WO2022010228A1 - 전지 모듈 및 이를 포함하는 전지 팩 - Google Patents

전지 모듈 및 이를 포함하는 전지 팩 Download PDF

Info

Publication number
WO2022010228A1
WO2022010228A1 PCT/KR2021/008577 KR2021008577W WO2022010228A1 WO 2022010228 A1 WO2022010228 A1 WO 2022010228A1 KR 2021008577 W KR2021008577 W KR 2021008577W WO 2022010228 A1 WO2022010228 A1 WO 2022010228A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
protrusion
battery module
battery
frame
Prior art date
Application number
PCT/KR2021/008577
Other languages
English (en)
French (fr)
Inventor
백승률
곽정민
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180006140.8A priority Critical patent/CN114600310A/zh
Priority to JP2022523500A priority patent/JP7511855B2/ja
Priority to EP21838028.5A priority patent/EP4148893A1/en
Priority to US17/767,528 priority patent/US20230411797A1/en
Publication of WO2022010228A1 publication Critical patent/WO2022010228A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module in which a busbar is mounted on a busbar frame without a thermal fusion process, and a battery pack including the same.
  • secondary batteries are of great interest not only as mobile devices such as mobile phones, digital cameras, laptops, and wearable devices, but also as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • a battery module may be configured by connecting a plurality of battery cells in series or by connecting a plurality of battery cells in series and in parallel according to the charge/discharge capacity.
  • the battery module When configuring a medium/large battery module by connecting a plurality of battery cells in series/parallel, a lot of pouch-type secondary battery cells with high energy density and easy stacking are used, and the battery cell stack is first formed by stacking them. . Then, it is common to package and protect the battery cell stack as a module frame, and to configure the battery module by adding electrical components for electrical connection and voltage measurement of the battery cells.
  • the battery module includes a bus bar frame for mounting the bus bar on the front and rear surfaces of the battery cell stack, and a separate process is required for the bus bar to be mounted on the bus bar frame.
  • the battery module needs to be manufactured in a minimized process in order to reduce manufacturing cost and manufacturing time.
  • An object of the present invention is to provide a battery module and a battery pack including the same in which the process is simplified by mounting a bus bar to a bus bar frame without a thermal fusion process.
  • a battery module includes a battery cell stack in which a plurality of battery cells are stacked; a bus bar frame positioned on the front and rear surfaces of the battery cell stack; and at least one bus bar mounted on the bus bar frame, wherein the bus bar is mounted between a plurality of barrier ribs formed on the bus bar frame, the barrier rib having at least one protrusion extending toward an outer surface of the bus bar is formed, and the protrusion and the bus bar are in contact with each other.
  • the barrier rib may further include at least one pair of coupling auxiliary parts formed to expose at least a portion of an outer surface of the bus bar.
  • the protrusion may be positioned between the pair of coupling auxiliary parts.
  • the protrusions may be respectively formed at positions corresponding to both side surfaces of the bus bar in the partition wall, and both side surfaces of the bus bar may be in contact with the protrusions, respectively.
  • the protrusions may be respectively formed at positions corresponding to both sides of the center of the bus bar.
  • the protrusions may include first protrusions respectively formed at positions corresponding to both side surfaces of the upper portion of the bus bar, and may include second protrusions respectively formed at positions corresponding to both side surfaces of the lower portion of the bus bar. .
  • the first protrusion and the second protrusion may be spaced apart from each other.
  • the protrusion may be formed on a lower portion of the bus bar frame corresponding to a lower surface of the lower portion of the bus bar.
  • the protrusion may be formed on an upper portion of the bus bar frame corresponding to an upper surface of an upper portion of the bus bar.
  • a fixing member formed on an upper portion of the bus bar frame corresponding to an upper surface of the upper portion of the bus bar may be further included.
  • the fixing member may have a snap-fit structure, and the bus bar may be snap-fitted to the inside of the fixing member.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • the bus bar is fixed to the bus bar frame without a thermal fusion process, so that the flow of the bus bar can be prevented.
  • a separate bonding process such as thermal fusion between the bus bar and the bus bar frame may not be performed, manufacturing cost and manufacturing time may be reduced, and productivity may be improved.
  • FIG. 1 is an exploded perspective view showing a conventional battery module.
  • FIG. 2 is a view showing a bus bar frame on which a bus bar is mounted in the battery module of FIG. 1 .
  • FIG. 3 is a cross-sectional view taken along the cutting line a-a of the area A of FIG. 2 .
  • FIG. 4 is an exploded perspective view illustrating a battery module according to an embodiment of the present invention.
  • FIG. 5 is a view showing a bus bar frame on which a bus bar is mounted in the battery module of FIG. 4 .
  • FIG. 6 is an enlarged view of area B of FIG. 5 .
  • FIG. 7 is an enlarged view of region C of FIG. 6 after removing the bus bar from the bus bar frame of FIG. 5 .
  • FIG. 8 is a cross-sectional view taken along cut lines b-b and c-c of region C of FIG. 7 in which a bus bar is mounted.
  • FIG. 9 is an enlarged view of area C of FIG. 6 in a battery module according to another embodiment of the present invention.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 1 is an exploded perspective view showing a conventional battery module.
  • a conventional battery module 10 includes a battery cell stack 12 formed by stacking a plurality of battery cells, a module frame 20 accommodating the battery cell stack 12 , and a battery cell stack and an end plate 15 covering the front and rear surfaces of the sieve 12 .
  • the battery module 10 further includes a bus bar frame 13 positioned between the end plate 15 and the battery cell stack 12 .
  • FIG. 2 is a view showing a bus bar frame on which a bus bar is mounted in the battery module of FIG. 1 .
  • 3 is a cross-sectional view taken along the cutting line a-a of the area A of FIG. 2 .
  • the bus bar 17 included in the battery module may be mounted on the bus bar frame 13 by a thermal fusion process.
  • the bus bar 17 is formed with a heat-sealing hole 18 for injecting a heat-sealing material according to the heat-sealing process, and the bus bar 17 is It may be fixed to the bus bar frame 13 .
  • the thermal fusion process when the bus bar 17 is mounted on the bus bar frame 13 by the thermal fusion process as described above, the amount of burrs generated increases due to the nature of the thermal fusion process, and thus product quality may be deteriorated.
  • a separate additional process such as a thermal fusion process is performed to mount the bus bar 17 to the bus bar frame 13 , the manufacturing cost and manufacturing time of the battery module may increase.
  • the stiffness of (17) may be weakened.
  • manufacturing cost and manufacturing time since a separate process for forming the thermal fusion hole 18 must be additionally performed for the bus bar 17 , manufacturing cost and manufacturing time may be further increased.
  • bus bar frame that can be replaced by a separate process such as a conventional thermal fusion process of a battery module will be described later.
  • bus bar and a bus bar frame according to an embodiment of the present invention will be described, but in particular, the bus bar frame will be mainly described.
  • FIG. 4 is an exploded perspective view illustrating a battery module according to an embodiment of the present invention.
  • the battery module 100 includes a battery cell stack 120 formed by stacking a plurality of battery cells, a module frame 400 for accommodating the battery cell stack 120 , and It includes an end plate 150 covering the front and rear surfaces of the battery cell stack 120 .
  • the battery module 100 further includes a bus bar frame 130 positioned between the end plate 150 and the battery cell stack 120 .
  • the module frame 400 includes an upper plate 200 covering the upper portion of the battery cell stack 120 , and a U-shaped frame 300 with an open upper surface, front and rear surfaces.
  • the module frame 400 is not limited thereto, and may be replaced with an L-shaped frame or a frame of another shape such as a mono frame surrounding the battery cell stack 120 except for the front and rear surfaces.
  • FIG. 5 is a view showing a bus bar frame on which a bus bar is mounted in the battery module of FIG. 4 .
  • FIG. 6 is an enlarged view of area B of FIG. 5 .
  • the battery module 100 includes a bus bar frame 130 , wherein at least one bus bar 170 is mounted on the bus bar frame 130 .
  • the bus bar frame 130 is equipped with a bus bar 170 that electrically connects the electrode leads of the battery cell stack 120 , so that the battery cell stack 120 stacked in parallel can be electrically connected to each other. .
  • the bus bar frame 130 may have a plurality of partition walls 131 formed therein.
  • the bus bar 170 may be mounted between the plurality of partition walls 131 formed in the bus bar frame 130 . Accordingly, the bus bar 170 may be protected from external impact.
  • the partition wall 131 may be formed to extend in a direction corresponding to the longitudinal direction of the bus bar 170 .
  • the partition wall 131 may be formed to extend in a direction corresponding to the width direction of the bus bar frame 130 , and accordingly, the upper and lower portions of the bus bar 170 may also be protected from external impact.
  • the partition wall 131 may protrude in a direction perpendicular to the bus bar frame 130 .
  • the partition wall 131 may have a height corresponding to the thickness of the bus bar 170 in the bus bar frame 130 .
  • the barrier rib 131 may have a height equal to or greater than the thickness of the bus bar 170 , thereby protecting the bus bar 170 from external impact.
  • the partition wall 131 may have a length corresponding to the length of the bus bar 170 in the bus bar frame 130 .
  • the partition wall 131 may be formed to extend by a length required for fixing the bus bar 170 . Accordingly, in the battery module 100 according to the present embodiment, the barrier rib 131 protects the bus bar 170 and minimizes the area where the barrier rib 131 is formed, thereby reducing the weight and manufacturing cost of the bus bar frame 130 . has the advantage of being relatively reduced.
  • the partition wall 131 has at least one protrusion 135 and 136 extending toward the outer surface of the bus bar 170 .
  • the protrusions 135 and 136 may include side protrusions 135 and upper and lower protrusions 136 .
  • the side protrusions 135 are respectively formed at positions corresponding to both side surfaces of the bus bar 170 in the partition wall 131 , and both side surfaces of the bus bar 170 may be in contact with the side protrusions 135 , respectively.
  • the side protrusions 135 may be respectively formed at positions corresponding to both sides of the central portion of the bus bar 170 . Accordingly, the side protrusion 135 may prevent the bus bar 170 from flowing as the bus bar 170 moves in the left and right directions due to the movement or use of the battery module 100 .
  • the side protrusions 135 include first protrusions respectively formed at positions corresponding to both side surfaces of the upper portion of the bus bar 170 , and are respectively formed at positions corresponding to both side surfaces of the lower portion of the bus bar 170 , It may include a second protrusion.
  • the first protrusion and the second protrusion may be spaced apart from each other. Accordingly, in the battery module 100 according to the present embodiment, a predetermined force is applied to a gap spaced apart between the first protrusion and the second protrusion, so that the bus bar 170 can be detached as needed.
  • the upper and lower protrusions 136 may be formed under the bus bar frame 130 corresponding to the lower surface of the lower side of the bus bar 170 .
  • the upper and lower protrusions 136 may be formed on the upper portion of the bus bar frame 130 corresponding to the upper surface of the upper portion of the bus bar 170 . If the barrier ribs 131 are formed at positions corresponding to the upper and lower portions of the bus bar 170 , the upper and lower protrusions 136 may be formed in the barrier rib 131 . Accordingly, it is possible to prevent the upper and lower protrusions 136 from moving in the direction of gravity due to the weight of the bus bar 170 itself.
  • FIG. 7 is an enlarged view of region C of FIG. 6 after removing the bus bar from the bus bar frame of FIG. 5 .
  • 8 is a cross-sectional view taken along cut lines b-b and c-c of region C of FIG. 7 in which a bus bar is mounted.
  • Fig. 8(a) is a cross-sectional view of region C of Fig. 7 taken along cutting line b-b
  • Fig. 8(b) is a cross-sectional view of region C of Fig. 7 taken along cutting line c-c, respectively.
  • the description is focused on the side protrusions 135 , but the same description may be applied to the upper and lower protrusions 146 .
  • the protrusions 135 and 136 may have a structure that is injected together with the partition wall 131 or the bus bar frame 130 , and are manufactured separately from the partition wall 131 or the bus bar frame 130 . can be attached.
  • the protrusions 135 and 136 may be formed of the same material as the partition wall 131 or the bus bar frame 130 , or may be formed of a material having a greater frictional force than the partition wall 131 or the bus bar frame 130 .
  • the protrusions 135 and 136 are formed of the same material as the bulkhead 131 and are injected together with the bulkhead 131 or the busbar frame 130, the manufacturing process of the busbar frame 130 is simplified and , there is an advantage that the manufacturing cost can also be reduced.
  • the protrusions 135 and 136 are formed of a material having a greater frictional force than the bulkhead 131 or the busbar frame 130 and are attached to the bulkhead 131 or the busbar frame 130, the protrusions 135, 136 ) may reduce the possibility of occurrence of flow of the bus bar 170 , and improve the fixing force of the bus bar 170 .
  • the protrusions 135 and 136 may have various shapes, such as a semicircle shape or a square shape.
  • the protrusions 135 and 136 may have flat or gentle ends in contact with the bus bar 170 . Accordingly, the protrusions 135 and 136 are fixed in contact with the bus bar 170 , but damage to the outer surface of the bus bar 170 can be prevented.
  • the protrusions 135 and 136 may contact at least a portion of an outer surface of the bus bar 170 . Accordingly, the bus bar 170 is press-fitted to the bus bar frame 130 by the protrusions 135 and 136, so that the possibility of movement of the bus bar 170 can be eliminated or greatly reduced.
  • the interference fit means that, referring to FIG. 8( a ), the bus bar 170 comes into contact with the side protrusion 135 by the protruding shape of the side protrusion 135 , so that the detachment of the bus bar 131 is limited.
  • the distance between the side protrusions 135 corresponding to both sides of the bus bar 170 and positioned at the same height is formed to be smaller than the width of the bus bar 170 , so that the bus bar 170 has the side protrusions 135 .
  • the fixing force of the bus bar 170 to the bus bar frame 130 may be adjusted by adjusting the position, number, shape, size, etc. of the side protrusions 135 as necessary.
  • the side protrusions 135 may not be formed on at least some of both sides of the bus bar 170 . Accordingly, in the battery module 100 according to the present embodiment, a predetermined force is applied to a gap spaced between the partition wall 131 and the bus bar 170 so that the bus bar 170 can be detached as needed. .
  • the bus bar 170 may be fixed to the bus bar frame 130 so as not to flow in the bus bar frame 130 , and the bus bar 170 may be a battery cell. A stable connection with the electrode leads of the stacked body 120 may be performed.
  • the bus bar 170 may be mounted to the bus bar frame 130 with a strong fixing force without a separate process such as a thermal fusion process.
  • the bus bar 170 and the bus bar frame 130 are structurally fixed according to the frictional force generated between the protrusions 135 and 136 and the bus bar 170, and unlike the coupling according to the thermal fusion process, the battery module ( 100) can be maintained even if it is overheated.
  • a fixing member ( 131) may be further included. Accordingly, the fixing member 131 may improve the fixing force of the bus bar 170 by the protrusions 135 and 136 and assist in fixing the bus bar 170 .
  • the fixing member 131 has a snap-fit structure, and the upper portion of the bus bar 170 may be snap-fitted to the inside of the fixing member 131 .
  • the snap-fit coupling structure means that, referring to FIG. 6 , the bus bar 170 is caught on the fixing member 131 by the protruding shape of the fixing member 131 , so that the detachment of the bus bar 170 is limited. can mean
  • the fixing force of the bus bar 170 with respect to the bus bar frame 130 may be adjusted by adjusting the position, shape, size, etc. of the fixing member 131 as necessary.
  • FIG. 9 is an enlarged view of area C of FIG. 6 in a battery module according to another embodiment of the present invention.
  • the partition wall 131 may further include at least a pair of coupling auxiliary parts 137 formed to expose at least a portion of an outer surface of the bus bar 170 .
  • the side protrusion 135 may be positioned between the pair of auxiliary coupling parts 137 .
  • the pair of auxiliary coupling parts 137 may be positioned adjacent to the side protrusions 135 . As the pair of auxiliary coupling parts 137 are positioned adjacent to the side protrusion 135 , the flexibility of the partition wall 131 on which the side protrusion 135 is positioned may increase. Accordingly, the pair of auxiliary coupling parts 137 are positioned adjacent to the side protrusions 135 , so that in the battery module 100 according to the present embodiment, the bus bar 170 is more easily connected to the bus bar frame 130 . can be installed properly.
  • the pair of auxiliary coupling parts 137 may be positioned to be spaced apart from the side protrusions 135 in the partition wall 131 by an appropriate distance.
  • the fixing force of the bus bar 170 with respect to the side protrusion 135 may be adjusted by adjusting the position, the degree of exposure, and the like of the pair of coupling auxiliary parts 137 as necessary.
  • the upper and lower protrusions 136 are also coupled to the barrier rib 131 as a pair.
  • Auxiliary parts are formed, and the upper and lower protrusions 136 may be positioned between a pair of auxiliary coupling parts (not shown).
  • the pair of auxiliary coupling parts are spaced apart from the upper and lower protrusions 135 in the partition wall 131 by an appropriate distance, and the battery module 100 according to the present embodiment is a bus bar ( 17) and damage due to the detachment of the bus bar 170 can be prevented.
  • the battery pack according to the present embodiment may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same. It belongs to the scope of the right of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시 예에 따른 전지 모듈은, 복수의 전지셀이 적층 형성된 전지셀 적층체; 상기 전지셀 적층체의 전후면에 위치하는 버스바 프레임; 및 상기 버스바 프레임에 장착되는 적어도 하나의 버스바를 포함하고, 상기 버스바는 상기 버스바 프레임에 형성된 복수의 격벽 사이에 장착되고, 상기 격벽은 상기 버스바의 외면을 향해 연장되는 적어도 하나의 돌출부가 형성되어 있고, 상기 돌출부와 상기 버스바는 서로 접한다.

Description

전지 모듈 및 이를 포함하는 전지 팩
관련 출원(들)과의 상호 인용
본 출원은 2020년 7월 6일자 한국 특허 출원 제10-2020-0082996 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지 팩에 관한 것으로, 보다 구체적으로는 열융착 공정 없이 버스바를 버스바 프레임에 장착시키는 전지 모듈 및 이를 포함하는 전지 팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
현재 널리 사용되는 이차전지의 종류에는 리튬이온 전지, 리튬 폴리머 전지, 니켈 카드늄 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀의 작동 전압은 약 2.5V~4.2V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 다수의 전지셀을 직렬로 연결하거나 충방전 용량에 따라 다수의 전지 셀을 직렬 및 병렬 연결하여 전지 모듈을 구성하기도 한다.
다수의 전지셀을 직렬/병렬로 연결하여 중/대형 전지 모듈을 구성할 경우, 에너지 밀도가 높으면서 적층이 용이한 파우치형 이차전지 셀을 많이 사용하며, 이들을 적층시켜 전지셀 적층체를 먼저 구성한다. 그 다음 전지셀 적층체를 모듈 프레임으로 패키징하여 보호하고, 전지셀들의 전기적 연결 및 전압 측정을 위해 전장 부품들을 추가하여 전지 모듈을 구성하는 방법이 일반적이다. 또한, 전지 모듈은 전지셀 적층체의 전후면에 버스바를 장착하기 위한 버스바 프레임을 포함하고, 버스바가 버스바 프레임에 장착되기 위해서는 별도의 공정이 요구된다. 그러나, 전지 모듈은 제조 비용 및 제조 시간을 축소하기 위해 최소화된 공정으로 제조될 필요성이 있다.
본 발명의 해결하고자 하는 과제는, 열융착 공정 없이 버스바를 버스바 프레임에 장착시켜 공정을 간소화한 전지 모듈 및 이를 포함하는 전지 팩을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시 예에 따른 전지 모듈은, 복수의 전지셀이 적층 형성된 전지셀 적층체; 상기 전지셀 적층체의 전후면에 위치하는 버스바 프레임; 및 상기 버스바 프레임에 장착되는 적어도 하나의 버스바를 포함하고, 상기 버스바는 상기 버스바 프레임에 형성된 복수의 격벽 사이에 장착되고, 상기 격벽은 상기 버스바의 외면을 향해 연장되는 적어도 하나의 돌출부가 형성되어 있고, 상기 돌출부와 상기 버스바는 서로 접한다.
상기 격벽은 상기 버스바의 외면 중 적어도 일부가 노출되게 형성되어 있는 적어도 한 쌍의 결합 보조부를 더 포함할 수 있다.
상기 돌출부는 상기 한 쌍의 결합 보조부 사이에 위치할 수 있다.
상기 돌출부는 상기 격벽에서 상기 버스바의 양측면과 대응되는 위치에 각각 형성되어있고, 상기 버스바의 양측면은 상기 돌출부와 각각 접할 수 있다.
상기 돌출부는 상기 버스바의 중심부의 양측면과 대응되는 위치에 각각 형성되어 있을 수 있다.
상기 돌출부는 상기 버스바의 상부의 양측면과 대응되는 위치에 각각 형성되어 있는 제1 돌출부를 포함하고, 상기 버스바의 하부의 양측면과 대응되는 위치에 각각 형성되어 있는 제2 돌출부를 포함할 수 있다.
상기 제1 돌출부와 상기 제2 돌출부는 이격되어 있을 수 있다.
상기 돌출부는 상기 버스바의 하부의 하면과 대응되는 상기 버스바 프레임의 하부에 형성되어 있을 수 있다.
상기 돌출부는 상기 버스바의 상부의 상면과 대응되는 상기 버스바 프레임의 상부에 형성되어 있을 수 있다.
상기 버스바의 상부의 상면과 대응되는 상기 버스바 프레임의 상부에 형성되어 있는 고정부재를 더 포함할 수 있다.
상기 고정 부재는 스냅핏 구조이고, 상기 버스바는 상기 고정 부재의 내측에 스냅핏 결합할 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은 앞에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 본 발명의 일 실시 예에 따른 전지 모듈 및 이를 포함하는 전지 팩은 열융착 공정 없이 버스바가 버스바 프레임에 고정되어, 버스바의 유동이 방지될 수 있다. 또한, 버스바와 버스바 프레임 사이의 열융착과 같은 별도의 접합 공정을 거치지 않을 수 있어, 제조 비용 및 제조 시간이 축소되고 생산성이 향상될 수 있다.
또한, 별도의 접합 공정에서 발생되는 제품의 품질 저하를 방지할 수 있고, 별도의 접합 공정에서 발생된 버스바의 원재료 손실을 절감할 수 있고, 버스바의 강성을 높일 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래의 전지 모듈을 나타내는 분해 사시도이다.
도 2는 도 1의 전지 모듈에서 버스바가 장착된 버스바 프레임을 나타내는 도면이다.
도 3은 도 2의 A 영역을 절단선 a-a에 따라 자른 단면도이다.
도 4는 본 발명의 일 실시 예에 따른 전지 모듈을 나타내는 분해 사시도이다.
도 5는 도 4의 전지 모듈에서 버스바가 장착된 버스바 프레임을 나타내는 도면이다.
도 6은 도 5의 B 영역을 확대한 도면이다.
도 7은 도 5의 버스바 프레임에서 버스바를 제거하고, 도 6의 C 영역을 확대한 도면이다.
도 8은 버스바가 장착된 도 7의 C 영역을 절단선 b-b 및 c-c에 따라 각각 자른 단면도이다.
도 9는 본 발명의 다른 실시 예에 따른 전지 모듈에서 도 6의 C 영역을 확대한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
이하에서는, 본 발명의 일 실시예에 따른 전지 모듈에 대해 설명하고자 한다. 다만, 여기서 전지 모듈의 전후면 중 전면을 기준으로 설명될 것이나, 반드시 이에 한정되는 것은 아니고 후면인 경우에도 동일하거나 유사한 내용으로 설명될 수 있다.
도 1은 종래의 전지 모듈을 나타내는 분해 사시도이다.
도 1을 참조하면, 종래의 전지 모듈(10)은 복수의 전지셀이 적층되어 형성된 전지셀 적층체(12), 전지셀 적층체(12)를 수용하는 모듈 프레임(20), 및 전지셀 적층체(12)의 전후면을 덮는 엔드 플레이트(15)를 포함한다. 또한, 전지 모듈(10)은, 엔드 플레이트(15)와 전지셀 적층체(12) 사이에 위치하는 버스바 프레임(13)을 더 포함한다.
도 2는 도 1의 전지 모듈에서 버스바가 장착된 버스바 프레임을 나타내는 도면이다. 도 3은 도 2의 A 영역을 절단선 a-a에 따라 자른 단면도이다.
도 2 및 도 3을 참조하면, 전지 모듈에 포함되는 버스바(17)는 열융착 공정에 의해 버스바 프레임(13)에 장착될 수 있다. 버스바(17)에는 열융착 공정에 따른 열융착 재료가 주입되기 위한 열융착홀(18)이 형성되어 있고, 열융착홀(18)을 통해 주입된 열융착 재료에 의해 버스바(17)는 버스바 프레임(13)에 고정될 수 있다.
다만, 이처럼 열융착 공정에 의해 버스바(17)가 버스바 프레임(13)에 장착되는 경우, 열융착 공정의 특성상 버(Burr) 발생량이 많아져 제품 품질이 저하될 수 있다. 또한, 버스바(17)를 버스바 프레임(13)에 장착하기 위해 열융착 공정과 같은 별도의 추가 공정이 수행됨에 따라, 전지 모듈의 제조 비용 및 제조 시간이 증가될 수 있다. 또한, 버스바(17)와 버스바 프레임(13)를 결합시키기 위해 버스바(17)에 열융착홀(18)을 형성해야 하는 점에서, 버스바(17)의 원재료 손실이 있으며, 버스바(17)의 강성이 약화될 수 있다. 또한, 버스바(17)는 열융착홀(18)을 형성하기 위한 별도의 공정을 추가적으로 수행되어야 하므로, 제조 비용 및 제조 시간이 더욱 증가될 수 있다.
이에 따라, 본 발명의 실시예들에서, 종래의 전지 모듈의 열융착 공정과 같은 별도의 공정이 대체할 수 있는 버스바 프레임에 대하여 후술하고자 한다.
이하에서는, 본 발명의 일 실시예에 따른 버스바 및 버스바 프레임과 관련하여 설명하되, 특히 버스바 프레임을 중점적으로 설명하고자 한다.
도 4는 본 발명의 일 실시 예에 따른 전지 모듈을 나타내는 분해 사시도이다.
도 4를 참조하면, 본 실시 예에 따른 전지 모듈(100)은 복수의 전지셀이 적층되어 형성된 전지셀 적층체(120), 전지셀 적층체(120)를 수용하는 모듈 프레임(400), 및 전지셀 적층체(120)의 전후면을 덮는 엔드 플레이트(150)를 포함한다. 또한, 전지 모듈(100)은, 엔드 플레이트(150)와 전지셀 적층체(120) 사이에 위치하는 버스바 프레임(130)을 더 포함한다.
일 예로, 모듈 프레임(400)은 전지셀 적층체(120)의 상부를 덮는 상부 플레이트(200), 상부면, 전면 및 후면이 개방된 U자형 프레임(300)을 포함한다. 다만, 모듈 프레임(400)은 이에 한정된 것이 아니며, L자형 프레임 또는 전후면을 제외하고 전지셀 적층체(120)를 둘러싸는 모노 프레임과 같은 다른 형상의 프레임으로 대체될 수 있다.
도 5는 도 4의 전지 모듈에서 버스바가 장착된 버스바 프레임을 나타내는 도면이다. 도 6은 도 5의 B 영역을 확대한 도면이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시 예에 따른 전지 모듈(100)은 버스바 프레임(130)을 포함하되, 버스바 프레임(130)은 적어도 하나의 버스바(170)이 장착될 수 있다. 또한, 버스바 프레임(130)은 전지셀 적층체(120)의 전극 리드를 전기적으로 연결하는 버스바(170)가 장착되어, 병렬로 적층된 전지셀 적층체(120)가 전기적으로 연결될 수 있다.
도 5 및 도 6을 참조하면, 버스바 프레임(130)은 복수의 격벽(131)이 형성되어 있을 수 있다. 여기서, 버스바(170)는 버스바 프레임(130)에 형성된 복수의 격벽(131) 사이에 장착될 수 있다. 이에 따라 버스바(170)는 외부 충격으로 보호 받을 수 있다. 또한, 격벽(131)은 버스바(170)의 길이 방향에 대응되는 방향으로 연장되어 형성될 수 있다. 이와 더불어, 격벽(131)은 버스바 프레임(130)의 폭 방향에 대응되는 방향으로 연장되어 형성될 수 있고, 이에 따라 버스바(170)의 상부 및 하부 또한 외부 충격으로 보호 받을 수 있다.
격벽(131)은 버스바 프레임(130)에 수직한 방향으로 돌출되어 있을 수 있다. 격벽(131)은 버스바 프레임(130)에서 버스바(170)의 두께와 대응되는 높이를 가질 수 있다. 여기서, 격벽(131)은 버스바(170)의 두께와 동일 또는 그 이상의 높이를 가져, 버스바(170)를 외부 충격으로부터 보호할 수 있다.
또한, 격벽(131)은 버스바 프레임(130)에서 버스바(170)의 길이와 대응되는 길이를 가질 수 있다. 여기서, 격벽(131)은 버스바(170)의 고정을 위해 요구되는 길이만큼 연장되어 형성될 수 있다. 이에 따라, 본 실시 예에 따른 전지 모듈(100)은 격벽(131)이 버스바(170)를 보호하면서도, 격벽(131)이 형성되는 영역을 최소화하여 버스바 프레임(130)의 중량 및 제조 비용을 비교적 줄일 수 있는 이점이 있다.
도 5 및 도 6을 참조하면, 격벽(131)은 버스바(170)의 외면을 향해 연장되는 적어도 하나의 돌출부(135, 136)가 형성되어 있다.
돌출부(135, 136)는 측면 돌출부(135) 및 상하면 돌출부(136)를 포함할 수 있다. 여기서, 측면 돌출부(135)는 격벽(131)에서 버스바(170)의 양측면과 대응되는 위치에 각각 형성되어 있고, 버스바(170)의 양측면은 측면 돌출부(135)와 각각 접할 수 있다. 측면 돌출부(135)는 버스바(170)의 중심부의 양측면과 대응되는 위치에 각각 형성되어 있을 수 있다. 이에 따라, 측면 돌출부(135)는 버스바(170)가 전지 모듈(100)의 이동 또는 사용으로 인해 좌우 방향으로 이동함에 따라 유동되는 것을 방지할 수 있다.
또한, 측면 돌출부(135)는 버스바(170)의 상부의 양측면과 대응되는 위치에 각각 형성되어 있는 제1 돌출부를 포함하고, 버스바(170)의 하부의 양측면과 대응되는 위치에 각각 형성되어 있는 제2 돌출부를 포함할 수 있다. 여기서, 상기 제1 돌출부와 상기 제2 돌출부는 이격되어 있을 수 있다. 이에 따라, 본 실시 예에 따른 전지 모듈(100)은 상기 제1 돌출부와 상기 제2 돌출부 사이에 이격되어 있는 틈에 소정의 힘을 가하여, 버스바(170)가 필요에 따라 탈착될 수 있다.
상하면 돌출부(136)는 버스바(170)의 하부의 하면과 대응되는 버스바 프레임(130)의 하부에 형성되어 있을 수 있다. 또한, 상하면 돌출부(136)는 버스바(170)의 상부의 상면과 대응되는 버스바 프레임(130)의 상부에 형성되어 있을 수 있다. 만약 버스바(170)의 상부 및 하부에 대응되는 위치에 격벽(131)이 형성되어 있는 경우, 상하면 돌출부(136)는 격벽(131)에 형성되어 있을 수 있다. 이에 따라, 상하면 돌출부(136)는 버스바(170) 자체의 무게로 인해 중력 방향으로 이동함에 따라 되는 것을 방지할 수 있다.
도 7은 도 5의 버스바 프레임에서 버스바를 제거하고, 도 6의 C 영역을 확대한 도면이다. 도 8은 버스바가 장착된 도 7의 C 영역을 절단선 b-b 및 c-c에 따라 각각 자른 단면도이다. 도 8의 (a)는 도 7의 C 영역을 절단선 b-b에 따라 각각 자른 단면도이고, 도 8의 (b)는 도 7의 C 영역을 절단선 c-c에 따라 각각 자른 단면도이다. 도 8의 경우, 측면 돌출부(135)를 중심으로 설명되나, 상하면 돌출부(146)의 경우에도 동일하게 설명될 수 있다.
도 7을 참조하면, 돌출부(135, 136)는 격벽(131) 또는 버스바 프레임(130)과 함께 사출되는 구조일 수도 있고, 격벽(131) 또는 버스바 프레임(130)과는 별개로 제조되어 부착될 수 있다. 돌출부(135,136)는 격벽(131) 또는 버스바 프레임(130)과 동일한 재료로 형성되거나, 격벽(131) 또는 버스바 프레임(130)보다 마찰력이 큰 재료로 형성될 수 있다.
돌출부(135, 136)가 격벽(131)과 동일한 재료로 형성되어, 격벽(131) 또는 버스바 프레임(130)과 함께 사출되는 구조인 경우에는, 버스바 프레임(130)의 제조 공정이 간이해지고, 제조 비용 또한 절감될 수 있는 이점이 있다. 돌출부(135, 136)가 격벽(131) 또는 버스바 프레임(130)보다 마찰력이 큰 재료로 형성되어, 격벽(131) 또는 버스바 프레임(130)에 부착되는 구조인 경우에는, 돌출부(135, 136)에 의한 버스바(170)의 유동 발생 가능성을 감소시키고, 버스바(170)의 고정력을 향상시킬 수 있다.
돌출부(135, 136)는 반원 형상, 사각 형상 등의 다양한 형상을 가질 수 있다. 특히, 돌출부(135, 136)는 버스바(170)와 접하는 단부가 평평하거나 완만한 형상을 가질 수 있다. 이에 따라, 돌출부(135, 136)는 버스바(170)에 접하여 고정하되, 버스바(170)의 외면이 손상되는 것을 방지할 수 있다.
도 6 내지 도 8을 참조하면, 돌출부(135, 136)는 버스바(170)의 외면 중 적어도 일부와 접할 수 있다. 이에 따라, 버스바(170)는 돌출부(135, 136)에 의해 버스바 프레임(130)에 억지 끼움되어, 버스바(170)의 유동 가능성이 제거되거나 크게 감소할 수 있다.
여기서, 억지 끼움이란, 도 8(a)를 참조하면, 측면 돌출부(135)의 돌출 형상에 의해 버스바(170)가 측면 돌출부(135)에 접하게 되어, 버스바(131)의 탈착이 제한되는 것을 의미할 수 있다. 또한, 버스바(170)의 양측에 대응되되, 동일한 높이에 위치하는 측면 돌출부(135)들 사이의 거리가 버스바(170)의 폭보다 작게 형성되어, 버스바(170)는 측면 돌출부(135)에 의해 보다 강하게 고정될 수 있다. 이처럼, 필요에 따라, 측면 돌출부(135)의 위치, 개수, 형상, 크기 등을 조절하여, 버스바 프레임(130)에 대한 버스바(170)의 고정력을 조절할 수 있다.
또한, 도 8(b)를 참조하면, 버스바(170)의 양측 중 적어도 일부에 측면 돌출부(135)가 형성되지 않을 수 있다. 이에 따라, 본 실시 예에 따른 전지 모듈(100)은 격벽(131)과 버스바(170) 사이에 이격되어 있는 틈에 소정의 힘을 가하여, 버스바(170)가 필요에 따라 탈착될 수 있다.
이에 따라, 본 실시 예에 따른 전지 모듈(100)은 버스바(170)가 버스바 프레임(130)에 고정되어 버스바 프레임(130)에서 유동되지 않을 수 있고, 버스바(170)가 전지셀 적층체(120)의 전극 리드와의 안정적인 연결이 수행될 수 있다. 또한, 열융착 공정과 같은 별도의 공정 없이, 버스바(170)가 버스바 프레임(130)에 강한 고정력으로 장착될 수 있다. 또한, 돌출부(135, 136)와 버스바(170) 사이에 발생되는 마찰력에 따라 버스바(170)와 버스바 프레임(130)이 구조적으로 고정되어, 열융착 공정에 따른 결합과 달리 전지 모듈(100)이 과열되더라도 고정력이 유지될 수 있다.
이와 더불어, 도 6을 참조하면, 본 발명의 다른 실시 예에 따른 전지 모듈(100)은 버스바(170)의 상부의 상면과 대응되는 버스바 프레임(130)의 상부에 형성되어 있는 고정 부재(131)를 더 포함할 수 있다. 이에 따라, 고정 부재(131)는 돌출부(135, 136)에 의한 버스바(170)의 고정력을 향상시키고, 버스바(170)의 고정을 보조할 수 있다.
고정 부재(131)는 스냅핏 구조이고, 버스바(170)의 상부는 고정 부재(131)의 내측에 스냅핏 결합할 수 있다. 여기서, 스냅핏 결합 구조란, 도 6을 참조하면, 고정 부재(131)의 돌출 형상에 의해 버스바(170)가 고정 부재(131)에 걸리게 되어, 버스바(170)의 탈착이 제한되는 것을 의미할 수 있다. 또한, 필요에 따라, 고정 부재(131)의 위치, 형상, 크기 등을 조절하여, 버스바 프레임(130)에 대한 버스바(170)의 고정력을 조절할 수 있다.
도 9는 본 발명의 다른 실시 예에 따른 전지 모듈에서 도 6의 C 영역을 확대한 도면이다.
도 9를 참조하면, 격벽(131)은 버스바(170)의 외면 중 적어도 일부가 노출되게 형성되어 있는 적어도 한 쌍의 결합 보조부(137)를 더 포함할 수 있다. 여기서, 측면 돌출부(135)는 한 쌍의 결합 보조부(137) 사이에 위치할 수 있다.
한 쌍의 결합 보조부(137)는 측면 돌출부(135)와 인접하게 위치할 수 있다. 한 쌍의 결합 보조부(137)는 측면 돌출부(135)와 인접하게 위치할수록, 측면 돌출부(135)가 위치한 격벽(131)의 유연성이 증가할 수 있다. 이에 따라, 한 쌍의 결합 보조부(137)는 측면 돌출부(135)와 인접하게 위치하여, 본 실시 예에 따른 전지 모듈(100)은 버스바(170)가 버스바 프레임(130)에 대해 보다 용이하게 장착될 수 있다.
다만, 한 쌍의 결합 보조부(137)가 측면 돌출부(135)에 지나치게 인접한 경우, 측면 돌출부(135)가 위치한 격벽(131)의 강성이 낮아질 수 있고, 외부 충격 또는 버스바(170)의 탈착으로 인해 손상될 수 있다. 이에 따라, 한 쌍의 결합 보조부(137)는 격벽(131)에서 측면 돌출부(135)와 적절한 거리로 이격되어 위치할 수 있다. 또한, 필요에 따라, 한 쌍의 결합 보조부(137)의 위치, 노출되어 있는 정도 등을 조절하여, 측면 돌출부(135)에 대한 버스바(170)의 고정력을 조절할 수 있다.
이와 더불어, 도 9에는 도시되지 않았으나, 만약 버스바(170)의 상부 및 하부에 대응되는 위치에 격벽(131)이 형성되어 있는 경우, 상하면 돌출부(136) 또한 격벽(131)에 한 쌍의 결합 보조부(미도시됨)가 형성되어 있고, 상하면 돌출부(136)은 한 쌍의 결합 보조부(미도시됨) 사이에 위치할 수 있다. 다만, 이 경우에도, 한 쌍의 결합 보조부(미도시됨)는 격벽(131)에서 상하면 돌출부(135)와 적절한 거리로 이격되어 위치하여, 본 실시 예에 따른 전지 모듈(100)은 버스바(17)의 하중 및 버스바(170)의 탈착으로 인한 손상을 방지할 수 있다.
한편, 본 실시 예에 따른 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지 팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리 범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
110: 전지셀
120: 전지셀 적층체
130: 버스바 프레임
170: 버스바
400: 모듈 프레임

Claims (12)

  1. 복수의 전지셀이 적층 형성된 전지셀 적층체;
    상기 전지셀 적층체의 전후면에 위치하는 버스바 프레임; 및
    상기 버스바 프레임에 장착되는 적어도 하나의 버스바를 포함하고,
    상기 버스바는 상기 버스바 프레임에 형성된 복수의 격벽 사이에 장착되고.
    상기 격벽은 상기 버스바의 외면을 향해 연장되는 적어도 하나의 돌출부가 형성되어 있고,
    상기 돌출부와 상기 버스바는 서로 접하는 전지 모듈.
  2. 제1항에서,
    상기 격벽은 상기 버스바의 외면 중 적어도 일부가 노출되게 형성되어 있는 적어도 한 쌍의 결합 보조부를 더 포함하는 전지 모듈.
  3. 제2항에서,
    상기 돌출부는 상기 한 쌍의 결합 보조부 사이에 위치하는 전지 모듈.
  4. 제1항에서,
    상기 돌출부는 상기 격벽에서 상기 버스바의 양측면과 대응되는 위치에 각각 형성되어 있고,
    상기 버스바의 양측면은 상기 돌출부와 각각 접하는 전지 모듈.
  5. 제4항에서,
    상기 돌출부는 상기 버스바의 중심부의 양측면과 대응되는 위치에 각각 형성되어 있는 전지 모듈.
  6. 제4항에서,
    상기 돌출부는 상기 버스바의 상부의 양측면과 대응되는 위치에 각각 형성되어 있는 제1 돌출부를 포함하고, 상기 버스바의 하부의 양측면과 대응되는 위치에 각각 형성되어 있는 제2 돌출부를 포함하는 전지 모듈.
  7. 제6항에서,
    상기 제1 돌출부와 상기 제2 돌출부는 이격되어 있는 전지 모듈.
  8. 제4항에서,
    상기 돌출부는 상기 버스바의 하부의 하면과 대응되는 상기 버스바 프레임의 하부에 형성되어 있는 전지 모듈.
  9. 제8항에서,
    상기 돌출부는 상기 버스바의 상부의 상면과 대응되는 상기 버스바 프레임의 상부에 형성되어 있는 전지 모듈.
  10. 제8항에서,
    상기 버스바의 상부의 상면과 대응되는 상기 버스바 프레임의 상부에 형성되어 있는 고정부재를 더 포함하는 전지 모듈.
  11. 제10항에서,
    상기 고정 부재는 스냅핏 구조이며,
    상기 버스바는 상기 고정 부재의 내측에 스냅핏 결합하는 전지 모듈.
  12. 제1항의 전지 모듈을 포함하는 전지 팩.
PCT/KR2021/008577 2020-07-06 2021-07-06 전지 모듈 및 이를 포함하는 전지 팩 WO2022010228A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180006140.8A CN114600310A (zh) 2020-07-06 2021-07-06 电池模块及包括该电池模块的电池组
JP2022523500A JP7511855B2 (ja) 2020-07-06 2021-07-06 電池モジュールおよびそれを含む電池パック
EP21838028.5A EP4148893A1 (en) 2020-07-06 2021-07-06 Battery module and battery pack including same
US17/767,528 US20230411797A1 (en) 2020-07-06 2021-07-06 Battery Module and Battery Pack Including the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200082996A KR20220005302A (ko) 2020-07-06 2020-07-06 전지 모듈 및 이를 포함하는 전지팩
KR10-2020-0082996 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022010228A1 true WO2022010228A1 (ko) 2022-01-13

Family

ID=79342073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008577 WO2022010228A1 (ko) 2020-07-06 2021-07-06 전지 모듈 및 이를 포함하는 전지 팩

Country Status (6)

Country Link
US (1) US20230411797A1 (ko)
EP (1) EP4148893A1 (ko)
JP (1) JP7511855B2 (ko)
KR (1) KR20220005302A (ko)
CN (1) CN114600310A (ko)
WO (1) WO2022010228A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170039941A (ko) * 2015-10-02 2017-04-12 주식회사 엘지화학 나사 체결 부위의 비틀림 응력을 완화할 수 있는 커버 조립체를 포함하는 전지 모듈
KR20170066896A (ko) * 2015-12-07 2017-06-15 주식회사 엘지화학 전지모듈용 전압 센싱 블록
KR20190054709A (ko) * 2017-11-14 2019-05-22 주식회사 엘지화학 배터리 셀 가압형 엔드 플레이트와 확장형 센싱 하우징 구조가 적용된 배터리 모듈
KR20190071454A (ko) * 2017-12-14 2019-06-24 주식회사 엘지화학 버스바 어셈블리를 포함하는 배터리 모듈
KR20190073933A (ko) * 2017-12-19 2019-06-27 주식회사 엘지화학 버스바 어셈블리를 구비한 배터리 모듈

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891079B1 (ko) * 2005-02-07 2009-03-30 주식회사 엘지화학 전지 모듈용 전지 카트리지 연결 시스템
JP6011876B2 (ja) * 2013-09-13 2016-10-19 株式会社オートネットワーク技術研究所 蓄電モジュール
KR102198848B1 (ko) * 2017-11-16 2021-01-05 주식회사 엘지화학 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
JP7081237B2 (ja) * 2018-03-16 2022-06-07 株式会社オートネットワーク技術研究所 接続モジュール、および蓄電モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170039941A (ko) * 2015-10-02 2017-04-12 주식회사 엘지화학 나사 체결 부위의 비틀림 응력을 완화할 수 있는 커버 조립체를 포함하는 전지 모듈
KR20170066896A (ko) * 2015-12-07 2017-06-15 주식회사 엘지화학 전지모듈용 전압 센싱 블록
KR20190054709A (ko) * 2017-11-14 2019-05-22 주식회사 엘지화학 배터리 셀 가압형 엔드 플레이트와 확장형 센싱 하우징 구조가 적용된 배터리 모듈
KR20190071454A (ko) * 2017-12-14 2019-06-24 주식회사 엘지화학 버스바 어셈블리를 포함하는 배터리 모듈
KR20190073933A (ko) * 2017-12-19 2019-06-27 주식회사 엘지화학 버스바 어셈블리를 구비한 배터리 모듈

Also Published As

Publication number Publication date
KR20220005302A (ko) 2022-01-13
EP4148893A1 (en) 2023-03-15
JP2022554116A (ja) 2022-12-28
CN114600310A (zh) 2022-06-07
US20230411797A1 (en) 2023-12-21
JP7511855B2 (ja) 2024-07-08

Similar Documents

Publication Publication Date Title
WO2017150807A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021201421A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020075988A1 (ko) 공간 절약형 icb 조립체를 적용한 배터리 모듈
WO2020171627A1 (ko) 연성 인쇄 회로 기판을 덮는 보호 커버를 포함하는 전지 모듈
WO2020197208A1 (ko) 전지 모듈 및 그 제조 방법
WO2021107395A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021177607A1 (ko) 전지 모듈 및 그 제조 방법
WO2020262852A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021080124A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020251141A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020116880A1 (ko) 전지 모듈
WO2021201409A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021177618A1 (ko) 전지 모듈 및 그 제조 방법
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2022220550A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221284A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022010228A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022182063A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022114529A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022086075A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215625A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE