WO2022011715A1 - 数据传输方法及装置 - Google Patents
数据传输方法及装置 Download PDFInfo
- Publication number
- WO2022011715A1 WO2022011715A1 PCT/CN2020/102819 CN2020102819W WO2022011715A1 WO 2022011715 A1 WO2022011715 A1 WO 2022011715A1 CN 2020102819 W CN2020102819 W CN 2020102819W WO 2022011715 A1 WO2022011715 A1 WO 2022011715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- condition
- threshold
- network coding
- communication device
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 755
- 238000000034 method Methods 0.000 title claims abstract description 295
- 238000004891 communication Methods 0.000 claims description 499
- 230000015654 memory Effects 0.000 claims description 40
- 238000004590 computer program Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 abstract description 90
- 230000003595 spectral effect Effects 0.000 abstract description 90
- 230000003044 adaptive effect Effects 0.000 abstract description 58
- 239000013598 vector Substances 0.000 description 65
- 238000012545 processing Methods 0.000 description 60
- 239000011159 matrix material Substances 0.000 description 57
- 230000006870 function Effects 0.000 description 54
- 238000013461 design Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 8
- 230000002452 interceptive effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 241000288673 Chiroptera Species 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
- H04L1/1816—Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0076—Distributed coding, e.g. network coding, involving channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
Definitions
- the present application relates to the field of communication technologies, and in particular, to a data transmission method and apparatus.
- a hybrid automatic repeat request (HARQ) operation is a feedback-based retransmission request mechanism.
- the receiver feeds back an acknowledgement (ACK) or a negative acknowledgement (NACK) to the sender according to the reception of the data, which are used to request the sender for new HARQ transmission or HARQ retransmission, respectively.
- ACK acknowledgement
- NACK negative acknowledgement
- HARQ retransmission is generally directed to a transport block (transport block, TB), and one TB includes multiple code blocks (code block, CB). That is to say, as long as one CB is not received correctly in a TB, HARQ retransmission will retransmit the entire TB, which will increase the resource overhead of retransmission and reduce the spectral efficiency of retransmission. Therefore, how to improve the spectral efficiency in the data transmission process has become an urgent problem to be solved.
- transport block transport block
- CB code block
- Embodiments of the present application provide a data transmission method and apparatus.
- an embodiment of the present application provides a data transmission method, which may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: First indication information from the first communication device is received. When the first indication information indicates a hybrid automatic repeat request (HARQ) retransmission, first data is sent to the first communication device through a HARQ operation, where the first data includes HARQ retransmission data. When the first indication information indicates network coding transmission, first data is sent to the first communication device through network coding, where the first data includes network coding data.
- HARQ hybrid automatic repeat request
- first data is sent to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data and network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the transmitting end can perform adaptive adjustment of HARQ retransmission and network coding transmission according to the feedback from the receiving end, so that the combining gain of HARQ retransmission can be used to improve the probability of successful data reception under the condition of poor data reception.
- network coding transmission can be used to reduce excessive occupation of resources during HARQ retransmission, thereby improving spectral efficiency during data transmission.
- the first indication information is carried through one or more newly added indication fields.
- downlink control information downlink control information
- uplink control information uplink control information
- UCI uplink control information
- media access control media access control
- MAC media access control
- CE control element
- radio resource control radio One or more indication fields are added to the resource control, RRC
- the first indication information may be implemented through an acknowledgement (acknowledgement, ACK)/negative acknowledgement (negative acknowledgement, NACK).
- the ACK/NACK may be transmitted on the control channel or the data channel.
- the existing indication fields can be reused to indicate HARQ retransmission or network coding transmission, thereby saving the overhead of additional indication fields.
- the method further includes: receiving fourth indication information from the first communication device, and determining the meaning of the ACK/NACK indication in the first indication information according to the fourth indication information.
- an embodiment of the present application provides a data transmission method, which may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Second data from a second communication device is received. Sending first indication information for the first data transmission to the second communication device, and receiving the first data from the second communication device. Wherein, when the receiving condition of the second data satisfies the first condition, the first indication information indicates HARQ retransmission, and the first data includes HARQ retransmission data. When the reception of the second data satisfies the second condition, the first indication information indicates network coding transmission, and the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the data reception situation, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that both data can be transmitted in the data.
- the combining gain of HARQ retransmission can be used to improve the probability of successful data reception
- network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving spectral efficiency during data transmission.
- the first indication information is carried through one or more newly added indication fields.
- one or more indication fields are added in the DCI, UCI, MAC CE or RRC message to carry the first indication information.
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- the existing indication fields can be reused to indicate HARQ retransmission or network coding transmission, thereby saving the overhead of additional indication fields.
- the method further includes: sending fourth indication information to the second communication device, where the fourth indication information is used to determine the meaning of the ACK/NACK indication in the first indication information.
- Embodiment 1-1 of the second aspect all or part of the data in the second data is carried by a transmission block (TB), and the TB includes one or more code blocks (code blocks). block, CB).
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is greater than (or greater than or equal to) the first threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is less than (or less than or equal to) the second threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the ratio of the received error CB in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of erroneous CBs received in the TB is high, and the network coding transmission can be used to reduce the rate of HARQ retransmission when the proportion of erroneous CBs received in the TB is low. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more code block groups (code block groups, CBG).
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is greater than (or greater than or equal to) a third threshold.
- the fact that the reception of the second data satisfies the second condition specifically includes that the ratio of the number of CBGs receiving errors in the TB to the number of all CBGs in the TB is less than (or less than or equal to) a fourth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the ratio of the received error CBG in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby It can not only use the combining gain of HARQ retransmission to improve the probability of successful data reception when the proportion of erroneous CBGs received in the TB is high, but also use network coding transmission to reduce the rate of HARQ retransmission when the proportion of erroneous CBGs received in the TB is low. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is less than (or less than or equal to) the thirteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is greater than (or greater than or equal to) the fourteenth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of correct CBs received in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the proportion of correct CBs received in the TB is low, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the proportion of correct CBs received in the TB is high, network coding transmission can be used to reduce the process of HARQ retransmission. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the number of all CBGs in the TB is less than (or less than or equal to) the fifteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is greater than (or greater than or equal to) the sixteenth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of the TBs that receive the correct CBG, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the proportion of correct CBG received in the TB is low, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the proportion of correct CBG received in the TB is high, network coding transmission can be used to reduce the process of HARQ retransmission. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the number of reception error CBs in the TB is greater than (or greater than or equal to) the seventeenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of received error CBs in the TB is less than (or less than or equal to) the eighteenth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of received error CBs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of erroneous CBs received in the TB is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of erroneous CBs received in the TB is small, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-6 of the second aspect all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the receiving condition of the second data satisfying the first condition specifically includes that the number of received error CBGs in the TB is greater than (or greater than or equal to) the nineteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of received error CBGs in the TB is less than (or less than or equal to) the twentieth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of received error CBGs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of erroneous CBGs received in the TB is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of erroneous CBGs received in the TB is small, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received CBs in the TB is less than (or less than or equal to) the twenty-first threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correct CBs received in the TB is greater than (or greater than or equal to) the twenty-second threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correct CBs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of correct CBs received in the TB is small, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of correct CBs received in the TB is large, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-8 of the second aspect all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received CBGs in the TB is less than (or less than or equal to) the twenty-third threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correct CBGs received in the TB is greater than (or greater than or equal to) the twenty-fourth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correct CBGs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of correct CBGs received in the TB is small, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of correct CBGs received in the TB is large, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-9 of the second aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and in the transmission opportunity One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-fifth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the twenty-sixth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of the erroneously encoded data units received in the transmission opportunity, and instruct the transmitting end to adapt to HARQ retransmission and network coding transmission Adjustment, so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of incorrectly coded data units received in transmission opportunities is high, and can be used when the proportion of incorrectly coded data units received in transmission opportunities is low.
- the network coding transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1 to 10 of the second aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and in the transmission opportunity One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the twenty-seventh threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-eighth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of correctly coded data units received in the transmission opportunity, and instruct the transmitting end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of correctly coded data units received in transmission opportunities is low, and can be used when the proportion of correctly coded data units received in transmission opportunities is high.
- the network coding transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-11 of the second aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and in the transmission opportunity
- a transmission opportunity such as a scheduling opportunity, a transmission opportunity, or a transmission time interval
- One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the first condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-ninth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is less than (or less than or equal to) the thirtieth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of error-coded data units received in the transmission opportunity, and instruct the sending end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the number of incorrectly coded data units received in the transmission opportunity is large, and the network can be used when the number of incorrectly coded data units received in the transmission opportunity is small.
- the coded transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-12 of the second aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and in the transmission opportunity
- a transmission opportunity such as a scheduling opportunity, a transmission opportunity, or a transmission time interval
- One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is less than (or less than or equal to) the thirty-first threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the thirty-second threshold.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correctly coded data units received in the transmission opportunity, and instruct the sending end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the number of correctly coded data units received in the transmission opportunity is small, and the network can be used when the number of correctly coded data units received in the transmission opportunity is large.
- the coded transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the second data corresponds to one or more encoded data units
- the encoded data units correspond to a data block including one or more original data units.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is less than (or less than or equal to) ) thirty-third threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is greater than (or greater than or equal to) ) thirty-fourth threshold.
- the receiving end can send an instruction to the transmitting end to indicate HARQ retransmission or a number of original data units contained in the data block according to the ratio of the rank of the matrix formed by the coding vector corresponding to the received correctly encoded data unit corresponding to the data block to the number of original data units contained in the data block.
- the first indication information of network coding transmission instructs the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above ratio is low, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and the probability of successful data reception can be improved when the above ratio is low.
- network coding transmission is used to reduce excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the second data corresponds to one or more encoded data units
- the encoded data units correspond to a data block including one or more original data units.
- the reception of the second data satisfying the first condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is greater than (or greater than equal to) the thirty-fifth threshold.
- the fact that the reception of the second data satisfies the second condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is less than (or less than equal to) the thirty-sixth threshold.
- the receiving end can send an instruction to the transmitting end for HARQ retransmission according to the difference between the rank of the matrix formed by the encoding vector corresponding to the received correctly encoded data unit corresponding to the data block and the number of original data units contained in the data block.
- the first indication information of network coding transmission instructing the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above difference is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and When the above difference is small, network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the reception of the second data satisfying the first condition specifically includes one of the first conditions or a plurality of first conditions described in Embodiments 1-1 to 1-14 above.
- a combination of conditions the reception of the second data satisfying the second condition specifically includes one second condition or a combination of multiple second conditions described in the foregoing Embodiments 1-1 to 1-14.
- an embodiment of the present application provides a data transmission method, which may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Second data from a second communication device is received. Sending first indication information for the first data transmission to the second communication device, and receiving the first data from the second communication device. Wherein, when the receiving condition of the second data satisfies the third condition, the first indication information indicates HARQ retransmission and network coding transmission, and the first data includes HARQ retransmission data and network coding data.
- the first indication information indicates HARQ retransmission, and the first data includes HARQ retransmission data.
- the first indication information indicates network coding transmission, and the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the data reception situation, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that both In the case of poor data reception, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and in the case of good data reception, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission. Thus, the spectral efficiency in the data transmission process is improved.
- the first indication information is carried by one or more newly added indication fields.
- one or more indication fields are added in the DCI, UCI, MAC CE or RRC message to carry the first indication information.
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- the existing indication fields can be reused to indicate HARQ retransmission or network coding transmission, thereby saving the overhead of additional indication fields.
- the method further includes: sending fourth indication information to the second communication device, where the fourth indication information is used to determine the meaning of the ACK/NACK indication in the first indication information.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is greater than (or greater than or equal to) the fifth threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is within the first value interval.
- the receiving condition of the second data satisfying the fifth condition specifically includes that the ratio of the number of CBs with errors received in the TB to the number of all CBs in the TB is less than (or less than or equal to) the sixth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the transmitting end according to the ratio of the received error CB in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the proportion of erroneous CBs received in the TB is high, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and can receive erroneous CBs in the TB.
- the combined gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the ratio of received erroneous CBs in the TB is low, network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the Spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the receiving condition of the second data satisfying the third condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is greater than (or greater than or equal to) a seventh threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is within the second value range.
- the receiving situation of the second data satisfying the fifth condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is less than (or less than or equal to) the eighth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the ratio of the received error CBG in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that the combined gain of HARQ retransmission and network coding transmission can be used to reduce the excessive occupation of resources while increasing the probability of successful data reception when the proportion of erroneous CBG received in the TB is high, and the erroneous CBG can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of erroneous CBG received in the TB is low, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving the Spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the correct number of CBs received in the TB to the number of all CBs in the TB is less than (or less than or equal to) the thirty-seventh threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is within the fourth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is greater than (or greater than or equal to) the thirty-eighth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of TBs that receive correct CBs, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the proportion of correct CBs received in the TB is low, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CB can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of correct CBs in TB is high, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving the Spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is less than (or less than or equal to) the thirty-ninth threshold.
- the fact that the reception of the second data satisfies the fourth condition specifically includes that the ratio of the correct number of CBGs received in the TB to the total number of CBGs in the TB is within the fifth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is greater than (or greater than or equal to) the fortieth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the ratio of the correct CBG received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources when the proportion of correct CBG received in the TB is low, and the correct CBG can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of correct CBG received in the TB is high, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the Spectral efficiency during data transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the number of reception error CBs in the TB is greater than (or greater than or equal to) the forty-first threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the number of received error CBs in the TB is within the sixth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of received error CBs in the TB is less than (or less than or equal to) the forty-second threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of received error CBs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of erroneous CBs received in the TB is large, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the number of erroneous CBs can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of erroneous CBs received in the TB is small, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving data Spectral efficiency during transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the number of received error CBGs in the TB is greater than (or greater than or equal to) the forty-third threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of received error CBGs in the TB is within the seventh value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of received error CBGs in the TB is less than (or less than or equal to) the forty-fourth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of received error CBGs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of erroneous CBGs received in the TB is large, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the number of erroneous CBGs received in the TB When appropriate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and network coding transmission can be used when the number of received erroneous CBGs in the TB is small to reduce the excessive occupation of resources during HARQ retransmission, thereby improving data Spectral efficiency during transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the number of correctly received CBs in the TB is less than (or less than or equal to) the forty-fifth threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of correct CBs received in the TB is within the eighth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received CBs in the TB is greater than (or greater than or equal to) the forty-sixth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correct CBs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of correct CBs received in the TB is small, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CB can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of correct CBs received in the TB is large, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the data Spectral efficiency during transmission.
- all or part of the data in the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the number of correct CBGs received in the TB is less than (or less than or equal to) the forty-seventh threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of correct CBGs received in the TB is within the ninth value range.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received CBGs in the TB is greater than (or greater than or equal to) the forty-eighth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correct CBGs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of correct CBGs received in the TB is small, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CBG can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of correct CBGs received in the TB is large, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the data Spectral efficiency during transmission.
- Embodiments 1-24 of the third aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and in the transmission opportunity One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the forty-ninth threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the ratio of the number of coded data units with errors received in the transmission opportunity to the number of all coded data units in the transmission opportunity is within the tenth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the fiftieth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of the erroneously encoded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the proportion of incorrectly coded data units received in transmission opportunities is high, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing excessive resource occupation, and can When the proportion of incorrectly coded data units received in transmission opportunities is moderate, the combined gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the proportion of incorrectly coded data units received in transmission opportunities is low, network coding transmission can be used to reduce HARQ retransmission. In the process of data transmission, the excessive occupation of resources is avoided, thereby improving the spectral efficiency in the process of data transmission.
- all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity is One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-first threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is within the eleventh value interval.
- the reception of the second data meeting the fifth condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-second threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of correctly coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the proportion of correctly coded data units received in the transmission opportunity is low, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception and reduce the excessive occupation of resources at the same time.
- the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the proportion of correctly coded data units received in transmission opportunities is high, network coding transmission can be used to reduce HARQ retransmission.
- the excessive occupation of resources is avoided, thereby improving the spectral efficiency in the process of data transmission.
- Embodiments 1-26 of the third aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the third condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-third threshold.
- the fact that the reception of the second data satisfies the fourth condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is within the twelfth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-fourth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of error-coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the number of wrongly coded data units received in the transmission opportunity is large, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources.
- the combining gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of incorrectly coded data units received in the transmission opportunity is small, network coding transmission can be used to reduce HARQ retransmission. Excessive occupation of resources in the process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-27 of the third aspect all or part of the data in the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity One or more encoded data units corresponding to the second data are carried.
- the reception of the second data satisfying the third condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-fifth threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is within the thirteenth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-sixth threshold.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correctly coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the number of correctly coded data units received in the transmission opportunity is small, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources.
- the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the number of correctly coded data units received in the transmission opportunity is large, network coding transmission can be used to reduce HARQ retransmission. Excessive occupation of resources in the process, thereby improving the spectral efficiency in the data transmission process.
- the second data corresponds to one or more coded data units
- the coded data units correspond to data blocks including one or more original data units.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is less than (or less than or equal to) ) fifty-seventh threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data block to the number of original data units contained in the data block is taken in the fourteenth within the value range.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is greater than (or greater than or equal to) ) fifty-eighth threshold.
- the receiving end can send an indication of HARQ retransmission and the number of original data units contained in the data block to the transmitting end according to the ratio of the rank of the matrix formed by the coding vector corresponding to the received correctly coded data unit corresponding to the data block to the number of original data units contained in the data block. / or the first indication information of network coding transmission, instructing the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above ratio is low, the combined gain of HARQ retransmission and network coding transmission can be used to improve data success.
- the probability of receiving can reduce the excessive occupation of resources at the same time, and when the above ratio is moderate, the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the above ratio is high, network coding transmission can be used to reduce the HARQ retransmission process.
- the excessive occupation of resources in the data transmission process improves the spectral efficiency during data transmission.
- the second data corresponds to one or more coded data units
- the coded data units correspond to data blocks including one or more original data units.
- the reception of the second data satisfying the third condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is greater than (or greater than equal to) the fifty-ninth threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is in the fifteenth within the value range.
- the reception of the second data satisfying the fifth condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is less than (or less than equal to) the sixtieth threshold.
- the receiving end can send an instruction to the transmitting end for HARQ retransmission according to the difference between the rank of the matrix formed by the encoding vector corresponding to the received correctly encoded data unit corresponding to the data block and the number of original data units contained in the data block.
- the transmitting end instructing the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above difference is large, the combining gain of HARQ retransmission and network coding transmission can be used to improve
- the probability of successful data reception not only reduces the excessive occupation of resources, but also can use the combining gain of HARQ retransmission to further improve the probability of successful data reception when the above difference is moderate.
- network coding transmission can be used to reduce HARQ Excessive occupation of resources during retransmission, thereby improving spectral efficiency during data transmission.
- the reception of the second data satisfying the third condition specifically includes one of the third conditions or a plurality of the third conditions described in Embodiments 1-16 to 1-29 above.
- the receiving condition of the second data satisfies the fourth condition, which specifically includes one fourth condition or a combination of multiple fourth conditions described in the foregoing Embodiments 1-16 to 1-29, and the receiving condition of the second data satisfies
- the fifth condition specifically includes one fifth condition or a combination of a plurality of fifth conditions described in Embodiments 1-16 to 1-29 above.
- an embodiment of the present application provides a data transmission method, which may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including:
- the second data is sent to the first communication device, and the second indication information is received from the first communication device, where the second indication information indicates the reception of the second data.
- the first data is sent to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the first data is sent to the first communication device through network coding, and the first data includes the network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the data reception situation fed back by the receiving end, so that the combined gain of HARQ retransmission can be used to improve the successful reception of data in the case of poor data reception.
- network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- an embodiment of the present application provides a data transmission method.
- the method can be executed by a terminal or a network device, and can also be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including:
- the second data is sent to the first communication device, and the second indication information is received from the first communication device, where the second indication information indicates the reception of the second data.
- the receiving condition of the second data satisfies the third condition
- the first data is sent to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data and network coding data.
- the first data is sent to the first communication device through the HARQ operation, and the first data includes the HARQ retransmission data.
- the receiving condition of the second data satisfies the fifth condition
- the first data is sent to the first communication device through network coding, where the first data includes the network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the data reception situation fed back by the receiving end, so that the combined gain of HARQ retransmission can be used to improve the successful reception of data in the case of poor data reception.
- network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the receiving condition of the second data satisfies the third condition, the fourth condition or the fifth condition.
- the receiving condition of the second data satisfies the third condition, the fourth condition or the fifth condition.
- the second aspect please refer to the second aspect.
- Embodiments 1-16 to 1-30 are not repeated here.
- an embodiment of the present application provides a data transmission method.
- the method may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Second data from a second communication device is received. Sending second indication information for the first data transmission to the second communication device, the second indication information indicating the reception of the second data, and receiving the first data from the second communication device.
- the first data includes HARQ retransmission data.
- the first data includes network encoded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can feed back the data reception condition to the transmitting end, so that the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the data reception condition of the receiving end, so that the data reception condition is poor.
- the combined gain of HARQ retransmission is used to improve the probability of successful data reception under the condition of good data reception, and the network coding transmission can be used to reduce the excessive occupation of resources in the process of HARQ retransmission under the condition of good data reception, thereby improving the data transmission process. spectral efficiency in .
- an embodiment of the present application provides a data transmission method, which may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Second data from a second communication device is received. Sending second indication information for the first data transmission to the second communication device, the second indication information indicating the reception of the second data, and receiving the first data from the second communication device.
- the first data when the receiving condition of the second data satisfies the third condition, the first data includes HARQ retransmission data and network coding data.
- the first data includes HARQ retransmission data.
- the receiving condition of the second data satisfies the fifth condition, the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can feed back the data reception condition to the transmitting end, so that the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the data reception condition of the receiving end, so that the data reception condition is poor.
- the combined gain of HARQ retransmission is used to improve the probability of successful data reception under the condition of good data reception, and the network coding transmission can be used to reduce the excessive occupation of resources in the process of HARQ retransmission under the condition of good data reception, thereby improving the data transmission process. spectral efficiency in .
- the receiving condition of the second data satisfies the third condition, the fourth condition or the fifth condition.
- the receiving condition of the second data satisfies the third condition, the fourth condition or the fifth condition.
- the second aspect please refer to the second aspect.
- Embodiments 1-16 to 1-30 are not repeated here.
- an embodiment of the present application provides a data transmission method.
- the method may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Third indication information from the first communication device is received, where the third indication information indicates channel quality.
- Third indication information from the first communication device is received, where the third indication information indicates channel quality.
- first data is sent to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the channel quality satisfies the seventh condition first data is sent to the first communication device through network coding, where the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the channel quality, so that the combining gain of HARQ retransmission can be used to improve the probability of successful data reception under the condition of poor channel quality, and the probability of successful data reception can be improved when the channel quality is poor
- network coding transmission is used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the above-mentioned channel quality can be received by signal to interference plus noise ratio (singal to interference plus noise ratio, SINR), channel quality indication (channel quality indication, CQI), reference signal reception Power (reference signal received power, RSRP), received signal strength indicator (received signal strength indicator, RSSI) or reference signal receiving quality (reference signal receiving quality, RSRQ) characterization.
- SINR signal to interference plus noise ratio
- channel quality indication channel quality indication, CQI
- reference signal reception Power reference signal received power
- RSSI received signal strength indicator
- RSRQ reference signal receiving quality
- the channel quality satisfying the sixth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are less than (or less than or equal to) the ninth threshold.
- the channel quality satisfying the seventh condition specifically includes that the SINR, CQI, RSRP, RSSI or RSRQ is greater than (or greater than or equal to) the tenth threshold.
- the transmitting end can adaptively adjust the HARQ retransmission and network coding transmission according to the quality of the channel fed back by the receiving end, so that the combined gain of the HARQ retransmission can be used to improve the data when the channel quality is poor.
- the probability of successful reception can also be used to reduce the excessive occupation of resources in the HARQ retransmission process by using network coding transmission under the condition of good channel quality, thereby improving the spectral efficiency in the data transmission process.
- an embodiment of the present application provides a data transmission method.
- the method may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Third indication information from the first communication device is received, where the third indication information indicates channel quality.
- Third indication information from the first communication device is received, where the third indication information indicates channel quality.
- first data is sent to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data and network coding data.
- the channel quality satisfies the ninth condition
- first data is sent to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the channel quality meets the tenth condition
- first data is sent to the first communication device through network coding, where the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the channel quality, so that the combining gain of HARQ retransmission can be used to improve the probability of successful data reception under the condition of poor channel quality, and the probability of successful data reception can be improved when the channel quality is poor
- network coding transmission is used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the above-mentioned channel quality may be characterized by SINR, CQI, RSRP, RSSI or RSRQ.
- the channel quality satisfying the eighth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are less than (or less than or equal to) an eleventh threshold.
- the channel quality satisfying the ninth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are within the third value interval.
- the channel quality satisfying the tenth condition specifically includes that the SINR, CQI, RSRP, RSSI or RSRQ is greater than (or greater than or equal to) the twelfth threshold.
- the transmitter can make adaptive adjustments to HARQ retransmission and network coding transmission according to the quality of the channel fed back by the receiver, so that the combined gain of HARQ retransmission and the network coding can be used in the case of poor channel quality.
- Coded transmission can improve the probability of successful data reception while reducing the excessive occupation of resources. It can also use the combining gain of HARQ retransmission to improve the probability of successful data reception when the channel quality is moderate.
- Network coding transmission is used to reduce excessive occupation of resources during HARQ retransmission, thereby improving spectral efficiency during data transmission.
- an embodiment of the present application provides a data transmission method.
- the method may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including: Get the channel quality.
- the first data includes HARQ retransmission data.
- the first data includes network coded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can feed back the channel quality to the transmitting end, so that the transmitting end can adapt the HARQ retransmission and network coding transmission according to the channel quality, so that the HARQ retransmission can be used in the case of poor channel quality.
- the combined gain increases the probability of successful data reception, and can use network coding transmission to reduce the excessive occupation of resources in the HARQ retransmission process under the condition of good channel quality, thereby improving the spectral efficiency in the data transmission process.
- an embodiment of the present application provides a data transmission method.
- the method may be executed by a terminal or a network device, or may be executed by a component of the terminal or network device (for example, a processor, a chip, or a chip system, etc.), including : Get the channel quality.
- the first data includes HARQ retransmission data and network coding data.
- the first data includes HARQ retransmission data.
- the first data includes network coded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving end can feed back the channel quality to the transmitting end, so that the transmitting end can adapt the HARQ retransmission and network coding transmission according to the channel quality, so that the HARQ retransmission can be used in the case of poor channel quality.
- the combined gain increases the probability of successful data reception, and can use network coding transmission to reduce the excessive occupation of resources in the HARQ retransmission process under the condition of good channel quality, thereby improving the spectral efficiency in the data transmission process.
- an embodiment of the present application provides a device that can implement any possible implementation manner of the first aspect, the fourth aspect, the fifth aspect, the eighth aspect, the ninth aspect, and the first aspect, and the fourth aspect.
- the apparatus comprises corresponding units or components for carrying out the above-described method.
- the units included in the apparatus may be implemented by software and/or hardware.
- the apparatus may be, for example, a terminal or a network device, or may be a chip, a chip system, or a processor that supports the terminal or network device to implement the above method.
- an embodiment of the present application provides a device that can implement any of the above-mentioned second aspect, third aspect, sixth aspect, seventh aspect, tenth aspect, eleventh aspect, and second aspect.
- any possible embodiment of the third aspect, any possible embodiment of the sixth aspect, any possible embodiment of the seventh aspect, any possible embodiment of the tenth aspect, or the tenth aspect A method in any of the possible embodiments of the aspect.
- the apparatus comprises corresponding units or components for carrying out the above-described method.
- the units included in the apparatus may be implemented by software and/or hardware.
- the apparatus may be, for example, a terminal or a network device, or may be a chip, a chip system, or a processor that supports the terminal or network device to implement the above method.
- an embodiment of the present application provides an apparatus, including: a processor, the processor is coupled to a memory, and the memory is used to store a program or an instruction, when the program or instruction is executed by the processor , so that the device realizes the first aspect, the fourth aspect, the fifth aspect, the eighth aspect, the ninth aspect, any possible implementation manner of the first aspect, any possible implementation manner of the fourth aspect, and the fifth aspect.
- an embodiment of the present application provides an apparatus, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, when the program or the instruction is executed by the processor , so that the device realizes any possible implementation manner of the second aspect, the third aspect, the sixth aspect, the seventh aspect, the tenth aspect, the eleventh aspect, the second aspect, and any possible implementation manner of the third aspect.
- an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed, causes a computer to execute the first aspect, the fourth aspect, and the fifth aspect.
- an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed, causes a computer to execute the second aspect, the third aspect, and the sixth aspect.
- the seventh aspect, the tenth aspect, the eleventh aspect, any possible implementation of the second aspect, any possible implementation of the third aspect, any possible implementation of the sixth aspect, and the seventh A method in any possible implementation of the aspect, any possible implementation of the tenth aspect, or any possible implementation of the eleventh aspect.
- an embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code is run on a computer, causes the computer to execute the first aspect, the fourth aspect, the fifth aspect, the The eighth aspect, the ninth aspect, any possible implementation of the first aspect, any possible implementation of the fourth aspect, any possible implementation of the fifth aspect, and any possible implementation of the eighth aspect , or the method in any possible implementation manner of the ninth aspect.
- an embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code is run on a computer, causes the computer to execute the second aspect, the third aspect, the sixth aspect, the first aspect Seventh aspect, tenth aspect, eleventh aspect, any possible implementation of the second aspect, any possible implementation of the third aspect, any possible implementation of the sixth aspect, any possible implementation of the seventh aspect the method in any possible implementation manner of the tenth aspect, or any possible implementation manner of the eleventh aspect.
- an embodiment of the present application provides a chip, including: a processor, where the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip implements the first aspect, the fourth aspect, the fifth aspect, the eighth aspect, the ninth aspect, any possible implementation manner of the first aspect, any possible implementation manner of the fourth aspect, and the fifth aspect.
- an embodiment of the present application provides a chip, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor , the chip implements any possible implementation manner of the second aspect, the third aspect, the sixth aspect, the seventh aspect, the tenth aspect, the eleventh aspect, the second aspect, and any possible implementation manner of the third aspect. , any possible implementation of the sixth aspect, any possible implementation of the seventh aspect, any possible implementation of the tenth aspect, or any possible implementation of the eleventh aspect Methods.
- an embodiment of the present application provides a communication system, including: the device of the twelfth aspect and the device of the thirteenth aspect.
- an embodiment of the present application provides a communication system, including: the device of the fourteenth aspect and the device of the fifteenth aspect.
- FIG. 1 is a schematic diagram of a communication system to which an embodiment provided by the present application is applied;
- FIG. 2 shows a schematic diagram of an example of an architecture of a communication system
- Fig. 3 shows a kind of coding schematic diagram provided by this application
- FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- FIG. 13 is a schematic diagram of another communication apparatus provided by an embodiment of the present application.
- FIG. 1 shows a schematic structural diagram of a communication system.
- the communication system 100 includes one or more network devices (the network device 110 and the network device 120 are shown in the figure), and one or more terminals that communicate with the one or more network devices.
- Terminals 114 and 118 are shown in FIG. 1 in communication with network device 110
- terminals 124 and 128 are shown in communication with network device 120 . It can be understood that network devices and terminals can also be referred to as communication devices.
- the methods and apparatuses provided in the embodiments of this application can be used in various communication systems, such as a fourth generation (4th generation, 4G) communication system, a 4.5G communication system, a 5G communication system, a system that integrates multiple communication systems, or a future evolved communication system.
- Communication system (such as 5.5G communication system or 6G communication system).
- LTE long term evolution
- NR new radio
- WiFi wireless-fidelity
- 3GPP 3rd generation partnership project
- the methods and apparatuses provided in the embodiments of the present application can be applied to various communication scenarios, such as transmission scenarios between network devices and terminals, transmission scenarios between terminals, scenarios in which network devices and terminals are transmitted through relays, multiple Dual connectivity (DC) or multiple connections between network devices and terminals, and multi-hop transmission scenarios, etc.
- various communication scenarios such as transmission scenarios between network devices and terminals, transmission scenarios between terminals, scenarios in which network devices and terminals are transmitted through relays, multiple Dual connectivity (DC) or multiple connections between network devices and terminals, and multi-hop transmission scenarios, etc.
- Fig. 2 shows a schematic diagram of an example of a possible architecture of a communication system.
- the network devices in a radio access network are a centralized unit (CU) and a distributed unit (distributed unit).
- unit, DU) separate architecture base station (such as gNodeB or gNB).
- the RAN may be connected to the core network (for example, it may be the core network of LTE, or the core network of 5G, etc.).
- CU and DU can be understood as the division of the base station from the perspective of logical functions.
- CUs and DUs can be physically separate or deployed together. Multiple DUs can share one CU.
- One DU can also be connected to multiple CUs (not shown in the figure).
- the CU and the DU can be connected through an interface, such as an F1 interface.
- CU and DU can be divided according to the protocol layer of the wireless network.
- the functions of the packet data convergence protocol (PDCP) layer and the radio resource control (RRC) layer are set in the CU, while the radio link control (RLC), media access control
- the functions of the (media access control, MAC) layer and the physical (physical, PHY) layer are set in the DU.
- PDCP packet data convergence protocol
- RRC radio resource control
- RLC radio link control
- the functions of the (media access control, MAC) layer and the physical (physical, PHY) layer are set in the DU.
- the division of CU and DU processing functions according to this protocol layer is only an example, and may also be divided in other ways.
- a CU or DU may be divided into functions with more protocol layers.
- a CU or DU can also be divided into partial processing functions with a protocol layer.
- the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
- the network architecture shown in Figure 2 can be applied to a 5G communication system, which can also share one or more components or resources with an LTE system.
- the CU may also have one or more functions of the core network.
- One or more CUs can be set centrally or separately.
- the CU can be set on the network side to facilitate centralized management.
- the DU can have multiple radio functions, or the radio functions can be set farther away.
- the functions of the CU can be implemented by one entity, or the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU. ) can be implemented by different functional entities, the CU-CP and CU-UP can be coupled with the DU to jointly complete the functions of the base station.
- the network device may be any device with a wireless transceiver function. Including but not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station (gNodeB or gNB) or transceiver point (transmission receiving point/transmission receiving point, TRP) in NR, 3GPP Subsequent evolution of base stations, access nodes in WiFi systems, wireless relay nodes, wireless backhaul nodes, etc.
- the base station can be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, or a balloon station, etc.
- Multiple base stations may support the above-mentioned networks of the same technology, or may support the above-mentioned networks of different technologies.
- a base station may contain one or more co-sited or non-co-sited TRPs.
- the network device may also be a wireless controller, a CU, and/or a DU in a cloud radio access network (CRAN) scenario.
- the network device may also be a server, a wearable device, a machine communication device, or a vehicle-mounted device.
- the following description takes the network device as the base station as an example.
- the multiple network devices may be base stations of the same type, or may be base stations of different types.
- the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
- the terminal device can communicate with multiple base stations of different technologies. For example, the terminal device can communicate with the base station supporting the LTE network, the base station supporting the 5G network, and the base station supporting the LTE network and the base station of the 5G network
- a terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, etc.) and satellite, etc.).
- the terminal can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, industrial control (industrial) control), in-vehicle terminal equipment, terminals in self-driving, terminals in assisted driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety ( Terminals in transportation safety), terminals in smart cities, terminals in smart homes, and so on.
- the embodiments of the present application do not limit application scenarios.
- a terminal may also sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, machine terminal, UE proxy or UE device, etc.
- Terminals can be fixed or mobile.
- the terminal may be a wearable device.
- Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
- Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
- the terminal may be a terminal in the Internet of Things (IoT) system.
- IoT Internet of Things
- MTC machine type communication
- the terminal of the present application may be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle passes through the built-in on-board module, on-board module, on-board component , on-board chip or on-board unit can implement the method of the present application. Therefore, the embodiments of the present application can be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution vehicle (LTE-V), vehicle to vehicle (V2V) Wait.
- V2X vehicle to everything
- LTE-V long term evolution vehicle
- V2V vehicle to vehicle
- a hybrid automatic repeat request (HARQ) operation is a feedback-based retransmission request mechanism.
- the receiver feeds back an acknowledgement (ACK) or a negative acknowledgement (NACK) to the sender according to the reception of the data, which are used to request the sender for new HARQ transmission or HARQ retransmission, respectively.
- ACK acknowledgement
- NACK negative acknowledgement
- the receiving end may perform HARQ combining to improve the probability of successful data reception.
- HARQ retransmission is generally directed to a transport block (transport block, TB) or a code block group (code block group, CBG), and one TB or one CBG generally includes multiple code blocks (code block, CB).
- transport block transport block
- CBG code block group
- code block group CBG
- CB code block group
- the HARQ retransmission will retransmit the entire TB or the entire CBG, which will increase the resource overhead of retransmission and reduce the spectrum of retransmission. efficient. Therefore, how to improve the spectral efficiency in the data transmission process has become an urgent problem to be solved.
- the present application provides a data transmission method and device, in which data transmission based on network coding is introduced, and the transmitting end can perform HARQ retransmission and adaptive adjustment of network coding transmission according to the transmission mode suggestion of the receiving end.
- the present application also provides another data transmission method and device.
- data transmission based on network coding is introduced, and the transmitting end can perform HARQ retransmission and network coding transmission according to the reception situation or channel quality of the data fed back by the receiving end. adaptation adjustment.
- the method provided by the present application can not only use the combining gain of HARQ retransmission to improve the probability of successful data reception when the data reception condition is poor or the channel quality is poor, but also can improve the data reception condition or the channel quality.
- the network coding transmission is used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Network coding may also be referred to as network error correction coding, packet coding, or packet-level coding.
- Network coding includes many types, such as packet network coding, convolutional network coding (convolutional network coding), random linear network coding (RLNC), deterministic linear network coding (DLNC), batch sparse Code (batch sparse code, BATS), erasure code (erasure code), fountain code (fountain code), maximum distance separable code (maximum distance separable code, MDS) and streaming code (streaming code) and so on.
- These coding techniques obtain corresponding coded data units by performing coding operations on the original data units. For example, taking Fig.
- Data units in this application may also be referred to as data packets or data segments.
- N original data units are respectively represented as X 1 , X 2 , . . . , X N , and the N original data units may be included in one data block.
- a data block (block) may also be referred to as a data group (group), a data generation (generation) or a data batch (batch).
- data blocks may also be referred to as to-be-coded data blocks, coded data blocks, or network-coded data blocks.
- K encoding vectors can be represented as [g 1,1 ,g 1,2 ,...,g 1,N ], [g 2,1 ,g 2,2 ,...,g 2,N ],..., [g K,1 ,g K,2 ,...,g K,N ], where each coding vector contains N coding coefficients, and the n-th coding coefficient in the k-th coding vector is denoted as g k,n .
- the coding coefficients in the coding vector can be randomly selected from a finite field or a Galois field (GF), where GF is a field containing a finite number of elements, and GF(q) can represent a field containing q elements. GF.
- GF Galois field
- Multiplying N original data units X 1 , X 2 ,...,X N with K encoding vectors to obtain K encoded data units Y 1 , Y 2 ,..., Y K can satisfy:
- the above K encoding vectors can be included in one encoding matrix, and the encoding matrix satisfies:
- the above-mentioned multiplication of N original data units and K encoding vectors to obtain K encoded data units can also be understood as multiplying N original data units by an encoding matrix to obtain K encoded data units.
- the encoding matrix can also be called a generator matrix, a convolution generator matrix or a coefficient matrix
- the encoding vector can also be called an encoding kernel.
- the vectors in this application are all written in the form of row vectors for convenience of expression, but they can also be expressed in the form of column vectors, which are not limited in this application.
- the encoded data unit corresponding to one data block may be transmitted within one transmission opportunity.
- Transmission opportunities in this application may be scheduling occasions, transmission occasions, or transmission time intervals.
- the encoded data unit corresponding to one data block is transmitted within one transmission opportunity, which can be understood as all encoded data units generated by the original data unit in one data block are all carried by one TB.
- only the encoded data unit corresponding to one data block may be transmitted, or the encoded data unit corresponding to multiple data blocks may be transmitted, which is not limited in this application.
- the sender sends data processed by network coding to the receiver, and the data may also be referred to as network coding data.
- the receiving end receives the data sent by the transmitting end through network coding, the source data can be recovered as long as it receives enough network coding data, so the sudden data loss during data transmission will not significantly affect the decoding performance of the receiving end.
- the receiving end when the receiving end receives the network coded data from the sending end, it can judge whether the coded data unit is received correctly according to the check digit of the coded data unit. When the coded data unit is correctly received, the receiving end can obtain the data block corresponding to the coded data unit according to the header information of the coded data unit, and obtain the corresponding data blocks corresponding to the correctly received coded data unit corresponding to the data block.
- the coding vector according to which a linear equation system can be constructed with N original data units X 1 , X 2 ,..., X N as the unknowns to be solved, and the N original data blocks in the data block can be decoded by using the linear equation theory Data units X 1 , X 2 , . . . , X N .
- the protocol layer with the network coding function can be the RRC layer, the PDCP layer, the backhaul adaptation protocol (BAP) layer, the RLC layer, the MAC layer, or the PHY layer, or a new protocol layer other than the above-mentioned protocol layers.
- protocol layer may be above the PDCP layer, above the BAP layer, between the PDCP layer and the RLC layer, between the RLC layer and the MAC layer, or between the MAC layer and the PHY layer.
- the new protocol layer may also be called a network coding layer, a codec layer, a codec layer, a network codec layer, a network codec layer, or other names, which are not limited in this application.
- GF is a field containing a finite number of elements, and a GF containing q elements can be represented by GF(q), where q is a positive integer.
- GF(2) contains two elements of 0 and 1 (it can also be understood that the elements in GF(2) can be represented in binary), GF(4) contains four elements of 0, 1, 2 and 3, and GF(q) Contains q elements of 0, 1, ..., q-1.
- the operations involved in encoding can be understood as operations in GF.
- the elements in GF can be generated by the primitive polynomial P(x) on GF, and the polynomial multiplication on GF can be formed by corresponding elements in GF as polynomials, and the multiplication operation on GF field corresponds to polynomial multiplication and then on the primitive.
- the polynomial P(x) is modulo.
- 2-bit data such as '10', the corresponding polynomial form is x
- the 4-bit data can be In '1011', the first two bits '10' (the corresponding polynomial form is x) and the last two bits '11' (the corresponding polynomial form is x+1) are respectively associated with the 2-bit data '11' (the corresponding polynomial form is x +1) Multiply on GF(4), and then concatenate the results obtained respectively to obtain the result of multiplying '1011' and '11' on GF(4), namely:
- Polynomial addition on GF can correspond to an addition operation on a GF field as a polynomial addition in the form of corresponding elements in GF as polynomials (eg, exclusive OR of coefficients of like terms).
- 2-bit data such as '10', the corresponding polynomial form is x
- 2-bit data such as '11', the corresponding polynomial form is x+1
- the corresponding binary representation is "01".
- HARQ operation combines the advantages of forward error correction and automatic repeat request, which can improve the reliability of data transmission and system throughput.
- HARQ operation is a feedback-based retransmission request mechanism.
- the receiving end feeds back ACK or NACK to the transmitting end according to the data reception conditions, which are respectively used to request the transmitting end for new HARQ transmission or HARQ retransmission.
- the sender When the sender receives the ACK from the receiver, it will send the new HARQ data to the receiver in the next sending process.
- the sender When the sender receives the NACK from the receiver, it will send HARQ retransmission data to the receiver in the next sending process.
- the sender does not receive the ACK corresponding to the data, it can save the HARQ retransmission data corresponding to the data in the cache, and when it receives NACK, it can obtain the HARQ retransmission data that needs to be retransmitted from the cache and process and send. This process may also be referred to as HARQ retransmission.
- the sender When receiving the ACK corresponding to the data, the sender can release or clear the HARQ retransmission data corresponding to the data from the cache.
- Hybrid transmission of HARQ retransmission and network coding transmission may also be referred to as HARQ retransmission and network coding transmission for short).
- HARQ retransmission data and network coding data may be simultaneously transmitted.
- the transmitting end may include the encoded data unit output by the protocol layer with the network coding function and the HARQ retransmission data in one TB for transmission.
- the total size of the encoded data unit and HARQ retransmission data output by the protocol layer with the network coding function may be the same as the size of the TB, or may be different from the size of the TB, which is not limited in this application.
- the physical resources may include one or more of time-domain resources, frequency-domain resources, code-domain resources, or space-domain resources.
- the time domain resources included in the physical resources may include at least one frame, at least one sub-frame (sub-frame), at least one slot (slot), at least one mini-slot (mini-slot), and at least one time unit, Or at least a time domain symbol, etc.
- the frequency domain resources included in the physical resources may include at least one carrier (carrier), at least one component carrier (CC), at least one bandwidth part (BWP), and at least one resource block group (resource block group).
- the spatial resource included in the physical resource may include at least one beam, at least one port, at least one antenna port, or at least one layer/spatial layer.
- the code domain resource included in the physical resource may include at least one orthogonal cover code (orthogonal cover code, OCC), or at least one non-orthogonal multiple access (non-orthogonal multiple access, NOMA) code, and the like.
- the above-mentioned physical resources may be baseband physical resources, and the baseband physical resources may be used by the baseband chip.
- the above-mentioned physical resources may also be physical resources of the air interface.
- the above-mentioned physical resources may also be intermediate frequency or radio frequency physical resources.
- FIG. 4 is an interactive schematic diagram of a communication method 400 provided by an embodiment of the present application.
- the communication method is illustrated by taking the first communication device and the second communication device as the execution subjects of the interactive illustration as an example.
- the first communication device is a network device or a chip, a chip system, or a processor in the network device
- the second communication device is a terminal or a chip, a chip system, or a processor in the terminal.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is a network device or a chip, a chip system, or a processor in the network device.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is another terminal or a chip, a chip system, or a processor in another terminal.
- the first communication device may be understood as a receiving end of data (referred to as a receiving end for short)
- the second communication device may be understood as a transmitting end of data (referred to as a transmitting end for short).
- the method 400 of this embodiment may include parts 410 , 420 and 430 .
- Part 410 The second communication device sends the second data to the first communication device. Accordingly, the first communication device receives the second data from the second communication device.
- the first communication device sends first indication information for the first data transmission to the second communication device.
- the second communication device receives the first indication information from the first communication device.
- the first indication information indicates HARQ retransmission or network coding transmission.
- the first indication information may further indicate HARQ retransmission and network coding transmission.
- the specific content indicated by the first indication information is related to the reception of the second data by the first communication device.
- the first indication information is carried by one or more newly added indication fields. For example, add one or more indication fields in downlink control information (DCI), uplink control information (UCI), MAC control element (control element, CE) or RRC message to carry the first an instruction message.
- DCI downlink control information
- UCI uplink control information
- CE MAC control element
- RRC Radio Resource Control
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- the control channel in this application may be a physical uplink control channel (PUCCH), a physical downlink control channel (PDCCH), a physical sidelink control channel (PSCCH) or a physical sidelink control channel (PDCCH) Line feedback channel (physical sidelink feedback channel, PSFCH).
- the data channel in this application may be a physical uplink shared channel (PUSCH), a physical downlink shared channel (PDSCH), a physical sidelink shared channel (PSSCH), or a physical sidelink shared channel (PSSCH).
- Line broadcast channel physical sidelink broadcast channel, PSBCH.
- the first indication information indicates HARQ retransmission or network coding transmission
- ACK indicates network coding transmission and NACK indicates HARQ retransmission
- NACK indicates network coding transmission and ACK indicates HARQ retransmission
- the first indication information indicates HARQ retransmission, network coding transmission, or HARQ retransmission and network coding transmission
- (ACK, ACK) indicates network coding transmission
- (NACK, NACK) indicates HARQ retransmission
- (ACK) , NACK) to indicate HARQ retransmission and network coded transmission.
- (ACK, ACK) indicates that the first indication information indicates two ACKs
- (NACK, NACK) indicates that the first indication information indicates two NACKs
- (ACK, NACK) indicates that the first indication information indicates one ACK and one NACK .
- the method 400 may further include: the first communication device sends fourth indication information to the second communication device, and the second communication device receives the fourth indication information.
- the second communication device determines the meaning of the ACK/NACK indication in the first indication information according to the fourth indication information.
- the first indication information indicates HARQ retransmission or network coding transmission
- the fourth indication information indicates the first value
- the ACK or NACK in the first indication information respectively indicates new HARQ transmission or HARQ retransmission
- the four indication information indicates the second value
- the ACK or NACK in the first indication information respectively indicates network coding transmission or HARQ retransmission
- the ACK or NACK in the first indication information respectively indicates HARQ retransmission or network coding transmission.
- the ACK or NACK in the first indication information respectively indicates new HARQ transmission or HARQ retransmission; when the second communication device receives the fourth indication information, the first ACK or NACK in the first indication information respectively indicates network coding transmission or HARQ retransmission, or ACK or NACK in the first indication information respectively indicates HARQ retransmission or network coding transmission.
- the above-mentioned first value and second value may be predefined, or may be indicated or configured by the network device.
- the fourth indication information indicates the third value, (ACK, ACK) in the first indication information , (NACK, NACK) or (ACK, NACK) respectively instruct two CBGs to carry out HARQ new transmission, two CBGs to carry out HARQ retransmission, or two CBGs to carry out HARQ new transmission and HARQ retransmission respectively; when the fourth indication information indicates When the fourth value is set, (ACK, ACK), (NACK, NACK) or (ACK, NACK) in the first indication information respectively indicate network coding transmission, HARQ retransmission, or, HARQ retransmission and network coding transmission.
- the second communication device when the second communication device does not receive the fourth indication information, (ACK, ACK), (NACK, NACK) or (ACK, NACK) in the first indication information respectively instruct the two CBGs to perform new HARQ transmission, Two CBGs perform HARQ retransmission, or two CBGs perform HARQ new transmission and HARQ retransmission respectively; when the second communication device receives the fourth indication information, (ACK, ACK), (NACK, (NACK, NACK) or (ACK, NACK) indicate network coded transmission, HARQ retransmission, or, HARQ retransmission and network coded transmission, respectively.
- the above-mentioned third value and fourth value may be predefined, or may be indicated or configured by the network device.
- the second communication device sends the first data to the first communication device according to the content indicated by the first indication information. Accordingly, the first communication device receives the first data from the second communication device.
- the first indication information indicates HARQ retransmission
- the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation.
- the first indication information indicates network coding transmission
- the second communication device sends the first data including the network coding data to the first communication device through network coding.
- the second communication device sends first data including HARQ retransmission data and network coding data to the first communication device through HARQ operation and network coding.
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the data reception situation, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that both In the case of poor data reception, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and in the case of good data reception, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission. Thus, the spectral efficiency in the data transmission process is improved.
- the specific content indicated by the first indication information is related to the reception of the second data by the first communication device.
- the first indication information indicates specific content
- the first indication information indicates HARQ retransmission
- the first indication information indicates network coding transmission.
- Embodiment 1-1 is a diagrammatic representation of Embodiment 1-1:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is greater than (or greater than or equal to) the first threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is less than (or less than or equal to) the second threshold.
- the first threshold and the second threshold may be one threshold or two different thresholds.
- the value of the first threshold may be 0.2
- the value of the second threshold may be 0.2
- the value of the first threshold may also be 0.25
- the value of the second threshold may also be 0.15.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the ratio of the received error CB in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of erroneous CBs received in the TB is high
- the network coding transmission can be used to reduce the rate of HARQ retransmission when the proportion of erroneous CBs received in the TB is low. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiment 1-2
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is greater than (or greater than or equal to) a third threshold.
- the fact that the reception of the second data satisfies the second condition specifically includes that the ratio of the number of CBGs receiving errors in the TB to the number of all CBGs in the TB is less than (or less than or equal to) a fourth threshold.
- the third threshold and the fourth threshold may be one threshold or two different thresholds.
- the value of the third threshold may be 0.3
- the value of the fourth threshold may be 0.3
- the value of the third threshold may also be 0.35
- the value of the fourth threshold may also be 0.25.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the ratio of the received error CBG in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby It can not only use the combining gain of HARQ retransmission to improve the probability of successful data reception when the proportion of erroneous CBGs received in the TB is high, but also use network coding transmission to reduce the rate of HARQ retransmission when the proportion of erroneous CBGs received in the TB is low. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-3 are identical to Embodiments 1-3:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is less than (or less than or equal to) the thirteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is greater than (or greater than or equal to) the fourteenth threshold.
- the thirteenth threshold and the fourteenth threshold may be one threshold or two different thresholds.
- the thirteenth threshold may be 0.8
- the fourteenth threshold may be 0.8
- the thirteenth threshold may be 0.75
- the fourteenth threshold may be 0.85.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of correct CBs received in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the proportion of correct CBs received in the TB is low
- the combining gain of HARQ retransmission can be used to improve the probability of successful data reception
- the proportion of correct CBs received in the TB is high
- network coding transmission can be used to reduce the process of HARQ retransmission. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-4 are identical to Embodiments 1-4:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the number of all CBGs in the TB is less than (or less than or equal to) the fifteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is greater than (or greater than or equal to) the sixteenth threshold.
- the fifteenth threshold and the sixteenth threshold may be one threshold or two different thresholds.
- the fifteenth threshold may be 0.7
- the sixteenth threshold may be 0.7
- the fifteenth threshold may be 0.65
- the sixteenth threshold may be 0.75.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of the TBs that receive the correct CBG, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the proportion of correct CBG received in the TB is low
- the combining gain of HARQ retransmission can be used to improve the probability of successful data reception
- the proportion of correct CBG received in the TB is high
- network coding transmission can be used to reduce the process of HARQ retransmission. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-5 are identical to Embodiments 1-5:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the number of reception error CBs in the TB is greater than (or greater than or equal to) the seventeenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of received error CBs in the TB is less than (or less than or equal to) the eighteenth threshold. It can be understood that the seventeenth threshold and the eighteenth threshold may be one threshold or two different thresholds.
- the value of the seventeenth threshold may be 3, the value of the eighteenth threshold may be 3, the value of the seventeenth threshold may also be 4, and the value of the eighteenth threshold may also be 2.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of received error CBs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of erroneous CBs received in the TB is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of erroneous CBs received in the TB is small, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-6 are identical to Embodiments 1-6:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the receiving condition of the second data satisfying the first condition specifically includes that the number of received error CBGs in the TB is greater than (or greater than or equal to) the nineteenth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of received error CBGs in the TB is less than (or less than or equal to) the twentieth threshold.
- the nineteenth threshold and the twentieth threshold may be one threshold or two different thresholds. For example, the value of the nineteenth threshold may be 2, the value of the twentieth threshold may be 2, the value of the nineteenth threshold may also be 3, and the value of the twentieth threshold may also be 1.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of received error CBGs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of erroneous CBGs received in the TB is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of erroneous CBGs received in the TB is small, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-7 are identical to Embodiments 1-7:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received CBs in the TB is less than (or less than or equal to) the twenty-first threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correct CBs received in the TB is greater than (or greater than or equal to) the twenty-second threshold. It can be understood that the twenty-first threshold and the twenty-second threshold may be one threshold or two different thresholds.
- the value of the twenty-first threshold may be the smaller of the value of 4 and the total number of CBs in the TB
- the value of the twenty-second threshold may be taken from the value of 4 and the total number of CBs in the TB.
- the smaller of the number of CBs, the value of the twenty-first threshold may also be the smaller of the value 3 and the number of all CBs in the TB, and the value of the twenty-second threshold may also be is the smaller of the value 5 and the total number of CBs in the TB.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correct CBs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of correct CBs received in the TB is small, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of correct CBs received in the TB is large, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-8 are identical to Embodiments 1-8:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received CBGs in the TB is less than (or less than or equal to) the twenty-third threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correct CBGs received in the TB is greater than (or greater than or equal to) the twenty-fourth threshold. It can be understood that the twenty-third threshold and the twenty-fourth threshold may be one threshold or two different thresholds.
- the value of the twenty-third threshold may be the smaller of the value of 3 and the total number of CBGs in the TB, and the value of the twenty-fourth threshold may be taken from the value of 3 and all of the number of CBGs in the TB.
- the smaller of the number of CBGs, the value of the twenty-third threshold may also be the smaller of the value of 4 and the number of all CBGs in the TB, and the value of the twenty-fourth threshold may also be is the smaller of the value 2 and the total number of CBGs in the TB.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correct CBGs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission, thereby
- the number of correct CBGs received in the TB is small, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and when the number of correct CBGs received in the TB is large, network coding transmission can be used to reduce the error in the HARQ retransmission process. Excessive occupation of resources, thereby improving the spectral efficiency during data transmission.
- Embodiments 1-9 are identical to Embodiments 1-9:
- all or part of the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-fifth threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the twenty-sixth threshold.
- the twenty-fifth threshold and the twenty-sixth threshold may be one threshold or two different thresholds.
- the value of the twenty-fifth threshold may be 0.2
- the value of the twenty-sixth threshold may be 0.2
- the value of the twenty-fifth threshold may also be 0.25
- the value of the twenty-sixth threshold may also be 0.15.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of the erroneously encoded data units received in the transmission opportunity, and instruct the transmitting end to adapt to HARQ retransmission and network coding transmission Adjustment, so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of incorrectly coded data units received in transmission opportunities is high, and can be used when the proportion of incorrectly coded data units received in transmission opportunities is low.
- the network coding transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-10 are identical to Embodiments 1-10:
- all or part of the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception situation of the second data satisfying the first condition specifically includes that the ratio of the number of correct encoded data units received in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the twenty-seventh threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-eighth threshold.
- the twenty-seventh threshold and the twenty-eighth threshold may be one threshold or two different thresholds.
- the value of the twenty-seventh threshold may be 0.8
- the value of the twenty-eighth threshold may be 0.8
- the value of the twenty-seventh threshold may also be 0.75
- the value of the twenty-eighth threshold may also be 0.85.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the transmitting end according to the proportion of correctly coded data units received in the transmission opportunity, and instruct the transmitting end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the proportion of correctly coded data units received in transmission opportunities is low, and can be used when the proportion of correctly coded data units received in transmission opportunities is high.
- the network coding transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-11 are identical to Embodiments 1-11:
- all or part of the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the first condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the twenty-ninth threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is less than (or less than or equal to) the thirtieth threshold. It can be understood that the twenty-ninth threshold and the thirtieth threshold may be one threshold or two different thresholds.
- the value of the twenty-ninth threshold may be 3, the value of the thirtieth threshold may be 3, the value of the twenty-ninth threshold may also be 4, and the value of the thirtieth threshold may also be 2.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of error-coded data units received in the transmission opportunity, and instruct the sending end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the number of incorrectly coded data units received in the transmission opportunity is large, and the network can be used when the number of incorrectly coded data units received in the transmission opportunity is small.
- the coded transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-12 are identical to Embodiments 1-12:
- all or part of the second data is transmitted in a transmission opportunity (eg, a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the first condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is less than (or less than or equal to) the thirty-first threshold.
- the reception of the second data satisfying the second condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the thirty-second threshold. It can be understood that the thirty-first threshold and the thirty-second threshold may be one threshold or two different thresholds.
- the value of the thirty-first threshold may be the smaller of the value of 4 and the number of all coded data units in the transmission opportunity
- the value of the thirty-second threshold may be taken from the value of 4 and the The smaller value of the number of all coded data units in the transmission opportunity
- the value of the thirty-first threshold can also be the smaller value of the number 3 and the number of all coded data units in the transmission opportunity
- the first The thirty-two threshold value can also be taken from the smaller of the value of 5 and the number of all coded data units in the transmission opportunity.
- the receiving end can send the first indication information indicating HARQ retransmission or network coding transmission to the sending end according to the number of correctly coded data units received in the transmission opportunity, and instruct the sending end to adapt to HARQ retransmission and network coding transmission Adjustment so that the combined gain of HARQ retransmission can be used to improve the probability of successful data reception when the number of correctly coded data units received in the transmission opportunity is small, and the network can be used when the number of correctly coded data units received in the transmission opportunity is large.
- the coded transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-13 are identical to Embodiments 1-13:
- the second data corresponds to one or more encoded data units
- the encoded data units correspond to data blocks including one or more original data units.
- the reception of the second data satisfying the first condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is less than (or less than or equal to) ) thirty-third threshold.
- the reception of the second data satisfying the second condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is greater than (or greater than or equal to) ) thirty-fourth threshold.
- the thirty-third threshold and the thirty-fourth threshold may be one threshold or two different thresholds.
- the thirty-third threshold may be 0.8
- the thirty-fourth threshold may be 0.8
- the thirty-third threshold may be 0.75
- the thirty-fourth threshold may be 0.85.
- the receiving end can send an instruction to the transmitting end to indicate HARQ retransmission or a number of original data units contained in the data block according to the ratio of the rank of the matrix formed by the coding vector corresponding to the received correctly encoded data unit corresponding to the data block to the number of original data units contained in the data block.
- the first indication information of network coding transmission instructs the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above ratio is low, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and the probability of successful data reception can be improved when the above ratio is low.
- network coding transmission is used to reduce excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-14 are identical to Embodiments 1-14:
- the second data corresponds to one or more encoded data units
- the encoded data units correspond to data blocks including one or more original data units.
- the reception of the second data satisfying the first condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is greater than (or greater than equal to) the thirty-fifth threshold.
- the fact that the reception of the second data satisfies the second condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is less than (or less than equal to) the thirty-sixth threshold.
- the thirty-fifth threshold and the thirty-sixth threshold may be one threshold or two different thresholds.
- the thirty-fifth threshold may be 2
- the thirty-sixth threshold may be 2
- the thirty-fifth threshold may be 3
- the thirty-sixth threshold may be 1.
- the receiving end can send an instruction to the transmitting end for HARQ retransmission according to the difference between the rank of the matrix formed by the encoding vector corresponding to the received correctly encoded data unit corresponding to the data block and the number of original data units contained in the data block.
- the first indication information of network coding transmission instructing the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above difference is large, the combining gain of HARQ retransmission can be used to improve the probability of successful data reception, and
- network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-15 are identical to Embodiments 1-15:
- the receiving condition of the second data satisfies the first condition specifically includes one of the first conditions or a combination of multiple first conditions described in Embodiments 1-1 to 1-14 above.
- the fact that the reception condition satisfies the second condition specifically includes one of the second conditions described in the foregoing Embodiments 1-1 to 1-14 or a combination of multiple second conditions.
- the first indication information indicates specific content
- the first indication information indicates HARQ retransmission and network coding transmission
- the first indication information indicates HARQ retransmission
- the reception condition of the second data satisfies the fifth condition
- the first indication information indicates network coding transmission.
- Embodiments 1-16 are identical to Embodiments 1-16:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is greater than (or greater than or equal to) the fifth threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the number of CBs in the TB with received errors to the number of all CBs in the TB is within the first value interval.
- the receiving condition of the second data satisfying the fifth condition specifically includes that the ratio of the number of CBs with errors received in the TB to the number of all CBs in the TB is less than (or less than or equal to) the sixth threshold.
- the fifth threshold and the sixth threshold may be one threshold or two different thresholds.
- the values of the two endpoints of the first value interval may be the fifth threshold and the sixth threshold, respectively.
- the fifth threshold may be 0.4
- the sixth threshold may be 0.2
- the first value interval may be (0.2, 0.4)
- the fifth threshold may also be 0.5
- the sixth threshold may also be 0.3
- the first value interval Can also be (0.3, 0.5).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the transmitting end according to the ratio of the received error CB in the TB, and instruct the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the proportion of erroneous CBs received in the TB is high, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and can receive erroneous CBs in the TB.
- the combined gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the ratio of received erroneous CBs in the TB is low, network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the Spectral efficiency during data transmission.
- Embodiments 1-17 are identical to Embodiments 1-17:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the receiving condition of the second data satisfying the third condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is greater than (or greater than or equal to) a seventh threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is within the second value range.
- the receiving situation of the second data satisfying the fifth condition specifically includes that the ratio of the number of CBGs with errors received in the TB to the number of all CBGs in the TB is less than (or less than or equal to) the eighth threshold.
- the seventh threshold and the eighth threshold may be one threshold or two different thresholds.
- the values of the two endpoints of the second value interval may be the seventh threshold and the eighth threshold, respectively.
- the seventh threshold may be 0.4
- the eighth threshold may be 0.2
- the second value interval may be (0.2, 0.4)
- the seventh threshold may be 0.5
- the eighth threshold may be 0.3
- the second value interval Can also be (0.3, 0.5).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the ratio of the received error CBG in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that the combined gain of HARQ retransmission and network coding transmission can be used to reduce the excessive occupation of resources while increasing the probability of successful data reception when the proportion of erroneous CBG received in the TB is high, and the erroneous CBG can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of erroneous CBG received in the TB is low, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving the Spectral efficiency during data transmission.
- Embodiments 1-18 are identical to Embodiments 1-18:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the correct number of CBs received in the TB to the number of all CBs in the TB is less than (or less than or equal to) the thirty-seventh threshold.
- the reception situation of the second data satisfies the fourth condition specifically includes that the ratio of the correct number of CBs received in the TB to the number of all CBs in the TB is within the fourth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of correctly received CBs in the TB to the number of all CBs in the TB is greater than (or greater than or equal to) the thirty-eighth threshold.
- the thirty-seventh threshold and the thirty-eighth threshold may be one threshold or two different thresholds.
- the two endpoints of the fourth value interval may be the thirty-seventh threshold and the thirty-eighth threshold, respectively.
- the thirty-seventh threshold may be 0.6
- the thirty-eighth threshold may be 0.8
- the fourth value interval may be (0.6, 0.8)
- the thirty-seventh threshold may also be 0.5
- the thirty-eighth threshold may also be is 0.7
- the fourth value interval may also be (0.5, 0.7).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of TBs that receive correct CBs, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the proportion of correct CBs received in the TB is low, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CB can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of correct CBs in TB is high, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving the Spectral efficiency during data transmission.
- Embodiments 1-19 are identical to Embodiments 1-19:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is less than (or less than or equal to) the thirty-ninth threshold.
- the fact that the reception of the second data satisfies the fourth condition specifically includes that the ratio of the correct number of CBGs received in the TB to the total number of CBGs in the TB is within the fifth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of correctly received CBGs in the TB to the total number of CBGs in the TB is greater than (or greater than or equal to) the fortieth threshold.
- the thirty-ninth threshold and the fortieth threshold may be one threshold or two different thresholds.
- the two endpoints of the fifth value interval may be the thirty-ninth threshold and the fortieth threshold, respectively.
- the thirty-ninth threshold may be 0.6
- the fortieth threshold may be 0.8
- the fifth value interval may be (0.6, 0.8)
- the thirty-ninth threshold may also be 0.5
- the fortieth threshold may also be 0.7
- the fifth value interval can also be (0.5, 0.7).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the ratio of the correct CBG received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the proportion of correct CBG received in the TB is low, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CBG can be received in the TB.
- the ratio When the ratio is moderate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the ratio of correct CBG received in the TB is high, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the Spectral efficiency during data transmission.
- Embodiments 1-20 are identical to Embodiments 1-20:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the number of reception error CBs in the TB is greater than (or greater than or equal to) the forty-first threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the number of received error CBs in the TB is within the sixth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of received error CBs in the TB is less than (or less than or equal to) the forty-second threshold. It can be understood that the forty-first threshold and the forty-second threshold may be one threshold or two different thresholds.
- the two endpoints of the sixth value interval may be the forty-first threshold and the forty-second threshold, respectively.
- the forty-first threshold may be 5
- the forty-second threshold may be 2
- the sixth value interval may be (2, 5)
- the forty-first threshold may also be 10
- the forty-second threshold may also be is 4, and the sixth value interval can also be (4, 10).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of received error CBs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of erroneous CBs received in the TB is large, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the number of erroneous CBs can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of erroneous CBs received in the TB is small, network coding transmission can be used to reduce the excessive occupation of resources during HARQ retransmission, thereby improving data Spectral efficiency during transmission.
- Embodiments 1-21 are identical to Embodiments 1-21:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the number of received error CBGs in the TB is greater than (or greater than or equal to) the forty-third threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of received error CBGs in the TB is within the seventh value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of received error CBGs in the TB is less than (or less than or equal to) the forty-fourth threshold. It can be understood that the forty-third threshold and the forty-fourth threshold may be one threshold or two different thresholds.
- the two endpoints of the seventh value interval may be the forty-third threshold and the forty-fourth threshold, respectively.
- the forty-third threshold may be 5
- the forty-fourth threshold may be 2
- the seventh value interval may be (2, 5)
- the forty-third threshold may also be 10
- the forty-fourth threshold may also be is 4, and the seventh value interval can also be (4, 10).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of received error CBGs in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of erroneous CBGs received in the TB is large, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the number of erroneous CBGs received in the TB When appropriate, the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and network coding transmission can be used when the number of received erroneous CBGs in the TB is small to reduce the excessive occupation of resources during HARQ retransmission, thereby improving data Spectral efficiency during transmission.
- Embodiments 1-22 are identical to Embodiments 1-22:
- all or part of the second data is carried by a TB, and the TB includes one or more CBs.
- the reception of the second data satisfying the third condition specifically includes that the number of correctly received CBs in the TB is less than (or less than or equal to) the forty-fifth threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of correct CBs received in the TB is within the eighth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received CBs in the TB is greater than (or greater than or equal to) the forty-sixth threshold. It can be understood that the forty-fifth threshold and the forty-sixth threshold may be one threshold or two different thresholds.
- the two endpoints of the eighth value interval may be the forty-fifth threshold and the forty-sixth threshold, respectively.
- the forty-fifth threshold may be the lesser of the number 2 and the total number of CBs in the TB
- the forty-sixth threshold may be the lesser of the number 5 and the total number of CBs in the TB
- the smaller value, the eighth value interval can be (2, 5)
- the forty-fifth threshold can also be the smaller value of the value 4 and the number of all CBs in the TB
- the forty-sixth threshold is also It can be the smaller value of 10 and the number of all CBs in the TB
- the eighth value interval can also be (4, 10).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correct CBs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of correct CBs received in the TB is small, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CB can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of correct CBs received in the TB is large, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the data Spectral efficiency during transmission.
- Embodiments 1-23 are identical to Embodiments 1-23:
- all or part of the second data is carried by a TB, and the TB includes one or more CBGs.
- the reception of the second data satisfying the third condition specifically includes that the number of correctly received CBGs in the TB is less than (or less than or equal to) the forty-seventh threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the number of correct CBGs received in the TB is within the ninth value range.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received CBGs in the TB is greater than (or greater than or equal to) the forty-eighth threshold. It can be understood that the forty-seventh threshold and the forty-eighth threshold may be one threshold or two different thresholds.
- the two endpoints of the ninth value interval may be the forty-seventh threshold and the forty-eighth threshold, respectively.
- the forty-seventh threshold may be the smaller of the number 2 and the total number of CBGs in the TB
- the forty-eighth threshold may be the lesser of the number 5 and the total number of CBGs in the TB
- the smaller value, the ninth value interval can be (2, 5)
- the forty-seventh threshold can also be the smaller value of the value 4 and the number of all CBGs in the TB
- the forty-eighth threshold is also It can be the smaller value of the value 10 and the number of all CBGs in the TB
- the ninth value interval can also be (4, 10).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correct CBGs received in the TB, and instruct the sending end to perform adaptive adjustment of HARQ retransmission and network coding transmission , so that when the number of correct CBGs received in the TB is small, the combined gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources, and the correct CBG can be received in the TB.
- the combined gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of correct CBGs received in the TB is large, network coding transmission can be used to reduce the excessive occupation of resources during the HARQ retransmission process, thereby improving the data Spectral efficiency during transmission.
- Embodiments 1-24 are identical to Embodiments 1-24:
- all or part of the second data is transmitted in a transmission opportunity (eg, a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the forty-ninth threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the ratio of the number of coded data units with errors received in the transmission opportunity to the number of all coded data units in the transmission opportunity is within the tenth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the number of erroneously received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the fiftieth threshold.
- the forty-ninth threshold and the fiftieth threshold may be one threshold or two different thresholds.
- the two endpoints of the tenth value interval may be the forty-ninth threshold and the fiftieth threshold, respectively.
- the forty-ninth threshold may be 0.4
- the fiftieth threshold may be 0.2
- the tenth value interval may be (0.2, 0.4)
- the forty-ninth threshold may also be 0.5
- the fiftieth threshold may also be 0.3
- the tenth value interval can also be (0.3, 0.5).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of the erroneously encoded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the proportion of incorrectly coded data units received in transmission opportunities is high, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing excessive resource occupation, and can When the proportion of incorrectly coded data units received in transmission opportunities is moderate, the combined gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the proportion of incorrectly coded data units received in transmission opportunities is low, network coding transmission can be used to reduce HARQ retransmission. In the process of data transmission, the excessive occupation of resources is avoided, thereby improving the spectral efficiency in the process of data transmission.
- Embodiments 1-25 are identical to Embodiments 1-25:
- all or part of the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-first threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is within the eleventh value interval.
- the reception of the second data meeting the fifth condition specifically includes that the ratio of the number of correctly received encoded data units in the transmission opportunity to the number of all encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-second threshold.
- the fifty-first threshold and the fifty-second threshold may be one threshold or two different thresholds.
- the two endpoints of the eleventh value interval may be the fifty-first threshold and the fifty-second threshold, respectively.
- the fifty-first threshold may be 0.6
- the fifty-second threshold may be 0.8
- the eleventh value interval may be (0.6, 0.8)
- the fifty-first threshold may also be 0.5
- the fifty-second threshold may also be It can be 0.9
- the eleventh value interval can also be (0.5, 0.9).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the proportion of correctly coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the proportion of correctly coded data units received in the transmission opportunity is low, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception and reduce the excessive occupation of resources at the same time.
- the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the proportion of correctly coded data units received in transmission opportunities is high, network coding transmission can be used to reduce HARQ retransmission.
- the excessive occupation of resources is avoided, thereby improving the spectral efficiency in the process of data transmission.
- Embodiments 1-26 are identical to Embodiments 1-26:
- Embodiments 1-26 all or part of the second data is transmitted in a transmission opportunity (eg, a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the third condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-third threshold.
- the fact that the reception of the second data satisfies the fourth condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is within the twelfth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of erroneously received encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-fourth threshold.
- the fifty-third threshold and the fifty-fourth threshold may be one threshold or two different thresholds.
- the two endpoints of the twelfth value interval may be the fifty-third threshold and the fifty-fourth threshold, respectively.
- the fifty-third threshold may be 5, the fifty-fourth threshold may be 2, the twelfth value interval may be (2, 5), the fifty-third threshold may also be 10, and the fifty-fourth threshold may also be It can be 4, and the twelfth value interval can also be (4, 10).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of error-coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the number of wrongly coded data units received in the transmission opportunity is large, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources.
- the combining gain of HARQ retransmission is used to further improve the probability of successful data reception, and when the number of incorrectly coded data units received in the transmission opportunity is small, network coding transmission can be used to reduce HARQ retransmission. Excessive occupation of resources in the process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-27 are identical to Embodiments 1-27:
- all or part of the second data is transmitted in a transmission opportunity (such as a scheduling opportunity, a transmission opportunity, or a transmission time interval), and the transmission opportunity carries one corresponding to the second data or multiple encoded data units.
- the reception of the second data satisfying the third condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is less than (or less than or equal to) the fifty-fifth threshold.
- the receiving condition of the second data satisfying the fourth condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is within the thirteenth value interval.
- the reception of the second data satisfying the fifth condition specifically includes that the number of correctly received encoded data units in the transmission opportunity is greater than (or greater than or equal to) the fifty-sixth threshold.
- the fifty-fifth threshold and the fifty-sixth threshold may be one threshold or two different thresholds.
- the two endpoints of the thirteenth value interval may be the fifty-fifth threshold and the fifty-sixth threshold, respectively.
- the fifty-fifth threshold may be the smaller of the value of 4 and the number of all encoded data units in the transmission opportunity, and the fifty-sixth threshold may be taken from the value of 10 and the number of all encoded data units in the transmission opportunity
- the smaller of the number of units, the thirteenth value interval can be (4, 10), and the fifty-fifth threshold can also be taken from the value of 2 and the number of all encoded data units in the transmission opportunity.
- the smaller value, the fifty-sixth threshold value can also be the smaller value of the value 5 and the number of all coded data units in the transmission opportunity, and the thirteenth value interval can also be (2,5).
- the receiving end can send the first indication information indicating HARQ retransmission and/or network coding transmission to the sending end according to the number of correctly coded data units received in the transmission opportunity, and instruct the sending end to perform HARQ retransmission and network coding transmission Therefore, when the number of correctly coded data units received in the transmission opportunity is small, the combining gain of HARQ retransmission and network coding transmission can be used to improve the probability of successful data reception while reducing the excessive occupation of resources.
- the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the number of correctly coded data units received in the transmission opportunity is large, network coding transmission can be used to reduce HARQ retransmission. Excessive occupation of resources in the process, thereby improving the spectral efficiency in the data transmission process.
- Embodiments 1-28 are identical to Embodiments 1-28:
- the second data corresponds to one or more coded data units
- the coded data units correspond to data blocks containing one or more original data units.
- the reception of the second data satisfying the third condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is less than (or less than or equal to) ) fifty-seventh threshold.
- the receiving situation of the second data satisfying the fourth condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data block to the number of original data units contained in the data block is taken in the fourteenth within the value range.
- the reception of the second data satisfying the fifth condition specifically includes that the ratio of the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block to the number of original data units contained in the data block is greater than (or greater than or equal to) ) fifty-eighth threshold.
- the fifty-seventh threshold and the fifty-eighth threshold may be one threshold or two different thresholds.
- the two endpoints of the fourteenth value interval may be the fifty-seventh threshold and the fifty-eighth threshold, respectively.
- the fifty-seventh threshold may be 0.6
- the fifty-eighth threshold may be 0.8
- the fourteenth value interval may be (0.6, 0.8)
- the fifty-seventh threshold may also be 0.5
- the fifty-eighth threshold may also be It can be 0.9
- the fourteenth value interval can also be (0.5, 0.9).
- the receiving end can send an indication of HARQ retransmission and the number of original data units contained in the data block to the transmitting end according to the ratio of the rank of the matrix formed by the coding vector corresponding to the received correctly coded data unit corresponding to the data block to the number of original data units contained in the data block.
- the sender instructing the sender to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above ratio is low, the combined gain of HARQ retransmission and network coding transmission can be used to improve data success.
- the probability of receiving can reduce the excessive occupation of resources at the same time, and when the above ratio is moderate, the combining gain of HARQ retransmission can be used to further improve the probability of successful data reception, and when the above ratio is high, network coding transmission can be used to reduce the HARQ retransmission process.
- the excessive occupation of resources in the data transmission process improves the spectral efficiency during data transmission.
- Embodiments 1-29 are identical to Embodiments 1-29:
- the second data corresponds to one or more encoded data units
- the encoded data units correspond to data blocks containing one or more original data units.
- the reception of the second data satisfying the third condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is greater than (or greater than equal to) the fifty-ninth threshold.
- the reception of the second data satisfying the fourth condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is in the fifteenth within the value range.
- the reception of the second data satisfying the fifth condition specifically includes that the difference between the rank of the matrix composed of the coding vectors corresponding to the correctly coded data units corresponding to the data block and the number of original data units contained in the data block is less than (or less than equal to) the sixtieth threshold.
- the fifty-ninth threshold and the sixtieth threshold may be one threshold or two different thresholds.
- the two endpoints of the fifteenth value interval may be the fifty-ninth threshold and the sixtieth threshold, respectively.
- the fifty-ninth threshold may be 3, the sixtieth threshold may be 1, the fifteenth value interval may be (1,3), the fifty-ninth threshold may be 5, and the sixtieth threshold may be 2, The fifteenth value interval may be (2,5).
- the receiving end can send an instruction to the transmitting end for HARQ retransmission according to the difference between the rank of the matrix formed by the encoding vector corresponding to the received correctly encoded data unit corresponding to the data block and the number of original data units contained in the data block.
- the transmitting end instructing the transmitting end to perform adaptive adjustment of HARQ retransmission and network coding transmission, so that when the above difference is large, the combining gain of HARQ retransmission and network coding transmission can be used to improve
- the probability of successful data reception not only reduces the excessive occupation of resources, but also can use the combining gain of HARQ retransmission to further improve the probability of successful data reception when the above difference is moderate.
- network coding transmission can be used to reduce HARQ Excessive occupation of resources during retransmission, thereby improving spectral efficiency during data transmission.
- Embodiments 1-30 are identical to Embodiments 1-30:
- the reception of the second data satisfies the third condition specifically includes one of the third conditions or a combination of multiple third conditions described in Embodiments 1-16 to 1-29 above.
- the receiving condition that satisfies the fourth condition specifically includes one fourth condition or a combination of multiple fourth conditions described in the foregoing Embodiments 1-16 to 1-29
- the receiving condition of the second data that satisfies the fifth condition specifically includes the foregoing Embodiment 1 A fifth condition or a combination of multiple fifth conditions described in -16 to 1-29.
- FIG. 5 is an interactive schematic diagram of another communication method 500 provided by an embodiment of the present application.
- the communication method is illustrated by taking the first communication device and the second communication device as the execution subjects of the interactive illustration as an example.
- the first communication device is a network device or a chip, a chip system, or a processor in the network device
- the second communication device is a terminal or a chip, a chip system, or a processor in the terminal.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is a network device or a chip, a chip system, or a processor in the network device.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is another terminal or a chip, a chip system, or a processor in another terminal.
- the first communication device may be understood as a receiving end of data (referred to as a receiving end for short)
- the second communication device may be understood as a transmitting end of data (referred to as a transmitting end for short).
- the method 500 of this embodiment may include parts 510 , 520 and 530 .
- Part 510 The second communication device sends the second data to the first communication device. Accordingly, the first communication device receives the second data from the second communication device.
- Part 520 The first communication device sends second indication information for the first data transmission to the second communication device.
- the second communication device receives the second indication information from the first communication device.
- the second indication information indicates the reception situation of the second data.
- the second communication device sends the first data to the first communication device according to the content indicated by the second indication information. Accordingly, the first communication device receives the first data from the second communication device.
- the second communication device may send the first data including the HARQ retransmission data to the first communication device through the HARQ operation, or may send the first data including the network encoded data to the first communication device through network coding.
- the second communication device may further send the first data including HARQ retransmission data and network coding data to the first communication device through HARQ operation and network coding.
- the manner in which the second communication device sends the first data to the first communication device depends on the reception of the second data indicated by the second indication information.
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the data reception situation fed back by the receiving end, so that the combined gain of HARQ retransmission can be used to improve the successful reception of data in the case of poor data reception.
- network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the manner in which the second communication device sends the first data to the first communication device depends on the receiving condition of the second data indicated by the second indication information.
- part 530 when the receiving condition of the second data satisfies the first condition, the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation; When the reception of the second data satisfies the second condition, the second communication device sends the first data including the network encoded data to the first communication device through network encoding.
- the reception situation of the second data above satisfies the first condition or the second condition. For details, reference may be made to the descriptions of the foregoing implementation manners 1-1 to 1-15, which will not be repeated here.
- the second communication device when the receiving condition of the second data satisfies the third condition, the second communication device sends data including HARQ retransmission and network coding to the first communication device through HARQ operation and network coding The first data of the data; when the receiving condition of the second data satisfies the fourth condition, the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation; when the receiving condition of the second data satisfies the Under the fifth condition, the second communication device sends the first data including the network encoded data to the first communication device through network encoding.
- the reception of the second data to satisfy the third condition, the fourth condition or the fifth condition. For details, please refer to the descriptions of the foregoing Embodiments 1-16 to 1-30, which will not be repeated here.
- FIG. 6 is an interactive schematic diagram of another communication method 600 provided by an embodiment of the present application.
- the communication method is illustrated by taking the first communication device and the second communication device as the execution subjects of the interactive illustration as an example.
- the first communication device is a network device or a chip, a chip system, or a processor in the network device
- the second communication device is a terminal or a chip, a chip system, or a processor in the terminal.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is a network device or a chip, a chip system, or a processor in the network device.
- the first communication device is a terminal or a chip, a chip system, or a processor in the terminal
- the second communication device is another terminal or a chip, a chip system, or a processor in another terminal.
- the first communication device may be understood as a receiving end of data (referred to as a receiving end for short)
- the second communication device may be understood as a transmitting end of data (referred to as a transmitting end for short).
- the method 600 of this embodiment may include parts 610 , 620 and 630 .
- the first communication device obtains the channel quality.
- the channel quality may be the channel quality between the first communication device and the second communication device. It can be understood that the first communication device can obtain the channel quality in many different ways. For example, the first communication device may measure the reference signal or other signals from the second communication device to obtain the channel quality, and may also obtain the channel quality by receiving channel quality indication information from the second communication device or other communication devices.
- the method 600 may further include: the second communication device sending the second data to the first communication device. Further optionally, the obtaining of the channel quality by the first communication device specifically includes that the first communication device obtains the channel quality by receiving the second data.
- Part 620 The first communication device sends third indication information for the first data transmission to the second communication device.
- the second communication device receives the third indication information from the first communication device.
- the third indication information indicates the channel quality, or the third indication information indicates HARQ retransmission or network coding transmission, or the third indication information indicates HARQ retransmission, network coding transmission, or HARQ retransmission and network coding transmission.
- the second communication device sends the first data to the first communication device according to the content indicated by the third indication information. Accordingly, the first communication device receives the first data from the second communication device.
- the second communication device may send the first data including the HARQ retransmission data to the first communication device through the HARQ operation, or may send the first data including the network encoded data to the first communication device through network coding.
- the second communication device may further send the first data including HARQ retransmission data and network coding data to the first communication device through HARQ operation and network coding.
- the manner in which the second communication device sends the first data to the first communication device depends on the specific content indicated by the third indication information.
- the transmitting end can make adaptive adjustments to HARQ retransmission and network coding transmission according to the channel quality, so that the combining gain of HARQ retransmission can be used to improve the probability of successful data reception under the condition of poor channel quality, and the probability of successful data reception can be improved when the channel quality is poor
- network coding transmission is used to reduce the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the manner in which the second communication device sends the first data to the first communication device depends on the specific content indicated by the third indication information.
- the third indication information indicates the channel quality.
- the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation; when the above channel quality satisfies the seventh condition, the second communication device uses network coding The first data including the network encoded data is sent to the first communication device.
- the channel quality to satisfy the sixth condition or the seventh condition. The following takes Embodiment 2-1 as an example to describe that the channel quality meets the sixth condition or the seventh condition.
- Embodiment 2-1
- the above-mentioned channel quality can be determined by a signal-to-interference plus noise ratio (SINR), a channel quality indication (CQI), a reference signal received power (RSRP) , received signal strength indicator (received signal strength indicator, RSSI) or reference signal receiving quality (reference signal receiving quality, RSRQ) characterization.
- SINR signal-to-interference plus noise ratio
- CQI channel quality indication
- RSRP reference signal received power
- RSSI received signal strength indicator
- RSRQ reference signal receiving quality
- the channel quality satisfying the sixth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are less than (or less than or equal to) the ninth threshold.
- the channel quality satisfying the seventh condition specifically includes that the SINR, CQI, RSRP, RSSI or RSRQ is greater than (or greater than or equal to) the tenth threshold.
- the ninth threshold and the tenth threshold may be one threshold or two different thresholds.
- the ninth threshold when the channel quality is characterized by SINR, the ninth threshold may be 15dB, the tenth threshold may be 15dB, the ninth threshold may be 10dB, and the tenth threshold may be 11dB.
- the ninth threshold when the channel quality is characterized by CQI, the ninth threshold may be 7, the tenth threshold may be 7, the ninth threshold may be 5, and the tenth threshold may be 6.
- the value of the ninth threshold may be -105dBm
- the value of the tenth threshold may be -105dBm
- the value of the ninth threshold may also be -115dBm
- the value of the tenth threshold may also be is -114dBm.
- the value of the ninth threshold may be -100dBm
- the value of the tenth threshold may be -100dBm
- the value of the ninth threshold may also be -101dBm
- the value of the tenth threshold may also be is -102dBm.
- the value of the ninth threshold may be -10dB
- the value of the tenth threshold may be -10dB
- the value of the ninth threshold may also be -12dB
- the value of the tenth threshold may also be is -11dB.
- the transmitting end can adaptively adjust the HARQ retransmission and network coding transmission according to the quality of the channel fed back by the receiving end, so that the combined gain of the HARQ retransmission can be used to improve the data when the channel quality is poor.
- the probability of successful reception can also be used to reduce the excessive occupation of resources in the HARQ retransmission process by using network coding transmission under the condition of good channel quality, thereby improving the spectral efficiency in the data transmission process.
- the third indication information indicates the channel quality.
- the second communication device sends the first data including HARQ retransmission data and network-coded data to the first communication device through HARQ operation and network coding;
- the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation;
- the second communication device sends the first data including the network encoding data to the first communication device through network coding the first data.
- Embodiment 2-2
- the above-mentioned channel quality can be characterized by SINR, CQI, RSRP, RSSI or RSRQ.
- the channel quality satisfying the eighth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are less than (or less than or equal to) an eleventh threshold.
- the channel quality satisfying the ninth condition specifically includes that SINR, CQI, RSRP, RSSI or RSRQ are within the third value interval.
- the channel quality satisfying the tenth condition specifically includes that the SINR, CQI, RSRP, RSSI or RSRQ is greater than (or greater than or equal to) the twelfth threshold.
- the eleventh threshold and the twelfth threshold may be one threshold or two different thresholds.
- the two endpoints of the third value interval may be the eleventh threshold and the twelfth threshold, respectively.
- the value of the eleventh threshold may be 11dB
- the value of the twelfth threshold may be 15dB
- the third value interval may be (11dB, 15dB)
- the value of the eleventh threshold may also be 3dB
- the value of the twelfth threshold may also be 10dB
- the third value interval may also be (3dB, 10dB).
- the value of the eleventh threshold may be 4, the value of the twelfth threshold may be 7, the third value interval may be (4, 7), and the value of the eleventh threshold may be It can also be 6, the value of the twelfth threshold can also be 14, and the third value interval can also be (6, 14).
- the value of the eleventh threshold may be -115dBm
- the value of the twelfth threshold may be -80dBm
- the third value interval may be (-115dBm, -80dBm)
- the eleventh threshold may be The value of the threshold may also be -120dBm
- the value of the twelfth threshold may also be -70dBm
- the third value interval may also be (-120dBm, -70dBm).
- the value of the eleventh threshold may be -100dBm
- the value of the twelfth threshold may be -80dBm
- the third value interval may be (-100dBm, -80dBm)
- the eleventh threshold may be The value of the threshold may also be -90dBm
- the value of the twelfth threshold may also be -70dBm
- the third value interval may also be (-90dBm, -70dBm).
- the value of the eleventh threshold may be -15dB
- the value of the twelfth threshold may be -10dB
- the third value interval may be (-15dB, -10dB)
- the eleventh threshold may be The value of the threshold may also be -18dB
- the value of the twelfth threshold may also be -12dB
- the third value interval may also be (-18dB, -12dB).
- the transmitter can make adaptive adjustments to HARQ retransmission and network coding transmission according to the quality of the channel fed back by the receiver, so that the combined gain of HARQ retransmission and the network coding can be used in the case of poor channel quality.
- Coded transmission can improve the probability of successful data reception while reducing the excessive occupation of resources. It can also use the combining gain of HARQ retransmission to improve the probability of successful data reception when the channel quality is moderate.
- Network coding transmission is used to reduce excessive occupation of resources during HARQ retransmission, thereby improving spectral efficiency during data transmission.
- the third indication information indicates HARQ retransmission or network coding transmission.
- the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation.
- the third indication information indicates network coding transmission
- the second communication device sends the first data including the network coding data to the first communication device through network coding.
- the first communication device determines whether the specific content indicated by the third indication information is HARQ retransmission or network coding transmission according to the obtained channel quality. When the channel quality satisfies the sixth condition, the first communication device sends third indication information indicating HARQ retransmission to the second communication device.
- the first communication device When the channel quality satisfies the seventh condition, the first communication device sends third indication information indicating network coding transmission to the second communication device.
- third indication information indicating network coding transmission to the second communication device.
- the receiving end can instruct the transmitting end to make adaptive adjustments to the HARQ retransmission and network coding transmission according to the channel quality, so that the data can be successfully received by using the combined gain of the HARQ retransmission to improve the data under the condition of poor channel quality.
- the network coding transmission can be used to reduce the excessive occupation of resources in the HARQ retransmission process under the condition of good channel quality, thereby improving the spectral efficiency in the data transmission process.
- the third indication information indicates HARQ retransmission, network coding transmission, or, HARQ retransmission and network coding transmission.
- the second communication device sends the first data including the HARQ retransmission data to the first communication device through the HARQ operation.
- the third indication information indicates network coding transmission
- the second communication device sends the first data including the network coding data to the first communication device through network coding.
- the third indication information indicates HARQ retransmission and network coding transmission
- the second communication device sends first data including HARQ retransmission data and network coding data to the first communication device through HARQ operation and network coding.
- the first communication device determines whether the specific content indicated by the third indication information is HARQ retransmission, network coding transmission or HARQ retransmission and network coding transmission according to the obtained channel quality.
- the first communication device sends third indication information indicating HARQ retransmission and network coding transmission to the second communication device.
- the first communication device sends third indication information indicating HARQ retransmission to the second communication device.
- the first communication device sends third indication information indicating network coding transmission to the second communication device.
- the receiving end can instruct the transmitting end to make adaptive adjustments to HARQ retransmission and network coding transmission according to the channel quality, so that the combining gain of HARQ retransmission and network coding transmission can be used in the case of poor channel quality. It can improve the probability of successful data reception while reducing the excessive occupation of resources. It can also use the combining gain of HARQ retransmission to improve the probability of successful data reception when the channel quality is moderate, and it can also use the network when the channel quality is good.
- the coded transmission reduces the excessive occupation of resources in the HARQ retransmission process, thereby improving the spectral efficiency in the data transmission process.
- the first threshold value, the second threshold value, ..., the sixtieth threshold value, the first value interval, the second value interval, ..., the fifteenth value interval in the above-mentioned embodiments of the present application may be predetermined values. Defined, may also be instructed or configured by a network device.
- the network coding data included in the first data in method 400, method 500 and method 600 includes network coding retransmission data and/or network coding new transmission data. That is to say, when the first data in the method 400, the method 500 or the method 600 includes the network coding data, the first data may include the network coding retransmission data, the network coding new transmission data, or the network coding retransmission data and the network coding data. Encode the newly transmitted data.
- This optional implementation can be understood as, when the sender sends the first data including the network coded data to the receiver through network coding, or, when the sender sends the first data including the network coded data to the receiver through network coding and HARQ operation
- network coding retransmission and/or new network coding transmission may be performed.
- This embodiment can not only improve the probability of successful decoding of the original data unit by using network coding retransmission data transmission according to data transmission requirements, but also improve spectral efficiency by using network coding newly transmitted data transmission according to data transmission requirements.
- the sender When performing network coding retransmission, the sender obtains, for a data block that has been network coded before, the number of coded data units that are retransmitted for the data block. For example, the transmitting end may obtain the retransmission coded data unit for the data block according to the rank of the matrix formed by the coding vector corresponding to the correctly received coded data unit corresponding to the data block and the number of original data units contained in the data block. quantity. The sender obtains a corresponding number of retransmitted coded data units for the data block according to the number of retransmitted coded data units of the data block, and these retransmitted coded data units can be understood as the above-mentioned network coding retransmission data.
- the transmitting end may obtain the encoded data unit corresponding to the data block and not sent from the buffer as the retransmitted encoded data unit for the data block.
- the sender may also re-encode the original data unit in the data block to generate a retransmission-encoded data unit for the data block.
- the sender may also adjust the data transmission accordingly according to the physical resources capable of carrying the network coding retransmission data. For example, when the physical resources capable of carrying the network coding retransmission data are more than the physical resources required for the network coding retransmission data to be transmitted, the sender may also carry the data in other data blocks other than the data block in this data block. transmission over physical resources. For another example, when the physical resources capable of carrying the network coding retransmission data are less than the physical resources required for the network coding retransmission data to be transmitted, the modulation and coding scheme (MCS) and/or the modulation and coding scheme during data transmission can be increased.
- MCS modulation and coding scheme
- the physical resources capable of carrying the network-coded retransmission data are greater than or equal to the physical resources required for the network-coded retransmission data to be transmitted.
- the physical resources capable of carrying the network coding retransmission data are less than the physical resources required for the network coding retransmission data to be transmitted, part of the network coding retransmission data to be transmitted can be sent, and the rest of the network coding retransmission data to be transmitted can be sent. Encoded retransmission data may be sent on subsequent transmission opportunities.
- the transmitting end uses the encoded data unit that has not been sent before as the newly transmitted encoded data unit, and/or, the transmitting end performs network encoding on the original data unit in the data block that has not been encoded before to obtain a new encoded data unit. Transmit coded data units.
- These newly transmitted encoded data units can be understood as the above-mentioned network encoded newly transmitted data.
- the sender When performing network coding retransmission and network coding new transmission, the sender will perform the above network coding retransmission operation on the data blocks that have been network coded before (also referred to as retransmission data blocks), and will also perform the above network coding retransmission operations according to the above.
- the description of the new network coding transmission The above-mentioned operation of the new network coding transmission is performed.
- the transmitting end may separately encode the original data unit in the retransmitted data block and the original data unit in the newly transmitted data block to obtain the encoded data unit.
- the sender may also perform joint coding (eg, convolutional network coding) on the original data unit in the retransmitted data block and the original data unit in the newly transmitted data block to obtain the encoded data unit.
- the second communication device may determine that the network coding data includes the network coding retransmission data and/or the network coding new transmission data through various different ways.
- the first communication device sends fifth indication information to the second communication device.
- the fifth indication information indicates that the network coding data includes network coding retransmission data or network coding newly transmitted data, or, the fifth indication information indicates that the network coding data includes network coding retransmission data, network coding new transmission data, or, network coding Retransmit data and network encode newly transmitted data.
- the second communication device receives the fifth indication information, and determines, according to the fifth indication information, that the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the fifth indication information may be another information different from the first indication information, or may be the first indication information.
- network coding retransmission can be used to improve the probability of successful decoding of the original data unit by the receiving end according to data transmission requirements, and spectral efficiency can be improved by network coding new transmission according to data transmission requirements.
- the first indication information may indicate HARQ retransmission, network coding retransmission, or network coding new transmission.
- the first indication information may indicate HARQ retransmission, network coding retransmission, new network coding transmission, or HARQ retransmission Retransmission and network coding retransmission.
- the first indication information may indicate HARQ retransmission, network coding retransmission, new network coding transmission, or HARQ retransmission Retransmission and network coding new transmission.
- the first indication information may indicate HARQ retransmission, network coding retransmission, new network coding transmission, and HARQ retransmission and network coding retransmission, HARQ retransmission and network coding new transmission, or, network coding retransmission and network coding new transmission.
- the second communication device may determine that the network encoding data includes network encoding according to the data block related information. Retransmit data and/or network code newly transmitted data.
- the data block related information includes one or more of the following: the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data block, the number of original data units contained in the data block, the coded data corresponding to the data block. Receive the correct number of coded data units, or the number of coded data units that need to be received to be able to decode the block.
- the data block related information may be carried by the first indication information, or may be carried by another information different from the first indication information.
- network coding retransmission can be used to improve the probability of successful decoding of the original data unit by the receiving end according to data transmission requirements, and spectral efficiency can be improved by network coding new transmission according to data transmission requirements.
- the second communication device determines that the network coding data includes the network coding retransmission data and/or the network coding new transmission data according to the data block related information specifically includes:
- the second communication device determines that the network-coded data contains network-coded retransmission data, or contains network-coded retransmission data. Coding retransmission data and network coding new transmission data.
- the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data block is greater than or equal to the number of original data units contained in the data block, the second communication device determines that the network coded data contains newly transmitted network coded data. or,
- the second communication device determines that the network encoded data includes network encoded retransmission data, or includes network encoded retransmission data and network encoding. Encode the newly transmitted data.
- the second communication device determines that the network encoded data includes newly transmitted network encoded data. or,
- the second communication device determines that the network encoded data includes network encoded retransmission data, or includes network encoded retransmission data and network encoded new transmission data.
- the second communication device determines that the network encoded data includes network encoded newly transmitted data.
- the second communication device may determine that the network coding data includes the network coding retransmission data and/or the network coding new transmission data through various different ways.
- the second communication device may indicate the receiving situation of the second data according to the second indication information It is determined that the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the receiving situation of the second data may include one or more of the following: the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data blocks, the original data units contained in the data blocks.
- network coding retransmission can be used to improve the probability of successful decoding of the original data unit by the receiving end according to data transmission requirements, and spectral efficiency can be improved by network coding new transmission according to data transmission requirements.
- the second communication device determines that the network coding data includes the network coding retransmission data and/or the network coding newly transmitted data according to the reception of the second data
- the information determines that the network coding data includes the description of the network coding retransmission data and/or the network coding newly transmitted data, which will not be repeated here.
- the second communication device may determine that the network coding data includes the network coding retransmission data and/or the network coding new transmission data in various ways.
- the second communication device may determine that the network coding data includes the network coding retransmission data according to the relevant information of the data block. transmitted data and/or network encoded new transmitted data.
- the data block related information includes one or more of the following: the rank of the matrix composed of the coding vectors corresponding to the received correctly coded data units corresponding to the data block, the number of original data units contained in the data block, the coded data corresponding to the data block. Receive the correct number of coded data units, or the number of coded data units that need to be received to be able to decode the block.
- the data block related information may be carried by the third indication information, or may be carried by another information different from the third indication information.
- network coding retransmission can be used to improve the probability of successful decoding of the original data unit by the receiving end according to data transmission requirements, and spectral efficiency can be improved by network coding new transmission according to data transmission requirements.
- the second communication device determines that the network coding data includes the network coding retransmission data and/or the network coding newly transmitted data according to the relevant information of the data block, please refer to the above method 400 for the second communication device to determine according to the relevant information of the data block.
- the network coding data includes the description of the network coding retransmission data and/or the network coding newly transmitted data, which will not be repeated here.
- a possible implementation process in the method 400 is described by taking the transmission process illustrated in FIG. 7 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2, CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake.
- the second communication device performs HARQ retransmission on CBG 2 , CBG 3 and CBG 4 at time T according to the content indicated by the first indication information, and these three CBGs are included in TB2 .
- the second communication device may obtain the previously stored CBG 2 , CBG 3 and CBG 4 from the cache, and send the three CBGs to the first communication device.
- the first communication device finds that two CBGs (CBG 3 and CBG 4 ) are received correctly, and one CBG (CBG 2 ) is received incorrectly. Since CBG 2 carrying data Y 2, Y 3, and therefore Y 2, Y 3 means that the two coded data is still received at the first communication device error.
- the first The communication device sends first indication information indicating network coding transmission to the second communication device between time T to T+t2, and instructs the first communication device to perform network coding transmission.
- the first communication device since the first communication device has successfully received Y 1 , Y 4 , Y 5 , and Y 6 of the 6 coded data units corresponding to the data block at time T, a total of 4 coded data units, the corresponding coded data units of the data block are The rank of the matrix formed by the coding vector corresponding to the received correct coded data unit is 4, which is less than 6, the number of original data units contained in the data block.
- the communication device sends fifth indication information indicating network coding retransmission.
- the second communication device performs network coding retransmission at time T+t2.
- the second communication device may re X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 7, Y 8, ..., Y 12, and by two CBG (CBG 6 and CBG 7) Two coded data units Y 7 , Y 8 of the 6 coded data units are sent to the first communication device.
- the first communication device successfully receives CBG 6 and CBG 7 , and successfully obtains Y 7 , Y 8 , so that the rank of the matrix formed by the coding vector corresponding to the received correct coded data unit corresponding to the data block becomes 6 (at time T 4 On the basis of , 2) is added, which is equal to the number of original data units contained in the data block, so the first communication device can successfully decode the original data units X 1 , X 2 , . . . , X 6 contained in the data block.
- the possible implementation process in the method 500 is described by taking the transmission process illustrated in FIG. 7 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2, CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake.
- the first communication device sends second indication information to the second communication device between time T-t1 and time T, where the second indication information indicates that the number of CBGs receiving errors in TB1 is 3.
- the second communication device may obtain the previously stored CBG 2 , CBG 3 and CBG 4 from the cache, and send the three CBGs to the first communication device.
- the first communication device When receiving the three CBGs, the first communication device finds that two CBGs (CBG 3 and CBG 4 ) are received correctly, and one CBG (CBG 2 ) is received incorrectly. Since CBG 2 carrying data Y 2, Y 3, and therefore Y 2, Y 3 means that the two coded data is still received at the first communication device error.
- the first communication device sends second indication information to the second communication device between the time points T and T+t2, where the second indication information indicates that the number of CBGs receiving errors in TB2 is 1.
- the second communication device determines, according to the second indication information, that the ratio of the number of CBGs receiving errors (ie 1) in TB2 to the total number of CBGs in TB2 (ie 3) 1/3 ⁇ 0.33 is smaller than the fourth threshold.
- the threshold value (ie, 0.4) the second communication device performs network coding transmission at time T+t2. Further, since the first communication device has successfully received Y 1 , Y 4 , Y 5 , and Y 6 of the 6 coded data units corresponding to the data block at time T, a total of 4 coded data units, the corresponding coded data units of the data block are The rank of the matrix composed of the coding vectors corresponding to the correct coded data units is 4.
- the first communication device may send the indication information indicating the rank to the second communication device between time T to T+t2.
- the second communication device determines to perform network coding retransmission at time T+t2. For example, the second communication device may re X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 7, Y 8, ..., Y 12, and by two CBG (CBG 6 and CBG 7) Two coded data units Y 7 , Y 8 of the 6 coded data units are sent to the first communication device.
- the first communication device successfully receives CBG 6 and CBG 7 , and successfully obtains Y 7 , Y 8 , so that the rank of the matrix composed of the coding vector corresponding to the received correct coded data unit corresponding to the data block becomes 6 (at time T 4 On the basis of , 2) is added, which is equal to the number of original data units contained in the data block, so the first communication device can successfully decode the original data units X 1 , X 2 , . . . , X 6 contained in the data block.
- the difference between the transmission process shown in FIG. 8 and the transmission process shown in FIG. 7 is that when the second communication device performs network coding retransmission at time T+t2, it can jointly encode the original data units in the old and new data blocks, so as to perform network coding and retransmission. Mixed transmission of network coding retransmission and network coding new transmission.
- the possible implementation process in the method 400 is described by taking the transmission process illustrated in FIG. 8 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block Block1 as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2, CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake.
- the second communication device performs HARQ retransmission on CBG 2 , CBG 3 and CBG 4 at time T according to the content indicated by the first indication information, and these three CBGs are included in TB2 .
- the second communication device may obtain the previously stored CBG 2 , CBG 3 and CBG 4 from the cache, and send the three CBGs to the first communication device.
- the first communication device finds that two CBGs (CBG 3 and CBG 4 ) are received correctly, and one CBG (CBG 2 ) is received incorrectly. Since CBG 2 carrying data Y 2, Y 3, and therefore Y 2, Y 3 means that the two coded data is still received at the first communication device error.
- the first The communication device sends first indication information indicating network coding transmission to the second communication device between time T to T+t2, and instructs the first communication device to perform network coding transmission.
- the first communication device has successfully received Y 1 , Y 4 , Y 5 , and Y 6 in the 6 coded data units corresponding to the data block Block1 at time T, a total of 4 coded data units, the corresponding coded data units of the data block Block1
- the rank of the matrix composed of the coding vectors corresponding to the correctly received coded data units is 4, which is less than the number of original data units contained in the data block Block1, which is 6. Therefore, the first communication device can still send the The second communication device sends fifth indication information indicating network coding retransmission.
- the second communication device When preparing the network coding retransmission at time T+t2, the second communication device determines that the physical resources capable of carrying the network coding retransmission data are more than the physical resources required for the network coding retransmission data to be transmitted, so the second communication device can It is determined that network coding retransmission and network coding new transmission are performed at time T+t2, that is, on the basis of network coding retransmission, redundant physical resources are used to additionally carry network coding new transmission data.
- the second communication device may perform joint coding (such as convolutional network coding) on X 5 , X 6 in the old data block Block1 and X 7 , X 8 in the new data block Block2 (which can be understood as network coding newly transmitted data).
- encoded data unit obtained 4 Y 7, Y 8, ..., Y 10, and transmits the encoded data of the four units to the first communication device Y 7 through 4 CBG (CBG 6, CBG 7, CBG 8 and CBG 9) ,Y 8 ,...,Y 10 .
- the coded data units Y 7 and Y 8 correspond to network coding retransmission data
- the coded data units Y 9 and Y 10 correspond to network coding newly transmitted data.
- the first communication device successfully receives CBG 6 , CBG 7 , CBG 8 and CBG 9 , and successfully obtains two coded data units Y 7 , Y 8 corresponding to the old data block Block1 and two coded data units corresponding to the new data block Block2 Y 9 , Y 10 , so that the rank of the matrix composed of the coding vector corresponding to the received correct coded data unit corresponding to the old data block Block1 becomes 6 (2 is added on the basis of 4 at time T), which is equal to the old data block
- the number of original data units included in Block1 is 6, so the first communication device can successfully decode the original data units X 1 , X 2 , . . . , X 6 included in the old data block Block1 .
- a possible implementation process in the method 500 is described by taking the transmission process illustrated in FIG. 8 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block Block1 as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2, CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake.
- the first communication device sends second indication information to the second communication device between time T-t1 and time T, where the second indication information indicates that the number of CBGs receiving errors in TB1 is 3.
- the second communication device may obtain the previously stored CBG 2 , CBG 3 and CBG 4 from the cache, and send the three CBGs to the first communication device.
- the first communication device When receiving the three CBGs, the first communication device finds that two CBGs (CBG 3 and CBG 4 ) are received correctly, and one CBG (CBG 2 ) is received incorrectly. Since CBG 2 carrying data Y 2, Y 3, and therefore Y 2, Y 3 means that the two coded data is still received at the first communication device error.
- the first communication device sends second indication information to the second communication device between the time points T and T+t2, where the second indication information indicates that the number of CBGs receiving errors in TB2 is 1.
- the second communication device determines, according to the second indication information, that the ratio of the number of CBGs receiving errors (ie 1) in TB2 to the total number of CBGs in TB2 (ie 3) 1/3 ⁇ 0.33 is smaller than the fourth threshold.
- the threshold value (ie, 0.4) the second communication device performs network coding transmission at time T+t2.
- the first communication device may send the indication information indicating the rank to the second communication device between time T to T+t2. After the second communication device obtains the rank, since the value of the rank 4 is less than the original data unit number 6 contained in the data block Block1, the second communication device determines that at least network coding retransmission is required at time T+t2.
- the second communication device determines that the physical resources capable of carrying the network coding retransmission data are more than the physical resources required for the network coding retransmission data to be transmitted.
- the device may determine to perform network coding retransmission and network coding new transmission at time T+t2, that is, on the basis of network coding retransmission, use the redundant physical resources to additionally carry network coding new transmission data.
- the second communication device may perform joint coding (such as convolutional network coding) on X 5 , X 6 in the old data block Block1 and X 7 , X 8 in the new data block Block2 (which can be understood as network coding newly transmitted data).
- encoded data unit obtained 4 Y 7, Y 8, ..., Y 10, and transmits the encoded data of the four units to the first communication device Y 7 through 4 CBG (CBG 6, CBG 7, CBG 8 and CBG 9) ,Y 8 ,...,Y 10 .
- the coded data units Y 7 and Y 8 correspond to network coding retransmission data
- the coded data units Y 9 and Y 10 correspond to network coding newly transmitted data.
- the first communication device successfully receives CBG 6 , CBG 7 , CBG 8 and CBG 9 , and successfully obtains two coded data units Y 7 , Y 8 corresponding to the old data block Block1 and two coded data units corresponding to the new data block Block2 Y 8 , Y 10 , so that the rank of the matrix composed of the coding vector corresponding to the received correct coded data unit corresponding to the old data block Block1 becomes 6 (increased by 2 on the basis of 4 at time T), which is larger than the old data block
- the number of original data units included in Block1 is 6, so the first communication device can successfully decode the original data units X 1 , X 2 , . . . , X 6 included in the old data block Block1 .
- a possible implementation process in the method 400 is described by taking the transmission process illustrated in FIG. 9 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2 , CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake. Since CBG 1 and CBG 5 carry the data of Y 1 and Y 6 , the two encoded data units of Y 2 , Y 3 , Y 4 , and Y 5 are correctly received at the first communication device, so that the corresponding encoded data units of the data block are received correctly.
- the rank of the matrix composed of the coding vectors corresponding to the received correct coded data units is 2.
- the first The communication device sends first indication information indicating HARQ retransmission and network coding transmission to the second communication device between time T-t1 and T, instructing the first communication device to perform HARQ retransmission and network coding transmission.
- the second communication device performs HARQ retransmission on CBG 2 , CBG 3 and CBG 4 at time T according to the content indicated by the first indication information, and re- encodes X 1 , X 2 , . . . , X 6 to obtain 6 encoded data units Y 7 , Y 8 , . . . , Y 12 , and send two encoded data units Y 7 , Y 8 of the six encoded data units to the first communication device through two CBGs (CBG 6 and CBG 7 ).
- CBG 2 , CBG 3 , CBG 4 , CBG 6 and CBG 7 are included in TB2.
- a possible implementation process in the method 500 is described by taking the transmission process illustrated in FIG. 9 as an example.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that two CBGs (CBG 1 and CBG 5 ) are received correctly, and three CBGs (CBG 2 , CBG 3 and CBG 4 ) are received incorrectly (shading in the figure shows the incorrect reception. part).
- CBG 2 , CBG 3 and CBG 4 carries a 2, Y 3 Y 4, data of Y, Y 5, and therefore Y 2, Y 3, Y 4 , Y 5 four encoded data unit received at a first communication device, Mistake. Since CBG 1 and CBG 5 carry the data of Y 1 and Y 6 , the two encoded data units of Y 2 , Y 3 , Y 4 , and Y 5 are correctly received at the first communication device, so that the corresponding encoded data units of the data block are received correctly.
- the rank of the matrix composed of the coding vectors corresponding to the received correct coded data units is 2.
- the first communication device sends second indication information to the second communication device between time T-t1 and time T, where the second indication information indicates that the number of CBGs receiving errors in TB1 is 3.
- CBG 6 and CBG 7 are included in TB2. It will be appreciated that when Y 7, Y 8 through CBG 6 and CBG 7 carrying encoded data unit, and CBG 7 CBG 6 spare resources may occur, this time by way of filler bits CBG 6 and charged to meet the transmission CBG 7 requested size.
- the first communication device failed to receive CBG 2 successfully, but successfully received CBG 3 , CBG 4 , CBG 6 and CBG 7 , and successfully obtained 4 encoded data units Y 4 , Y 5 , Y 7 , and Y 8 , so that the corresponding The rank of the matrix composed of the coding vectors corresponding to the correctly received coded data units becomes 6 (4 is added to 2 at time T-t1), which is equal to the number of original data units contained in the data block, so the first communication The device can successfully decode the original data units X 1 , X 2 , . . . , X 6 contained in the data block.
- the second communication device 6 to the original data unit X 1, X 2, ..., X 6 obtained by encoding data coding unit 6 Y 1, Y 2, ..., Y 6, and through five CBG (CBG 1 , CBG 2 , CBG 3 , CBG 4 , CBG 5 ) transmit the 6 coded data units.
- 6 original data units X 1 , X 2 , . . . , X 6 can be contained in one data block, or can be contained in multiple data blocks.
- X 1 , X 2 , ..., X 6 are included in a data block Block1 as an example.
- the second communication device sends 5 CBGs carrying the encoded data units Y 1 , Y 2 , . . . , Y 6 to the first communication device, and these 5 CBGs are included in TB1 .
- the first communication device finds that four CBGs (CBG 1 , CBG 2 , CBG 3 and CBG 5 ) are received correctly, and one CBG (CBG 4 ) is received incorrectly (the shaded part in the figure shows the incorrect reception ).
- the second communication device determines that the physical resources capable of carrying the network coding retransmission data are more than the physical resources required for the network coding retransmission data to be transmitted, so the second communication device can It is determined that network coding retransmission and network coding new transmission are performed at time T, that is, on the basis of network coding retransmission, redundant physical resources are used to additionally carry network coding new transmission data.
- the maximum number of original data units input by the encoder as 4 as an example, two original data units X 7 and X 8 from the new data block Block2 may be additionally added.
- the second communication device performs joint coding on the two original data units X 5 , X 6 of the old data block Block1 and the two original data units X 7 , X 8 of the new data block Block2 (which can be understood as network coding newly transmitted data) (such as convolutional network coding), to obtain 4 encoded data units Y 7 , Y 8 ,..., Y 10 .
- the coded data units Y 7 and Y 8 correspond to network coding retransmission data
- the coded data units Y 9 and Y 10 correspond to network coding newly transmitted data (which can be understood as X 7 , X 8 ).
- the second communication device can additionally add two original data units X 9 , X 10 from the new data block Block3, to the two original data units X 7 , X 8 of the new data block Block2 (It can be understood as network coding newly transmitted data) and the two original data units X 9 and X 10 of the new data block Block3 (which can also be understood as network coding newly transmitted data) perform joint coding (such as convolutional network coding) to obtain additional 4 coded data units Y 11 , Y 12 ,...,Y 14 , wherein the coded data units Y 11 , Y 12 correspond to the newly transmitted data of network coding (which can be understood as X 9 , X 10 ).
- joint coding such as convolutional network coding
- the second communication device sends the above 8 encoded data units Y 7 , Y 8 , Y 9 , Y to the first communication device through 5 CBGs (CBG 6 , CBG 7 , CBG 8 , CBG 9 and CBG 10 ) 10 , Y 11 , Y 12 , Y 13 , Y 14 are 6 encoded data units Y 7 , Y 8 , Y 9 , Y 10 , Y 11 , Y 12 .
- the first communication device successfully receives CBG 8 , CBG 9 and CBG 10 , but fails to receive CBG 6 and CBG 7 .
- CBG 8 and CBG 9 and CBG 10 carries Y 10, Y 11, Y 12 data, and therefore Y 10, Y 11, Y 12 these three coded data units correctly received at the first communication device. Since CBG 6 and CBG 7 carrying data Y 7, Y 8, Y 9, and therefore Y 7, Y 8, Y 9 three unit receives the encoded data in the first communication device error.
- both the coded data units Y 7 and Y 8 corresponding to the old data block Block1 receive errors at time T, the rank of the matrix formed by the coding vectors corresponding to the received correct coded data units corresponding to the old data block Block1 is still 4, The difference between this rank and the number 6 of all original data units contained in the old data block Block1 is still 2, so the second communication device determines that at the time T+t2, 2 original data units X 5 in the old data block Block1 need to be transmitted. , X 6 .
- the rank of the matrix composed of the coding vectors corresponding to the received correct coded data units corresponding to the new data block Block2 is made. is 1, the difference between the rank and the number 2 of all original data units contained in the new data block Block2 is 1, so the second communication device determines that at time T+t2, 1 original data unit in the new data block Block2 needs to be transmitted X 7.
- the second communication device performs joint coding (such as convolutional network coding) on two original data units X 5 , X 6 of the old data block Block1 and one original data unit X 7 of the new data block Block2 to obtain three coded data units Y 15 , Y 16 , Y 17 , and send Y 15 , Y 16 , Y 17 to the first communication device through three CBGs (CBG 11 , CBG 12 and CBG 13 ) at time T+t2.
- joint coding such as convolutional network coding
- the first communication device successfully receives CBG 11 , CBG 12 , and CBG 13 , thereby successfully obtaining Y 15 , Y 16 , and Y 17 , so that the rank of the matrix composed of the coding vector corresponding to the received correct coded data unit corresponding to the old data block Block1 becomes 6, which is equal to the number of original data units contained in the old data block Block1 6, so the first communication device can successfully decode the original data units X 1 , X 2 , . . . , X 6 contained in the old data block Block1 .
- the embodiments of the present application further provide corresponding apparatuses, including corresponding modules for executing the foregoing embodiments.
- the modules may be software, hardware, or a combination of software and hardware.
- FIG 11 shows a schematic structural diagram of a device.
- the apparatus 1100 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. or processor etc.
- the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
- the apparatus 1100 may include one or more processors 1101, and the processors 1101 may also be referred to as processing units, which may implement certain control functions.
- the processor 1101 may be a general-purpose processor or a special-purpose processor or the like. For example, it may be a baseband processor or a central processing unit.
- the baseband processor can be used to process communication protocols and communication data
- the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
- the processor 1101 may also store instructions and/or data 1103, and the instructions and/or data 1103 may be executed by the processor, so that the apparatus 1100 executes the above method embodiments method described.
- the processor 1101 may include a transceiver unit for implementing receiving and transmitting functions.
- the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
- Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
- the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
- the apparatus 1100 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
- the apparatus 1100 may include one or more memories 1102 on which instructions 1104 may be stored, and the instructions may be executed on the processor, so that the apparatus 1100 executes the above method embodiments method described.
- data may also be stored in the memory.
- instructions and/or data may also be stored in the processor.
- the processor and the memory can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiments may be stored in a memory or in a processor.
- the apparatus 1100 may further include a transceiver 1105 and/or an antenna 1106 .
- the processor 1101 may be referred to as a processing unit, and controls the apparatus 1100.
- the transceiver 1105 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
- the apparatus 1100 in this embodiment of the present application may be used to execute the method described in FIG. 4 , FIG. 5 , or FIG. 6 in the embodiment of the present application.
- the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
- the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
- CMOS complementary metal oxide semiconductor
- NMOS nMetal-oxide-semiconductor
- PMOS P-type Metal oxide semiconductor
- BJT bipolar junction transistor
- BiCMOS bipolar CMOS
- SiGe silicon germanium
- the apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the apparatus described in this application is not limited thereto, and the structure of the apparatus may not be limited by FIG. 11 .
- An apparatus may be a stand-alone device or may be part of a larger device.
- the means may be:
- a set with one or more ICs may also include storage components for storing data and/or instructions;
- ASIC such as modem (MSM)
- FIG. 12 provides a schematic structural diagram of a terminal device.
- the terminal device is applicable to the scenario shown in FIG. 1 .
- FIG. 12 only shows the main components of the terminal device.
- the terminal device 1200 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
- the memory is mainly used to store software programs and data.
- the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
- Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
- the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
- the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
- Figure 12 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
- the processor may include a baseband processor and a central processing unit.
- the baseband processor is mainly used to process communication protocols and communication data
- the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
- the processor in FIG. 12 integrates the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
- a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
- the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processing unit can also be expressed as a central processing circuit or a central processing chip.
- the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
- the antenna and control circuit with transceiving function can be regarded as the transceiving unit 1211 of the terminal device 1200
- the processor having the processing function can be regarded as the processing unit 1212 of the terminal device 1200
- the terminal device 1200 includes a transceiver unit 1211 and a processing unit 1212 .
- the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
- the device for implementing the receiving function in the transceiver unit 1211 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1211 may be regarded as a transmitting unit, that is, the transceiver unit 1211 includes a receiving unit and a transmitting unit.
- the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
- the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
- the above-mentioned receiving unit and transmitting unit may be an integrated unit, or may be multiple independent units.
- the above-mentioned receiving unit and transmitting unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
- the device may be a terminal or a component of a terminal (eg, an integrated circuit, a chip, etc.).
- the apparatus may be a network device or a component of a network device (eg, an integrated circuit, a chip, etc.).
- the device may also be other communication modules, which are used to implement the methods in the method embodiments of the present application.
- the apparatus 1300 may include: a processing module 1302 (or referred to as a processing unit).
- a transceiver module 1301 or referred to as a transceiver unit
- a storage module 1303 or referred to as a storage unit
- one or more modules as shown in Figure 13 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or implemented by one or more processors, a memory, and a transceiver, which is not limited in this embodiment of the present application.
- the processor, memory, and transceiver can be set independently or integrated.
- the apparatus has the function of implementing the terminal described in the embodiments of the present application.
- the apparatus includes modules or units or means corresponding to the terminal-related steps described in the embodiments of the present application by the terminal.
- the functions or units or The means can be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
- the apparatus has the function of implementing the network equipment described in the embodiments of the present application.
- the apparatus includes modules or units or means corresponding to the network equipment performing the steps involved in the network equipment described in the embodiments of the present application.
- the functions or units or means may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
- the functions or units or means may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
- each module in the apparatus 1300 in the embodiment of the present application may be used to execute the method described in FIG. 4 , FIG. 5 , or FIG. 6 in the embodiment of the present application.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is configured to receive first indication information from the first communication device.
- the processing module 1302 controls the transceiver module 1301 to send first data to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send first data to the first communication device through network coding, where the first data includes network coding data.
- the processing module 1302 controls the transceiver module 1301 to send first data to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data. and network encoded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the first indication information is carried by one or more newly added indication fields.
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is used for receiving second data from the second communication device.
- the processing module 1302 controls the transceiver module 1301 to send the first indication information for the first data transmission to the second communication device, the first indication information indicates HARQ retransmission, the first data Including HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send the first indication information for the first data transmission to the second communication device, the first indication information indicates network coding transmission, the first data Include network encoded data.
- the transceiver module 1301 is further configured to receive the first data from the second communication device.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the first indication information is carried by one or more newly added indication fields.
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is used for receiving second data from the second communication device.
- the processing module 1302 controls the transceiver module 1301 to send first indication information for the first data transmission to the second communication device, where the first indication information indicates HARQ retransmission and network coding transmission , the first data includes HARQ retransmission data and network coding data.
- the processing module 1302 controls the transceiver module 1301 to send the first indication information for the first data transmission to the second communication device, the first indication information indicates HARQ retransmission, the first data Including HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send the first indication information for the first data transmission to the second communication device, the first indication information indicates network coding transmission, the first data Include network encoded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the first indication information is carried by one or more newly added indication fields.
- the first indication information may be implemented through ACK/NACK.
- the ACK/NACK may be transmitted on the control channel or the data channel.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is configured to send second data to the first communication device, and receive second indication information from the first communication device, where the second indication information indicates the reception of the second data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through network coding, where the first data includes the network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is configured to send second data to the first communication device, and receive second indication information from the first communication device, where the second indication information indicates the reception of the second data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data and network coding data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through network coding, where the first data includes the network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a transceiver module 1301 .
- the transceiver module 1301 is configured to receive the second data from the second communication device, and send second indication information for first data transmission to the second communication device, where the second indication information indicates the reception of the second data.
- the transceiver module 1301 is further configured to receive the first data from the second communication device.
- the first data includes HARQ retransmission data.
- the first data includes network encoded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a transceiver module 1301 .
- the transceiver module 1301 is configured to receive the second data from the second communication device, and send second indication information for first data transmission to the second communication device, where the second indication information indicates the reception of the second data.
- the transceiver module 1301 is further configured to receive the first data from the second communication device.
- the first data includes HARQ retransmission data and network coding data.
- the first data includes HARQ retransmission data.
- the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is configured to receive third indication information from the first communication device, where the third indication information indicates channel quality.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through network coding, where the first data includes the network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the transceiver module 1301 is configured to receive third indication information from the first communication device, where the third indication information indicates channel quality.
- the processing module 1302 controls the transceiver module 1301 to send first data to the first communication device through HARQ operation and network coding, where the first data includes HARQ retransmission data and network coding data.
- the processing module 1302 controls the transceiver module 1301 to send the first data to the first communication device through the HARQ operation, where the first data includes HARQ retransmission data.
- the processing module 1302 controls the transceiver module 1301 to send first data to the first communication device through network coding, where the first data includes network coding data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the channel quality satisfies the eighth condition, the ninth condition or the tenth condition. It is not repeated here.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the processing module 1302 is used to obtain the channel quality.
- the transceiver module 1301 is configured to send third indication information for first data transmission to the second communication device, and receive first data from the second communication device, wherein the third indication information indicates channel quality.
- the first data includes HARQ retransmission data.
- the first data includes network coded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- an apparatus 1300 may include: a processing module 1302 and a transceiver module 1301 .
- the processing module 1302 is used to obtain the channel quality.
- the transceiver module 1301 is configured to send third indication information for first data transmission to the second communication device, and receive first data from the second communication device, wherein the third indication information indicates channel quality.
- the first data includes HARQ retransmission data and network coding data.
- the first data includes HARQ retransmission data.
- the first data includes network coded data.
- the network coding data includes network coding retransmission data and/or network coding new transmission data.
- the channel quality satisfies the eighth condition, the ninth condition or the tenth condition. It is not repeated here.
- the processor in this embodiment of the present application may be an integrated circuit chip, which has signal processing capability.
- each step of the above method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
- the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable circuits. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
- a processing unit for performing the techniques at a communication device may be implemented in one or more general purpose processors, DSPs, digital signal processing devices, ASICs, A programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
- a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
- the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- Volatile memory may be random access memory (RAM), which acts as an external cache.
- RAM random access memory
- DRAM dynamic random access memory
- SDRAM synchronous DRAM
- SDRAM double data rate synchronous dynamic random access memory
- ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous link dynamic random access memory
- direct rambus RAM direct rambus RAM
- the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the functions of any of the foregoing method embodiments.
- the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
- the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
- the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
- the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
- the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
- system and "network” are often used interchangeably herein.
- the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently The three cases of B, where A can be singular or plural, and B can be singular or plural.
- the character “/” generally indicates that the associated objects are an "or” relationship.
- At least one of or “at least one of” herein mean all or any combination of the listed items, eg, "at least one of A, B, and C", It can be expressed as: A alone exists, B alone exists, C alone exists, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
- B corresponding to A means that B is associated with A, and B can be determined according to A.
- determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
- the corresponding relationships shown in each table in this application may be configured or predefined.
- the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
- the corresponding relationships shown in some rows may not be configured.
- appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
- the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
- other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
- Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.
- the systems, devices and methods described in this application can also be implemented in other ways.
- the apparatus embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
- the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种数据传输方法及装置,在提供的方法中引入基于网络编码的数据传输,并依据数据的接收情况或信道质量进行HARQ重传和网络编码传输的适应调整。该方法既可以在数据接收情况较差或信道质量较差的情况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好或信道质量较好的情况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
Description
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
混合自动重传请求(hybrid automatic repeat request,HARQ)操作是一种基于反馈的重传请求机制。在HARQ操作中,接收端根据数据的接收情况向发送端反馈肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),分别用于向发送端请求进行HARQ新传或HARQ重传。
HARQ重传一般针对传输块(transport block,TB),一个TB包含有多个码块(code block,CB)。也就是说,一个TB中只要出现一个CB未被正确接收,那么HARQ重传将会对整个TB进行重新传输,这样会增加重传的资源开销,降低了重传的频谱效率。因此,如何能够提高数据传输过程中的频谱效率,成为亟需解决的问题。
发明内容
本申请实施例提供一种数据传输方法及装置。
第一方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第一通信设备的第一指示信息。当第一指示信息指示混合自动重传请求(hybrid automatic repeat request,HARQ)重传时,通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第一指示信息指示网络编码传输时,通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,当第一指示信息指示HARQ重传和网络编码传输时,通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,发送端能够依据来自接收端的反馈进行HARQ重传和网络编码传输的适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第一方面,在第一方面的某些实施方式中,第一指示信息通过一个或多个新增的指示域承载。例如,在下行控制信息(downlink control information,DCI)、上行控制信息(uplink control information,UCI)、媒体接入控制(media access control,MAC)控制元素(control element,CE)或无线资源控制(radio resource control,RRC)消息中新增一个或多个指示域来承载该第一指示信息。
结合第一方面,在第一方面的某些实施方式中,第一指示信息可通过肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)实现。该ACK/NACK可以在控制信道或数据信道上传输。通过该方式,能够复用已有的指示域对HARQ重传或网络编码传输进行指示,从而节省了额外指示域的开销。可选地,该方法还包 括:接收来自第一通信设备的第四指示信息,并根据第四指示信息确定第一指示信息中ACK/NACK指示的含义。通过该方法,能够兼容存量终端的HARQ新传和HARQ重传,从而在采用本申请提出的方法提升频谱效率的同时不影响系统中存量终端的工作性能。
第二方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第二通信设备的第二数据。向第二通信设备发送用于第一数据传输的第一指示信息,以及接收来自第二通信设备的第一数据。其中,当第二数据的接收情况满足第一条件时,第一指示信息指示HARQ重传,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,第一指示信息指示网络编码传输,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以依据数据的接收情况向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的某些实施方式中,第一指示信息通过一个或多个新增的指示域承载。例如,在DCI、UCI、MAC CE或RRC消息中新增一个或多个指示域来承载该第一指示信息。
结合第二方面,在第二方面的某些实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。通过该方式,能够复用已有的指示域对HARQ重传或网络编码传输进行指示,从而节省了额外指示域的开销。可选地,该方法还包括:向第二通信设备发送第四指示信息,该第四指示信息用于确定第一指示信息中ACK/NACK指示的含义。通过该方法,能够兼容存量终端的HARQ新传和HARQ重传,从而在采用本申请提出的方法提升频谱效率的同时不影响系统中存量终端的工作性能。
结合第二方面,在第二方面的实施方式1-1中,第二数据中的全部或部分数据由传输块(transmission block,TB)承载,并且该TB中包括一个或多个码块(code block,CB)。第二数据的接收情况满足第一条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第一阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第二阈值。通过该实施方式,接收端可以依据TB中接收错误CB的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CB的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-2中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个码块组(code block group,CBG)。第二数据的接收情况满足第一条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第四阈值。通过该实施方式,接收端可以依据TB中接收错误CBG的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整, 从而既可以在TB中接收错误CBG的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CBG的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-3中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第十三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第十四阈值。通过该实施方式,接收端可以依据TB中接收正确CB的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CB的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-4中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第十五阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第十六阈值。通过该实施方式,接收端可以依据TB中接收正确CBG的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CBG的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-5中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收错误CB的数量大于(或者大于等于)第十七阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误CB数量小于(或者小于等于)第十八阈值。通过该实施方式,接收端可以依据TB中接收错误CB的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CB的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-6中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收错误CBG的数量大于(或者大于等于)第十九阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误CBG数量小于(或者小于等于)第二十阈值。通过该实施方式,接收端可以依据TB中接收错误CBG的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CBG的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-7中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收正确CB的数量小于(或者小于等于)第二十一阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确CB数量大于(或者大于等于)第二十二阈值。通过该实施方式,接收端可以依据TB中接收正确CB的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CB的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-8中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收正确CBG的数量小于(或者小于等于)第二十三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确CBG数量大于(或者大于等于)第二十四阈值。通过该实施方式,接收端可以依据TB中接收正确CBG的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CBG的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-9中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第二十五阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第二十六阈值。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收错误编码数据单元的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-10中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第二十七阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第二十八阈值。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收正确编码数据单元的比例较高时利用网络编码传输降低HARQ重传过程中对 资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-11中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收错误的编码数据单元的数量大于(或者大于等于)第二十九阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收错误的编码数据单元的数量小于(或者小于等于)第三十阈值。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收错误编码数据单元的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-12中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收正确的编码数据单元的数量小于(或者小于等于)第三十一阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收正确的编码数据单元的数量大于(或者大于等于)第三十二阈值。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收正确编码数据单元的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-13中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第一条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值小于(或者小于等于)第三十三阈值。第二数据的接收情况满足第二条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值大于(或者大于等于)第三十四阈值。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值,向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述比值较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在上述比值较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-14中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第一条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值大于(或者大于等于)第三十五阈值。第二数据的接收情况满足第二条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值小于(或者小于等于) 第三十六阈值。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值,向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述差值较大时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在上述差值较小时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第二方面,在第二方面的实施方式1-15中,第二数据的接收情况满足第一条件具体包括上述实施方式1-1~1-14中描述的一个第一条件或多个第一条件的组合,第二数据的接收情况满足第二条件具体包括,上述实施方式1-1~1-14中描述的一个第二条件或多个第二条件的组合。
第三方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第二通信设备的第二数据。向第二通信设备发送用于第一数据传输的第一指示信息,以及接收来自第二通信设备的第一数据。其中,当第二数据的接收情况满足第三条件时,第一指示信息指示HARQ重传和网络编码传输,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,第一指示信息指示HARQ重传,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,第一指示信息指示网络编码传输,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以依据数据的接收情况向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的某些实施方式中,第一指示信息通过一个或多个新增的指示域承载。例如,在DCI、UCI、MAC CE或RRC消息中新增一个或多个指示域来承载该第一指示信息。
结合第三方面,在第三方面的某些实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。通过该方式,能够复用已有的指示域对HARQ重传或网络编码传输进行指示,从而节省了额外指示域的开销。可选地,该方法还包括:向第二通信设备发送第四指示信息,该第四指示信息用于确定第一指示信息中ACK/NACK指示的含义。通过该方法,能够兼容存量终端的HARQ新传和HARQ重传,从而在采用本申请提出的方法提升频谱效率的同时不影响系统中存量终端的工作性能。
结合第三方面,在第三方面的实施方式1-16中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第五阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值在第一取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第六阈值。通过该实施方式,接收端可以依据TB中接收错误CB的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整, 从而既可以在TB中接收错误CB的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CB的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CB的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-17中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值在第二取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第八阈值。通过该实施方式,接收端可以依据TB中接收错误CBG的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CBG的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CBG的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-18中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第三十七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值在第四取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第三十八阈值。通过该实施方式,接收端可以依据TB中接收正确CB的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CB的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CB的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-19中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第三十九阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值在第五取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第四十阈值。通过该实施方式,接收端可以依据TB中接收正确CBG的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB 中接收正确CBG的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CBG的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-20中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收错误CB的数量大于(或者大于等于)第四十一阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误CB的数量在第六取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误CB的数量小于(或者小于等于)第四十二阈值。通过该实施方式,接收端可以依据TB中接收错误CB的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CB的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CB的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-21中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收错误CBG的数量大于(或者大于等于)第四十三阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误CBG的数量在第七取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误CBG的数量小于(或者小于等于)第四十四阈值。通过该实施方式,接收端可以依据TB中接收错误CBG的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CBG的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CBG的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-22中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收正确CB的数量小于(或者小于等于)第四十五阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确CB的数量在第八取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确CB的数量大于(或者大于等于)第四十六阈值。通过该实施方式,接收端可以依据TB中接收正确CB的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CB的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CB的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-23中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该 TB中接收正确CBG的数量小于(或者小于等于)第四十七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确CBG的数量在第九取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确CBG的数量大于(或者大于等于)第四十八阈值。通过该实施方式,接收端可以依据TB中接收正确CBG的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CBG的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CBG的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-24中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第四十九阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值在第十取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第五十阈值。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收错误编码数据单元的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收错误编码数据单元的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-25中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第五十一阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值在第十一取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第五十二阈值。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收正确编码数据单元的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收正确编码数据单元的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了 数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-26中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收错误的编码数据单元的数量大于(或者大于等于)第五十三阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收错误的编码数据单元的数量在第十二取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收错误的编码数据单元的数量小于(或者小于等于)第五十四阈值。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收错误编码数据单元的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收错误编码数据单元的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-27中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收正确的编码数据单元的数量小于(或者小于等于)第五十五阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收正确的编码数据单元的数量在第十三取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收正确的编码数据单元的数量大于(或者大于等于)第五十六阈值。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收正确编码数据单元的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收正确编码数据单元的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-28中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第三条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值小于(或者小于等于)第五十七阈值。第二数据的接收情况满足第四条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值在第十四取值区间内。第二数据的接收情况满足第五条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值大于(或者大于等于)第五十八阈值。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值,向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述比值较低时利用HARQ重传的合并增益以及网 络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在上述比值适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在上述比值较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-29中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第三条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值大于(或者大于等于)第五十九阈值。第二数据的接收情况满足第四条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值在第十五取值区间内。第二数据的接收情况满足第五条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值小于(或者小于等于)第六十阈值。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值,向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述差值较大时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在上述差值适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在上述差值较小时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第三方面,在第三方面的实施方式1-30中,第二数据的接收情况满足第三条件具体包括上述实施方式1-16~1-29中描述的一个第三条件或多个第三条件的组合,第二数据的接收情况满足第四条件具体包括上述实施方式1-16~1-29中描述的一个第四条件或多个第四条件的组合,第二数据的接收情况满足第五条件具体包括上述实施方式1-16~1-29中描述的一个第五条件或多个第五条件的组合。
第四方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:向第一通信设备发送第二数据,以及接收来自第一通信设备的第二指示信息,第二指示信息指示第二数据的接收情况。当第二数据的接收情况满足第一条件时,通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,发送端可以依据接收端反馈的数据接收情况对HARQ重传和网络编码传输进行适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第四方面,在第四方面的某些实施方式中,第二数据的接收情况满足第一条件或第二条件可以有多种不同的实施方式,具体可参见第二方面中的实施方式1-1~1-15,此处不再赘述。
第五方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:向第一 通信设备发送第二数据,以及接收来自第一通信设备的第二指示信息,第二指示信息指示第二数据的接收情况。当第二数据的接收情况满足第三条件时,通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,发送端可以依据接收端反馈的数据接收情况对HARQ重传和网络编码传输进行适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第五方面,在第五方面的某些实施方式中,第二数据的接收情况满足第三条件、第四条件或第五条件可以有多种不同的实施方式,具体可参见第二方面中的实施方式1-16~1-30,此处不再赘述。
第六方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第二通信设备的第二数据。向第二通信设备发送用于第一数据传输的第二指示信息,第二指示信息指示第二数据的接收情况,以及接收来自第二通信设备的第一数据。其中,当第二数据的接收情况满足第一条件时,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以将数据接收情况反馈给发送端,从而使得发送端可以依据接收端对数据的接收情况对HARQ重传和网络编码传输进行适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第六方面,在第六方面的某些实施方式中,第二数据的接收情况满足第一条件或第二条件可以有多种不同的实施方式,具体可参见第二方面中的实施方式1-1~1-15,此处不再赘述。
第七方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第二通信设备的第二数据。向第二通信设备发送用于第一数据传输的第二指示信息,第二指示信息指示第二数据的接收情况,以及接收来自第二通信设备的第一数据。其中,当第二数据的接收情况满足第三条件时,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以将数据接收情况反馈给发送端,从而使得发送端可以依据接收端对数据的接收情况对HARQ重传和网络编码传输进行适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占 用,从而提高了数据传输过程中的频谱效率。
结合第七方面,在第七方面的某些实施方式中,第二数据的接收情况满足第三条件、第四条件或第五条件可以有多种不同的实施方式,具体可参见第二方面中的实施方式1-16~1-30,此处不再赘述。
第八方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第一通信设备的第三指示信息,第三指示信息指示信道质量。当信道质量满足第六条件时,通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当信道质量满足第七条件时,通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,发送端可以依据信道质量对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第八方面,在第八方面的实施方式2-1中,上述信道质量可由信号干扰噪声比(singal to interference plus noise ratio,SINR)、信道质量指示(channel quality indication,CQI)、参考信号接收功率(reference signal received power,RSRP)、接收信号强度指示(received signal strength indicator,RSSI)或参考信号接收质量(reference signal receiving quality,RSRQ)表征。信道质量满足第六条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ小于(或者小于等于)第九阈值。信道质量满足第七条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ大于(或者大于等于)第十阈值。通过该实施方式,发送端可以依据接收端反馈的信道质量的好坏对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
第九方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:接收来自第一通信设备的第三指示信息,第三指示信息指示信道质量。当信道质量满足第八条件时,通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。当信道质量满足第九条件时,通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当信道质量满足第十条件时,通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,发送端可以依据信道质量对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第九方面,在第九方面的实施方式2-2中,上述信道质量可由SINR、CQI、RSRP、RSSI或RSRQ表征。信道质量满足第八条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ小于(或者小于等于)第十一阈值。信道质量满足第九条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ在第三取值区间内。信道质量满足第十条件具体包括,SINR、CQI、RSRP、 RSSI或RSRQ大于(或者大于等于)第十二阈值。通过该实施方式,发送端可以依据接收端反馈的信道质量的好坏对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,也可以在信道质量适中的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
第十方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:获得信道质量。向第二通信设备发送用于第一数据传输的第三指示信息,第三指示信息指示信道质量,以及接收来自第二通信设备的第一数据。其中,当信道质量满足第六条件时,第一数据包括HARQ重传数据。当信道质量满足第七条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以将信道质量反馈给发送端,从而使得发送端可以依据信道质量对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第十方面,在第十方面的某些实施方式中,信道质量满足第六条件或第七条件可以有多种不同的实施方式,具体可参见第八方面中的实施方式2-1,此处不再赘述。
第十一方面,本申请实施例提供一种数据传输方法,该方法可以由终端或网络设备执行,也可以由终端或网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:获得信道质量。向第二通信设备发送用于第一数据传输的第三指示信息,第三指示信息指示信道质量,以及接收来自第二通信设备的第一数据。其中,当信道质量满足第八条件时,第一数据包括HARQ重传数据和网络编码数据。当信道质量满足第九条件时,第一数据包括HARQ重传数据。当信道质量满足第十条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
通过上述方法,接收端可以将信道质量反馈给发送端,从而使得发送端可以依据信道质量对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
结合第十一方面,在第十一方面的某些实施方式中,信道质量满足第八条件、第九条件或第十条件可以有多种不同的实施方式,具体可参见第九方面中的实施方式2-2,此处不再赘述。
第十二方面,本申请实施例提供一种装置,可以实现上述第一方面、第四方面、第五方面、第八方面、第九方面、第一方面任一种可能的实施方式、第四方面任一种可能的实施方式、第五方面任一种可能的实施方式、第八方面任一种可能的实施方式、或第九方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端或网络设备,也可以为支持终端或网络设备实现上述方法的芯片、芯片系统、或处理器等。
第十三方面,本申请实施例提供一种装置,可以实现上述第二方面、第三方面、第六方 面、第七方面、第十方面、第十一方面、第二方面任一种可能的实施方式、第三方面任一种可能的实施方式、第六方面任一种可能的实施方式、第七方面任一种可能的实施方式、第十方面任一种可能的实施方式、或第十一方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端或网络设备,也可以为支持终端或网络设备实现上述方法的芯片、芯片系统、或处理器等。
第十四方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第一方面、第四方面、第五方面、第八方面、第九方面、第一方面任一种可能的实施方式、第四方面任一种可能的实施方式、第五方面任一种可能的实施方式、第八方面任一种可能的实施方式、或第九方面任一种可能的实施方式中的方法。
第十五方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第二方面、第三方面、第六方面、第七方面、第十方面、第十一方面、第二方面任一种可能的实施方式、第三方面任一种可能的实施方式、第六方面任一种可能的实施方式、第七方面任一种可能的实施方式、第十方面任一种可能的实施方式、或第十一方面任一种可能的实施方式中的方法。
第十六方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面、第四方面、第五方面、第八方面、第九方面、第一方面任一种可能的实施方式、第四方面任一种可能的实施方式、第五方面任一种可能的实施方式、第八方面任一种可能的实施方式、或第九方面任一种可能的实施方式中的方法。
第十七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第二方面、第三方面、第六方面、第七方面、第十方面、第十一方面、第二方面任一种可能的实施方式、第三方面任一种可能的实施方式、第六方面任一种可能的实施方式、第七方面任一种可能的实施方式、第十方面任一种可能的实施方式、或第十一方面任一种可能的实施方式中的方法。
第十八方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第四方面、第五方面、第八方面、第九方面、第一方面任一种可能的实施方式、第四方面任一种可能的实施方式、第五方面任一种可能的实施方式、第八方面任一种可能的实施方式、或第九方面任一种可能的实施方式中的方法。
第十九方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面、第三方面、第六方面、第七方面、第十方面、第十一方面、第二方面任一种可能的实施方式、第三方面任一种可能的实施方式、第六方面任一种可能的实施方式、第七方面任一种可能的实施方式、第十方面任一种可能的实施方式、或第十一方面任一种可能的实施方式中的方法。
第二十方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第一方面、第四方面、第五方面、第八方面、第九方面、第一方面任一种可能的实施方式、第四方面任一种可能的实施方式、第五方面任一种可能的实施方式、第八方面任一种可 能的实施方式、或第九方面任一种可能的实施方式中的方法。
第二十一方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第二方面、第三方面、第六方面、第七方面、第十方面、第十一方面、第二方面任一种可能的实施方式、第三方面任一种可能的实施方式、第六方面任一种可能的实施方式、第七方面任一种可能的实施方式、第十方面任一种可能的实施方式、或第十一方面任一种可能的实施方式中的方法。
第二十二方面,本申请实施例提供一种通信系统,包括:上述第十二方面的装置和上述第十三方面的装置。
第二十三方面,本申请实施例提供一种通信系统,包括:上述第十四方面的装置和上述第十五方面的装置。
图1为本申请提供的实施例应用的通信系统的示意图;
图2示出了通信系统的一种架构举例示意图;
图3示出了本申请提供的一种编码示意图;
图4-图6示出了本申请提供的几种通信方法交互示意图;
图7-图10示出了本申请提供的几种传输过程示意图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的一种终端的结构示意图;
图13为本申请实施例提供的另一种通信装置的示意图。
本申请实施例提供的方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统100中包括一个或多个网络设备(图中示出网络设备110和网络设备120),以及与该一个或多个网络设备通信的一个或多个终端。图1中所示终端114和终端118与网络设备110通信,所示终端124和终端128与网络设备120通信。可以理解的是,网络设备和终端也可以被称为通信设备。
本申请实施例提供的方法及装置可用于各种通信系统,例如第四代(4th generation,4G)通信系统,4.5G通信系统,5G通信系统,多种通信系统融合的系统,或者未来演进的通信系统(比如5.5G通信系统或6G通信系统)。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统等,以及其他此类通信系统。
本申请实施例提供的方法及装置可应用于多种通信场景,例如网络设备和终端之间的传输场景,终端之间的传输场景,网络设备和终端之间通过中继传输的场景、多个网络设备和终端之间的双连接(dual connectivity,DC)或多连接、以及多跳传输场景等。
图2示出了通信系统的一种可能的架构举例示意图,如图2所示无线接入网(radio access network,RAN)中的网络设备是集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNodeB或gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基 站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(media access control,MAC)层,物理(physical,PHY)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也可以分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(control plane,CP)和用户面(user plane,UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,该CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
可以理解的是,本申请中提供的实施例也适用于CU和DU不分离的架构。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、CU,和/或,DU。网络设备还可以是服务器,可穿戴设备,机器通信设备、或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中 的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。终端可以是固定的,也可以是移动的。
作为示例而非限定,在本申请中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请中,终端可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type communication,MTC)中的终端。本申请的终端可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。因此,本申请实施例可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)等。
混合自动重传请求(hybrid automatic repeat request,HARQ)操作是一种基于反馈的重传请求机制。在HARQ操作中,接收端根据数据的接收情况向发送端反馈肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),分别用于向发送端请求进行HARQ新传或HARQ重传。例如,HARQ重传时接收端可以进行HARQ合并,以提高数据成功接收的概率。
HARQ重传一般针对传输块(transport block,TB)或码块组(code block group,CBG),一个TB或一个CBG一般包含有多个码块(code block,CB)。当一个TB或一个CBG中出现一个或多个CB未被正确接收时,那么HARQ重传将会对整个TB或整个CBG进行重新传输,这样会增加重传的资源开销,降低了重传的频谱效率。因此,如何能够提高数据传输过程中的频谱效率,成为亟需解决的问题。
本申请提供了一种数据传输方法及装置,在提供的方法中引入基于网络编码的数据传输,发送端可以依据接收端针对传输方式的建议进行HARQ重传和网络编码传输的适应调整。
本申请还提供了另一种数据传输方法及装置,在提供的方法中引入基于网络编码的数据传输,发送端可以依据接收端反馈的数据的接收情况或信道质量进行HARQ重传和网络编码传输的适应调整。
本申请提供的方法既可以在数据接收情况较差或信道质量较差的情况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好或信道质量较好的情况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据 传输过程中的频谱效率。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下述实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。可以理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和/或被耦合到处理器的存储器中实现。
为易于理解本申请中的实施例,首先对本申请所涉及的一些概念或者术语作简要说明。
1、网络编码。
网络编码也可以被称为网络纠错编码、包编码、或包级(packet-level)编码。网络编码包括诸多类型,例如分组网络编码、卷积网络编码(convolutional network coding)、随机线性网络编码(random linear network coding,RLNC)、确定线性网络编码(deterministic linear network coding,DLNC)、分批稀疏码(batch sparse code,BATS)、纠删码(erasure code)、喷泉码(fountain code)、最大距离可分码(maximum distance separable code,MDS)和流编码(streaming code)等。这些编码技术通过对原始数据单元进行编码操作,得到相应的编码数据单元。例如以图3为例,通过对N个原始数据单元进行编码,得到K个编码数据单元,编码的码率可近似表征为R=N/K,由于K一般大于或等于N,因此R一般大于0且小于或等于1。本申请中的数据单元也可以被称为数据包或数据分段。
以RLNC为例,结合图3,N个原始数据单元分别表示为X
1,X
2,…,X
N,该N个原始数据单元可以包含在一个数据块中。本申请中数据块(block)也可被称为数据组(group)、数据代(generation)或数据分批(batch)。本申请中数据块也可被称为待编码数据块、编码数据块或网络编码数据块。采用RLNC对该N个原始数据单元进行编码时,可以将该N个原始数据单元与K个编码向量相乘,得到K个编码数据单元(分别表示为Y
1,Y
2,…,Y
K)。例如,K个编码向量可分别表示为[g
1,1,g
1,2,…,g
1,N],[g
2,1,g
2,2,…,g
2,N],…,[g
K,1,g
K,2,…,g
K,N],其中每个编码向量包含N个编码系数,第k个编码向量中的第n个编码系数表示为g
k,n。编码向量中的编码系数可以是从有限域或伽罗华域(galois field,GF)中随机选取的,其中GF是一个包含有限个元素的域,用GF(q)可以表示一个包含q个元素的GF。将N个原始数据单元X
1,X
2,…,X
N与K个编码向量相乘得到K个编码数据单元Y
1,Y
2,…,Y
K可满足:
Y
1=g
1,1*X
1+g
1,2*X
2+…+g
1,N*X
N
Y
2=g
2,1*X
1+g
2,2*X
2+…+g
2,N*X
N
…
Y
K=g
K,1*X
1+g
K,2*X
2+…+g
K,N*X
N
第k个编码数据单元Y
k=g
k,1*X
1+g
k,2*X
2+…+g
k,N*X
N可以在头信息中携带指示编码向量[g
k,1,g
k,2,…,g
k,N]的信息,以便于接收端能够根据该编码向量对接收到的数据进行解码。可以理解的是,上述K个编码向量可以包含在一个编码矩阵中,该编码矩阵满足:
上述将N个原始数据单元与K个编码向量相乘得到K个编码数据单元,也可以理解为将N个原始数据单元与编码矩阵相乘得到K个编码数据单元。可以理解,编码矩阵也可被称为生成矩阵、卷积生成矩阵或系数矩阵,编码向量也可以被称为编码核。本申请中的向量为方便表述,均写为行向量的形式,但其也可以表示为列向量的形式,本申请对此 不做限定。
可选地,一个数据块对应的编码数据单元可在一次传输机会内进行传输。本申请中的传输机会可以是调度时机、传输时机、或传输时间间隔。一个数据块对应的编码数据单元在一次传输机会内进行传输,可以理解为由一个数据块中的原始数据单元生成的所有编码数据单元由一个TB全部承载。一次传输机会中可以只传输一个数据块对应的编码数据单元,也可以传输多个数据块对应的编码数据单元,本申请对此不做限定。
进行网络编码传输时,发送端向接收端发送经网络编码处理后的数据,该数据也可被称为网络编码数据。接收端在接收发送端通过网络编码发送的数据时,只要收到足够多的网络编码数据就可以恢复源数据,因此数据传输过程中发生的突发数据丢失将不会显著影响接收端的解码性能。
例如,接收端在接收来自发送端的网络编码数据时,可以根据编码数据单元的校验位判断该编码数据单元是否接收正确。当该编码数据单元被正确接收时,接收端可以根据该编码数据单元的头信息获得该编码数据单元对应的数据块,并获得与该数据块对应的已接收正确的编码数据单元所分别对应的编码向量,依据该编码向量可构建出以N个原始数据单元X
1,X
2,…,X
N作为待求未知数的线性方程组,利用线性方程理论可以解码出该数据块中的N个原始数据单元X
1,X
2,…,X
N。
在本申请中,上述网络编码的相关操作可以由具有网络编码功能的协议层完成。具有网络编码功能的协议层可以是RRC层、PDCP层、回传适配协议(backhaul adaptation protocol,BAP)层、RLC层、MAC层、或PHY层,也可以是除上述协议层以外的一个新协议层。例如该新协议层可以在PDCP层之上、在BAP层之上、在PDCP层和RLC层之间、在RLC层和MAC层之间、或者在MAC层和PHY层之间。该新协议层也可以被称为网络编码层、编解码层、编译码层、网络编解码层、网络编译码层,或者其它名称,在本申请中不进行限定。
2、伽罗华域(galois field,GF)以及GF中的运算。
GF是一个包含有限个元素的域,用GF(q)可以表示一个包含q个元素的GF,其中q为正整数。例如GF(2)包含0和1两个元素(也可理解为GF(2)中的元素能够用二进制表示),GF(4)包含0、1、2和3四个元素,GF(q)包含0、1、…、q-1这q个元素。
本申请中若编码矩阵、编码向量或编码核中包含的元素为GF中的元素,则编码涉及的运算可以理解为GF中的运算。
●GF中的乘法。GF中的元素可以通过GF上的本原多项式P(x)生成,GF上的多项式乘法可通过将GF中的元素对应为多项式的形式,将GF域上的乘法运算对应为多项式乘法再对本原多项式P(x)取模。例如当q=4时,GF(4)的本原多项式为P(x)=x
2+x+1,2比特数据(如‘10’,对应的多项式形式为x),与2比特数据(如‘11’,对应的多项式形式为x+1)在GF(4)上相乘,满足(x*(x+1))mod P(x)=(x
2+x)mod(x
2+x+1)=1(mod表示取模),对应的二进制表示为“01”。再例如当q=4时,4比特数据(如‘1011’)与2比特数据(如‘11’,对应的多项式形式为x+1)在GF(4)上相乘,可将4比特数据‘1011’中前两比特‘10’(对应的多项式形式为x)和后两比特‘11’(对应的多项式形式为x+1)分别与2比特数据‘11’(对应的多项式形式为x+1)在GF(4)上相乘,再将分别获得的结果串接得到‘1011’与‘11’在GF(4)上相乘的结果,即:
■(x*(x+1))mod P(x)=(x
2+x)mod(x
2+x+1)=1,对应的二进制表示为‘01’;
■((x+1)*(x+1))mod P(x)=(x
2+2x+1)mod(x
2+x+1)=x,对应的二进制表示为 ‘10’;
■将‘01’和‘10’串接得到‘1011’与‘11’在GF(4)上相乘的结果对应的二进制表示为‘0110’。
●GF中的加法。GF上的多项式加法可通过将GF中的元素对应为多项式的形式将GF域上的加法运算对应为多项式相加(例如同类项系数的异或)。比如2比特数据(如‘10’,对应的多项式形式为x),与2比特数据(如‘11’,对应的多项式形式为x+1)在GF上异或相加,满足
(
表示异或相加),对应的二进制表示为“01”。
3、HARQ操作。
HARQ操作兼具前向纠错和自动重传请求的优点,能够提高数据传输的可靠性和系统吞吐。HARQ操作是一种基于反馈的重传请求机制。在HARQ操作中,接收端根据数据的接收情况向发送端反馈ACK或NACK,分别用于向发送端请求进行HARQ新传或HARQ重传。
当发送端在接收到来自接收端的ACK时,将在下次发送过程中向该接收端发送HARQ新传数据。
当发送端在接收到来自接收端的NACK时,将在下次发送过程中向该接收端发送HARQ重传数据。发送端在未收到数据对应的ACK时,可以将该数据对应的HARQ重传数据保存在缓存中,当收到NACK时可以从缓存中获取到需要重传的HARQ重传数据并进行处理和发送。这一过程也可以被称为HARQ重传。发送端在收到数据对应的ACK时,可以将该数据对应的HARQ重传数据从缓存中释放或清除。
4、HARQ重传和网络编码传输的混合传输(也可简称为HARQ重传和网络编码传输)。
在进行HARQ重传和网络编码传输的混合传输时,可以同时传输HARQ重传数据和网络编码数据。例如,发送端可以将由具有网络编码功能的协议层输出的编码数据单元与HARQ重传数据包含在一个TB中进行发送。其中,具有网络编码功能的协议层输出的编码数据单元和HARQ重传数据的总大小可以与该TB的大小相同,也可以与该TB的大小不同,本申请对此不做限定。
5、物理资源。
本申请中的物理资源(也可简称为资源)可以包含时域资源,频域资源,码域资源,或,空域资源中的一种或多种。例如,物理资源所包含的时域资源可以包含至少一个帧、至少一个子帧(sub-frame)、至少一个时隙(slot)、至少一个微时隙(mini-slot)、至少一个时间单元,或者至少一个时域符号等。例如,物理资源所包含的频域资源可以包含至少一个载波(carrier)、至少一个单元载波(component carrier,CC)、至少一个带宽部分(bandwidth part,BWP)、至少一个资源块组(resource block group,RBG)、至少一个物理资源块组(physical resource-block group,PRG)、至少一个资源块(resource block,RB)、或至少一个子载波(sub-carrier,SC)等。例如,物理资源所包含的空域资源可以包含至少一个波束、至少一个端口、至少一个天线端口、或者至少一个层/空间层等。例如,物理资源所包含的码域资源可以包含至少一个正交覆盖码(orthogonal cover code,OCC)、或者至少一个非正交多址(non-orthogonal multiple access,NOMA)码等。
可以理解的是,上述物理资源可以是基带的物理资源,该基带的物理资源可以被基带芯片使用。上述物理资源也可以是空中接口的物理资源。上述物理资源还可以是中频或射频的 物理资源。
图4为本申请实施例提供的一种通信方法400的交互示意图。图4中以第一通信设备和第二通信设备作为该交互示意的执行主体为例来示意该通信方法。例如,第一通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器,第二通信设备为终端或终端中的芯片、芯片系统、或处理器。又例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器。再例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为另一终端或另一终端中的芯片、芯片系统、或处理器。其中,第一通信设备可理解为数据的接收端(可简称为接收端),第二通信设备可理解为数据的发送端(可简称为发送端)。如图4所示,该实施例的方法400可以包括410部分、420部分和430部分。
410部分:第二通信设备向第一通信设备发送第二数据。相应地,第一通信设备接收来自第二通信设备的第二数据。
420部分:第一通信设备向第二通信设备发送用于第一数据传输的第一指示信息。相应地,第二通信设备接收来自第一通信设备的第一指示信息。该第一指示信息指示HARQ重传或网络编码传输。可选地,该第一指示信息还可指示HARQ重传和网络编码传输。其中,该第一指示信息指示的具体内容与第一通信设备对第二数据的接收情况有关。
在第一指示信息的一种可能的实施方式中,第一指示信息通过一个或多个新增的指示域承载。例如,在下行控制信息(downlink control information,DCI)、上行控制信息(uplink control information,UCI)、MAC控制元素(control element,CE)或RRC消息中新增一个或多个指示域来承载该第一指示信息。
在第一指示信息的另一种可能的实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。本申请中的控制信道可以是物理上行控制信道(physical uplink control channel,PUCCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理侧行控制信道(physical sidelink control channel,PSCCH)或物理侧行反馈信道(physical sidelink feedback channel,PSFCH)。本申请中的数据信道可以是物理上行共享信道(physical uplink shared channel,PUSCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)或物理侧行广播信道(physical sidelink broadcast channel,PSBCH)。通过该方式,能够复用已有的指示域对HARQ重传或网络编码传输进行指示,从而节省了额外指示域的开销。
例如,当第一指示信息指示HARQ重传或网络编码传输时,ACK指示网络编码传输,NACK指示HARQ重传,或者,NACK指示网络编码传输,ACK指示HARQ重传。
又例如,当第一指示信息指示HARQ重传、网络编码传输、或者、HARQ重传和网络编码传输时,(ACK,ACK)指示网络编码传输,(NACK,NACK)指示HARQ重传,(ACK,NACK)指示HARQ重传和网络编码传输。其中(ACK,ACK)表示第一指示信息指示了两个ACK,(NACK,NACK)表示第一指示信息指示了两个NACK,(ACK,NACK)表示第一指示信息指示了一个ACK和一个NACK。
进一步可选地,在420部分之前,方法400还可以包括:第一通信设备向第二通信设备发送第四指示信息,第二通信设备接收该第四指示信息。在420部分中,第二通信设备根据该第四指示信息确定第一指示信息中ACK/NACK指示的含义。通过该方法,能够兼容存量终端的HARQ新传和HARQ重传,从而在采用本申请提出的方法提升频谱效率的同时不影响系统中存量终端的工作性能。
当第一指示信息指示HARQ重传或网络编码传输时,例如,当第四指示信息指示第一取值时,第一指示信息中的ACK或NACK分别指示HARQ新传或HARQ重传;当第四指示信息指示第二取值时,第一指示信息中的ACK或NACK分别指示网络编码传输或HARQ重传,或者,第一指示信息中的ACK或NACK分别指示HARQ重传或网络编码传输。又例如,当第二通信设备未收到第四指示信息时,第一指示信息中的ACK或NACK分别指示HARQ新传或HARQ重传;当第二通信设备收到第四指示信息时,第一指示信息中的ACK或NACK分别指示网络编码传输或HARQ重传,或者,第一指示信息中的ACK或NACK分别指示HARQ重传或网络编码传输。上述第一取值和第二取值可以是预定义的,也可以是由网络设备指示或配置的。
当第一指示信息指示HARQ重传、网络编码传输、或者、HARQ重传和网络编码传输时,例如,当第四指示信息指示第三取值时,第一指示信息中的(ACK,ACK)、(NACK,NACK)或(ACK,NACK)分别指示两个CBG进行HARQ新传、两个CBG进行HARQ重传、或两个CBG分别进行HARQ新传和HARQ重传;当第四指示信息指示第四取值时,第一指示信息中的(ACK,ACK)、(NACK,NACK)或(ACK,NACK)分别指示网络编码传输、HARQ重传、或、HARQ重传和网络编码传输。又例如,当第二通信设备未收到第四指示信息时,第一指示信息中的(ACK,ACK)、(NACK,NACK)或(ACK,NACK)分别指示两个CBG进行HARQ新传、两个CBG进行HARQ重传、或两个CBG分别进行HARQ新传和HARQ重传;当第二通信设备收到第四指示信息时,第一指示信息中的(ACK,ACK)、(NACK,NACK)或(ACK,NACK)分别指示网络编码传输、HARQ重传、或、HARQ重传和网络编码传输。上述第三取值和第四取值可以是预定义的,也可以是由网络设备指示或配置的。
430部分:第二通信设备依据第一指示信息指示的内容向第一通信设备发送第一数据。相应地,第一通信设备接收来自第二通信设备的第一数据。当第一指示信息指示HARQ重传时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据。当第一指示信息指示网络编码传输时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。可选地,当第一指示信息指示HARQ重传和网络编码传输时,第二通信设备通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据。
通过上述方法,接收端可以依据数据的接收情况向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法400中,第一指示信息指示的具体内容与第一通信设备对第二数据的接收情况有关。
在第一指示信息指示具体内容的一种可能的实施方式中,当第二数据的接收情况满足第一条件时,第一指示信息指示HARQ重传;当第二数据的接收情况满足第二条件时,第一指示信息指示网络编码传输。上述第二数据的接收情况满足第一条件或第二条件有多种不同的实施方式,下面通过实施方式1-1~1-15对第二数据的接收情况满足第一条件或第二条件的不同实施方式进行说明。
实施方式1-1:
在实施方式1-1中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或 多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第一阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第二阈值。可以理解,第一阈值和第二阈值可以是一个阈值也可以是两个不同的阈值。例如,第一阈值的取值可以是0.2,第二阈值的取值可以是0.2,第一阈值的取值也可以是0.25,第二阈值的取值也可以是0.15。通过该实施方式,接收端可以依据TB中接收错误CB的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CB的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-2:
在实施方式1-2中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第四阈值。可以理解,第三阈值和第四阈值可以是一个阈值也可以是两个不同的阈值。例如,第三阈值的取值可以是0.3,第四阈值的取值可以是0.3,第三阈值的取值也可以是0.35,第四阈值的取值也可以是0.25。通过该实施方式,接收端可以依据TB中接收错误CBG的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CBG的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-3:
在实施方式1-3中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第十三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第十四阈值。可以理解,第十三阈值和第十四阈值可以是一个阈值也可以是两个不同的阈值。例如,第十三阈值的取值可以是0.8,第十四阈值的取值可以是0.8,第十三阈值的取值也可以是0.75,第十四阈值的取值也可以是0.85。通过该实施方式,接收端可以依据TB中接收正确CB的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CB的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-4:
在实施方式1-4中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第十五阈值。第二数据的接收情况满足第 二条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第十六阈值。可以理解,第十五阈值和第十六阈值可以是一个阈值也可以是两个不同的阈值。例如,第十五阈值的取值可以是0.7,第十六阈值的取值可以是0.7,第十五阈值的取值也可以是0.65,第十六阈值的取值也可以是0.75。通过该实施方式,接收端可以依据TB中接收正确CBG的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CBG的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-5:
在实施方式1-5中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收错误CB的数量大于(或者大于等于)第十七阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误CB数量小于(或者小于等于)第十八阈值。可以理解,第十七阈值和第十八阈值可以是一个阈值也可以是两个不同的阈值。例如,第十七阈值的取值可以是3,第十八阈值的取值可以是3,第十七阈值的取值也可以是4,第十八阈值的取值也可以是2。通过该实施方式,接收端可以依据TB中接收错误CB的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CB的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-6:
在实施方式1-6中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收错误CBG的数量大于(或者大于等于)第十九阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收错误CBG数量小于(或者小于等于)第二十阈值。可以理解,第十九阈值和第二十阈值可以是一个阈值也可以是两个不同的阈值。例如,第十九阈值的取值可以是2,第二十阈值的取值可以是2,第十九阈值的取值也可以是3,第二十阈值的取值也可以是1。通过该实施方式,接收端可以依据TB中接收错误CBG的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收错误CBG的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-7:
在实施方式1-7中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第一条件具体包括,该TB中接收正确CB的数量小于(或者小于等于)第二十一阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确CB数量大于(或者大于等于)第二十二阈值。可以理解,第二十一阈值和第二十二阈值可以是一个阈值也可以是两个不同的阈值。例如,第二十一阈值的取值可以是取自数值4和该TB中全部CB数量两者中的较小值,第二十二阈值的取值可以是取自数值4和该TB中全部CB数量两者中的较小值,第二十一阈值的取值也可以是取自数值3和该TB中全部 CB数量两者中的较小值,第二十二阈值的取值也可以是取自数值5和该TB中全部CB数量两者中的较小值。通过该实施方式,接收端可以依据TB中接收正确CB的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CB的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-8:
在实施方式1-8中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第一条件具体包括,该TB中接收正确CBG的数量小于(或者小于等于)第二十三阈值。第二数据的接收情况满足第二条件具体包括,该TB中接收正确CBG数量大于(或者大于等于)第二十四阈值。可以理解,第二十三阈值和第二十四阈值可以是一个阈值也可以是两个不同的阈值。例如,第二十三阈值的取值可以是取自数值3和该TB中全部CBG数量两者中的较小值,第二十四阈值的取值可以是取自数值3和该TB中全部CBG数量两者中的较小值,第二十三阈值的取值也可以是取自数值4和该TB中全部CBG数量两者中的较小值,第二十四阈值的取值也可以是取自数值2和该TB中全部CBG数量两者中的较小值。通过该实施方式,接收端可以依据TB中接收正确CBG的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在TB中接收正确CBG的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-9:
在实施方式1-9中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第二十五阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第二十六阈值。可以理解,第二十五阈值和第二十六阈值可以是一个阈值也可以是两个不同的阈值。例如,第二十五阈值的取值可以是0.2,第二十六阈值的取值可以是0.2,第二十五阈值的取值也可以是0.25,第二十六阈值的取值也可以是0.15。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的比例较高时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收错误编码数据单元的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-10:
在实施方式1-10中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收正确的编码数据 单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第二十七阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第二十八阈值。可以理解,第二十七阈值和第二十八阈值可以是一个阈值也可以是两个不同的阈值。例如,第二十七阈值的取值可以是0.8,第二十八阈值的取值可以是0.8,第二十七阈值的取值也可以是0.75,第二十八阈值的取值也可以是0.85。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的比例向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的比例较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收正确编码数据单元的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-11:
在实施方式1-11中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收错误的编码数据单元的数量大于(或者大于等于)第二十九阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收错误的编码数据单元的数量小于(或者小于等于)第三十阈值。可以理解,第二十九阈值和第三十阈值可以是一个阈值也可以是两个不同的阈值。例如,第二十九阈值的取值可以是3,第三十阈值的取值可以是3,第二十九阈值的取值也可以是4,第三十阈值的取值也可以是2。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的数量较多时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收错误编码数据单元的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-12:
在实施方式1-12中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第一条件具体包括,该传输机会中接收正确的编码数据单元的数量小于(或者小于等于)第三十一阈值。第二数据的接收情况满足第二条件具体包括,该传输机会中接收正确的编码数据单元的数量大于(或者大于等于)第三十二阈值。可以理解,第三十一阈值和第三十二阈值可以是一个阈值也可以是两个不同的阈值。例如,第三十一阈值的取值可以是取自数值4和该传输机会中全部编码数据单元数量两者中的较小值,第三十二阈值的取值可以是取自数值4和该传输机会中全部编码数据单元数量两者中的较小值,第三十一阈值的取值也可以是取自数值3和该传输机会中全部编码数据单元数量两者中的较小值,第三十二阈值的取值也可以是取自数值5和该传输机会中全部编码数据单元数量两者中的较小值。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的数量向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的数量较少时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在传输机会中接收正确编码数据单元的数量较多时利用网络编码传输降低HARQ重传过程中对资 源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-13:
在实施方式1-13中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第一条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值小于(或者小于等于)第三十三阈值。第二数据的接收情况满足第二条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值大于(或者大于等于)第三十四阈值。可以理解,第三十三阈值和第三十四阈值可以是一个阈值也可以是两个不同的阈值。例如,第三十三阈值的取值可以是0.8,第三十四阈值的取值可以是0.8,第三十三阈值的取值也可以是0.75,第三十四阈值的取值也可以是0.85。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值,向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述比值较低时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在上述比值较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-14:
在实施方式1-14中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第一条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值大于(或者大于等于)第三十五阈值。第二数据的接收情况满足第二条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值小于(或者小于等于)第三十六阈值。可以理解,第三十五阈值和第三十六阈值可以是一个阈值也可以是两个不同的阈值。例如,第三十五阈值的取值可以是2,第三十六阈值的取值可以是2,第三十五阈值的取值也可以是3,第三十六阈值的取值也可以是1。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值,向发送端发送指示HARQ重传或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述差值较大时利用HARQ重传的合并增益提升数据成功接收的概率,又可以在上述差值较小时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-15:
在实施方式1-15中,第二数据的接收情况满足第一条件具体包括上述实施方式1-1~1-14中描述的一个第一条件或多个第一条件的组合,第二数据的接收情况满足第二条件具体包括,上述实施方式1-1~1-14中描述的一个第二条件或多个第二条件的组合。
在第一指示信息指示具体内容的另一种可能的实施方式中,当第二数据的接收情况满足第三条件时,第一指示信息指示HARQ重传和网络编码传输;当第二数据的接收情况满足第四条件时,第一指示信息指示HARQ重传;当第二数据的接收情况满足第五条件时,第一指示信息指示网络编码传输。上述第二数据的接收情况满足第三条件、第四条件或第五条件有多种不同的实施方式,下面通过实施方式1-16~1-30对第二数据的接收情况满足第三条件、第四条件或第五条件的不同实施方式进行说明。
实施方式1-16:
在实施方式1-16中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第五阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值在第一取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第六阈值。可以理解,第五阈值和第六阈值可以是一个阈值也可以是两个不同的阈值。当第五阈值和第六阈值为两个不同的阈值时,第一取值区间的两个端点取值可以分别为第五阈值和第六阈值。例如,第五阈值可以是0.4,第六阈值可以是0.2,第一取值区间可以是(0.2,0.4),第五阈值也可以是0.5,第六阈值也可以是0.3,第一取值区间也可以是(0.3,0.5)。通过该实施方式,接收端可以依据TB中接收错误CB的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CB的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CB的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-17:
在实施方式1-17中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值在第二取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第八阈值。可以理解,第七阈值和第八阈值可以是一个阈值也可以是两个不同的阈值。当第七阈值和第八阈值为两个不同的阈值时,第二取值区间的两个端点取值可以分别为第七阈值和第八阈值。例如,第七阈值可以是0.4,第八阈值可以是0.2,第二取值区间可以是(0.2,0.4),第七阈值也可以是0.5,第八阈值也可以是0.3,第二取值区间也可以是(0.3,0.5)。通过该实施方式,接收端可以依据TB中接收错误CBG的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CBG的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CBG的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-18:
在实施方式1-18中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值小于(或者小于等于)第三十七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值在第四取值区 间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确的CB数量与该TB中全部CB数量的比值大于(或者大于等于)第三十八阈值。可以理解,第三十七阈值和第三十八阈值可以是一个阈值也可以是两个不同的阈值。当第三十七阈值和第三十八阈值为两个不同的阈值时,第四取值区间的两个端点取值可以分别为第三十七阈值和第三十八阈值。例如,第三十七阈值可以是0.6,第三十八阈值可以是0.8,第四取值区间可以是(0.6,0.8),第三十七阈值也可以是0.5,第三十八阈值也可以是0.7,第四取值区间也可以是(0.5,0.7)。通过该实施方式,接收端可以依据TB中接收正确CB的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CB的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CB的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-19:
在实施方式1-19中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值小于(或者小于等于)第三十九阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值在第五取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确的CBG数量与该TB中全部CBG数量的比值大于(或者大于等于)第四十阈值。可以理解,第三十九阈值和第四十阈值可以是一个阈值也可以是两个不同的阈值。当第三十九阈值和第四十阈值为两个不同的阈值时,第五取值区间的两个端点取值可以分别为第三十九阈值和第四十阈值。例如,第三十九阈值可以是0.6,第四十阈值可以是0.8,第五取值区间可以是(0.6,0.8),第三十九阈值也可以是0.5,第四十阈值也可以是0.7,第五取值区间也可以是(0.5,0.7)。通过该实施方式,接收端可以依据TB中接收正确CBG的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CBG的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CBG的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-20:
在实施方式1-20中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收错误CB的数量大于(或者大于等于)第四十一阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误CB的数量在第六取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误CB的数量小于(或者小于等于)第四十二阈值。可以理解,第四十一阈值和第四十二阈值可以是一个阈值也可以是两个不同的阈值。当第四十一阈值和第四十二阈值为两个不同的阈值时,第六取值区间的两个端点取值可以分别为第四十一阈值和第四十二阈值。例如,第四十一阈值可以是5,第四十二阈值可以是2,第六取值区间可以是(2,5),第四十一阈值也可以是10,第四十二阈值也可以是4,第六取值区间也可以是(4,10)。通过该实 施方式,接收端可以依据TB中接收错误CB的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CB的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CB的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CB的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-21:
在实施方式1-21中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收错误CBG的数量大于(或者大于等于)第四十三阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收错误CBG的数量在第七取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收错误CBG的数量小于(或者小于等于)第四十四阈值。可以理解,第四十三阈值和第四十四阈值可以是一个阈值也可以是两个不同的阈值。当第四十三阈值和第四十四阈值为两个不同的阈值时,第七取值区间的两个端点取值可以分别为第四十三阈值和第四十四阈值。例如,第四十三阈值可以是5,第四十四阈值可以是2,第七取值区间可以是(2,5),第四十三阈值也可以是10,第四十四阈值也可以是4,第七取值区间也可以是(4,10)。通过该实施方式,接收端可以依据TB中接收错误CBG的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收错误CBG的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收错误CBG的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收错误CBG的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-22:
在实施方式1-22中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CB。第二数据的接收情况满足第三条件具体包括,该TB中接收正确CB的数量小于(或者小于等于)第四十五阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确CB的数量在第八取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确CB的数量大于(或者大于等于)第四十六阈值。可以理解,第四十五阈值和第四十六阈值可以是一个阈值也可以是两个不同的阈值。当第四十五阈值和第四十六阈值为两个不同的阈值时,第八取值区间的两个端点取值可以分别为第四十五阈值和第四十六阈值。例如,第四十五阈值可以是取自数值2和该TB中全部CB数量两者中的较小值,第四十六阈值可以是取自数值5和该TB中全部CB数量两者中的较小值,第八取值区间可以是(2,5),第四十五阈值也可以是取自数值4和该TB中全部CB数量两者中的较小值,第四十六阈值也可以是取自数值10和该TB中全部CB数量两者中的较小值,第八取值区间也可以是(4,10)。通过该实施方式,接收端可以依据TB中接收正确CB的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CB的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CB的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概 率,还可以在TB中接收正确CB的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-23:
在实施方式1-23中,第二数据中的全部或部分数据由TB承载,并且该TB中包括一个或多个CBG。第二数据的接收情况满足第三条件具体包括,该TB中接收正确CBG的数量小于(或者小于等于)第四十七阈值。第二数据的接收情况满足第四条件具体包括,该TB中接收正确CBG的数量在第九取值区间内。第二数据的接收情况满足第五条件具体包括,该TB中接收正确CBG的数量大于(或者大于等于)第四十八阈值。可以理解,第四十七阈值和第四十八阈值可以是一个阈值也可以是两个不同的阈值。当第四十七阈值和第四十八阈值为两个不同的阈值时,第九取值区间的两个端点取值可以分别为第四十七阈值和第四十八阈值。例如,第四十七阈值可以是取自数值2和该TB中全部CBG数量两者中的较小值,第四十八阈值可以是取自数值5和该TB中全部CBG数量两者中的较小值,第九取值区间可以是(2,5),第四十七阈值也可以是取自数值4和该TB中全部CBG数量两者中的较小值,第四十八阈值也可以是取自数值10和该TB中全部CBG数量两者中的较小值,第九取值区间也可以是(4,10)。通过该实施方式,接收端可以依据TB中接收正确CBG的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在TB中接收正确CBG的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在TB中接收正确CBG的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在TB中接收正确CBG的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-24:
在实施方式1-24中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第四十九阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值在第十取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收错误的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第五十阈值。可以理解,第四十九阈值和第五十阈值可以是一个阈值也可以是两个不同的阈值。当第四十九阈值和第五十阈值为两个不同的阈值时,第十取值区间的两个端点取值可以分别为第四十九阈值和第五十阈值。例如,第四十九阈值可以是0.4,第五十阈值可以是0.2,第十取值区间可以是(0.2,0.4),第四十九阈值也可以是0.5,第五十阈值也可以是0.3,第十取值区间也可以是(0.3,0.5)。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的比例较高时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收错误编码数据单元的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收错误编码数据单元的比例较低时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中 的频谱效率。
实施方式1-25:
在实施方式1-25中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值小于(或者小于等于)第五十一阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值在第十一取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收正确的编码数据单元数量与该传输机会中全部编码数据单元数量的比值大于(或者大于等于)第五十二阈值。可以理解,第五十一阈值和第五十二阈值可以是一个阈值也可以是两个不同的阈值。当第五十一阈值和第五十二阈值为两个不同的阈值时,第十一取值区间的两个端点取值可以分别为第五十一阈值和第五十二阈值。例如,第五十一阈值可以是0.6,第五十二阈值可以是0.8,第十一取值区间可以是(0.6,0.8),第五十一阈值也可以是0.5,第五十二阈值也可以是0.9,第十一取值区间也可以是(0.5,0.9)。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的比例向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的比例较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收正确编码数据单元的比例适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收正确编码数据单元的比例较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-26:
在实施方式1-26中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收错误的编码数据单元的数量大于(或者大于等于)第五十三阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收错误的编码数据单元的数量在第十二取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收错误的编码数据单元的数量小于(或者小于等于)第五十四阈值。可以理解,第五十三阈值和第五十四阈值可以是一个阈值也可以是两个不同的阈值。当第五十三阈值和第五十四阈值为两个不同的阈值时,第十二取值区间的两个端点取值可以分别为第五十三阈值和第五十四阈值。例如,第五十三阈值可以是5,第五十四阈值可以是2,第十二取值区间可以是(2,5),第五十三阈值也可以是10,第五十四阈值也可以是4,第十二取值区间也可以是(4,10)。通过该实施方式,接收端可以依据传输机会中接收错误编码数据单元的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收错误编码数据单元的数量较多时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收错误编码数据单元的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收错误编码数据单元的数量较少时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-27:
在实施方式1-27中,第二数据中的全部或部分数据在传输机会(例如调度时机、传输时机、或传输时间间隔)中传输,并且该传输机会中承载有与第二数据对应的一个或多个编码数据单元。第二数据的接收情况满足第三条件具体包括,该传输机会中接收正确的编码数据单元的数量小于(或者小于等于)第五十五阈值。第二数据的接收情况满足第四条件具体包括,该传输机会中接收正确的编码数据单元的数量在第十三取值区间内。第二数据的接收情况满足第五条件具体包括,该传输机会中接收正确的编码数据单元的数量大于(或者大于等于)第五十六阈值。可以理解,第五十五阈值和第五十六阈值可以是一个阈值也可以是两个不同的阈值。当第五十五阈值和第五十六阈值为两个不同的阈值时,第十三取值区间的两个端点取值可以分别为第五十五阈值和第五十六阈值。例如,第五十五阈值可以是取自数值4和该传输机会中全部编码数据单元数量两者中的较小值,第五十六阈值可以是取自数值10和该传输机会中全部编码数据单元数量两者中的较小值,第十三取值区间可以是(4,10),第五十五阈值也可以是取自数值2和该传输机会中全部编码数据单元数量两者中的较小值,第五十六阈值也可以是取自数值5和该传输机会中全部编码数据单元数量两者中的较小值,第十三取值区间也可以是(2,5)。通过该实施方式,接收端可以依据传输机会中接收正确编码数据单元的数量向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在传输机会中接收正确编码数据单元的数量较少时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在传输机会中接收正确编码数据单元的数量适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在传输机会中接收正确编码数据单元的数量较多时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-28:
在实施方式1-28中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第三条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值小于(或者小于等于)第五十七阈值。第二数据的接收情况满足第四条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值在第十四取值区间内。第二数据的接收情况满足第五条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值大于(或者大于等于)第五十八阈值。可以理解,第五十七阈值和第五十八阈值可以是一个阈值也可以是两个不同的阈值。当第五十七阈值和第五十八阈值为两个不同的阈值时,第十四取值区间的两个端点取值可以分别为第五十七阈值和第五十八阈值。例如,第五十七阈值可以是0.6,第五十八阈值可以是0.8,第十四取值区间可以是(0.6,0.8),第五十七阈值也可以是0.5,第五十八阈值也可以是0.9,第十四取值区间也可以是(0.5,0.9)。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的比值,向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述比值较低时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在上述比值适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以 在上述比值较高时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-29:
在实施方式1-29中,第二数据对应一个或多个编码数据单元,该编码数据单元对应于包含有一个或多个原始数据单元的数据块。第二数据的接收情况满足第三条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值大于(或者大于等于)第五十九阈值。第二数据的接收情况满足第四条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值在第十五取值区间内。第二数据的接收情况满足第五条件具体包括,该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值小于(或者小于等于)第六十阈值。可以理解,第五十九阈值和第六十阈值可以是一个阈值也可以是两个不同的阈值。当第五十九阈值和第六十阈值为两个不同的阈值时,第十五取值区间的两个端点取值可以分别为第五十九阈值和第六十阈值。例如,第五十九阈值可以是3,第六十阈值可以是1,第十五取值区间可以是(1,3),第五十九阈值可以是5,第六十阈值可以是2,第十五取值区间可以是(2,5)。通过该实施方式,接收端可以依据数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩与该数据块包含的原始数据单元数量的差值,向发送端发送指示HARQ重传和/或网络编码传输的第一指示信息,指示发送端进行HARQ重传和网络编码传输的适应调整,从而既可以在上述差值较大时利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,又可以在上述差值适中时利用HARQ重传的合并增益进一步提升数据成功接收的概率,还可以在上述差值较小时利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
实施方式1-30:
在实施方式1-30中,第二数据的接收情况满足第三条件具体包括上述实施方式1-16~1-29中描述的一个第三条件或多个第三条件的组合,第二数据的接收情况满足第四条件具体包括上述实施方式1-16~1-29中描述的一个第四条件或多个第四条件的组合,第二数据的接收情况满足第五条件具体包括上述实施方式1-16~1-29中描述的一个第五条件或多个第五条件的组合。
图5为本申请实施例提供的另一种通信方法500的交互示意图。图5中以第一通信设备和第二通信设备作为该交互示意的执行主体为例来示意该通信方法。例如,第一通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器,第二通信设备为终端或终端中的芯片、芯片系统、或处理器。又例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器。再例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为另一终端或另一终端中的芯片、芯片系统、或处理器。其中,第一通信设备可理解为数据的接收端(可简称为接收端),第二通信设备可理解为数据的发送端(可简称为发送端)。如图5所示,该实施例的方法500可以包括510部分、520部分和530部分。
510部分:第二通信设备向第一通信设备发送第二数据。相应地,第一通信设备接收来自第二通信设备的第二数据。
520部分:第一通信设备向第二通信设备发送用于第一数据传输的第二指示信息。相应地,第二通信设备接收来自第一通信设备的第二指示信息。该第二指示信息指示第二数据的 接收情况。
530部分:第二通信设备依据第二指示信息指示的内容向第一通信设备发送第一数据。相应地,第一通信设备接收来自第二通信设备的第一数据。第二通信设备可以通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据,也可以通过网络编码向第一通信设备发送包括网络编码数据的第一数据。可选地,第二通信设备还可以通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据。其中,第二通信设备通过何种方式向第一通信设备发送第一数据,取决于第二指示信息指示的第二数据的接收情况。
通过上述方法,发送端可以依据接收端反馈的数据接收情况对HARQ重传和网络编码传输进行适应调整,从而既可以在数据接收情况较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在数据接收情况较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法500的530部分中,第二通信设备通过何种方式向第一通信设备发送第一数据,取决于第二指示信息指示的第二数据的接收情况。
在530部分的一种可能的实施方式中,当第二数据的接收情况满足第一条件时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据;当第二数据的接收情况满足第二条件时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。上述第二数据的接收情况满足第一条件或第二条件有多种不同的实施方式,具体可参照上述实施方式1-1~1-15的描述,此处不再赘述。
在530部分的另一种可能的实施方式中,当第二数据的接收情况满足第三条件时,第二通信设备通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据;当第二数据的接收情况满足第四条件时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据;当第二数据的接收情况满足第五条件时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。上述第二数据的接收情况满足第三条件、第四条件或第五条件有多种不同的实施方式,具体可参照上述实施方式1-16~1-30的描述,此处不再赘述。
图6为本申请实施例提供的另一种通信方法600的交互示意图。图6中以第一通信设备和第二通信设备作为该交互示意的执行主体为例来示意该通信方法。例如,第一通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器,第二通信设备为终端或终端中的芯片、芯片系统、或处理器。又例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为网络设备或网络设备中的芯片、芯片系统、或处理器。再例如,第一通信设备为终端或终端中的芯片、芯片系统、或处理器,第二通信设备为另一终端或另一终端中的芯片、芯片系统、或处理器。其中,第一通信设备可理解为数据的接收端(可简称为接收端),第二通信设备可理解为数据的发送端(可简称为发送端)。如图6所示,该实施例的方法600可以包括610部分、620部分和630部分。
610部分:第一通信设备获得信道质量。该信道质量可以是第一通信设备与第二通信设备之间的信道质量。可以理解,第一通信设备可以通过多种不同方式获得信道质量。例如,第一通信设备可以对来自第二通信设备的参考信号或其他信号进行测量获得信道质量,也可以通过接收来自第二通信设备或其他通信设备的信道质量指示信息获得信道质量。
可选地,在610部分之前,方法600还可以包括:第二通信设备向第一通信设备发送第二数据。进一步可选地,第一通信设备获得信道质量具体包括,第一通信设备通过对第二 数据的接收获得信道质量。
620部分:第一通信设备向第二通信设备发送用于第一数据传输的第三指示信息。相应地,第二通信设备接收来自第一通信设备的第三指示信息。该第三指示信息指示上述信道质量,或者,该第三指示信息指示HARQ重传或网络编码传输,或者,该第三指示信息指示HARQ重传、网络编码传输、或者、HARQ重传和网络编码传输。
630部分:第二通信设备依据第三指示信息指示的内容向第一通信设备发送第一数据。相应地,第一通信设备接收来自第二通信设备的第一数据。第二通信设备可以通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据,也可以通过网络编码向第一通信设备发送包括网络编码数据的第一数据。可选地,第二通信设备还可以通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据。其中,第二通信设备通过何种方式向第一通信设备发送第一数据,取决于第三指示信息指示的具体内容。
通过上述方法,发送端可以依据信道质量对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法600中,第二通信设备通过何种方式向第一通信设备发送第一数据,取决于第三指示信息指示的具体内容。
在方法600的一种可能的实施方式中,第三指示信息指示信道质量。当上述信道质量满足第六条件时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据;当上述信道质量满足第七条件时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。上述信道质量满足第六条件或第七条件有多种不同的实施方式,下面以实施方式2-1为例对信道质量满足第六条件或第七条件进行说明。
实施方式2-1:
在实施方式2-1中,上述信道质量可由信号干扰噪声比(singal to interference plus noise ratio,SINR)、信道质量指示(channel quality indication,CQI)、参考信号接收功率(reference signal received power,RSRP)、接收信号强度指示(received signal strength indicator,RSSI)或参考信号接收质量(reference signal receiving quality,RSRQ)表征。信道质量满足第六条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ小于(或者小于等于)第九阈值。信道质量满足第七条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ大于(或者大于等于)第十阈值。可以理解,第九阈值和第十阈值可以是一个阈值也可以是两个不同的阈值。例如,当信道质量由SINR表征时,第九阈值的取值可以是15dB,第十阈值的取值可以是15dB,第九阈值的取值也可以是10dB,第十阈值的取值也可以是11dB。当信道质量由CQI表征时,第九阈值的取值可以是7,第十阈值的取值可以是7,第九阈值的取值也可以是5,第十阈值的取值也可以是6。当信道质量由RSRP表征时,第九阈值的取值可以是-105dBm,第十阈值的取值可以是-105dBm,第九阈值的取值也可以是-115dBm,第十阈值的取值也可以是-114dBm。当信道质量由RSSI表征时,第九阈值的取值可以是-100dBm,第十阈值的取值可以是-100dBm,第九阈值的取值也可以是-101dBm,第十阈值的取值也可以是-102dBm。当信道质量由RSRQ表征时,第九阈值的取值可以是-10dB,第十阈值的取值可以是-10dB,第九阈值的取值也可以是-12dB,第十阈值的取值也可以是-11dB。
通过该实施方式,发送端可以依据接收端反馈的信道质量的好坏对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增 益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法600的另一种可能的实施方式中,第三指示信息指示信道质量。当上述信道质量满足第八条件时,第二通信设备通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据;当上述信道质量满足第九条件时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据;当上述信道质量满足第十条件时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。上述信道质量满足第八条件、第九条件或第十条件有多种不同的实施方式,下面以实施方式2-2为例对信道质量满足第八条件、第九条件或第十条件进行说明。
实施方式2-2:
在实施方式2-2中,上述信道质量可由SINR、CQI、RSRP、RSSI或RSRQ表征。信道质量满足第八条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ小于(或者小于等于)第十一阈值。信道质量满足第九条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ在第三取值区间内。信道质量满足第十条件具体包括,SINR、CQI、RSRP、RSSI或RSRQ大于(或者大于等于)第十二阈值。可以理解,第十一阈值和第十二阈值可以是一个阈值也可以是两个不同的阈值。当第十一阈值和第十二阈值为两个不同的阈值时,第三取值区间的两个端点取值可以分别为第十一阈值和第十二阈值。例如,当信道质量由SINR表征时,第十一阈值的取值可以是11dB,第十二阈值的取值可以是15dB,第三取值区间可以是(11dB,15dB),第十一阈值的取值也可以是3dB,第十二阈值的取值也可以是10dB,第三取值区间也可以是(3dB,10dB)。当信道质量由CQI表征时,第十一阈值的取值可以是4,第十二阈值的取值可以是7,第三取值区间可以是(4,7),第十一阈值的取值也可以是6,第十二阈值的取值也可以是14,第三取值区间也可以是(6,14)。当信道质量由RSRP表征时,第十一阈值的取值可以是-115dBm,第十二阈值的取值可以是-80dBm,第三取值区间可以是(-115dBm,-80dBm),第十一阈值的取值也可以是-120dBm,第十二阈值的取值也可以是-70dBm,第三取值区间也可以是(-120dBm,-70dBm)。当信道质量由RSSI表征时,第十一阈值的取值可以是-100dBm,第十二阈值的取值可以是-80dBm,第三取值区间可以是(-100dBm,-80dBm),第十一阈值的取值也可以是-90dBm,第十二阈值的取值也可以是-70dBm,第三取值区间也可以是(-90dBm,-70dBm)。当信道质量由RSRQ表征时,第十一阈值的取值可以是-15dB,第十二阈值的取值可以是-10dB,第三取值区间可以是(-15dB,-10dB),第十一阈值的取值也可以是-18dB,第十二阈值的取值也可以是-12dB,第三取值区间也可以是(-18dB,-12dB)。
通过该实施方式,发送端可以依据接收端反馈的信道质量的好坏对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,也可以在信道质量适中的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法600的另一种可能的实施方式中,第三指示信息指示HARQ重传或网络编码传输。当第三指示信息指示HARQ重传时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据。当第三指示信息指示网络编码传输时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。在这一实施方式中,第一通信设备根据获得的信道质量确定第三指示信息指示的具体内容是HARQ重传还是网络编 码传输。当信道质量满足第六条件时,第一通信设备向第二通信设备发送指示HARQ重传的第三指示信息。当信道质量满足第七条件时,第一通信设备向第二通信设备发送指示网络编码传输的第三指示信息。信道质量满足第六条件或第七条件有多种不同的实施方式,具体可参照上述实施方式2-1的描述,此处不再赘述。
通过该实施方式,接收端可以依据信道质量的情况指示发送端对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
在方法600的另一种可能的实施方式中,第三指示信息指示HARQ重传、网络编码传输、或者、HARQ重传和网络编码传输。当第三指示信息指示HARQ重传时,第二通信设备通过HARQ操作向第一通信设备发送包括HARQ重传数据的第一数据。当第三指示信息指示网络编码传输时,第二通信设备通过网络编码向第一通信设备发送包括网络编码数据的第一数据。当第三指示信息指示HARQ重传和网络编码传输时,第二通信设备通过HARQ操作和网络编码向第一通信设备发送包括HARQ重传数据和网络编码数据的第一数据。在这一实施方式中,第一通信设备根据获得的信道质量确定第三指示信息指示的具体内容是HARQ重传、网络编码传输还是HARQ重传和网络编码传输。当信道质量满足第八条件时,第一通信设备向第二通信设备发送指示HARQ重传和网络编码传输的第三指示信息。当信道质量满足第九条件时,第一通信设备向第二通信设备发送指示HARQ重传的第三指示信息。当信道质量满足第十条件时,第一通信设备向第二通信设备发送指示网络编码传输的第三指示信息。信道质量满足第八条件、第九条件或第十条件有多种不同的实施方式,具体可参照上述实施方式2-2的描述,此处不再赘述。
通过该实施方式,接收端可以依据信道质量的情况指示发送端对HARQ重传和网络编码传输进行适应调整,从而既可以在信道质量较差的状况下利用HARQ重传的合并增益以及网络编码传输在提升数据成功接收的概率的同时降低资源的过量占用,也可以在信道质量适中的状况下利用HARQ重传的合并增益提升数据成功接收的概率,又可以在信道质量较好的状况下利用网络编码传输降低HARQ重传过程中对资源的过量占用,从而提高了数据传输过程中的频谱效率。
可以理解,本申请上述实施方式中的第一阈值、第二阈值、……、第六十阈值以及第一取值区间、第二取值区间、……、第十五取值区间可以是预定义的,也可以是由网络设备指示或配置的。
可选地,方法400、方法500和方法600中第一数据包含的网络编码数据包括网络编码重传数据和/或网络编码新传数据。也就是说,当方法400、方法500或方法600中的第一数据包括网络编码数据时,第一数据可以包含网络编码重传数据、网络编码新传数据、或、网络编码重传数据和网络编码新传数据。这一可选地的实施方式可以理解为,当发送端通过网络编码向接收端发送包含网络编码数据的第一数据时,或者,当发送端通过网络编码和HARQ操作向接收端发送包含网络编码数据和HARQ重传数据的第一数据时,可以进行网络编码重传和/或网络编码新传。通过该实施方式,既可以根据数据传输需求利用网络编码重传数据的传输提升原始数据单元成功解码的概率,又可以根据数据传输需求利用网络编码新传数据的传输提升频谱效率。
在进行网络编码重传时,发送端针对之前已经进行过网络编码的数据块,获得针对该数据块重传的编码数据单元的数量。例如,发送端可以根据该数据块对应的已接收正确的编码 数据单元对应的编码向量组成的矩阵的秩和该数据块包含的原始数据单元数量,获得针对该数据块的重传编码数据单元的数量。发送端依据该数据块的重传编码数据单元的数量,获得对应数量的且针对该数据块的重传编码数据单元,这些重传编码数据单元就可以理解为上述的网络编码重传数据。例如,发送端可以从缓存中获得与该数据块对应的且未被发送过的编码数据单元作为针对该数据块的重传编码数据单元。又例如,发送端也可以对该数据块中的原始数据单元进行重新编码生成针对该数据块的重传编码数据单元。
在进行网络编码重传时,发送端还可以根据能够承载网络编码重传数据的物理资源,对数据发送进行相应调整。例如,当能够承载网络编码重传数据的物理资源多于待传输的网络编码重传数据所需的物理资源时,发送端可以将除该数据块以外的其他数据块中的数据也承载在该物理资源上进行传输。又例如,当能够承载网络编码重传数据的物理资源少于待传输的网络编码重传数据所需的物理资源时,可以抬升数据发送时的调制编码方式(modulation and coding scheme,MCS)和/或增大TB大小以使得能够承载网络编码重传数据的物理资源多于或等于待传输的网络编码重传数据所需的物理资源。又例如,当能够承载网络编码重传数据的物理资源少于待传输的网络编码重传数据所需的物理资源时,可发送部分待传输的网络编码重传数据,剩下的待传输的网络编码重传数据可以在后续传输机会中进行发送。
在进行网络编码新传时,发送端将之前未发送的编码数据单元作为新传编码数据单元,和/或,发送端针对之前未进行过编码的数据块中的原始数据单元进行网络编码获得新传编码数据单元。这些新传编码数据单元就可以理解为上述的网络编码新传数据。
在进行网络编码重传和网络编码新传时,发送端会针对之前已经进行过网络编码的数据块(也可简称为重传数据块)进行上述网络编码重传的操作,也会按照上述对网络编码新传的描述进行上述网络编码新传的操作。例如,发送端可以分别对重传数据块中的原始数据单元和新传数据块中的原始数据单元进行独立编码获得编码数据单元。又例如,发送端也可以对重传数据块中的原始数据单元和新传数据块中的原始数据单元进行联合编码(例如卷积网络编码)获得编码数据单元。
可选地,在方法400中,第二通信设备可通过多种不同方式确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。
方法400中,在确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的一种可能的实施方式中,第一通信设备向第二通信设备发送第五指示信息。该第五指示信息指示网络编码数据包括网络编码重传数据或网络编码新传数据,或者,该第五指示信息指示网络编码数据包括网络编码重传数据、网络编码新传数据、或、网络编码重传数据和网络编码新传数据。第二通信设备接收该第五指示信息,并根据该第五指示信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。第五指示信息可以是区别于第一指示信息的另一信息,也可以是第一指示信息。通过该实施方式,既可以根据数据传输需求利用网络编码重传提升接收端针对原始数据单元成功解码的概率,又可以根据数据传输需求利用网络编码新传提升频谱效率。例如在方法400中,在第五指示信息为第一指示信息的一种可能的实施方式中,第一指示信息可指示HARQ重传、网络编码重传、或网络编码新传。
又例如在方法400中,在第五指示信息为第一指示信息的另一种可能的实施方式中,第一指示信息可指示HARQ重传、网络编码重传、网络编码新传、或者、HARQ重传和网络编码重传。
又例如在方法400中,在第五指示信息为第一指示信息的另一种可能的实施方式中,第一指示信息可指示HARQ重传、网络编码重传、网络编码新传、或者、HARQ重传和网络编 码新传。
又例如在方法400中,在第五指示信息为第一指示信息的另一种可能的实施方式中,第一指示信息可指示HARQ重传、网络编码重传、网络编码新传、HARQ重传和网络编码重传、HARQ重传和网络编码新传、或者、网络编码重传和网络编码新传。
方法400中,在确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的另一种可能的实施方式中,第二通信设备可以根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。数据块相关信息包括下述一种或多种:该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩、该数据块包含的原始数据单元数量、该数据块对应的已接收正确的编码数据单元的数量、或者能够译码该数据块还需接收的编码数据单元的数量。该数据块相关信息可由第一指示信息承载,也可由区别于第一指示信息的另一信息承载。通过该实施方式,既可以根据数据传输需求利用网络编码重传提升接收端针对原始数据单元成功解码的概率,又可以根据数据传输需求利用网络编码新传提升频谱效率。
可选地,第二通信设备根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据具体包括:
当该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩小于该数据块包含的原始数据单元数量,第二通信设备确定网络编码数据包含网络编码重传数据,或者包含网络编码重传数据和网络编码新传数据。当该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩大于或等于该数据块包含的原始数据单元数量,第二通信设备确定网络编码数据包含网络编码新传数据。或者,
当该数据块对应的已接收正确的编码数据单元的数量小于该数据块包含的原始数据单元数量,第二通信设备确定网络编码数据包含网络编码重传数据,或者包含网络编码重传数据和网络编码新传数据。当该数据块对应的已接收正确的编码数据单元的数量大于或等于该数据块包含的原始数据单元数量,第二通信设备确定网络编码数据包含网络编码新传数据。或者,
当能够译码该数据块还需接收的编码数据单元的数量大于0时,第二通信设备确定网络编码数据包含网络编码重传数据,或者包含网络编码重传数据和网络编码新传数据。当能够译码该数据块还需接收的编码数据单元的数量小于或等于0时,第二通信设备确定网络编码数据包含网络编码新传数据。
可选地,在方法500中,第二通信设备可通过多种不同方式确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。
方法500中,在确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的一种可能的实施方式中,第二通信设备可以根据第二指示信息指示的第二数据的接收情况确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。关于第二数据接收情况的描述可参考实施方式1-1~1-28的描述。进一步地或者可替代地,第二数据的接收情况可包括下述一种或多种:数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩、数据块包含的原始数据单元数量、数据块对应的已接收正确的编码数据单元的数量、或者能够译码数据块还需接收的编码数据单元的数量。通过该实施方式,既可以根据数据传输需求利用网络编码重传提升接收端针对原始数据单元成功解码的概率,又可以根据数据传输需求利用网络编码新传提升频谱效率。
第二通信设备根据第二数据的接收情况确定网络编码数据包含网络编码重传数据和/或 网络编码新传数据的可选具体方法,可参见上述方法400中对第二通信设备根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的描述,此处不再赘述。
可选地,在方法600中,第二通信设备可通过多种不同方式确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。
方法600中,在确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的一种可能的实施方式中,第二通信设备可以根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据。数据块相关信息包括下述一种或多种:该数据块对应的已接收正确编码数据单元对应的编码向量组成的矩阵的秩、该数据块包含的原始数据单元数量、该数据块对应的已接收正确的编码数据单元的数量、或者能够译码该数据块还需接收的编码数据单元的数量。该数据块相关信息可由第三指示信息承载,也可由区别于第三指示信息的另一信息承载。通过该实施方式,既可以根据数据传输需求利用网络编码重传提升接收端针对原始数据单元成功解码的概率,又可以根据数据传输需求利用网络编码新传提升频谱效率。
第二通信设备根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的可选具体方法,可参见上述方法400中对第二通信设备根据数据块相关信息确定网络编码数据包含网络编码重传数据和/或网络编码新传数据的描述,此处不再赘述。
下面结合几个具体示例说明本申请提供的通信方法。
以图7示意的传输过程为例说明方法400中可能的实现过程。
图7中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。以第三阈值为0.4为例,由于TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第三阈值(即0.4),则第一通信设备在T-t1~T时刻之间向第二通信设备发送指示HARQ重传的第一指示信息,指示第一通信设备进行HARQ重传。
第二通信设备依据第一指示信息指示的内容在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,这三个CBG包含在TB2中。例如第二通信设备可以从缓存中获得之前存储的CBG
2、CBG
3和CBG
4,并向第一通信设备发送这三个CBG。第一通信设备在接收该三个CBG时发现两个CBG(CBG
3和CBG
4)接收正确,一个CBG(CBG
2)接收错误。由于CBG
2承载有Y
2,Y
3的数据,因此Y
2,Y
3这两个编码数据单元在第一通信设备处仍然接收错误。以第四阈值为0.4为例,由于TB2中接收错误的CBG数量(即1)与TB2中全部CBG数量(即3)的比值1/3≈0.33小于第四阈值(即0.4),则第一通信设备在T~T+t2时刻之间向第二通信设备发送指示网络编码传输的第一指示信息,指示第一通信设备进行网络编码传输。进一步地,由于第一通信设备在T时刻已经成功接收了数据块对应的6个编码数据单元中的Y
1,Y
4,Y
5,Y
6共4个编码数据单元,该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩对应为4,小于该数据块包含的原始数据单元数量6,因此第一通信设备在T~T+t2时刻之间还可以向第二通信设备发送指示网络编码重传的第五指示信息。
第二通信设备在T+t2时刻进行网络编码重传。例如,第二通信设备可以重新对X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
7,Y
8,…,Y
12,并通过2个CBG(CBG
6和CBG
7)向第一通信设备发送这6个编码数据单元中的两个编码数据单元Y
7,Y
8。第一通信设备成功接收CBG
6和CBG
7,成功获得Y
7,Y
8,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T时刻4的基础上又增加了2),等于该数据块包含的原始数据单元数量,因此第一通信设备可以成功解码出该数据块中包含的原始数据单元X
1,X
2,…,X
6。
以图7示意的传输过程为例说明方法500中可能的实现过程。
图7中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。第一通信设备在T-t1~T时刻之间向第二通信设备发送第二指示信息,该第二指示信息指示TB1中接收错误的CBG数量为3。
以第三阈值为0.4为例,第二通信设备依据第二指示信息确定TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第三阈值(即0.4),则第二通信设备在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,这三个CBG包含在TB2中。例如第二通信设备可以从缓存中获得之前存储的CBG
2、CBG
3和CBG
4,并向第一通信设备发送这三个CBG。第一通信设备在接收该三个CBG时发现两个CBG(CBG
3和CBG
4)接收正确,一个CBG(CBG
2)接收错误。由于CBG
2承载有Y
2,Y
3的数据,因此Y
2,Y
3这两个编码数据单元在第一通信设备处仍然接收错误。第一通信设备在T~T+t2时刻之间向第二通信设备发送第二指示信息,该第二指示信息指示TB2中接收错误的CBG数量为1。
以第四阈值为0.4为例,第二通信设备依据第二指示信息确定TB2中接收错误的CBG数量(即1)与TB2中全部CBG数量(即3)的比值1/3≈0.33小于第四阈值(即0.4),则第二通信设备在T+t2时刻进行网络编码传输。进一步地,由于第一通信设备在T时刻已经成功接收了数据块对应的6个编码数据单元中的Y
1,Y
4,Y
5,Y
6共4个编码数据单元,该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩对应为4。第一通信设备可以在T~T+t2时刻之间向第二通信设备发送指示该秩的指示信息。第二通信设备获得该秩后,由于该秩的取值4小于该数据块包含的原始数据单元数量6,因此第二通信设备确定在T+t2时刻进行网络编码重传。例如,第二通信设备可以重新对X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
7,Y
8,…,Y
12,并通过2个CBG(CBG
6和CBG
7)向第一通信设备发送这6个编码数据单元中的两个编码数据单元Y
7,Y
8。第一通信设备成功接收CBG
6和CBG
7,成功获得Y
7,Y
8,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T时刻4的基础上又增加了2),等于该数据块包含的原始数据单元数量,因此第一通信设备可以成功解码出该数据块中包含的原始数据单元X
1,X
2,…,X
6。
图8示意的传输过程与图7示意的传输过程相比,区别在于T+t2时刻第二通信设备进行网络编码重传时,能够对新老数据块中的原始数据单元进行联合编码,从而进行网络编码重 传和网络编码新传的混合传输。
以图8示意的传输过程为例说明方法400中可能的实现过程。
图8中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块Block1中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。以第三阈值为0.4为例,由于TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第三阈值(即0.4),则第一通信设备在T-t1~T时刻之间向第二通信设备发送指示HARQ重传的第一指示信息,指示第一通信设备进行HARQ重传。
第二通信设备依据第一指示信息指示的内容在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,这三个CBG包含在TB2中。例如第二通信设备可以从缓存中获得之前存储的CBG
2、CBG
3和CBG
4,并向第一通信设备发送这三个CBG。第一通信设备在接收该三个CBG时发现两个CBG(CBG
3和CBG
4)接收正确,一个CBG(CBG
2)接收错误。由于CBG
2承载有Y
2,Y
3的数据,因此Y
2,Y
3这两个编码数据单元在第一通信设备处仍然接收错误。以第四阈值为0.4为例,由于TB2中接收错误的CBG数量(即1)与TB2中全部CBG数量(即3)的比值1/3≈0.33小于第四阈值(即0.4),则第一通信设备在T~T+t2时刻之间向第二通信设备发送指示网络编码传输的第一指示信息,指示第一通信设备进行网络编码传输。进一步地,由于第一通信设备在T时刻已经成功接收了数据块Block1对应的6个编码数据单元中的Y
1,Y
4,Y
5,Y
6共4个编码数据单元,数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩对应为4,小于数据块Block1包含的原始数据单元数量6,因此第一通信设备在T~T+t2时刻之间还可以向第二通信设备发送指示网络编码重传的第五指示信息。
第二通信设备在准备T+t2时刻的网络编码重传时,确定能够承载网络编码重传数据的物理资源多于待传输的网络编码重传数据所需的物理资源,因而第二通信设备可确定在T+t2时刻进行网络编码重传和网络编码新传,即在进行网络编码重传的基础上,使用富余的物理资源额外承载网络编码新传数据。
例如,第二通信设备可以对老数据块Block1中的X
5,X
6和新数据块Block2中的X
7,X
8(可理解为网络编码新传数据)进行联合编码(比如卷积网络编码)获得4个编码数据单元Y
7,Y
8,…,Y
10,并通过4个CBG(CBG
6、CBG
7、CBG
8和CBG
9)向第一通信设备发送这4个编码数据单元Y
7,Y
8,…,Y
10。其中编码数据单元Y
7,Y
8对应网络编码重传数据,编码数据单元Y
9,Y
10对应网络编码新传数据。第一通信设备成功接收CBG
6、CBG
7、CBG
8和CBG
9,成功获得与老数据块Block1对应的两个编码数据单元Y
7,Y
8以及与新数据块Block2对应的两个编码数据单元Y
9,Y
10,使得老数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T时刻4的基础上又增加了2),等于老数据块Block1包含的原始数据单元数量6,因此第一通信设备可以成功解码出老数据块Block1中包含的原始数据单元X
1,X
2,…,X
6。
以图8示意的传输过程为例说明方法500中可能的实现过程。
图8中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块Block1中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。第一通信设备在T-t1~T时刻之间向第二通信设备发送第二指示信息,该第二指示信息指示TB1中接收错误的CBG数量为3。
以第三阈值为0.4为例,第二通信设备依据第二指示信息确定TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第三阈值(即0.4),则第二通信设备在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,这三个CBG包含在TB2中。例如第二通信设备可以从缓存中获得之前存储的CBG
2、CBG
3和CBG
4,并向第一通信设备发送这三个CBG。第一通信设备在接收该三个CBG时发现两个CBG(CBG
3和CBG
4)接收正确,一个CBG(CBG
2)接收错误。由于CBG
2承载有Y
2,Y
3的数据,因此Y
2,Y
3这两个编码数据单元在第一通信设备处仍然接收错误。第一通信设备在T~T+t2时刻之间向第二通信设备发送第二指示信息,该第二指示信息指示TB2中接收错误的CBG数量为1。
以第四阈值为0.4为例,第二通信设备依据第二指示信息确定TB2中接收错误的CBG数量(即1)与TB2中全部CBG数量(即3)的比值1/3≈0.33小于第四阈值(即0.4),则第二通信设备在T+t2时刻进行网络编码传输。进一步地,由于第一通信设备在T时刻已经成功接收了数据块Block1对应的6个编码数据单元中的Y
1,Y
4,Y
5,Y
6共4个编码数据单元,数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩对应为4。第一通信设备可以在T~T+t2时刻之间向第二通信设备发送指示该秩的指示信息。第二通信设备获得该秩后,由于该秩的取值4小于数据块Block1包含的原始数据单元数量6,因此第二通信设备确定在T+t2时刻至少需要进行网络编码重传。此外,第二通信设备在准备T+t2时刻的网络编码重传时,确定能够承载网络编码重传数据的物理资源多于待传输的网络编码重传数据所需的物理资源,因而第二通信设备可确定在T+t2时刻进行网络编码重传和网络编码新传,即在进行网络编码重传的基础上,使用富余的物理资源额外承载网络编码新传数据。
例如,第二通信设备可以对老数据块Block1中的X
5,X
6和新数据块Block2中的X
7,X
8(可理解为网络编码新传数据)进行联合编码(比如卷积网络编码)获得4个编码数据单元Y
7,Y
8,…,Y
10,并通过4个CBG(CBG
6、CBG
7、CBG
8和CBG
9)向第一通信设备发送这4个编码数据单元Y
7,Y
8,…,Y
10。其中编码数据单元Y
7,Y
8对应网络编码重传数据,编码数据单元Y
9,Y
10对应网络编码新传数据。第一通信设备成功接收CBG
6、CBG
7、CBG
8和CBG
9,成功获得与老数据块Block1对应的两个编码数据单元Y
7,Y
8以及与新数据块Block2对应的两个编码数据单元Y
8,Y
10,使得老数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T时刻4的基础上又增加了2),大于老数据块Block1包含的原始数据单元数量6,因此第一通信设备可以成功解码出老数据块Block1中包含的原始数据单元X
1,X
2,…,X
6。
以图9示意的传输过程为例说明方法400中可能的实现过程。
图9中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元 Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。由于CBG
1和CBG
5承载有Y
1,Y
6的数据,因此Y
2,Y
3,Y
4,Y
5这两个编码数据单元在第一通信设备处接收正确,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩为2。以第七阈值为0.4为例,由于TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第七阈值(即0.4),则第一通信设备在T-t1~T时刻之间向第二通信设备发送指示HARQ重传和网络编码传输的第一指示信息,指示第一通信设备进行HARQ重传和网络编码传输。
第二通信设备依据第一指示信息指示的内容在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,并重新对X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
7,Y
8,…,Y
12,并通过2个CBG(CBG
6和CBG
7)向第一通信设备发送这6个编码数据单元中的两个编码数据单元Y
7,Y
8。CBG
2、CBG
3、CBG
4、CBG
6和CBG
7包含在TB2中。可以理解,当通过CBG
6和CBG
7承载编码数据单元Y
7,Y
8时,CBG
6和CBG
7可能会出现空余资源,此时可以通过填充比特的方式将CBG
6和CBG
7充至满足传输要求的大小。第一通信设备未成功接收CBG
2,但成功接收CBG
3、CBG
4、CBG
6和CBG
7,成功获得4个编码数据单元Y
4,Y
5,Y
7,Y
8,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T-t1时刻2的基础上又增加了4),等于该数据块包含的原始数据单元数量,因此第一通信设备可以成功解码出该数据块中包含的原始数据单元X
1,X
2,…,X
6。
以图9示意的传输过程为例说明方法500中可能的实现过程。
图9中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现两个CBG(CBG
1和CBG
5)接收正确,三个CBG(CBG
2、CBG
3和CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
2、CBG
3和CBG
4承载有Y
2,Y
3,Y
4,Y
5的数据,因此Y
2,Y
3,Y
4,Y
5这四个编码数据单元在第一通信设备处接收错误。由于CBG
1和CBG
5承载有Y
1,Y
6的数据,因此Y
2,Y
3,Y
4,Y
5这两个编码数据单元在第一通信设备处接收正确,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩为2。第一通信设备在T-t1~T时刻之间向第二通信设备发送第二指示信息,该第二指示信息指示TB1中接收错误的CBG数量为3。
以第七阈值为0.4为例,第二通信设备依据第二指示信息确定TB1中接收错误的CBG数量(即3)与TB1中全部CBG数量(即5)的比值3/5=0.6大于第七阈值(即0.4),则第二通信设备在T时刻对CBG
2、CBG
3和CBG
4进行HARQ重传,并重新对X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
7,Y
8,…,Y
12,并通过2个CBG(CBG
6和CBG
7)向第一通信设备发送这6个编码数据单元中的两个编码数据单元Y
7,Y
8。CBG
2、CBG
3、CBG
4、CBG
6和CBG
7 包含在TB2中。可以理解,当通过CBG
6和CBG
7承载编码数据单元Y
7,Y
8时,CBG
6和CBG
7可能会出现空余资源,此时可以通过填充比特的方式将CBG
6和CBG
7充至满足传输要求的大小。第一通信设备未成功接收CBG
2,但成功接收CBG
3、CBG
4、CBG
6和CBG
7,成功获得4个编码数据单元Y
4,Y
5,Y
7,Y
8,使得该数据块对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6(在T-t1时刻2的基础上又增加了4),等于该数据块包含的原始数据单元数量,因此第一通信设备可以成功解码出该数据块中包含的原始数据单元X
1,X
2,…,X
6。
以图10示意的传输过程为例说明本申请实施例的另一种可能的实现过程。
图10中,第二通信设备对6个原始数据单元X
1,X
2,…,X
6进行编码获得6个编码数据单元Y
1,Y
2,…,Y
6,并通过5个CBG(CBG
1、CBG
2、CBG
3、CBG
4、CBG
5)传输这6个编码数据单元。6个原始数据单元X
1,X
2,…,X
6可以包含在一个数据块中,也可以包含在多个数据块中。本示例中以X
1,X
2,…,X
6包含在一个数据块Block1中为例。
在T-t1时刻,第二通信设备向第一通信设备发送承载有编码数据单元Y
1,Y
2,…,Y
6的5个CBG,这5个CBG包含在TB1中。第一通信设备在接收上述5个CBG时发现四个CBG(CBG
1、CBG
2、CBG
3和CBG
5)接收正确,一个CBG(CBG
4)接收错误(图中以阴影示出接收错误的部分)。由于CBG
1、CBG
2、CBG
3和CBG
5承载有Y
1,Y
2,Y
3,Y
6的数据,因此Y
1,Y
2,Y
3,Y
6这四个编码数据单元在第一通信设备处接收正确。由于CBG
4承载有Y
4,Y
5的数据,因此Y
4,Y
5这两个编码数据单元在第一通信设备处接收错误。以第四阈值为0.4为例,由于TB1中接收错误的CBG数量(即1)与TB1中全部CBG数量(即5)的比值1/5=0.2小于第四阈值(即0.4),第二通信设备确定在T时刻至少需要进行网络编码重传。此外,第二通信设备在准备T时刻的网络编码重传时,确定能够承载网络编码重传数据的物理资源多于待传输的网络编码重传数据所需的物理资源,因而第二通信设备可确定在T时刻进行网络编码重传和网络编码新传,即在进行网络编码重传的基础上,使用富余的物理资源额外承载网络编码新传数据。
例如,第二通信设备在准备T时刻的网络编码重传和网络编码新传时,依据在T-t1时刻数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩(即4)和数据块Block1中的原始数据单元的数量(即6),确定T时刻需要重传老数据块Block1中的6-4=2个原始数据单元X
5,X
6。以编码器输入的原始数据单元数量最大是4为例,则还可以再额外增加来自新数据块Block2的两个原始数据单元X
7,X
8。第二通信设备对老数据块Block1的两个原始数据单元X
5,X
6和新数据块Block2的两个原始数据单元X
7,X
8(可理解为网络编码新传数据)进行联合编码(比如卷积网络编码),获得4个编码数据单元Y
7,Y
8,…,Y
10。其中编码数据单元Y
7,Y
8对应网络编码重传数据,编码数据单元Y
9,Y
10对应网络编码新传数据(可理解为X
7,X
8)。此时物理资源仍有富余,第二通信设备还可以再额外增加来自新数据块Block3的两个原始数据单元X
9,X
10,对新数据块Block2的两个原始数据单元X
7,X
8(可理解为网络编码新传数据)和新数据块Block3的两个原始数据单元X
9,X
10(也可理解为网络编码新传数据)进行联合编码(比如卷积网络编码),获得另外4个编码数据单元Y
11,Y
12,…,Y
14,其中编码数据单元Y
11,Y
12对应网络编码新传数据(可理解为X
9,X
10)。
在T时刻,第二通信设备通过5个CBG(CBG
6、CBG
7、CBG
8、CBG
9和CBG
10)向第一通信设备发送上述8个编码数据单元Y
7,Y
8,Y
9,Y
10,Y
11,Y
12,Y
13,Y
14中的6个编码数据单元Y
7,Y
8,Y
9,Y
10,Y
11,Y
12。第一通信设备成功接收CBG
8、CBG
9和CBG
10,未成功接收CBG
6和CBG
7。由于CBG
8、CBG
9和CBG
10承载有Y
10,Y
11,Y
12的数据,因此Y
10,Y
11,Y
12这三个编码数据单元在第一通信设备处接收正确。由于CBG
6和CBG
7承载有Y
7,Y
8,Y
9的数据,因此Y
7,Y
8,Y
9这三个编码数据单元在第一通信设备处接收错误。
由于在T时刻对应于老数据块Block1的编码数据单元Y
7,Y
8均接收错误,使得老数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩仍为4,该秩与老数据块Block1包含的所有原始数据单元的数量6之间的差值仍为2,因此第二通信设备确定T+t2时刻需要传输老数据块Block1中的2个原始数据单元X
5,X
6。又因为在T时刻对应于新数据块Block2的编码数据数据单元Y
9和Y
10分别接收错误和正确,使得新数据块Block2对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩为1,该秩与新数据块Block2包含的所有原始数据单元的数量2之间的差值为1,因此第二通信设备确定T+t2时刻需要传输新数据块Block2中的1个原始数据单元X
7。
第二通信设备对老数据块Block1的两个原始数据单元X
5,X
6和新数据块Block2的一个原始数据单元X
7进行联合编码(比如卷积网络编码),获得3个编码数据单元Y
15,Y
16,Y
17,并在T+t2时刻通过三个CBG(CBG
11、CBG
12和CBG
13)向第一通信设备发送Y
15,Y
16,Y
17。第一通信设备成功接收CBG
11、CBG
12和CBG
13,从而成功获得Y
15,Y
16,Y
17,使得老数据块Block1对应的已接收正确的编码数据单元对应的编码向量组成的矩阵的秩变为6,等于老数据块Block1包含的原始数据单元数量6,因此第一通信设备可以成功解码出老数据块Block1中包含的原始数据单元X
1,X
2,…,X
6。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图11给出了一种装置的结构示意图。所述装置1100可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置1100可以包括一个或多个处理器1101,所述处理器1101也可以称为处理单元,可以实现一定的控制功能。所述处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1101也可以存有指令和/或数据1103,所述指令和/或数据1103可以被所述处理器运行,使得所述装置1100执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1101中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1100可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置1100中可以包括一个或多个存储器1102,其上可以存有指令1104,所述指令可在所述处理器上被运行,使得所述装置1100执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置1100还可以包括收发器1105和/或天线1106。所述处理器1101可以 称为处理单元,对所述装置1100进行控制。所述收发器1105可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置1100可以用于执行本申请实施例中图4、图5或图6中描述的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图11的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图12提供了一种终端设备的结构示意图。该终端设备可适用于图1所示出的场景中。为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备1200包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图12仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执 行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1200的收发单元1211,将具有处理功能的处理器视为终端设备1200的处理单元1212。如图12所示,终端设备1200包括收发单元1211和处理单元1212。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1211中用于实现接收功能的器件视为接收单元,将收发单元1211中用于实现发送功能的器件视为发送单元,即收发单元1211包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图13所示,本申请又一实施例提供了一种装置1300。该装置可以是终端,也可以是终端的部件(例如,集成电路,芯片等等)。或者,该装置可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置1300可以包括:处理模块1302(或称为处理单元)。可选的,还可以包括收发模块1301(或称为收发单元)和存储模块1303(或称为存储单元)。
在一种可能的设计中,如图13中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端的功能,比如,所述装置包括终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,所述装置具备实现本申请实施例描述的网络设备的功能,比如,所述装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的装置1300中各个模块可以用于执行本申请实施例中图4、图5或图6描述的方法。
在一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于接收来自第一通信设备的第一指示信息。当第一指示信息指示HARQ重传时,处理模块1302控制收发模块1301通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第一指示信息指示网络编码传输时,处理模块1302控制收发模块 1301通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,当第一指示信息指示HARQ重传和网络编码传输时,处理模块1302控制收发模块1301通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第一指示信息通过一个或多个新增的指示域承载。
在上述装置1300某些可能的实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于接收来自第二通信设备的第二数据。当第二数据的接收情况满足第一条件时,处理模块1302控制收发模块1301向第二通信设备发送用于第一数据传输的第一指示信息,第一指示信息指示HARQ重传,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,处理模块1302控制收发模块1301向第二通信设备发送用于第一数据传输的第一指示信息,第一指示信息指示网络编码传输,第一数据包括网络编码数据。收发模块1301还用于接收来自第二通信设备的第一数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第一指示信息通过一个或多个新增的指示域承载。
在上述装置1300某些可能的实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第一条件或第二条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-1~1-15,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于接收来自第二通信设备的第二数据。当第二数据的接收情况满足第三条件时,处理模块1302控制收发模块1301向第二通信设备发送用于第一数据传输的第一指示信息,第一指示信息指示HARQ重传和网络编码传输,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,处理模块1302控制收发模块1301向第二通信设备发送用于第一数据传输的第一指示信息,第一指示信息指示HARQ重传,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,处理模块1302控制收发模块1301向第二通信设备发送用于第一数据传输的第一指示信息,第一指示信息指示网络编码传输,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第一指示信息通过一个或多个新增的指示域承载。
在上述装置1300某些可能的实施方式中,第一指示信息可通过ACK/NACK实现。该ACK/NACK可以在控制信道或数据信道上传输。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第三条件、第四条件或第五条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-16~1-30,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于向第一通信设备发送第二数据,以及接收来自第一通信设备的第二指示信息, 第二指示信息指示第二数据的接收情况。当第二数据的接收情况满足第一条件时,处理模块1302控制收发模块1301通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,处理模块1302控制收发模块1301通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第一条件或第二条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-1~1-15,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于向第一通信设备发送第二数据,以及接收来自第一通信设备的第二指示信息,第二指示信息指示第二数据的接收情况。当第二数据的接收情况满足第三条件时,处理模块1302控制收发模块1301通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,处理模块1302控制收发模块1301通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,处理模块1302控制收发模块1301通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第三条件、第四条件或第五条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-16~1-30,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:收发模块1301。收发模块1301用于接收来自第二通信设备的第二数据,并向第二通信设备发送用于第一数据传输的第二指示信息,第二指示信息指示第二数据的接收情况。收发模块1301还用于接收来自第二通信设备的第一数据。第二数据的接收情况满足第一条件时,第一数据包括HARQ重传数据。当第二数据的接收情况满足第二条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第一条件或第二条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-1~1-15,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:收发模块1301。收发模块1301用于接收来自第二通信设备的第二数据,并向第二通信设备发送用于第一数据传输的第二指示信息,第二指示信息指示第二数据的接收情况。收发模块1301还用于接收来自第二通信设备的第一数据。当第二数据的接收情况满足第三条件时,第一数据包括HARQ重传数据和网络编码数据。当第二数据的接收情况满足第四条件时,第一数据包括HARQ重传数据。当第二数据的接收情况满足第五条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,第二数据的接收情况满足第三条件、第四条件或第五条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式1-16~1-30,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于接收来自第一通信设备的第三指示信息,第三指示信息指示信道质量。当信道质量满足第六条件时,处理模块1302控制收发模块1301通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当信道质量满足第七条件时,处理模块1302 控制收发模块1301通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,信道质量满足第六条件或第七条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式2-1,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。收发模块1301用于接收来自第一通信设备的第三指示信息,第三指示信息指示信道质量。当信道质量满足第八条件时,处理模块1302控制收发模块1301通过HARQ操作和网络编码向第一通信设备发送第一数据,第一数据包括HARQ重传数据和网络编码数据。当信道质量满足第九条件时,处理模块1302控制收发模块1301通过HARQ操作向第一通信设备发送第一数据,第一数据包括HARQ重传数据。当信道质量满足第十条件时,处理模块1302控制收发模块1301通过网络编码向第一通信设备发送第一数据,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,信道质量满足第八条件、第九条件或第十条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式2-2,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。处理模块1302用于获得信道质量。收发模块1301用于向第二通信设备发送用于第一数据传输的第三指示信息,以及接收来自第二通信设备的第一数据,其中第三指示信息指示信道质量。当信道质量满足第六条件时,第一数据包括HARQ重传数据。当信道质量满足第七条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,信道质量满足第六条件或第七条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式2-1,此处不再赘述。
在另一种可能的设计中,一种装置1300可包括:处理模块1302和收发模块1301。处理模块1302用于获得信道质量。收发模块1301用于向第二通信设备发送用于第一数据传输的第三指示信息,以及接收来自第二通信设备的第一数据,其中第三指示信息指示信道质量。当信道质量满足第八条件时,第一数据包括HARQ重传数据和网络编码数据。当信道质量满足第九条件时,第一数据包括HARQ重传数据。当信道质量满足第十条件时,第一数据包括网络编码数据。可选地,网络编码数据包括网络编码重传数据和/或网络编码新传数据。
在上述装置1300某些可能的实施方式中,信道质量满足第八条件、第九条件或第十条件可以有多种不同的实施方式,具体可参见方法实施例中的实施方式2-2,此处不再赘述。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件 形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特 性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还 是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
Claims (35)
- 一种通信方法,其特征在于,包括:接收来自第一通信设备的第一指示信息;当所述第一指示信息指示混合自动重传请求HARQ重传时,通过HARQ操作向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据;当所述第一指示信息指示网络编码传输时,通过网络编码向所述第一通信设备发送第一数据,所述第一数据包括网络编码数据。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:当所述第一指示信息指示HARQ重传和网络编码传输时,通过HARQ操作和网络编码向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据和网络编码数据。
- 一种通信方法,其特征在于,包括:向第一通信设备发送第二数据;以及接收来自所述第一通信设备的第二指示信息,所述第二指示信息指示所述第二数据的接收情况;当所述第二数据的接收情况满足第一条件时,通过混合自动重传请求HARQ操作向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据;当所述第二数据的接收情况满足第二条件时,通过网络编码向所述第一通信设备发送第一数据,所述第一数据包括网络编码数据。
- 根据权利要求3所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第一阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第二阈值。
- 根据权利要求3所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第三阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第四阈值。
- 一种通信方法,其特征在于,包括:向第一通信设备发送第二数据;以及接收来自所述第一通信设备的第二指示信息,所述第二指示信息指示所述第二数据的接收情况;当所述第二数据的接收情况满足第三条件时,通过混合自动重传请求HARQ操作和网络编码向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据和网络编码数据;当所述第二数据的接收情况满足第四条件时,通过HARQ操作向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据;当所述第二数据的接收情况满足第五条件时,通过网络编码向所述第一通信设备发送第一数据,所述第一数据包括网络编码数据。
- 根据权利要求6所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承 载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第五阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值在第一取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第六阈值。
- 根据权利要求6所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第七阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值在第二取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第八阈值。
- 一种通信方法,其特征在于,包括:接收来自第一通信设备的第三指示信息,所述第三指示信息指示信道质量;当所述信道质量满足第六条件时,通过混合自动重传请求HARQ操作向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据;当所述信道质量满足第七条件时,通过网络编码向所述第一通信设备发送第一数据,所述第一数据包括网络编码数据。
- 根据权利要求9所述的方法,其特征在于,所述信道质量由信号干扰噪声比SINR、信道质量指示CQI、参考信号接收功率RSRP、接收信号强度指示RSSI或参考信号接收质量RSRQ表征;所述信道质量满足所述第六条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ小于第九阈值;所述信道质量满足所述第七条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ大于第十阈值。
- 一种通信方法,其特征在于,包括:接收来自第一通信设备的第三指示信息,所述第三指示信息指示信道质量;当所述信道质量满足第八条件时,通过混合自动重传请求HARQ操作和网络编码向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据和网络编码数据;当所述信道质量满足第九条件时,通过HARQ操作向所述第一通信设备发送第一数据,所述第一数据包括HARQ重传数据;当所述信道质量满足第十条件时,通过网络编码向所述第一通信设备发送第一数据,所述第一数据包括网络编码数据。
- 根据权利要求11所述的方法,其特征在于,所述信道质量由信号干扰噪声比SINR、信道质量指示CQI、参考信号接收功率RSRP、接收信号强度指示RSSI或参考信号接收质量RSRQ表征;所述信道质量满足所述第八条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ小于第十一阈值;所述信道质量满足所述第九条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ在第三取值区间内;所述信道质量满足所述第十条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ大于第十二阈值。
- 根据权利要求1-12中任一项所述的方法,其特征在于,所述网络编码数据包括网络编码重传数据和/或网络编码新传数据。
- 一种通信方法,其特征在于,包括:接收来自第二通信设备的第二数据;向所述第二通信设备发送用于第一数据传输的第一指示信息;以及接收来自所述第二通信设备的所述第一数据;其中,当所述第二数据的接收情况满足第一条件时,所述第一指示信息指示混合自动重传请求HARQ重传,所述第一数据包括HARQ重传数据;当所述第二数据的接收情况满足第二条件时,所述第一指示信息指示网络编码传输,所述第一数据包括网络编码数据。
- 根据权利要求14所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第一阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第二阈值。
- 根据权利要求14所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第三阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第四阈值。
- 一种通信方法,其特征在于,包括:接收来自第二通信设备的第二数据;向所述第二通信设备发送用于第一数据传输的第一指示信息;以及接收来自所述第二通信设备的所述第一数据;其中,当所述第二数据的接收情况满足第三条件时,所述第一指示信息指示混合自动重传请求HARQ重传和网络编码传输,所述第一数据包括HARQ重传数据和网络编码数据;当所述第二数据的接收情况满足第四条件时,所述第一指示信息指示HARQ重传,所述第一数据包括HARQ重传数据;当所述第二数据的接收情况满足第五条件时,所述第一指示信息指示网络编码传输,所述第一数据包括网络编码数据。
- 根据权利要求17所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第五阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值在第一取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第六阈值。
- 根据权利要求17所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第七阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值在第二取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第八阈值。
- 一种通信方法,其特征在于,包括:接收来自第二通信设备的第二数据;向所述第二通信设备发送用于第一数据传输的第二指示信息,所述第二指示信息指示所述第二数据的接收情况;以及接收来自所述第二通信设备的所述第一数据;其中,当所述第二数据的接收情况满足第一条件时,所述第一数据包括混合自动重传请求HARQ重传数据;当所述第二数据的接收情况满足第二条件时,所述第一数据包括网络编码数据。
- 根据权利要求20所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第一阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第二阈值。
- 根据权利要求20所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第一条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第三阈值;所述第二数据的接收情况满足所述第二条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第四阈值。
- 一种通信方法,其特征在于,包括:接收来自第二通信设备的第二数据;向所述第二通信设备发送用于第一数据传输的第二指示信息,所述第二指示信息指示所述第二数据的接收情况;以及接收来自所述第二通信设备的所述第一数据;其中,当所述第二数据的接收情况满足第三条件时,所述第一数据包括混合自动重传请求HARQ重传数据和网络编码数据;当所述第二数据的接收情况满足第四条件时,所述第一数据包括HARQ重传数据;当所述第二数据的接收情况满足第五条件时,所述第一数据包括网络编码数据。
- 根据权利要求23所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块CB;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值大于第五阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值在第一取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CB数量与所述TB中全部CB数量的比值小于第六阈值。
- 根据权利要求23所述的方法,其特征在于,部分或全部所述第二数据由传输块TB承载,所述TB中包括一个或多个码块组CBG;所述第二数据的接收情况满足所述第三条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值大于第七阈值;所述第二数据的接收情况满足所述第四条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值在第二取值区间内;所述第二数据的接收情况满足所述第五条件,包括:所述TB中接收错误的CBG数量与所述TB中全部CBG数量的比值小于第八阈值。
- 一种通信方法,其特征在于,包括:获得信道质量;向第二通信设备发送用于第一数据传输的第三指示信息,所述第三指示信息指示所述信道质量;以及接收来自所述第二通信设备的所述第一数据;其中,当所述信道质量满足第六条件时,所述第一数据包括混合自动重传请求HARQ重传数据;当所述信道质量满足第七条件时,所述第一数据包括网络编码数据。
- 根据权利要求26所述的方法,其特征在于,所述信道质量由信号干扰噪声比SINR、信道质量指示CQI、参考信号接收功率RSRP、接收信号强度指示RSSI或参考信号接收质量RSRQ表征;所述信道质量满足所述第六条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ小于第九阈值;所述信道质量满足所述第七条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ大于第十阈值。
- 一种通信方法,其特征在于,包括:获得信道质量;向第二通信设备发送用于第一数据传输的第三指示信息,所述第三指示信息指示所述信道质量;以及接收来自所述第二通信设备的所述第一数据;其中,当所述信道质量满足第八条件时,所述第一数据包括混合自动重传请求HARQ重传数据和网络编码数据;当所述信道质量满足第九条件时,所述第一数据包括HARQ重传数据;当所述信道质量满足第十条件时,所述第一数据包括网络编码数据。
- 根据权利要求28所述的方法,其特征在于,所述信道质量由信号干扰噪声比SINR、信道质量指示CQI、参考信号接收功率RSRP、接收信号强度指示RSSI或参考信号接收质量 RSRQ表征;所述信道质量满足所述第八条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ小于第十一阈值;所述信道质量满足所述第九条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ在第三取值区间内;所述信道质量满足所述第十条件,包括:所述SINR、所述CQI、所述RSRP、所述RSSI或所述RSRQ大于第十二阈值。
- 根据权利要求14-29中任一项所述的方法,其特征在于,所述网络编码数据包括网络编码重传数据和/或网络编码新传数据。
- 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至13中任一项所述的方法,或者,使得所述装置执行如权利要求14至30中任一项所述的方法。
- 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时,使得计算机执行如权利要求1至13中任一项所述的方法,或者,使得计算机执行如权利要求14至30中任一项所述的方法。
- 一种通信装置,其特征在于,所述装置用于执行权利要求1至13中任一项所述的方法,或者用于执行权利要求14至30中任一项所述的方法。
- 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至13中任一项所述的方法或者实现权利要求14至30中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至13中任一项所述的方法或者如权利要求14至30中任一项所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080097327.9A CN115152304A (zh) | 2020-07-17 | 2020-07-17 | 数据传输方法及装置 |
EP20945022.0A EP4171149A4 (en) | 2020-07-17 | 2020-07-17 | DATA TRANSMISSION METHOD AND DEVICE |
PCT/CN2020/102819 WO2022011715A1 (zh) | 2020-07-17 | 2020-07-17 | 数据传输方法及装置 |
US18/152,358 US20230163891A1 (en) | 2020-07-17 | 2023-01-10 | Data transmission method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/102819 WO2022011715A1 (zh) | 2020-07-17 | 2020-07-17 | 数据传输方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/152,358 Continuation US20230163891A1 (en) | 2020-07-17 | 2023-01-10 | Data transmission method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022011715A1 true WO2022011715A1 (zh) | 2022-01-20 |
Family
ID=79556095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/102819 WO2022011715A1 (zh) | 2020-07-17 | 2020-07-17 | 数据传输方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230163891A1 (zh) |
EP (1) | EP4171149A4 (zh) |
CN (1) | CN115152304A (zh) |
WO (1) | WO2022011715A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105102084A (zh) * | 2014-03-20 | 2015-11-25 | 华为技术有限公司 | 一种码道选取方法及装置 |
WO2018027914A1 (en) * | 2016-08-12 | 2018-02-15 | Nokia Solutions And Networks Oy | Fine granularity ack/nack feedback for 5g communication system |
CN109152071A (zh) * | 2017-06-16 | 2019-01-04 | 中国移动通信有限公司研究院 | 数据传输指示及数据传输方法、基站、终端及存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8321741B2 (en) * | 2008-05-05 | 2012-11-27 | Industrial Technology Research Institute | System and apparatus for providing an adaptive control mechanism for wireless communications |
WO2018164506A1 (ko) * | 2017-03-08 | 2018-09-13 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 |
WO2018185637A1 (en) * | 2017-04-03 | 2018-10-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Harq handling for nodes with variable processing times |
CN109391373B (zh) * | 2017-08-11 | 2022-01-28 | 中兴通讯股份有限公司 | 数据重传方法、基站,终端及系统 |
EP3729698B1 (en) * | 2017-12-21 | 2022-10-19 | Telefonaktiebolaget LM Ericsson (publ) | Network node, method and computer program for unlicensed spectrum operation |
WO2020092831A1 (en) * | 2018-11-01 | 2020-05-07 | Intel Corporation | Hybrid automatic repeat request (harq) enhancements to support unicast and groupcast communication over sidelink for new radio (nr) vehicle to everything (v2x) |
CN110224788B (zh) * | 2019-05-27 | 2021-12-07 | 中国联合网络通信集团有限公司 | 一种数据传输的方法及装置 |
-
2020
- 2020-07-17 CN CN202080097327.9A patent/CN115152304A/zh active Pending
- 2020-07-17 WO PCT/CN2020/102819 patent/WO2022011715A1/zh unknown
- 2020-07-17 EP EP20945022.0A patent/EP4171149A4/en active Pending
-
2023
- 2023-01-10 US US18/152,358 patent/US20230163891A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105102084A (zh) * | 2014-03-20 | 2015-11-25 | 华为技术有限公司 | 一种码道选取方法及装置 |
WO2018027914A1 (en) * | 2016-08-12 | 2018-02-15 | Nokia Solutions And Networks Oy | Fine granularity ack/nack feedback for 5g communication system |
CN109152071A (zh) * | 2017-06-16 | 2019-01-04 | 中国移动通信有限公司研究院 | 数据传输指示及数据传输方法、基站、终端及存储介质 |
Non-Patent Citations (1)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V1.0.1, 12 December 2017 (2017-12-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 24, XP051391904 * |
Also Published As
Publication number | Publication date |
---|---|
CN115152304A (zh) | 2022-10-04 |
US20230163891A1 (en) | 2023-05-25 |
EP4171149A4 (en) | 2023-08-30 |
EP4171149A1 (en) | 2023-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018201831A1 (zh) | 通信方法和装置 | |
JP7258882B2 (ja) | 方法及び装置 | |
CN111108692A (zh) | 用于3gpp新无线电的基础图选择 | |
WO2018188637A1 (zh) | 发送信息的方法及其装置和接收信息的方法及其装置 | |
US20230139754A1 (en) | Coding method and apparatus | |
CN114826478A (zh) | 编码调制与解调解码方法及装置 | |
US20200067644A1 (en) | Data feedback method and related device | |
EP3737005B1 (en) | Method and communication device for wireless optical communication | |
CN112152761B (zh) | 一种通信方法、装置及存储介质 | |
WO2022258071A1 (zh) | 通信方法,装置及可读存储介质 | |
TWI685225B (zh) | 通信方法和終端設備 | |
EP2938147A1 (en) | Information transmission method and device | |
WO2022011715A1 (zh) | 数据传输方法及装置 | |
WO2022268114A1 (zh) | 一种调制和编码方案mcs表格确定方法及装置 | |
US20210273750A1 (en) | Communication method, apparatus, device, system, and storage medium | |
WO2021249080A1 (zh) | 编码方法及装置 | |
WO2019154065A1 (zh) | 一种用于无线光通信的方法及通信装置 | |
WO2021068202A1 (zh) | 一种通信方法及通信装置 | |
WO2022228542A1 (zh) | 数据传输方法、装置、系统及可读存储介质 | |
CN112714441B (zh) | 一种数据传输方法、通信装置及通信系统 | |
CN111988112A (zh) | 通信方法和装置 | |
WO2024187462A1 (zh) | 反馈信道质量信息的方法和装置 | |
WO2022030069A1 (ja) | 端末、基地局及び通信方法 | |
CN111371532A (zh) | 信息传输方法及装置 | |
EP4412116A1 (en) | Coding method, decoding method and communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945022 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020945022 Country of ref document: EP Effective date: 20230117 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |