all the on-demand OSI (On-demand OSI includes one or more SIBs).
  • the On-demand OSI request can be based on the existing random access procedure.
  • the terminal 103 can use message 1 (Msg1) or message 3 (Msg3) in the 4-step random access procedure (that is, the contention-based random access procedure) to request from the gNB. Specific OSI.
  • the network device 101 receives all or part of the on-demand OSI sending request, the all or part of the on-demand OSI becomes broadcast OSI, and the network device 101 periodically broadcasts the transmission, repeating in all beam directions. send.
  • This method of sending on-demand OSI will still cause large system overhead.
  • requesting system information will occupy physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • the network device 101 will carry the on-demand OSI transmission status in the RMSI: if the on-demand OSI contains 8 different SIBs, 8-bit instruction information will be added to the RMSI Each bit corresponds to a SIB to indicate whether it is sent.
  • the terminal will check the on-demand OSI sending status in the RMSI before requesting the on-demand OSI. If the required SIB has been sent, the terminal 103 will not send an on-demand OSI request.
  • the network device 101 when the network device 101 receives the on-demand OSI sending request, the network device 101 will repeatedly send in all beam directions.
  • on-demand OSI still needs to send in all beam directions, even when the terminals that need the system information are few or only correspond to a few beam directions, which wastes a lot of system resources.
  • this application provides a system information transmission method, which can save system overhead.
  • the main inventive idea of this application may include: for the on-demand OSI request sent by a specific terminal, the network device only uses a part of the base station transmit beam to transmit the OSI, instead of using the entire base station transmit beam to transmit the OSI. . Once a network device receives an on-demand OSI request for a certain OSI or OSIs, this OSI or OSIs will be sent periodically by the network device.
  • the network device may also instruct the base station transmitting beam to carry on-demand OSI, that is, indicate which on-demand OSI is carried by different base station transmission beams or which on-demand OSI is not carried.
  • the terminal can determine whether the on-demand OSI carried by the beam in which the terminal is located has been transmitted according to the instruction of the network device. If it has been transmitted, the OSI is detected at the time position corresponding to the beam in which the terminal is located for OSI transmission That is, no longer sending on-demand OSI requests to network devices. In this way, the terminal in the cell can avoid repeatedly requesting the OSI (available in cell) available in the cell, which saves system overhead.
  • instructing the base station to transmit a beam may be equivalent to indicating a downlink signal block transmitted in the direction of the beam, such as SS / PBCH block or CSI-RS resource.
  • a signal sent on a transmission beam of a base station may be referred to as a downlink signal block.
  • the SI indicating that a certain base station transmits a beam may be equivalent to the SI indicating that a downlink signal block transmitted in the direction of the base station transmitting beam has a quasi co-location relationship QCL (QCL, Quasi co-location).
  • QCL quasi co-location relationship
  • the SI carried by the base station transmitting beam beam1 is an SI having a quasi co-location relationship with the SS / PBCH block1 transmitted in the direction of beam1.
  • the quasi-co-location relationship QCL indicates whether the configuration parameters of the two signals are the same.
  • having QCL means that one or more of Doppler shift, Doppler dispersion, average delay, delay spread, and spatial reception parameters are the same.
  • the cell includes multiple terminals, such as terminal 1, terminal 2, ..., terminal i, etc., i is a positive integer. Expand as follows:
  • the network device receives an SI request sent by one or more terminals.
  • the network device receives an SI request sent by the terminal 1 and the terminal 2.
  • the network device may also receive SI requests sent by more terminals, or only receive SI requests sent by one terminal.
  • the SI request may carry SI indication information, which is used to indicate which SI or SIs the terminal requests.
  • the SIs requested by different terminals may be the same or different, which is not limited in this application.
  • the SI request may request all the SI, and at this time, the SI request does not need to carry SI indication information.
  • the SI request may be message 1 (msg1) or message 3 (msg3) in the random access process, or may be independent signaling, which is not limited in this application.
  • the network device transmits SI.
  • the SI transmitted by the network device only has QCL with some downlink signal blocks.
  • the specific terminal may receive SI transmitted by the network device only with a part of the downlink signal block having a QCL.
  • the SI transmitted by the network device only has a QCL with a part of the downlink signal block, which indicates that the specific terminal, and the network device only transmits the SI in the beam direction carrying the part of the downlink signal block.
  • the specific terminal is within the coverage of a beam carrying the partial downlink signal block, and can detect the SI transmitted by the network device in the beam direction.
  • the SI transmitted by the network device only has QCL with a part of the downlink signal block a. That is to say, the network device only transmits the SI requested by terminal 1 in the beam direction of the transmission part of the downlink signal block a, instead of transmitting the SI requested by terminal 1 on all the base station transmission beams. That is, the network device may transmit the SI requested by the terminal 1 to the terminal 1 instead of broadcasting the SI requested by the terminal 1 by using all base station transmission beams. In this way, system overhead can be effectively saved.
  • part of the downlink signal block a may be one or more downlink signal blocks.
  • the SI transmitted by the network device has QCL only with a part of the downlink signal block b. That is to say, the network device only transmits the SI requested by terminal 2 in the beam direction of the transmission part of the downlink signal block b, instead of transmitting the SI requested by terminal 2 on all the base station transmission beams. That is, the network device may transmit the SI requested by the terminal 2 to the terminal 2 instead of broadcasting the SI requested by the terminal 2 by using all base station transmission beams. In this way, system overhead can be effectively saved.
  • part of the downlink signal block b may be one or more downlink signal blocks.
  • the network device may need to transmit SI through all the base station transmitting beams. However, for a specific terminal (such as terminal 1), the network device only transmits the SI requested by the specific terminal in a part of the base station transmission beam direction.
  • this part of the downlink signal blocks is a subset of all downlink signal blocks transmitted by the network device.
  • all the downlink signal blocks refer to all downlink signal blocks transmitted by the network device without the QCL.
  • all SS / PBCH transmitted by a network device refers to all SS / PBCH transmitted by a network device without a QCL.
  • all CSI-RSs transmitted by a network device refer to all CSI-RSs transmitted by a network device without a QCL.
  • the network device sends first indication information.
  • the network device may broadcast or multicast the first indication information.
  • the first indication information may indicate a mapping between a downlink signal block and an SI, where the downlink signal block and its corresponding SI have a QCL.
  • the SI corresponding to the downlink signal block is the SI transmitted by the network device in the beam direction in which the downlink signal block is transmitted.
  • the first indication information may indicate a situation in which the transmitted beams of different base stations carry SI, that is, indicate which SIs are carried in different transmitted beams of the base stations or not. The specific implementation of the first indication information will be described in detail in the subsequent embodiments, and is not repeated here.
  • the terminal judges whether the received SI block with QCL needs to be transmitted according to the first instruction information, and if it has already been transmitted, execute S109; otherwise, execute S111.
  • the downlink signal block received with the terminal has an SI that needs to be obtained from the QCL, that is, an SI that the terminal wants to receive. That is to say, in the mapping indicated by the first indication information, if the SI corresponding to the downlink signal block received by the terminal contains the SI that the terminal wants to receive, execute S109; otherwise, execute S111.
  • the terminal may detect the SI at the resource position corresponding to the downlink signal block received by the terminal for transmitting the SI, and does not need to request the SI from the network device.
  • the terminal may send an SI request to the network device.
  • the network device may only transmit SI with QCL to a part of the downlink signal block c.
  • the terminal i in FIG. 4 may be a terminal different from the terminal 1 (or the terminal 2), or may be the terminal 1 (or the terminal 2).
  • Terminal i may be in the same beam as terminal 1 (or terminal 2), or may be in a different beam.
  • the beam in which the terminal is located is a beam directed to the terminal or a beam in which the terminal is in its coverage area, that is, a beam in which the terminal can detect a signal carried by the terminal.
  • terminal i does not need to request the network device for the SI requested by terminal 1 (or terminal 2). . Because the network device periodically transmits the SI requested by terminal 1 (or terminal 2) in the direction of the beam directed to terminal 1 (or terminal 2), terminal i can transmit the SI resource location corresponding to the beam (i.e. The position of the resource for transmitting the SI corresponding to the downlink signal block received by the terminal i) detects the SI, and does not need to request the network device again. In this way, terminals in a cell can be prevented from repeatedly requesting OSIs available in the cell, and system overhead can be saved.
  • the beam in which terminal i is located is the same as the beam in which terminal 1 (or terminal 2) is located, which means that the downlink signal block received by terminal i and the downlink signal block received by terminal 1 (or terminal 2) have QCL.
  • the network device in response to the SI request sent by a specific terminal, the network device only uses a part of the base station transmission beam to transmit the SI, instead of using the entire base station transmission beam to transmit the SI, which can save system overhead.
  • the terminal does not need to request the network device for the SI requested by other terminals or the terminal itself, and only needs to detect the SI by transmitting the SI of the resource corresponding to the downlink signal block received by the terminal. In this way, the terminal in the cell can avoid repeatedly requesting the SI available in the cell, which saves system overhead.
  • the following signal block is a synchronization signal / physical broadcast channel block (SS / PBCH block) as an example, and the technical solution provided by the present application will be further described in detail with reference to the embodiments of FIG. 5 to FIG. 11.
  • SS / PBCH block physical broadcast channel block
  • FIG. 5 exemplarily shows a scheme in which a network device uses only a part of base station transmission beams to transmit SI for a specific terminal.
  • the network device is a base station gNB.
  • the beam (beam 1) transmitting SS / PBCH block1 is directed to terminal 1
  • the beam (beam 2) transmitting SS / PBCH block2 is directed to terminal 2
  • the beam (beam 3) transmitting SS / PBCH block3 is directed to terminal 3
  • SS / PBCH is transmitted
  • the beam (beam 4) of block 4 is directed to the terminal 4.
  • the gNB Based on the SI request received by the terminal 1-4, the gNB transmits the SI. Among them, terminal 1 sends a request to gNB to obtain SIB2 and SIB4; terminal 2 sends a request to gNB to obtain SIB2, SIB3, and SIB4; terminal 3 sends a request to gNB to obtain SIB4; terminal 4 sends a request to gNB Ask gNB for SIB2.
  • gNB only transmits SI with QCL to SS / PBCH block1, that is, gNB only transmits SIB2 and SIB4 in the beam (beam 1) direction of transmission SS / PBCH block1.
  • gNB only transmits SI with QCL to SS / PBCH block2, that is, gNB only transmits SIB2, SIB3, and SIB4 in the beam (beam 2) direction of transmission SS / PBCH block2.
  • the gNB only transmits the SI having QCL with the SS / PBCH block3, that is, the gNB only transmits the SIB4 in the beam (beam 3) direction in which the SS / PBCH block3 is transmitted.
  • the gNB only transmits the SI having QCL with the SS / PBCH block4, that is, the gNB only transmits the SIB2 in the beam (beam 4) direction in which the SS / PBCH block4 is transmitted.
  • the network device only transmits SI with QCL for a part of the downlink signal blocks.
  • the network device may determine this part of the downlink signal block in several ways, but is not limited to:
  • the SI request received by the network device has a QCL downlink signal block. That is to say, for a specific terminal, part of the base station transmit beams used by the network device to transmit SI may include: the base station receive beams used by the network device to receive the SI request, and base station transmit beams with QCL, or P (P is a positive integer) adjacent beams.
  • the SI request transmitted with the terminal has a downlink signal block of QCL. That is to say, for a specific terminal, a part of the base station transmitting beams used by the network device to transmit SI may include: the base station transmitting beams having QCL with the terminal transmitting beams used by the terminal to transmit SI requests, or the Q of the base station transmitting beams (Q is a positive integer) adjacent beams.
  • Manner 3 The downlink signal block indicated by the terminal. That is, the terminal may indicate to the network device which base station or base stations are used to transmit the beam to transmit the SI.
  • Method four a downlink signal block configured by the system. That is to say, the system can configure the network equipment to transmit part of the base station's transmit beam. Optionally, in a scenario where the terminal is stationary or the mobile range of the terminal is very limited, the system can configure the terminal to transmit a part of the base station to transmit the SI beam.
  • the network device will only receive the SI request beam direction, or the beam direction and some adjacent beam directions, or the terminal sends the SI request beam direction, or the beam direction and the neighbor.
  • Some beam directions, or the beam directions configured by the system, or the terminal requesting the beam to send SI upwards greatly reduces the system overhead required to send SI and improves system efficiency.
  • the network equipment sends (broadcast or multicast) the first instruction information
  • FIG. 6 exemplarily shows a scheme in which the network device sends the first indication information.
  • the gNB broadcasts the first indication information.
  • broadcasting refers to transmitting the first instruction information by using all base station transmission beams. All terminals in the cell can receive the first indication information.
  • the first indication information may indicate the mapping shown in Table 1:
  • a terminal in a cell may first determine whether the SI that the terminal wants to obtain has a QCL based on the first indication information and the downlink signal block received by the terminal has been transmitted. If it has already been transmitted, it is received at the terminal. It is only necessary to detect the SI at the time position corresponding to the received downlink signal block for receiving the SI, and it is not necessary to send an SI request to the gNB.
  • the terminal 5 and the terminal 3 are in the same beam, and the beam is the beam that the gNB transmits SS / PBCH block3.
  • the beam is the beam that the gNB transmits SS / PBCH block3.
  • SIB4 having QCL with SS / PBCH block3 has been transmitted, that is, SIB4 will be periodically transmitted by the gNB in the beam direction in which SS / PBCH block3 is transmitted.
  • the terminal 5 can detect the SIB4 without sending an SI request to the gNB, which can save system overhead.
  • the first indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the first indication information may also be carried in separate signaling.
  • FIGS. 7A-7B exemplarily show two main implementation manners of the first indication information.
  • the first indication information may be 16-bit indication information.
  • the 16 bits are divided into 4 groups of bits, and a group of bits corresponds to an SS / PBCH block, indicating the transmission status of the SI corresponding to the SS / PBCH block.
  • Each group of bits includes 4 bits, one bit corresponds to one SI, indicating whether the SI is transmitted by the gNB.
  • the first set of bits is "1010", indicating that SIB2 and SIB4 corresponding to SS / PBCH block1 have been transmitted by gNB, and SIB3 and SIB5 corresponding to SS / PBCH block1 have not been transmitted by gNB.
  • gNB transmits SIB2 and SIB4 in the beam direction of transmitting SS / PBCH block1, but does not transmit SIB3 and SIB5.
  • FIG. 5 For details, refer to FIG. 5.
  • the second set of bits is "1110", which indicates that SIB2, SIB3, and SIB4 corresponding to SS / PBCH block2 have been transmitted by gNB, and SIB5 corresponding to SS / PBCH block2 has not been transmitted by gNB. That is to say, gNB transmits SIB2, SIB3, SIB4 in the beam direction of transmitting SS / PBCH block2, but does not transmit SIB5. For details, refer to FIG. 5.
  • the third group of bits is "0010", which indicates that SIB4 corresponding to SS / PBCH block3 has been transmitted by gNB, and SIB2, SIB3, and SIB5 corresponding to SS / PBCH block3 have not been transmitted by gNB.
  • gNB transmits SIB4 in the beam direction of transmitting SS / PBCH block3, but does not transmit SIB2, SIB3, SIB5.
  • FIG. 5 For details, refer to FIG. 5.
  • the fourth group of bits is "1000", which indicates that SIB2 corresponding to SS / PBCH block4 has been transmitted by gNB, and SIB3, SIB4, and SIB5 corresponding to SS / PBCH block4 have not been transmitted by gNB. That is to say, gNB transmits SIB2 in the beam direction of transmitting SS / PBCH block4, but does not transmit SIB3, SIB4, SIB5. For details, refer to FIG. 5.
  • the first indication information includes: H groups of bits, each group of bits includes M bits, wherein one bit corresponds to an SI, and the jth bit in the ith group of bits indicates the ith Whether the j-th SI corresponding to each downlink signal block has been transmitted.
  • H is a positive integer
  • M is a positive integer
  • i is a positive integer
  • j is a positive integer.
  • the value of the j-th bit in the i-th group of bits is '1', it may indicate that the j-th SI corresponding to the i-th downlink signal block has been transmitted by the gNB;
  • the value of j bits is '0', it can be shown that the j-th SI corresponding to the i-th downlink signal block is not sent by the gNB. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the gNB, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the gNB. In practical applications, multiple bits may be used to correspond to one SI.
  • the first indication information may be 16-bit indication information.
  • the 16 bits are divided into 4 groups of bits, and a group of bits corresponds to an SI, indicating the transmission status of the SI corresponding to different SS / PBCH blocks.
  • Each group of bits includes 4 bits, one bit corresponds to one SS / PBCH block, indicating whether the SI corresponding to the SS / PBCH block is transmitted by the gNB.
  • the first set of bits is "1101", which indicates that SIB2 corresponding to SS / PBCH block1, SS / PBCH block2, SS / PBCH block4 has been transmitted by gNB, and SIB2 corresponding to SS / PBCH block3 has not been transmitted by gNB. That is to say, gNB transmits SIB2 in the beam direction of transmitting SS / PBCH block1, SS / PBCH block2, SS / PBCH block4, and does not transmit SIB2 in the beam direction transmitting SS / PBCH block3. For details, refer to FIG. 5.
  • the second set of bits is "0100", indicating that SIB3 corresponding to SS / PBCH block2 has been transmitted by gNB, and SIB3 corresponding to SS / PBCH block1, SS / PBCH block3, and SS / PBCH block4 has not been transmitted by gNB. That is to say, gNB transmits SIB2 in the beam direction of transmitting SS / PBCH block2, but does not transmit SIB3 in the beam direction of transmitting SS / PBCH block1, SS / PBCH block3, SS / PBCH block4. For details, refer to FIG. 5.
  • the third group of bits is "1110", indicating that SIB4 corresponding to SS / PBCH block1, SS / PBCH block2, SS / PBCH block3 has been transmitted by gNB, and SIB4 corresponding to SS / PBCH block4 has not been transmitted by gNB. That is to say, gNB transmits SIB4 in the beam direction of transmitting SS / PBCH block1, SS / PBCH block2, SS / PBCH block3, and does not transmit SIB4 in the beam direction transmitting SS / PBCH block4. For details, refer to FIG. 5.
  • the fourth group of bits is "0000", indicating that the SIB5 corresponding to SS / PBCH block1, SS / PBCH block2, SS / PBCH block3, and SS / PBCH block4 are not transmitted by gNB. That is to say, gNB does not transmit SIB5 in the beam direction of transmitting SS / PBCH block1, SS / PBCH block2, SS / PBCH block3, SS / PBCH block4. For details, refer to FIG. 5.
  • the first indication information includes: W groups of bits, a group of bits corresponds to an SI, each group of bits includes Y bits, and one bit corresponds to a downlink signal block;
  • the n-th bit indicates whether the m-th SI corresponding to the n-th downlink signal block has been transmitted.
  • W is a positive integer
  • Y is a positive integer
  • m is a positive integer
  • n is a positive integer.
  • the value of the nth bit in the mth group of bits is '1', it may indicate that the mth SI corresponding to the nth downlink signal block has been sent by the gNB;
  • the value of the n bits is '0', it can be shown that the m-th SI of the n-th downlink signal block is not sent by the gNB. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the gNB, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the gNB. In practical applications, multiple bits may be used to correspond to one downlink signal block.
  • the number of bits required to implement the first indication information shown in the example of FIG. 7A-7B may be large .
  • the first indication information may adopt but is not limited to the following implementation manners:
  • the first indication information may indicate the transmission condition of the SI corresponding to only one of the downlink signal blocks.
  • gNB transmits 8 SS / PBCH blocks, among which SS / PBCH block1 and SS / PBCH block2 have QCL, SS / PBCH block3 and SS / PBCH block4 have QCL, SS / PBCH block5 and SS / PBCH block6 have QCL, SS / PBCH block7 and SS / PBCH block8 have QCL.
  • the first instruction information only needs to indicate the sending status of the SI corresponding to SS / PBCH block 1, 3, 5, 7, or only SS / PBCH block 2, 4, 6, and 8 corresponding SI transmission situation.
  • the first indication information may indicate a mapping between only one downlink signal and SI in a plurality of downlink signal blocks. There is a QCL between the plurality of downlink signal blocks. The transmission conditions of the SI corresponding to the downlink signal block with QCL are the same.
  • a downlink signal block with a QCL may be indicated by a gNB.
  • the gNB may send second indication information, and the second indication information may indicate a downlink signal block having a QCL.
  • the downlink signal block with QCL may also be statically defined by the protocol or configured by the gNB through high-level signaling (such as radio resource control (RRC) signaling).
  • RRC radio resource control
  • the second indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the second indication information may also be carried in separate signaling.
  • the first indication information may indicate a transmission condition of only one SI among the plurality of SIs corresponding to different downlink signal blocks (such as SS / PBCH block).
  • SIB 1-8 For a plurality of SIs with a binding sending relationship, the first indication information may indicate a transmission condition of only one SI among the plurality of SIs corresponding to different downlink signal blocks (such as SS / PBCH block).
  • SIB 1-8 For example, among 8 SIs (SIB 1-8), SIB1 and SIB2 have a binding sending relationship, SIB3 and SIB4 have a binding sending relationship, SIB5 and SIB6 have a binding sending relationship, SIB7 and SIB8 have a binding sending relationship, the An indication information only needs to indicate the transmission conditions of SIBs 1, 3, 5, and 7 corresponding to different SS / PBCH blocks, or only the transmission conditions of SIBs 2, 4, 6, and 8 corresponding to different SS / PBCH blocks.
  • the first indication information may indicate a mapping between one or more downlink signal blocks and only one SI among multiple SIs, where the multiple SIs have a binding sending relationship.
  • the multiple SIs have a binding sending relationship means that the downlink signal blocks corresponding to the multiple SIs are the same and the multiple SIs need to be sent together, that is, the multiple SIs are transmitted together or not together in the same beam direction. Was launched.
  • multiple SIs of the same type have a binding sending relationship and need to be sent together.
  • the first indication information only needs to indicate the four SS /
  • SIs that need to be sent together may be indicated by the gNB.
  • the gNB may send third indication information, and the third indication information may indicate the SI that needs to be sent together.
  • the third indication information may indicate SIs of the same type, and SIs of the same type need to be sent together.
  • the SIs that need to be sent together may also be statically defined by the protocol or configured by the gNB through high-level signaling (such as RRC signaling).
  • the type of SI is statically defined in the protocol or configured by high-level signaling. SIs of the same type need to be sent together.
  • the third indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the third indication information may also be carried in separate signaling.
  • Method 3 In addition to using the above method 1 or the above method 2 alone to indicate the sending status of the SI, the gNB can also use the above method 1 and the second method to indicate the sending status of the SI at the same time, which can save signaling to a greater extent. Overhead.
  • Method 1 The time position corresponding to the downlink signal block for sending SI is pre-configured.
  • the gNB is pre-configured with respective preset time positions (such as symbols) corresponding to SS / PBCH blocks 1-8 for transmitting OSI.
  • SS / PBCH blocks 1-8 in the on-demand OSI monitoring window respectively correspond to preset time positions for transmitting OSI, which are symbols 0-3, 4-7, 8-11, and 12- 15, symbols 16-19, symbols 20-23, symbols 24-27, symbols 28-31.
  • the on-demand OSI monitoring window may be referred to as a first time window, and there is no limitation on its duration.
  • the time position of the SI having a QCL with the downlink signal block is a preset time position corresponding to the downlink signal block in the first time window for sending SI.
  • Blank symbols are symbols not occupied by SI.
  • blank symbols can cause discontinuous transmissions and cause channel loss.
  • the blank symbol may be filled by the first downlink signal to avoid discontinuous data transmission and loss of the channel.
  • the first downlink signal may be a downlink data signal or the like.
  • the gNB wants to transmit SI with QCL to SS / PBCH block 1 and SI with QCL to SS / PBCH block 3.
  • the time position of the SI that has QCL with SS / PBCH block 1 is SS / PBCH block 1 in the on-demand OSI monitoring window, which corresponds to the preset time position for transmitting OSI, that is, symbols 0-3; and SS / PBCH block 3
  • the time position of the SI with QCL is SS / PBCH block 3 in the on-demand OSI monitoring window respectively corresponds to the preset time position for transmitting OSI, that is, symbols 8-11.
  • the symbols 4-7 between the symbols 0-3 and 8-11 do not carry SI and are blank symbols.
  • the gNB may fill the first downlink signal on symbols 4-7.
  • the terminal may receive SI at a preset time position corresponding to a part of the downlink signal block in the first time window. This part of the downlink signal block and the SI transmitted by the network device for this terminal have QCL.
  • the gNB can start LBT for a period of several symbols (such as 10 symbols) at a preset time position corresponding to the downlink signal block for transmitting SI, and pass LBT, gNB A downlink signal block corresponding to the preset time position can be transmitted with a SI of QCL.
  • the terminal only needs to detect the SI within a time window starting at the preset time position for several symbols (such as 10 symbols). The purpose of this time window is to reduce the impact of LBT on sending SI and improve the success rate of SI sending.
  • the implementation of gNB transmitting SI may include:
  • Case 1 The resources at the preset time position (symbols 0-3) corresponding to SS / PBCH block 1 in the first time window can bear the SI requested by the terminal 1 and the terminal 2.
  • the method for gNB transmitting SI can refer to the first method shown in FIG. 8, that is, as shown in FIG. 10, transmitting the SI with the SS / PBCH block having a QCL at a preset time position corresponding to the SS / PBCH block. .
  • the gNB needs to indicate the updated SI transmission time domain pattern, as shown in Figure 11: the 4 symbols corresponding to the original SS / PBCH block 1 used to transmit SI are extended to 6 symbols (updated to symbols 0-5) ), The time positions corresponding to other SS / PBCH blocks used to transmit SI are delayed by 2 symbols.
  • gNB may also indicate the number of SI continuous symbols having QCL with each SS / PBCH block or the entire SI transmission time domain pattern in signaling such as PBCH / RMSI / OSI / RRC.
  • the terminal may calculate the SI according to the SI transmission instruction sent by the gNB.
  • the specific pattern of the domain transmission may include a time position corresponding to the beam for transmitting SI. That is to say, without the gNB instruction, the terminal can determine the number of symbols required to transmit the SI according to the SI size, the size of the video resource used to transmit the SI, the SI transmission bit rate, and the SI transmission instruction, so as to determine the updated SI Send time domain pattern.
  • Method 2 The time position of the sent SI is dynamically allocated.
  • the gNB dynamically allocates the time position of the SI of the QCL with the downlink signal block, so that the SI is continuously transmitted. That is, in the second mode, the time positions of the gNB transmitting SI are continuous. In this way, blank symbols can be avoided. For unlicensed spectrum, gNB does not need to fill the second downlink signal during SI transmission.
  • the gNB in the on-demand OSI monitoring window, the gNB is pre-configured with SS / PBCH blocks 1-8 respectively corresponding preset time positions for transmitting OSI.
  • SS / PBCH blocks 1-8 in the on-demand OSI monitoring window respectively correspond to preset time positions for transmitting OSI, which are symbols 0-3, 4-7, 8-11, and 12- 15, symbols 16-19, symbols 20-23, symbols 24-27, symbols 28-31.
  • the gNB wants to transmit SI with QCL to SS / PBCH block 1 and SI with QCL to SS / PBCH block 3.
  • gNB can transmit with SS / PBCH block 0-3 and symbol SI with QCL 1 and transmit with SS / PBCH block 4-7 instead of symbol 8-11. 3 SI with QCL.
  • the gNB may send fourth indication information, and the fourth indication information indicates a time position where the SI having a QCL with a different downlink signal block is actually transmitted by the gNB.
  • the terminal may receive the fourth indication information, determine the time position of the SI having QCL with part of the downlink signal block according to the fourth indication information, and receive the SI at the time position. This part of the downlink signal block and the SI transmitted by the network device for this terminal have QCL.
  • the terminal may also receive the SI through the blind detection without the need for the gNB to send the fourth indication information.
  • the technical solution provided in this application can be applied to licensed bands (licensed bands), as well as unlicensed bands (unlicensed bands).
  • gNB can perform LBT on an antenna port that has QCL with some downlink signal blocks. If it passes LBT, gNB only transmits system information SI that has QCL with some downlink signal blocks. That is to say, for a specific terminal, gNB only needs to pass LBT in the direction of transmitting beams of some base stations instead of the direction of transmitting beams of all base stations, and then can transmit SI in the direction of transmitting beams of some base stations. This can increase the success probability of LBT and the probability of successful SI transmission, because directional LBT is easier than omnidirectional LBT.
  • gNB In an unlicensed band, gNB needs to perform LBT before transmitting SI, and the priority of LBT is related to the signal transmission time.
  • the LBT priority determines the time that the device performing LBT needs to detect that the channel is idle.
  • the duration of SI transmission is long, and LBT with low priority is required; when gNB sends SI in the direction of only some base stations, the duration of SI transmission is short.
  • High-priority LBT requires shorter execution time. For example, a high-priority CAT2LBT only needs to perform an LBT of 25us.
  • the LBT is successful, that is, the LBT is passed. That is to say, for the scheme in which the gNB sends SI only in the direction of the transmission beam of some base stations, the gNB can use a high-priority LBT to increase the success probability of LBT and the probability of successful SI transmission.
  • FIG. 12 illustrates a terminal 300 provided by some embodiments of the present application.
  • the terminal 300 may include: an input / output module (including an audio input / output module 318, a key input module 316, a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, and a receiver.
  • FIG. 12 uses the connection through a bus as an example. among them:
  • the communication interface 301 may be used for the terminal 300 to communicate with other communication devices, such as a base station.
  • the base station may be the network device 400 shown in FIG. 12.
  • the communication interface 301 refers to an interface between the terminal processor 304 and a transceiving system (consisting of a transmitter 306 and a receiver 308), such as the X1 interface in LTE.
  • the communication interface 301 may include a Global System for Mobile Communication (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and One or more of Long Term Evolution (LTE) (4G) communication interfaces, etc., may also be communication interfaces of 4.5G, 5G or future new air interfaces.
  • the terminal 300 may also be configured with a wired communication interface 301, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • the antenna 314 may be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 310 is configured to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute the signals to multiple receivers 308.
  • the transmitter 306 may be configured to perform transmission processing on a signal output by the terminal processor 304, such as modulating the signal in a licensed frequency band or modulating a signal in an unlicensed frequency band.
  • the transmitter 306 may support the terminal 300 to transmit signals on one or more unlicensed spectrums, or may support the terminal 300 to transmit signals on one or more licensed spectrums.
  • the receiver 308 may be configured to perform reception processing on a mobile communication signal received by the antenna 314. For example, the receiver 308 may demodulate a received signal that has been modulated on an unlicensed frequency band, and may also demodulate a received signal that is modulated on a licensed frequency band. In other words, the receiver 308 may support the terminal 300 to receive a signal modulated on an unlicensed spectrum, or may support the terminal 300 to receive a signal modulated on an authorized spectrum.
  • the transmitter 306 and the receiver 308 may be considered as a wireless modem.
  • the number of the transmitters 306 and the receivers 308 may be one or more.
  • the terminal 300 may further include other communication components, such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the wireless communication signals described above, the terminal 300 may also support other wireless communication signals, such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal 300 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input / output module may be used to implement interaction between the terminal 300 and a user / external environment, and may mainly include an audio input / output module 318, a key input module 316, a display 320, and the like. In specific implementation, the input / output module may further include a camera, a touch screen, a sensor, and the like.
  • the input and output modules communicate with the terminal processor 304 through the user interface 302.
  • the memory 312 is coupled to the terminal processor 304 and is configured to store various software programs and / or multiple sets of instructions.
  • the memory 312 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 312 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 312 can also store a user interface program.
  • the user interface program can realistically display the content image of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and buttons. .
  • the memory 312 may be used to store a program for implementing the system information transmission method provided by one or more embodiments of the present application on the terminal 300 side.
  • a program for implementing the system information transmission method provided by one or more embodiments of the present application on the terminal 300 side for the implementation of the system information transmission method provided by one or more embodiments of this application, please refer to the subsequent embodiments.
  • the terminal processor 304 may be used to read and execute computer-readable instructions. Specifically, the terminal processor 304 may be used to call a program stored in the memory 312, such as an implementation program of the system information transmission method provided by one or more embodiments of the present application on the terminal 300 side, and execute instructions included in the program.
  • the terminal processor 304 may be a modem processor, and is a module that implements the main functions in wireless communication standards such as 3GPP and ETSI.
  • the modem can be used as a separate chip, or it can form a system-level chip or integrated circuit with other chips or circuits. These chips or integrated circuits can be applied to all devices that implement wireless communication functions, including: mobile phones, computers, notebooks, tablets, routers, wearable devices, automobiles, home appliances, etc.
  • the terminal processor 304 processor may be used as a separate chip and coupled with the off-chip memory, that is, the chip does not include memory; or the terminal processor 304 processor is coupled with the on-chip memory and Integrated in the chip, that is, the chip contains memory.
  • the terminal 300 may be the terminal 103 in the wireless communication system 100 shown in FIG. 2 and may be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a user agent. , Mobile clients, and more.
  • the terminal 300 shown in FIG. 12 is only an implementation manner of the present application. In actual applications, the terminal 300 may further include more or fewer components, which is not limited herein.
  • FIG. 13 illustrates a network device 400 provided by some embodiments of the present application.
  • the network device 400 may include: a communication interface 403, one or more network device processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected through the bus or other methods.
  • Figure 13 shows the connection through the bus as an example. among them:
  • the communication interface 403 may be used for the network device 400 to communicate with other communication devices, such as terminal devices or other base stations.
  • the terminal device may be the terminal 300 shown in FIG. 9.
  • the communication interface 301 refers to an interface between the network device processor 401 and a transceiver system (consisting of a transmitter 407 and a receiver 409), such as the S1 interface in LTE.
  • the communication interface 403 may include a Global System for Mobile Communications (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a Long Term Evolution (LTE) (4G) communication interface, etc.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the network device 400 may also be configured with a wired communication interface 403 to support wired communication.
  • a backhaul link between one network device 400 and another network device 400 may be a wired communication connection.
  • the antenna 413 may be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 411 can be used to divide the mobile communication signal into multiple channels and distribute the signals to multiple receivers 409.
  • the transmitter 407 may be configured to perform transmission processing on a signal output by the network device processor 401, for example, to modulate the signal in a licensed frequency band or to modulate a signal in an unlicensed frequency band.
  • the transmitter 407 may support the network device 400 to transmit signals on one or more unlicensed spectrums, or may also support the network device 400 to transmit signals on one or more licensed spectrums.
  • the receiver 409 may be configured to perform reception processing on a mobile communication signal received by the antenna 413.
  • the receiver 409 may demodulate a received signal that has been modulated on an unlicensed frequency band, and may also demodulate a received signal that is modulated on a licensed frequency band.
  • the receiver 409 may support the network device 400 to receive a signal modulated on an unlicensed spectrum, or may also support the network device 400 to receive a signal modulated on an authorized spectrum.
  • the transmitter 407 and the receiver 409 may be considered as a wireless modem.
  • the number of the transmitters 407 and the receivers 409 may be one or more.
  • the memory 405 is coupled to the network device processor 401 and is configured to store various software programs and / or multiple sets of instructions.
  • the memory 405 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 405 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as uCOS, VxWorks, and RTLinux.
  • the memory 405 may also store a network communication program, which can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the network device processor 401 may be used to perform wireless channel management, implement call and communication link establishment and removal, and control handover of user equipment in the control area.
  • the network device processor 401 may include: an Administration / Communication Module / Communication Module (AM / CM) (a center for voice path exchange and information exchange), a basic module (Basic Module (BM)) To complete call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexing unit (Transcoder and SubMultiplexer (TCSM) (for completing multiplexing demultiplexing and code conversion Features) and so on.
  • AM / CM Administration / Communication Module / Communication Module
  • BM Basic Module
  • TCSM Transcoder and SubMultiplexer
  • the network device processor 401 may be used to read and execute computer-readable instructions. Specifically, the network device processor 401 may be used to call a program stored in the memory 405, for example, the program for implementing the system information transmission method provided by one or more embodiments of the present application on the network device 400 side, and execute the program included in the program. instruction.
  • the network device processor 401 may be a modem processor, and it is a module that realizes the main functions in the wireless communication standards such as 3GPP and ETSI.
  • the modem can be used as a separate chip or form a system-level chip or integrated circuit with other chips or circuits. These chips or integrated circuits can be applied to all network-side devices that implement wireless communication functions. For example, in LTE networks, they are called evolved NodeB (eNB or eNodeB), and in the third generation (the 3rd Generation, 3G In a 5G network, it is called a Node B (Node B), etc. In a 5G network, it is called a 5G base station (NR NodeB, gNB).
  • eNB evolved NodeB
  • Node B Node B
  • 5G base station gNodeB
  • the network device processor 401 may be used as a separate chip and coupled with the off-chip memory, that is, the chip does not include a memory; or the network device processor 401 processor is coupled with the on-chip memory and Integrated in the chip, that is, the chip contains memory.
  • the network device 400 may be the network device 101 in the wireless communication system 100 shown in FIG. 2 and may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, etc.
  • the network device 400 may be implemented as several different types of base stations, such as a macro base station, a micro base station, and the like.
  • the network device 400 may apply different wireless technologies, such as a cell wireless access technology, or a WLAN wireless access technology.
  • the network device 400 shown in FIG. 13 is only an implementation manner of the present application. In practical applications, the network device 400 may further include more or fewer components, which is not limited herein.
  • FIG. 14 is a wireless communication system 10 and a network device 500 and a terminal 600 in the wireless communication system 10 according to an embodiment of the present application.
  • the network device 500 may be the network device in the foregoing method embodiment
  • the terminal 600 may be the terminal in the foregoing method embodiment.
  • the network device 500 may include a communication unit 501 and a processing unit 503. among them:
  • the communication unit 501 may be configured to receive a system information request sent by one or more terminals 600.
  • the processing unit 503 may be configured to determine the system information SI to be transmitted according to the system information request.
  • the communication unit 501 may also be used to transmit system information SI.
  • the SI transmitted for one terminal 600 only has a quasi co-location relationship with a part of the downlink signal blocks.
  • the part of the downlink signal blocks is a child of all the downlink signal blocks transmitted by the communication unit 501. set.
  • the communication unit 501 may also be configured to broadcast first indication information, where the first indication information indicates a mapping between a downlink signal block and an SI, where the downlink signal block and its corresponding SI have a QCL.
  • the terminal 600 may include a processing unit 601 and a communication unit 603. among them:
  • the communication unit 603 may be configured to receive first instruction information broadcasted by the network device 500, where the first instruction information indicates a mapping between a downlink signal block and an SI, where the downlink signal block and its corresponding SI have a QCL.
  • the processing unit 601 may be configured to determine, according to the first instruction information, whether an SI having a QCL with a downlink signal block received by the terminal 600 has been transmitted.
  • the communication unit 603 may be further configured to: if the processing unit 601 determines that the SI needed to be obtained by the terminal having a QCL with the downlink signal block received by the terminal 600 has been transmitted, the time position corresponding to the received downlink signal block for receiving SI If the SI of the downstream signal block received by the terminal 600 with QCL is not sent, the system information request is sent to the network device 500, and then the SI transmitted by the network device 500 is received.
  • the SI transmitted by a certain terminal 600 only has a quasi co-location relationship QCL with a part of the downlink signal blocks; the part of the downlink signal blocks is a subset of all the downlink signal blocks transmitted by the network device 500.
  • instructing the base station to transmit a beam may be equivalent to indicating a downlink signal transmitted in the direction of the beam, such as SS / PBCH block, or CSI-RS.
  • this downlink signal may be referred to as a downlink signal block.
  • the SI indicating that a certain base station transmits a beam may be equivalent to the SI indicating that the downlink signal block transmitted in the direction of the base station transmitting beam has a quasi-co-location QCL relationship.
  • the SI carried by the base station transmitting beam beam1 is an SI having a quasi co-location relationship with the SS / PBCH block1 transmitted in the direction of beam1.
  • the SI corresponding to the downlink signal block is the SI transmitted by the network device in the beam direction in which the downlink signal block is transmitted.
  • the first indication information may indicate a situation in which the transmitted beams of different base stations carry SI, that is, indicate which SIs are carried in different transmitted beams of the base stations or not.
  • the network device only uses a part of the base station transmission beam to transmit the SI, instead of using all the base station transmission beams to transmit the SI, which can save system overhead.
  • the terminal does not need to request the network device for the SI requested by other terminals or the terminal itself, and only needs to detect the SI by transmitting the SI of the resource corresponding to the downlink signal block received by the terminal. In this way, the terminal in the cell can avoid repeatedly requesting the SI available in the cell, which saves system overhead.
  • the processing unit 503 in the network device 500 may be used to determine this part of the downlink signal block through, but not limited to:
  • Method 1 The SI request received by the network device with 500 has a downlink signal block of QCL. That is to say, for the specific terminal 600, part of the base station transmit beams used by the network device to transmit SI may include: the base station receive beams used by the network device 500 to receive the SI request, and base station transmit beams with QCL, or the base station P (P is a positive integer) neighboring beams of the transmitting beam.
  • the SI request transmitted with the specific terminal 600 has a downlink signal block of QCL. That is to say, for the specific terminal 600, a part of the base station transmission beams used by the network device 500 to transmit SI may include: the terminal transmission beams used by the specific terminal 600 to transmit the SI request.
  • the base station transmits Q (Q is a positive integer) neighboring beams.
  • Manner 3 The downlink signal block indicated by the specific terminal 600. That is to say, the specific terminal 600 may indicate to the network device 500 which base station or base stations transmit the beam to transmit the SI.
  • Method four a downlink signal block configured by the system. That is to say, the system can configure the network equipment to transmit SI to some base stations to transmit beams. Optionally, in a scenario where the terminal 600 is stationary or the movement range of the terminal 600 is very limited, the system may configure the terminal 600 with a part of the base station transmitting the SI transmitting beam.
  • the network device will only receive the SI request beam direction, or the beam direction and some adjacent beam directions, or the terminal sends the SI request beam direction, or the beam direction and the neighbor.
  • Some beam directions, or the beam directions configured by the system, or the terminal requesting the beam to send SI upwards greatly reduces the system overhead required to send SI and improves system efficiency.
  • the two main implementations of the first indication information may include:
  • the first indication information may include: H groups of bits, each group of bits includes M bits, wherein one bit corresponds to one SI, and the jth bit in the i-th group of bits indicates the corresponding i-th downlink signal block Whether the j-th SI has been transmitted.
  • H is a positive integer
  • M is a positive integer
  • i is a positive integer
  • j is a positive integer.
  • the value of the j-th bit in the i-th group of bits is '1', it may indicate that the j-th SI corresponding to the i-th downlink signal block has been transmitted by the network device;
  • the value of the j-th bit is '0', it can be shown that the j-th SI corresponding to the i-th downlink signal block is not sent by the network device. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the network device, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the network device. In practical applications, multiple bits may be used to correspond to one SI.
  • the first indication information may include: W groups of bits, one group of bits corresponding to one SI, each group of bits including Y bits, and one bit corresponding to one downlink signal block; the nth bit in the m group of bits indicates corresponding Whether the m-th SI of the n-th downlink signal block has been transmitted.
  • W is a positive integer
  • Y is a positive integer
  • m is a positive integer
  • n is a positive integer.
  • the value of the n-th bit in the m-th group of bits is '1', it may indicate that the m-th SI corresponding to the n-th downlink signal block has been transmitted by the network device;
  • the value of the nth bit is '0', it can be shown that the mth SI of the nth downlink signal block is not sent by the network device. It is not limited to this, it may also be specified that a bit value of '0' indicates that the corresponding SI has been transmitted by the network device, and a bit value of '1' indicates that the corresponding SI has not been transmitted by the network device. In practical applications, multiple bits may be used to correspond to one downlink signal block.
  • the first indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the first indication information may also be carried in separate signaling.
  • the number of bits required to implement the first indication information may be large.
  • the first indication information may adopt but is not limited to the following implementation manners:
  • the first indication information may indicate the transmission condition of the SI corresponding to only one of the downlink signal blocks.
  • the network device 500 transmits 8 SS / PBCH blocks, among which SS / PBCH block1 and SS / PBCH block2 have QCL, SS / PBCH block3 and SS / PBCH block4 have QCL, SS / PBCH block5 and SS / PBCH block6 have QCL , SS / PBCH block7 and SS / PBCH block8 have QCL.
  • the first instruction information only needs to indicate the sending status of the SI corresponding to SS / PBCH block 1, 3, 5, 7, or only SS / PBCH block 2, 2, 4, Sending of SI corresponding to 6, 8.
  • the first indication information may indicate a mapping between only one downlink signal and SI in a plurality of downlink signal blocks. There is a QCL between the plurality of downlink signal blocks. The transmission conditions of the SI corresponding to the downlink signal block with QCL are the same.
  • the downlink signal block with QCL may be indicated by the network device 500.
  • the communication unit 501 in the network device 500 may send second instruction information, and the second instruction information may indicate a downlink signal block having a QCL.
  • the downlink signal block with QCL can also be statically defined by the protocol or configured by the network device 500 through high-level signaling (such as radio resource control (RRC) signaling).
  • RRC radio resource control
  • the second indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the second indication information may also be carried in separate signaling.
  • the first indication information may indicate a transmission condition of only one SI among the plurality of SIs corresponding to different downlink signal blocks (such as SS / PBCH block).
  • SIB 1-8 For example, of the 8 SIs (SIB 1-8), SIB1 and SIB2 have a binding sending relationship, SIB3 and SIB4 have a binding sending relationship, SIB5 and SIB6 have a binding sending relationship, SIB7 and SIB8 have a binding sending relationship
  • the first An indication information only needs to indicate the transmission conditions of SIBs 1, 3, 5, and 7 corresponding to different SS / PBCH blocks, or only the transmission conditions of SIBs 2, 4, 6, and 8 corresponding to different SS / PBCH blocks.
  • the first indication information may indicate a mapping between one or more downlink signal blocks and only one SI among multiple SIs, where the multiple SIs have a binding sending relationship.
  • the multiple SIs have a binding sending relationship means that the downlink signal blocks corresponding to the multiple SIs are the same and the multiple SIs need to be sent together, that is, the multiple SIs are transmitted together or not together in the same beam direction. Was launched.
  • multiple SIs of the same type have a binding sending relationship and need to be sent together.
  • SIs that need to be sent together may be indicated by the network device 500.
  • the communication unit 501 in the network device 500 may send the third instruction information, and the third instruction information may indicate the SIs that need to be sent together.
  • the third indication information may indicate SIs of the same type, and SIs of the same type need to be sent together.
  • the SIs that need to be sent together may also be statically defined by the protocol or configured by the network device 500 through high-level signaling (such as RRC signaling).
  • the type of SI is statically defined in the protocol or configured by high-level signaling. SIs of the same type need to be sent together.
  • the third indication information may be carried in one or more of the following: remaining minimum system information RMSI, SS / PBCH block. Not limited to this, the third indication information may also be carried in separate signaling.
  • Method 3 In addition to using the above method 1 or the above method 2 to indicate the transmission status of the SI, the communication unit 501 in the network device 500 may also use the above method 1 and the second method to indicate the transmission status of the SI. Greater savings in signaling overhead.
  • the resource allocation mode of the SI may include:
  • Method 1 The time position corresponding to the downlink signal block for sending SI is pre-configured. Specifically, the time position of the SI having a QCL with the downlink signal block is a preset time position for sending the SI corresponding to the downlink signal block in the first time window.
  • a blank sign may exist between the downlink signal blocks corresponding to the SI transmitted by the communication unit 501 in the network device 500 between the corresponding preset time positions in the first time window.
  • Blank symbols are symbols not occupied by SI.
  • blank symbols can cause discontinuous transmissions and cause channel loss.
  • the blank symbol can be filled by the second downlink signal to avoid discontinuous data transmission and loss of the channel.
  • the second downlink signal may be a downlink data signal and the like.
  • the communication unit 603 in the terminal 600 may receive SI at a preset time position corresponding to a part of the downlink signal block in the first time window. This part of the downlink signal block and the SI transmitted by the network device for this terminal have QCL.
  • Method 2 The time position of the SI is dynamically allocated by the network device 500. Specifically, the network device 500 dynamically allocates the time position of the SI having the QCL with the downlink signal block, so that the SI is continuously transmitted. That is to say, in the second mode, the time positions of the SIs transmitted by the communication unit 501 in the network device 500 are continuous. In this way, a blank symbol can be avoided. For an unlicensed spectrum, the network device 500 does not need to fill the second downlink signal during SI transmission.
  • the communication unit 501 in the network device 500 may send fourth instruction information, and the fourth instruction information indicates a time position where the SI having a QCL with a different downlink signal block is actually transmitted by the network device 500.
  • the communication unit 603 in the terminal 600 may receive the fourth instruction information, and determine the time position of the SI having QCL with a part of the downlink signal block according to the fourth instruction information, and receive the SI at the time position.
  • This part of the downlink signal block and the SI transmitted by the network device for the communication unit 603 in the terminal 600 have QCL.
  • the communication unit 603 in the terminal 600 may also receive the SI through blind detection, without the network device 500 sending the fourth instruction information.
  • the communication unit 501 in the network device 500 can perform LBT on an antenna port that has QCL with some downlink signal blocks. If the LBT is passed, the communication unit 501 in the network device 500 only transmits Part of the downlink signal block has the system information SI of the QCL. That is to say, for a specific terminal, the communication unit 501 in the network device 500 only needs to pass the LBT in the direction of transmitting the beams of some base stations instead of the directions of the transmitting beams of all the base stations, and then the direction of the transmitting beams of the partial base stations Transmit SI. This can increase the success probability of LBT and the probability of successful SI transmission, because directional LBT is easier than omnidirectional LBT.
  • an embodiment of the present invention also provides a wireless communication system.
  • the wireless communication system may be the wireless communication system 100 shown in FIG. 2, or the wireless communication system 10 shown in FIG. 14, and may include: a network device And terminal.
  • the terminal may be the terminal in the foregoing embodiment, and the network device may be the network device in the foregoing embodiment.
  • the terminal may be the terminal 300 shown in FIG. 12, and the network device may be the network device 400 shown in FIG. 13.
  • the terminal may also be the terminal 600 in the embodiment of FIG. 14, and the network device may also be the network device 500 in the embodiment of FIG. 14.
  • the network and the terminal reference may be made to the foregoing embodiments, and details are not described herein again.
  • the network device processor 405 is configured to control the transmitter 407 to send in an unlicensed frequency band and / or a licensed frequency band and control the receiver 409 to receive in an unlicensed frequency band and / or a licensed frequency band.
  • the transmitter 407 is configured to support a network device to perform a process of transmitting data and / or signaling.
  • the receiver 409 is configured to support a network device to perform a process of receiving data and / or signaling.
  • the memory 405 is configured to store program code and data of a network device.
  • the transmitter 407 may be mainly used to send the system information SI and the first indication information.
  • the SI transmitted by the transmitter 407 only has QCL with some downlink signal blocks. That is to say, for the specific terminal, the transmitter 407 transmits SI only in the beam direction carrying the part of the downlink signal block.
  • the specific terminal is within the coverage of a beam carrying the partial downlink signal block, and can detect the SI transmitted by the network device in the beam direction.
  • the first indication information may indicate a mapping between a downlink signal block and an SI, where the downlink signal block and its corresponding SI have a QCL.
  • the first indication information may indicate a situation in which the transmitted beams of different base stations carry SI, that is, indicate which SIs are carried in different transmitted beams of the base stations or not.
  • the receiver 409 may be used to receive an SI request sent by a terminal.
  • the terminal processor 304 is configured to call instructions stored in the memory 312 to control the transmitter 306 to transmit in an unlicensed frequency band and / or an authorized frequency band and to control the receiver 308 in an unlicensed frequency band. And / or licensed bands for reception.
  • the transmitter 306 is configured to support a terminal to perform a process of transmitting data and / or signaling.
  • the receiver 308 is used to support the terminal to perform a process of receiving data and / or signaling.
  • the memory 312 is configured to store program codes and data of the terminal.
  • the transmitter 306 may be used to transmit an SI request.
  • the receiver 308 may be configured to receive the SI and the first indication information sent by the network device.
  • the SI received by its receiver 308 only has QCL with some downlink signal blocks. That is to say, for the specific terminal, the network device only transmits SI in the beam direction carrying the part of the downlink signal block.
  • the specific terminal is within the coverage of a beam carrying the partial downlink signal block, and can detect the SI transmitted by the network device in the beam direction.
  • the first indication information may indicate a mapping between a downlink signal block and an SI, where the downlink signal block and its corresponding SI have a QCL. In other words, the first indication information may indicate a situation in which the transmitted beams of different base stations carry SI, that is, indicate which SIs are carried in different transmitted beams of the base stations or not.
  • FIG. 15 is a schematic structural diagram of a device provided by the present application.
  • the device 50 may include a processor 501 and one or more interfaces 502 coupled to the processor 501. among them:
  • the processor 501 may be used to read and execute computer-readable instructions.
  • the processor 501 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for decoding the instructions and issuing control signals for the operations corresponding to the instructions.
  • the operator is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations. It can also perform address operations and conversions.
  • Registers are mainly responsible for storing register operands and intermediate operation results temporarily stored during instruction execution.
  • the hardware architecture of the processor 501 may be an application specific integrated circuit (ASIC) architecture, a MIPS architecture, an ARM architecture, or an NP architecture.
  • the processor 501 may be single-core or multi-core.
  • the interface 502 can be used to input data to be processed to the processor 501, and can output the processing result of the processor 501 to the outside.
  • the interface 502 may be a general input / output (GPIO) interface, and may be connected to multiple peripheral devices (such as a radio frequency module, etc.).
  • the interface 502 may also include multiple independent interfaces, such as an Ethernet interface, a mobile communication interface (such as an X1 interface), etc., which are respectively responsible for communication between different peripheral devices and the processor 501.
  • the processor 501 may be used to call the implementation program of the system information transmission method provided by one or more embodiments of the present application on a network device side or a terminal side from a memory, and execute instructions included in the program.
  • the interface 502 can be used to output the execution result of the processor 501.
  • the interface 503 may be specifically used to output the processing result of the processor 501.
  • processor 501 and the interface 502 can be implemented through hardware design, software design, or a combination of software and hardware, which is not limited here.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented in a manner that a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EPROM, EEPROM), registers, hard disks, mobile hard disks, CD-ROMs, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC can be located in a transceiver or a relay device.
  • the processor and the storage medium may also exist as discrete components in a radio access network device or a terminal device.
  • the functions described in the embodiments of the present invention may be implemented by hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

一种系统信息传输方法、相关设备及系统,该方法包括:网络设备接收一个或多个终端发送的系统信息请求;所述网络设备发射系统信息SI,其中,针对一个终端发射的SI仅与部分下行信号块具有准共址关系QCL;所述部分下行信号块为所述网络设备发射的全部下行信号块的子集;所述网络设备发送第一指示信息,所述第一指示信息指示所述下行信号块与SI之间的映射,其中,所述下行信号块与其对应的SI具有QCL。上述方案可节省系统开销,提高资源利用率。

Description

系统信息传输方法、相关设备及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种系统信息传输方法、相关设备及系统。
背景技术
在长期演进(long term evolution,LTE)系统中,系统信息分为主系统信息块(master information block,MIB)和若干个系统信息块(system information block,SIB)。MIB承载于广播信道(broadcast channel,BCH)中。MIB的发送方式如图1A所示,MIB在80ms内保持不变,80ms内重复发送四次,占据信道中心带宽两边共72个子载波的频域资源。MIB承载了接入该网络所需的基本信息,以及SIB 1的指示信息,如时频资源位置及信息资源块大小等。用户设备(user equipment,UE)获取MIB信息后可以根据该指示信息进一步获取SIB 1。LTE中SIB 1的发送方式如1B所示,SIB 1在80ms内保持不变,80ms内重复发送四次,发送时间位置总是位于10ms无线帧内的第5个子帧。
在新空口(new radio,NR)系统中,系统信息分为主系统信息块(master information block,MIB,剩余最小系统信息(remaining minimum system information,RMSI)和其他系统信息(other system information,OSI)。其中,MIB承载于物理广播信道PBCH中,RMSI承载于RMSI物理下行共享信道(physical downlink shared channel,PDSCH)中。RMSI类似于LTE中的SIB 1,两者的区别在于SIB 1的传输周期位置都是固定的,而NR为了提高系统调度灵活性,其RMSI PDSCH的时频资源位置和大小均可变,具体参数由RMSI CORESET(类似于LTE中的PDCCH,承载的都是DCI信息)指示。OSI类似于LTE中的SIB 2-13,其承载的具体信息和发送周期由RMSI来指示。
系统信息对于用户设备(user equipment,UE)的初始接入流程以及正常工作非常重要。在NR中,OSI又分为广播OSI(broadcast OSI)和按需OSI(on-demand OSI)。广播OSI和PBCH,RMSI一样,基站(gNB)会周期性的进行广播发送,其配置信息在RMSI中承载。
周期性发送系统信息会增大系统开销,降低资源利用率。对于多波束(beam)系统而言,系统信息需要在所有beam方向重复发送,进一步增大了系统开销。为了提高系统效率,对于on-demand OSI,如果gNB没有收到UE的请求,则不会发送on-demand OSI。UE可以请求gNB发送部分on-demand OSI,也可以请求gNB发送全部的on-demand OSI(On-demand OSI包含一个或多个SIB)。但是,当gNB收到全部或部分on-demand OSI的发送请求后,该全部或部分on-demand OSI即变为broadcast OSI,由gNB周期性的进行广播发送,在所有beam方向重复发送。现有的这种发送on-demand OSI的方式依然会导致较大的系统开销。
发明内容
本申请提供了一种系统信息传输方法、相关设备及系统,可节省系统开销,提高资源利用率。
第一方面,本申请提供了一种系统信息传输方法,应用于网络设备侧,该方法可包括: 网络设备接收一个或多个终端发送的系统信息请求,根据系统信息请求发射系统信息SI,其中,针对一个终端发射的SI仅与部分下行信号块具有准共址关系QCL,该部分下行信号块为网络设备发射的全部下行信号块的子集。另外,网络设备发射的还广播第一指示信息,第一指示信息指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。
第二方面,本申请提供了一种系统信息传输方法,应用于终端侧,该方法可包括:终端接收网络设备广播的第一指示信息,第一指示信息指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。终端根据第一指示信息判断与终端接收到的下行信号块具有QCL的SI是否已经被发送。如果与终端接收到的下行信号块具有QCL的终端需要获得的SI已经被发送,则在接收到的下行信号块对应的用于接收SI的时间位置上检测SI;如果与终端接收到的下行信号块具有QCL的终端需要获得的SI没有被发送,则向网络设备发送系统信息请求,然后接收网络设备发射的SI。网络设备针对特定某个终端发射的SI仅与部分下行信号块具有准共址关系QCL,该部分下行信号块为网络设备发射的全部下行信号块的子集。
在第一方面和第二方面描述的方案中,指示基站发射波束可以等同于指示该波束方向上传输的下行信号,例如SS/PBCH block,或CSI-RS等。本申请中,可以将该下行信号称为下行信号块。指示某个基站发射波束承载的SI可以等同于指示和该基站发射波束方向上传输的下行信号块具有准共址关系QCL的SI。例如,基站发射波束beam1承载的SI即与beam1方向上传输的SS/PBCH block1具有准共址关系的SI。
本申请中,下行信号块对应的SI为网络设备在传输下行信号块的波束方向上发射的SI。换句话说,第一指示信息可指示不同的基站发射波束承载SI的情况,即指示不同的基站发射波束承载了哪些SI或没有承载哪些SI。
实施第一方面和第二方面描述的方法,针对某个特定终端发送的SI请求,网络设备仅采用部分的基站发射波束发射SI,而不是采用全部的基站发射波束发射SI,这样可以节省系统开销。而且,根据网络设备的指示,终端无需再向网络设备请求其他终端或该终端自身请求过的SI,只需该终端接收到的下行信号块对应的用于传输SI的资源位置检测SI即可。这样可以避免小区中的终端重复请求该小区中可获得的SI,节省了系统开销。
结合第一方面或第二方面,针对某个特定终端,网络设备可通过但不限于以下几种方式确定该部分下行信号块:
方式一,与网络设备接收到的SI请求具有QCL的下行信号块。也即是说,针对该特定终端,网络设备发射SI所采用的部分基站发射波束可以包括:与网络设备接收SI请求所采用的基站接收波束具有QCL的基站发射波束,或还包括该基站发射波束的P(P为正整数)个相邻波束。
方式二,与该特定终端发射的SI请求具有QCL的下行信号块。也即是说,针对该特定终端,网络设备发射SI所采用的部分基站发射波束可以包括:与特定终端发射SI请求所采用的终端发射波束具有QCL的基站发射波束,或还包括该基站发射波束的Q(Q为正整数)个相邻波束。
方式三,该特定终端指示的下行信号块。也即是说,该特定终端可以向网络设备500指示采用哪一个或哪一些基站发射波束来发射SI。
方式四,系统配置的下行信号块。也即是说,系统可以配置网络设备发射SI的部分基站发射波束。可选的,在终端是静止的或者终端的移动范围十分有限的场景下,系统可以给终端配置发射SI的部分基站发射波束。
可以看出,针对特定终端,网络设备只会在网络设备收到SI请求的波束方向,或该波束方向以及相邻一些波束方向,或终端发送SI请求的波束方向,或该波束方向以及相邻一些波束方向,或是系统配置的波束方向,或终端请求波束向上发送SI,极大降低了发送SI所需的系统开销,提高了系统效率。
结合第一方面或第二方面,第一指示信息的两种主要实现方式可包括:
实现方式一,第一指示信息可以包括:H组比特,每组比特包括M个比特,其中,一个比特对应一个SI,第i组比特中的第j个比特指示第i个下行信号块对应的第j个SI是否已被发送。其中,H是正整数,M是正整数,i∈(1,H),j∈(1,M),i是正整数,j是正整数。
可选的,当第i组比特中的第j个比特取值为‘1’时,可以表明第i个下行信号块对应的第j个SI已经被网络设备发送;当第i组比特中的第j个比特取值为‘0’时,可以表明第i个下行信号块对应的第j个SI没有被网络设备发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被网络设备发送,比特取值为‘1’表示相应的SI没有被网络设备发送。实际应用中,还可以采用多个比特对应一个SI。
实现方式二,第一指示信息可以包括:W组比特,一组比特对应一个SI,每组比特包括Y个比特,一个比特对应一个下行信号块;第m组比特中的第n个比特指示对应第n个下行信号块的第m个SI是否已被发送。其中,W是正整数,Y是正整数,m∈(1,W),n∈(1,Y),m是正整数,n是正整数。
可选的,当第m组比特中的第n个比特取值为‘1’时,可以表明对应第n个下行信号块的第m个SI已经被网络设备发送;当第m组比特中的第n个比特取值为‘0’时,可以表明第n个下行信号块的第m个SI没有被网络设备发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被网络设备发送,比特取值为‘1’表示相应的SI没有被网络设备发送。实际应用中,还可以采用多个比特对应一个下行信号块。
可选的,当SI具体为on-demand OSI时,第一指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第一指示信息还可以携带在单独的信令中。
可以推断出,当下行信号块的数量较多,或者SI的数量较多时,第一指示信息的实现方式需要的比特数量会很多。例如,当网络设备发射8个SS/PBCH block,每个SS/PBCH block对应8个SI时,第一指示信息需要64(64=8*8)个比特。此时,第一指示信息需要的信令开销较大。
进一步的,为了减少第一指示信息所需的信令开销,第一指示信息可以采取但不限于下述几种实现方式:
(1)方式一,对于具有QCL的多个下行信号块(如SS/PBCH block),第一指示信息可以指示其中仅一个下行信号块对应的SI的发射情况。例如,网络设备发射8个SS/PBCH block,其中,SS/PBCH block1和SS/PBCH block2具有QCL,SS/PBCH block3和SS/PBCH  block4具有QCL,SS/PBCH block5和SS/PBCH block6具有QCL,SS/PBCH block7和SS/PBCH block8具有QCL,第一指示信息仅需要指示SS/PBCH block 1、3、5、7对应的SI的发送情况,或仅需要指示SS/PBCH block 2、4、6、8对应的SI的发送情况。
也即是说,第一指示信息可以指示多个下行信号块中仅一个下行信号与SI之间的映射。这多个下行信号块之间具有QCL。具有QCL的下行信号块对应的SI的发射情况相同。
可选的,具有QCL的下行信号块可以由网络设备指示。网络设备可以发送第二指示信息,第二指示信息可指示具有QCL的下行信号块。可选的,具有QCL的下行信号块也可以由协议静态定义或由网络设备通过高层信令(如无线资源控制(radio resource control,RRC)信令)配置。
可选的,当SI具体为on-demand OSI时,第二指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第二指示信息还可以携带在单独的信令中。
(2)方式二,对于具有绑定发送关系的多个SI,第一指示信息可以指示不同下行信号块(如SS/PBCH block)对应的这多个SI中仅一个SI的发射情况。例如,8个SI(SIB 1-8)中,SIB1和SIB2具有绑定发送关系,SIB3和SIB4具有绑定发送关系,SIB5和SIB6具有绑定发送关系,SIB7和SIB8具有绑定发送关系,第一指示信息仅需要指示不同SS/PBCH block对应的SIB 1、3、5、7的发送情况,或仅需要指示不同SS/PBCH block对应的SIB 2、4、6、8的发送情况。
也即是说,第一指示信息可以指示一个或多个下行信号块与多个SI中仅一个SI之间的映射,这多个SI具有绑定发送关系。这里,这多个SI具有绑定发送关系是指,这多个SI对应的下行信号块相同且这多个SI需要一起发送,即这多个SI在相同的波束方向上一起被发射或一起不被发射。可选的,同一类型的多个SI具有绑定发送关系,需要一起发送。
可选的,需要一起发送的SI(即具有绑定发送关系的SI)可以由网络设备指示。网络设备可以发送第三指示信息,第三指示信息可指示需要一起发送的SI。可选的,第三指示信息可指示相同类型的SI,相同类型的SI需要一起发送。可选的,需要一起发送的SI也可以由协议静态定义或由网络设备通过高层信令(如RRC信令)配置。例如,协议静态定义或高层信令配置SI的类型,相同类型的SI需要一起发送。
可选的,当SI具体为on-demand OSI时,第三指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第三指示信息还可以携带在单独的信令中。
(3)方式三,除了单独使用上述方式一或上述方式二来指示SI的发送状态,网络设备也可以同时采用上述方式一和上述方式二来指示SI的发送状态,可以更大程度的节约信令开销。
结合第一方面或第二方面,SI的资源配置方式可包括:
方式一:下行信号块对应的用于发送SI的时间位置是预先配置的。具体的,与下行信号块具有QCL的SI的时间位置为该下行信号块在第一时间窗口中对应的用于发送SI的预设时间位置。
在一种可能的情况下,网络设备发射的SI对应的下行信号块在所述第一时间窗口中对 应的预设时间位置之间可能存在空白符号。空白符号为未被SI占用的符号。在NRU场景下,空白符号会导致传输不连续,导致信道丢失。对此,可选的,空白符号可以被第二下行信号填充,避免数据传输不连续而丢失信道。第二下行信号可以是下行数据信号等。
在方式一中,对特定终端,该终端可以在部分下行信号块在第一时间窗口中对应的预设时间位置接收SI。该部分下行信号块与网络设备针对该终端发射的SI具有QCL。
方式二:发送SI的时间位置是网络设备动态分配的。具体的,网络设备动态分配与下行信号块具有QCL的SI的时间位置,使得SI被连续发送。也即是说,在方式二中,网络设备发射SI的时间位置是连续的。这样,可避免出现空白符号,对于非授权频谱而言,网络设备不需要在SI传输时填充第二下行信号。
在方式二中,网络设备可以发送第四指示信息,第四指示信息指示与不同下行信号块具有QCL的SI实际被网络设备发射的时间位置。对特定终端,该终端可以接收到第四指示信息,根据第四指示信息确定与部分下行信号块具有QCL的SI的时间位置,并在该时间位置上接收SI。该部分下行信号块与网络设备针对该终端发射的SI具有QCL。可选的,终端也可以通过盲检接收SI,无需网络设备发送第四指示信息。
在非授权频段下,针对特定终端,网络设备可以在与部分下行信号块具有QCL的天线端口上进行LBT,如果通过LBT,则网络设备仅发射与部分下行信号块具有QCL的系统信息SI。也即是说,针对特定终端,网络设备仅需要在部分基站发射波束的方向而不是全部的基站发射波束的方向上通过LBT,便可以在该部分基站发射波束的方向上发射SI。这样可以提高LBT成功概率,提高SI成功发送的概率,因为定向LBT比全向LBT容易。
第三方面,提供了一种网络设备,包括多个功能单元,用于相应的执行第一方面可能的实施方式中的任意一种所提供的方法。
第四方面,提供了一种终端,包括多个功能单元,用于相应的执行第二方面可能的实施方式中的任意一种所提供的方法。
第五方面,提供了一种网络设备,用于执行第一方面描述的系统信息传输方法。所述网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如终端,发送信号,所述接收器用于接收所述另一无线通信设备,例如终端,发送的信号,所述存储器用于存储第一方面描述的系统信息传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面可能的实施方式中的任意一种所描述的系统信息传输方法。
第六方面,提供了一种终端,用于执行第二方面描述的系统信息传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线通信设备,例如网络设备,发送的信号,所述存储器用于存储第二方面描述的系统信息传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面可能的实施方式中的任意一种所描述的系统信息传输方法。
第七方面,提供了一种通信系统,所述通信系统包括:网络设备和终端,其中:所述网络设备可以是第一方面描述的网络设备。所述终端可以是第二方面描述的终端。
第八方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其 在计算机上运行时,使得计算机执行上述第一方面描述的系统信息传输方法。
第九方面,提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的系统信息传输方法。
结合第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的系统信息传输方法。
结合第十一方面,提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的系统信息传输方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1A是LTE中的主系统消息块的发送示意图;
图1B是LTE中的系统消息块SIB 1的发送示意图;
图2是本申请提供的一种无线通信系统的架构示意图;
图3A-3B是本申请涉及的Type A/Type B多载波LBT机制的示意图;
图4是本申请提供的系统信息传输方法的总体流程示意图;
图5是本申请中gNB定向发射SI的示意图;
图6是本申请中gNB广播第一指示信息的示意图;
图7A-7B是本申请中的第一指示信息两种实现方式的示意图;
图8是本申请提供的一种SI资源配置的示意图;
图9是本申请提供的另一种SI资源配置的示意图;
图10是本申请提供的再一种SI资源配置的示意图;
图11是本申请提供的再一种SI资源配置的示意图;
图12是本申请的一个实施例提供的终端设备的硬件架构示意图;
图13是本申请的一个实施例提供的网络设备的硬件架构示意图;
图14是本申请的提供的无线通信系统,终端和网络设备的功能框图;
图15是本申请的一种处理器的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图2示出了本申请涉及的无线通信系统100。无线通信系统100可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。无线通信系统100可以工作在授权频段,也可以工作在非授权频段。如图2所示,无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网(未示出)。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与 一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是用户设备(UE)、移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、终端代理、移动客户端等等。
非授权频段的使用可以提高无线通信系统100的系统容量。本申请中,无线通信系统100可以是能够工作在非授权频段的LTE通信系统,例如LTE-U系统,也可以是能够工作在非授权频段的新空口通信系统,例如NR-U系统,还可以是未来工作在非授权频段的其他通信系统。
另外,无线通信系统100还可以包括WiFi网络。
当无线通信系统100工作在非授权频段时,为了保证和其他在非授权频段工作的设备共存,NR-U系统采用LBT的信道竞争接入机制,并在3GPP的R13版本中对LBT的流程和参数进行了规定。图3A-3B示出了两种类型的先听后说(listen before talk,LBT)侦听机制。
如图3A所示,类型A(Type A)LBT设备可以在多个成员载波(component carrier,CC)上进行独立的退避,当在某个载波上退避完成后延迟传输来等待其他仍在退避的成员载波。当所有进行LBT的载波都完成退避后,该设备需要做额外的one-shot CCA(25us clear channel assessment)来保证所有载波空闲;如果所有载波空闲,则eNB在空闲载波上同时进行传输。
如图3B所示,类型B(Type B)LBT设备仅在某个选取的成员载波上进行退避,当退避结束时在其他成员载波上进行one-shot CCA(25us clear channel assessment)的回看,如果成员载波为空闲,则进行数据传输;如果该成员载波不空闲,则此次无法在该成员载波上进行数据传输。
如图3A-3B所示,进行LBT的设备可以是LTE LAA,WiFi,NR-U或是其它工作于非授权(unlicensed)频段的通信设备。图中设备进行LBT收到的干扰来自于WiFi系统,在实际场景中,进行LBT的设备受到的干扰也可以来自于LTE LAA,NR-U或是其它工作于unlicensed频段的通信系统,本申请对此不作限制。
不限于图3A-3B所示,NR-U系统采用的LBT侦听机制还可以发生变化,不影响本申请的实施。
本申请中,无线通信系统100是多波束通信系统。其中:
网络设备101可以被配置有大规模的天线阵列,并利用波束成形技术控制天线阵列形成不同指向的波束。为了覆盖整个小区107,网络设备101需要使用多个不同指向的波束。网络设备101可以使用不同指向的波束发射系统信息(system information,SI)。系统信息 对于终端103的初始接入流程以及正常工作非常重要。
在NR中,系统信息分MIB,RMSI和OSI。其中,MIB承载于物理广播信道PBCH中,RMSI承载于RMSI PDSCH中。OSI又分为广播OSI(broadcast OSI)和按需OSI(on-demand OSI)。广播OSI和PBCH,RMSI一样,网络设备101会周期性的进行广播发送,其配置信息在RMSI中承载。周期性发送系统信息会增大系统开销,降低资源利用率。对于多波束系统而言,系统信息需要在所有beam方向重复发送,进一步增大了系统开销。
为了提高系统效率,对于on-demand OSI,如果网络设备101没有收到终端103的请求,则不会发送on-demand OSI。终端103可以请求网络设备101发送部分on-demand OSI,也可以请求网络设备101发送全部的on-demand OSI(On-demand OSI包含一个或多个SIB)。On-demand OSI请求可以基于现有随机接入流程,终端103可以使用4步随机接入流程(即基于竞争的随机接入流程)中的消息1(Msg1)或消息3(Msg3)向gNB请求特定的OSI。
但是,当网络设备101收到全部或部分on-demand OSI的发送请求后,该全部或部分on-demand OSI即变为broadcast OSI,由网络设备101周期性地进行广播发送,在所有beam方向重复发送。这种发送on-demand OSI的方式依然会导致较大的系统开销。而且,由前述UE请求on-demand OSI的流程可知,请求系统信息会占用物理随机接入信道(physical random access channel,PRACH)资源。尤其,当大量UE发送on-demand OSI请求时,可能会造成其他UE无法完成初始接入流程。
为了避免出现这种状况,现有技术中,网络设备101会在RMSI中携带on-demand OSI的发送状态:如on-demand OSI包含8个不同的SIB,则RMSI中会增加8比特的指示信息,每1比特对应一个SIB,来表示它是否发送。终端在请求on-demand OSI前会先查看RMSI中on-demand OSI的发送状态。如果所需SIB已发送,则终端103不会发送on-demand OSI请求。
但是,当网络设备101收到on-demand OSI发送请求后,网络设备101会在所有的beam方向上重复发送。当beam数量较大时,即使需要该系统信息的终端很少或只对应几个beam方向时,on-demand OSI仍然需要在所有beam方向上发送,这样浪费了大量的系统资源。
为了解决现有的技术问题,本申请提供了一种系统信息传输方法,可节约系统开销。
本申请的主要发明思想可包括:针对某个特定终端发送的on-demand OSI request,网络设备仅采用部分的基站发射波束发射OSI,而不是采用全部的基站发射波束发射OSI,这样可以节省系统开销。一旦网络设备接收到请求某个或某些OSI的on-demand OSI request,这某个或某些OSI就会被网络设备周期性的发送。
另外,网络设备还可以指示基站发射波束承载on-demand OSI的情况,即指示不同的基站发射波束承载了哪些on-demand OSI或没有承载哪些on-demand OSI。这样,终端便可以根据网络设备的指示确定终端所处的波束承载的on-demand OSI是否已经被发送,如果已经被发送,则在终端所处的波束对应的用于传输OSI的时间位置检测OSI即可,不再向网络设备发送on-demand OSI request。这样可以避免小区中的终端重复请求该小区中可获得的OSI(OSI available in the cell),节省了系统开销。
不限于on-demand OSI,本申请提供的技术方案还可以适用于其他SI,例如RMSI等。
本申请中,指示基站发射波束可以等同于指示该波束方向上传输的下行信号块,例如SS/PBCH block,或CSI-RS resource等。本申请中,可以将基站的发射波束上发送的信号称为下行信号块。指示某个基站发射波束承载的SI可以等同于指示和该基站发射波束方向上传输的下行信号块具有准共址关系QCL(QCL,Quasi co-location)的SI。例如,基站发射波束beam1承载的SI即与beam1方向上传输的SS/PBCH block1具有准共址关系的SI。
本申请中,准共址关系QCL表征两个信号的配置参数是否相同。例如具有QCL是指多普勒频移,多普勒频散,平均时延,延迟拓展以及空间接收参数中的一项或者多项相同。
下面结合图4说明本申请提供的技术方案的总体流程。如图4所示,小区中包括多个终端,如终端1,终端2,…,终端i等,i是正整数。展开如下:
S101,网络设备接收一个或多个终端发送的SI请求。
具体的,如图4所示,网络设备接收到终端1和终端2发送的SI请求。不限于图4所示,网络设备还可以接收更多终端发送的SI请求,或者仅仅接收到一个终端发送的SI请求。
可选的,该SI请求中可以携带SI的指示信息,用于指示终端请求哪个或哪些SI。不同终端请求的SI可以相同,也可以不同,本申请不作限制。可选的,SI请求可以请求全部的SI,此时SI请求便无需携带SI的指示信息。
具体的,SI请求可以为随机接入流程中的消息1(msg1)或消息3(msg3),也可以为独立的信令,本申请不作限制。
S103,网络设备发射SI,其中,针对一个特定终端,网络设备发射的SI仅仅与部分下行信号块具有QCL。相应的,该特定终端可以接收到网络设备发射的仅仅与部分下行信号块具有QCL的SI。
本申请中,针对一个特定终端,网络设备发射的SI仅仅与部分下行信号块具有QCL是指针对该特定终端,网络设备仅仅在承载该部分下行信号块的波束方向上发射SI。该特定终端处于承载该部分下行信号块的波束的覆盖范围中,能够检测到网络设备在该波束方向上发射的SI。
如图4所示,针对终端1,网络设备发射的SI仅仅与部分下行信号块a具有QCL。也即是说,网络设备仅仅在传输部分下行信号块a的波束方向上发射终端1请求的SI,而不是在全部的基站发射波束上发射终端1请求的SI。即,网络设备可以对终端1定向发射终端1请求的SI,而不是采用全部的基站发射波束广播终端1请求的SI。这样,可以有效的节约系统开销。这里,部分下行信号块a可以是一个或多个下行信号块。
如图4所示,针对终端2,网络设备发射的SI仅仅与部分下行信号块b具有QCL。也即是说,网络设备仅仅在传输部分下行信号块b的波束方向上发射终端2请求的SI,而不是在全部的基站发射波束上发射终端2请求的SI。即,网络设备可以对终端2定向发射终端2请求的SI,而不是采用全部的基站发射波束广播终端2请求的SI。这样,可以有效的节约系统开销。这里,部分下行信号块b可以是一个或多个下行信号块。
可以推断出,当向网络设备请求SI的终端数量较多,且这多个终端分布在各个基站发射波束的覆盖范围时,网络设备可能需要通过全部的基站发射波束发射SI。只不过,针对 某个特定终端(如终端1)来说,网络设备仅仅在部分的基站发射波束方向上发射该特定终端请求的SI。
本申请中,该部分下行信号块为网络设备发射的全部下行信号块的子集。具体的,如果网络设备发射的某些下行信号块具有QCL,则该全部下行信号块是指网络设备发射的不具有QCL的全部下行信号块。例如,网络设备发射的全部SS/PBCH是指网络设备发射的不具有QCL的全部SS/PBCH。又例如,网络设备发射的全部CSI-RS是指网络设备发射的不具有QCL的全部CSI-RS。
S105,网络设备发送第一指示信息。
具体的,网络设备可以广播或者组播第一指示信息。第一指示信息可指示下行信号块与SI之间的映射mapping,其中,下行信号块与其对应的SI具有QCL。
本申请中,下行信号块对应的SI为网络设备在传输下行信号块的波束方向上发射的SI。换句话说,第一指示信息可指示不同的基站发射波束承载SI的情况,即指示不同的基站发射波束承载了哪些SI或没有承载哪些SI。关于第一指示信息的具体实现会在后续实施例中详细说明,这里先不赘述。
S107,终端根据第一指示信息判断与接收到的下行信号块具有QCL的需要获得的SI是否已经被发送,如果已经被发送,则执行S109,否则,执行S111。这里,与终端接收到的下行信号块具有QCL的需要获得的SI即终端想要接收的SI。也即是说,在第一指示信息指示的映射中,如果终端接收到的下行信号块对应的SI中包含有终端想要接收的SI,则执行S109,否则,执行S111。
S109,终端可以在终端接收到的下行信号块对应的用于传输SI的资源位置上检测SI,无需再向网络设备请求该SI。
S111,终端可以向网络设备发送SI请求。相应的,如S113所示,网络设备可以仅发射与部分下行信号块c具有QCL的SI。
图4中的终端i可以是与终端1(或终端2)不同的终端,也可以就是终端1(或终端2)。终端i可以与终端1(或终端2)处于相同的波束,也可以处于不同的波束。这里,终端所处的波束是指向该终端的波束或者该终端处于其覆盖范围的波束,即该终端能够检测到其承载的信号的波束。
通过S107-S113可以看出,如果终端i所处的波束与终端1(或终端2)所处的波束相同,那么,终端i无需再向网络设备请求终端1(或终端2)请求过的SI。因为网络设备会在指向终端1(或终端2)的波束方向上周期性的发射终端1(或终端2)请求过的SI,终端i能够在该波束对应的用于传输SI的资源位置(即终端i接收到的下行信号块对应的用于传输SI的资源位置)检测到该SI,无需再向网络设备请求。这样,可以避免小区中的终端重复请求该小区中可获得的OSI,可以节省系统开销。
这里,终端i所处的波束与终端1(或终端2)所处的波束相同是指终端i接收到的下行信号块与终端1(或终端2)接收到的下行信号块具有QCL。
不限于图4所示,网络设备发射SI与网络设备发送第一指示信息之间不存在时序限制,即S103可以先于S105,S103也可以晚于S105,S103和S105还可以同时发生。
实施图4所示的技术方案,针对某个特定终端发送的SI请求,网络设备仅采用部分的 基站发射波束发射SI,而不是采用全部的基站发射波束发射SI,这样可以节省系统开销。而且,根据网络设备的指示,终端无需再向网络设备请求其他终端或该终端自身请求过的SI,只需该终端接收到的下行信号块对应的用于传输SI的资源位置检测SI即可。这样可以避免小区中的终端重复请求该小区中可获得的SI,节省了系统开销。
下面以下行信号块是同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)为例,结合图5-图11实施例进一步详细说明本申请提供的技术方案。
(一)网络设备发射SI
图5示例性的示出了网络设备针对特定终端仅采用部分基站发射波束发射SI的方案。
如图5所示,网络设备为基站gNB。假设传输SS/PBCH block1的波束(波束1)指向终端1,传输SS/PBCH block2的波束(波束2)指向终端2,传输SS/PBCH block3的波束(波束3)指向终端3,传输SS/PBCH block4的波束(波束4)指向终端4。
基于接收到的终端1-4发送的SI request,gNB发射SI。其中,终端1通过发送SI request向gNB请求获得SIB2,SIB4;终端2通过发送SI request向gNB请求获得SIB2,SIB3,SIB4;终端3通过发送SI request向gNB请求获得SIB4;终端4通过发送SI request向gNB请求获得SIB2。
具体的,针对终端1,gNB仅发射与SS/PBCH block1具有QCL的SI,即gNB仅在传输SS/PBCH block1的波束(波束1)方向上发射SIB2,SIB4。
具体的,针对终端2,gNB仅发射与SS/PBCH block2具有QCL的SI,即gNB仅在传输SS/PBCH block2的波束(波束2)方向上发射SIB2,SIB3,SIB4。
具体的,针对终端3,gNB仅发射与SS/PBCH block3具有QCL的SI,即gNB仅在传输SS/PBCH block3的波束(波束3)方向上发射SIB4。
具体的,针对终端4,gNB仅发射与SS/PBCH block4具有QCL的SI,即gNB仅在传输SS/PBCH block4的波束(波束4)方向上发射SIB2。
可以看出,针对特定终端,网络设备仅发射与部分下行信号块具有QCL的SI。本申请中,网络设备可以通过但不限于以下几种方式确定该部分下行信号块:
方式一,与网络设备接收到的SI请求具有QCL的下行信号块。也即是说,针对特定终端,网络设备发射SI所采用的部分基站发射波束可以包括:与网络设备接收SI请求所采用的基站接收波束具有QCL的基站发射波束,或还包括该基站发射波束的P(P为正整数)个相邻波束。
方式二,与终端发射的SI请求具有QCL的下行信号块。也即是说,针对特定终端,网络设备发射SI所采用的部分基站发射波束可以包括:与终端发射SI请求所采用的终端发射波束具有QCL的基站发射波束,或还包括该基站发射波束的Q(Q为正整数)个相邻波束。
方式三,终端指示的下行信号块。也即是说,终端可以向网络设备指示采用哪一个或哪一些基站发射波束来发射SI。
方式四,系统配置的下行信号块。也即是说,系统可以配置网络设备发射SI的部分基 站发射波束。可选的,在终端是静止的或者终端的移动范围十分有限的场景下,系统可以给终端配置发射SI的部分基站发射波束。
可以看出,针对特定终端,网络设备只会在网络设备收到SI请求的波束方向,或该波束方向以及相邻一些波束方向,或终端发送SI请求的波束方向,或该波束方向以及相邻一些波束方向,或是系统配置的波束方向,或终端请求波束向上发送SI,极大降低了发送SI所需的系统开销,提高了系统效率。
(二)网络设备发送(广播或组播)第一指示信息
基于图5实施例,图6示例性示出了网络设备发送第一指示信息的方案。
如图6所示,gNB广播第一指示信息。这里,广播是指采用全部的基站发射波束发射第一指示信息。小区中的全部终端都可以接收到第一指示信息。第一指示信息可以指示表1所示的映射:
波束 下行信号块 SI
波束1 SS/PBCH block1 SIB2,SIB4
波束2 SS/PBCH block2 SIB2,SIB3,SIB4
波束3 SS/PBCH block3 SIB4
波束4 SS/PBCH block4 SIB2
表1
在表1示例性所示的映射中,下行信号块SS/PBCH block与其对应的SI之间具有QCL,表明gNB在传输SS/PBCH block的波束方向上发射SS/PBCH block对应的SI。也即是说,SS/PBCH block对应的SI与传输SS/PBCH block的波束之间也存在对应关系。
本申请中,小区中的终端可以先基于第一指示信息判断与该终端接收到的下行信号块具有QCL的该终端想要获得的SI是否已经被发送,如果已经被发送,则在该终端接收到的下行信号块对应的用于接收SI的时间位置上检测SI即可,无需向gNB发送SI请求。
举例说明,如图6所示,终端5和终端3处于相同的波束,该波束即gNB传输SS/PBCH block3的波束。基于表1示例性所示的第一指信息可知,与SS/PBCH block3具有QCL的SIB4已经被发送,即在传输SS/PBCH block3的波束方向上SIB4会被gNB周期性发射。这样,终端5可以检测到SIB4,无需再向gNB发送SI请求,可以节省系统开销。
可选的,当SI具体为on-demand OSI时,第一指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第一指示信息还可以携带在单独的信令中。
(三)第一指示信息的具体实现
基于图5-6实施例,图7A-7B示例性的示出了第一指示信息的两种主要实现方式。
1.实现方式一
如图7A所示,第一指示信息可以为16比特的指示信息,这16比特分为4组比特,一组比特对应一个SS/PBCH block,表明该SS/PBCH block对应的SI的发射情况。每组比 特包括4个比特,一个比特对应一个SI,表明该SI是否被gNB发射。
假设,第1-4组比特分别对应SS/PBCH block 1-4,每组比特中的第1-4个比特分别对应SIB2-SIB5。如图7A所示:
第一组比特为“1010”,表明SS/PBCH block1对应的SIB2,SIB4已被gNB发射,SS/PBCH block1对应的SIB3,SIB5没有被gNB发射。也即是说,gNB在传输SS/PBCH block1的波束方向上发射SIB2,SIB4,而没有发射SIB3,SIB5。具体可参考图5。
第二组比特为“1110”,表明SS/PBCH block2对应的SIB2,SIB3,SIB4已被gNB发射,SS/PBCH block2对应的SIB5没有被gNB发射。也即是说,gNB在传输SS/PBCH block2的波束方向上发射SIB2,SIB3,SIB4,而没有发射SIB5。具体可参考图5。
第三组比特为“0010”,表明SS/PBCH block3对应的SIB4已被gNB发射,SS/PBCH block3对应的SIB2,SIB3,SIB5没有被gNB发射。也即是说,gNB在传输SS/PBCH block3的波束方向上发射SIB4,而没有发射SIB2,SIB3,SIB5。具体可参考图5。
第四组比特为“1000”,表明SS/PBCH block4对应的SIB2已被gNB发射,SS/PBCH block4对应的SIB3,SIB4,SIB5没有被gNB发射。也即是说,gNB在传输SS/PBCH block4的波束方向上发射SIB2,而没有发射SIB3,SIB4,SIB5。具体可参考图5。
参考图7A实施例,概括的说,第一指示信息以包括:H组比特,每组比特包括M个比特,其中,一个比特对应一个SI,第i组比特中的第j个比特指示第i个下行信号块对应的第j个SI是否已被发送。其中,H是正整数,M是正整数,i∈(1,H),j∈(1,M),i是正整数,j是正整数。
可选的,当第i组比特中的第j个比特取值为‘1’时,可以表明第i个下行信号块对应的第j个SI已经被gNB发送;当第i组比特中的第j个比特取值为‘0’时,可以表明第i个下行信号块对应的第j个SI没有被gNB发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被gNB发送,比特取值为‘1’表示相应的SI没有被gNB发送。实际应用中,还可以采用多个比特对应一个SI。
2.实现方式二
如图7B所示,第一指示信息可以为16比特的指示信息,这16比特分为4组比特,一组比特对应一个SI,表明对应不同SS/PBCH block的该SI的发射情况。每组比特包括4个比特,一个比特对应一个SS/PBCH block,表明对应该SS/PBCH block的SI是否被gNB发射。
假设,第1-4组比特分别对应SIB2-SIB5,每组比特中的第1-4个比特分别对应SS/PBCH block 1-4。如图7B所示:
第一组比特为“1101”,表明对应SS/PBCH block1,SS/PBCH block2,SS/PBCH block4的SIB2已被gNB发射,对应SS/PBCH block3的SIB2没有被gNB发射。也即是说,gNB在传输SS/PBCH block1,SS/PBCH block2,SS/PBCH block4的波束方向上发射SIB2,而在传输SS/PBCH block3的的波束方向上没有发射SIB2。具体可参考图5。
第二组比特为“0100”,表明对应SS/PBCH block2的SIB3已被gNB发射,对应SS/PBCH block1,SS/PBCH block3,SS/PBCH block4的SIB3没有被gNB发射。也即是说,gNB在传输SS/PBCH block2的波束方向上发射SIB2,而在传输SS/PBCH block1,SS/PBCH block3, SS/PBCH block4的波束方向上没有发射SIB3。具体可参考图5。
第三组比特为“1110”,表明对应SS/PBCH block1,SS/PBCH block2,SS/PBCH block3的SIB4已被gNB发射,对应SS/PBCH block4的SIB4没有被gNB发射。也即是说,gNB在传输SS/PBCH block1,SS/PBCH block2,SS/PBCH block3的波束方向上发射SIB4,而在传输SS/PBCH block4的波束方向上没有发射SIB4。具体可参考图5。
第四组比特为“0000”,表明对应SS/PBCH block1,SS/PBCH block2,SS/PBCH block3,SS/PBCH block4的SIB5均没有被gNB发射。也即是说,gNB在传输SS/PBCH block1,SS/PBCH block2,SS/PBCH block3,SS/PBCH block4的波束方向上都没有发射SIB5。具体可参考图5。
参考图7B实施例,概括的说,第一指示信息以包括:W组比特,一组比特对应一个SI,每组比特包括Y个比特,一个比特对应一个下行信号块;第m组比特中的第n个比特指示对应第n个下行信号块的第m个SI是否已被发送。其中,W是正整数,Y是正整数,m∈(1,W),n∈(1,Y),m是正整数,n是正整数。
可选的,当第m组比特中的第n个比特取值为‘1’时,可以表明对应第n个下行信号块的第m个SI已经被gNB发送;当第m组比特中的第n个比特取值为‘0’时,可以表明第n个下行信号块的第m个SI没有被gNB发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被gNB发送,比特取值为‘1’表示相应的SI没有被gNB发送。实际应用中,还可以采用多个比特对应一个下行信号块。
参考图7A-7B实施例,可以推断出,当下行信号块的数量较多,或者SI的数量较多时,图7A-7B示例性所示的第一指示信息的实现方式需要的比特数量会很多。例如,当gNB发射8个SS/PBCH block,每个SS/PBCH block对应8个SI时,第一指示信息需要64(64=8*8)个比特。此时,第一指示信息需要的信令开销较大。
进一步的,为了减少第一指示信息所需的信令开销,第一指示信息可以采取但不限于下述几种实现方式:
(1)方式一,对于具有QCL的多个下行信号块(如SS/PBCH block),第一指示信息可以指示其中仅一个下行信号块对应的SI的发射情况。例如,gNB发射8个SS/PBCH block,其中,SS/PBCH block1和SS/PBCH block2具有QCL,SS/PBCH block3和SS/PBCH block4具有QCL,SS/PBCH block5和SS/PBCH block6具有QCL,SS/PBCH block7和SS/PBCH block8具有QCL,第一指示信息仅需要指示SS/PBCH block 1、3、5、7对应的SI的发送情况,或仅需要指示SS/PBCH block 2、4、6、8对应的SI的发送情况。
也即是说,第一指示信息可以指示多个下行信号块中仅一个下行信号与SI之间的映射。这多个下行信号块之间具有QCL。具有QCL的下行信号块对应的SI的发射情况相同。
举例说明,假设gNB发射4个SS/PBCH block,这4个SS/PBCH block均对应SIB1-SIB8共8个SI。参考图7A或图7B可知,第一指示信息共需要32(32=4*8)个比特。如果SS/PBCH block1和SS/PBCH block2具有QCL,SS/PBCH block3和SS/PBCH block4具有QCL,那么第一指示信息只需指示SS/PBCH block1,SS/PBCH block 3对应的SI的发射情况即可,第一指示信息需要的比特数量就可以从32比特压缩至16(16=2*8)比特。这相当于具有QCL的多个SS/PBCH block对应的SI的发射情况可以共享同一份比特来指示,可以节约第一指 示信息的信令开销。
可选的,具有QCL的下行信号块可以由gNB指示。gNB可以发送第二指示信息,第二指示信息可指示具有QCL的下行信号块。可选的,具有QCL的下行信号块也可以由协议静态定义或由gNB通过高层信令(如无线资源控制(radio resource control,RRC)信令)配置。
可选的,当SI具体为on-demand OSI时,第二指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第二指示信息还可以携带在单独的信令中。
(2)方式二,对于具有绑定发送关系的多个SI,第一指示信息可以指示不同下行信号块(如SS/PBCH block)对应的这多个SI中仅一个SI的发射情况。例如,8个SI(SIB 1-8)中,SIB1和SIB2具有绑定发送关系,SIB3和SIB4具有绑定发送关系,SIB5和SIB6具有绑定发送关系,SIB7和SIB8具有绑定发送关系,第一指示信息仅需要指示不同SS/PBCH block对应的SIB 1、3、5、7的发送情况,或仅需要指示不同SS/PBCH block对应的SIB 2、4、6、8的发送情况。
也即是说,第一指示信息可以指示一个或多个下行信号块与多个SI中仅一个SI之间的映射,这多个SI具有绑定发送关系。这里,这多个SI具有绑定发送关系是指,这多个SI对应的下行信号块相同且这多个SI需要一起发送,即这多个SI在相同的波束方向上一起被发射或一起不被发射。可选的,同一类型的多个SI具有绑定发送关系,需要一起发送。
举例说明,假设gNB发射4个SS/PBCH block,这4个SS/PBCH block均对应SIB1-SIB8共8个SI。参考图7A或图7B可知,第一指示信息共需要32(32=4*8)个比特。如果SIB1和SIB2具有绑定发送关系,SIB3和SIB4具有绑定发送关系,SIB5和SIB6具有绑定发送关系,SIB7和SIB8具有绑定发送关系,那么第一指示信息只需指示这4个SS/PBCH block各自对应的SIB 1、3、5、7(或SIB 2、4、6、8)的发射情况即可,第一指示信息需要的比特数量就可以从32比特压缩至16(16=4*4)比特。这相当于对应相同的下行信号块的具有绑定发送关系的多个SI的发射情况可以共享同一份比特来指示,可以节约第一指示信息的信令开销。
可选的,需要一起发送的SI(即具有绑定发送关系的SI)可以由gNB指示。gNB可以发送第三指示信息,第三指示信息可指示需要一起发送的SI。可选的,第三指示信息可指示相同类型的SI,相同类型的SI需要一起发送。可选的,需要一起发送的SI也可以由协议静态定义或由gNB通过高层信令(如RRC信令)配置。例如,协议静态定义或高层信令配置SI的类型,相同类型的SI需要一起发送。
可选的,当SI具体为on-demand OSI时,第三指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第三指示信息还可以携带在单独的信令中。
(3)方式三,除了单独使用上述方式一或上述方式二来指示SI的发送状态,gNB也可以同时采用上述方式一和上述方式二来指示SI的发送状态,可以更大程度的节约信令开销。
举例说明,假设gNB发射4个SS/PBCH block,这4个SS/PBCH block均对应SIB1-SIB8 共8个SI。参考图7A或图7B可知,第一指示信息共需要32(32=4*8)个比特。如果SS/PBCH block1和SS/PBCH block2具有QCL,SS/PBCH block3和SS/PBCH block4具有QCL,且SIB1和SIB2具有绑定发送关系,SIB3和SIB4具有绑定发送关系,SIB5和SIB6具有绑定发送关系,SIB7和SIB8具有绑定发送关系,那么第一指示信息只需指示SS/PBCH block1,SS/PBCH block 3各自对应的SIB 1、3、5、7(或SIB 2、4、6、8)的发射情况即可,第一指示信息需要的比特数量就可以从32比特压缩至8(8=2*4)比特。
(四)SI的资源配置
方式一:下行信号块对应的用于发送SI的时间位置是预先配置的。
如图8所示,在on-demand OSI监测窗口中,gNB预先配置了SS/PBCH block 1-8各自对应的用于传输OSI的预设时间位置(如符号)。具体的,SS/PBCH block 1-8在on-demand OSI监测窗口中各自对应的用于传输OSI的预设时间位置分别为符号0-3、符号4-7、符号8-11、符号12-15、符号16-19、符号20-23、符号24-27、符号28-31。本申请中,可以将on-demand OSI监测窗口称为第一时间窗口,对其持续时长不作限制。
本申请中,与下行信号块具有QCL的SI的时间位置为该下行信号块在第一时间窗口中对应的用于发送SI的预设时间位置。
在一种可能的情况下,gNB发射的SI对应的下行信号块在所述第一时间窗口中对应的预设时间位置之间可能存在空白符号。空白符号为未被SI占用的符号。在NRU场景下,空白符号会导致传输不连续,导致信道丢失。对此,可选的,空白符号可以被第一下行信号填充,避免数据传输不连续而丢失信道。第一下行信号可以是下行数据信号等。
例如,如图8所示,假设gNB要发射与SS/PBCH block 1具有QCL的SI和与SS/PBCH block 3具有QCL的SI。那么,与SS/PBCH block 1具有QCL的SI的时间位置为SS/PBCH block 1在on-demand OSI监测窗口中各自对应的用于传输OSI的预设时间位置,即符号0-3;与SS/PBCH block 3具有QCL的SI的时间位置为SS/PBCH block 3在on-demand OSI监测窗口中各自对应的用于传输OSI的预设时间位置,即符号8-11。可以看出,符号0-3与符号8-11之间的符号4-7不承载SI,为空白符号。在NRU系统中,为了避免gNB丢失信道,gNB可以在符号4-7上填充第一下行信号。
在方式一中,对特定终端,该终端可以在部分下行信号块在第一时间窗口中对应的预设时间位置接收SI。该部分下行信号块与网络设备针对该终端发射的SI具有QCL。
可选的,在NRU系统下,只要gNB可以在下行信号块对应的用于传输SI的预设时间位置处开始持续若干个符号(如10个符号)的时间窗内进行LBT并通过LBT,gNB就可以发射与该预设时间位置对应的下行信号块具有QCL的SI。相应的,终端只需在该预设时间位置处开始持续若干个符号(如10个符号)的时间窗内检测SI。该时间窗的目的是降低LBT对发送SI的影响,提高SI发送成功率。
方式一的扩展
假设gNB基于终端1的请求需要发射与SS/PBCH block 1具有QCL的SI、与SS/PBCH block 4具有QCL的SI。且gNB基于终端2的请求需要发射与SS/PBCH block 1具有QCL的SI、与SS/PBCH block 6具有QCL的SI。可以看出终端1和终端2都请求了与SS/PBCH  block 1具有QCL的SI。gNB发射SI的实现方式可包括:
(1)情况一,SS/PBCH block 1在第一时间窗口中对应的预设时间位置(符号0-3)上的资源能够承载终端1和终端2请求的SI。在这种情况下,gNB发射SI的方法可参考图8所示的方式一,即如图10所示,在SS/PBCH block对应的预设时间位置发射与该SS/PBCH block具有QCL的SI。
(2)情况二,SS/PBCH block 1在第一时间窗口中对应的预设时间位置(符号0-3)上的资源不能承载终端1和终端2请求的SI。在这种情况下,gNB需要指示更新后的SI发送时域pattern,如图11所示:原SS/PBCH block 1对应的用于传输SI的4符号延长到了6符号(更新为符号0-5),其他SS/PBCH block对应的用于传输SI的时间位置均延后2个符号。;可选的,gNB也可以在PBCH/RMSI/OSI/RRC等信令中指示与每个SS/PBCH block具有QCL的SI持续的符号数或整个SI发送时域pattern。
具体的,当SI(如on-demand OSI中每个SIB)大小固定,且用于传输SI的时频资源大小,SI传输码率确定时,终端可以根据gNB发送的SI传输指示来计算SI时域传输的具体pattern。该SI传输指示可包括波束对应的用于传输SI的时间位置。也即是说,无需gNB指示,终端可以自行根据SI大小、用于传输SI的视频资源大小、SI传输码率和SI传输指示确定传输SI所需的符号个数,从而确定出更新后的SI发送时域pattern。
方式二:发送SI的时间位置是动态分配的。
具体的,gNB动态分配与下行信号块具有QCL的SI的时间位置,使得SI被连续发送。也即是说,在方式二中,gNB发射SI的时间位置是连续的。这样,可避免出现空白符号,对于非授权频谱而言,gNB不需要在SI传输时填充第二下行信号。
举例说明,如图9所示,在on-demand OSI监测窗口中,gNB预先配置了SS/PBCH block 1-8各自对应的用于传输OSI的预设时间位置。具体的,SS/PBCH block 1-8在on-demand OSI监测窗口中各自对应的用于传输OSI的预设时间位置分别为符号0-3、符号4-7、符号8-11、符号12-15、符号16-19、符号20-23、符号24-27、符号28-31。假设gNB要发射与SS/PBCH block 1具有QCL的SI和与SS/PBCH block 3具有QCL的SI。那么,为了避免出现空白符号,确保连续传输SI,gNB可以在符号0-3发射与SS/PBCH block 1具有QCL的SI,在符号4-7而不是符号8-11上发射与SS/PBCH block 3具有QCL的SI。
在方式二中,gNB可以发送第四指示信息,第四指示信息指示与不同下行信号块具有QCL的SI实际被gNB发射的时间位置。对特定终端,该终端可以接收到第四指示信息,根据第四指示信息确定与部分下行信号块具有QCL的SI的时间位置,并在该时间位置上接收SI。该部分下行信号块与网络设备针对该终端发射的SI具有QCL。可选的,终端也可以通过盲检接收SI,无需gNB发送第四指示信息。
本申请提供的技术方案可以适用于授权频段(licensed band),也适用于非授权频段(unlicensed band)。
在非授权频段下,针对特定终端,gNB可以在与部分下行信号块具有QCL的天线端口上进行LBT,如果通过LBT,则gNB仅发射与部分下行信号块具有QCL的系统信息SI。也即是说,针对特定终端,gNB仅需要在部分基站发射波束的方向而不是全部的基站发射 波束的方向上通过LBT,便可以在该部分基站发射波束的方向上发射SI。这样可以提高LBT成功概率,提高SI成功发送的概率,因为定向LBT比全向LBT容易。
在非授权频段下,gNB在发射SI前需要进行LBT,且LBT的优先级与信号传输时间相关。LBT优先级决定进行LBT的设备需要检测信道为空闲的时间。当gNB在全部的基站发射波束方向上发送SI时,SI传输持续时间较长,需要使用低优先级的LBT;当gNB只在部分的基站发射波束方向上发送SI时,SI传输持续时间较短,可以使用高优先级的LBT。高优先级的LBT需要执行LBT的时间较短。例如,高优先级的CAT2LBT只需要执行25us的LBT,如果检测到信道在25us内处于空闲状态,则LBT成功,即通过LBT。也即是说,针对gNB只在部分的基站发射波束方向上发送SI的方案,gNB可以采用高优先级的LBT,提高LBT成功概率,提高SI成功发送的概率。
参考图12,图12示出了本申请的一些实施例提供的终端300。如图12所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其他方式连接,图12以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述基站可以是图12所示的网络设备400。通信接口301是指终端处理器304与收发系统(由发射器306和接收器308构成)之间的接口,例如LTE中的X1接口。具体实现中,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。换句话说,发射器306可以支持终端300在一个或多个非授权频谱上发射信号,或者可以支持终端300在一个或多个授权频谱上发射信号。
接收器308可用于对天线314接收的移动通信信号进行接收处理。例如,接收器308可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。换句话说,接收器308可以支持终端300接收调制在非授权频谱上的信号,或者可以支持终端300接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图12所示的发射器306和接收器308,终端300还可包括其他通信部件,例如 GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体实现中,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的系统信息传输方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的系统信息传输方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的系统信息传输方法在终端300侧的实现程序,并执行该程序包含的指令。
终端处理器304可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无线通信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的设备,包括:手机、电脑、笔记本、平板、路由器、可穿戴设备、汽车、家电设备等。需要说明的是,在不同的实施方式中,终端处理器304处理器可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者终端处理器304处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,终端300可以是图2示出的无线通信系统100中的终端103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图12所示的终端300仅仅是本申请的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图13,图13示出了本申请的一些实施例提供的网络设备400。如图13所示,网络设备400可包括:通信接口403、一个或多个网络设备处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其他方式连接,图13 以通过总线连接为例。其中:
通信接口403可用于网络设备400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图9所示的终端300。通信接口301是指网络设备处理器401与收发系统(由发射器407和接收器409构成)之间的接口,例如LTE中的S1接口。具体实现中,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,网络设备400还可以配置有有线的通信接口403来支持有线通信,例如一个网络设备400与其他网络设备400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对网络设备处理器401输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。换句话说,发射器407可以支持网络设备400在一个或多个非授权频谱上发射信号,或者还可以支持网络设备400在一个或多个授权频谱上发射信号。
接收器409可用于对天线413接收的移动通信信号进行接收处理。例如,接收器409可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。换句话说,接收器409可以支持网络设备400接收调制在非授权频谱上的信号,或者还可以支持网络设备400接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在网络设备400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与网络设备处理器401耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体实现中,网络设备处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请中,网络设备处理器401可用于读取和执行计算机可读指令。具体的,网络设备处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的系统信息传输方法在网络设备400侧的实现程序,并执行该程序包含的指令。
网络设备处理器401可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无 线通信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的网络侧设备,例如,在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B)等,在5G网络中,称为5G基站(NR NodeB,gNB)。需要说明的是,在不同的实施方式中,网络设备处理器401可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者网络设备处理器401处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,网络设备400可以是图2示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。网络设备400可以实施为几种不同类型的基站,例如宏基站、微基站等。网络设备400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图13所示的网络设备400仅仅是本申请的一种实现方式,实际应用中,网络设备400还可以包括更多或更少的部件,这里不作限制。
参见图14,图14是本申请的一个实施例提供的无线通信系统10,以及无线通信系统10中的网络设备500、终端600。网络设备500可以是前述方法实施例中的网络设备,终端600可以是前述方法实施例中的终端。
如图14所示,网络设备500可包括:通信单元501和处理单元503。其中:
通信单元501,可用于接收一个或多个终端600发送的系统信息请求。
处理单元503,可用于根据系统信息请求确定需要发射的系统信息SI。
通信单元501,还可用于发射系统信息SI,其中,针对一个终端600发射的SI仅与部分下行信号块具有准共址关系QCL;部分下行信号块为通信单元501发射的全部下行信号块的子集。
通信单元501,还可用于广播第一指示信息,第一指示信息指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。
如图14所示,终端600可包括:处理单元601和通信单元603。其中:
通信单元603,可用于接收网络设备500广播的第一指示信息,第一指示信息指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。
处理单元601,可用于根据第一指示信息判断与终端600接收到的下行信号块具有QCL的SI是否已经被发送。
通信单元603,还可用于如果处理单元601确定与终端600接收到的下行信号块具有QCL的终端需要获得的SI已经被发送,则在接收到的下行信号块对应的用于接收SI的时间位置上检测SI;如果处理单元601确定与终端600接收到的下行信号块具有QCL的SI没有被发送,则向网络设备500发送系统信息请求,然后接收网络设备500发射的SI,网络设备500针对特定某个终端600发射的SI仅与部分下行信号块具有准共址关系QCL;该部分下行信号块为网络设备500发射的全部下行信号块的子集。
本申请中,指示基站发射波束可以等同于指示该波束方向上传输的下行信号,例如 SS/PBCH block,或CSI-RS等。本申请中,可以将该下行信号称为下行信号块。指示某个基站发射波束承载的SI可以等同于指示和该基站发射波束方向上传输的下行信号块具有准共址QCL关系的SI。例如,基站发射波束beam1承载的SI即与beam1方向上传输的SS/PBCH block1具有准共址关系的SI。
本申请中,下行信号块对应的SI为网络设备在传输下行信号块的波束方向上发射的SI。换句话说,第一指示信息可指示不同的基站发射波束承载SI的情况,即指示不同的基站发射波束承载了哪些SI或没有承载哪些SI。
可以看出,针对某个特定终端发送的SI请求,网络设备仅采用部分的基站发射波束发射SI,而不是采用全部的基站发射波束发射SI,这样可以节省系统开销。而且,根据网络设备的指示,终端无需再向网络设备请求其他终端或该终端自身请求过的SI,只需该终端接收到的下行信号块对应的用于传输SI的资源位置检测SI即可。这样可以避免小区中的终端重复请求该小区中可获得的SI,节省了系统开销。
本申请中,针对某个特定终端600,网络设备500中的处理单元503可用于通过但不限于以下几种方式确定该部分下行信号块:
方式一,与网络设备接收500到的SI请求具有QCL的下行信号块。也即是说,针对该特定终端600,网络设备发射SI所采用的部分基站发射波束可以包括:与网络设备500接收SI请求所采用的基站接收波束具有QCL的基站发射波束,或还包括该基站发射波束的P(P为正整数)个相邻波束。
方式二,与该特定终端600发射的SI请求具有QCL的下行信号块。也即是说,针对该特定终端600,网络设备500发射SI所采用的部分基站发射波束可以包括:与特定终端600发射SI请求所采用的终端发射波束具有QCL的基站发射波束,或还包括该基站发射波束的Q(Q为正整数)个相邻波束。
方式三,该特定终端600指示的下行信号块。也即是说,该特定终端600可以向网络设备500指示采用哪一个或哪一些基站发射波束来发射SI。
方式四,系统配置的下行信号块。也即是说,系统可以配置网络设备发射SI的部分基站发射波束。可选的,在终端600是静止的或者终端600的移动范围十分有限的场景下,系统可以给终端600配置发射SI的部分基站发射波束。
可以看出,针对特定终端,网络设备只会在网络设备收到SI请求的波束方向,或该波束方向以及相邻一些波束方向,或终端发送SI请求的波束方向,或该波束方向以及相邻一些波束方向,或是系统配置的波束方向,或终端请求波束向上发送SI,极大降低了发送SI所需的系统开销,提高了系统效率。
本申请中,第一指示信息的两种主要实现方式可包括:
实现方式一,第一指示信息可以包括:H组比特,每组比特包括M个比特,其中,一个比特对应一个SI,第i组比特中的第j个比特指示第i个下行信号块对应的第j个SI是否已被发送。其中,H是正整数,M是正整数,i∈(1,H),j∈(1,M),i是正整数,j是正整数。
可选的,当第i组比特中的第j个比特取值为‘1’时,可以表明第i个下行信号块对应的第j个SI已经被网络设备发送;当第i组比特中的第j个比特取值为‘0’时,可以表明第i 个下行信号块对应的第j个SI没有被网络设备发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被网络设备发送,比特取值为‘1’表示相应的SI没有被网络设备发送。实际应用中,还可以采用多个比特对应一个SI。
实现方式二,第一指示信息可以包括:W组比特,一组比特对应一个SI,每组比特包括Y个比特,一个比特对应一个下行信号块;第m组比特中的第n个比特指示对应第n个下行信号块的第m个SI是否已被发送。其中,W是正整数,Y是正整数,m∈(1,W),n∈(1,Y),m是正整数,n是正整数。
可选的,当第m组比特中的第n个比特取值为‘1’时,可以表明对应第n个下行信号块的第m个SI已经被网络设备发送;当第m组比特中的第n个比特取值为‘0’时,可以表明第n个下行信号块的第m个SI没有被网络设备发送。不限于此,也可以规定为:比特取值为‘0’表示相应的SI已经被网络设备发送,比特取值为‘1’表示相应的SI没有被网络设备发送。实际应用中,还可以采用多个比特对应一个下行信号块。
可选的,当SI具体为on-demand OSI时,第一指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第一指示信息还可以携带在单独的信令中。
可以推断出,当下行信号块的数量较多,或者SI的数量较多时,第一指示信息的实现方式需要的比特数量会很多。例如,当网络设备发射8个SS/PBCH block,每个SS/PBCH block对应8个SI时,第一指示信息需要64(64=8*8)个比特。此时,第一指示信息需要的信令开销较大。
进一步的,为了减少第一指示信息所需的信令开销,第一指示信息可以采取但不限于下述几种实现方式:
(1)方式一,对于具有QCL的多个下行信号块(如SS/PBCH block),第一指示信息可以指示其中仅一个下行信号块对应的SI的发射情况。例如,网络设备500发射8个SS/PBCH block,其中,SS/PBCH block1和SS/PBCH block2具有QCL,SS/PBCH block3和SS/PBCH block4具有QCL,SS/PBCH block5和SS/PBCH block6具有QCL,SS/PBCH block7和SS/PBCH block8具有QCL,第一指示信息仅需要指示SS/PBCH block 1、3、5、7对应的SI的发送情况,或仅需要指示SS/PBCH block 2、4、6、8对应的SI的发送情况。
也即是说,第一指示信息可以指示多个下行信号块中仅一个下行信号与SI之间的映射。这多个下行信号块之间具有QCL。具有QCL的下行信号块对应的SI的发射情况相同。
可选的,具有QCL的下行信号块可以由网络设备500指示。网络设备500中的通信单元501可以发送第二指示信息,第二指示信息可指示具有QCL的下行信号块。可选的,具有QCL的下行信号块也可以由协议静态定义或由网络设备500通过高层信令(如无线资源控制(radio resource control,RRC)信令)配置。
可选的,当SI具体为on-demand OSI时,第二指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第二指示信息还可以携带在单独的信令中。
(2)方式二,对于具有绑定发送关系的多个SI,第一指示信息可以指示不同下行信号块(如SS/PBCH block)对应的这多个SI中仅一个SI的发射情况。例如,8个SI(SIB 1-8) 中,SIB1和SIB2具有绑定发送关系,SIB3和SIB4具有绑定发送关系,SIB5和SIB6具有绑定发送关系,SIB7和SIB8具有绑定发送关系,第一指示信息仅需要指示不同SS/PBCH block对应的SIB 1、3、5、7的发送情况,或仅需要指示不同SS/PBCH block对应的SIB 2、4、6、8的发送情况。
也即是说,第一指示信息可以指示一个或多个下行信号块与多个SI中仅一个SI之间的映射,这多个SI具有绑定发送关系。这里,这多个SI具有绑定发送关系是指,这多个SI对应的下行信号块相同且这多个SI需要一起发送,即这多个SI在相同的波束方向上一起被发射或一起不被发射。可选的,同一类型的多个SI具有绑定发送关系,需要一起发送。
可选的,需要一起发送的SI(即具有绑定发送关系的SI)可以由网络设备500指示。网络设备500中的通信单元501可以发送第三指示信息,第三指示信息可指示需要一起发送的SI。可选的,第三指示信息可指示相同类型的SI,相同类型的SI需要一起发送。可选的,需要一起发送的SI也可以由协议静态定义或由网络设备500通过高层信令(如RRC信令)配置。例如,协议静态定义或高层信令配置SI的类型,相同类型的SI需要一起发送。
可选的,当SI具体为on-demand OSI时,第三指示信息可以携带在以下一项或多项中:剩余最小系统信息RMSI、SS/PBCH block。不限于此,第三指示信息还可以携带在单独的信令中。
(3)方式三,除了单独使用上述方式一或上述方式二来指示SI的发送状态,网络设备500中的通信单元501也可以同时采用上述方式一和上述方式二来指示SI的发送状态,可以更大程度的节约信令开销。
本申请中,SI的资源配置方式可包括:
方式一:下行信号块对应的用于发送SI的时间位置是预先配置的。具体的,与下行信号块具有QCL的SI的时间位置为该下行信号块在第一时间窗口中对应的用于发送SI的预设时间位置。
在一种可能的情况下,网络设备500中的通信单元501发射的SI对应的下行信号块在所述第一时间窗口中对应的预设时间位置之间可能存在空白符号。空白符号为未被SI占用的符号。在NRU场景下,空白符号会导致传输不连续,导致信道丢失。对此,可选的,空白符号可以被第二下行信号填充,避免数据传输不连续而丢失信道。第二下行信号可以是下行数据信号等。
在方式一中,对特定终端600,该终端600中的通信单元603可以在部分下行信号块在第一时间窗口中对应的预设时间位置接收SI。该部分下行信号块与网络设备针对该终端发射的SI具有QCL。
方式二:发送SI的时间位置是网络设备500动态分配的。具体的,网络设备500动态分配与下行信号块具有QCL的SI的时间位置,使得SI被连续发送。也即是说,在方式二中,网络设备500中的通信单元501发射SI的时间位置是连续的。这样,可避免出现空白符号,对于非授权频谱而言,网络设备500不需要在SI传输时填充第二下行信号。
在方式二中,网络设备500中的通信单元501可以发送第四指示信息,第四指示信息指示与不同下行信号块具有QCL的SI实际被网络设备500发射的时间位置。对特定终端 600,该终端600中的通信单元603可以接收到第四指示信息,根据第四指示信息确定与部分下行信号块具有QCL的SI的时间位置,并在该时间位置上接收SI。该部分下行信号块与网络设备针对该终端600中的通信单元603发射的SI具有QCL。可选的,终端600中的通信单元603也可以通过盲检接收SI,无需网络设备500发送第四指示信息。
在非授权频段下,针对特定终端,网络设备500中的通信单元501可以在与部分下行信号块具有QCL的天线端口上进行LBT,如果通过LBT,则网络设备500中的通信单元501仅发射与部分下行信号块具有QCL的系统信息SI。也即是说,针对特定终端,网络设备500中的通信单元501仅需要在部分基站发射波束的方向而不是全部的基站发射波束的方向上通过LBT,便可以在该部分基站发射波束的方向上发射SI。这样可以提高LBT成功概率,提高SI成功发送的概率,因为定向LBT比全向LBT容易。
可以理解的,网络设备500和终端600各自包括的各个功能单元的具体实现可参考前述方法实施例,这里不再赘述。
另外,本发明实施例还提供了一种无线通信系统,所述无线通信系统可以是图2所示的无线通信系统100,也可以是图14所示的无线通信系统10,可包括:网络设备和终端。其中,该终端可以是前述实施例中的终端,该网络设备可以是前述实施例中的网络设备。具体的,该终端可以是图12所示的终端300,该网络设备可以是图13所示的网络设备400。该终端也可以是图14实施例中的终端600,该网络设备也可以是图14实施例中的网络设备500。关于所述网络和所述终端的具体实现可参考前述实施例,这里不再赘述。
以图13所示网络设备为例,网络设备处理器405用于控制发射器407在非授权频段和/或授权频段进行发送以及控制接收器409在非授权频段和/或授权频段进行接收。发射器407用于支持网络设备执行对数据和/或信令进行发射的过程。接收器409用于支持网络设备执行对数据和/或信令进行接收的过程。存储器405用于存储网络设备的程序代码和数据。
本申请中,发射器407可主要用于发送系统信息SI,以及第一指示信息。针对一个特定终端,发射器407发射的SI仅仅与部分下行信号块具有QCL。也即是说,针对该特定终端,发射器407仅仅在承载该部分下行信号块的波束方向上发射SI。该特定终端处于承载该部分下行信号块的波束的覆盖范围中,能够检测到网络设备在该波束方向上发射的SI。第一指示信息可指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。换句话说,第一指示信息可指示不同的基站发射波束承载SI的情况,即指示不同的基站发射波束承载了哪些SI或没有承载哪些SI。
本申请中,接收器409可用于接收终端发送的SI请求。
关于网络设备中各部件的具体实现,可参考图前述方法实施例,这里不再赘述。
以图12所示终端为例,终端处理器304用于调用存储于所述存储器312中的指令来控制发射器306在非授权频段和/或授权频段进行发送以及控制接收器308在非授权频段和/或授权频段进行接收。发射器306用于支持终端执行对数据和/或信令进行发射的过程。接收器308用于支持终端执行对数据和/或信令进行接收的过程。存储器312用于存储终端的程序代码和数据。
本申请中,发射器306可用于发射SI请求。
本申请中,接收器308可用于接收网络设备发送的SI、第一指示信息。针对一个特定终端,其接收器308接收到的SI仅仅与部分下行信号块具有QCL。也即是说,针对该特定终端,网络设备仅仅在承载该部分下行信号块的波束方向上发射SI。该特定终端处于承载该部分下行信号块的波束的覆盖范围中,能够检测到网络设备在该波束方向上发射的SI。第一指示信息可指示下行信号块与SI之间的映射,其中,下行信号块与其对应的SI具有QCL。换句话说,第一指示信息可指示不同的基站发射波束承载SI的情况,即指示不同的基站发射波束承载了哪些SI或没有承载哪些SI。
关于终端中各部件的具体实现,可参考图前述方法实施例,这里不再赘述。
参见图15,图15示出了本申请提供的一种装置的结构示意图。如图15所示,装置50可包括:处理器501,以及耦合于处理器501的一个或多个接口502。其中:
处理器501可用于读取和执行计算机可读指令。具体实现中,处理器501可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器501的硬件架构可以是专用集成电路(Application Specific Integrated Circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器501可以是单核的,也可以是多核的。
接口502可用于输入待处理的数据至处理器501,并且可以向外输出处理器501的处理结果。具体实现中,接口502可以是通用输入输出(General Purpose Input Output,GPIO)接口,可以和多个外围设备(如射频模块等等)连接。接口502还可以包括多个独立的接口,例如以太网接口、移动通信接口(如X1接口)等,分别负责不同外围设备和处理器501之间的通信。
本申请中,处理器501可用于从存储器中调用本申请的一个或多个实施例提供的系统信息传输方法在网络设备侧或终端侧的实现程序,并执行该程序包含的指令。接口502可用于输出处理器501的执行结果。本申请中,接口503可具体用于输出处理器501的处理结果。关于本申请的一个或多个实施例提供的系统信息传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器501、接口502各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其他形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于收发机或中继设备中。当然,处理器和存储介质也可以 作为分立组件存在于无线接入网设备或终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (28)

  1. 一种系统信息传输方法,其特征在于,包括:
    网络设备接收一个或多个终端发送的系统信息请求;
    所述网络设备发射系统信息SI,其中,针对一个终端发射的SI仅与部分下行信号块具有准共址关系QCL;所述部分下行信号块为所述网络设备发射的全部下行信号块的子集;
    所述网络设备发送第一指示信息,所述第一指示信息指示所述下行信号块与SI之间的映射,其中,所述下行信号块与其对应的SI具有QCL。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括H组比特,每组包括M个比特,其中,一个比特对应一个SI,第i组中的第j个比特指示第i个下行信号块对应的第j个SI是否已被发送;H是正整数,M是正整数,i∈(1,H),j∈(1,M),i是正整数,j是正整数。
  3. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示多个下行信号块中仅一个下行信号块与SI之间的映射,所述多个下行信号块之间具有QCL。
  4. 如权利要求3所述的方法,其特征在于,还包括:所述网络设备发送第二指示信息,所述第二指示信息指示具有QCL的下行信号块,所述具有QCL的下行信号块对应的SI相同。
  5. 如权利要求1、3-4中任一项所述的方法,其特征在于,所述第一指示信息指示一个或多个下行信号块与多个SI中仅一个SI之间的映射,所述多个SI对应的下行信号块相同,且所述多个SI需要一起发送。
  6. 如权利要求5所述的方法,其特征在于,还包括:所述网络设备发送第三指示信息,所述第三指示信息指示所述多个SI对应的下行信号块相同,且所述多个SI需要一起发送。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述针对特定终端,所述网络设备仅发射与部分下行信号块具有准共址关系QCL的系统信息SI,具体包括:
    在与所述部分下行信号块具有QCL的天线端口上进行先听后说LBT,如果通过LBT,则所述网络设备仅发射与部分下行信号块具有QCL的系统信息SI。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,与所述下行信号块具有QCL的SI的时间位置为所述下行信号块在第一时间窗口中对应的用于发送SI的预设时间位置;
    在所述网络设备发射的SI对应的下行信号块在所述第一时间窗口中对应的预设时间位置之间存在空白符号的条件下,所述空白符号被下行信号块填充;所述空白符号为未被SI占用的符号。
  9. 如权利要求1-7中任一项所述的方法,其特征在于,所述网络设备发射的SI的时间位置是连续相邻的;所述方法还包括:所述网络设备发射第四指示信息,所述第四指示信息指示所述网络设备发射的SI的时间位置。
  10. 一种系统信息传输方法,其特征在于,包括:
    终端接收网络设备发送的第一指示信息,所述第一指示信息指示所述下行信号块与SI之间的映射,其中,所述下行信号块与其对应的SI具有QCL;
    所述终端根据所述第一指示信息判断与所述终端接收到的下行信号块具有QCL的所述终端需要的SI是否已经被发送,如果已经被发送,则在所述终端接收到的下行信号块对应的用于接收SI的时间位置上检测SI。
  11. 如权利要求10所述的方法,其特征在于,在所述终端根据所述第一指示信息判断与所述终端接收到的下行信号块具有QCL的SI是否已经被发送之后,还包括:
    如果没有被发送,则所述终端向所述网络设备发送系统信息请求;
    所述终端接收所述网络设备发射的SI,所述网络设备针对所述终端发射的SI仅与部分下行信号块具有QCL;所述部分下行信号块为所述网络设备发射的全部下行信号块的子集。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一指示信息包括H组比特,每组比特包括M个比特,其中,一个比特对应一个SI,第i组比特中的第j个比特指示第i个下行信号块对应的第j个SI是否已被发送;H是正整数,M是正整数,i∈(1,H),j∈(1,M),i是正整数,j是正整数。
  13. 如权利要求10或11所述的方法,其特征在于,所述第一指示信息指示多个下行信号块中仅一个下行信号块与所述仅一个下行信号块对应的SI之间的映射,所述多个下行信号块之间具有QCL。
  14. 如权利要求13所述的方法,其特征在于,还包括:所述终端接收第二指示信息,所述第二指示信息指示具有QCL的下行信号块,所述具有QCL的下行信号块对应的SI相同。
  15. 如权利要求10-11、13-14中任一项所述的方法,其特征在于,所述第一指示信息指示一个或多个下行信号块与多个SI中仅一个SI之间的映射,所述多个SI对应的下行信号块相同,且所述多个SI需要一起发送。
  16. 如权利要求15所述的方法,其特征在于,还包括:所述终端接收第三指示信息,所述第三指示信息指示所述多个SI对应的下行信号块相同,且所述多个SI需要一起发送。
  17. 如权利要求11-16中任一项所述的方法,其特征在于,与所述下行信号块具有QCL的SI的时间位置为所述下行信号块在第一时间窗口中对应的用于发送SI的预设时间位置;
    在所述网络设备发射的SI对应的下行信号块在所述第一时间窗口中对应的预设时间位置之间存在空白符号的条件下,所述空白符号被第一下行信号填充;所述空白符号为未被SI占用的符号。
  18. 如权利要求17所述的方法,其特征在于,所述终端接收所述网络设备发射的SI,具体包括:
    所述终端在所述部分下行信号块在所述第一时间窗口中对应的预设时间位置接收SI。
  19. 如权利要求11-16中任一项所述的方法,其特征在于,所述网络设备发射的SI的时间位置是连续相邻的;所述方法还包括:所述终端接收第四指示信息,所述第四指示信息指示所述网络设备发射的SI的时间位置。
  20. 如权利要求19所述的方法,其特征在于,所述终端接收所述网络设备发射的SI,具体包括:所述终端根据所述第四指示信息,在所述网络设备发射的SI的时间位置接收SI。
  21. 一种网络设备,其特征在于,包括:存储器、耦合于所述存储器的处理器、发射器、接收器,其中:
    所述接收器用于接收一个或多个终端发送的系统信息请求;
    所述发射器用于发射系统信息SI,其中,针对一个终端发射的SI仅与部分下行信号块具有准共址关系QCL;所述部分下行信号块为所述网络设备发射的全部下行信号块的子集;
    所述发射器还用于发送第一指示信息,所述第一指示信息指示所述下行信号块与SI之间的映射,其中,所述下行信号块与其对应的SI具有QCL。
  22. 一种终端,其特征在于,包括:存储器、耦合于所述存储器的处理器、接收器,其中:
    所述接收器用于接收网络设备发送的第一指示信息,所述第一指示信息指示所述下行信号块与SI之间的映射,其中,所述下行信号块与其对应的SI具有QCL;
    所述处理器还用于根据所述第一指示信息判断与所述终端接收到的下行信号块具有QCL的SI是否已经被发送;
    所述接收器还用于如果与所述接收器接收到的下行信号块具有QCL的SI已经被发送,在所述接收器接收到的下行信号块对应的用于接收SI的时间位置上检测SI。
  23. 如权利要求22所述的终端,其特征在于,还包括:发射器,所述发射器用于如果与所述接收器接收到的下行信号块具有QCL的SI没有被发送,向所述网络设备发送系统信息请求;
    所述接收器还用于接收所述网络设备发射的SI,所述网络设备针对所述终端发射的SI 仅与部分下行信号块具有QCL;所述部分下行信号块为所述网络设备发射的全部下行信号块的子集。
  24. 一种通信系统,其特征在于,包括:网络设备和终端,其中:
    所述网络设备为权利要求21所述的网络设备;
    所述终端为权利要求22或23所述的终端。
  25. 一种存储介质计算机可读存储介质,包括指令,其特征在于,当所述指令在网络设备上运行时,使得所述网络设备执行如权利要求1-9中任一项所述的方法。
  26. 一种存储介质计算机可读存储介质,包括指令,其特征在于,当所述指令在终端上运行时,使得所述终端执行如权利要求10-20中任一项所述的方法。
  27. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在网络设备上运行时,使得所述网络设备执行如权利要求1-9中任一项所述的方法。
  28. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在终端上运行时,使得所述终端执行如权利要求10-20中任一项所述的方法。
PCT/CN2019/100094 2018-08-10 2019-08-09 系统信息传输方法、相关设备及系统 WO2020030152A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19848253.1A EP3836689B1 (en) 2018-08-10 2019-08-09 System information transmission method peformed by a network device and system information transmission method performed by a terminal
US17/172,432 US11856560B2 (en) 2018-08-10 2021-02-10 System information transmission method, and related device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810920963.1 2018-08-10
CN201810920963.1A CN110831194B (zh) 2018-08-10 2018-08-10 系统信息传输方法、相关设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,432 Continuation US11856560B2 (en) 2018-08-10 2021-02-10 System information transmission method, and related device and system

Publications (1)

Publication Number Publication Date
WO2020030152A1 true WO2020030152A1 (zh) 2020-02-13

Family

ID=69414033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100094 WO2020030152A1 (zh) 2018-08-10 2019-08-09 系统信息传输方法、相关设备及系统

Country Status (4)

Country Link
US (1) US11856560B2 (zh)
EP (1) EP3836689B1 (zh)
CN (1) CN110831194B (zh)
WO (1) WO2020030152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021237476A1 (zh) * 2020-05-26 2021-12-02 深圳传音控股股份有限公司 信号解调的方法、设备、系统和存储介质
CN115643590A (zh) * 2021-07-19 2023-01-24 维沃移动通信有限公司 系统消息报告的上报方法、装置、终端及存储介质
WO2023028391A1 (en) * 2021-08-23 2023-03-02 Qualcomm Incorporated Using quasi-colocation relationships for beighboring cells in positioning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888507A (zh) * 2016-08-12 2017-06-23 中国移动通信有限公司研究院 信息传输方法、终端及基站
CN107888369A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种系统消息发送的方法及装置
WO2018111034A1 (en) * 2016-12-16 2018-06-21 Samsung Electronics Co., Ltd. Method for managing system information window for transmitting and receiving system information

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1799003B1 (en) * 2005-12-13 2010-02-17 Panasonic Corporation Mapping of broadcast system information to transport channels in a mobile communication system
CN108141737B (zh) * 2015-12-31 2020-12-15 华为技术有限公司 系统信息传输方法、基站和用户设备
CN107733611B9 (zh) * 2016-08-12 2022-07-01 中兴通讯股份有限公司 准共位置信息的处理方法及装置
US11452136B2 (en) * 2016-08-12 2022-09-20 Futurewei Technologies, Inc System and method for network access
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
RU2721179C1 (ru) * 2017-05-03 2020-05-18 Идак Холдингз, Инк. Способ и устройство для процедур пейджинга в технологии "новое радио" (nr)
WO2018203690A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting remaining minimum system information in multibeam-based system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888507A (zh) * 2016-08-12 2017-06-23 中国移动通信有限公司研究院 信息传输方法、终端及基站
CN107888369A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种系统消息发送的方法及装置
WO2018111034A1 (en) * 2016-12-16 2018-06-21 Samsung Electronics Co., Ltd. Method for managing system information window for transmitting and receiving system information

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "3GPP TSG RAN WG1 Meeting #90bis R1-1718713", OTHER SYSTEM INFORMATION DELIVERY, 13 October 2017 (2017-10-13), XP051341886 *
SAMSUNG: "Summary on A.I. 7.1.2.3: Remaining details on other system information delivery", 3GPP TSG RAN WG1 MEETING #91 RL-1721534, 1 December 2017 (2017-12-01), XP051370586 *
ZTE ET AL.: "OSI delivery", 3GPP TSG RAN WG1 MEETING #91 R1-1719343, 1 December 2017 (2017-12-01), XP051369272 *
ZTE: "Remaining details of OSI delivery", "3GPP TSG RAN WG1 NR AD-HOC#3 RL-1715379", 21 September 2017 (2017-09-21), XP051329353 *

Also Published As

Publication number Publication date
US20210176748A1 (en) 2021-06-10
EP3836689B1 (en) 2023-10-18
EP3836689A4 (en) 2021-10-13
CN110831194B (zh) 2022-08-26
CN110831194A (zh) 2020-02-21
US11856560B2 (en) 2023-12-26
EP3836689A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
WO2018145566A1 (zh) 一种终端与终端之间通信的方法、网络侧设备和终端
WO2019184563A1 (zh) 信号传输方法、相关设备及系统
US11109411B2 (en) Channel sense method, network side device, and terminal
US11129155B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
US20210068154A1 (en) Channel sensing method, related device, and system
US11218273B2 (en) Signal transmission method, related device, and system
US20120002634A1 (en) Method of allocating radio resource
US11856560B2 (en) System information transmission method, and related device and system
EP3337269B1 (en) Data transmission method, access point and station
US10701620B2 (en) Methods, network node and wireless device for handling access information
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2019214740A1 (zh) 信号传输方法、相关设备及系统
US10779225B2 (en) Methods, network nodes and wireless device for handling access information
CN111867089B (zh) 一种资源分配方法及设备
US20230040978A1 (en) Communication method and apparatus
WO2015081718A1 (zh) 无线网络的通信处理方法及装置
JP6679733B2 (ja) ワイヤレス通信の方法およびシステム、ならびにデバイス
US20200280939A1 (en) Method for sending synchronization signal in unlicensed frequency band, network device, and terminal device
CN111771338B (zh) 用于物理上行链路共享信道跳频分配的方法和装置
CN110178404A (zh) 一种资源使用方法、相关装置及系统
WO2020147086A1 (zh) 一种信号传输方法、相关设备及系统
JP7456551B2 (ja) 信号の送受信方法、装置及び通信システム
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848253

Country of ref document: EP

Effective date: 20210310