WO2022012068A1 - 一种视场角的调整方法及近眼显示设备 - Google Patents

一种视场角的调整方法及近眼显示设备 Download PDF

Info

Publication number
WO2022012068A1
WO2022012068A1 PCT/CN2021/080832 CN2021080832W WO2022012068A1 WO 2022012068 A1 WO2022012068 A1 WO 2022012068A1 CN 2021080832 W CN2021080832 W CN 2021080832W WO 2022012068 A1 WO2022012068 A1 WO 2022012068A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide sheet
angle
display device
eye display
waveguide
Prior art date
Application number
PCT/CN2021/080832
Other languages
English (en)
French (fr)
Inventor
黄浩
宋强
郭晓明
邹小慧
许恒深
马国斌
汪涛
Original Assignee
深圳珑璟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳珑璟光电科技有限公司 filed Critical 深圳珑璟光电科技有限公司
Priority to EP21842995.9A priority Critical patent/EP4184235A4/en
Publication of WO2022012068A1 publication Critical patent/WO2022012068A1/zh
Priority to US18/154,114 priority patent/US11709368B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • the embodiments of the present application relate to the technical field of optical design, and in particular, to a method for adjusting a viewing angle and a near-eye display device.
  • Near-eye display is currently a hot research topic, such as helmet-shaped virtual reality display and smart glasses-shaped augmented reality display.
  • Near-eye display can provide people with an unprecedented sense of interaction, and has important application value in many fields such as telemedicine, industrial design, education, military virtual training, and entertainment.
  • optical waveguide sheets are usually used to transmit light.
  • optical waveguides can bring better imaging effects, and on the other hand, it is conducive to the miniaturization of near-eye display devices.
  • the inventor found that there are at least the following problems in the above related technologies: when the near-eye display device currently on the market needs to adjust the field of view of the device, it will be limited by the refractive index of the material of the waveguide sheet.
  • the refractive index of the material of the waveguide sheet When increasing the field of view of the device, it is necessary to replace the waveguide sheet in the near-eye display device, and use a waveguide sheet with a higher refractive index to achieve a larger field of view, while the use of a waveguide sheet with a high refractive index will reduce the imaging quality. , cost increase, poor stability and other issues.
  • the purpose of the embodiments of the present application is to provide a method for adjusting the field of view angle and a near-eye display device with better imaging, lower cost, and better stability.
  • the embodiments of the present application provide a method for adjusting the field of view angle, which is applied to a waveguide sheet in a near-eye display device, and the waveguide sheet is inclined relative to the horizontal direction of the human face. included angle, the method includes:
  • the refractive index of the waveguide sheet, the bottom angle, and the field of view angle calculate the inclined angle of the waveguide sheet with respect to the horizontal direction of the human face
  • the tilt angle is adjusted so that the near-eye display device has the field of view.
  • the calculation formula for calculating the inclination angle of the waveguide sheet relative to the horizontal direction of the human face is as follows:
  • n denotes the refractive index of the waveguide sheet
  • denotes the bottom angle of the waveguide sheet
  • y denotes the field of view angle
  • the near-eye display device further includes a microdisplay and a projection module for emitting projected imaging light
  • the method further includes:
  • the field angle and the inclined angle calculate the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet
  • the orientation of the microdisplay and the projection module is adjusted to adjust the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet, so that the near-eye display device has the field of view.
  • the calculation formula for calculating the incident angle of total reflection and transmission of the projection imaging light in the waveguide sheet is as follows:
  • i 1 represents the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet
  • represents the bottom angle of the waveguide sheet
  • y represents the field of view angle
  • n denotes the refractive index of the waveguide sheet.
  • the method further includes:
  • the bottom angle of the waveguide sheet is adjusted to adjust the exit angle of stray light in the waveguide sheet, so that the stray light is deflected out of the eye box of the near-eye display device.
  • the calculation formula for calculating the incident angle of stray light on the waveguide sheet is as follows:
  • i1 , s2 represent the incident angle of stray light on the waveguide sheet
  • represents the bottom angle of the waveguide sheet
  • i represents the incident angle of the projection imaging light entering the waveguide sheet
  • n represents the refractive index of the waveguide sheet.
  • the calculation formula for calculating the lateral size of the eye box of the near-eye display device is as follows:
  • D represents the lateral size of the eye box of the near-eye display device
  • L wg represents the length of the waveguide
  • y represents the field of view.
  • an embodiment of the present application provides a near-eye display device, including:
  • the wave guide sheet forms an inclined angle with respect to the horizontal direction of the human face
  • controller coupled to the waveguide sheet, the controller comprising at least one processor, and a memory communicatively coupled to the at least one processor, wherein,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the angle of view of the first aspect above adjustment method.
  • the near-eye display device further includes: a microdisplay and a projection module for emitting projection imaging light, the microdisplay and the projection module are respectively connected to the controller, and the controller is used to control The orientation of the microdisplay and the projection module is adjusted to adjust the incident angle of total reflection and transmission of the projection imaging light in the waveguide sheet.
  • the near-eye display device further includes:
  • the projection imaging light is refracted and incident on the waveguide sheet through the prism;
  • the projected imaging light is diffracted by the diffractive element and incident on the waveguide sheet.
  • embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute The method of the first aspect above.
  • the embodiments of the present application further provide a computer program product
  • the computer program product includes a computer program stored on a computer-readable storage medium
  • the computer program includes program instructions, when The program instructions, when executed by a computer, cause the computer to perform the method described in the first aspect above.
  • the embodiment of the present application provides a method for adjusting the field of view angle, which is applied to a waveguide sheet in a near-eye display device, a waveguide sheet
  • the method first obtains the refractive index and bottom angle of the waveguide sheet, and then determines the required field of view angle, and then according to the refractive index of the waveguide sheet, the bottom angle, and the field angle, Calculate the inclination angle of the waveguide sheet relative to the horizontal direction of the human face, and finally adjust the inclination angle so that the near-eye display device has the field of view.
  • the adjustment method provided by the embodiment of the present application can make the waveguide sheet realize low refraction at the same time It has better imaging rate, lower cost and better stability.
  • FIG. 1 is a schematic diagram of one application environment of the method for adjusting a field of view provided by an embodiment of the present application;
  • Fig. 2 is the parameter schematic diagram of a kind of microlens array
  • Figure 3(a) is a schematic diagram of the optical path structure of the projection imaging light refracted and incident from one side of the optical waveguide;
  • Figure 3(b) is a schematic diagram of the optical path structure of the projection imaging light refracted and incident from the other side of the optical waveguide;
  • FIG. 4 is a schematic flowchart of a method for adjusting a field of view according to Embodiment 1 of the present application;
  • Figure 5 is a schematic diagram of the propagation principle of light in the waveguide sheet
  • FIG. 6 is a graph showing the relationship between different bottom angles and different inclined angles of the waveguide sheet and the incident angle of total reflection and transmission of the projection imaging light in the waveguide sheet;
  • FIG. 7 is a schematic flowchart of another method for adjusting a field of view according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic flowchart of a method for avoiding stray light according to Embodiment 1 of the present application.
  • Fig. 9(a) is a schematic diagram of the optical path structure of stray light incident from a surface of the waveguide sheet
  • Figure 9(b) is a schematic diagram of the optical path structure of stray light incident from the other surface of the waveguide sheet;
  • FIG. 10 is a schematic diagram of the optical path principle of the exit pupil light emitted from the waveguide sheet
  • Figure 11 is a diagram showing the relationship between the inclined angle of the waveguide sheet and the lateral size of the eye box
  • Fig. 13 is a schematic diagram of the maximum field of view angle of a waveguide sheet with a bottom angle of 25° under different refractive indices and different inclined angles;
  • FIG. 14 is a schematic structural diagram of a near-eye display device according to Embodiment 2 of the present application.
  • the existing waveguide sheet wants to increase the field of view, it is usually only by increasing the bottom of the waveguide sheet.
  • the former usually introduces stray light and greatly reduces the imaging quality, while the latter has little effect on the imaging quality, but uses a high refractive index waveguide.
  • new problems such as dispersion of high refractive index materials, changes in coating properties, degree of refractive index matching of glues, adhesion, and stability.
  • an embodiment of the present application provides a method for adjusting the field of view angle, which is applied to a waveguide sheet in a near-eye display device.
  • the angle of field of view, and preferably, the waveguide sheet in the near-eye display device can be made of a material with a low refractive index, and its technology is more mature.
  • the adjustment method provided by the embodiment of the present application can simultaneously realize a large field of view of the waveguide sheet in the near-eye display device. Angle and low refractive index, lower equipment cost and better stability.
  • the application environment is a near-eye display device
  • the near-eye display device includes: a microdisplay 1, a projection module 2, The coupling-in grating 3 , the waveguide sheet 4 and the coupling-out grating 5 , wherein the projected imaging light emitted by the microdisplay 1 is collimated by the projection module 2 , and then diffracted by the coupling-in grating 3 and exits the target diffraction order light at the incident angle.
  • the waveguide sheet 4 is coupled into the waveguide sheet 4 at an oblique incidence, and the optical fiber satisfying the condition of total reflection propagates power losslessly in the waveguide sheet 4 until it encounters the coupling-out grating 5 and is diffracted and coupled out again to the human eye for imaging.
  • the bottom angle of the waveguide sheet 4 is ⁇ .
  • the waveguide sheet 4 is at an inclined angle with respect to the horizontal direction of the human face.
  • the coupling grating 3 can also be replaced by other diffractive elements, for example, diffractive elements such as a microlens array or a metasurface.
  • diffractive elements such as a microlens array or a metasurface.
  • FIG. 2 shows a schematic diagram of the parameters of a microlens array.
  • the microlens array can choose a period of 447.1 nm, a groove depth of 276 nm, and a refractive index of K9 of 447.1 nm. 1.52, the refractive index of TiO2 is 2.443245, and the microlens array with TiO2 film thickness of 106nm (conformal coating) can achieve a diffraction efficiency of more than 85%.
  • the projected imaging light may also be incident into the waveguide sheet 4 through refraction elements such as prisms.
  • refraction elements such as prisms.
  • FIG. 3(a) ) and FIG. 3( b ) respectively show a schematic diagram of the optical path structure of the projected imaging light rays refracted from both sides of the optical waveguide and incident on the waveguide sheet through prisms.
  • the projection imaging light may be incident on an oblique plane as shown in FIG. 1 , FIG. 3( a ) and FIG. 3( b ), or may be incident on a plane perpendicularly.
  • An embodiment of the present application provides a method for adjusting a field of view angle, which is applied to a waveguide sheet in a near-eye display device.
  • the near-eye display device may be the near-eye display device described in the above application scenario.
  • the horizontal direction of the face is inclined at an angle
  • FIG. 4 together shows a flowchart of a method for adjusting a field of view provided by an embodiment of the present application.
  • the method for adjusting a field of view includes but is not limited to the following steps:
  • Step 10 Obtain the refractive index and bottom angle of the waveguide sheet.
  • the refractive index of the waveguide sheet can be determined according to the model of the waveguide sheet, preferably, an optical waveguide sheet made of a low refractive index material is used to reduce the difficulty of obtaining raw materials, and reduce the process and cost. device cost.
  • the bottom angle of the waveguide sheet can be confirmed according to the relative position of the waveguide sheet and the projection component in the near-eye display device, and specifically, the bottom angle of the waveguide sheet can be detected by an angle measuring instrument. Further, in some embodiments, the viewing angle of the waveguide sheet in the near-eye display device can also be adjusted by adjusting the bottom angle of the waveguide sheet.
  • Step 20 Determine the required field of view.
  • the required field angle can be a fixed value, or can be is a range, specifically, it can be selected and determined according to actual needs.
  • Step 30 Calculate the included angle of inclination of the waveguide sheet with respect to the horizontal direction of the human face according to the refractive index, the base angle, and the field of view of the waveguide sheet.
  • the included angle of inclination is not zero.
  • FIG. 5 shows the propagation principle of light in the waveguide sheet, wherein the virtual image is the propagating light that the projection imaging light described in the above application scenario is totally reflected into the waveguide sheet, and the background light of the external environment can
  • the waveguide sheet is transmitted to the human eye, so that the user can synthesize and obtain an image in which a virtual image is superimposed on the external environment to realize an augmented reality display (AR).
  • AR augmented reality display
  • the waveguide sheet may also be coated with a reflective film on the side away from the human eye, so that the background light of the external environment cannot enter the human eye, thereby realizing virtual reality display (VR). Since light propagates through total reflection in an optical waveguide, it satisfies the law of refraction:
  • n represents the refractive index of the waveguide plate
  • i represents the incident angle of the projection imaging light entering the waveguide plate
  • i′ represents the refracted and outgoing angle of the light corresponding to the incident angle i of the projection imaging light entering the waveguide plate
  • i 1 represents the projection imaging ray The incident angle of the total reflection transmission (ie the virtual image in FIG. 5 ) in the waveguide sheet.
  • the incident angle of the upper and lower main surfaces in the waveguide sheet (that is, the incident angle of the total reflection transmission of the projection fiber in the waveguide sheet) needs to be greater than the critical angle of total reflection.
  • the total reflection transmission of the projection imaging light in the waveguide sheet satisfies:
  • i 1 represents the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet
  • represents the bottom angle of the waveguide sheet
  • i′ represents the angle of refracting and exiting the light corresponding to the incident angle i of the projection imaging light entering the waveguide sheet.
  • n denotes the refractive index of the waveguide sheet
  • denotes the bottom angle of the waveguide sheet
  • y denotes the field of view angle
  • Step 40 Adjust the tilt angle, so that the near-eye display device has the field of view.
  • FIG. 6 shows the relationship between different bottom angles and different inclined angles of the waveguide sheet and the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet.
  • the field of view angle y is set to ⁇ 20°
  • the refractive index n of the waveguide sheet is 1.5168
  • the five curves S1 to S5 show the inclined angles when the waveguide sheet has five base angles from small to large.
  • the relationship between the (abscissa) and the incident angle i 1 (ordinate) of the total reflection and transmission of the projected imaging light in the waveguide sheet is shown in Figure 6.
  • the near-eye display device may further include a microdisplay and a projection module for emitting projected imaging light. Please refer to FIG. 7 together.
  • the method shown, the adjustment method may also include the following steps:
  • Step 50 Calculate the incident angle of total reflection and transmission of the projection imaging light in the waveguide sheet according to the refractive index and the bottom angle of the waveguide sheet, the field of view angle and the inclined angle.
  • step 30 Combining with step 30, it can be seen that the projection imaging light propagation in the waveguide sheet needs to satisfy the condition of total reflection, which can be derived from the formula in the above step 30.
  • the calculation of the incident angle of the total reflection transmission of the projection imaging light in the waveguide sheet The formula is as follows:
  • i 1 represents the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet
  • represents the bottom angle of the waveguide sheet
  • y represents the field of view angle
  • n denotes the refractive index of the waveguide sheet.
  • Step 60 Adjust the orientation of the microdisplay and the projection module to adjust the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet, so that the near-eye display device has the field of view.
  • the incident angle i and the bottom angle ⁇ of the projected imaging light entering the waveguide sheet can be adjusted, thereby adjusting the projected imaging light in the waveguide sheet.
  • the exit angle i′ of the projection imaging light is adjusted, and the incident angle i 1 of the total reflection and transmission of the projection imaging light in the waveguide sheet is adjusted, so that the near-eye display device has the field of view y.
  • the embodiment of the present application also provides a method for avoiding stray light. Please refer to FIG. 8 together. 4 and the method shown in FIG. 7 and its embodiments, the adjustment method may further include the following steps:
  • Step 70 Calculate the incident angle of stray light on the waveguide sheet according to the incident angle of the projected imaging light entering the waveguide sheet and the refractive index and base angle of the waveguide sheet.
  • Fig. 9(a) and Fig. 9(b) shows two cases in which stray light is incident from the two surfaces of the waveguide sheet, respectively, wherein, in Fig.
  • the projection imaging light light reaches the upper surface of the waveguide substrate from the rear surface of the lower incidence intersect at the point P n, P n on the right point transflective surface boundary point P s, and the projection image light from the transflective surface intersect, then the FIG.
  • the incident angle of the stray light on the lower surface satisfies:
  • i 1, s 2 represent the incident angle of the stray light on the waveguide plate
  • represents the bottom angle of the waveguide plate
  • i′ represents the angle of refracted and outgoing light corresponding to the incident angle i of the projected imaging light entering the waveguide plate.
  • i1 , s2 represent the incident angle of stray light on the waveguide sheet
  • represents the bottom angle of the waveguide sheet
  • i represents the incident angle of the projection imaging light entering the waveguide sheet
  • n represents the refractive index of the waveguide sheet.
  • Step 80 Calculate the lateral size of the eye box of the near-eye display device according to the length of the waveguide sheet, the inclined angle of the waveguide sheet relative to the horizontal direction of the human face, and the field of view of the near-eye display device.
  • the stray light in order to eliminate the influence of stray light on imaging, preferably, the stray light only needs to be removed from the eyebox (Eyebox) of the near-eye display device, and the eyebox is the eye-capable part of the near-eye display device.
  • the area where the image is viewed and receives the projected imaging light please refer to FIG. 10 together, which shows the optical path principle of the exit pupil light emitted from the waveguide sheet, D is the lateral size of the eye box of the near-eye display device, L is the distance from the through hole to the lower surface of the waveguide sheet (i.e.
  • L 1 and L 2 are the distances from the projected imaging light emitted from two field angles of ⁇ y to the surface of the exit pupil, L wg represents the length of the refraction surface of the waveguide, It can be seen from Figure 10 that the inclination angle of the waveguide sheet relative to the horizontal direction of the human face shows that the above parameters have the following relationship:
  • the calculation formula for calculating the lateral size of the eye box of the near-eye display device is as follows:
  • D represents the lateral size of the eye box of the near-eye display device
  • L wg represents the length of the waveguide
  • y represents the field of view. It is not difficult to conclude that if the size of the eye box in the near-eye display device is to be increased, the length of the waveguide sheet needs to be correspondingly increased, and the angle of view y and the angle of inclination need to be increased accordingly.
  • the lateral size D of the eye box is also inversely proportional to the interpupillary distance L. Please refer to FIG.
  • Step 90 Adjust the bottom angle of the waveguide sheet to adjust the exit angle of stray light in the waveguide sheet, so that the stray light is deflected out of the eye box of the near-eye display device.
  • Figure 12 shows a schematic diagram of the principle of eliminating stray light. It is not difficult to see that in order to eliminate stray light and emit stray light outside the eye box, the following relationship needs to be satisfied:
  • i′ 1, s2 represents the exit angle of stray light in the waveguide sheet
  • L represents the interpupillary distance
  • D represents the lateral size of the eye box of the near-eye display device
  • y represents the field of view angle
  • L 1 is the distance from the projected imaging light emitted by the field of view angle y to the surface of the exit pupil
  • step 70 it can be seen from step 70 that the exit angle i' 1, s2 and the waveguide sheet Therefore, by adjusting the base angle ⁇ , the outgoing angle i′ 1,s2 of the stray light in the waveguide sheet is adjusted, so that the stray light is deflected out of the eye box of the near-eye display device.
  • the embodiments of the present application also provide two optimization methods of the waveguide sheets and the optimization parameters of the two groups of waveguide sheets:
  • the first optimization method and the first set of optimization parameters are the first optimization method and the first set of optimization parameters:
  • the parameter calculation of the optical waveguide can refer to the following two-dimensional grating equation:
  • (m, n) is the diffraction order
  • ⁇ mn is the azimuth angle of the diffraction order (m, n)
  • ⁇ mn is the polarization angle of the diffraction order (m, n)
  • i is the incident light coupled into the grating Incident polarization angle
  • is the azimuth angle of the incident light
  • n is the refractive index
  • d x and dy are the transverse and longitudinal periods of the two-dimensional grating, respectively
  • is the wavelength of the incident light.
  • the inclination direction of the projected imaging light is controlled to be one-dimensional (along the x-direction) inclination.
  • a light corresponding to the incident field of view is designed.
  • Grating waveguide components with a tilt angle of 6° As shown in the table below:
  • H_FOV is the lateral field of view
  • V_FOV is the vertical field of view
  • h is the thickness of the slab waveguide/waveguide sheet
  • is the wavelength of the incident light
  • n is the refractive index of the slab waveguide
  • duty ratio is the duty ratio of the grating
  • d is the grating cycle.
  • base angle ⁇ needs to be as small as possible.
  • base angle ⁇ needs to be larger.
  • Table below and Figure 13 together shows the maximum angle of view of the waveguide sheet with different refractive indices and different tilt angles when the base angle is determined (25°).
  • Figure 13 specifically draws a schematic diagram of the maximum angle of view under three different tilt angles and different refractive indices, in which the ray diagrams of the left and right boundary fields of view are drawn. It can be seen from the above table and Figure 13 that if the waveguide is not tilted For example, if the waveguide sheet is not tilted, it is necessary to use a waveguide sheet with a refractive index of about 1.8 when designing a viewing angle of about 30°. In this application, the waveguide sheet is inclined between 4° and 8°, and a 30° field of view can be achieved by using a waveguide sheet material with a refractive index of about 1.7.
  • a set of design parameters can be obtained to meet the light field imaging of the large market with low refractive index, and can meet other optical indicators: the base angle ⁇ is selected as 27°, the waveguide The inclination angle of the sheet relative to the horizontal direction of the human face Select 4°, the interpupillary distance L is 22mm, the lateral size D of the eye box of the near-eye display device is 8mm, and the waveguide sheet is selected from H-K9L glass, which can achieve a field angle y of 17.3°, and the full angle of the field of view is 40°.
  • An embodiment of the present application provides a near-eye display device. Please refer to FIG. 14 together, which shows that an embodiment of the present application provides a near-eye display device.
  • the near-eye display device includes: a waveguide sheet 4 and a controller 6,
  • the waveguide sheet 4 forms an inclined angle with respect to the horizontal direction of the human face, and the controller 6 is connected to the waveguide sheet 4 .
  • the near-eye display device further includes: a microdisplay 1 and a projection module 2 for emitting projection imaging light, the microdisplay 1 and the projection module 2 are respectively connected to the controller 6, and the controller 6 is used for Control and adjust the orientation of the microdisplay 1 and the projection module 2 to adjust the incident angle of the total reflection and transmission of the projection imaging light in the waveguide sheet 4 .
  • the near-eye display device further includes: a prism 3a, through which the projection imaging light is refracted and incident on the waveguide sheet 4; the waveguide sheet 4 .
  • the near-eye display device can be the above-mentioned application scenario and the near-eye display device shown in FIG. 1 .
  • the microdisplay 1, the projection module 2, the prism 3a/diffraction element 3b, the waveguide sheet 4 It may be the near-eye display device shown in the above-mentioned application scenario and FIG. 1 .
  • the controller 6 includes: at least one processor 6a; and a memory 6b communicatively connected to the at least one processor 6a, and one processor 6a is used as an example in FIG. 14 .
  • the memory 6b stores instructions executable by the at least one processor 6a, the instructions being executed by the at least one processor 6a to enable the at least one processor 6a to execute the above-mentioned Figs.
  • the adjustment method of the angle of view shown in FIG. 8 The processor 6a and the memory 6b may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 14 .
  • the memory 6b as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as corresponding to the method for adjusting the field of view in the embodiments of the present application. program instructions/modules.
  • the processor 6a executes various functional applications and data processing of the server by running the non-volatile software programs, instructions and modules stored in the memory 6b, that is, to implement the method for adjusting the field of view in the above method embodiment.
  • the memory 6b may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the adjusting device for the viewing angle, etc. .
  • the memory 6b may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 6b may optionally comprise memory located remotely relative to the processor 6a, and these remote memories may be connected to the adjustment means of the field of view via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 6b, and when executed by the one or more processors 6a, perform the method for adjusting the field of view in any of the above method embodiments, for example, perform the above-described method for adjusting the field of view.
  • the above product can execute the method provided by the embodiments of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the above product can execute the method provided by the embodiments of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • Embodiments of the present application further provide a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, executing The method steps of FIGS. 4 , 7 and 8 described above.
  • Embodiments of the present application further provide a computer program product, including a computer program stored on a non-volatile computer-readable storage medium, where the computer program includes program instructions, when the program instructions are executed by a computer,
  • the computer executes the method for adjusting the field of view in any of the above method embodiments, for example, executes the method steps of FIG. 4 , FIG. 7 , and FIG. 8 described above.
  • An embodiment of the present application provides a method for adjusting the field of view angle, which is applied to a waveguide sheet in a near-eye display device.
  • the waveguide sheet forms an inclined angle with respect to the horizontal direction of the human face.
  • the method first obtains the refractive index of the waveguide sheet. and the bottom angle, then determine the required field of view angle, and then calculate the inclination angle of the waveguide sheet relative to the horizontal direction of the human face according to the refractive index of the waveguide sheet, the bottom angle, and the field of view angle, and finally adjust the inclination angle by adjusting the angle.
  • the adjustment method provided by the embodiment of the present application can enable the waveguide sheet to achieve low refractive index and large angle of view at the same time, and has better imaging, lower cost, and better stability.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separated unit, that is, it can be located in one place, or it can be distributed over multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种视场角(y)的调整方法,应用于近眼显示设备中的波导片(4),波导片(4)与相对于人体面部水平方向呈一倾斜夹角(φ),首先获取波导片(4)的折射率(n)和底角(θ),然后确定需要的视场角(y),接着根据波导片(4)的折射率(n)和底角(θ)、视场角(y),计算波导片(4)相对于人体面部水平方向的倾斜夹角(φ),最后通过调整倾斜夹角(φ),使得近眼显示设备具有需要的视场角(y),这种调整方法能够使得波导片(4)同时实现低折射率(n)和大视场角(y),且成像和稳定性较好、成本较低。

Description

一种视场角的调整方法及近眼显示设备
相关申请的交叉参考
本申请要求于2020年7月14日提交中国专利局,申请号为202010672861.X,发明名称为“一种视场角的调整方法及近眼显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学设计技术领域,特别涉及一种视场角的调整方法及近眼显示设备。
背景技术
近眼显示是目前的研究热点内容,如头盔形态的虚拟现实显示及智能眼镜形态的增强现实显示等。近眼显示能够给人们提供前所未有的交互感,在远程医疗、工业设计、教育、军事虚拟训练、娱乐等众多领域具有重要的应用价值。目前在近眼显示领域中,通常采用光波导片传输光线,一方面,光波导能够带来较好的成像效果,另一方面,有利于近眼显示设备的小型化。
在实现本申请实施例过程中,发明人发现以上相关技术中至少存在如下问题:目前市面上的近眼显示设备要调整设备的视场角时,会受到波导片的材料折射率的限制,在需要增大设备的视场角时,需要替换近眼显示设备中的波导片,采用更高折射率的波导片实现更大的视场角,而采用高折射率的波导片通过会带来成像质量降低、成本增加、稳定性差等问题。
发明内容
针对现有技术的上述缺陷,本申请实施例的目的是提供一种成像较 好、成本较低、稳定性较好的视场角的调整方法及近眼显示设备。
本申请实施例的目的是通过如下技术方案实现的:
为解决上述技术问题,第一方面,本申请实施例中提供了一种视场角的调整方法,应用于近眼显示设备中的波导片,所述波导片与相对于人体面部水平方向呈一倾斜夹角,所述方法包括:
获取所述波导片的折射率和底角;
确定所需要的视场角;
根据所述波导片的折射率和底角、所述视场角,计算所述波导片相对于人体面部水平方向的倾斜夹角;
调整所述倾斜夹角,以使所述近眼显示设备具有所述视场角。
在一些实施例中,所述计算所述波导片相对于人体面部水平方向的倾斜夹角的计算公式如下:
Figure PCTCN2021080832-appb-000001
其中,
Figure PCTCN2021080832-appb-000002
表示波导片相对于人体面部水平方向的倾斜夹角,n表示波导片的折射率,θ表示波导片的底角,y表示视场角。
在一些实施例中,所述近眼显示设备还包括用于出射投影成像光线的微显示器和投影模组,所述方法还包括:
根据所述波导片的折射率和底角、所述视场角和所述倾斜夹角,计算投影成像光线在所述波导片中全反射传输的入射角;
调整所述微显示器和投影模组的朝向,以调整所述投影成像光线在所述波导片中全反射传输的入射角,以使所述近眼显示设备具有所述视场角。
在一些实施例中,所述计算投影成像光线在所述波导片中全反射传输的入射角的计算公式如下:
Figure PCTCN2021080832-appb-000003
其中,i 1表示投影成像光线在所述波导片中全反射传输的入射角,θ表示波导片的底角,y表示视场角,
Figure PCTCN2021080832-appb-000004
表示波导片相对于人体面部水平 方向的倾斜夹角,n表示波导片的折射率。
在一些实施例中,所述方法还包括:
根据所述投影成像光线进入所述波导片的入射角及所述波导片的折射率和底角,计算杂散光在所述波导片的入射角;
根据所述波导片的长度、所述波导片相对于人体面部水平方向的倾斜夹角和所述近眼显示设备的视场角,计算所述近眼显示设备的眼盒横向大小;
调整所述波导片的底角,以调整杂散光在所述波导片的出射角,使得所述杂散光偏出所述近眼显示设备的眼盒。
在一些实施例中,所述计算杂散光在所述波导片的入射角的计算公式如下:
Figure PCTCN2021080832-appb-000005
其中,i 1,s2表示杂散光在所述波导片的入射角,θ表示波导片的底角,i表示投影成像光线进入所述波导片的入射角,n表示波导片的折射率。
在一些实施例中,所述计算所述近眼显示设备的眼盒横向大小的计算公式如下:
Figure PCTCN2021080832-appb-000006
其中,D表示近眼显示设备的眼盒横向大小,L wg表示波导片的长度,
Figure PCTCN2021080832-appb-000007
表示波导片相对于人体面部水平方向的倾斜夹角,y表示视场角。
为解决上述技术问题,第二方面,本申请实施例中提供了一种近眼显示设备,包括:
波导片,所述波导片与相对于人体面部水平方向呈一倾斜夹角;
控制器,其与所述波导片连接,所述控制器包括至少一个处理器,以及,与所述至少一个处理器通信连接的存储器,其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上述第一方面所述的视场角的调整方法。
在一些实施例中,所述近眼显示设备还包括:用于出射投影成像光线的微显示器和投影模组,所述微显示器和投影模组分别与所述控制器连接,所述控制器用于控制调整所述微显示器和投影模组的朝向,以调整投影成像光线在所述波导片中全反射传输的入射角。
在一些实施例中,所述近眼显示设备还包括:
棱镜,所述投影成像光线通过所述棱镜折射入射至所述波导片;或者,
衍射元件,所述投影成像光线通过所述衍射元件衍射入射至所述波导片。
为解决上述技术问题,第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面所述的方法。
为解决上述技术问题,第四方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上第一方面所述的方法。
与现有技术相比,本发明的有益效果是:区别于现有技术的情况,本申请实施例中提供了一种视场角的调整方法,应用于近眼显示设备中的波导片,波导片与相对于人体面部水平方向呈一倾斜夹角,该方法首先获取波导片的折射率和底角,然后确定所需要的视场角,接着根据波导片的折射率和底角、视场角,计算该波导片相对于人体面部水平方向的倾斜夹角,最后通过调整该倾斜夹角,使得近眼显示设备具有所述视场角,本申请实施例提供的调整方法能够使得波导片同时实现低折射率和大视场角,且成像较好、成本较低、稳定性较好。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的视场角的调整方法的其中一种应用环境的示意图;
图2为一种微透镜阵列的参数示意图;
图3(a)为投影成像光线从光波导的一侧折射入射的光路结构示意图;
图3(b)为投影成像光线从光波导的另一侧折射入射的光路结构示意图;
图4为本申请实施例一提供的一种视场角的调整方法的流程示意图;
图5为光线在波导片中的传播原理示意图;
图6为波导片的不同底角和不同倾斜夹角与投影成像光线在波导片中全反射传输的入射角的关系图;
图7为本申请实施例一提供的另一种视场角的调整方法的流程示意图;
图8为本申请实施例一提供的一种规避杂散光的方法的流程示意图;
图9(a)为杂散光从波导片的一表面入射的光路结构示意图;
图9(b)为杂散光从波导片的另一表面入射的光路结构示意图;
图10为从波导片出射的出瞳光线的光路原理示意图;
图11为波导片的倾斜夹角与眼盒横向大小的关系图;
图12为波导片中杂散光的消除原理示意图;
图13为底角为25°波导片在不同折射率和不同倾斜夹角的情况下的最大视场角的示意图;
图14为本申请实施例二提供的一种近眼显示设备的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
普通近眼显示设备要实现较大的视场角,通常会受到近眼显示设备中波导片的材料折射率的方法,现有波导片想要增大视场角,通常只能通过增加波导片的底角和/或增加波导片的折射率的方式来实现,然而,前者通常会引入杂散光,大幅度降低成像画质,而后者虽然对成像画质影响不大,但采用高折射率的波导片有会带来更多材料的问题以及更高的成本,例如,高折射率材料的色散、镀膜性能改变、胶水的折射率匹配程度、粘合力、稳定性等新的问题。
为了解决上述问题,本申请实施例提供了一种视场角的调整方法,应用于近眼显示设备中的波导片,该方法通过调整波导片相对于人体面部水平方向的倾斜夹角来调整设备的视场角,且优选地,近眼显示设备中的波导片可采用低折射率的材料,其工艺更为成熟,本申请实施例提供的调整方法能够同时实现近眼显示设备中波导片的大视场角和低折射率,设备成本更低、稳定性更佳。
图1为本申请实施例提供的视场角的调整方法的其中一种应用环境的示意图,其中,该应用环境为一近眼显示设备,该近眼显示设备包括:微显示器1、投影模组2、耦入光栅3、波导片4和耦出光栅5,其中,微显示器1出射的投影成像光线经过投影模组2准直后,通过耦入光栅3衍射后出射的目标衍射级的光线以入射角i斜入射耦入到波导片4中,满足全反射条件的光纤在波导片4内进行功率无损耗传播,直至遇到耦出光栅5后再次发生衍射耦出至人眼成像。其中,所述波导片4的底角为θ。可选地,所述波导片4与相对于人体面部水平方向呈一倾斜夹角
Figure PCTCN2021080832-appb-000008
在一些实施例中,所述耦入光栅3也可以替换为其他衍射元件,例如,微透镜阵列或者超表面等衍射元件。其中,当选用微透镜阵列时,请一并参见图2,其示出了一种微透镜阵列的参数示意图,所述微透镜阵列可选用周期为447.1nm,槽深为276nm,K9折射率为1.52,TiO2折射率为2.443245,TiO2膜厚为106nm(共形镀膜)的微透镜阵列,以实现85%以上的衍射效率。
在一些实施例中,除了上述通过衍射元件衍射入射的方式,所述投影成像光线也可以是通过棱镜等折射元件折射入射至所述波导片4中,具体地,请一并参见图3(a)和图3(b),其分别示出了投影成像光线分别从光波导的两侧通过棱镜折射入射至所述波导片的光路结构示意图。可选地,所述投影成像光线可以是如图1、图3(a)和图3(b)所示的斜面入射,也可以是平面垂直入射。
具体地,下面结合附图,对本申请实施例作进一步阐述。
实施例一
本申请实施例提供了一种视场角的调整方法,应用于近眼显示设备中的波导片,所述近眼显示设备可以是上述应用场景所述的近眼显示设备,所述波导片与相对于人体面部水平方向呈一倾斜夹角
Figure PCTCN2021080832-appb-000009
请一并参见图4,其示出了本申请实施例提供的一种视场角的调整方法的流程图,所述视场角的调整方法包括但不限于以下步骤:
步骤10:获取所述波导片的折射率和底角。
在本申请实施例中,所述波导片的折射率可根据所述波导片的型号进行确定,优选地,采用低折射率材料制成的光波导片,以降低原材料的获取难度、降低工艺和器件成本。所述波导片的底角可根据所述波导片与所述近眼显示设备中投影组件的相对位置来确认,具体地,可通过角度测量仪器检测所述波导片的底角。进一步地,在一些实施例中,也可结合调整所述波导片的底角来调整所述近眼显示设备中波导片的视场角。
步骤20:确定所需要的视场角。
在本申请实施例中,进一步地,为确定波导片的调整方向和范围,确认用户使用该近眼显示设备所需要的视场角,所述所需要的视场角可以是一个定值,也可以是一个范围,具体地,可根据实际需要进行选择和确定。
步骤30:根据所述波导片的折射率和底角、所述视场角,计算所述波导片相对于人体面部水平方向的倾斜夹角。
优选地,在本申请实施例中,所述倾斜夹角不为零。请一并结合图5,其示出了光线在波导片中的传播原理,其中,虚拟像为上述应用场景中所述的投影成像光线全反射进入波导片的传播光线,外界环境的背景光能够透射所述波导片传递至人眼,以使用户能够合成得到虚拟像叠加在外界环境的图像,实现增强现实显示(AR)。在一些实施例中,所述波导片也可以在远离人眼的一侧镀设反射膜,以使外界环境的背景光无法进入人眼,实现虚拟现实显示(VR)。由于光线在光波导中全反射传播满足折射定律:
sin i=n·sin i'
其中,n表示波导片的折射率,i表示投影成像光线进入所述波导片的入射角,i′表示投影成像光线进入波导片入射角i对应的光线折射出射的角度,i 1表示投影成像光线在所述波导片中全反射传输(即图5中的虚拟像)的入射角。
且有,投影成像光纤在波导片中传输时,在波导片中上下主表面的入射角度(即投影光纤在波导片中全反射传输的入射角)需要大于全反射临界角,基于图1所示近眼显示设备,所述投影成像光线在所述波导片中全反射传输满足:
i 1=2θ+i'
其中,i 1表示投影成像光线在所述波导片中全反射传输的入射角,θ表示波导片的底角,i′表示投影成像光线进入波导片入射角i对应的光线折射出射的角度。
进而,结合上述两个公式,以及视场角与倾斜夹角的关系可以得到,所述计算所述波导片相对于人体面部水平方向的倾斜夹角的计算公式如下:
Figure PCTCN2021080832-appb-000010
其中,
Figure PCTCN2021080832-appb-000011
表示波导片相对于人体面部水平方向的倾斜夹角,n表示波导片的折射率,θ表示波导片的底角,y表示视场角。
步骤40:调整所述倾斜夹角,以使所述近眼显示设备具有所述视场角。
请一并参见图6,其示出了波导片的不同底角和不同倾斜夹角与投影成像光线在波导片中全反射传输的入射角的关系图,在图6中,所述视场角y设定为±20°,波导片的折射率n为1.5168,S1至S5五条曲线分别出示了波导片呈从小到大的五种底角时倾斜夹角
Figure PCTCN2021080832-appb-000012
(横坐标)与投影成像光线在波导片中全反射传输的入射角i 1(纵坐标)的关系,有图6可知,增加所述波导片的倾斜夹角
Figure PCTCN2021080832-appb-000013
能够显著增加投影成像光线在波导片中全反射传输的入射角i 1,同时降低波导片的底角θ。进一步地,同样对于H-K9L玻璃材料的波导片,若不倾斜所述波导片,要得到40° 的视场角y,需要27°以上的底角θ。
在一些实施例中,如上述应用场景所示,所述近眼显示设备还可以包括用于出射投影成像光线的微显示器和投影模组,请一并参见图7,基于图4及其实施例所示的方法,所述调整方法还可以包括以下步骤:
步骤50:根据所述波导片的折射率和底角、所述视场角和所述倾斜夹角,计算投影成像光线在所述波导片中全反射传输的入射角。
结合步骤30可知,投影成像光线在波导片中传播需要满足全反射条件,由上述步骤30中的公式可推导得到,所述计算投影成像光线在所述波导片中全反射传输的入射角的计算公式如下:
Figure PCTCN2021080832-appb-000014
其中,i 1表示投影成像光线在所述波导片中全反射传输的入射角,θ表示波导片的底角,y表示视场角,
Figure PCTCN2021080832-appb-000015
表示波导片相对于人体面部水平方向的倾斜夹角,n表示波导片的折射率。
步骤60:调整所述微显示器和投影模组的朝向,以调整所述投影成像光线在所述波导片中全反射传输的入射角,以使所述近眼显示设备具有所述视场角。
如应用场景和图1所示,可通过调整所述微显示器和投影模组的朝向,调整投影成像光线入射到波导片中的入射角i和底角θ,从而调整投影成像光线在波导片中的出射角度i′,进而调整投影成像光线在所述波导片中全反射传输的入射角i 1,以使所述近眼显示设备具有所述视场角y。
在一些实施例中,解决大视场角下波导片底角过大可能会产生的杂散光问题,本申请实施例还提供了一种规避杂散光的方法,请一并参见图8,基于图4和图7及其实施例所示的方法,所述调整方法还可以包括以下步骤:
步骤70:根据所述投影成像光线进入所述波导片的入射角及所述波 导片的折射率和底角,计算杂散光在所述波导片的入射角。
通常情况下,入射角越大,反射率越强,当大角度光线入射到半透半反射面上时会产生杂散光,具体地,分为从波导片的两个表面入射两种情况,请一并参见图9(a)和图9(b),其示出了杂散光分别从波导片的两个表面入射的两种情况,其中,在图9(a)中,投影成像光线以i 1,s1角从上表面入射后与波导片的半反半透面相交后到达下表面相交于P n点,P n点位于半反半透面边界P s点的左侧,杂散光以i 1角在波导片中传播;图9(b)所示光路与图9(a)所示光路情况相反,图9(a)和图9(b)均能产生一束杂散光,且图9(a)中的投影成像光线在图9(b)中为杂散光,图9(a)中的杂散光在图9(b)中为投影成像光线;在图9(b)中,投影成像光线从下表面入射后到达波导片的上表面相交于P n点,P n点位于半反半透面边界P s点的右侧,然后投影成像光线从与半反半透面相交,则图9(b)中杂散光在下表面的入射角满足:
i 1,s2=π-(6θ+i′)
其中,i 1,s2表示杂散光在所述波导片的入射角,θ表示波导片的底角,i′表示投影成像光线进入波导片入射角i对应的光线折射出射的角度,基于折射定律可知,所述计算杂散光在所述波导片的入射角的计算公式如下:
Figure PCTCN2021080832-appb-000016
其中,i 1,s2表示杂散光在所述波导片的入射角,θ表示波导片的底角,i表示投影成像光线进入所述波导片的入射角,n表示波导片的折射率。
步骤80:根据所述波导片的长度、所述波导片相对于人体面部水平方向的倾斜夹角和所述近眼显示设备的视场角,计算所述近眼显示设备的眼盒横向大小。
在本申请实施例中,为了消除杂散光对成像的影响,优选地,只需将杂散光移除近眼显示设备的眼盒(Eyebox)即可,所述眼盒为近眼显示设备中眼睛所能观察图像、接收投影成像光线的区域。请一并参见图 10,其示出了从波导片出射的出瞳光线的光路原理,D为近眼显示设备的眼盒横向大小,L为通孔到波导片下表面的距离(即瞳距),L 1和L 2分别为±y两个视场角出射的投影成像光线到出瞳表面的距离,L wg表示波导片的折射面的长度,
Figure PCTCN2021080832-appb-000017
为波导片相对于人体面部水平方向的倾斜夹角由图10可知,上述各参数存在下述关系:
L 2+L 1=2*L wg
Figure PCTCN2021080832-appb-000018
联合上述两公式可得到,所述计算所述近眼显示设备的眼盒横向大小的计算公式如下:
Figure PCTCN2021080832-appb-000019
其中,D表示近眼显示设备的眼盒横向大小,L wg表示波导片的长度,
Figure PCTCN2021080832-appb-000020
表示波导片相对于人体面部水平方向的倾斜夹角,y表示视场角。不难得出,若要增加近眼显示设备中眼盒的尺寸,则需要相应增加波导片的长度,且在视场角y和倾斜角度
Figure PCTCN2021080832-appb-000021
确定时,眼盒横向大小D还与瞳距L成反比。请一并参见图11,其示出了眼盒横向大小D与波导片相对于人体面部水平方向的倾斜夹角
Figure PCTCN2021080832-appb-000022
的关系图,在图11中,横坐标表示倾斜夹角
Figure PCTCN2021080832-appb-000023
纵坐标表示眼盒横向大小D,视场角y为17.3°,波导片的长度L wg为22.1mm,瞳距L为22mm,不难得出,在视场角y、瞳距L和波导片的长度L wg确定时,眼盒横向大小D与波导片的倾斜夹角
Figure PCTCN2021080832-appb-000024
成反比关系。
步骤90:调整所述波导片的底角,以调整杂散光在所述波导片的出射角,使得所述杂散光偏出所述近眼显示设备的眼盒。
基于图11,请一并参见图12,其示出了杂散光的消除原理示意图,不难看出,为了消除杂散光,将杂散光出射到眼盒之外,需要满足以下关系:
Figure PCTCN2021080832-appb-000025
其中,i′ 1,s2表示杂散光在波导片中的出射角度,L表示瞳距,
Figure PCTCN2021080832-appb-000026
表示波导片相对于人体面部水平方向的倾斜夹角,D表示近眼显示设备的眼 盒横向大小,y表示视场角,L 1为视场角y出射的投影成像光线到出瞳表面的距离,不难得出,为了消除杂散光,使得杂散光偏出眼盒,需要波导片中的出射角度i′ 1,s2足够大才行,而由步骤70可知,出射角度i′ 1,s2与波导片的底角θ相关,因而,通过调整所述底角θ,以调整杂散光在所述波导片的出射角i′ 1,s2,使得所述杂散光偏出所述近眼显示设备的眼盒。
进一步地,本申请实施例还提供了两种波导片的优化方式及两组波导片的优化参数:
第一种优化方式及第一组优化参数:
在本优化实施例中,请一并参见图1及应用场景所示实施例,当微显示器和投影模组出射的投影成像光线通过耦入光栅衍射入射至波导片时,进入波导片的目标衍射级的光纤在平板波导中全反射传播需要同时满足两个条件:1)衍射角需要大于光波导的全内反射角;2)光波导的入瞳间距不能与人眼光瞳差异太大。基于上述两个条件,本实施例提供的光波导的参数计算可以参考以下二维光栅方程:
Figure PCTCN2021080832-appb-000027
Figure PCTCN2021080832-appb-000028
其中,(m,n)为衍射级次,θ mn为衍射级(m,n)的方位角,φ mn为衍射级为(m,n)的极化角,i为耦入光栅入射光线的入射极化角,φ为入射光线方位角,n为折射率,d x,d y分别是二维光栅横向周期和纵向周期,λ为入射光波长。
在本优化实施例中,控制投影成像光线的倾斜方向为一维方向(沿 x方向)倾斜,根据目标衍射级在平板波导传播的两个条件和二维光栅方程,设计一个对应入射视场光线倾斜角度为6°的光栅波导元器件。如下表所示:
倾斜角度
H_FOV 18° 18°
V_FOV 32° 32°
h 1mm 1mm
λ 525nm 525nm
n 1.7964 1.5659
duty ratio 50% 50%
d 454nm 454nm
其中,H_FOV为横向视场角,V_FOV为纵向视场角,h为平板波导/波导片的厚度,λ为入射光波长,n为平板波导折射率,duty ratio为光栅占空比,d为光栅周期。
第二种优化方式及第二组优化参数:
本优化实施例对波导片的倾斜夹角
Figure PCTCN2021080832-appb-000029
和底角θ进行了进一步地优化,结合上述实施例可知,为消除杂散光,底角θ需要尽量取较小的值,为了得到较大的视场角,底角θ又需要取较大的值,请一并参见下表和图13,其示出了底角确定时(为25°)波导片在不同折射率和不同倾斜夹角的情况下的最大视场角。
Figure PCTCN2021080832-appb-000030
图13具体绘制了三个不同倾斜角度和按个不同折射率的情况下最大视场角的示意图,其中,绘制了左右边界视场的光线图,由上表和图13可知,若不倾斜波导片,则需要增加折射率来增大视场角,例如,在波导片不进行倾斜的情况下,需要设计视场角为30°左右的视场角时需要采用折射率为1.8左右的波导片材质才能完成,而在本申请中,将波导片倾斜4°到8°之间,采用折射率为1.7左右的波导片材质即可实现30°的视场角。优选地,本申请实施例对波导片的各数据进行优化后,可得到一组设计参数以满足低折射率大市场的光场成像,且能够满足其他光学指标:底角θ选取27°,波导片相对于人体面部水平方向的倾斜夹角
Figure PCTCN2021080832-appb-000031
选取4°,瞳距L选择22mm,近眼显示设备的眼盒横向大小D选取8mm,波导片选用H-K9L玻璃,可达到17.3°的视场角y,且视场角全角为40°。
实施例二
本申请实施例提供了一种近眼显示设备,请一并参见图14,其示出了本申请实施例提供了一种近眼显示设备,所述近眼显示设备包括:波导片4和控制器6,所述波导片4与相对于人体面部水平方向呈一倾斜夹角,所述控制器6与所述波导片4连接。
所述近眼显示设备还包括:用于出射投影成像光线的微显示器1和投影模组2,所述微显示器1和投影模组2分别与所述控制器6连接,所述控制器6用于控制调整所述微显示器1和投影模组2的朝向,以调整投影成像光线在所述波导片4中全反射传输的入射角。
所述近眼显示设备还包括:棱镜3a,所述投影成像光线通过所述棱镜3a折射入射至所述波导片4;或者,衍射元件3b,所述投影成像光线通过所述衍射元件3b衍射入射至所述波导片4。
所述近眼显示设备可以是上述应用场景及图1所示的近眼显示设备,同样的,所述微显示器1、所述投影模组2、所述棱镜3a/衍射元件3b、所述波导片4可以是如上述应用场景及图1所示的近眼显示设备, 具体请参见上述实施例,此处不再详述。
所述控制器6包括:至少一个处理器6a;以及,与所述至少一个处理器6a通信连接的存储器6b,图14中以其以一个处理器6a为例。所述存储器6b存储有可被所述至少一个处理器6a执行的指令,所述指令被所述至少一个处理器6a执行,以使所述至少一个处理器6a能够执行上述图4、图7和图8所述的视场角的调整方法。所述处理器6a和所述存储器6b可以通过总线或者其他方式连接,图14中以通过总线连接为例。
存储器6b作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的视场角的调整方法对应的程序指令/模块。处理器6a通过运行存储在存储器6b中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例视场角的调整方法。
存储器6b可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据视场角的调整装置的使用所创建的数据等。此外,存储器6b可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器6b可选包括相对于处理器6a远程设置的存储器,这些远程存储器可以通过网络连接至视场角的调整装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器6b中,当被所述一个或者多个处理器6a执行时,执行上述任意方法实施例中的视场角的调整方法,例如,执行以上描述的图4、图7和图8的方法步骤。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,执行以上描述的图4、图7和图8的方法步骤。
本申请实施例还提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行上述任意方法实施例中的视场角的调整方法,例如,执行以上描述的图4、图7和图8的方法步骤。
本申请实施例中提供了一种视场角的调整方法,应用于近眼显示设备中的波导片,波导片与相对于人体面部水平方向呈一倾斜夹角,该方法首先获取波导片的折射率和底角,然后确定所需要的视场角,接着根据波导片的折射率和底角、视场角,计算该波导片相对于人体面部水平方向的倾斜夹角,最后通过调整该倾斜夹角,使得近眼显示设备具有所述视场角,本申请实施例提供的调整方法能够使得波导片同时实现低折射率和大视场角,且成像较好、成本较低、稳定性较好。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读 存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种视场角的调整方法,其特征在于,应用于近眼显示设备中的波导片,所述波导片与相对于人体面部水平方向呈一倾斜夹角,所述方法包括:
    获取所述波导片的折射率和底角;
    确定所需要的视场角;
    根据所述波导片的折射率和底角、所述视场角,计算所述波导片相对于人体面部水平方向的倾斜夹角;
    调整所述倾斜夹角,以使所述近眼显示设备具有所述视场角;其中,
    所述计算所述波导片相对于人体面部水平方向的倾斜夹角的计算公式如下:
    Figure PCTCN2021080832-appb-100001
    其中,
    Figure PCTCN2021080832-appb-100002
    表示波导片相对于人体面部水平方向的倾斜夹角,n表示波导片的折射率,θ表示波导片的底角,y表示视场角。
  2. 根据权利要求1所述的调整方法,其特征在于,所述近眼显示设备还包括用于出射投影成像光线的微显示器和投影模组,所述方法还包括:
    根据所述波导片的折射率和底角、所述视场角和所述倾斜夹角,计算投影成像光线在所述波导片中全反射传输的入射角;
    调整所述微显示器和投影模组的朝向,以调整所述投影成像光线在所述波导片中全反射传输的入射角,以使所述近眼显示设备具有所述视场角。
  3. 根据权利要求2所述的调整方法,其特征在于,
    所述计算投影成像光线在所述波导片中全反射传输的入射角的计算公式如下:
    Figure PCTCN2021080832-appb-100003
    其中,i 1表示投影成像光线在所述波导片中全反射传输的入射角,θ表示波导片的底角,y表示视场角,
    Figure PCTCN2021080832-appb-100004
    表示波导片相对于人体面部水平方向的倾斜夹角,n表示波导片的折射率。
  4. 根据权利要求2所述的调整方法,其特征在于,所述方法还包括:
    根据所述投影成像光线进入所述波导片的入射角及所述波导片的折射率和底角,计算杂散光在所述波导片的入射角;
    根据所述波导片的长度、所述波导片相对于人体面部水平方向的倾斜夹角和所述近眼显示设备的视场角,计算所述近眼显示设备的眼盒横向大小;
    调整所述波导片的底角,以调整杂散光在所述波导片的出射角,使得所述杂散光偏出所述近眼显示设备的眼盒。
  5. 根据权利要求4所述的调整方法,其特征在于,
    所述计算杂散光在所述波导片的入射角的计算公式如下:
    Figure PCTCN2021080832-appb-100005
    其中,i 1,2表示杂散光在所述波导片的入射角,θ表示波导片的底角,i表示投影成像光线进入所述波导片的入射角,n表示波导片的折射率。
  6. 根据权利要求4所述的调整方法,其特征在于,
    所述计算所述近眼显示设备的眼盒横向大小的计算公式如下:
    Figure PCTCN2021080832-appb-100006
    其中,D表示近眼显示设备的眼盒横向大小,L wg表示波导片的长度,
    Figure PCTCN2021080832-appb-100007
    表示波导片相对于人体面部水平方向的倾斜夹角,y表示视场角。
  7. 一种近眼显示设备,其特征在于,包括:
    波导片,所述波导片与相对于人体面部水平方向呈一倾斜夹角;
    控制器,其与所述波导片连接,所述控制器包括至少一个处理器,以及,与所述至少一个处理器通信连接的存储器,其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-6任一项所述的视场角的调整方法。
  8. 根据权利要求7所述的近眼显示设备,其特征在于,所述近眼显示设备还包括:用于出射投影成像光线的微显示器和投影模组,所述微显示器和投影模组分别与所述控制器连接,所述控制器用于控制调整所述微显示器和投影模组的朝向,以调整投影成像光线在所述波导片中全反射传输的入射角。
  9. 根据权利要求8所述的近眼显示设备,其特征在于,所述近眼显示设备还包括:
    棱镜,所述投影成像光线通过所述棱镜折射入射至所述波导片;或者,
    衍射元件,所述投影成像光线通过所述衍射元件衍射入射至所述波导片。
PCT/CN2021/080832 2020-07-14 2021-03-15 一种视场角的调整方法及近眼显示设备 WO2022012068A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21842995.9A EP4184235A4 (en) 2020-07-14 2021-03-15 VIEWING ANGLE ADJUSTMENT METHOD AND CLOSE TO EYE DISPLAY DEVICE
US18/154,114 US11709368B2 (en) 2020-07-14 2023-01-13 Method for adjusting field of view angle and near-eye display equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010672861.XA CN111562678B (zh) 2020-07-14 2020-07-14 一种视场角的调整方法及近眼显示设备
CN202010672861.X 2020-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,114 Continuation US11709368B2 (en) 2020-07-14 2023-01-13 Method for adjusting field of view angle and near-eye display equipment

Publications (1)

Publication Number Publication Date
WO2022012068A1 true WO2022012068A1 (zh) 2022-01-20

Family

ID=72075437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080832 WO2022012068A1 (zh) 2020-07-14 2021-03-15 一种视场角的调整方法及近眼显示设备

Country Status (4)

Country Link
US (1) US11709368B2 (zh)
EP (1) EP4184235A4 (zh)
CN (1) CN111562678B (zh)
WO (1) WO2022012068A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562678B (zh) * 2020-07-14 2020-12-08 深圳珑璟光电科技有限公司 一种视场角的调整方法及近眼显示设备
CN111999894A (zh) * 2020-09-11 2020-11-27 谷东科技有限公司 光波导近眼显示装置和增强现实显示设备
CN114527573A (zh) * 2022-02-28 2022-05-24 舜宇奥来半导体光电(上海)有限公司 光波导组件和近眼显示设备
CN114894712B (zh) * 2022-03-25 2023-08-25 业成科技(成都)有限公司 光学量测设备及其校正方法
CN115390182B (zh) * 2022-08-29 2023-06-06 深圳珑璟光电科技有限公司 光波导的制作方法、制作设备、光波导及近眼显示设备
CN115343858B (zh) * 2022-10-14 2023-01-24 南方科技大学 模块化ar光波导提升fov方法、模组及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127577A1 (en) * 2009-07-31 2012-05-24 Horiba Jobin Yvon Sas Planar optical system for wide field-of-view polychromatic imaging
CN107643559A (zh) * 2017-11-13 2018-01-30 北京理工大学 基于反射式波导耦合器的光线传导和分离方法及装置
WO2018031634A1 (en) * 2016-08-10 2018-02-15 FictionArt, Inc. Volume phase holographic waveguide for display
CN109189215A (zh) * 2018-08-16 2019-01-11 腾讯科技(深圳)有限公司 一种虚拟内容显示方法、装置、vr设备及介质
CN111221128A (zh) * 2020-02-28 2020-06-02 深圳珑璟光电技术有限公司 一种扩大视场角的近眼波导显示设备
CN111562678A (zh) * 2020-07-14 2020-08-21 深圳珑璟光电技术有限公司 一种视场角的调整方法及近眼显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI641869B (zh) * 2017-02-08 2018-11-21 宏碁股份有限公司 虛擬實境顯示裝置
JP2019061079A (ja) * 2017-09-27 2019-04-18 セイコーエプソン株式会社 導光装置および表示装置
KR102608823B1 (ko) * 2018-06-05 2023-12-04 삼성전자주식회사 광학 어셈블리 및 이를 포함한 전자 장치
CN109445096A (zh) * 2018-11-06 2019-03-08 天津大学 一种全彩倾斜波导投影显示系统
CN209086564U (zh) * 2018-12-29 2019-07-09 深圳珑璟光电技术有限公司 一种头戴显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127577A1 (en) * 2009-07-31 2012-05-24 Horiba Jobin Yvon Sas Planar optical system for wide field-of-view polychromatic imaging
WO2018031634A1 (en) * 2016-08-10 2018-02-15 FictionArt, Inc. Volume phase holographic waveguide for display
CN107643559A (zh) * 2017-11-13 2018-01-30 北京理工大学 基于反射式波导耦合器的光线传导和分离方法及装置
CN109189215A (zh) * 2018-08-16 2019-01-11 腾讯科技(深圳)有限公司 一种虚拟内容显示方法、装置、vr设备及介质
CN111221128A (zh) * 2020-02-28 2020-06-02 深圳珑璟光电技术有限公司 一种扩大视场角的近眼波导显示设备
CN111562678A (zh) * 2020-07-14 2020-08-21 深圳珑璟光电技术有限公司 一种视场角的调整方法及近眼显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184235A4 *

Also Published As

Publication number Publication date
EP4184235A1 (en) 2023-05-24
CN111562678A (zh) 2020-08-21
EP4184235A4 (en) 2023-12-20
US11709368B2 (en) 2023-07-25
US20230152596A1 (en) 2023-05-18
CN111562678B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022012068A1 (zh) 一种视场角的调整方法及近眼显示设备
CN107024769B (zh) 一种基于波导的显示系统
US10107994B2 (en) Wide field-of-view virtual image projector
WO2020042635A1 (zh) 一种二维出瞳扩展波导近眼光学显示装置
WO2019010857A1 (zh) 一种全息波导镜片及增强现实显示装置
TW201835624A (zh) 交疊的反射面構造
WO2019179136A1 (zh) 显示装置及显示方法
KR20170120618A (ko) 균일한 이미지를 갖는 소형 헤드 장착 디스플레이 시스템
US11460701B2 (en) Display waveguide with a high-index portion
CN111103655A (zh) 一种用于衍射光波导的六边形柱状结构
Ni et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
US20210364808A1 (en) Compact light source
US11754838B2 (en) Near-eye optical system
WO2023123920A1 (zh) 光传输结构和头戴显示设备
US11644673B2 (en) Near-eye optical system
JP2023549313A (ja) インターモーダル結合によるスラブ導波路およびプロジェクタ
JP2023178517A (ja) 光導波路ユニット、アレイ及び平板レンズ
CN208569195U (zh) 一种紧凑型自由曲面波导近眼显示光学装置
TWI824355B (zh) 一種光學系統及混合實境設備
WO2022193847A1 (zh) 显示装置以及显示方法
US20220357578A1 (en) Two-dimensional optical waveguide, virtual and real light wave beam combiner, and ar apparatus
US20200081251A1 (en) Stacked optical waveguides
WO2019072145A1 (zh) 平板波导
WO2023155051A1 (zh) 光波导结构和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021842995

Country of ref document: EP

Effective date: 20230214