WO2022012100A1 - 一种协作体系桥交叉吊索数量确定方法 - Google Patents

一种协作体系桥交叉吊索数量确定方法 Download PDF

Info

Publication number
WO2022012100A1
WO2022012100A1 PCT/CN2021/086388 CN2021086388W WO2022012100A1 WO 2022012100 A1 WO2022012100 A1 WO 2022012100A1 CN 2021086388 W CN2021086388 W CN 2021086388W WO 2022012100 A1 WO2022012100 A1 WO 2022012100A1
Authority
WO
WIPO (PCT)
Prior art keywords
finite element
system bridge
cooperative system
element model
main
Prior art date
Application number
PCT/CN2021/086388
Other languages
English (en)
French (fr)
Inventor
肖海珠
何东升
高宗余
潘韬
刘俊峰
邱远喜
易莉帮
Original Assignee
中铁大桥勘测设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁大桥勘测设计院集团有限公司 filed Critical 中铁大桥勘测设计院集团有限公司
Priority to EP21842910.8A priority Critical patent/EP4086804A4/en
Publication of WO2022012100A1 publication Critical patent/WO2022012100A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D12/00Bridges characterised by a combination of structures not covered as a whole by a single one of groups E01D2/00 - E01D11/00
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/16Suspension cables; Cable clamps for suspension cables ; Pre- or post-stressed cables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/04Cable-stayed bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of bridge engineering, in particular to a method for determining the number of crossed slings of a collaborative system bridge.
  • the bridge of the cooperation system consists of two parts: the cable-stayed section and the suspension section.
  • Modern cooperative system bridges generally consist of two parts: a cable-stayed section that spreads out from the main tower and a suspension section that hangs mid-span.
  • the structural rigidity of the cable-stayed part is large, and the structural rigidity of the suspension part is small.
  • the difference in the stiffness of the two parts leads to a very large fatigue stress amplitude of the slings in the suspension part, which often becomes the key problem in controlling the design of the bridge in the cooperative system.
  • the purpose of the present invention is to provide a method for determining the number of cross slings of a bridge in a cooperative system, which can solve the problem that the calculation process in the prior art is very complicated, and the model of the bridge in the cooperative system is large, and the suspenders can be changed after changing the hanger. It is necessary to adjust the stay cable, which leads to the problem that the trial calculation process takes a long time.
  • the present invention provides a method for determining the number of crossed slings of a cooperative system bridge, comprising the following steps:
  • a sling is set in the finite element model of the cooperative system bridge, and a live load is applied to carry out the finite element analysis of the finite element model of the cooperative system bridge, and the axial force amplitude of the live load of the end sling is obtained;
  • the supports at both ends of the mid-span main cables are equivalent to vertical rigid supports and longitudinal elastic supports.
  • the longitudinal elastic support at both ends of the mid-span main cable is simulated by longitudinal springs.
  • the main girder of the cable-stayed section is equivalent to an elastic foundation girder.
  • the elastic foundation beam is simulated as rigid support at the restraint position of the support, and the vertical elastic stiffness of other positions of the elastic foundation beam is taken as the vertical elastic stiffness of the stay cable in the middle position/the spacing between the stay cables.
  • E cb is the effective elastic modulus of the stay cable, corrected according to Ernst formula;
  • a c is the area of the stay cable;
  • is the horizontal inclination angle of the stay cable;
  • L cb is the horizontal projection length of the stay cable;
  • D cd It is the longitudinal distance between the anchor points of the stay cables on the beam.
  • the main girder of the finite element model of the collaborative system bridge includes the main girder in the middle span.
  • the present invention has the advantages that the present invention simplifies the model according to the force characteristics of the end suspension cables, and adopts a finite element model including only the mid-span main cable, the suspension cables and the full bridge main beam.
  • the supports at both ends of the mid-span main cables are equivalent to vertical rigid supports and longitudinal elastic supports, and are simulated by longitudinal springs;
  • the main beams of the cable-stayed section are equivalent to elastic foundation beams, and the elastic foundation beams are simulated as rigid supports at the constraint position of the supports, and the elastic
  • the vertical elastic stiffness of other positions of the foundation beam is taken as the vertical elastic stiffness of the stay cables in the middle position/the spacing of the stay cables.
  • the scale of the finite element model of the present invention is about 15% of that of the conventional method, and there is no need to adjust the stay cable, and the calculated live load axial force amplitude of the end sling is different from that of the conventional method.
  • the difference is around 6%. Therefore, the calculation efficiency of the present invention is higher, and the error control is better. Therefore, it can solve the problem that the calculation process in the prior art is very complicated, and the bridge model of the cooperation system is large, and the stay cables need to be adjusted after changing the suspenders, resulting in a long time-consuming process of trial calculation.
  • Fig. 1 is a flow chart of a method for determining the number of cross slings of a collaborative system bridge in an embodiment of the present invention
  • FIG. 2 is a finite element model diagram of an existing collaborative system bridge in an embodiment of the present invention
  • FIG. 3 is a partial diagram of a finite element model of an existing collaborative system bridge in an embodiment of the present invention
  • FIG. 4 is a finite element model diagram of the bridge of the cooperation system of the present application in the embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for determining the number of crossed slings of a collaborative system bridge according to an embodiment of the present invention. As shown in FIG. 1 , the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
  • the present invention provides a method for determining the number of crossed slings of a collaborative system bridge, comprising the following steps:
  • S1 Establish a finite element model of a collaborative system bridge including mid-span main cables, suspension cables and full bridge main girder.
  • FIG. 2 is a finite element model diagram of an existing cooperative system bridge in an embodiment of the present invention
  • FIG. 3 is a partial diagram of a finite element model of an existing cooperative system bridge in an embodiment of the present invention.
  • the finite element model of the existing cooperative system bridge includes the main cable 1, the stay cable 2, the suspension cable 3, the main beam 4, the main tower 5, the auxiliary pier 6 and the anchorage 7.
  • FIG. 4 is a finite element model diagram of the cooperative system bridge of the present application in an embodiment of the present invention. As shown in FIG. 4 , the simplified finite element model of the cooperative system bridge only includes mid-span main cables, suspension cables and full bridge main beams.
  • a finite element model including only mid-span main cables, slings and main beams is used, which can make the operation when adjusting the number of slings more convenient, and the model is also simplified, making the trial calculation process simpler. Improve computational efficiency.
  • Table 1 is the comparison table of calculation method of the present invention and conventional calculation method, as follows:
  • Example method comparison this invention current technology number of model nodes 419 2877 number of model units 416 2646 Whether it is necessary to adjust the cable force unnecessary need Axial force amplitude of end sling live load (kN) 1960 1840
  • the number of model nodes and model elements in the prior art is far greater than the number of model nodes and model elements in the present invention; Bearing the weight of the beam, the cable force of the stay cables needs to be adjusted after the number of cross slings is changed. In the prior art, the cable force of the stay cables needs to be adjusted when the number of slings is adjusted. The present invention does not require adjustment, so it can save a lot of money. Model tuning and computation time.
  • the end sling refers to the outermost one of all slings, and the live load axial force amplitude of the end sling refers to the change in the internal force of the end sling caused by the vehicle crossing the bridge.
  • the end sling is equivalent to the dividing line between the cable-stayed part and the suspension part.
  • the difference in the two stiffnesses leads to a large live load axial force of the end sling.
  • the "staircase" with a slow transition is obviously improved to improve the force of the sling.
  • the supports of the mid-span main cables are equivalent to vertical rigid supports and longitudinal elastic supports.
  • the longitudinal elastic support of the mid-span main cable is simulated using longitudinal springs.
  • the stiffness of the longitudinal spring is
  • the main girder of the cable-stayed section is equivalent to an elastic foundation girder.
  • the elastic foundation beam is simulated as a rigid support at the restraint position of the support, and the vertical elastic stiffness of other positions of the elastic foundation beam is taken as the vertical elastic stiffness of the stay cables in the middle position/the spacing between the stay cables.
  • the vertical elastic stiffness of other positions of the elastic foundation beam is
  • E cb is the effective elastic modulus of the stay cable, corrected according to Ernst formula;
  • a c is the area of the stay cable;
  • is the horizontal inclination angle of the stay cable;
  • L cb is the horizontal projection length of the stay cable;
  • D cd It is the longitudinal distance between the anchor points of the stay cables on the beam.
  • the main girders of the finite element model of the collaborative system bridge include mid-span section main girders.
  • the main girder of the mid-span part is the suspension part of the collaborative system bridge. According to the distribution characteristics of the influence line of the axial force of the end suspension cable on the side span main girder, the main girder of the finite element model of the collaborative system bridge is small. Selecting only part of the main beam in the mid-span can further reduce the size of the model, speed up the trial calculation and adjust the efficiency of the model.
  • S2 Set up a suspension cable in the finite element model of the cooperative system bridge, and apply a live load to carry out finite element analysis on the finite element model of the cooperative system bridge to obtain the live load axial force amplitude of the end suspension cable.
  • the present invention simplifies the model according to the force characteristics of the end suspension cables, and adopts a finite element model including only the mid-span main cable, the suspension cables and the main beam of the full bridge.
  • the support of the mid-span main cable is equivalent to vertical rigid support and longitudinal elastic support, and the longitudinal spring is used for simulation;
  • the main beam of the cable-stayed section is equivalent to the elastic foundation beam, and the elastic foundation beam is simulated by rigid support at the constraint position of the support, and the elastic foundation
  • the vertical elastic stiffness of other positions of the beam is taken as the vertical elastic stiffness of the stay cables in the middle position/the spacing of the stay cables.
  • the scale of the finite element model of the present invention is about 15% of that of the conventional method, and there is no need to adjust the stay cable, and the calculated live load axial force amplitude of the end sling is different from that of the conventional method. The difference is around 6%.
  • Adopting the present invention has higher calculation efficiency and better error control.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种协作体系桥交叉吊索数量确定方法,包括以下步骤:建立包括中跨主缆、吊索和主梁的协作体系桥有限元模型(S1);在协作体系桥有限元模型中设置一根吊索,并施加活载对协作体系桥有限元模型进行有限元分析,得到端吊索活载轴力幅(S2);施加相同活载对逐步增加吊索的数量的协作体系桥有限元模型进行有限元分析,直至得到上一次协作体系桥有限元模型的端吊索活载轴力幅小于当前协作体系桥有限元模型的端吊索活载轴力幅,确定当前协作体系桥有限元模型设定的吊索数量为协作体系桥交叉吊索的根数(S3)。能够解决计算过程非常繁杂,且协作体系桥模型大,更改吊索后需要对调整斜拉索,试算过程中耗时很长的问题。

Description

一种协作体系桥交叉吊索数量确定方法 技术领域
本发明涉及桥梁工程技术领域,具体涉及一种协作体系桥交叉吊索数量确定方法。
背景技术
协作体系桥梁由斜拉段、悬吊段两部分组成。现代协作体系桥一般由从主塔散开的斜拉部分和在跨中悬吊的悬索部分两部分组成。斜拉部分结构刚度大、悬吊部分结构刚度小,两部分刚度的差异导致悬吊部分的吊索疲劳应力幅非常大,往往成为控制协作体系桥设计的关键问题。
很多学者对此展开了参数化研究,证明适当增加斜拉段与悬吊段的重叠区交叉吊索数量量是降低吊索疲劳应力幅的有效措施。
但具体需要多少根交叉吊索则需要通过不断试算确定,计算过程非常繁杂,且协作体系桥模型往往较大,更改吊杆后还需要对斜拉索进行调索,导致试算过程中耗时很长。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种协作体系桥交叉吊索数量确定方法,能够解决现有技术中计算过程非常繁杂,且协作体系桥模型大,更改吊杆后还需要对斜拉索进行调索,导致试算过程中耗时很长的问题。
为达到以上目的,本发明采取的技术方案是:
本发明提供一种协作体系桥交叉吊索数量确定方法,包括以下步 骤:
建立包括中跨主缆、吊索和主梁的协作体系桥有限元模型;
在协作体系桥有限元模型中设置一根吊索,并施加活载对协作体系桥有限元模型进行有限元分析,得到端吊索活载轴力幅;
施加相同活载对逐步增加吊索数量的协作体系桥有限元模型进行有限元分析,直至得到上一次协作体系桥有限元模型的端吊索活载轴力幅小于当前协作体系桥有限元模型的端吊索活载轴力幅,确定当前协作体系桥有限元模型设定的吊索数量为协作体系桥交叉吊索的数量。
在上述技术方案的基础上,在协作体系桥有限元模型中,中跨主缆两端的支承采用竖向刚性支承和纵向弹性支承等效。
在上述技术方案的基础上,中跨主缆两端的纵向弹性支承采用纵向弹簧模拟。
在上述技术方案的基础上,纵向弹簧的刚度为
Figure PCTCN2021086388-appb-000001
其中,L sb为边跨主缆跨径;θ为边跨主缆的水平倾角;E s为主缆的弹性模量;A sb为边缆面积;E c为主塔的弹性模量;I c为主塔的纵向抗弯惯性矩;h为主塔高度。
在上述技术方案的基础上,在协作体系桥有限元模型中,斜拉段主梁采用弹性地基梁等效。
在上述技术方案的基础上,弹性地基梁在支座约束位置按刚性支承模拟,弹性地基梁其他位置的竖向弹性刚度取值为中间位置斜拉索的竖向弹性刚度/斜拉索间距。
在上述技术方案的基础上,弹性地基梁其他位置的竖向弹性刚度 为
Figure PCTCN2021086388-appb-000002
其中,E cb为斜拉索的有效弹性模量,按Ernst公式修正;A c为斜拉索的面积;α为斜拉索的水平倾角;L cb为斜拉索的水平投影长度;D cd为梁上斜拉索的锚固点间纵桥向距离。
在上述技术方案的基础上,协作体系桥有限元模型的主梁包括中跨部分主梁。
与现有技术相比,本发明的优点在于:本发明根据端吊索的受力特性简化了模型,采用仅仅包括中跨主缆、吊索和全桥主梁的有限元模型。中跨主缆两端的支承采用竖向刚性支承和纵向弹性支承等效,采用纵向弹簧模拟;斜拉段主梁采用弹性地基梁等效,弹性地基梁在支座约束位置按刚性支承模拟,弹性地基梁其他位置的竖向弹性刚度取值为中间位置斜拉索的竖向弹性刚度/斜拉索间距。简化后避免了端吊索数更新导致的模型修改和重新调索和求解等繁杂的计算工作,计算更高效。与现有技术的方法相比,本发明的有限元模型规模约为常规方法的15%,且不需要对斜拉索进行调索,而计算的端吊索活载轴力幅与常规方法的差异在6%左右。所以采用本发明计算效率更高、且误差控制较好。从而能够解决现有技术中计算过程非常繁杂,且协作体系桥模型大,更改吊杆后还需要对斜拉索进行调索,导致试算过程中耗时很长的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中一种协作体系桥交叉吊索数量确定方法的流程图;
图2为本发明实施例中现有协作体系桥的有限元模型图;
图3为本发明实施例中现有协作体系桥的有限元模型局部图;
图4为本发明实施例中本申请协作体系桥的有限元模型图。
图中:1、主缆;2、斜拉索;3、吊索;4、主梁;5、主塔;6、辅助墩;7、锚碇。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本发明实施例中一种协作体系桥交叉吊索数量确定方法的流程图,如图1所示,以下结合附图对本发明的实施例作进一步详细说明。
本发明提供一种协作体系桥交叉吊索数量确定方法,包括以下步骤:
S1:建立包括中跨主缆、吊索和全桥主梁的协作体系桥有限元模型。
图2为本发明实施例中现有协作体系桥的有限元模型图;图3为本发明实施例中现有协作体系桥的有限元模型局部图。如图2和图3所示,现有的协作体系桥的有限元模型包括主缆1、斜拉索2、吊索3、主梁4、主塔5、辅助墩6和锚碇7。
图4为本发明实施例中本申请协作体系桥的有限元模型图,如图4所示,简化后的协作体系桥有限元模型仅仅包括中跨主缆、吊索和全桥主梁。
在本实施例中,采用仅仅包括中跨主缆、吊索和主梁的有限元模型,可以使调整吊索数量时的操作更加方便,模型也被简化使试算的过程也更加简单,可提高计算效率。
表1为本发明计算方法与常规计算方法的对比表,如下:
实施例方法对比 本发明 现有技术
模型节点数 419 2877
模型单元数 416 2646
是否需要调斜拉索索力 不需要 需要
端吊索活载轴力幅(kN) 1960 1840
根据表中的数据可知,现有技术中的模型节点数和模型单元数均远大于本发明的模型节点数和模型单元数;梁的重量是一定的,交叉区段斜拉索和吊索同时承担梁的重量,交叉吊索数量变化后还需要调整斜拉索的索力,现有技术中在调整吊索数的时候需要调斜拉索索力,本发明中不需要调整,所以可以大大节省模型调整和计算的时间。端吊索是指所有吊索中最外侧的那一根,端吊索活载轴力幅是指车辆过桥时引起的端吊索的内力的变化量。端吊索相当于为斜拉部分和悬吊部分的分界线,两个刚度的差异导致端吊索活载轴力幅大,而通过调整交叉吊索数则相当于给刚度突变的区段增加了缓慢过渡的“楼梯”,显然是改善了吊索的受力。
在一些可选地实施例中,在协作体系桥有限元模型中,中跨主缆的支承采用竖向刚性支承和纵向弹性支承等效。
在一些可选地实施例中,中跨主缆的纵向弹性支承采用纵向弹簧模拟。
在一些可选地实施例中,纵向弹簧的刚度为
Figure PCTCN2021086388-appb-000003
其中,L sb为边跨主缆跨径;θ为边跨主缆的水平倾角;E s为主缆的弹性模量;A sb为边缆面积;E c为主塔的弹性模量;I c为主塔的纵向抗弯惯性矩;h为主塔高度。
在一些可选地实施例中,在协作体系桥有限元模型中,斜拉段主梁采用弹性地基梁等效。
在一些可选地实施例中,弹性地基梁在支座约束位置按刚性支承模拟,弹性地基梁其他位置的竖向弹性刚度取中间位置斜拉索的竖向弹性刚度/斜拉索间距。
在一些可选地实施例中,弹性地基梁其他位置的竖向弹性刚度为
Figure PCTCN2021086388-appb-000004
其中,E cb为斜拉索的有效弹性模量,按Ernst公式修正;A c为斜拉索的面积;α为斜拉索的水平倾角;L cb为斜拉索的水平投影长度;D cd为梁上斜拉索的锚固点间纵桥向距离。
在一些可选的实施例中,协作体系桥有限元模型的主梁包括中跨部分主梁。
在本实施例中,中跨部分主梁即是协作体系桥悬吊部分,根据端吊索轴力影响线在边跨主梁上数值很小的分布特点,协作体系桥有限元模型的主梁仅仅选取中跨部分主梁,可进一步缩小模型规模,加快试算的速度以及调整模型的效率。
S2:在协作体系桥有限元模型中设置一根吊索,并施加活载对协 作体系桥有限元模型进行有限元分析,得到端吊索活载轴力幅。
S3:施加相同活载对逐步增加吊索数量的协作体系桥有限元模型进行有限元分析,直至得到上一次协作体系桥有限元模型的吊索的活载轴力幅小于当前协作体系桥有限元模型的吊索的活载轴力幅,确定当前协作体系桥有限元模型设定的吊索数量为协作体系桥交叉吊索的数量。
综上所述,本发明根据端吊索的受力特性简化了模型,采用仅仅包括中跨主缆、吊索和全桥主梁的有限元模型。中跨主缆的支承采用竖向刚性支承和纵向弹性支承等效,采用纵向弹簧模拟;斜拉段主梁采用弹性地基梁等效,弹性地基梁在支座约束位置按刚性支承模拟,弹性地基梁其他位置的竖向弹性刚度取值为中间位置斜拉索的竖向弹性刚度/斜拉索间距。简化后避免了端吊索数更新导致的模型修改和重新调索和求解等繁杂的计算工作,计算更高效。与现有技术的方法相比,本发明的有限元模型规模约为常规方法的15%,且不需要对斜拉索进行调索,而计算的端吊索活载轴力幅与常规方法的差异在6%左右。采用本发明计算效率更高、且误差控制较好。
在本申请的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具 体含义。
需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种协作体系桥交叉吊索数量确定方法,其特征在于,包括以下步骤:
    建立包括中跨主缆、吊索和主梁的协作体系桥有限元模型;
    在协作体系桥有限元模型中设置一根吊索,并施加活载对协作体系桥有限元模型进行有限元分析,得到端吊索活载轴力幅;
    施加相同活载对逐步增加吊索数量的协作体系桥有限元模型进行有限元分析,直至得到上一次协作体系桥有限元模型的端吊索活载轴力幅小于当前协作体系桥有限元模型的端吊索活载轴力幅,确定当前协作体系桥有限元模型设定的吊索数量为协作体系桥交叉吊索的数量。
  2. 如权利要求1所述的一种协作体系桥交叉吊索数量确定方法,其特征在于:在协作体系桥有限元模型中,中跨主缆两端的支承采用竖向刚性支承和纵向弹性支承等效。
  3. 如权利要求2所述的一种协作体系桥交叉吊索数量确定方法,其特征在于:中跨主缆的纵向弹性支承采用纵向弹簧模拟。
  4. 如权利要求3所述的一种协作体系桥交叉吊索数量确定方法,其特征在于,纵向弹簧的刚度为
    Figure PCTCN2021086388-appb-100001
    其中,L sb为边跨主缆跨径;θ为边跨主缆的水平倾角;E s为主缆的弹性模量;A sb为边缆面积;E c为主塔的弹性模量;I c为主塔的纵向抗弯惯性矩;h为主塔高度。
  5. 如权利要求1所述的一种协作体系桥交叉吊索数量确定方法,其特征在于:在协作体系桥有限元模型中,斜拉段主梁采用弹性地基梁等效。
  6. 如权利要求5所述的一种协作体系桥交叉吊索数量确定方法,其特征在于:弹性地基梁在支座约束位置按刚性支承模拟,弹性地基梁其他位置的竖向弹性刚度取值为中间位置斜拉索的竖向弹性刚度/斜拉索间距。
  7. 如权利要求6所述的一种协作体系桥交叉吊索数量确定方法,其特征在于,弹性地基梁其他位置的竖向弹性刚度为
    Figure PCTCN2021086388-appb-100002
    其中,E cb为斜拉索的有效弹性模量,按Ernst公式修正;A c为斜拉索的面积;α为斜拉索的水平倾角;L cb为斜拉索的水平投影长度;D cd为梁上斜拉索的锚固点间纵桥向距离。
  8. 如权利要求1所述的一种协作体系桥交叉吊索数量确定方法,其特征在于:协作体系桥有限元模型的主梁包括中跨部分主梁。
PCT/CN2021/086388 2020-07-17 2021-04-12 一种协作体系桥交叉吊索数量确定方法 WO2022012100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21842910.8A EP4086804A4 (en) 2020-07-17 2021-04-12 METHOD FOR DETERMINING THE NUMBER OF CROSSED HANGERS FOR A BRIDGE OF A COOPERATIVE SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010693423.1A CN111931400B (zh) 2020-07-17 2020-07-17 一种协作体系桥交叉吊索数量确定方法
CN202010693423.1 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012100A1 true WO2022012100A1 (zh) 2022-01-20

Family

ID=73312560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086388 WO2022012100A1 (zh) 2020-07-17 2021-04-12 一种协作体系桥交叉吊索数量确定方法

Country Status (3)

Country Link
EP (1) EP4086804A4 (zh)
CN (1) CN111931400B (zh)
WO (1) WO2022012100A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741648A (zh) * 2022-03-15 2022-07-12 中铁第四勘察设计院集团有限公司 斜拉桥的索力分析方法及装置、电子设备及存储介质
CN114741925A (zh) * 2022-04-15 2022-07-12 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN115344921A (zh) * 2022-08-05 2022-11-15 中铁大桥勘测设计院集团有限公司 一种钢桁梁等效剪切面积的计算方法及设备
CN115481474A (zh) * 2022-09-02 2022-12-16 中铁大桥勘测设计院集团有限公司 一种考虑索力耦合效应的索力优化方法、装置及设备
CN116305413A (zh) * 2023-01-19 2023-06-23 安徽省交通控股集团有限公司 一种锲形截面组合抗剪设计方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931400B (zh) * 2020-07-17 2023-08-22 中铁大桥勘测设计院集团有限公司 一种协作体系桥交叉吊索数量确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728987B1 (en) * 2002-04-23 2004-05-04 Ch2M Hill, Inc. Method of adjusting the vertical profile of a cable supported bridge
CN106777778A (zh) * 2017-01-05 2017-05-31 南京林业大学 一种单侧悬吊的曲梁悬索桥建模方法
CN107724226A (zh) * 2017-11-13 2018-02-23 安徽省交通控股集团有限公司 一种四索面同向回转斜拉索‑悬索协作体系桥梁
CN111209625A (zh) * 2020-01-06 2020-05-29 中铁大桥勘测设计院集团有限公司 一种协作体系桥斜拉吊索重叠区索力分配比例的确定方法
CN111931400A (zh) * 2020-07-17 2020-11-13 中铁大桥勘测设计院集团有限公司 一种协作体系桥交叉吊索数量确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728987B1 (en) * 2002-04-23 2004-05-04 Ch2M Hill, Inc. Method of adjusting the vertical profile of a cable supported bridge
CN106777778A (zh) * 2017-01-05 2017-05-31 南京林业大学 一种单侧悬吊的曲梁悬索桥建模方法
CN107724226A (zh) * 2017-11-13 2018-02-23 安徽省交通控股集团有限公司 一种四索面同向回转斜拉索‑悬索协作体系桥梁
CN111209625A (zh) * 2020-01-06 2020-05-29 中铁大桥勘测设计院集团有限公司 一种协作体系桥斜拉吊索重叠区索力分配比例的确定方法
CN111931400A (zh) * 2020-07-17 2020-11-13 中铁大桥勘测设计院集团有限公司 一种协作体系桥交叉吊索数量确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086804A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741648A (zh) * 2022-03-15 2022-07-12 中铁第四勘察设计院集团有限公司 斜拉桥的索力分析方法及装置、电子设备及存储介质
CN114741648B (zh) * 2022-03-15 2024-05-03 中铁第四勘察设计院集团有限公司 斜拉桥的索力分析方法及装置、电子设备及存储介质
CN114741925A (zh) * 2022-04-15 2022-07-12 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN114741925B (zh) * 2022-04-15 2023-12-29 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN115344921A (zh) * 2022-08-05 2022-11-15 中铁大桥勘测设计院集团有限公司 一种钢桁梁等效剪切面积的计算方法及设备
CN115344921B (zh) * 2022-08-05 2024-03-12 中铁大桥勘测设计院集团有限公司 一种钢桁梁等效剪切面积的计算方法及设备
CN115481474A (zh) * 2022-09-02 2022-12-16 中铁大桥勘测设计院集团有限公司 一种考虑索力耦合效应的索力优化方法、装置及设备
CN115481474B (zh) * 2022-09-02 2024-04-23 中铁大桥勘测设计院集团有限公司 一种考虑索力耦合效应的索力优化方法、装置及设备
CN116305413A (zh) * 2023-01-19 2023-06-23 安徽省交通控股集团有限公司 一种锲形截面组合抗剪设计方法及装置
CN116305413B (zh) * 2023-01-19 2024-05-31 安徽省交通控股集团有限公司 一种锲形截面组合抗剪设计方法及装置

Also Published As

Publication number Publication date
EP4086804A4 (en) 2024-02-14
CN111931400B (zh) 2023-08-22
CN111931400A (zh) 2020-11-13
EP4086804A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2022012100A1 (zh) 一种协作体系桥交叉吊索数量确定方法
WO2022165983A1 (zh) 一种确定三塔斜拉桥塔梁纵向约束刚度及优化基础的方法
CN111523172A (zh) 一种空间异形索面悬索桥主缆成桥线形分析方法
CN112853917B (zh) 一种箱梁节段单元的制造构形控制方法及桥梁
CN111764282B (zh) 基于斜拉扣挂法的刚性悬索加劲钢桁梁桥施工方法
CN109972494B (zh) 一种节段间带铰的大节段吊装自锚式悬索桥设计与施工方法
CN111666615A (zh) 一种基于有限元的悬索桥空间缆索找形方法
CN112395797B (zh) 油气管悬索跨越仿真分析方法
CN117271949B (zh) 考虑弹性边界和大垂度影响的悬索自振分析方法及系统
CN109056496B (zh) 一种有初始曲率的超大跨度钢桁连续梁桥及施工方法
CN205046477U (zh) 大跨度索塔下横梁落地式斜腿钢桁支架
CN110820566A (zh) 波形钢腹板部分承重式挂篮悬浇施工方法
CN110361970A (zh) 一种用于吊挂看台吊点选取及提升控制的方法
CN112464534B (zh) 油气管悬索跨越仿真分析模型及其构建方法
CN203546599U (zh) 墩旁托架
CN115357965B (zh) 自锚式悬索桥及其成桥线形确定方法
CN111859521A (zh) 一种空间自锚式悬索桥主缆中心索无应力长度计算方法
CN112257218A (zh) 一种空间自锚式悬索桥主缆中心索无应力长度预测系统
CN112064492B (zh) 一种主梁竖向减振和纵向阻尼装置及大跨度桥
CN110820567A (zh) 波形钢腹板pc箱梁部分承重式挂篮
CN114036801A (zh) 一种自锚式悬索桥合理成桥状态的设计方法
CN112524334B (zh) 油气管道大型索式跨越的施工方法及其塔架动态稳定工艺
CN113957790A (zh) 一种空间主缆索夹安装时横向偏转角的计算方法
CN110359548A (zh) 一种钢桁架悬挂混合系统及施工方法
CN110598250B (zh) 优化连续刚构桥弯矩分配的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021842910

Country of ref document: EP

Effective date: 20220805

NENP Non-entry into the national phase

Ref country code: DE