WO2022011602A1 - 预充电路 - Google Patents

预充电路 Download PDF

Info

Publication number
WO2022011602A1
WO2022011602A1 PCT/CN2020/102145 CN2020102145W WO2022011602A1 WO 2022011602 A1 WO2022011602 A1 WO 2022011602A1 CN 2020102145 W CN2020102145 W CN 2020102145W WO 2022011602 A1 WO2022011602 A1 WO 2022011602A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
resistor
power supply
respectively connected
Prior art date
Application number
PCT/CN2020/102145
Other languages
English (en)
French (fr)
Inventor
陈丽君
赵德琦
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2020/102145 priority Critical patent/WO2022011602A1/zh
Priority to CN202080006282.XA priority patent/CN113056856A/zh
Publication of WO2022011602A1 publication Critical patent/WO2022011602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors

Definitions

  • the present application relates to the field of electrical technology, and in particular, to a precharge circuit.
  • a precharge circuit is usually added to protect the power supply switch.
  • a precharge circuit is connected in parallel at both ends of the power supply switch.
  • the precharge circuit includes a relay.
  • the relay needs a special control circuit to close, which leads to a complicated circuit structure.
  • the size of the relay is relatively large, which is not conducive to the overall layout.
  • the present application provides a pre-charging circuit, which can not only charge the capacitor in the internal circuit, but also connect to the high-voltage DC after a period of delay, that is, when the internal and external voltage difference is small, Therefore, the current impact caused by the equipment being connected to the high-voltage system can be effectively avoided, and the power supply switch and the electrical equipment are protected.
  • an embodiment of the present application provides a precharge circuit, the precharge circuit includes a power supply switch, a drive switch circuit, a switch circuit, an input power supply, an internal circuit, and a charging circuit;
  • the first output end of the input power supply is connected to the first end of the power supply switch, and the second end of the power supply switch is connected to the first end of the switch circuit and the first end of the internal circuit, respectively.
  • the second end of the switch circuit is respectively connected to the second end of the input power supply and the first end of the drive switch circuit, the third end of the switch circuit is connected to the second end of the drive switch circuit, so The third end of the drive switch circuit is respectively connected to the second end of the internal circuit and the first end of the charging circuit, the fourth end of the drive switch circuit is connected to the second end of the charging circuit, so the third end of the charging circuit is connected to the second end of the input power supply;
  • the input power supply charges the internal circuit through the power supply switch and the charging circuit; when the voltage of the internal circuit is greater than a preset threshold, the switch circuit controls the drive switch When the circuit is in a working state, the input power supply supplies power to the internal circuit through the power supply switch and the drive switch circuit.
  • the drive switch circuit includes: a drive switch and a first resistor
  • the first end of the drive switch is connected to the second end of the input power supply, the second end of the drive switch is respectively connected to the third end of the switch circuit and the first end of the first resistor, the The third end of the driving switch is respectively connected to the second end of the internal circuit and the first end of the charging circuit, and the second end of the first resistor is connected to the charging circuit.
  • the switch circuit includes: a second resistor, a first switch circuit, and a second switch circuit;
  • the first end of the second resistor is connected to the second end of the power supply switch, and the second end of the second resistor is respectively connected to the first end of the first switch circuit and the second end of the second switch circuit.
  • the second end of the first switch circuit is respectively connected to the second end of the input power supply, the second end of the second switch circuit and the first end of the drive switch, the second end
  • the third end of the switch circuit is respectively connected to the second end of the drive switch and the first end of the first resistor
  • the fourth end of the second switch circuit is connected to the third end of the first switch circuit .
  • the first switch circuit includes: a first switch tube, a third resistor, a fourth resistor, a first Zener diode, and a first capacitor;
  • the first end of the third resistor is respectively connected to the second end of the second resistor and the first end of the second switch circuit, and the second end of the third resistor is respectively connected to the first end of the first capacitor.
  • the first end, the cathode of the first Zener diode, the first end of the fourth resistor and the gate of the first switch tube are connected, and the second end of the first capacitor is respectively connected to the first The anode of the Zener diode, the second end of the fourth resistor, the source of the first switch tube, the second end of the input power supply, and the second end of the second switch circuit are connected, and the first The drain of a switch tube is connected to the third end of the second switch circuit.
  • the second switch circuit includes: a fifth resistor, a sixth resistor, a second Zener diode, and a second switch tube;
  • the first end of the fifth resistor is respectively connected to the second end of the second resistor and the first end of the third resistor, and the second end of the fifth resistor is respectively connected to the first end of the first switch tube.
  • the drain, the cathode of the second zener diode, the first end of the sixth resistor and the gate of the second switch tube are connected, and the anode of the second zener diode is respectively connected to the sixth resistor
  • the second end of the second switch tube, the source electrode of the second switch tube, the second end of the input power supply, and the first end of the drive switch are connected, and the drain electrode of the second switch tube is respectively connected to the first resistor
  • the first end of the drive switch is connected to the second end of the drive switch.
  • the charging circuit includes: a first diode, a second diode, a third diode, and a seventh resistor;
  • the first end of the seventh resistor is respectively connected to the third end of the drive switch and the second end of the internal circuit, and the second end of the seventh resistor is connected to the anode of the first diode , the cathode of the first diode is respectively connected to the anode of the second diode and the second end of the first resistor, and the cathode of the second diode is connected to the third diode
  • the anode of the third diode is connected to the second terminal of the input power supply, the source of the second switch tube and the first terminal of the driving switch, respectively.
  • the drive switch is a semiconductor thyristor
  • the first switch transistor and the second switch transistor are metal-oxide-semiconductor field effect transistors.
  • the input power supply is a DC power supply.
  • the circuit provided by the embodiment of the present application can not only charge the capacitor in the internal circuit, but also connect to the high-voltage DC after a period of delay, that is, when the voltage difference between the internal and external voltages is small, so that the device can be effectively prevented from being connected to
  • the current impact brought by the high-voltage system protects the power supply switch and electrical equipment.
  • FIG. 1 is a schematic structural diagram of a precharge circuit provided by an embodiment of the present application
  • FIG. 2 is another schematic structural diagram of a precharge circuit provided by an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a precharge circuit provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a precharging circuit provided by the present application.
  • the precharge circuit includes an input power supply 10 , a power supply switch 11 , a switch circuit 12 , an internal circuit 13 , a drive switch circuit 14 , and a charging circuit 15 ;
  • the first output end of the input power supply 10 is connected to the first end of the power supply switch 11, the second end of the power supply switch 11 is connected to the first end of the switch circuit 12 and the first end of the internal circuit 13, respectively.
  • the second end of the switch circuit 12 is respectively connected to the second end of the input power supply 10 and the first end of the drive switch circuit 14, the third end of the switch circuit 12 is connected to the second end of the drive switch circuit 14, the The third end of the drive switch circuit 14 is connected to the second end of the internal circuit 13 and the first end of the charging circuit 15, respectively, the fourth end of the drive switch circuit 14 is connected to the second end of the charging circuit 15, the above The third end of the charging circuit 15 is connected to the second end of the above-mentioned input power supply 10;
  • the input power supply 10 charges the internal circuit 13 through the power supply switch 11 and the charging circuit 15; when the voltage of the internal circuit 13 is greater than a preset threshold, the switch circuit 12 controls all The drive switch circuit 14 is in a working state, and the input power supply 10 supplies power to the internal circuit 13 through the power supply switch 11 and the drive switch circuit 14 .
  • the working principle of the precharge circuit is as follows: when the power supply switch 11 is closed, the drive switch circuit 14 is in a non-working state, and the input power supply 10 forms a loop with the internal circuit 13 through the power supply switch 11 and the charging circuit 15 at this time. , and the internal circuit 13 is charged. When the voltage across the internal circuit 13 is greater than the threshold value of the switch circuit 12 , the charging is completed. After the charging is completed, the driving switch circuit 14 is controlled to be in the working state. When the driving switch circuit 14 is in the working state, the charging circuit 15 does not work. The input power supply 10 and the internal circuit 13 are connected through the driving switch circuit 14 and the power supply switch 11. Supply power to the consumers in the internal circuit 13 .
  • the voltage thresholds at both ends of the internal circuit 13 are determined according to actual demands and the actual voltage of the input power supply 10 , which is not specifically limited in the embodiment of the present application.
  • charging the internal circuit is actually charging the capacitor connected in parallel with both ends of the internal circuit 13, which is not shown in the figure here, and the charging capacitor is a part of the internal circuit.
  • the circuit provided by the embodiment of the present application can not only charge the capacitor in the internal circuit, but also connect to the high-voltage DC after a period of delay, that is, when the voltage difference between the internal and external voltages is small, so that the device can be effectively prevented from being connected to
  • the current impact brought by the high-voltage system protects the power supply switch and electrical equipment.
  • FIG. 2 is a schematic structural diagram of another precharging circuit provided by an embodiment of the present application, wherein the precharging circuit shown in FIG. 2 is obtained by refining the precharging circuit shown in FIG. 1 . Compared with the precharge circuit shown in FIG.
  • the above-mentioned drive switch circuit 14 includes a drive switch 201 and a first resistor R1
  • the above-mentioned switch circuit 12 includes a second resistor R2, a first switch circuit 202 and a second switch circuit 203, wherein , the first end of the drive switch 201 is connected to the second end of the input power supply 10, the second end of the drive switch 201 is respectively connected to the third end of the switch circuit 12 and the first end of the first resistor R1, the above The third end of the drive switch 201 is respectively connected to the second end of the internal circuit 13 and the first end of the charging circuit 15, the second end of the first resistor R1 is connected to the charging circuit 15; the second end of the second resistor R2 is connected to the charging circuit 15; The first end is connected to the second end of the power supply switch 11, the second end of the second resistor R2 is connected to the first end of the first switch circuit 202 and the first end of the second switch circuit 203, respectively.
  • the second end of a switch circuit 202 is respectively connected to the second end of the input power supply 10 , the second end of the second switch circuit 203 and the first end of the driving switch 201 , and the third end of the second switch circuit 203 They are respectively connected to the second end of the drive switch 201 and the first end of the first resistor R1 , and the fourth end of the second switch circuit 203 is connected to the third end of the first switch circuit 202 .
  • the driving switch in the embodiment of the present application is a thyristor
  • the thyristor is a solid-state semiconductor device, which is composed of alternating P-type and T-type substances (PNPN) to create three pn junction layers, wherein,
  • PNPN alternating P-type and T-type substances
  • the thyristor consists of three electrodes: anode, cathode, and gate.
  • the drive switch 201 ie the thyristor is in an off state, and the input power supply 10 charges the capacitor in the internal circuit 13 through the power supply switch 11 and the charging circuit 15 .
  • the first switch The circuit 202 is not in the working state, the second switching circuit 203 is in the working state, and when the first switching circuit 202 reaches the working voltage, the first switching circuit 202 is in the working state, the second switching circuit 203 is not in the working state, and the switch is driven at the same time 201 is in a working state, at this time, the input power supply 10 and the internal circuit 13 form a loop through the driving switch 201, wherein the driving switch 201 is in a low resistance state, so the charging circuit is not in a working state.
  • the circuit provided by the embodiment of the present application can not only charge the capacitor in the internal circuit, but also connect to the high-voltage DC after a period of delay, that is, when the voltage difference between the internal and external voltages is small, so that the device can be effectively prevented from being connected to
  • the current impact brought by the high-voltage system protects the power supply switch and electrical equipment.
  • FIG. 3 is another schematic structural diagram of a precharging circuit provided by an embodiment of the present application.
  • the precharge circuit shown in FIG. 3 is obtained by further refining the precharge circuit shown in FIG. 2 . Compared with the precharge circuit shown in FIG.
  • the first switch circuit 202 includes: a first switch tube Q2 , the third resistor R3, the fourth resistor R4, the first Zener diode D1, the first capacitor C1; the first end of the third resistor R3 is respectively connected with the second end of the second resistor R2 and the second switch circuit 203 The first end of the third resistor R3 is connected to the first end of the first capacitor C1, the cathode of the first Zener diode D1, the first end of the fourth resistor R4 and the first end of the first capacitor C1, respectively.
  • the gate of the switch transistor Q2 is connected, and the second end of the first capacitor C1 is respectively connected to the anode of the first Zener diode D1, the second end of the fourth resistor R4, the source of the first switch transistor Q2 and the above
  • the second end of the input power supply 10 is connected to the second end of the second switch circuit 203 , and the drain of the first switch transistor Q2 is connected to the third end of the second switch circuit 203 .
  • the above-mentioned second switch circuit 203 includes a fifth resistor R5, a sixth resistor R6, a second Zener diode D2, and a second switch transistor Q3;
  • the first end of the fifth resistor R5 is respectively connected to the second end of the second resistor R2 and the first end of the third resistor R3, and the second end of the fifth resistor R5 is respectively connected to the first end of the first switch transistor Q2.
  • the drain, the cathode of the second Zener diode D2, the first end of the sixth resistor R6, and the gate of the second switch transistor Q3 are connected, and the anode of the second Zener diode D2 is respectively connected to the sixth resistor R6
  • the second end of the second switch tube Q2, the source electrode of the second switch tube Q2, the second end of the input power supply 10 and the first end of the drive switch 201 are connected, and the drain electrode of the second switch tube Q3 is respectively connected with the first resistor
  • the first terminal of R1 is connected to the second terminal of the above-mentioned driving switch Q1.
  • the above-mentioned charging circuit 15 includes: a first diode D3, a second diode D4, a third diode D5, and a seventh resistor R7;
  • the first end of the seventh resistor R7 is connected to the third end of the drive switch Q1 and the second end of the internal circuit 13, respectively, and the second end of the seventh resistor R7 is connected to the anode of the first diode D3.
  • the cathode of the first diode D3 is respectively connected to the anode of the second diode D4 and the second end of the first resistor R1
  • the cathode of the second diode D4 is connected to the third diode D5
  • the anode of the third diode D5 is connected to the second terminal of the input power supply 10, the source of the second switch transistor Q3 and the first terminal of the driving switch Q1, respectively.
  • the drive switch Q1 in the drive switch circuit 14 is a thyristor, and the thyristor has three electrodes: an anode (A pole), a cathode (K pole) and a gate (G pole). As shown in FIG.
  • the cathode (K pole) of the semiconductor thyristor Q1 is respectively connected with the second terminal (negative terminal) of the input power supply 10, the source of the second switching transistor Q3, the sixth resistor R6, and the second Zener diode D2
  • the anode (A pole) of the thyristor is connected to the first end of the seventh resistor R7 and the second end of the internal circuit 13 respectively
  • the gate (G pole) of the thyristor is respectively connected to the first end of the seventh resistor R7 and the second end of the internal circuit 13.
  • the first end of the resistor R1 and the drain of the second switch transistor Q3 are connected.
  • the pre-charge current charges the capacitor in the internal circuit 13 through the seventh resistor R7 of the charging circuit 15, while the current passes through the second resistor R2, the fifth resistor R5, and the sixth resistor R6.
  • the voltage formed across the resistor R6 is applied to the second switch tube Q3, so that the second switch tube Q3 is turned on.
  • the drive switch Q1 is the K pole and the thyristor of the thyristor.
  • the voltage across the G pole is zero, so the thyristor Q1 is not turned on, and the precharge current also flows through the second resistor R2, the third resistor R3 and the fourth resistor R4 at this time, and the two ends of the first switch transistor Q2
  • the first capacitor C1 is connected in parallel. Therefore, the voltage across the first capacitor C1 gradually rises.
  • the first switch tube Q2 is turned on, because the conduction of the first switch tube Q2 is turned on, which pulls down the voltage of the gate of the second switch tube Q3, so the second switch tube Q3 changes from the on state to the off state.
  • the voltage formed by the third diode D5 and the second diode D4 The first resistor R1 is added to both ends of the K pole (cathode) and the G pole (gate) of the thyristor Q1, so that the thyristor Q1 is turned on, wherein the trigger threshold of the thyristor is 1.5V . Due to this delayed turn-on process, the voltage across the capacitor in the internal circuit 13 is not much different from the DC voltage input by the input power supply 10. Therefore, the current flowing through the thyristor Q1 is relatively small, which also means The entire pre-charging process is completed.
  • the thyristor Q1 passes through, the current does not pass through the charging circuit 15, and as long as the internal circuit 13 keeps working, the thyristor Q1 has current passing through it, immediately at the K pole and G of the thyristor Q1. The voltage across the pole drops below the gate turn-on threshold and remains on. After the internal circuit 13 stops working, the current through the thyristor Q1 decreases to zero. At this time, the thyristor Q1 returns to the cut-off state. After the voltage across the first capacitor C1 also decreases to zero, the whole pre- The charging circuit can enter the next pre-charging action.
  • the circuit provided by the embodiment of the present application can not only charge the capacitor in the internal circuit, but also connect to the high-voltage DC after a period of delay, that is, when the voltage difference between the internal and external voltages is small, so that the device can be effectively prevented from being connected to
  • the current impact brought by the high-voltage system protects the power supply switch and electrical equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

一种预充电路,包括供电开关(11)、驱动开关电路(14)、开关电路(12)、输入电源(10)、内部电路(13)、充电电路(15);输入电源的第一输出端与供电开关的第一端连接,供电开关的第二端分别与开关电路的第一端和内部电路的第一端连接,开关电路的第二端分别与输入电源的第二端和驱动开关电路的第一端连接,开关电路的第三端与驱动开关电路的第二端连接,驱动开关电路的第三端分别与内部电路的第二端和充电电路的第一端连接,驱动开关电路的第四端与充电电路的第二端连接,充电电路的第三端与输入电源的第二端连接;输入电源用于在供电开关闭合时通过供电开关和充电电路为内部电路充电。该预充电路能够避免设备在接入高压系统时带来的电流冲击。

Description

预充电路 技术领域
本申请涉及电气技术领域,尤其涉及一种预充电路。
背景技术
近年来,随着新能源汽车的发展,新能源汽车已成为国家新兴的战略性产业。而在汽车的内部,有一个高压直流系统,该系统内部设置有高压直流的输入电源以及许多高压的用电设备,这些用电设备的输入端口处都会设置用于滤波的电容。但是在用电设备接入高压直流系统之前,电容的电压为零,在用电设备接入高压直流系统的瞬间,由于内外极高的电压差会形成巨大的冲击电流,不但给整个系统带来浪涌电流的冲击,同时浪涌电流还会对用电设备的供电开关造成损坏。
为了改善这一现象,通常会加入一个预充电路来保护供电开关,在常见的高压直流系统中,在供电开关的两端并联一个预充电路,该预充电路中包含继电器,这种预充电路虽然能够起到保护供电开关的作用,但是继电器需专门的控制电路来闭合,从而导致电路结构复杂,同时由于继电器的尺寸也比较大,不利于整体布局。
申请内容
基于此,本申请提供一种预充电路,该预充电路能够不仅对内部电路中的电容进行充电,同时可以经过一段时间的延迟之后,即在内外电压差较小的时候接入高压直流,从而可以有效的避免设备在接入高压系统时带来的电流冲击,保护了供电开关和用电设备。
第一方面,本申请实施例提供一种预充电路,该预充电路包括供电开关、驱动开关电路、开关电路、输入电源、内部电路、充电电路;
所述输入电源的第一输出端与所述供电开关的第一端连接,所述供电开关的第二端分别与所述开关电路的第一端和所述内部电路的第一端连接,所述开关电路的第二端分别与所述输入电源的第二端和所述驱动开关电路的第一端连接,所述开关电路的第三端与所述驱动开关电路的第二端连接,所述驱动开 关电路的第三端分别与所述内部电路的第二端和所述充电电路的第一端连接,所述驱动开关电路的第四端与所述充电电路的第二端连接,所述充电电路的第三端与所述输入电源的第二端连接;
当所述供电开关闭合时,所述输入电源通过所述供电开关和所述充电电路为所述内部电路充电;所述内部电路的电压大于预设阈值时,所述开关电路控制所述驱动开关电路处于工作状态所述输入电源通过所述供电开关和所述驱动开关电路为所述内部电路供电。
在一种可能的实现方式中,所述驱动开关电路包括:驱动开关和第一电阻;
所述驱动开关的第一端连接所述输入电源的第二端,所述驱动开关的第二端分别与所述开关电路的第三端和所述第一电阻的第一端连接,所述驱动开关的第三端分别与所述内部电路的第二端和所述充电电路的第一端连接,所述第一电阻的第二端与所述充电电路连接。
在一种可能的实现方式中,所述开关电路包括:第二电阻、第一开关电路和第二开关电路;
所述第二电阻的第一端与所述供电开关的第二端连接,所述第二电阻的第二端分别与所述第一开关电路的第一端、所述第二开关电路的第一端连接,所述第一开关电路的第二端分别与所述输入电源的第二端、所述第二开关电路的第二端以及所述驱动开关的第一端连接,所述第二开关电路的第三端分别与所述驱动开关的第二端和所述第一电阻的第一端连接,所述第二开关电路的第四端与所述第一开关电路的第三端连接。
在一种可能的实现方式中,所述第一开关电路包括:第一开关管、第三电阻、第四电阻、第一稳压二极管、第一电容;
所述第三电阻的第一端分别与所述第二电阻的第二端和所述第二开关电路的第一端连接,所述第三电阻的第二端分别与所述第一电容的第一端、所述第一稳压二极管的阴极、所述第四电阻的第一端以及所述第一开关管的栅极连接,所述第一电容的第二端分别与所述第一稳压二极管的阳极、所述第四电阻的第二端、所述第一开关管的源极、所述输入电源的第二端以及所述第二开关电路的第二端连接,所述第一开关管的漏极与所述第二开关电路的第三端连接。
在一种可能的实现方式中,所述第二开关电路包括:第五电阻、第六电阻、 第二稳压二极管、第二开关管;
所述第五电阻的第一端分别与所述第二电阻的第二端和所述第三电阻的第一端连接,所述第五电阻的第二端分别与所述第一开关管的漏极、所述第二稳压二极管的阴极、所述第六电阻的第一端以及所述第二开关管的栅极连接,所述第二稳压二极管的阳极分别与所述第六电阻的第二端、所述第二开关管的源极、所述输入电源的第二端以及所述驱动开关的第一端连接,所述第二开关管的漏极分别与所述第一电阻的第一端和所述驱动开关的第二端连接。
在一种可能的实现方式中,所述充电电路包括:第一二极管、第二二极管、第三二极管、第七电阻;
所述第七电阻的第一端分别与所述驱动开关的第三端、所述内部电路的第二端连接,所述第七电阻的第二端与所述第一二极管的阳极连接,所述第一二极管的阴极分别与所述第二二极管的阳极和所述第一电阻的第二端连接,所述第二二极管的阴极与所述第三二极管的阳极连接,所述第三二极管的阴极分别与所述输入电源的第二端、所述第二开关管的源极以及所述驱动开关的第一端连接。
在一种可能的实现方式中,所述驱动开关为半导体晶闸管;
所述第一开关管与所述第二开关管为金属-氧化物-半导体场效应晶体管。
在一种可能的实现方式中,所述输入电源为直流电源。
本申请实施例提供的电路能够不仅对内部电路中的电容进行充电,同时可以经过一段时间的延迟之后,即在内外电压差较小的时候接入高压直流,从而可以有效的避免设备在接入高压系统时带来的电流冲击,保护了供电开关和用电设备。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种预充电路的结构示意图;
图2为本申请实施例提供的一种预充电路的另一结构示意图;
图3为本申请实施例提供的一种预充电路的又一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1为本申请提供的一种预充电路的结构示意图。如图1所示,该预充电路包括输入电源10、供电开关11、开关电路12、内部电路13、驱动开关电路14、充电电路15;
上述输入电源10的第一输出端与上述供电开关11的第一端连接,上述供电开关11的第二端分别与上述开关电路12的第一端和上述内部电路13的第一端连接,上述开关电路12的第二端分别与上述输入电源10的第二端和上述驱动开关电路14的第一端连接,上述开关电路12的第三端与上述驱动开关电路14的第二端连接,上述驱动开关电路14的第三端分别与上述内部电路13的第二端和上述充电电路15的第一端连接,上述驱动开关电路14的第四端与上述充电电路15的第二端连接,上述充电电路15的第三端与上述输入电源10的第二端连接;
当上述供电开关11闭合时,上述输入电源10通过上述供电开关11和上述充电电路15为上述内部电路13充电;当所述内部电路13的电压大于预设 阈值时,所述开关电路12控制所述驱动开关电路14处于工作状态,上述输入电源10通过上述供电开关11和上述驱动开关电路14为上述内部电路13供电。
本申请实施例提供的预充电路的工作原理如下:在供电开关11闭合时,驱动开关电路14为不工作的状态,此时输入电源10通过供电开关11以及充电电路15与内部电路13形成回路,并对内部电路13进行充电,开关电路12在内部电路13两端的电压大于阈值时,即充电完成。待充电完成后,控制驱动开关电路14处于工作状态,驱动开关电路14处于工作状态时,充电电路15不工作,输入电源10与内部电路13通过驱动开关电路14以及供电开关11连通,输入电源10为内部电路13中的用电设备供电。
其中,内部电路13两端的电压阈值依据实际需求和实际输入电源10的电压而定,本申请实施例对此不作具体限定。
可选地,在为内部电路充电实际上是为并联在内部电路13两端的电容充电,这里并未将电容在图中画出,该充电电容作为内部电路的一部分。
本申请实施例提供的电路能够不仅对内部电路中的电容进行充电,同时可以经过一段时间的延迟之后,即在内外电压差较小的时候接入高压直流,从而可以有效的避免设备在接入高压系统时带来的电流冲击,保护了供电开关和用电设备。
请参阅图2,图2为本申请实施例提供的另一种预充电路的结构示意图,其中,图2所示的预充电路是对图1所示的预充电路进行细化得到的,与图1所示的预充电路相比,上述驱动开关电路14包括驱动开关201和第一电阻R1,上述开关电路12包括第二电阻R2、第一开关电路202和第二开关电路203,其中,上述驱动开关201的第一端连接上述输入电源10的第二端,上述驱动开关201的第二端分别与上述开关电路12的第三端和上述第一电阻R1的第一端连接,上述驱动开关201的第三端分别与上述内部电路13的第二端和上述充电电路15的第一端连接,上述第一电阻R1的第二端与上述充电电路15连接;上述第二电阻R2的第一端与上述供电开关11的第二端连接,上述第二电阻R2的第二端分别与上述第一开关电路202的第一端、上述第二开关电路203的第一端连接,上述第一开关电路202的第二端分别与上述输入电源 10的第二端、上述第二开关电路203的第二端以及上述驱动开关201的第一端连接,上述第二开关电路203的第三端分别与上述驱动开关201的第二端和上述第一电阻R1的第一端连接,上述第二开关电路203的第四端与上述第一开关电路202的第三端连接。
具体地,本申请实施例中的驱动开关为半导体闸流管,半导体闸流管是固态的半导体器件,它由交替的P类和T类物质(PNPN)构成创建三个pn结层,其中,半导体闸流管包含三个电极:阳极、阴极、门极,当门极电压大于门极触发电压阈值时,该半导体闸流管就从截止状态变为导通状态,在半导体闸流管导通之后,即使门极电压低于触发的电压阈值,但是只要流经的电流不低于一定的限值之下,就会维持导通状态。
具体地,在供电开关11闭合后,此时,驱动开关201即半导体闸流管处于截止状态,输入电源10通过供电开关11以及充电电路15为内部电路13中的电容充电,此时第一开关电路202未处于工作状态,第二开关电路203处于工作状态,而当第一开关电路202到达工作电压后,第一开关电路202处于工作状态,第二开关电路203不处于工作状态,同时驱动开关201处于工作状态,此时,输入电源10与内部电路13通过驱动开关201形成回路,其中驱动开关201处于低阻状态,因此,充电电路不处于工作状态。
本申请实施例提供的电路能够不仅对内部电路中的电容进行充电,同时可以经过一段时间的延迟之后,即在内外电压差较小的时候接入高压直流,从而可以有效的避免设备在接入高压系统时带来的电流冲击,保护了供电开关和用电设备。
请参阅图3,图3为本申请实施例提供的一种预充电路的又一结构示意图。如图3所示的预充电路是对图2所示的预充电路进一步细化得到的,与图2所示的预充电路相比,上述第一开关电路202包括:第一开关管Q2、第三电阻R3、第四电阻R4、第一稳压二极管D1、第一电容C1;上述第三电阻R3的第一端分别与上述第二电阻R2的第二端和上述第二开关电路203的第一端连接,上述第三电阻R3的第二端分别与上述第一电容C1的第一端、上述第一稳压二极管D1的阴极、上述第四电阻R4的第一端以及上述第一开关管Q2 的栅极连接,上述第一电容C1的第二端分别与上述第一稳压二极管D1的阳极、上述第四电阻R4的第二端、上述第一开关管Q2的源极以及上述输入电源10的第二端以及上述第二开关电路203的第二端连接,上述第一开关管Q2的漏极与上述第二开关电路203的第三端连接。
上述第二开关电路203包括第五电阻R5、第六电阻R6、第二稳压二极管D2、第二开关管Q3;
上述第五电阻R5的第一端分别与上述第二电阻R2的第二端和上述第三电阻R3的第一端连接,上述第五电阻R5的第二端分别与上述第一开关管Q2的漏极、上述第二稳压二极管D2的阴极、上述第六电阻R6的第一端以及上述第二开关管Q3的栅极连接,上述第二稳压二极管D2的阳极分别与上述第六电阻R6的第二端、上述第二开关管Q2的源极、上述输入电源10的第二端以及所述驱动开关201的第一端连接,上述第二开关管Q3的漏极分别与上述第一电阻R1的第一端和上述驱动开关Q1的第二端连接。
上述充电电路15包括:第一二极管D3、第二二极管D4、第三二极管D5、第七电阻R7;
上述第七电阻R7的第一端分别与上述驱动开关Q1的第三端、上述内部电路13的第二端连接,上述第七电阻R7的第二端与上述第一二极管D3的阳极连接,上述第一二极管D3的阴极分别与上述第二二极管D4的阳极和上述第一电阻R1的第二端连接,上述第二二极管D4的阴极与上述第三二极管D5的阳极连接,上述第三二极管D5的阴极分别与上述输入电源10的第二端、上述第二开关管Q3的源极以及上述驱动开关Q1的第一端连接。
具体地,驱动开关电路14中的驱动开关Q1为半导体闸流管,上述半导体闸流管具有三个电极:阳极(A极)、阴极(K极)以及门极(G极)。如图3所示,该半导体晶闸管Q1的阴极(K极)分别与输入电源10的第二端(负极端)、第二开关管Q3的源极、第六电阻R6、第二稳压二极管D2的阳极连接,该半导体闸流管的阳极(A极)分别与第七电阻R7第一端和内部电路13的第二端连接,上述半导体闸流管的门极(G极)分别与第一电阻R1的第一端、第二开关管Q3的漏极连接。在供电开关11闭合时,预充电流通过充电电路15的第七电阻R7对内部电路13中的电容充电,同时电流通过第二电阻 R2、第五电阻R5、以及第六电阻R6,在第六电阻R6两端形成的电压加在第二开关管Q3上,使得第二开关管Q3导通,此时,因为第二开关管Q3的导通,此时驱动开关Q1即半导体晶闸管的K极和G极两端的电压为零,所以半导体闸流管Q1不导通,并且此时预充电流也流过第二电阻R2、第三电阻R3以及第四电阻R4,第一开关管Q2的两端并联了第一电容C1,因此,第一电容C1两端的电压逐渐上升,当升到第一开关管Q2的电压导通阈值时,第一开关管Q2导通,因为第一开关管Q2的导通,拉低了第二开关管Q3栅极的电压,所以第二开关管Q3从导通状态变为截止状态,此时,第三二极管D5和第二二极管D4的形成的电压通过第一电阻R1加在半导体闸流管Q1的K极(阴极)和G极(门极)两端,使得该半导体闸流管Q1导通,其中,半导体闸流管的触发阈值为1.5V。在由于这个延迟导通的过程,使得内部电路13中的电容两端的电压与输入电源10输入的直流电压相差不大,因此,流过半导体闸流管Q1的电流就比较小,这也代表着整个预充过程的完成。
进一步地,在半导体闸流管Q1导通过后,电流不再经过充电电路15,只要内部电路13保持工作,半导体闸流管Q1有电流经过,即时在该半导体闸流管Q1的K极和G极两端的电压降到门极导通阈值以下,仍保持导通状态。在内部电路13停止工作之后,经过半导体闸流管Q1的电流降低为零,此时,该半导体闸流管Q1恢复至截止状态,在第一电容C1两端的电压也降低为零之后,整个预充电路就可进入下一个预充动作中了。
本申请实施例提供的电路能够不仅对内部电路中的电容进行充电,同时可以经过一段时间的延迟之后,即在内外电压差较小的时候接入高压直流,从而可以有效的避免设备在接入高压系统时带来的电流冲击,保护了供电开关和用电设备。
以上上述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种预充电路,其特征在于,包括供电开关、驱动开关电路、开关电路、输入电源、内部电路、充电电路;
    所述输入电源的第一输出端与所述供电开关的第一端连接,所述供电开关的第二端分别与所述开关电路的第一端和所述内部电路的第一端连接,所述开关电路的第二端分别与所述输入电源的第二端和所述驱动开关电路的第一端连接,所述开关电路的第三端与所述驱动开关电路的第二端连接,所述驱动开关电路的第三端分别与所述内部电路的第二端和所述充电电路的第一端连接,所述驱动开关电路的第四端与所述充电电路的第二端连接,所述充电电路的第三端与所述输入电源的第二端连接;
    当所述供电开关闭合时,所述输入电源通过所述供电开关和所述充电电路为所述内部电路充电;当所述内部电路的电压大于预设阈值时,所述开关电路控制所述驱动开关电路处于工作状态,所述输入电源通过所述供电开关和所述驱动开关电路为所述内部电路供电。
  2. 根据权利要求1所述的预充电路,其特征在于,所述驱动开关电路包括驱动开关和第一电阻;
    所述驱动开关的第一端连接所述输入电源的第二端,所述驱动开关的第二端分别与所述开关电路的第三端和所述第一电阻的第一端连接,所述驱动开关的第三端分别与所述内部电路的第二端和所述充电电路的第一端连接,所述第一电阻的第二端与所述充电电路的第二端连接。
  3. 根据权利要求2所述的预充电路,其特征在于,所述开关电路包括:第二电阻、第一开关电路和第二开关电路;
    所述第二电阻的第一端与所述供电开关的第二端连接,所述第二电阻的第二端分别与所述第一开关电路的第一端、所述第二开关电路的第一端连接,所述第一开关电路的第二端分别与所述输入电源的第二端、所述第二开关电路的第二端以及所述驱动开关的第一端连接,所述第二开关电路的第三端分别与所 述驱动开关的第二端和所述第一电阻的第一端连接,所述第二开关电路的第四端与所述第一开关电路的第三端连接。
  4. 根据权利要求3所述的预充电路,其特征在于,所述第一开关电路包括:第一开关管、第三电阻、第四电阻、第一稳压二极管、第一电容;
    所述第三电阻的第一端分别与所述第二电阻的第二端和所述第二开关电路的第一端连接,所述第三电阻的第二端分别与所述第一电容的第一端、所述第一稳压二极管的阴极、所述第四电阻的第一端以及所述第一开关管的栅极连接,所述第一电容的第二端分别与所述第一稳压二极管的阳极、所述第四电阻的第二端、所述第一开关管的源极、所述输入电源的第二端以及所述第二开关电路的第二端连接,所述第一开关管的漏极与所述第二开关电路的第三端连接。
  5. 根据权利要求4所述的预充电路,其特征在于,所述第二开关电路包括:第五电阻、第六电阻、第二稳压二极管、第二开关管;
    所述第五电阻的第一端分别与所述第二电阻的第二端和所述第三电阻的第一端连接,所述第五电阻的第二端分别与所述第一开关管的漏极、所述第二稳压二极管的阴极、所述第六电阻的第一端以及所述第二开关管的栅极连接,所述第二稳压二极管的阳极分别与所述第六电阻的第二端、所述第二开关管的源极、所述输入电源的第二端以及所述驱动开关的第一端连接,所述第二开关管的漏极分别与所述第一电阻的第一端和所述驱动开关的第二端连接。
  6. 根据权利要求5所述的预充电路,其特征在于,所述充电电路包括:第一二极管、第二二极管、第三二极管、第七电阻;
    所述第七电阻的第一端分别与所述驱动开关的第三端、所述内部电路的第二端连接,所述第七电阻的第二端与所述第一二极管的阳极连接,所述第一二极管的阴极分别与所述第二二极管的阳极和所述第一电阻的第二端连接,所述第二二极管的阴极与所述第三二极管的阳极连接,所述第三二极管的阴极分别与所述输入电源的第二端、所述第二开关管的源极以及所述驱动开关的第一端连接。
  7. 根据权利要求1-6任一项所述的预充电路,其特征在于,所述驱动开关为半导体晶闸管。
  8. 根据权利要求7所述的预充电路,其特征在于,所述第一开关管与所述第二开关管为金属-氧化物-半导体场效应晶体管。
  9. 根据权利要求8所述的预充电路,其特征在于,所述输入电源为直流电源。
PCT/CN2020/102145 2020-07-15 2020-07-15 预充电路 WO2022011602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/102145 WO2022011602A1 (zh) 2020-07-15 2020-07-15 预充电路
CN202080006282.XA CN113056856A (zh) 2020-07-15 2020-07-15 预充电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102145 WO2022011602A1 (zh) 2020-07-15 2020-07-15 预充电路

Publications (1)

Publication Number Publication Date
WO2022011602A1 true WO2022011602A1 (zh) 2022-01-20

Family

ID=76509770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102145 WO2022011602A1 (zh) 2020-07-15 2020-07-15 预充电路

Country Status (2)

Country Link
CN (1) CN113056856A (zh)
WO (1) WO2022011602A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190202300A1 (en) * 2018-01-03 2019-07-04 Lear Corporation Pre-Charging DC Link Capacitor of On-Board Charger (OBC) Using Traction Battery
CN110247541A (zh) * 2018-03-08 2019-09-17 鸿富锦精密电子(天津)有限公司 可抑制冲击电流的供电电路
CN110635676A (zh) * 2019-11-05 2019-12-31 中国船舶重工集团公司第七0五研究所 一种自举式预充电缓启动充电电路
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190202300A1 (en) * 2018-01-03 2019-07-04 Lear Corporation Pre-Charging DC Link Capacitor of On-Board Charger (OBC) Using Traction Battery
CN110247541A (zh) * 2018-03-08 2019-09-17 鸿富锦精密电子(天津)有限公司 可抑制冲击电流的供电电路
CN110635676A (zh) * 2019-11-05 2019-12-31 中国船舶重工集团公司第七0五研究所 一种自举式预充电缓启动充电电路
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置

Also Published As

Publication number Publication date
CN113056856A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2015196632A1 (zh) 直流电源的浪涌电流抑制方法及电路
CN110401344A (zh) 一种飞跨电容充电装置及飞跨电容三电平斩波电路
CN102684656B (zh) 栅极电路
CN110635676A (zh) 一种自举式预充电缓启动充电电路
WO2021203722A1 (zh) 负载接入检测方法、开关电路与电池管理系统
CN212162803U (zh) 一种冲击电流抑制及防反接保护电路
CN207069897U (zh) 启动电路及反激式开关电源
CN109889028B (zh) 一种吸收电容预充电电路和尖峰电压吸收电路
CN106356823A (zh) 集成于芯片内的浪涌保护电路
CN108429445A (zh) 一种应用于电荷泵的软启动电路
WO2022267988A1 (zh) 一种充电控制电路、充电控制系统与充电器
WO2016124104A1 (zh) 一种适用于晶闸管的混合触发电路
CN212969451U (zh) 一种三电平boost装置
CN206865354U (zh) 一种抑制上电冲击的Boost电路
CN104716135A (zh) 静电保护电路
WO2022011602A1 (zh) 预充电路
CN203933358U (zh) 一种用于高频低压系统的场效应管驱动电路
CN105846665A (zh) 一种具有自保护功能的常通型SiC JFET驱动电路
CN102005909A (zh) 一种开关电源的栅极驱动电路
CN116191627A (zh) 一种充电器供电电路
CN212572132U (zh) 预充电路
CN106921209B (zh) 充电电路及充电方法
CN207166838U (zh) 一种背光恒流驱动电路
CN206313653U (zh) 电源控制电路和电流保护电路
CN106452037A (zh) 电源控制电路和电流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945444

Country of ref document: EP

Kind code of ref document: A1