WO2022267988A1 - 一种充电控制电路、充电控制系统与充电器 - Google Patents

一种充电控制电路、充电控制系统与充电器 Download PDF

Info

Publication number
WO2022267988A1
WO2022267988A1 PCT/CN2022/099397 CN2022099397W WO2022267988A1 WO 2022267988 A1 WO2022267988 A1 WO 2022267988A1 CN 2022099397 W CN2022099397 W CN 2022099397W WO 2022267988 A1 WO2022267988 A1 WO 2022267988A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
charging control
control circuit
power supply
pin
Prior art date
Application number
PCT/CN2022/099397
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2022267988A1 publication Critical patent/WO2022267988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits

Definitions

  • the present application relates to the technical field of electronic circuits, in particular to a charging control circuit, a charging control system and a charger.
  • Using multiple strings of high-rate batteries for power supply is a common power supply method in many industries, such as the drone industry.
  • commonly used batteries are rechargeable batteries.
  • the embodiment of the present application aims to provide a charging control circuit, a charging control system and a charger, which can prolong the service life of the battery.
  • the present application provides a charging control circuit, including:
  • a slow start module the first end of the slow start module is used to connect to the positive pole of the input power supply, and the slow start module is used to charge or discharge according to the input power supply;
  • a first switch module the first end of the first switch module is connected to the first end of the slow start module, the second end of the first switch module is connected to the second end of the slow start module, the The third terminal of the first switch module is used to connect to the positive pole of the battery, and the first switch module is used to adjust the first switch according to the voltage between the first terminal and the second terminal of the first switch module The voltage difference between the first terminal and the third terminal of the module.
  • the first switch module includes a first switch tube
  • the first end of the first switch tube is connected to the second end of the slow start module, the second end of the first switch tube is connected to the first end of the slow start module, and the first switch tube
  • the third terminal is used to connect with the positive pole of the battery.
  • the slow start module includes a first capacitor, a first resistor and a second resistor;
  • the first capacitor is connected in parallel with the first resistor, the first circuit formed by the first capacitor and the first resistor in parallel is connected in series with the second resistor, and the first end of the first circuit is connected to the second resistor in series.
  • a connection point between the first ends of the second resistor is connected to the second end of the first switch module, and the second end of the first circuit is connected to the first end of the first switch module.
  • the charging control circuit further includes a first Zener diode
  • the anode of the first zener diode is connected to the second end of the first switch module, and the cathode of the first zener diode is connected to the first end of the first switch module.
  • the charging control circuit further includes a first interface
  • At least one pin is set on the first interface, the first pin of the at least one pin is used to connect with the negative pole of the battery, the second pin is connected to the third terminal of the slow start module connected, the third pin is connected to the third end of the first switch module, wherein the first pin is short-circuited with the second pin.
  • the charging control circuit further includes a second capacitor
  • the first terminal of the second capacitor is connected to the first terminal of the first switch module, and is used to connect to the positive pole of the input power supply, and the second terminal of the second capacitor is grounded, and is used to be connected to the positive pole of the input power supply. Negative connection of the power supply.
  • the charging control circuit further includes an anti-backflow module, and the first switch module is configured to connect to the positive pole of the input power supply through the anti-backflow module;
  • the first end of the anti-backflow module is used to connect to the positive pole of the input power supply
  • the second end of the anti-backflow module is connected to the first end of the first switch module
  • the anti-backflow module is used to The voltage of the input power supply and the voltage of the first terminal of the first switch module control the connection state between the input power supply and the first terminal of the first switch module.
  • the anti-backflow module includes an ideal diode controller and a second switch tube;
  • the first end of the second switch tube is connected to the gate pin of the ideal diode controller, the second end of the second switch tube is connected to the input voltage detection pin of the ideal diode controller, and Used to connect with the anode of the input power supply, the third end of the second switch tube is connected to the main power supply pin of the ideal diode controller and the output voltage detection pin of the ideal diode controller, the Both the shutdown pin and the ground pin of the ideal diode controller are connected to ground.
  • the anti-backflow module further includes a third capacitor and a third resistor
  • the third capacitor is connected in series with the third resistor, the non-serial connection end of the third capacitor is grounded, and the connection point between the third capacitor and the third resistor is connected to the ideal diode controller.
  • the main power supply pin is connected, and the non-serial connection end of the third resistor is connected to the third end of the second switch tube.
  • an embodiment of the present application provides a charging control system, including:
  • the charging control circuits are connected in parallel.
  • an embodiment of the present application provides a charger, including the above charging control system.
  • the charging control circuit provided by the present application includes a slow start module and a first switch module, when the first end of the slow start module is connected to the positive pole of the input power supply, the slow start module starts to charge, Then the voltage between the first terminal and the second terminal of the slow start module gradually increases, that is, the voltage between the first terminal and the second terminal of the first switch module also gradually increases, which will cause the first switch
  • the voltage difference between the first terminal and the third terminal of the module gradually decreases, even if the voltage of the third terminal of the first switch module gradually increases, when the third terminal of the first switch module is connected to the positive pole of the battery, it is the battery
  • the charging voltage also increases gradually.
  • the voltage for charging the battery will not increase instantaneously and produce a peak voltage phenomenon.
  • the battery will not be damaged by the peak voltage as in the prior art, so The purpose of prolonging the service life of the battery can be achieved.
  • FIG. 1 is a schematic structural diagram of a charging control system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a charging control circuit provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the circuit structure of the charging control circuit provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a charging control circuit provided by another embodiment of the present application.
  • FIG. 5 is a schematic circuit structure diagram of a charging control circuit provided by another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a charging control system provided by an embodiment of the present application.
  • the charging control system includes at least one charging control circuit, and the charging control circuits are connected in parallel.
  • the charging control system includes a charging control circuit A1, a charging control circuit A2, a charging control circuit A3...a charging control circuit An, wherein n is a positive integer greater than 0.
  • the first terminal of the charging control circuit A1 is used to connect to the positive pole V+ of the input power supply
  • the second terminal of the charging control circuit A1 is used to connect to the negative pole V- of the input power supply
  • the third terminal of the charging control circuit A1 is used to connect to the battery B1
  • the positive pole B1+ of the charging control circuit A1 is connected to the negative pole B1- of the battery B1, and so on.
  • the specific connection method of each branch of the charging control circuit is similar to that of the charging control circuit A1. Within the scope that is easily understood by a skilled person, details will not be repeated here.
  • each charging control circuit is used to control the charging process of the battery connected to the charging control circuit.
  • the charging control circuit A1 For controlling the charging process of the battery B1, for example, when the battery B1 needs to be charged, the charging control circuit A1 can control the connection between the input power and the control battery B1, so as to charge the battery B1 through the input power.
  • the charging control circuit A1 is used for illustration, and the actual application of other charging control circuits is similar to that of the charging control circuit A1.
  • the control circuit A1 includes a slow start module 10 and a first switch module 20, wherein the first terminal of the slow start module 10 is used to connect to the positive pole V+ of the input power supply, and the first terminal of the first switch module 20 It is connected with the first terminal of the slow start module 10, the second terminal of the first switch module 20 is connected with the second terminal of the slow start module 10, and the third terminal of the first switch module 20 is used for connecting with the positive pole B1+ of the battery B1.
  • the charging control circuit A1 when the charging control circuit A1 is connected to the input power and the battery B1, first, the input power can charge the slow start module 10, and as the slow start module 10 is charged, the first terminal of the slow start module 10 and the second The voltage between the two terminals increases, that is, the voltage between the first terminal and the second terminal of the first switch module 20 is increasing, so that the voltage difference between the first terminal and the third terminal of the first switch module 20 can decreases, so the voltage of the third terminal of the first switch module 20 gradually increases from 0.
  • the voltage of the third terminal of the first switch module 20 is used to charge the battery B1, it can be seen that the voltage for charging the battery B1 is gradually increasing, in other words, the voltage for charging the battery B1 is a process of gradually increasing, Therefore, there will be no phenomenon of peak voltage due to instantaneous voltage increase, that is, the battery will not be damaged by the peak voltage as in the prior art, so the service life of the battery can be prolonged.
  • the first switch module 20 includes a first switch tube, please refer to FIG. The second end is connected, the source of the PMOS transistor Q1 is connected to the first end of the slow start module 10, and the drain of the PMOS transistor Q1 is used to connect to the positive electrode B1+ of the battery B1 through the interface OUT1.
  • the PMOS transistor Q1 can control the connection state between the interface IN1 and the interface OUT1.
  • the interface IN1 is connected to the input power supply and the interface OUT1 is connected to the battery B1
  • the connection state between the interface IN1 and the interface OUT1 is semi-connected at this time, and the connection state on the interface OUT1
  • the voltage is related to the conduction degree of the PMOS transistor Q1. As the conduction degree of the PMOS transistor Q1 deepens, that is, the equivalent resistance of the PMOS transistor Q1 becomes smaller, and the voltage on the interface OUT1 increases.
  • the connection state between the interface IN1 and the interface OUT1 is a connected state, and the voltage on the interface OUT1 is the voltage on the source of the PMOS transistor Q1. If the PMOS transistor Q1 is disconnected, the connection state between the interface IN1 and the interface OUT1 is disconnected. At this time, even if the interface IN1 is connected to the input power, the battery B1 will not be charged.
  • the slow start module 10 includes a first capacitor C1, a first resistor R1 and a second resistor R2, wherein the first capacitor C1 and the first resistor R1 are connected in parallel, and the first capacitor C1 and the first resistor R1 are connected in parallel to form a
  • the first circuit is connected in series with the second resistor R2, and the connection point P1 between the first end of the first circuit and the first end of the second resistor R2 is connected to the second end of the first switch module 20 (that is, the gate of the PMOS transistor Q1 pole), and the second end of the first circuit is connected to the first end of the first switch module 10 (that is, the source of the PMOS transistor Q1).
  • the first capacitor C1 When the interface IN1 is connected to the power supply, the first capacitor C1 will be charged, and the voltage across the first capacitor C1 will gradually increase, and because the voltage across the first power supply C1 is the voltage between the gate and the source of the PMOS transistor Q1 , the voltage between the gate and the source of the PMOS transistor Q1 gradually increases, the PMOS transistor Q1 is gradually turned on, and the degree of conduction deepens as the voltage across the first capacitor C1 increases. When the voltage across the first capacitor C1 reaches the turn-on voltage of the PMOS transistor Q1 , the PMOS transistor Q1 is completely turned on.
  • the charging control circuit A1 further includes a first voltage stabilizing diode DW1, wherein the anode of the first voltage stabilizing diode DW1 is connected to the second end of the first switching module 20 (ie, the gate of the PMOS transistor Q1), and the second The cathode of the Zener diode DW1 is connected to the second terminal of the first switch module 20 (ie, the source of the PMOS transistor Q1 ).
  • the first Zener diode DW1 is used to protect the PMOS transistor Q1, so as to prevent the voltage between the gate and the source of the PMOS transistor Q1 from being too high and damage the PMOS transistor Q1.
  • the charging control circuit further includes a first interface J1, and at least one pin is provided on the first interface J1.
  • the first interface J1 is provided with four pins as an example, wherein the first pin is connected to the third end of the slow start module 10 (ie, the non-serial end of the second resistor R2), and the second pin is grounded DGND, the second pin is also used to connect to the negative electrode B1- of the battery B1 through the interface OUT2, the third pin and the fourth pin are both connected to the third end of the first switch module 20 (that is, the drain of the PMOS transistor Q1) connection, where pin 1 and pin 2 are shorted.
  • the first pin is connected to the third end of the slow start module 10 (ie, the non-serial end of the second resistor R2), and the second pin is grounded DGND, the second pin is also used to connect to the negative electrode B1- of the battery B1 through the interface OUT2, the third pin and the fourth pin are both connected to the third end of the first switch module 20 (that is, the drain of the PMOS transistor Q1) connection, where pin 1 and pin 2 are shorted.
  • the negative poles of the entire circuit are connected together, in other words, only the negative pole B1- of the battery B1 is inserted
  • the charging control circuit A1 will only have output when the circuit is connected, and it can also prevent the voltage and current impact of the input power on the battery to a certain extent, and can effectively prolong the service life of the battery.
  • the power consumption of the charging control circuit A1 can be reduced, and the strict standby power consumption requirement of the power supply can be met.
  • the charging detection circuit A1 further includes a second capacitor C2, the first end of the second capacitor C2 is connected to the source of the PMOS transistor Q1, the second end of the second capacitor C2 is grounded to DGND, and the second end of the second capacitor C2 The terminal is also used to connect with the negative pole V- of the input power supply through the interface IN2.
  • the second capacitor C2 is used for filtering the input power.
  • the first capacitor C1 is charged first.
  • the PMOS transistor Q1 since the voltage between the gate and the source of the PMOS transistor Q1 is still relatively low and lower than the turn-on voltage of the PMOS transistor Q1, the PMOS transistor Q1 is in a semiconductor state, and, with the voltage across the first capacitor C1 The conduction degree of the PMOS transistor Q1 is also deepened, until the voltage across the first capacitor C1 is greater than or equal to the turn-on voltage of the PMOS transistor Q1, and the PMOS transistor is completely turned on. Therefore, it is possible to avoid the phenomenon of a spike in the voltage charging the battery B1, and protect the battery from being damaged by the spike voltage.
  • the period from the time when the first capacitor C1 is charged to the complete conduction of the PMOS transistor Q1 depends on the capacitance value of the first capacitor C1 or the resistance value of the second resistor R2, that is, the length of this period of time can be changed It can be realized by changing the capacitance value of the first capacitor C1 or the resistance value of the second resistor R2 or changing the capacitance value of the first capacitor C1 and the resistance value of the second resistor R2 at the same time.
  • the capacitance value of a capacitor C1, ln represents the natural logarithm
  • E is the voltage at both ends of the circuit after the first resistor R1 and the second resistor R2 are connected in series when the first capacitor C1 starts charging
  • V is the voltage at both ends of the circuit when the PMOS transistor is fully turned on The voltage at both ends of the circuit after the first resistor R1 and the second resistor R2 are connected in series.
  • the PMOS transistor Q1 is set between the positive pole V+ of the input power supply and the positive pole B1+ of the battery B1, that is, the PMOS transistor Q1 can be used to turn off the connection between the two positive poles, compared to turning off the connection between the two negative poles.
  • the solution of the present application is more thorough in shutting down the power supply, which can be used in application scenarios where the power supply and the signal are mixed.
  • the first switch transistor is taken as an example to be a PMOS transistor, and in other embodiments, the first switch transistor may also be a switching element such as a triode or an IGBT switch transistor.
  • the base of the triode is the first end of the first switching tube
  • the emitter of the triode is the second end of the first switching tube
  • the collector of the triode is the third end of the first switching tube.
  • the gate of the PMOS tube is the first end of the second switch tube
  • the source of the PMOS tube is the second end of the first switch tube
  • the drain of the PMOS tube is the third end of the first switch tube. end.
  • the gate of the IGBT switching tube is the first end of the first switching tube
  • the emitter of the IGBT switching tube is the second end of the first switching tube
  • the collector of the IGBT switching tube is the first end of the first switching tube. The third terminal of the switch tube.
  • circuit structure of the charging control circuit A1 shown in FIG. one or more components, or may have different component configurations, the various components shown in the figure may be implemented in hardware, software, or both, including one or more signal processing and/or application specific integrated circuits implemented in a combination.
  • the charging control circuit A1 further includes an anti-backflow module 30 , and the first switch module 20 is connected to the positive pole V+ of the input power supply through the anti-backflow module 30 .
  • the first end of the anti-backflow module 30 is used to connect with the positive pole V+ of the input power supply, and the second end of the anti-backflow module 30 is connected with the first end of the first switch module 20.
  • the anti-backflow module 30 is used for controlling the connection state between the input power supply and the first terminal of the first switch module 20 according to the voltage of the input power supply and the voltage of the first terminal of the first switch module 20 .
  • the anti-backflow module 30 controls the connection state between the input power and the first terminal of the first switch module 20 to be connected.
  • the anti-backflow module 30 controls the connection state between the input power supply and the first terminal of the first switch module 20 to be disconnected.
  • the anti-backflow module 30 includes an ideal diode controller U1 and a second switch transistor Q2 (NMOS transistor Q2 at this time), and the ideal diode controller U1 includes a GATE gate pin, an IN Input voltage pin, OUT output pin, OFF pin, GND ground pin and VS main power supply pin.
  • the GATE gate pin is connected to the gate of the NMOS transistor Q2
  • the IN input power supply pin is connected to the source of the NMOS transistor Q2
  • the IN input power supply pin is also used to connect to the positive pole V+ of the input power supply
  • the OUT output pin It is connected to the drain of the NOMS tube, the OFF pin and the GND ground pin are grounded, and the VS main power supply pin is connected to the drain of the NOMS tube.
  • the ideal diode controller of model LM5050-1 is taken as an example, and the ideal diode controller of LM5050-1 can be used in conjunction with NMOS to disconnect the NOMS in time when the current flows in the reverse direction.
  • the specific pin definitions may be different, but the functions and signal definitions Are the same. If other types of ideal diode controllers are used, they can be configured in a manner similar to that of the above-mentioned embodiments, which is within the scope of easy understanding by those skilled in the art, and will not be repeated here.
  • the IN input power supply pin is used to detect the voltage of the input power supply
  • the OUT output pin is used to detect the drain voltage of the NOMS tube
  • the VS main power supply pin is used as the working voltage input pin of the ideal diode controller U1.
  • the NMOS transistor Q2 is controlled. Disconnect, thus playing the role of anti-backflow.
  • the charging control circuit when applied to a charging control system, it can also prevent different batteries from charging each other due to the difference in the height of the batteries.
  • the second switch tube can also be a switch element such as a triode or an IGBT switch tube.
  • the first switch tube and the second switch tube may be the same or different, for example, the first switch tube is a triode, and the second switch tube is an NMOS tube.
  • the second switch tube is an NMOS tube
  • the gate of the NMOS tube is the first end of the second switch tube
  • the source of the NMOS tube is the second switch tube.
  • the second end of the transistor, the drain of the NMOS transistor is the third end of the second switch transistor.
  • the anti-backflow module 30 further includes a third capacitor C3 and a third resistor R3, wherein the third capacitor C3 and the third resistor R3 are connected in series, the non-serial connection terminal of the third capacitor C3 is grounded DGND, and the third capacitor C3
  • the connection point with the third resistor R3 is connected with the VS main power supply pin of the ideal diode controller U1, and the non-serial connection end of the third resistor R3 is connected with the drain of the NMOS transistor Q2.
  • the third capacitor C3 is used to filter the input voltage of the VS main power supply pin, and the third resistor R3 is used to limit the input current of the VS main power supply pin to protect the ideal diode controller U1.
  • An embodiment of the present application further provides a charger, which includes the charging control system in any one of the above embodiments.

Abstract

本申请实施例公开了一种充电控制电路、充电控制系统与充电器,充电控制电路,包括缓启动模块与第一开关模块,其中,缓启动模块的第一端用于与输入电源的正极连接,缓启动模块用于根据输入电源进行充电或放电,第一开关模块的第一端与缓启动模块的第一端连接,第一开关模块的第二端与缓启动模块的第二端连接,第一开关模块的第三端用于与电池的正极连接,第一开关模块用于根据第一开关模块的第一端与第二端之间的电压调节第一开关模块的第一端与第三端之间的电压差。通过上述方式,能够延长电池的使用寿命。

Description

一种充电控制电路、充电控制系统与充电器
本申请要求于2021年6月21日提交中国专利局、申请号为2021106873514、申请名称为“一种充电控制电路、充电控制系统与充电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电路技术领域,特别是涉及一种充电控制电路、充电控制系统与充电器。
背景技术
使用多串高倍率电池供电是目前多个行业常见的供电方式,例如,无人机行业。其中,常用的电池为充电电池。
然而,当使用充电器给电池充电时,在电池插拔的时候,若充电器与电池之间的电压差较大,就会产生较大的尖峰电压,该尖峰电压会对电池造成一定的损伤,从而在电池多次插拔之后,会导致缩短了电池的使用寿命。
发明内容
本申请实施例旨在提供一种充电控制电路、充电控制系统与充电器,能够延长电池的使用寿命。
为实现上述目的,第一方面,本申请提供一种充电控制电路,包括:
缓启动模块,所述缓启动模块的第一端用于与输入电源的正极连接,所述缓启动模块用于根据所述输入电源进行充电或放电;
第一开关模块,所述第一开关模块的第一端与所述缓启动模块的第一端连接,所述第一开关模块的第二端与所述缓启动模块的第二端连接,所述第一开关模块的第三端用于与电池的正极连接,所述第一开关模块 用于根据所述第一开关模块的第一端与第二端之间的电压调节所述第一开关模块的第一端与第三端之间的电压差。
在一种可选的方式中,所述第一开关模块包括第一开关管;
所述第一开关管的第一端与所述缓启动模块的第二端连接,所述第一开关管的第二端与所述缓启动模块的第一端连接,所述第一开关管的第三端用于与所述电池的正极连接。
在一种可选的方式中,所述缓启动模块包括第一电容、第一电阻与第二电阻;
所述第一电容与所述第一电阻并联连接,所述第一电容与所述第一电阻并联组成的第一电路与所述第二电阻串联连接,所述第一电路的第一端与所述第二电阻的第一端之间的连接点与所述第一开关模块的第二端连接,所述第一电路的第二端与所述第一开关模块的第一端连接。
在一种可选的方式中,所述充电控制电路还包括第一稳压二极管;
所述第一稳压二极管的阳极与所述第一开关模块的第二端连接,所述第一稳压二极管的阴极与所述第一开关模块的第一端连接。
在一种可选的方式中,所述充电控制电路还包括第一接口;
所述第一接口上设置至少一个引脚,所述至少一个引脚中的第一个引脚用于与所述电池的负极连接,第二个引脚与所述缓启动模块的第三端连接,第三个引脚与所述第一开关模块的第三端连接,其中,所述第一个引脚与所述第二个引脚短接。
在一种可选的方式中,所述充电控制电路还包括第二电容;
所述第二电容的第一端与所述第一开关模块的第一端连接,以及用于与输入电源的正极连接,所述第二电容的第二端接地,以及用于与所述输入电源的负极连接。
在一种可选的方式中,所述充电控制电路还包括防倒灌模块,所述第一开关模块用于通过所述防倒灌模块与所述输入电源的正极连接;
所述防倒灌模块的第一端用于与所述输入电源的正极连接,所述防倒灌模块的第二端与所述第一开关模块的第一端连接,所述防倒灌模块用于根据所述输入电源的电压与所述第一开关模块的第一端的电压控 制所述输入电源与所述第一开关模块的第一端之间的连接状态。
在一种可选的方式中,所述防倒灌模块包括理想二极管控制器与第二开关管;
所述第二开关管的第一端与所述理想二极管控制器的门极引脚连接,所述第二开关管的第二端与所述理想二极管控制器的输入电压检测引脚连接,以及用于与所述输入电源的正极连接,所述第二开关管的第三端与所述理想二极管控制器的主电源引脚以及所述理想二极管控制器的输出电压检测引脚连接,所述理想二极管控制器的关闭引脚与接地引脚均接地。
在一种可选的方式中,所述防倒灌模块还包括第三电容与第三电阻;
所述第三电容与所述第三电阻串联连接,所述第三电容的非串联连接端接地,所述第三电容与所述第三电阻之间的连接点与所述理想二极管控制器的主电源引脚连接,所述第三电阻的非串联连接端与所述第二开关管的第三端连接。
第二方面,本申请实施例提供一种充电控制系统,包括:
至少一个如上所述的充电控制电路;
各所述充电控制电路之间并联连接。
第三方面,本申请实施例提供一种充电器,包括如上所述的充电控制系统。
本申请实施例的有益效果是:本申请提供的充电控制电路,包括缓启动模块与第一开关模块,当缓启动模块的第一端接入输入电源的正极时,缓启动模块开始进行充电,则缓启动模块的第一端与第二端之间的电压逐渐增大,亦即,第一开关模块的第一端与第二端之间的电压也逐渐增大,则会导致第一开关模块的第一端与第三端之间的电压差逐渐减小,即使第一开关模块的第三端的电压逐渐增大,当第一开关模块的第三端与电池的正极连接时,为电池充电的电压也逐渐增大,可见,通过上述方式,为电池充电的电压不会出现瞬间增大而产生尖峰电压的现象,换言之,电池不会如现有技术一样因尖峰电压而受到损伤,因此能够达 到延长电池的使用寿命的目的。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的充电控制系统的结构示意图;
图2为本申请实施例提供的充电控制电路的结构示意图;
图3为本申请实施例提供的充电控制电路的电路结构示意图;
图4为本申请另一实施例提供的充电控制电路的结构示意图;
图5为本申请另一实施例提供的充电控制电路的电路结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,图1为本申请实施例提供的充电控制系统的结构示意图。如图1所示,该充电控制系统包括至少一个充电控制电路,且各充电控制电路之间并联连接。
其中,充电控制系统包括充电控制电路A1、充电控制电路A2、充电控制电路A3…充电控制电路An,其中,n为大于0的正整数。充电控制电路A1的第一端用于与输入电源的正极V+连接,充电控制电路A1的第二端用于与输入电源的负极V-连接,充电控制电路A1的第三端用于与电池B1的正极B1+连接,充电控制电路A1的第四端用于与电池B1的负极B1-连接,依次类推,每一个充电控制电路所在支路的具体连接方式与充电控制电路A1类似,其在本领域技术人员容易理解的范围内, 这里不再赘述。
具体地,每一个充电控制电路用于控制该充电控制电路所连接的电池的充电过程,例如,当电池B1与充电控制电路A1连接,且充电控制电路A1连接上输入电源时,充电控制电路A1用于控制电池B1的充电过程,如当电池B1需要被充电时,充电控制电路A1可控制输入电源与控制电池B1之间为连通状态,以通过输入电源为电池B1充电。
其中,在本申请的以下实施例中,均以充电控制电路A1为进行说明,而其他充电控制电路的实际应用方式与充电控制电路A1类似。
如图2所示,控制电路A1包括缓启动模块10与第一开关模块20,其中,缓启动模块10的第一端用于与输入电源的正极V+连接,第一开关模块20的第一端与缓启动模块10的第一端连接,第一开关模块20的第二端与缓启动模块10的第二端连接,第一开关模块20的第三端用于与电池B1的正极B1+连接。
实际应用中,当充电控制电路A1接入输入电源与电池B1后,首先,输入电源能够对缓启动模块10进行充电,随着缓启动模块10被充电,缓启动模块10的第一端与第二端之间的电压增加,即第一开关模块20的第一端与第二端之间的电压在增加,从而能够使第一开关模块20的第一端与第三端之间的电压差减小,所以第一开关模块20的第三端的电压从0逐渐增大。而第一开关模块20的第三端的电压是用于为电池B1充电,可见,为电池B1充电的电压是逐渐增加的状态,换言之,用于为电池B1充电的电压是逐渐增加的一个过程,从而不会出现因电压瞬间增大而产生尖峰电压的现象,亦即,电池不会如现有技术一样因尖峰电压而受到损伤,因此能够延长电池的使用寿命。
在一实施例中,第一开关模块20包括第一开关管,请一并参阅图3,此时,第一开关管对应PMOS管Q1,其中,PMOS管Q1的栅极与缓启动模块10的第二端连接,PMOS管Q1的源极与缓启动模块10的第一端连接,PMOS管Q1的漏极用于通过接口OUT1连接至电池B1的正极B1+。
PMOS管Q1能够控制接口IN1与接口OUT1之间的连接状态。当接口IN1接入输入电源,且接口OUT1接入电池B1时,如果PMOS管Q1工作 于半导通状态时,此时接口IN1与接口OUT1之间的连接状态为半连通状态,接口OUT1上的电压与PMOS管Q1的导通程度有关,随着PMOS管Q1导通程度加深,即PMOS管Q1的等效电阻变小,接口OUT1上的电压越大。如果PMOS管Q1工作于完全导通状态,则接口IN1与接口OUT1之间的连接状态为连通状态,接口OUT1上的电压即为PMOS管Q1的源极上的电压。如果PMOS管Q1断开,则接口IN1与接口OUT1之间的连接状态为断开状态,此时,即使接口IN1已接入输入电源也不会对电池B1进行充电。
可选地,缓启动模块10包括第一电容C1、第一电阻R1与第二电阻R2,其中,第一电容C1与第一电阻R1并联连接,第一电容C1与第一电阻R1并联组成的第一电路与第二电阻R2串联连接,第一电路的第一端与第二电阻R2的第一端之间的连接点P1与第一开关模块20的第二端(即PMOS管Q1的栅极)连接,第一电路的第二端与第一开关模块10的第一端(即PMOS管Q1的源极)连接。
当接口IN1接入电源时,第一电容C1会被充电,第一电容C1两端的电压逐渐增加,又由于第一电源C1两端的电压即为PMOS管Q1的栅极与源极之间的电压,则PMOS管Q1的栅极与源极之间的电压逐渐增加,PMOS管Q1逐渐导通,并且导通程度随着第一电容C1的两端电压的增大而加深。当第一电容C1两端的电压达到PMOS管Q1的开启电压时,PMOS管Q1完全导通。
可选地,充电控制电路A1还包括第一稳压二极管DW1,其中,第一稳压二极管DW1的阳极与第一开关模块20的第二端(即PMOS管Q1的栅极)连接,第二稳压二极管DW1的阴极与第一开关模块20的第二端(即PMOS管Q1的源极)连接。
第一稳压二极管DW1用于对PMOS管Q1起到保护作用,以防止PMOS管Q1的栅极与源极之间的电压过高而损坏PMOS管Q1。
可选地,充电控制电路还包括第一接口J1,第一接口J1上设置有至少一个引脚。
图3中以第一接口J1设置有4个引脚为例,其中,第1引脚与缓 启动模块10的第三端(即第二电阻R2的非串联端)连接,第2引脚接地DGND,第2引脚还用于通过接口OUT2连接至电池B1的负极B1-,第3引脚与第4引脚均与第一开关模块20的第三端(即PMOS管Q1的漏极)连接,其中,第1引脚与第2引脚之间短接。
通过利用多个引脚的第一接口J1,使得只有在电池B1的负极B1-插入至第一接口J1时,才使整个回路的负极连接在了一起,换言之,只有电池B1的负极B1-插入电路的时候,充电控制电路A1才会有输出,也能够在一定程度上防止输入电源对电池的电压与电流冲击,能够有效延长电池的使用寿命。同时,在电池B1没有插入第一接口J1时,可以降低该充电控制电路A1的功耗,能够满足电源严苛的待机功耗要求。
可选地,充电检测电路A1还包括第二电容C2,第二电容C2的第一端与PMOS管Q1的源极连接,第二电容C2的第二端接地DGND,第二电容C2的第二端还用于通过接口IN2与输入电源的负极V-连接。
第二电容C2用于对输入电源进行滤波。
综上,当接口IN1与接口IN2分别接入输入电源的正极V+与负极V-,以及接口OUT1与接口OUT2分别接入电池B1的正极B1+与负极B1-时,第一电容C1先被充电,此时,由于PMOS管Q1的栅极与源极之间的电压还较低,且低于PMOS管Q1的开启电压,所以PMOS管Q1处于半导体状态,并且,随着第一电容C1两端电压的增加,PMOS管Q1的导通程度也加深,直至第一电容C1两端的电压大于或等于PMOS管Q1的开启电压,PMOS管完全导通。从而,能够避免为电池B1充电的电压出现尖峰的现象,保护的电池不因尖峰电压而被损坏。
其中,从第一电容C1被充电开始,至PMOS管Q1完全导通的这段时间取决于第一电容C1的电容值或第二电阻R2的电阻值,也就是说,改变该段时间的长短可通过改变第一电容C1的电容值或第二电阻R2的电阻值或同时改变第一电容C1的电容值与第二电阻R2的电阻值实现。具体地,该段时间可通过以下公式表示:t=-R*C*ln((E-V)/E)①,其中,t为该段时间,R为第二电阻R2的电阻值,C为第一电容C1的电容值,ln表示自然对数,E为第一电容C1刚开始充电时第一电阻R1与第二电 阻R2串联后的电路两端的电压,V为PMOS管完全导通时为第一电阻R1与第二电阻R2串联后的电路两端的电压。举个例子,假设第二电阻R2的电阻值为300K,第一电容C1的电容值为1uf,输入电源的电压为50v,选用的PMOS管Q1的开启电压为3v,即V=(50-3)=47v,E=50v,将上述数值代入至公式①中可得,t约为3.1ms。
另外,由于PMOS管Q1设置于输入电源的正极V+与电池B1的正极B1+之间,即PMOS管Q1可用于关断的是两个正极之间的连接,相比于关闭两个负极之间的连接而言,本申请的方案对于电源的关断更加彻底,可有利于在电源与信号混合的应用场景中使用。
应理解,在图3所示的实施例中,是以第一开关管为PMOS管为例,而在其他实施例中,第一开关管还可以为三极管或IGBT开关管等开关元件。
若第一开关管选用三极管,则三极管的基极为第一开关管的第一端,三极管的发射极为第一开关管的第二端,三极管的集电极为第一开关管的第三端。
若第一开关管选用PMOS管,则PMOS管的栅极为第二开关管的第一端,PMOS管的源极为第一开关管的第二端,PMOS管的漏极第一开关管的第三端。
若第一开关管选用IGBT开关管,则IGBT开关管的门极为第一开关管的第一端,IGBT开关管的发射极为第一开关管的第二端,IGBT开关管的集电极为第一开关管的第三端。
需要说明的是,如图3所示的充电控制电路A1的电路结构仅是一个示例,并且,充电控制电路A1可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
例如,如图4所示,充电控制电路A1还包括防倒灌模块30,第一开关模块20通过防倒灌模块30与输入电源的正极V+连接。其中,防倒灌模块30的第一端用于与输入电源的正极V+连接,防倒灌模块30的第 二端与第一开关模块20的第一端连接。
防倒灌模块30用于根据输入电源的电压与第一开关模块20的第一端的电压控制输入电源与第一开关模块20的第一端之间的连接状态。当输入电源的电压大于第一开关模块20的第一端的电压时,防倒灌模块30控制输入电源与第一开关模块20的第一端之间的连接状态为连通状态。反之,当输入电源的电压小于第一开关模块20的第一端的电压时,防倒灌模块30控制输入电源与第一开关模块20的第一端之间的连接状态为断开状态,此时,可防止电池B1的电压倒灌至输入电源中,同时,对于充电控制系统而言,还能够防止不同电池之间因电池的高低不同而相互充电的现象出现。
在一实施方式中,如图5所示,防倒灌模块30包括理想二极管控制器U1与第二开关管Q2(此时为NMOS管Q2),理想二极管控制器U1包括GATE门极引脚、IN输入电压引脚、OUT输出引脚、OFF关闭引脚、GND接地引脚以及VS主电源引脚。其中,GATE门极引脚与NMOS管Q2的栅极连接,IN输入电源引脚与NMOS管Q2的源极连接,IN输入电源引脚还用于与输入电源的正极V+连接,OUT输出引脚与NOMS管的漏极连接,OFF关闭引脚与GND接地引脚均接地,VS主电源引脚与NOMS管的漏极连接。
可理解,在本实施例中,是以型号为LM5050-1的理想二极管控制器为例,LM5050-1的理想二极管控制器能够与NMOS配合使用,以在电流反向流动时及时断开NOMS。而在其他的实施例中,由于理想二极管控制器有不同的类型,因此,当使用其他类型的理想二极管控制器时,具体的引脚定义可能有所不同,但所具有的功能以及信号的定义是相同的。则若采用其他类型的理想二极管控制器,可采用与上述实施例类似的方式进行设置即可,其在本领域技术人员容易理解的范围内,这里不再赘述。
具体地,IN输入电源引脚用于检测输入电源的电压,OUT输出引脚用于检测NOMS管的漏极的电压,VS主电源引脚为作为理想二极管控制器U1的工作电压输入引脚。在充电控制电路分别接入输入电源与电池 之后,当IN输入电源引脚所检测到的电压大于OUT输出引脚所检测到的电压时,说明电流是从输入电源流向电池,此时控制NMOS管Q2导通,输入电源正常为电池进行充电;当IN输入电源引脚所检测到的电压小于OUT输出引脚所检测到的电压时,说明电流会从电池流向输入电源,此时控制NMOS管Q2断开,从而起到防倒灌的作用。当然,当该充电控制电路应用于充电控制系统时,也能够防止不同电池之间因电池的高低不同而相互充电的现象出现。
可以理解的是,第二开关管同样也还可以为三极管或IGBT开关管等开关元件。同时,第一开关管与第二开关管可以相同,也可以不同,例如,第一开关管为三极管,而第二开关管为NMOS管。
且第二开关管的实际使用情况与第一开关管类似,例如,若第二开关管选用NMOS管,则NMOS管的栅极为第二开关管的第一端,NMOS管的源极为第二开关管的第二端,NMOS管的漏极为第二开关管的第三端。
可选地,防倒灌模块30还包括第三电容C3与第三电阻R3,其中,第三电容C3与第三电阻R3串联连接,第三电容C3的非串联连接端接地DGND,第三电容C3与第三电阻R3之间的连接点与理想二极管控制器U1的VS主电源引脚连接,第三电阻R3的非串联连接端与NMOS管Q2的漏极连接。
第三电容C3用于对VS主电源引脚的输入电压进行滤波,第三电阻R3用于对VS主电源引脚的输入电流进行限流,以起到保护理想二极管控制器U1的作用。
众所周知,在现有技术中,在多个电池并联的应用场景中,通常是直接使用肖基特二极管以防止不用电池因电压高低不同而相互充电,然而,肖基特二极管的导通内阻较大,且发热较为严重。而通过采用本申请的理想二极管控制器U1与NOMS管Q2配合使用的技术方案,则相对于现有技术而言,一方面能够具有更低的导通内阻,另一方面也不会出现发热严重的现象,能够提高充电控制电路工作时的稳定性。
本申请实施例还提供一种充电器,该充电器包括如上述任一实施例中的充电控制系统。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种充电控制电路,其特征在于,包括:
    缓启动模块,所述缓启动模块的第一端用于与输入电源的正极连接,所述缓启动模块用于根据所述输入电源进行充电或放电;
    第一开关模块,所述第一开关模块的第一端与所述缓启动模块的第一端连接,所述第一开关模块的第二端与所述缓启动模块的第二端连接,所述第一开关模块的第三端用于与电池的正极连接,所述第一开关模块用于根据所述第一开关模块的第一端与第二端之间的电压调节所述第一开关模块的第一端与第三端之间的电压差。
  2. 根据权利要求1所述的充电控制电路,其特征在于,
    所述第一开关模块包括第一开关管;
    所述第一开关管的第一端与所述缓启动模块的第二端连接,所述第一开关管的第二端与所述缓启动模块的第一端连接,所述第一开关管的第三端用于与所述电池的正极连接。
  3. 根据权利要求1所述的充电控制电路,其特征在于,
    所述缓启动模块包括第一电容、第一电阻与第二电阻;
    所述第一电容与所述第一电阻并联连接,所述第一电容与所述第一电阻并联组成的第一电路与所述第二电阻串联连接,所述第一电路的第一端与所述第二电阻的第一端之间的连接点与所述第一开关模块的第二端连接,所述第一电路的第二端与所述第一开关模块的第一端连接。
  4. 根据权利要求1所述的充电控制电路,其特征在于,
    所述充电控制电路还包括第一稳压二极管;
    所述第一稳压二极管的阳极与所述第一开关模块的第二端连接,所述第一稳压二极管的阴极与所述第一开关模块的第一端连接。
  5. 根据权利要求1所述的充电控制电路,其特征在于,
    所述充电控制电路还包括第一接口;
    所述第一接口上设置至少一个引脚,所述至少一个引脚中的第一个引脚用于与所述电池的负极连接,第二个引脚与所述缓启动模块的第三端连接,第三个引脚与所述第一开关模块的第三端连接,其中,所述第一个引脚与所述第二个引脚短接。
  6. 根据权利要求1所述的充电控制电路,其特征在于,
    所述充电控制电路还包括第二电容;
    所述第二电容的第一端与所述第一开关模块的第一端连接,以及用于与输入电源的正极连接,所述第二电容的第二端接地,以及用于与所述输入电源的负极连接。
  7. 根据权利要求1-6任意一项所述的充电控制电路,其特征在于,
    所述充电控制电路还包括防倒灌模块,所述第一开关模块用于通过所述防倒灌模块与所述输入电源的正极连接;
    所述防倒灌模块的第一端用于与所述输入电源的正极连接,所述防倒灌模块的第二端与所述第一开关模块的第一端连接,所述防倒灌模块用于根据所述输入电源的电压与所述第一开关模块的第一端的电压控制所述输入电源与所述第一开关模块的第一端之间的连接状态。
  8. 根据权利要求7所述的充电控制电路,其特征在于,
    所述防倒灌模块包括理想二极管控制器与第二开关管;
    所述第二开关管的第一端与所述理想二极管控制器的门极引脚连接,所述第二开关管的第二端与所述理想二极管控制器的输入电压检测引脚连接,以及用于与所述输入电源的正极连接,所述第二开关管的第三端与所述理想二极管控制器的主电源引脚以及所述理想二极管控制器的输出电压检测引脚连接,所述理想二极管控制器的关闭引脚与接地引脚均接地。
  9. 根据权利要求8所述的充电控制电路,其特征在于,
    所述防倒灌模块还包括第三电容与第三电阻;
    所述第三电容与所述第三电阻串联连接,所述第三电容的非串联连接端接地,所述第三电容与所述第三电阻之间的连接点与所述理想二极管控制器的主电源引脚连接,所述第三电阻的非串联连接端与所述第二开关管的第三端连接。
  10. 一种充电控制系统,其特征在于,包括:
    至少一个如权利要求1-9任意一项所述的充电控制电路;
    各所述充电控制电路之间并联连接。
  11. 一种充电器,其特征在于,包括如权利要求10所述的充电控制系统。
PCT/CN2022/099397 2021-06-21 2022-06-17 一种充电控制电路、充电控制系统与充电器 WO2022267988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687351.4A CN113472032A (zh) 2021-06-21 2021-06-21 一种充电控制电路、充电控制系统与充电器
CN202110687351.4 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022267988A1 true WO2022267988A1 (zh) 2022-12-29

Family

ID=77868933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099397 WO2022267988A1 (zh) 2021-06-21 2022-06-17 一种充电控制电路、充电控制系统与充电器

Country Status (2)

Country Link
CN (1) CN113472032A (zh)
WO (1) WO2022267988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472032A (zh) * 2021-06-21 2021-10-01 深圳市道通智能航空技术股份有限公司 一种充电控制电路、充电控制系统与充电器
CN114709899A (zh) * 2022-04-28 2022-07-05 深圳市道通智能航空技术股份有限公司 一种电池管理系统、电池管理方法和无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201569970U (zh) * 2009-12-18 2010-09-01 中兴通讯股份有限公司 一种适用于usb接口设备的电源缓启动装置
CN102570785A (zh) * 2010-12-30 2012-07-11 中兴通讯股份有限公司 一种直流电源热插拔缓启动控制电路及控制方法
CN103034608A (zh) * 2012-11-27 2013-04-10 福建星网锐捷网络有限公司 热插拔电路、接口电路及电子设备组件
CN103441660A (zh) * 2013-03-06 2013-12-11 上海斐讯数据通信技术有限公司 一种网关设备的直流电源缓启动电路
CN205407576U (zh) * 2016-02-17 2016-07-27 广州广电运通金融电子股份有限公司 电源缓启动控制装置与电源供电电路
CN110601314A (zh) * 2019-10-16 2019-12-20 深圳市欧瑞博科技有限公司 供电电路以及智能照明装置
CN113472032A (zh) * 2021-06-21 2021-10-01 深圳市道通智能航空技术股份有限公司 一种充电控制电路、充电控制系统与充电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201569970U (zh) * 2009-12-18 2010-09-01 中兴通讯股份有限公司 一种适用于usb接口设备的电源缓启动装置
CN102570785A (zh) * 2010-12-30 2012-07-11 中兴通讯股份有限公司 一种直流电源热插拔缓启动控制电路及控制方法
CN103034608A (zh) * 2012-11-27 2013-04-10 福建星网锐捷网络有限公司 热插拔电路、接口电路及电子设备组件
CN103441660A (zh) * 2013-03-06 2013-12-11 上海斐讯数据通信技术有限公司 一种网关设备的直流电源缓启动电路
CN205407576U (zh) * 2016-02-17 2016-07-27 广州广电运通金融电子股份有限公司 电源缓启动控制装置与电源供电电路
CN110601314A (zh) * 2019-10-16 2019-12-20 深圳市欧瑞博科技有限公司 供电电路以及智能照明装置
CN113472032A (zh) * 2021-06-21 2021-10-01 深圳市道通智能航空技术股份有限公司 一种充电控制电路、充电控制系统与充电器

Also Published As

Publication number Publication date
CN113472032A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2022267988A1 (zh) 一种充电控制电路、充电控制系统与充电器
CN212572075U (zh) 单晶圆电池保护电路、电池充放电电路及便携式电子设备
CN201523320U (zh) 一种直流电源的缓启动装置
WO2022062532A1 (zh) 电池保护电路和锂电池系统
WO2018036370A1 (zh) 一种缓启动电路及包含该电路的电源板和业务单板
WO2021043202A1 (zh) 双电池电压均衡方法和双电池电压均衡电路
CN108429445B (zh) 一种应用于电荷泵的软启动电路
CN214755708U (zh) 一种定电压切换的双输入电源控制电路
CN104868450A (zh) 一种锂电池组短路保护电路
CN108599100A (zh) 一种开关控制电路及负载开关
CN203691219U (zh) 一种隔离功率驱动电路
CN206226057U (zh) 一种用于移动电源的电源控制电路及移动电源
TWI509939B (zh) 蓄電池充電電路
CN208971379U (zh) 一种防过冲保护电路
CN217406186U (zh) 一种在负端抑制开机尖峰电流的延时导通电路
CN113141034B (zh) 电池充电控制电路及电池保护系统
CN215835153U (zh) 一种充电控制电路、充电控制系统与充电器
CN212541261U (zh) 一种关机复位电路、电子设备
CN112018851B (zh) 一种电池充放电控制电路
CN108319317A (zh) 一种比较装置以及包括该比较装置的线性稳压装置
CN208767783U (zh) 放电装置
CN219227247U (zh) 充放电保护电路、电池系统及机器人
CN218482780U (zh) 一种输出电压上升斜率可调节的负载供电开关
TWI835496B (zh) 靜電放電保護電路
CN203707847U (zh) 一种电池放电管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE