WO2022009984A1 - Conversion device - Google Patents

Conversion device Download PDF

Info

Publication number
WO2022009984A1
WO2022009984A1 PCT/JP2021/025943 JP2021025943W WO2022009984A1 WO 2022009984 A1 WO2022009984 A1 WO 2022009984A1 JP 2021025943 W JP2021025943 W JP 2021025943W WO 2022009984 A1 WO2022009984 A1 WO 2022009984A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
conversion
battery
batteries
Prior art date
Application number
PCT/JP2021/025943
Other languages
French (fr)
Japanese (ja)
Inventor
将義 廣田
貴史 川上
康 田村
悠介 三次
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2022009984A1 publication Critical patent/WO2022009984A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This disclosure relates to a conversion device.
  • Patent Document 1 discloses a battery control device mounted on an electric vehicle.
  • a plurality of batteries are connected in parallel when the electric vehicle is running, and a plurality of batteries are connected in series when the plurality of batteries are charged by the external power feeding device.
  • the present disclosure provides a conversion device that can easily correct the imbalance of a plurality of batteries.
  • the conversion device which is one of the present disclosures, is A converter used in power systems where multiple batteries can be connected at least in parallel. It has a power conversion unit that performs a first conversion operation that converts the power input from each of the batteries and outputs the power to a conductive path different from that of the battery. The power conversion unit performs a second conversion operation of individually outputting power to at least one of the batteries.
  • the conversion device which is one of the present disclosures, can easily correct the imbalance of a plurality of batteries.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle system including the conversion device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram schematically illustrating a vehicle equipped with the in-vehicle system of FIG.
  • FIG. 3 is a circuit diagram illustrating a specific configuration of a part of the power conversion unit in the in-vehicle system of FIG.
  • FIG. 4 is a block diagram showing a part of the in-vehicle system of FIG. 1 embodied and a part omitted.
  • FIG. 5 is an explanatory diagram illustrating an example of operation in the first mode in the in-vehicle system of FIG. FIG.
  • FIG. 6 is an explanatory diagram illustrating an example of operation in the second mode in the in-vehicle system of FIG.
  • FIG. 7 is an explanatory diagram illustrating an example of operation in the third mode in the in-vehicle system of FIG.
  • FIG. 8 is an explanatory diagram illustrating an example of operation in the fourth mode in the in-vehicle system of FIG.
  • FIG. 9 is a block diagram showing a part of the in-vehicle system including the conversion device of the second embodiment, with a part thereof being embodied and a part omitted.
  • FIG. 10 is a circuit diagram illustrating a specific configuration of a part of the power conversion unit in the in-vehicle system of FIG. FIG.
  • FIG. 11 is an explanatory diagram illustrating an example of operation in the first mode in the in-vehicle system of FIG.
  • FIG. 12 is an explanatory diagram illustrating an example of operation in the second mode in the in-vehicle system of FIG.
  • FIG. 13 is an explanatory diagram illustrating an example of operation in the third mode in the in-vehicle system of FIG.
  • FIG. 14 is a block diagram schematically illustrating an in-vehicle system including the conversion device of the third embodiment.
  • FIG. 15 is a circuit diagram showing a part of the conversion device of the third embodiment embodied and a part omitted.
  • FIG. 16 is a circuit diagram showing a part of the conversion device of the fourth embodiment embodied and a part omitted.
  • the power conversion unit is a conversion device that performs a second conversion operation that individually outputs power to at least one of the batteries.
  • the power conversion unit not only performs the first conversion operation of performing power conversion by using the power supplied from each battery as an input, but also individually supplies power to at least one of the batteries.
  • the second conversion operation to output can also be performed. Therefore, this conversion device is easier to correct the imbalance of a plurality of batteries than the device that can realize only the first conversion operation.
  • the conversion device of [2] has the following features in the conversion device according to the above [1].
  • the power conversion unit includes a plurality of converters. Each of the above converters is provided corresponding to each of the above batteries. At least one of the plurality of converters performs power conversion in both directions.
  • each converter is provided corresponding to each battery, it is possible to realize a configuration that makes it easy to correct the imbalance of a plurality of batteries, and to achieve redundancy by a plurality of converters. ..
  • the conversion device of [3] has the following features in the conversion device described in [2] above.
  • the first power conversion unit outputs power to the conductive path based on the power supplied from one battery by at least one of the converters in response to a partial charging instruction from the outside.
  • the conversion operation is performed, and the second conversion operation is performed so that the other converter outputs power to the other battery based on the power supplied from the conductive path.
  • the conversion device of the above [3] supplies electric power to the conductive path by the electric power conversion of one converter based on the electric power of one battery, and charges another battery by the electric power conversion of another converter using this electric power. be able to. Therefore, this converter can correct the imbalance of a plurality of batteries more quickly.
  • the conversion device of [4] has the following features in the conversion device according to the above [2] or [3].
  • the conductive path is electrically connected to a second battery different from the plurality of batteries.
  • the power conversion unit stops the conversion operation of one converter in response to a partial stop instruction from the outside, and the other converter is based on the power supplied from the second battery to the other battery.
  • the second conversion operation is performed so as to output electric power to.
  • the conversion device of the above [4] can supply power to the other battery side by giving priority to the power supply from the second battery over the power supply from one battery.
  • the conversion device of [5] has the following features in the conversion device according to any one of the above [2] to [4].
  • the power conversion unit has a plurality of cutoff units. Each of the above-mentioned cutoff portions is provided between each of the above-mentioned converters and the above-mentioned conductive path. The cutoff portion allows electric power to be transmitted between the converter and the conductive path via itself when it is in the on state, and between the converter and the conductive path via itself when it is in the off state. Blocks the transmission of power.
  • each cutoff portion is provided between each of the converters and the conductive path, each converter and the conductive path are individually cut off as necessary. be able to.
  • the conversion device of [6] has the following features in the conversion device according to [5] above.
  • the conversion device of [6] includes a cutoff control unit that controls a plurality of the above-mentioned cutoff units, a converter control unit that controls the plurality of the above-mentioned converters, and a failure detection unit that detects a failure of each of the plurality of the above-mentioned converters.
  • a cutoff control unit controls a plurality of the above-mentioned cutoff units
  • a converter control unit that controls the plurality of the above-mentioned converters
  • a failure detection unit that detects a failure of each of the plurality of the above-mentioned converters.
  • the cutoff control unit turns off the cutoff unit provided between the converter where the failure is detected and the conductive path.
  • Switch When the failure detection unit detects a failure of any of the converters, the converter control unit operates the converter in which the failure is not detected.
  • the converter can individually cut off between the failed converter and the conductive path, and electrically disconnect the failed converter from the conductive path. can. Then, this conversion device can continue the power conversion by operating the converter in which the failure has not occurred while suppressing the influence of the converter in which the failure has occurred.
  • the conversion device of [7] has the following features in the conversion device according to any one of the above [2] to [6].
  • the plurality of batteries include a first battery unit and a second battery unit.
  • the plurality of converters include a first converter and a second converter. Between the first battery unit and the first converter, a first wiring unit and a second wiring unit, which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided. Between the second battery unit and the second converter, a third wiring unit and a fourth wiring unit, which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided.
  • the first converter performs an operation of converting a voltage applied between the first wiring unit and the second wiring unit and applying an output voltage to the conductive path.
  • the second converter performs an operation of converting a voltage applied between the third wiring portion and the fourth wiring portion and applying an output voltage to the conductive path.
  • the conversion device of [7] includes a first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off the energization.
  • the conversion device of [7] has a second relay unit that switches between an on state that permits energization between the second wiring unit and the fourth wiring unit and an off state that cuts off the energization.
  • the conversion device of [8] has the following features in the conversion device according to the above [1].
  • the power conversion unit includes a plurality of first conversion units, a transformer, and a second conversion unit.
  • the transformer includes a plurality of first coils and a second coil, and the plurality of the first coils and the second coil are magnetically coupled. Each of the first coils is provided corresponding to each of the first conversion units.
  • Each of the first conversion units converts DC power based on the power from each of the batteries and outputs AC power to each of the first coils. At least one of the first conversion units performs power conversion in both directions.
  • the conversion device of the above [8] can realize a configuration that easily corrects the imbalance of a plurality of batteries by a configuration in which the conversion unit is integrated.
  • the conversion device of [9] has the following features in the conversion device according to the above [8].
  • the power conversion unit performs power conversion by a plurality of the first conversion units and the transformer based on the power supplied from at least one of the batteries in response to a partial charge instruction from the outside, and the other
  • the second conversion operation is performed so as to supply electric power to the battery.
  • the conversion device of the above [9] can perform a conversion operation of supplying power to another battery based on the power supplied from one battery while suppressing the operation of the second conversion unit, thereby further improving efficiency. Can be enhanced.
  • the conversion device of [10] has the following features in the conversion device according to the above [8] or [9].
  • the conductive path is electrically connected to a second battery different from the plurality of batteries.
  • the power conversion unit in response to a partial stop instruction from the outside, stops the conversion operation of one of the first conversion units corresponding to any one of the above batteries, while the other power conversion unit corresponds to the other battery.
  • the second conversion operation is performed so that the first conversion unit, the transformer, and the second conversion unit output electric power to the other batteries based on the electric power supplied from the second battery.
  • the conversion device of the above [10] can supply power to the other battery side by giving priority to the power supply from the second battery over the power supply from one battery.
  • the conversion device of [11] has the following features in the conversion device according to any one of [8] to [10].
  • the plurality of batteries include a first battery unit and a second battery unit.
  • the plurality of first conversion units include one of the first conversion units and the other first conversion unit.
  • a first wiring unit and a second wiring unit which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided.
  • a third wiring unit and a fourth wiring unit which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided.
  • the first conversion unit performs an operation of converting a voltage applied between the first wiring unit and the second wiring unit to generate an AC voltage in the first coil.
  • the other first conversion unit performs an operation of converting the voltage applied between the third wiring unit and the fourth wiring unit to generate an AC voltage in the other first coil.
  • the conversion device of [11] has a first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off the energization, and the second relay unit. It has a second relay unit that switches between an on state that permits energization and an off state that cuts off energization between the wiring unit and the fourth wiring unit.
  • the conversion device of the above [11] when the first relay unit and the second relay unit are in the ON state, not only the first battery unit but also the second battery unit with respect to the first wiring unit and the second wiring unit. Is also powered. Further, when the first relay unit and the second relay unit are in the ON state, electric power is supplied to the third wiring unit and the fourth wiring unit not only from the first battery unit but also from the second battery unit. Therefore, any one of the first conversion unit and the other first conversion unit can perform power conversion based on the power from both battery units. On the other hand, when the first relay unit and the second relay unit are in the off state, the space between the first wiring unit and the third wiring unit is cut off, and the space between the second wiring unit and the fourth wiring unit is cut off. Therefore, the influence of the first battery unit can be suppressed and the other first conversion unit can operate independently, and the influence of the second battery unit can be suppressed and the first conversion unit can operate independently. can.
  • the conversion device of [12] has the following features in the conversion device according to any one of [7] and [11].
  • the conversion device of [12] includes a relay control unit that controls the first relay unit and the second relay unit, an abnormality in power supply from the first battery unit, and an abnormality in power supply from the second battery unit. It has an abnormality detection unit for detecting. When the abnormality detection unit detects an abnormality in the power supply from either the first battery unit or the second battery unit, the relay control unit sets the first relay unit and the second relay unit. Switch to the off state.
  • the conversion device of the above [12] switches the first relay unit and the second relay unit to the off state when the power supply from any of the battery units is abnormal, and the first relay unit and the second relay unit. It is possible to cut off the energization through the unit. Therefore, in this case, the first converter and the second converter are electrically separated in the circuit on the battery part side, and the influence of the battery part in which the abnormality occurs is suppressed from affecting both the first converter and the second converter. be able to.
  • the conversion device of [13] has the following features in the conversion device according to any one of [1] to [12].
  • the conductive path is electrically connected to a second battery different from the plurality of batteries.
  • the power conversion unit performs power conversion based on the power from the second battery, and outputs the power individually to at least one of the batteries. Do the action.
  • the conversion device of the above [13] can correct the imbalance of a plurality of batteries by utilizing the electric power from the second battery.
  • the conversion device of [14] has the following features in the conversion device according to any one of [1] to [13].
  • the conversion device includes a control unit that controls the power conversion unit. When a predetermined start condition is satisfied, the control unit causes the power conversion unit to perform an operation of reducing the difference between the output voltages of the plurality of batteries or the SOC (State Of Charge).
  • the conversion device of the above [14] can operate the power conversion unit so as to reduce the difference between the output voltages or SOCs of a plurality of batteries when the start condition is satisfied.
  • the power supply system is a system in which a plurality of the batteries are switched between series connection and parallel connection.
  • the power supply system is a system in which a plurality of the above batteries are connected in parallel and does not switch to the series connection.
  • the conversion device includes a control unit that controls the power conversion unit, a switching circuit, and a switching control unit that controls the switching circuit.
  • the power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
  • the switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel. In a state where the switching control unit controls the switching circuit so as to supply power to the load from the plurality of batteries connected in series while connecting the plurality of batteries in series between the pair of power paths.
  • the control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation.
  • the conversion device of [17] can supply a load with a plurality of batteries connected in series, and can adjust the power of the plurality of high-voltage batteries in that state.
  • the conversion device includes a switching circuit and a switching control unit that controls the switching circuit.
  • the power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
  • the switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel.
  • the switching control unit controls the switching circuit so as to switch between a state in which a plurality of the batteries are connected in series between the pair of electric power paths and a state in which the plurality of batteries are connected in parallel while the vehicle is traveling.
  • the conversion device of [18] can switch the series-parallel of a plurality of batteries while the vehicle is running, and in such a case, it is possible to add a function that easily corrects the imbalance of the plurality of batteries.
  • the conversion device according to the above [18] further has the following features.
  • the switching control unit switches a plurality of the batteries into a series connection state and a parallel connection state according to the traveling state of the vehicle while the vehicle is traveling.
  • the conversion device of [19] can switch the series-parallel of a plurality of batteries according to the traveling state while the vehicle is traveling, and in such a case, adds a function of easily correcting the imbalance of the plurality of batteries. be able to.
  • the conversion device according to the above [17] further has the following features.
  • the switching control unit switches between a state in which a plurality of the batteries are connected in series between the pair of electric power paths and a state in which the batteries are connected in parallel, depending on the traveling state of the vehicle while the vehicle is traveling.
  • the control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation when at least a plurality of the batteries are connected in series while the vehicle is running.
  • the conversion device of [20] can switch the series-parallel of a plurality of batteries according to the traveling state while the vehicle is traveling, and in such a case, adds a function of easily correcting the imbalance of the plurality of batteries. be able to. Moreover, since at least one of the first conversion operation and the second conversion operation can be performed when the batteries are connected in series according to the traveling state, the series and parallel can be switched according to the traveling state. It will be easier to correct the imbalance earlier for the battery.
  • the conversion device includes a switching circuit, a switching control unit that controls the switching circuit, and an abnormality detecting unit that detects a battery in which an abnormality in power supply has occurred from among the plurality of the batteries.
  • the power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
  • the switching circuit switches between a state in which a part of the plurality of batteries is connected between the pair of power paths and a state in which the plurality of batteries are connected in parallel between the pair of power paths.
  • the switching control unit puts the battery in which the abnormality of the power supply is not detected between the pair of power paths. Connecting.
  • the conversion device of [21] can have both a function of correcting an imbalance of a plurality of batteries and a function of detecting the failure of each of the plurality of batteries. Then, when a failure of any of the batteries is detected, power can be supplied to the load from a normal battery in which the failure is not detected.
  • the conversion device according to the above [21] further has the following features.
  • the switching control unit can connect a plurality of the batteries in parallel between the pair of electric power paths while the vehicle is running, and the switching control unit can connect any of the batteries while the vehicle is running.
  • the abnormality of the power supply of the battery is detected by the abnormality detection unit, the battery in which the abnormality of the power supply is not detected is connected between the pair of power paths.
  • the conversion device of [22] can operate the load while connecting a plurality of batteries in parallel while driving, and further, since the function of correcting the imbalance of the batteries is added, the load is applied in the parallel connection state.
  • the load When supplying electric power, it is possible to make it difficult to generate a circulating current.
  • the load can be operated by a normal battery in which no failure is detected, so that the circulating current is suppressed and the battery is lost while driving. It is possible to achieve both countermeasures against the fall.
  • the conversion device of [23] has the following features in the conversion device according to any one of [1] to [22].
  • the power conversion unit performs the first conversion so as to supply power to the conductive path based on the power from any one of the batteries in the case of the first condition.
  • the operation is performed, and the second conversion operation is performed so as to supply electric power to the other batteries based on the electric power from the conductive path.
  • the electric power based on the electric power supplied from the electric power conversion unit to the conductive path is supplied to the load or the second battery electrically connected to the conductive path.
  • the power conversion unit when the power conversion unit receives a partial charge instruction from the outside and in the first condition, the load or the second is performed by power conversion using the power from one battery as an input. It is possible to supply power to a battery and charge another battery in parallel.
  • the conversion device of [24] has the following features in the conversion device according to any one of [1] to [23].
  • the power conversion unit performs the first conversion so as to supply power to the conductive path based on the power from any one of the batteries under the second condition. It operates and converts the input power based on the power supplied from the power conversion unit to the conductive path and the power from the second battery electrically connected to the conductive path to transfer the power to the other batteries.
  • the second conversion operation is performed so as to supply.
  • the above-mentioned conversion device [24] inputs this power while securing a larger amount of power supplied to the conductive path when the power conversion unit receives a partial charging instruction from the outside and in the second condition. By the power conversion, it is possible to supply power to another battery.
  • the conversion device of [25] is the conversion device according to any one of the above [2] to [7], or the above-mentioned [12] to the above-mentioned conversion device according to any one of [24].
  • the conversion device quoting any of the above [7] from 2] has the following features.
  • the converter has one converter, a transformer, and another converter.
  • the transformer includes a primary coil and a secondary coil that are magnetically coupled to each other.
  • the one conversion unit converts the DC voltage applied between the pair of one-side conductive paths corresponding to the battery based on the power from the battery corresponding to the one conversion unit into an AC voltage, and the primary conversion unit.
  • the first operation of generating an AC voltage in the side coil and the second operation of converting the AC voltage generated in the primary side coil into a DC voltage and applying the DC voltage between the pair of one-side conductive paths. conduct.
  • the other conversion unit has a third operation of converting the AC voltage generated in the secondary side coil into a DC voltage and applying the DC voltage between the pair of other side conductive paths corresponding to the other conversion units.
  • the fourth operation of converting the DC voltage applied between the pair of other-side conductive paths to generate an AC voltage in the secondary-side coil is performed.
  • each of the plurality of converters is composed of an isolated converter, and the power conversion can be performed bidirectionally between the storage unit and the conductive path corresponding to each converter. ..
  • the conversion device of [26] has the following features in the conversion device according to the above [25].
  • the primary coil and the secondary coil in the transformer of one converter and the primary coil and the secondary coil in the transformer of another converter are magnetically coupled.
  • the above-mentioned conversion device [26] can increase the degree of freedom of power conversion in one converter and another converter.
  • the conversion device of [27] has the following features in the conversion device according to the above [26].
  • the conversion device of [27] has a converter control unit that controls a plurality of the above converters.
  • the converter control unit is applied to one of the converters of the converter and the other converter in a state where the operation of the converter of the converter and the other converter of the other converter is stopped. While performing the first operation, conversion control is performed so that the other conversion unit performs the second operation.
  • FIG. 1 shows a conversion device 10 according to the first embodiment of the present disclosure.
  • the conversion device 10 is a device used as a part of the in-vehicle system 2 mounted on the vehicle 1.
  • the vehicle 1 is a vehicle equipped with a conversion device 10, and is, for example, a vehicle such as a PHEV (Plug-in Hybrid Electric Vehicle) or an EV (Electric Vehicle).
  • PHEV Plug-in Hybrid Electric Vehicle
  • EV Electric Vehicle
  • the in-vehicle system 2 includes a power supply system 3, a drive unit 4, a high voltage load 5, a low voltage load 8, and the like.
  • the power supply system 3 includes a conversion device 10, a low voltage battery 32, and a high voltage battery 34.
  • the drive unit 4 includes an inverter 7 and a motor 6.
  • the inverter 7 generates AC power (for example, three-phase AC) from DC power based on the power supplied from the high-voltage battery 34, and supplies it to the motor 6.
  • the motor 6 is, for example, a main engine system motor.
  • the motor 6 is a device that rotates based on the electric power supplied from the high-voltage battery 34 and applies a rotational force to the wheels of the vehicle 1.
  • the high-voltage load 5 is a load that can operate by receiving power supplied from the high-voltage battery 34.
  • the high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these.
  • the low voltage load 8 is, for example, an accessory device necessary for operating an engine and a motor. This accessory is, for example, a starter motor, an alternator, a radiator cooling fan, and the like.
  • the low voltage load 8 may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like.
  • the state in which the vehicle is running includes the state in which the vehicle 1 is moving, but is not limited to the state in which the vehicle 1 is moving.
  • the vehicle 1 moves when the accelerator is stepped on.
  • the vehicle is running it includes a state in which the vehicle 1 is stopped without moving and power is supplied to any or all of the low voltage loads 8. If the vehicle 1 is a PHEV, the idling state of the engine is also included when the vehicle is running.
  • the power supply system 3 is a system in which a plurality of batteries 34A and 34B are switched between series connection and parallel connection.
  • the power supply system 3 includes a low voltage battery 32, a high voltage battery 34, and a conversion device 10.
  • the power supply system 3 can charge the high voltage battery 34 and the low voltage battery 32 based on the AC power supplied from the external AC power source when the external AC power source (not shown) is connected to the vehicle 1.
  • the vehicle 1 has a connection terminal (not shown) to which an external AC power supply is connected, and an external AC power supply (not shown) may be connected to the connection terminal.
  • the control unit 18 can control the switch unit 14 to directly connect the first high voltage battery 34A and the second high voltage battery 34B.
  • the control unit 18 can control the switch unit 14 to connect the first high voltage battery 34A and the second high voltage battery 34B in parallel.
  • the power path 28A is electrically connected to the terminal 9A via the switch 26A.
  • the switch 26A switches between the conduction state and the cutoff state between the terminal 9A and the power path 28A.
  • the terminal 9B is electrically connected to the power path 28B via the switch 26B.
  • the switch 26B switches between the continuity state and the cutoff state between the terminal 9B and the power path 28B.
  • the switches 26A and 26B may be semiconductor relays or mechanical relays.
  • the power path 28A is electrically connected to the electrode having the highest potential in the first high voltage battery 34A, and is, for example, the same potential as this electrode.
  • the power path 28B is electrically connected to the electrode having the lowest potential in the second high voltage battery 34B, and is, for example, the same potential as this electrode.
  • the power paths 28A and 28B are paths for supplying electric power from the high-voltage battery 34 to the inverter 7.
  • the power path 28A is provided with a relay 93 that switches the power path 28A between an energizable state and an energization cutoff state. When the relay 93 is in the off state, the energization of the power path 28A is cut off.
  • a relay 94 and a fuse 97 are provided in the power path 28B. The fuse 97 cuts off the energization of the power path 28B when an excessive current flows through the power path 28B.
  • a series component in which the relay 95 and the resistor 96 are provided in series is connected in parallel to the relay 94.
  • the relays 93, 94, 95 may be a semiconductor relay or a mechanical relay.
  • the high-voltage battery 34 includes a plurality of batteries, specifically, a first high-voltage battery 34A and a second high-voltage battery 34B.
  • the first high voltage battery 34A and the second high voltage battery 34B both correspond to an example of a battery.
  • the first high voltage battery 34A corresponds to an example of the first battery unit.
  • the second high voltage battery 34B corresponds to an example of the second battery unit.
  • the high-voltage battery 34 is a power source in which the first high-voltage battery 34A and the second high-voltage battery 34B are switched between series connection and parallel connection by a switching operation by the switch unit 14 described later.
  • the high-voltage battery 34 is configured to be rechargeable and dischargeable.
  • the high voltage battery 34 outputs a high voltage (for example, about 300 V) for driving the drive unit 4.
  • the output voltage of each of the first high-voltage battery 34A and the second high-voltage battery 34B when fully charged is higher than the output voltage of the low-voltage battery 32 when fully charged.
  • the first high-voltage battery 34A and the second high-voltage battery 34B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
  • the low voltage battery 32 corresponds to an example of a power storage unit.
  • the low voltage battery 32 is configured to be rechargeable and dischargeable.
  • the low voltage battery 32 supplies power to the low voltage load 8.
  • the low voltage battery 32 may be composed of a lead storage battery or another type of storage battery.
  • the low voltage battery 32 outputs a predetermined voltage (for example, 12V) when fully charged.
  • the conversion device 10 mainly includes a power control device 12 and a switch unit 14.
  • the switch unit 14 includes a plurality of switches 14A, 14B, 14C.
  • the plurality of switches 14A, 14B, 14C may be a semiconductor relay or a mechanical relay.
  • the switch unit 14 is a switching circuit for switching the first high-voltage battery 34A and the second high-voltage battery 34B between series connection and parallel connection.
  • the switch unit 14 connects the first high-voltage battery 34A and the second high-voltage battery 34B in series when the switch 14B is in the on state and the switches 14A and 14C are in the off state.
  • the switch unit 14 connects the first high-voltage battery 34A and the second high-voltage battery 34B in parallel when the switch 14B is in the off state and the switches 14A and 14C are in the on state.
  • the switch unit 14 is controlled by the control unit 18.
  • the control unit 18 controls the switching of the switch unit 14.
  • the control unit 18 may at least control the switch 14B to be in the on state and the switches 14A and 14C to be in the off state and the switch 14B to be in the off state and the switches 14A and 14C to be in the on state.
  • the power control device 12 is a device capable of performing power conversion by inputting power supplied from the high voltage battery 34 or the low voltage battery 32.
  • the power control device 12 mainly includes a power conversion unit 40, a management device 17, and a control unit 18.
  • the control unit 18 is a device that performs various controls on the devices in the in-vehicle system 2.
  • the control unit 18 has a calculation function, an information processing function, a storage function, and the like.
  • the control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device.
  • the control unit 18 controls, for example, the power conversion unit 40. Specific examples of control of the power conversion unit 40 by the control unit 18 will be described in detail later.
  • the management device 17 has a function of monitoring the high voltage battery 34.
  • the management device 17 continuously detects the output voltage and SOC (State Of Charge) of each of the plurality of batteries (first high-voltage battery 34A and second high-voltage battery 34B) constituting the high-voltage battery 34.
  • the power conversion unit 40 converts the power input from each battery (each of the first high voltage battery 34A and the second high voltage battery 34B), and the third conductive path different from the first high voltage battery 34A and the second high voltage battery 34B.
  • the first conversion operation of outputting power to 23A and 23B is performed.
  • the third conductive paths 23A and 23B correspond to an example of the conductive paths.
  • the power conversion unit 40 includes a first power conversion unit 50 and a second power conversion unit 60. Both the first power conversion unit 50 and the second power conversion unit 60 correspond to an example of a converter.
  • the first power conversion unit 50 corresponds to an example of the first converter.
  • the second power conversion unit 60 corresponds to an example of the second converter.
  • Each of these plurality of converters (first power conversion unit 50 and second power conversion unit 60) is provided corresponding to each of the plurality of batteries (first high voltage battery 34A and second high voltage battery 34B). Specifically, the output voltage of each battery is applied between each pair of conductive paths, which are input / output paths on one side of each converter. For example, it corresponds to the first high voltage battery 34A so that the output voltage of the first high voltage battery 34A is applied between the pair of first conductive paths 21A and 21B which are input / output paths on one side of the first power conversion unit 50.
  • the first power conversion unit 50 is provided.
  • the second high voltage battery 34B corresponds to the second high voltage battery 34B so that the output voltage of the second high voltage battery 34B is applied between the pair of second conductive paths 22A and 22B which are the input / output on one side of the second power conversion unit 60.
  • a second power conversion unit 60 is provided. Each of the first power conversion unit 50 and the second power conversion unit 60 performs power conversion in both directions.
  • the first conductive path 21A corresponds to an example of the first wiring portion.
  • the first conductive path 21B corresponds to an example of the second wiring portion.
  • the second conductive path 22A corresponds to an example of the third wiring portion.
  • the second conductive path 22B corresponds to an example of the fourth wiring portion.
  • a cutoff unit 91 is provided between the first power conversion unit 50 and the third conductive path 23A.
  • the cutoff unit 91 is configured as a known relay. When the cutoff unit 91 is on, bidirectional energization via the cutoff unit 91 is allowed, and when the cutoff unit 91 is off, bidirectional energization via the cutoff unit 91 is cut off.
  • a blocking unit 92 is provided between the second power conversion unit 60 and the third conductive path 23A. When the cutoff unit 92 is on, bidirectional energization via the cutoff unit 92 is allowed, and when the cutoff unit 92 is off, bidirectional energization via the cutoff unit 92 is cut off.
  • the cutoff units 91 and 92 may be semiconductor relays (for example, butt-type relays in which two FETs are arranged in opposite directions as in the third embodiment), or may be mechanical relays.
  • the first power conversion unit 50 functions as a bidirectional DCDC converter.
  • the first power conversion unit 50 may perform a step-down operation so as to step down the DC voltage applied between the first conductive paths 21A and 21B and apply a DC voltage between the third conductive paths 23A and 23B.
  • the first power conversion unit 50 may perform a boosting operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the first conductive paths 21A and 21B.
  • the circuit configuration of the first power conversion unit 50 is not particularly limited as long as it functions as a bidirectional DCDC converter, but in a typical example of the conversion device 10 described below, a circuit as shown in FIG. 3 is adopted. Has been done.
  • the first power conversion unit 50 is configured as an isolated bidirectional DCDC converter.
  • the first power conversion unit 50 includes a first conversion circuit 51, a transformer 53, and a second conversion circuit 52.
  • the first conversion circuit 51 corresponds to an example of one conversion unit.
  • the first conversion circuit 51 has a function of converting DC power and AC power in both directions.
  • the first conversion circuit 51 has a function of converting the DC voltage applied between the first conductive paths 21A and 21B to generate an AC voltage in the first coil 53A (first operation).
  • the first conversion circuit 51 also has a function of converting an AC voltage generated in the first coil 53A and outputting a DC voltage between the first conductive paths 21A and 21B (second operation).
  • the first conversion circuit 51 includes a capacitor 51A and switch elements 51C, 51D, 51E, 51F constituting a full bridge circuit.
  • the transformer 53 includes a first coil 53A connected to the first conversion circuit 51 and a second coil 53B connected to the second conversion circuit 52.
  • the first coil 53A and the second coil 53B are magnetically coupled.
  • the second conversion circuit 52 corresponds to an example of another conversion unit.
  • the first coil 53A corresponds to an example of the primary coil.
  • the second coil 53B corresponds to an example of the secondary coil.
  • the second conversion circuit 52 has a function of converting AC power and DC power in both directions.
  • the second conversion circuit 52 has a function of converting an AC voltage generated in the second coil 53B and outputting a DC voltage between the third conductive paths 23A and 23B (third operation).
  • the second conversion circuit 52 also has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 53B (fourth operation).
  • the second conversion circuit 52 includes switch elements 52C, 52D, an inductor 52E, a capacitor 52A, and the like.
  • the second power conversion unit 60 functions as a bidirectional DCDC converter.
  • the second power conversion unit 60 may perform a step-down operation so as to step down the DC voltage applied between the second conductive paths 22A and 22B and apply a DC voltage between the third conductive paths 23A and 23B.
  • the second power conversion unit 60 may perform a boosting operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the second conductive paths 22A and 22B.
  • the circuit configuration of the second power conversion unit 60 is not particularly limited as long as it functions as a bidirectional DCDC converter, but the circuit can be, for example, as shown in FIG. In the example of FIG. 3, the second power conversion unit 60 is configured as an isolated bidirectional DCDC converter.
  • the second power conversion unit 60 includes a first conversion circuit 61, a transformer 63, and a second conversion circuit 62.
  • the first conversion circuit 61 corresponds to an example of one conversion unit.
  • the first conversion circuit 61 has a function of converting DC power and AC power in both directions.
  • the first conversion circuit 61 has a function of converting the DC voltage applied between the second conductive paths 22A and 22B to generate an AC voltage in the first coil 63A (first operation).
  • the first conversion circuit 61 also has a function of converting an AC voltage generated in the first coil 63A and outputting a DC voltage between the second conductive paths 22A and 22B (second operation).
  • the first conversion circuit 61 includes a capacitor 61A and switch elements 61C, 61D, 61E, 61F constituting a full bridge circuit.
  • the transformer 63 includes a first coil 63A connected to the first conversion circuit 61 and a second coil 63B connected to the second conversion circuit 62.
  • the first coil 63A and the second coil 63B are magnetically coupled.
  • the second conversion circuit 52 corresponds to an example of another conversion unit.
  • the first coil 63A corresponds to an example of the primary coil.
  • the second coil 63B corresponds to an example of the secondary coil.
  • the second conversion circuit 62 has a function of converting AC power and DC power in both directions.
  • the second conversion circuit 62 has a function of converting an AC voltage generated in the second coil 63B and outputting a DC voltage between the third conductive paths 23A and 23B (third operation).
  • the second conversion circuit 62 has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 63B (fourth operation).
  • the second conversion circuit 62 includes switch elements 62C, 62D, an inductor 62E, a capacitor 62A, and the like.
  • the configuration of FIG. 3 is merely an example, and a part or both of the first power conversion unit 50 and the second power conversion unit 60 may be an On Board Charger (vehicle-mounted charger).
  • a typical example of the conversion device 10 described below has a specific configuration as shown in FIG. In FIGS. 4 to 8, the blocking portions 91 and 92 are omitted.
  • a first high voltage load 5A and a second high voltage load 5B are provided as specific examples of the high voltage load 5 shown in FIG.
  • each high-voltage load is provided in a configuration in which each battery is connected in parallel.
  • the first high-voltage load 5A is provided in a configuration connected in parallel with the first high-voltage battery 34A.
  • a second high-voltage load 5B is provided so as to be connected in parallel with the second high-voltage battery 34B.
  • One end of the first high voltage load 5A is electrically connected to the first conductive path 21A, and the other end is electrically connected to the first conductive path 21B.
  • the current supplied from the first high voltage battery 34A or the first power conversion unit 50 via the first conductive path 21A can be supplied to the first high voltage load 5A.
  • One end of the second high voltage load 5B is electrically connected to the second conductive path 22A, and the other end is electrically connected to the second conductive path 22B.
  • the current supplied from the second high voltage battery 34B or the second power conversion unit 60 via the second conductive path 22A can be supplied to the second high voltage load 5B.
  • the switch 26A and the fuse 24 are provided in the first conductive path 21A.
  • the switch 26A is a switch that switches the first conductive path 21A between a conductive state and a cutoff state.
  • a switch 26B is provided on the first conductive path 21B.
  • the switch 26B is a switch that switches the first conductive path 21B between a conductive state and a cutoff state.
  • the second conductive path 22A is provided with a switch 27A and a fuse 25.
  • the switch 27A is a switch that switches the second conductive path 22A between a conductive state and a cutoff state.
  • a switch 27B is provided on the second conductive path 22B.
  • the switch 27B is a switch that switches the second conductive path 22B between a conductive state and a cutoff state.
  • the conversion device 10 determines whether or not the predetermined condition is satisfied at the predetermined determination time, and when the predetermined condition is satisfied at the predetermined determination time, the plurality of batteries (first high voltage battery 34A and second high voltage battery 34B). ) Is performed to suppress the imbalance.
  • the predetermined determination time may be, for example, when the high-voltage batteries 34 are connected in series, or may be other times.
  • the control unit 18 may determine whether or not a predetermined condition is satisfied while the vehicle is starting with the vehicle start switch turned on, and the external AC power supply and the conversion device 10 are electrically connected. If this is the case, it may be determined whether or not the predetermined condition is satisfied. In the following description, "when the high-voltage battery 34 is connected in series while the vehicle is starting with the vehicle start switch turned on" is the determination time.
  • the control unit 18 determines whether or not the predetermined condition is satisfied at the determination time.
  • the predetermined condition is, for example, "in a plurality of batteries, the difference between the output voltage of any one battery and the output voltage of the other battery becomes larger than a certain value".
  • the output voltage of a battery is, for example, the potential difference between the electrode having the lowest potential and the electrode having the highest potential in the battery.
  • the control unit 18 the absolute value (
  • the management device 17 has an output voltage Va of the first high voltage battery 34A and an output voltage Vb of the second high voltage battery 34B when power is supplied to itself (for example, while the vehicle is starting). Is continuously monitored, and the output voltages Va and Vb are continuously applied to the control unit 18.
  • the management device 17 may periodically supply the output voltages Va and Vb to the control unit 18 at short time intervals, or may supply the output voltages Va and Vb to the control unit 18 when predetermined conditions are satisfied. good.
  • the control unit 18 continuously monitors the output voltages Va and Vb by acquiring the information of the output voltages Va and Vb transmitted from the management device 17.
  • the control unit 18 monitors the output voltages Va and Vb at the above determination time, and continuously determines whether or not
  • the control unit 18 may periodically determine whether or not
  • the power conversion unit 40 causes the power conversion unit 40 to perform an imbalance suppression operation.
  • the time for causing the power conversion unit 40 to perform the imbalance suppression operation may be the above-mentioned determination time, or may be another predetermined time.
  • the control unit 18 sets the battery having the larger output voltage into the discharged state or the charging stopped state, and charges the battery having the smaller output voltage.
  • the power conversion unit 40 is made to perform power conversion so as to be performed.
  • the control unit 18 has a plurality of batteries (first high voltage battery 34A) for the power conversion unit 40. And the operation of reducing the difference between the output voltages Va and Vb of the second high-voltage battery 34B) is performed.
  • the operations shown in FIGS. 5 to 8 can be performed.
  • the operation of FIGS. 5 and 6 is an operation of performing a step-down operation and a boosting operation by using the electric power from one of the high-voltage batteries 34 without using the electric power of the low-voltage battery 32, and charging the other battery.
  • the operations of FIGS. 7 and 8 are operations in which a boosting operation is performed using the electric power from the low voltage battery 32 to charge another battery.
  • the output voltage Va of the first high-voltage battery 34A is larger than the output voltage Vb of the second high-voltage battery 34B, and
  • the converter corresponding to the battery having the relatively large output voltage among the plurality of batteries has the first conductive path 21A or the second from the battery having the larger output voltage.
  • a step-down operation (first conversion operation) is performed using the electric power supplied to itself via one of the conductive paths 22A as an input power, and the electric power is output to the third conductive path 23A.
  • the converter corresponding to the battery having the relatively smaller output voltage among the plurality of batteries performs a boosting operation (second conversion operation) using the power supplied to itself via the third conductive path 23A as the input power. Is performed, and power is output to the other of the first conductive path 21A or the second conductive path 22A.
  • first conversion operation is performed using the electric power supplied to itself via one of the conductive paths 22A as an input power
  • second conversion operation the converter corresponding to the battery having the relatively smaller output voltage among the plurality of batteries
  • the control unit 18 causes one of the plurality of converters to perform the first conversion operation, and the other instruction (control) to perform the second conversion operation is "one from the outside.” It corresponds to an example of "part charge instruction”.
  • the partial charge instruction is an instruction to control the power conversion unit so as to discharge one of the plurality of batteries and charge the other battery. That is, the instruction to operate the power conversion unit 40 in any of the first mode, the second mode, and the fourth mode described later corresponds to an example of the "partial charge instruction from the outside”.
  • the power conversion unit 40 outputs electric power to the third conductive path 23A based on the electric power supplied from one battery by one converter in response to such a partial charging instruction from the outside (control unit 18).
  • the first conversion operation is performed as described above, and the second conversion operation is performed so that the other converter outputs power to the other battery based on the power supplied from the third conductive path 23A.
  • the instruction (control) in which the control unit 18 stops one of the plurality of converters and causes the other converter to perform the second conversion operation is an example of the “partial stop instruction from the outside”. Equivalent to. That is, the instruction to operate the power conversion unit 40 in the third mode described later corresponds to an example of "partial stop instruction from the outside”.
  • the partial stop instruction is an instruction to control the power conversion unit so as to stop one of the plurality of converters and charge another battery corresponding to the other converter.
  • the power conversion unit 40 is based on the power supplied from the low voltage battery 32 to the other converter while the conversion operation is stopped by one converter in response to such a partial stop instruction from the outside (control unit 18).
  • the second conversion operation is performed so as to output power to another battery.
  • the control unit 18 operates the power conversion unit 40 in the first mode as shown in FIG. 5 when the first operation condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the first operating condition is, for example, a case where the second operating condition, the third operating condition, and the fourth operating condition, which will be described later, are not satisfied.
  • the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50.
  • the first conversion operation (step-down operation) is performed so that a DC voltage is applied between the third conductive paths 23A and 23B.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B.
  • the second power conversion unit 60 is made to perform the second conversion operation (boosting operation).
  • the first power conversion unit 50 supplies power to the third conductive path 23A, and all of this power is used when the second power conversion unit 60 performs the second conversion operation. It is used as the input power of. That is, the power conversion unit 40 does not supply power to the low voltage battery 32 and the low voltage load 8 during the operation of the first mode.
  • the control unit 18 when the power conversion unit 40 is operated in the first mode, the control unit 18 has, for example, the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation, and the first (2) The first power conversion unit 50 and the second power conversion unit 60 are operated so that the current input from the third conductive path 23A is the same as the current input by the power conversion unit 60 in the second conversion operation.
  • the control unit 18 monitors the input / output current and the input / output voltage of the first power conversion unit 50 via the first conductive paths 21A and 21B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the first power conversion unit 50 via the third conductive paths 23A and 23B.
  • control unit 18 monitors the input / output current and the input / output voltage of the second power conversion unit 60 via the second conductive paths 22A and 22B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the second power conversion unit 60 via the third conductive paths 23A and 23B.
  • the control unit 18 operates the power conversion unit 40 in the second mode as shown in FIG. 6 when the second operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the second operating condition is, for example, "the load current supplied to the low voltage load 8 is equal to or higher than a certain value".
  • the case where the power conversion unit 40 operates in the second mode is "the case where the power conversion unit 40 receives a partial charge instruction from the outside and the first condition is met".
  • the first condition in this case is that "the instruction given from the control unit 18 to the power conversion unit 40 is an instruction to make the power output by the first conversion operation larger than the power output by the second conversion operation". Is.
  • the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50.
  • the first conversion operation (step-down operation) is performed so that a DC voltage is applied between the third conductive paths 23A and 23B.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B.
  • the second power conversion unit 60 is made to perform the second conversion operation (boosting operation).
  • the first power conversion unit 50 supplies power to the third conductive path 23A, and a part of this power is converted to the second power.
  • the unit 60 is used as input power when performing the second conversion operation, and the other part is supplied to the low pressure battery 32 or the low pressure load 8.
  • the control unit 18 when the power conversion unit 40 is operated in the second mode, for example, the control unit 18 is more than the current input from the third conductive path 23A by the second power conversion unit 60 in the second conversion operation.
  • the first power conversion unit 50 and the second power conversion unit 60 are operated so that the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation becomes larger.
  • the control unit 18 operates the power conversion unit 40 in the third mode as shown in FIG. 7 when the third operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the third operating condition is, for example, "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the example of FIG. 7) is less than a predetermined value".
  • the control unit 18 stops the operation of the converter corresponding to the one battery having the larger output voltage, and corresponds to the other battery having the smaller output voltage.
  • the converter is made to perform the second conversion operation so as to output the electric power to the other battery based on the electric power supplied from the low voltage battery 32 (second battery). For example, when the power conversion unit 40 operates in the third mode as shown in FIG.
  • the operation of the first power conversion unit 50 is stopped, and the power conversion unit 40 is based on the power supplied from the low voltage battery 32 (second battery).
  • the second power conversion unit 60 is made to perform the second conversion operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the second conductive paths 22A and 22B.
  • the control unit 18 operates the power conversion unit 40 in the fourth mode as shown in FIG. 8 when the fourth operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the fourth operating condition is, for example, "the load current to the high voltage load provided corresponding to the battery having a small output voltage among the plurality of batteries is equal to or greater than the threshold current".
  • the threshold current For example, when the output voltage of the second high-voltage battery 34B is smaller than that of the first high-voltage battery 34A, the load current to the second high-voltage load 5B provided corresponding to the second high-voltage battery 34B having a relatively small output voltage.
  • the threshold current it is assumed that the fourth operating condition is satisfied.
  • the case of operating in the fourth mode is the case of the second condition when the power conversion unit 40 receives a partial charge instruction from the outside.
  • the second condition in this case is that "the instruction given to the power conversion unit 40 is an instruction to make the power output by the second conversion operation larger than the power output by the first conversion operation".
  • the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50. 3
  • the first conversion operation (step-down operation) is performed so that a DC voltage is applied between the conductive paths 23A and 23B.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B.
  • the second power conversion unit 60 is made to perform the second conversion operation (boosting operation).
  • the first power conversion unit 50 supplies power to the third conductive path 23A, and all of this power and the low-voltage battery 32 supply power.
  • the electric power combined with the electric power is used as the input electric power when the second electric power conversion unit 60 performs the second conversion operation.
  • the control unit 18 when the power conversion unit 40 is operated in the fourth mode, for example, the control unit 18 is more than the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation.
  • the first power conversion unit 50 and the second power conversion unit 60 are operated so that the current input from the third conductive path 23A by the second power conversion unit 60 is larger in the second conversion operation.
  • the control unit 18 ends the imbalance suppression operation when the end condition is satisfied, regardless of whether the power conversion unit 40 is operated in any of the first to fourth modes.
  • the power conversion unit 40 not only performs a first conversion operation in which power is converted by using the power supplied from each battery as an input for a plurality of batteries constituting the high-voltage battery 34, but also for any of the batteries.
  • a second conversion operation that outputs electric power individually can also be performed. Therefore, the conversion device 10 is easier to correct the imbalance of a plurality of batteries than the device that can realize only the first conversion operation.
  • the conversion device 10 is provided with each converter (first power conversion unit 50, second power conversion unit 60) corresponding to each battery (first high voltage battery 34A, second high voltage battery 34B) constituting the high voltage battery 34. Be done. Therefore, the conversion device 10 can be made redundant by a plurality of converters while realizing a configuration that makes it easy to correct the imbalance of the plurality of batteries.
  • the conversion device 10 supplies electric power to the third conductive paths 23A and 23B by converting the electric power of one converter based on the electric power of one battery, and uses this electric power.
  • Other batteries can be charged by the power conversion of the converter. Therefore, the conversion device 10 can correct the imbalance of the plurality of batteries more quickly.
  • the conversion device 10 can correct the imbalance of a plurality of batteries by using the electric power from the low voltage battery 32 (second battery).
  • the conversion device 10 can supply power to the other battery side by giving priority to the power supply from the low-voltage battery 32 (second battery) over the power supply from one battery.
  • the conversion device 10 can operate the power conversion unit 40 so as to reduce the difference between the output voltages of the plurality of batteries when the above-mentioned start condition is satisfied.
  • the following description relates to the conversion device 210 of the second embodiment.
  • the circuit configuration of the conversion device 210 of the second embodiment is different from that of the conversion device 10 of the first embodiment only in that the power conversion unit 40 shown in FIG. 1 and the like is changed to the power conversion unit 240. That is, the conversion device 210 of the second embodiment has a configuration in which the power conversion unit 40 is changed to the power conversion unit 240 in the conversion device 10 of FIG. Therefore, in the following description, FIG. 1 is referred to for parts other than the power conversion unit 40.
  • the device configuration of the vehicle-mounted system 202 of FIG. 9 differs from the vehicle-mounted system 2 (FIGS.
  • the apparatus configuration of the power supply system 203 of FIG. 9 differs from the power supply system 3 of the first embodiment (FIGS. 1, 4, etc.) only in that the power conversion unit 40 is changed to the power conversion unit 240, and the other points are different. It is the same as the power supply system 3 of the first embodiment.
  • the operation of the in-vehicle system 202 is the same as that of the in-vehicle system 2 except for the operation of the power conversion unit 240.
  • a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B) are connected in series and in parallel. It is a switching power supply system.
  • the conversion device 210 of the second embodiment has a power conversion unit 240.
  • the power conversion unit 240 converts the power input from each battery (first high-voltage battery 34A, second high-voltage battery 34B) and outputs the power to the third conductive paths 23A and 23B different from each battery.
  • the first conversion operation can be performed.
  • the power conversion unit 240 may perform a second conversion operation so as to individually output power to each of the first high-voltage battery 34A and the second high-voltage battery 34B.
  • the power conversion unit 240 includes a plurality of first conversion units 241A and 241B, a transformer 243, and a second conversion unit 242.
  • the transformer 243 includes a plurality of first coils 243A, 243B and a second coil 243C, and the plurality of first coils 243A, 243B and the second coil 243C are magnetically coupled.
  • Each of the plurality of first coils 243A and 243B is provided corresponding to each of the plurality of first conversion units 241A and 241B.
  • Each of the plurality of first conversion units 241A and 241B converts DC power based on the power from each of the first high voltage battery 34A and the second high voltage battery 34B, and converts AC power into each of the plurality of first coils 243A and 243B. Is output.
  • the first conversion unit 241A has a function of converting DC power and AC power in both directions.
  • the first conversion unit 241A has a function of converting a DC voltage applied between the first conductive paths 21A and 21B and generating an AC voltage in the first coil 243A.
  • the first conversion unit 241A also has a function of converting an AC voltage generated in the first coil 243A and outputting a DC voltage between the first conductive paths 21A and 21B.
  • the first conversion unit 241A includes a capacitor 251A and switch elements 251C, 251D, 251E, 251F constituting a full bridge circuit.
  • the first conversion unit 241B has a function of converting DC power and AC power in both directions.
  • the first conversion unit 241B has a function of converting the DC voltage applied between the second conductive paths 22A and 22B and generating an AC voltage in the first coil 243B.
  • the first conversion unit 241B also has a function of converting an AC voltage generated in the first coil 243B and outputting a DC voltage between the second conductive paths 22A and 22B.
  • the first conversion unit 241B includes a capacitor 261A and switch elements 261C, 261D, 261E, 261F constituting a full bridge circuit.
  • the second conversion unit 242 has a function of converting AC power and DC power in both directions.
  • the second conversion unit 242 has a function of converting an AC voltage generated in the second coil 243C and outputting a DC voltage between the third conductive paths 23A and 23B.
  • the second conversion unit 242 also has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 53B.
  • the second conversion unit 242 includes switch elements 252C, 252D, an inductor 252E, a capacitor 252A, and the like.
  • the conversion device 210 determines whether or not the predetermined condition is satisfied at the predetermined determination time, and when the predetermined condition is satisfied at the determination time, the plurality of batteries (first high voltage battery). The operation of suppressing the imbalance of the 34A and the second high voltage battery 34B) is performed.
  • the determination timing and the predetermined conditions can be the same as those of the conversion device 10 of the first embodiment.
  • the control unit 18 shown in FIG. 1 determines that
  • the power conversion unit 240 is made to perform an imbalance suppression operation.
  • the time for causing the power conversion unit 240 to perform the imbalance suppression operation may be the above-mentioned determination time, or may be another predetermined time.
  • the control unit 18 sets the battery having the larger output voltage into the discharged state or the charging stopped state, and charges the battery having the smaller output voltage.
  • the power conversion unit 240 is made to perform power conversion so as to be performed.
  • the control unit 18 has a plurality of batteries (first high voltage battery 34A) for the power conversion unit 240. And the operation of reducing the difference between the output voltages Va and Vb of the second high-voltage battery 34B) is performed.
  • the control unit 18 can cause the power conversion unit 240 to perform the operations shown in FIGS. 11 to 13, for example, as the imbalance suppression operation.
  • the operations of FIGS. 11 and 12 are operations in which the conversion operation is performed by using the electric power from one of the high-voltage batteries 34 without using the electric power of the low-voltage battery 32, and the other batteries are charged.
  • the operation of FIG. 13 is an operation of performing a step-up operation using the electric power from the low-voltage battery 32 to charge one of the high-voltage batteries 34.
  • the output voltage Va of the first high-voltage battery 34A is larger than the output voltage Vb of the second high-voltage battery 34B, and
  • the control unit 18 operates the power conversion unit 240 in the first mode as shown in FIG. 11 when the first operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the first operating condition is, for example, a case where the second operating condition and the third operating condition described later are not satisfied.
  • the instruction given to the power conversion unit 240 so that the control unit 18 performs the operation shown in FIG. 11 corresponds to an example of "partial charge instruction from the outside".
  • the power conversion unit 240 performs power conversion by a plurality of first conversion units 241A, 241B and a transformer 243 based on the power supplied from one battery in response to such a partial charge instruction from the outside.
  • the second conversion operation is performed so as to supply power to another battery.
  • the control unit 18 When the control unit 18 operates the power conversion unit 240 in the first mode as shown in FIG. 11, the second conversion unit 242 maintains the stopped state, and the first conductive paths 21A and 21B with respect to the first conversion unit 241A.
  • An AC voltage is generated in the first coil 243A by performing a conversion operation with the DC voltage applied between them as an input, and the AC voltage of the first coil 243B generated in response to the AC voltage is used as an input in the first conversion unit.
  • the plurality of first conversion units 241A and 241B are operated so as to apply a DC voltage between the second conductive paths 22A and 22B.
  • the control unit 18 monitors the input / output current and the input / output voltage of the first conversion unit 241A via the first conductive paths 21A and 21B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the first conversion unit 241B via the second conductive paths 22A and 22B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the second conversion unit 242 via the third conductive paths 23A and 23B.
  • the control unit 18 operates the power conversion unit 240 in the second mode as shown in FIG. 12 when the second operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the second operating condition is, for example, a case where the load current flowing to the low voltage load 8 is a predetermined value or more.
  • the instruction given to the power conversion unit 240 so that the control unit 18 performs the operation shown in FIG. 12 also corresponds to an example of the “partial charge instruction from the outside”.
  • the control unit 18 inputs the DC voltage applied between the first conductive paths 21A and 21B to the first conversion unit 241A. By performing the operation, an AC voltage is generated in the first coil 243A.
  • control unit 18 causes the first conversion unit 241B to perform a conversion operation in which the AC voltage generated in the first coil 243B is input in response to the generation of the AC voltage in the first coil 243A.
  • a DC voltage is applied between the conductive paths 22A and 22B.
  • control unit 18 causes the second conversion unit 242 to perform a conversion operation by inputting the AC voltage generated in the second coil 243C in response to the generation of the AC voltage in the first coil 243A, thereby causing the third conductivity.
  • a DC voltage is applied between the paths 23A and 23B.
  • the control unit 18 operates the power conversion unit 240 in the third mode as shown in FIG. 13 when the third operating condition is satisfied when the predetermined condition is satisfied at the determination time.
  • the third operating condition is, for example, "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the example of FIG. 13) is less than a predetermined value".
  • the control unit 18 stops the conversion operation of the first conversion unit corresponding to the battery having the larger output voltage, while stopping the conversion operation with the other first conversion unit and the transformer.
  • the power conversion unit 240 is provided with power so that the 243 and the second conversion unit 242 output power to another battery corresponding to the other first conversion unit based on the power supplied from the low voltage battery 32 (second battery). 2 Perform the conversion operation.
  • the instruction given by the control unit 18 to the power conversion unit 240 so as to perform the operation of FIG. 13 corresponds to an example of "partial stop instruction from the outside".
  • the control unit 18 maintains the first conversion unit 241A in a stopped state, and the third conductive paths 23A and 23B with respect to the second conversion unit 242.
  • An AC voltage is generated in the second coil 243C by performing a conversion operation using the DC voltage applied between them as an input.
  • the control unit 18 causes the first conversion unit 241B to perform a conversion operation in which the AC voltage generated in the first coil 243B is input in response to the generation of the AC voltage in the second coil 243C.
  • a DC voltage is applied between the conductive paths 22A and 22B.
  • FIG. 14 shows the conversion device 310 according to the third embodiment.
  • the conversion device 310 is a device used as a part of the in-vehicle system 302 mounted on the vehicle.
  • the vehicle equipped with the in-vehicle system 302 is a vehicle in which the in-vehicle system 302 is installed in place of the in-vehicle system 2 by modifying the vehicle 1 in FIG.
  • the in-vehicle system 302 shown in FIG. 14 includes a power supply system 303, a drive unit 4, a high voltage load 5, a low voltage load 8, power paths 28A, 28B, and the like.
  • the power paths 28A and 28B may be provided with terminals having the same functions as the terminals 9A and 9B shown in FIG. Further, the power paths 28A and 28B may be provided with switches having the same functions as the switches 26A and 26B shown in FIG.
  • the drive unit 4 has the same configuration as the drive unit 4 of the vehicle-mounted system 2 shown in FIG. 1 and the like, and has the same function as the drive unit 4 of the vehicle-mounted system 2.
  • the low-voltage load 8 has the same configuration as the low-voltage load 8 of the vehicle-mounted system 2 shown in FIG. 1 and the like, and has the same function as the low-voltage load 8 of the vehicle-mounted system 2.
  • the high-voltage load 5 is a load that is electrically connected to the power paths 28A and 28B and can operate by being supplied with electric power from the high-voltage battery 34.
  • the high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these.
  • the power supply system 303 includes a conversion device 310, a low voltage battery 32, and a high voltage battery 34.
  • the power supply system 303 is a system in which a plurality of batteries 34A and 34B are connected in parallel, and the plurality of batteries 34A and 34B are not switched to a series connection.
  • the power supply system 303 can charge the high voltage battery 34 based on the AC power supplied from the external AC power source when the external AC power source (not shown) is connected to the vehicle equipped with the in-vehicle system 302.
  • the vehicle equipped with the in-vehicle system 302 has a connection terminal (not shown) to which an external AC power supply is connected, and an external AC power supply (not shown) may be connected to the connection terminal.
  • the power supply system 303 has a charging circuit (not shown) that applies a DC voltage to the high voltage battery 34 based on the electric power supplied from the quick charger when the quick charger is connected to the connection terminal of the vehicle. ..
  • the power path 28A may be electrically connected to the highest potential electrode in each of the first high voltage battery 34A and the second high voltage battery 34B.
  • the power paths 28A and 28B are paths for supplying electric power from the high-voltage battery 34 to the inverter 7.
  • the high voltage battery 34 includes a plurality of batteries.
  • the high voltage battery 34 includes a first high voltage battery 34A and a second high voltage battery 34B.
  • the first high voltage battery 34A and the second high voltage battery 34B both correspond to an example of a battery.
  • the first high voltage battery 34A corresponds to an example of the first battery unit.
  • the second high voltage battery 34B corresponds to an example of the second battery unit.
  • the high-voltage battery 34 is a power source in which the first high-voltage battery 34A and the second high-voltage battery 34B are connected in parallel and do not switch to the series connection.
  • the high-voltage battery 34 is configured to be rechargeable and dischargeable.
  • the high voltage battery 34 When power is supplied from the high-voltage battery 34, power is supplied from either one of the first high-voltage battery 34A and the second high-voltage battery 34B, or power is supplied in a state where both are connected in parallel.
  • the high voltage battery 34 outputs a high voltage (for example, about 300 V) for driving the drive unit 4.
  • the output voltage of each of the first high-voltage battery 34A and the second high-voltage battery 34B when fully charged is higher than the output voltage of the low-voltage battery 32 when fully charged.
  • the first high-voltage battery 34A and the second high-voltage battery 34B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
  • a relay 393A is provided between the first high voltage battery 34A and the power path 28A.
  • the relay 393A When the relay 393A is in the off state, the electrode having the highest potential (high potential side electrode) in the first high-voltage battery 34A and the power path 28A are electrically disconnected, and the energization via the relay 393A is cut off. ..
  • the relay 393A When the relay 393A is in the ON state, the high potential side electrode of the first high pressure battery 34A and the power path 28A are electrically connected, and between the high potential side electrode of the first high pressure battery 34A and the power path 28A. Shorts out.
  • a relay 394A is provided between the first high voltage battery 34A and the power path 28B.
  • the relay 394A When the relay 394A is in the off state, the energization via the relay 394A is cut off between the electrode having the lowest potential (low potential side electrode) in the first high voltage battery 34A and the power path 28B.
  • the relay 394A When the relay 394A is on, the low potential side electrode of the first high pressure battery 34A and the power path 28B are electrically connected, and between the low potential side electrode of the first high pressure battery 34A and the power path 28B. Shorts out.
  • a series component in which the relay 395A and the resistor 396A are provided in series is connected in parallel to the relay 394A.
  • the relay 393A When the relay 393A is in the on state, the relay 394A is in the off state, and the relay 395A is in the on state, a current can flow through the series component. In this case, the electric power is supplied while suppressing the current.
  • the relays 394A and 395A are in the off state, the energization between the first high voltage battery 34A and the power path 28B is cut off.
  • the relays 393A, 394A, and 395A may be semiconductor relays or mechanical relays.
  • a relay 393B is provided between the second high voltage battery 34B and the power path 28A.
  • the relay 393B When the relay 393B is in the off state, the electrode having the highest potential (high potential side electrode) in the second high-voltage battery 34B and the power path 28A are electrically disconnected, and the energization via the relay 393B is cut off. ..
  • the relay 393B When the relay 393B is in the ON state, the high potential side electrode of the second high voltage battery 34B and the power path 28A are electrically connected, and between the high potential side electrode of the second high pressure battery 34B and the power path 28A. Shorts out.
  • a relay 394B is provided between the second high voltage battery 34B and the power path 28B.
  • the relay 394B When the relay 394B is in the off state, the power supply via the relay 394B is cut off between the electrode having the lowest potential (low potential side electrode) in the second high voltage battery 34B and the power path 28B.
  • the relay 394B When the relay 394B is on, the low potential side electrode of the second high pressure battery 34B and the power path 28B are electrically connected, and between the low potential side electrode of the second high pressure battery 34B and the power path 28B. Shorts out. Further, a series component in which the relay 395B and the resistor 396B are provided in series is connected in parallel to the relay 394B.
  • the relay 393B When the relay 393B is in the on state, the relay 394B is in the off state, and the relay 395B is in the on state, a current can flow through the series component. In this case, the electric power is supplied while suppressing the current.
  • the relays 394B and 395B are in the off state, the energization between the second high voltage battery 34B and the power path 28B is cut off.
  • the relays 393B, 394B, and 395B may be semiconductor relays or mechanical relays.
  • the low voltage battery 32 corresponds to an example of the second battery and corresponds to an example of the power storage unit.
  • the low voltage battery 32 is configured to be rechargeable and dischargeable.
  • the low voltage battery 32 supplies power to the low voltage load 8.
  • the low voltage battery 32 may be composed of a lead storage battery or another type of storage battery.
  • the low voltage battery 32 outputs a predetermined voltage (for example, 12V) when fully charged.
  • the conversion device 310 mainly includes a power conversion unit 40, a control unit 18, a management device 17, a first relay unit 331, and a second relay unit 332.
  • the conversion device 310 functions as a power control device.
  • the conversion device 310 is a device capable of performing power conversion by inputting power supplied from the high voltage battery 34 or the low voltage battery 32.
  • Reference numeral 370 is a DCDC converter, which is composed of a power conversion unit 40, a first relay unit 331, a second relay unit 332, and the like.
  • the control unit 18 is a device that performs various controls on the devices in the in-vehicle system 302.
  • the control unit 18 has a calculation function, an information processing function, a storage function, and the like.
  • the control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device.
  • the control unit 18 controls, for example, the power conversion unit 40. Specific examples of control of the power conversion unit 40 by the control unit 18 will be described in detail later.
  • the management device 17 has a function of monitoring the high voltage battery 34.
  • the management device 17 continuously detects the output voltage and SOC (State Of Charge) of each of the plurality of batteries (first high-voltage battery 34A and second high-voltage battery 34B) constituting the high-voltage battery 34.
  • the power conversion unit 40 of the conversion device 310 has the same configuration as the power conversion unit 40 of the first embodiment shown in FIGS. 1, 2, and the like, and functions in the same manner.
  • the power conversion unit 40 of the conversion device 310 also includes a plurality of converters. As shown in FIGS. 14 and 15, the power conversion unit 40 of the conversion device 310 includes a first power conversion unit 50 and a second power conversion unit 60 as a plurality of converters.
  • the first power conversion unit 50 corresponds to an example of the first converter.
  • the second power conversion unit 60 corresponds to an example of the second converter.
  • Each of the first power conversion unit 50 and the second power conversion unit 60 performs power conversion in both directions.
  • Each of the plurality of converters (first power conversion unit 50, second power conversion unit 60) is provided corresponding to each of the plurality of batteries (first high voltage battery 34A, second high voltage battery 34B).
  • a first power conversion unit 50 is provided corresponding to the first high voltage battery 34A.
  • a second power conversion unit 60 is provided corresponding to the second high voltage battery 34B.
  • the first power conversion unit 50 responds so that it can receive power supply from the first high voltage battery 34A even when the power supply from the second high voltage battery 34B different from the first high voltage battery 34A corresponding to itself is cut off. Is provided.
  • the second power conversion unit 60 responds so that it can receive power supply from the second high voltage battery 34B even when the power supply from the first high voltage battery 34A, which is different from the second high voltage battery 34B corresponding to itself, is cut off. Is provided.
  • a first conductive path 21A (first wiring section) is provided between the high potential side electrode (the electrode having the highest potential) of the first high voltage battery 34A (first battery section) and the first terminal 371.
  • a first conductive path 21B (second wiring portion) is provided between the low-potential side electrode (the electrode having the lowest potential) of the first high-voltage battery 34A and the second terminal 372.
  • the first terminal 371 may be electrically connected to the high potential side electrode of the first high voltage battery 34A via the first conductive path 21A.
  • the first terminal 371 may always be short-circuited to the high potential side electrode of the first high voltage battery 34A via the first conductive path 21A.
  • a switch may be interposed in the first conductive path 21A.
  • the first terminal 371 when the switch of the first conductive path 21A is in the ON state, the first terminal 371 is the height of the first high voltage battery 34A. It may be short-circuited to the potential side electrode.
  • the second terminal 372 may be electrically connected to the low potential side electrode of the first high voltage battery 34A via the first conductive path 21B. The second terminal 372 may always be short-circuited to the low potential side electrode of the first high voltage battery 34A via the first conductive path 21B.
  • a switch may be interposed in the first conductive path 21B. In this case, when the switch of the first conductive path 21B is in the ON state, the second terminal 372 is the low voltage of the first high voltage battery 34A. It may be short-circuited to the potential side electrode.
  • the first conductive paths 21A and 21B are paths to which a voltage based on the voltage across the first high voltage battery 34A is applied.
  • the first power conversion unit 50 converts the voltage applied between the first conductive path 21A on one side and the first conductive path 21B on the other side so as to step down the voltage, and converts the voltage into the third conductive path 23A on one side. An operation of applying an output voltage to the other third conductive path 23B is performed.
  • the first power conversion unit 50 has the same configuration as the first power conversion unit 50 of the first embodiment shown in FIGS. 1, 2, and the like, and has the same function. Also in the example of FIG. 15, the first power conversion unit 50 has a first conversion circuit 51 (one conversion unit), a transformer 53, and a second conversion circuit 52 (another conversion unit).
  • the transformer 53 includes a first coil 53A (primary coil) and a second coil 53B (secondary coil) that are magnetically coupled to each other.
  • the first conversion circuit 51 (one conversion unit) can perform the first operation based on the electric power from the first high voltage battery 54A corresponding to the first conversion circuit 51.
  • the DC voltage applied between the pair of first conductive paths 21A and 21B (a pair of one-side conductive paths) corresponding to the first high-voltage battery 54A is converted into an AC voltage and used in the first coil 53A. This is an operation that generates an AC voltage.
  • the first conversion circuit 51 may perform a second operation of converting an AC voltage generated in the first coil 53A into a DC voltage and applying a DC voltage between the pair of first conductive paths 21A and 21B.
  • the second conversion circuit 52 converts the AC voltage generated in the second coil 53B into a DC voltage, and the DC voltage between the pair of conductive paths 21C and 21D (the pair of conductive paths on the other side) corresponding to the second conversion circuit 52.
  • a third operation can be performed.
  • the second conversion circuit 52 may perform a fourth operation of converting the DC voltage applied between the pair of conductive paths 21C and 21D to generate an AC voltage in the second coil 53B.
  • the conductive path 21C is a conductive path that short-circuits with the third conductive path 23A when the blocking portion 91 is in the ON state.
  • the conductive path 21D is a conductive path short-circuited with the third conductive path 23B.
  • the conductive path 21D is a conductive path electrically connected to the ground.
  • a second conductive path 22A (third wiring section) is provided between the high potential side electrode (the electrode having the highest potential) of the second high voltage battery 34B (second battery section) and the third terminal 373.
  • a second conductive path 22B (fourth wiring portion) is provided between the low-potential side electrode (the electrode having the smallest potential) of the second high-voltage battery 34B and the fourth terminal 374.
  • the third terminal 373 may be electrically connected to the high potential side electrode of the second high voltage battery 34B via the second conductive path 22A.
  • the third terminal 373 may always be short-circuited to the high potential side electrode of the second high voltage battery 34B via the second conductive path 22A.
  • a switch may be interposed in the second conductive path 22A.
  • the third terminal 373 when the switch of the second conductive path 22A is in the ON state, the third terminal 373 has a high potential of the second high voltage battery 34B. It may be short-circuited to the side electrode.
  • the fourth terminal 374 may be electrically connected to the low potential side electrode of the second high voltage battery 34B via the second conductive path 22B. The fourth terminal 374 may always be short-circuited to the low potential side electrode of the second high voltage battery 34B via the second conductive path 22B.
  • a switch may be interposed in the second conductive path 22B. In this case, when the switch of the second conductive path 22B is in the ON state, the fourth terminal 374 has a low potential of the second high voltage battery 34B. It may be short-circuited to the side electrode.
  • the second conductive paths 22A and 22B are paths to which a voltage based on the voltage across the second high voltage battery 34B is applied.
  • the second power conversion unit 60 converts the voltage applied between the second conductive path 22A on one side and the second conductive path 22B on the other side so as to step down the voltage, and the second conductive path 23A and the third conductive path 23A on the other side. An operation of applying an output voltage to the other third conductive path 23B is performed.
  • the second power conversion unit 60 has the same configuration as the second power conversion unit 60 of the first embodiment shown in FIGS. 1, 2, and the like, and has the same function. Also in the example of FIG.
  • the second power conversion unit 60 has a first conversion circuit 61 (one conversion unit), a transformer 63, and a second conversion circuit 62 (another conversion unit).
  • the transformer 63 includes a first coil 63A (primary coil) and a second coil 63B (secondary coil) that are magnetically coupled to each other. When an AC voltage is generated in one of the first coil 63A and the second coil 63B, the transformer 63 generates an AC voltage corresponding to the AC voltage in the other.
  • the first conversion circuit 61 (one conversion unit) may perform the first operation based on the electric power from the second high voltage battery 54B corresponding to the first conversion circuit 61.
  • the DC voltage applied between the pair of second conductive paths 22A and 22B (a pair of one-side conductive paths) corresponding to the second high-voltage battery 54B is converted into an AC voltage and used in the first coil 63A.
  • the first conversion circuit 61 may perform a second operation of converting an AC voltage generated in the first coil 53A into a DC voltage and applying a DC voltage between the pair of second conductive paths 22A and 22B.
  • the second conversion circuit 62 converts the AC voltage generated in the second coil 53B into a DC voltage, and the DC voltage between the pair of conductive paths 22C and 22D (the pair of conductive paths on the other side) corresponding to the second conversion circuit 62.
  • a third operation can be performed.
  • the second conversion circuit 62 may perform a fourth operation of converting the DC voltage applied between the pair of conductive paths 22C and 22D to generate an AC voltage in the second coil 63B.
  • the conductive path 22C is a conductive path that short-circuits with the third conductive path 23A when the blocking portion 92 is in the ON state.
  • the conductive path 22D is a conductive path short-circuited with the third conductive path 23B.
  • the power conversion unit 40 has a plurality of cutoff units 91 and 92. Each of the plurality of cutoff units 91 and 92 is provided between each of the first power conversion unit 50 and the second power conversion unit 60 and the third conductive path 23A, respectively.
  • the cutoff unit 91 allows power to be transmitted between the first power conversion unit 50 and the third conductive path 23A via itself when it is in the on state, and allows the first power to be transmitted via itself when it is in the off state. It cuts off the transmission of electric power between the conversion unit 50 and the third conductive path 23A.
  • the blocking unit 91 is composed of FETs 91A and 91B arranged in opposite directions to each other.
  • the cutoff unit 91 When both the FETs 91A and 91B are in the off state, the cutoff unit 91 is in the off state. In this case, the energization via the cutoff unit 91 is cut off in both directions. When both the FETs 91A and 91B are in the ON state, the cutoff unit 91 is in the ON state. In this case, energization via the cutoff unit 91 is allowed in both directions.
  • the cutoff unit 92 allows power to be transmitted between the second power conversion unit 60 and the third conductive path 23A via itself when it is in the on state, and allows the second power to be transmitted via itself when it is in the off state. It cuts off the transmission of electric power between the conversion unit 60 and the third conductive path 23A.
  • the blocking unit 92 is composed of FETs 92A and 92B arranged in opposite directions to each other. When both the FETs 92A and 92B are in the off state, the cutoff unit 92 is in the off state. In this case, the energization via the cutoff unit 92 is cut off in both directions. When both the FETs 92A and 92B are in the ON state, the cutoff unit 92 is in the ON state. In this case, energization via the cutoff unit 92 is allowed in both directions.
  • the first relay section 331 switches between an on state that allows energization between the first conductive path 21A (first wiring section) and the second conductive path 22A (third wiring section) and an off state that cuts off the energization. ..
  • the first relay unit 331 is composed of FETs 331A and 331B arranged in opposite directions to each other. When both the FETs 331A and 331B are in the off state, the first relay unit 331 is in the off state. In this case, the energization via the first relay unit 331 is cut off in both directions.
  • the first relay section 331 is in the off state, no current flows between the first conductive path 21A and the second conductive path 22A via the first relay section 331.
  • the first relay portion 331 is in the ON state, the first conductive path 21A and the second conductive path 22A are short-circuited.
  • the second relay section 332 switches between an on state that permits energization between the first conductive path 21B (second wiring section) and the second conductive path 22B (fourth wiring section) and an off state that cuts off the energization. ..
  • the second relay unit 332 is composed of FETs 332A and 332B arranged in opposite directions to each other. When both the FETs 332A and 332B are in the off state, the second relay unit 332 is in the off state. In this case, the energization via the second relay unit 332 is cut off in both directions.
  • the second relay section 332 is in the off state, no current flows between the first conductive path 21B and the second conductive path 22B via the second relay section 332.
  • the second relay portion 332 When the second relay portion 332 is in the ON state, the first conductive path 21B and the second conductive path 22B are short-circuited.
  • the FETs 331B and 332B may be omitted.
  • the conversion device 310 of the third embodiment can perform the imbalance suppression operation in the same manner as that of the first embodiment.
  • the control unit 18 shown in FIG. 14 operates the power conversion unit 40 to reduce the difference in output voltage or SOC between the first high-voltage battery 54A and the second high-voltage battery 54B when a predetermined start condition is satisfied. Let me do it.
  • the predetermined start condition can be the same as the predetermined start condition in the first embodiment.
  • the conversion device 310 can perform the operation of the first mode, the operation of the second mode, the operation of the third mode, and the operation of the fourth mode in the same manner as in the first embodiment. ..
  • the first operating condition when the conversion device 310 performs the operation of the first mode can be the same as that of the first embodiment, and the operation of the first mode can also be the same as that of the first embodiment.
  • the second operating condition when the conversion device 310 performs the operation of the second mode can be the same as that of the first embodiment, and the operation of the second mode can also be the same as that of the first embodiment.
  • the third operating condition when the conversion device 310 performs the operation of the third mode can be the same as that of the first embodiment, and the operation of the third mode can also be the same as that of the third embodiment.
  • the fourth operating condition when the conversion device 310 performs the operation of the fourth mode can be the same as that of the first embodiment, and the operation of the fourth mode can also be the same as that of the first embodiment. Regardless of which mode the conversion device 310 operates in, the termination condition can be the same as that of the first embodiment.
  • control unit 18 corresponds to an example of the cutoff control unit, and controls the cutoff units 91 and 92.
  • the control unit 18 corresponds to an example of the converter control unit, and controls the first power conversion unit 50 and the second power conversion unit 60.
  • the control unit 18 also functions as a failure detection unit, and detects the failure of each of the first power conversion unit 50 and the second power conversion unit 60. For example, the control unit 18 determines that the first power conversion unit 50 is out of order when the voltage of the conductive path 21C drops below the threshold value when the cutoff unit 91 is in the ON state.
  • control unit 18 determines that the second power conversion unit 60 is out of order when the voltage of the conductive path 22C drops below the threshold value when the cutoff unit 92 is in the ON state.
  • the threshold value is lower than the voltage applied between the third conductive paths 23A and 23B when the low-voltage battery 32 is fully charged.
  • control unit 18 When the control unit 18 (cutoff control unit) detects a failure of either the first power conversion unit 50 or the second power conversion unit 60, the control unit 18 (disconnection control unit) includes the converter and the third conductive path 23A in which the failure is detected. The cutoff portion provided between the two is switched to the off state. Then, when the failure of any of the converters is detected by itself, the control unit 18 (converter control unit) operates the converter in which the failure is not detected.
  • the control unit 18 detects a failure of the first power conversion unit 50 and does not detect a failure of the second power conversion unit 60, the control unit 18 switches the cutoff unit 91 to the off state and switches the second power conversion unit 60 to the off state.
  • the control unit 18 detects a failure of the first power conversion unit 50 while causing the first power conversion unit 50 and the second power conversion unit 60 to perform the first conversion operation, the first The operation of the power conversion unit 50 can be stopped and the cutoff unit 91 can be switched to the off state, and if the failure of the second power conversion unit 60 is not detected, the second power conversion unit 60 can continue the first conversion operation. ..
  • control unit 18 detects the failure of the second power conversion unit 60, and if the failure of the first power conversion unit 50 is not detected, the control unit 18 switches the cutoff unit 92 to the off state and the first power conversion unit 50. To operate. For example, when the control unit 18 detects a failure of the second power conversion unit 60 while causing the first power conversion unit 50 and the second power conversion unit 60 to perform the first conversion operation, the control unit 18 detects a failure of the second power conversion unit 60. The operation of the 60 can be stopped and the cutoff unit 92 can be switched to the off state, and if the failure of the first power conversion unit 50 is not detected, the first power conversion unit 50 can continue the first conversion operation.
  • the blocking portions 91 and 92 are provided between each converter and the third conductive path 23A, respectively. Therefore, if necessary, between each converter and the third conductive path 23A. Can be individually blocked. Then, when any of the converters fails, the conversion device 310 individually cuts off between the failed converter and the third conductive path 23A, and electrically disconnects the failed converter from the third conductive path 23A. be able to. Further, the conversion device 310 can continue the power conversion by operating the converter in which the failure has not occurred while suppressing the influence of the converter in which the failure has occurred.
  • the control unit 18 corresponds to an example of the relay control unit, and controls the first relay unit 331 and the second relay unit 332.
  • the control unit 18 corresponds to an example of an abnormality detection unit, and detects an abnormality in the power supply from the first high-voltage battery 34A (first battery unit) and an abnormality in the power supply from the second high-voltage battery 34B (second battery unit). To detect.
  • the control unit 18 determines that the power supply from the first high voltage battery 34A is abnormal when the voltage applied between the first conductive paths 21A and 21B is equal to or less than the threshold voltage.
  • the threshold voltage in this case is a value lower than the output voltage (voltage across) of the first high voltage battery 34A at the time of full charge.
  • the control unit 18 determines that the power supply from the second high voltage battery 34B is abnormal when the voltage applied between the second conductive paths 22A and 22B is equal to or less than the threshold voltage.
  • the threshold voltage in this case is a value lower than the output voltage (voltage across) of the second high voltage battery 34B at the time of full charge.
  • the control unit 18 switches the first relay unit 331 and the second relay unit 332 to the off state when an abnormality in the power supply from either the first high voltage battery 34A or the second high voltage battery 34B is detected by itself. ..
  • the first power conversion unit 50 performs the first conversion operation or the second conversion in a state where the output voltage (voltage across the ends) of the first high voltage battery 34A is applied between the first conductive paths 21A and 21B.
  • the second power conversion unit 60 performs the first conversion operation or the second conversion operation in a state where the operation is performed and the output voltage (voltage across the ends) of the second high voltage battery 34B is applied between the second conductive paths 22A and 22B. If it is determined that the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is abnormal, the first relay unit 331 and the second relay unit 332 are switched to the off state.
  • the operation of the first conversion circuit of the converter corresponding to the battery whose power supply is abnormal is stopped.
  • the control unit 18 determines that the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is not abnormal, the first relay unit 331 and the second relay unit 332 are turned off. While maintaining the operation, the converter corresponding to the battery for which the power supply is determined to be normal is continued to operate.
  • the conversion device 310 receives power from not only the first high voltage battery 34A but also the second high voltage battery 34B with respect to the first conductive paths 21A and 21B. Be supplied. Further, when the first relay unit 331 and the second relay unit 332 are in the ON state, electric power is supplied to the second conductive paths 22A and 22B not only from the first high voltage battery 34A but also from the second high voltage battery 34B. .. Therefore, both the first power conversion unit 50 and the second power conversion unit 60 can perform power conversion based on the power from both battery units.
  • the conversion device 310 turns off the first relay unit 331 and the second relay unit 332 when the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is abnormal.
  • the first power conversion unit 50 and the second power conversion unit 60 are electrically separated from each other in the circuit on the battery unit side, and the influence of the battery unit in which the abnormality occurs is affected by the first power conversion unit 50 and the battery unit. It is possible to suppress the influence on both of the second power conversion units 60.
  • the conversion device 410 of the fourth embodiment is provided with a transformer 453 in place of the transformers 53 and 63 used in the third embodiment, and the first coils 53A and 63A and the second coils 53B and 63B are magnetically coupled. Only is different from the third embodiment, and other points are the same as the third embodiment.
  • the transformer 453 is configured by integrating the transformer 53 of the first power conversion unit 50 (one converter) and the transformer 63 of the second power conversion unit 60 (another converter) in a plurality of converters. Has been done.
  • the transformer 453 has a first coil 53A (primary coil) and a second coil 53B (secondary coil) in the transformer 53, and a first coil 63A (primary coil) and a second coil 63B (secondary coil) in the transformer 63.
  • the coil) is magnetically coupled.
  • the conversion device 410 includes all the configurations of the conversion device 310 except for the transformer 453.
  • the conversion device 410 can perform the same operation as that of the conversion device 310.
  • the control unit 18 (converter control unit) is the second conversion circuit 52, 62 (other) of the first power conversion unit 50 (one converter) and the second power conversion unit 60 (other converter).
  • the above-mentioned first operation is performed on the first conversion circuit (one conversion unit) of either the first power conversion unit 50 or the second power conversion unit 60.
  • the conversion control may be performed so that the other first conversion circuit (one conversion unit) performs the above-mentioned second operation.
  • the first operation described above is an operation of converting a DC voltage based on the power from the corresponding battery into an AC voltage to generate an AC voltage in the primary coil.
  • the second operation described above is an operation of converting an AC voltage generated in the primary coil into a DC voltage and applying a DC voltage between the pair of one-side conductive paths.
  • the control unit 18 uses the second conversion circuit 52, With the operation of 62 stopped, the first conversion circuit 51 of the first power conversion unit 50 performs the first operation, and the first conversion circuit 61 of the second power conversion unit 60 performs the second operation.
  • the conversion control may be performed so as to be performed. By doing so, with the operations of the second conversion circuits 52 and 62 stopped, the first high-voltage battery 54A can be discharged and the second high-voltage battery 54B can be charged to reduce the difference in the above indexes. can.
  • the operation of the second conversion circuits 52 and 62 is performed.
  • the first conversion circuit 61 of the second power conversion unit 60 performs the above-mentioned first operation
  • the first conversion circuit 51 of the first power conversion unit 50 performs the above-mentioned second operation.
  • the conversion control may be performed so as to be performed. By doing so, it is possible to discharge from the second high-voltage battery 54B and charge the first high-voltage battery 54A in a state where the operations of the second conversion circuits 52 and 62 are stopped to reduce the difference in the above indexes. ..
  • the conversion device of the fifth embodiment includes all the configurations of any of the conversion devices 10, 210, and 310 of the first to third embodiments, and further features are added.
  • the conversion devices 10, 210, and 310 of the first to third embodiments described above correspond to the control unit 18 that controls the power conversion unit (power conversion unit 40 or power conversion unit 240) and an example of the switching circuit. It has a switch unit 14 to control the switch unit 14 and a control unit 18 to control the switch unit 14 (switching circuit).
  • the control unit 18 corresponds to an example of a switching control unit.
  • the power supply systems 3, 203, 303 in which these conversion devices 10, 210, and 310 are used are a pair of power paths 28A, which are paths for transmitting electric power to a drive unit 4 provided in a vehicle 1 on which the power supply system is mounted. , 28B.
  • the drive unit 4 corresponds to an example of a load.
  • the switch unit 14 switches between a state in which a plurality of batteries (first high-voltage battery 34A, second high-voltage battery 34B) are connected in series between a pair of power paths 28A and 28B and a state in which they are connected in parallel. It has a structure.
  • the features of the fifth embodiment described below can be applied to any of the conversion devices 10, 210, and 310 of the first to third embodiments.
  • an example in which the following features are added to the conversion device 10 of the first embodiment will be described as a representative example. Since the representative example of the fifth embodiment includes all the features of the conversion device 10 of the first embodiment, FIGS. 1 to 8 are appropriately referred to below.
  • the conversion device 10 of the representative example of the fifth embodiment has the configuration as shown in FIG.
  • the control unit 18 switching control unit
  • the switch unit 14 (switching circuit) is controlled so as to switch between a state of being connected in series and a state of being connected in parallel.
  • the control unit 18 switches a plurality of the batteries between the series connection state and the parallel connection state while the vehicle 1 is running
  • the control unit 18 switches the plurality of batteries in parallel with the series connection state according to the running state of the vehicle 1.
  • a method of switching according to the traveling state of the vehicle for example, when the speed of the vehicle 1 exceeds a predetermined speed, the connection state is switched to the series connection state, and when the speed of the vehicle 1 is equal to or less than the predetermined speed, the connection state is changed to the parallel connection state. It may be a method of switching.
  • a method of switching according to the traveling state of the vehicle a method of switching to a series connection state when the vehicle 1 is traveling in a predetermined area and switching to a parallel connection state when traveling outside the predetermined area. It may be.
  • the method of switching according to the traveling state of the vehicle 1 is to switch to the series connection state when the sum of the output voltages of the first high voltage battery 34A and the second high voltage battery 34B is less than a certain value, and is equal to or more than a certain value. Sometimes it may be a method of switching to the parallel connection state.
  • the method of switching according to the traveling state of the vehicle 1 is a method of switching to a parallel connection state from the start of the vehicle 1 until a predetermined condition is satisfied, and then switching to a series connection state after the predetermined condition is satisfied. May be good.
  • the control unit 18 When operating in this way, from the first high-voltage battery 34A and the second high-voltage battery 34B connected in series while connecting the first high-voltage battery 34A and the second high-voltage battery 34B in series between the pair of power paths 28A and 28B.
  • the control unit 18 controlling the switch unit 14 so as to supply power to the drive unit 4 (load)
  • the control unit 18 has at least one of the first conversion operation and the second conversion operation with respect to the power conversion unit 40. May be done. For example, when the first high-voltage battery 34A and the second high-voltage battery 34B are switched to the series connection state while the vehicle 1 is running, the control unit 18 is in the running and series connection state (that is, connected in series) of the vehicle 1.
  • the power conversion unit 40 In the state where power is supplied to the drive unit 4 (load) from the first high-voltage battery 34A and the second high-voltage battery 34B), the power conversion unit 40 is made to perform at least one of the first conversion operation and the second conversion operation. It may be controlled as follows. When the control unit 18 controls the power conversion unit 40 in the series connection state while the vehicle is traveling, the power conversion unit 40 may be operated in any of the first to fourth modes. Which of the first to fourth modes the power conversion unit 40 is operated can be selected by the same method as in the first embodiment.
  • the conversion device of the sixth embodiment includes all the configurations of any one of the conversion devices 10, 210, 310, 410 of the first to fifth embodiments, and further features are added.
  • the power supply systems 3, 203, 303, and 403 in which the conversion devices 10, 210, 310, and 410 of the first to fifth embodiments are used supply electric power to the drive unit 4 provided in the vehicle 1 on which the power supply system is mounted. It has a pair of power paths 28A and 28B that are transmission paths.
  • the drive unit 4 corresponds to an example of a load.
  • the conversion devices 10, 210, 310, and 410 of the first to fifth embodiments all include a control unit 18 that controls a power conversion unit (power conversion unit 40 or power conversion unit 240) and a plurality of batteries (first high voltage).
  • a control unit 18 controls a power conversion unit (power conversion unit 40 or power conversion unit 240) and a plurality of batteries (first high voltage).
  • a state in which a part of the battery 34A and the second high-voltage battery 34B) (specifically, one of the first high-voltage battery 34A and the second high-voltage battery 34B) is connected between the pair of power paths 28A and 28B.
  • a switching circuit that switches between a plurality of batteries (first high-voltage battery 34A, second high-voltage battery 34B) connected in parallel between a pair of power paths 28A and 28B, and a switching control unit that controls the switching circuit. (Control unit 18).
  • the switch unit 14 corresponds to an example of the switching circuit.
  • the relays 393A and 393B correspond to an example of the switching circuit.
  • the conversion device of the sixth embodiment has a first feature that it has an abnormality detection unit that detects a battery in which an abnormality in power supply has occurred from among a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B). Be prepared. Further, in the conversion device of the sixth embodiment, when an abnormality in the power supply of any one of the plurality of batteries (first high-pressure battery 34A, second high-pressure battery 34B) is detected by the abnormality detection unit, the conversion device has a plurality of batteries (first high-pressure battery 34A, second high-pressure battery 34B).
  • the switching control unit has a second feature that a battery in which an abnormality in power supply is not detected is connected between a pair of power paths 28A and 28B.
  • the switching control unit connects a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B) in parallel between the pair of power paths 28A and 28B while the vehicle is traveling. It has a third feature that it is possible to do so. Further, in the conversion device of the sixth embodiment, when the abnormality of the power supply of any of the batteries is detected by the abnormality detection unit while the vehicle is running, the switching control unit does not detect the abnormality of the power supply. It has a fourth feature that the battery is connected between the pair of power lines 28A and 28B.
  • FIGS. 1 to 8 are appropriately referred to below.
  • the conversion device 10 of the representative example of the sixth embodiment has the configuration as shown in FIG.
  • the conversion device 10 determines, for example, whether or not the management device 17 corresponds to an example of the abnormality detection unit, and whether or not an abnormality in the power supply has occurred in either the first high-voltage battery 34A or the second high-voltage battery 34B.
  • the "abnormal power supply” is "the output voltage of either the first high voltage battery 34A or the second high voltage battery 34B is equal to or less than the threshold voltage".
  • the "abnormality of power supply” may be, for example, "the SOC of either the first high voltage battery 34A or the second high voltage battery 34B is equal to or less than the threshold value", or may be another abnormality. ..
  • the conversion device 10 controls when the abnormality detection unit (management device 17) detects that the output voltage of any one of the first high-voltage battery 34A and the second high-voltage battery 34B is equal to or lower than the threshold voltage.
  • the unit 18 switches the switch unit 14 (switching circuit) so as to connect a battery in which an abnormality in the power supply has not been detected between the pair of power paths 28A and 28B.
  • the abnormality detection by the abnormality detection unit and the switching operation by the switching circuit may be performed while the vehicle is running, or may be performed during a period other than the running.
  • control unit 18 can connect the first high-voltage battery 34A and the second high-voltage battery 34B in parallel between the pair of electric power paths 28A and 28B while the vehicle is running, and the parallel connection thereof. In this state, it is possible to supply electric power to the drive unit 4 (load) from the first high-voltage battery 34A and the second high-voltage battery 34B.
  • the abnormality detection unit management device 17
  • detects that the output voltage of either the first high-voltage battery 34A or the second high-voltage battery 34B is equal to or lower than the threshold voltage while the vehicle is running.
  • the battery in which the output voltage is detected to be below the threshold voltage is electrically cut off from the pair of power paths 28A and 28B (conduction is cut off), and it is not detected that the output voltage is below the threshold voltage.
  • the switch unit 14 switching circuit
  • the switch unit 14 is operated so as to maintain the state in which the battery is electrically connected to the pair of power paths 28A and 28B (maintain the conduction state).
  • the control unit 18 supplies power to the drive unit 4 (load) in a state where the first high voltage battery 34A and the second high voltage battery 34B are connected in parallel between the pair of power paths 28A and 28B while the vehicle is running.
  • the abnormality detection unit (management device 17) detects that the output voltage of the first high-voltage battery 34A is equal to or lower than the threshold voltage
  • the first high-voltage battery 34A is connected to the pair of power paths 28A.
  • 28B is electrically cut off, and a switch is used to maintain the state in which the second high-voltage battery 34B, whose output voltage is not detected to be below the threshold voltage, is electrically connected to the pair of power paths 28A and 28B.
  • the unit 14 switching circuit
  • control unit 18 is included in the conversion device, but the control unit may not be included in the conversion device. That is, the control unit may be configured as a device different from the conversion device.
  • the switch unit 14 is included in the conversion device, but the switch unit 14 may not be included in the conversion device. That is, the switch unit 14 may be configured as a device different from the conversion device.
  • the management device 17 is included in the conversion device, but the management device 17 may not be included in the conversion device. That is, the management device 17 may be configured as a device different from the conversion device.
  • the power conversion units 40 and 240 could perform the second conversion operation so as to individually output power to all the batteries among the plurality of batteries, but the present invention is not limited to this example.
  • the power conversion unit may perform power conversion in both directions so as to individually output power to only a part of the plurality of batteries.
  • the conversion devices 10 and 210 perform an imbalance suppression operation so as to reduce the difference in output voltage when the above-mentioned start condition is satisfied, but the present invention is not limited to this example.
  • the conversion devices 10 and 210 may perform an imbalance suppression operation so as to reduce the difference in SOC (State Of Charge).
  • SOC State Of Charge
  • the battery having a relatively high output voltage among the plurality of batteries is replaced with the battery having a relatively high SOC among the plurality of batteries, and the output voltage among the plurality of batteries is relatively high.
  • the low battery may be replaced with a battery having a relatively low SOC among a plurality of batteries.
  • the control unit 18 may perform the imbalance suppression operation when the absolute value of the difference in SOCs of the plurality of batteries is equal to or greater than the threshold value.
  • the control unit 18 sets the battery having the larger SOC among the plurality of batteries in the discharged state or the charge stop state, and charges the battery having the smaller SOC. May cause the power conversion unit 40 to perform power conversion. Then, the control unit 18 may end the imbalance suppression operation when the absolute value of the difference between the SOCs of the plurality of batteries becomes a certain value or less, which is smaller than the above threshold value.
  • the power conversion unit 40 When the control unit 18 performs the imbalance suppression operation, the power conversion unit 40, so that the charging current supplied to the battery having the smaller output voltage or SOC is larger than the charging current supplied to the battery having the larger SOC.
  • the 240 may be made to perform power conversion.
  • each converter may be provided for each battery.
  • two batteries are provided as a plurality of batteries, but three or more batteries may be provided.
  • each first conversion unit may be provided for each battery.
  • the transformer may be provided with three or more first coils, and each first coil may be provided corresponding to each first conversion unit.
  • the third operating condition may be "the output voltage of the low voltage battery 32 is equal to or higher than the threshold voltage".
  • the third operating condition is that "the output voltage of the low voltage battery 32 is equal to or higher than the threshold voltage” and "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the examples of FIGS. 7 and 13) is less than a predetermined value. May be.
  • the control unit 18 functions as a failure detection unit, but the failure detection method is not limited to the above example. For example, if the current flowing through the conductive path 21C in the first power conversion unit 50 is equal to or greater than the overcurrent threshold value, or if the voltage of the conductive path 21C is equal to or greater than the overvoltage threshold value, the first power conversion unit 50 is out of order. The determination may be made and the cutoff unit 91 may be turned off.
  • the second power conversion unit 60 is out of order. It may be determined that the cutoff unit 92 is turned off.
  • control unit 18 may determine that the power supply from the first high voltage battery 54A is abnormal when the SOC or output voltage of the first high voltage battery 54A is less than a predetermined value. Similarly, when the SOC or output voltage of the second high voltage battery 54B is less than a predetermined value, it may be determined that the power supply from the second high voltage battery 54B is abnormal.
  • the power conversion unit 40 is used in the conversion device 310, but the power conversion unit 240 in the second embodiment may be used instead of the power conversion unit 40.
  • the conversion device 310 causes the power conversion unit 240 to perform the same operation as the operation performed by the power conversion unit 240 in the conversion device 210 of the second embodiment. May be good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A conversion device (10) is used in a power supply system in which a plurality of batteries (34A, 34B) may be connected at least in parallel. The conversion device (10) includes a power conversion unit (40). The power conversion unit (40) performs a first conversion operation of converting power inputted from the batteries (34A, 34B) and outputting power to a conductive path different from the batteries (34A, 34B). The power conversion unit (40) performs a second conversion operation of outputting power individually to at least any of the batteries (34A, 34B).

Description

変換装置Converter
 本開示は、変換装置に関する。 This disclosure relates to a conversion device.
 特許文献1には、電気自動車に搭載されるバッテリ制御装置が開示されている。特許文献1に開示されるバッテリ制御装置は、電気自動車の走行時には複数のバッテリを並列接続とし、外部給電装置による複数のバッテリの充電時には複数のバッテリを直列接続とする。 Patent Document 1 discloses a battery control device mounted on an electric vehicle. In the battery control device disclosed in Patent Document 1, a plurality of batteries are connected in parallel when the electric vehicle is running, and a plurality of batteries are connected in series when the plurality of batteries are charged by the external power feeding device.
特開2018-85790号公報Japanese Unexamined Patent Publication No. 2018-85790
 特許文献1に開示されるシステムは、いずれかのバッテリと他のバッテリとにおいて状態の不均衡が生じる懸念があるため、この種のシステムでは、複数のバッテリの不均衡を是正しやすい技術が適用されることが望まれる。 In the system disclosed in Patent Document 1, there is a concern that a state imbalance may occur between one of the batteries and the other battery. Therefore, in this type of system, a technique that easily corrects the imbalance of a plurality of batteries is applied. It is hoped that it will be done.
 本開示は、複数のバッテリの不均衡を是正しやすい変換装置を提供する。 The present disclosure provides a conversion device that can easily correct the imbalance of a plurality of batteries.
 本開示の一つである変換装置は、
 複数のバッテリが少なくとも並列に接続され得る電源システムに用いられる変換装置であって、
 各々の前記バッテリから入力される電力を変換し、前記バッテリとは異なる導電路に電力を出力する第1変換動作を行う電力変換部を有し、
 前記電力変換部は、少なくともいずれかの前記バッテリに対して個別に電力を出力する第2変換動作を行う。
The conversion device, which is one of the present disclosures, is
A converter used in power systems where multiple batteries can be connected at least in parallel.
It has a power conversion unit that performs a first conversion operation that converts the power input from each of the batteries and outputs the power to a conductive path different from that of the battery.
The power conversion unit performs a second conversion operation of individually outputting power to at least one of the batteries.
 本開示の一つである変換装置は、複数のバッテリの不均衡を是正しやすい。 The conversion device, which is one of the present disclosures, can easily correct the imbalance of a plurality of batteries.
図1は、本開示の第1実施形態の変換装置を含む車載システムを概略的に例示するブロック図である。FIG. 1 is a block diagram schematically illustrating an in-vehicle system including the conversion device according to the first embodiment of the present disclosure. 図2は、図1の車載システムを搭載した車両を模式的に例示する模式図である。FIG. 2 is a schematic diagram schematically illustrating a vehicle equipped with the in-vehicle system of FIG. 図3は、図1の車載システムにおける電力変換部の一部の具体的構成を例示する回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration of a part of the power conversion unit in the in-vehicle system of FIG. 図4は、図1の車載システムの一部を具体化し、一部を省略して示すブロック図である。FIG. 4 is a block diagram showing a part of the in-vehicle system of FIG. 1 embodied and a part omitted. 図5は、図1の車載システムにおける第1モード時の動作の一例を説明する説明図である。FIG. 5 is an explanatory diagram illustrating an example of operation in the first mode in the in-vehicle system of FIG. 図6は、図1の車載システムにおける第2モード時の動作の一例を説明する説明図である。FIG. 6 is an explanatory diagram illustrating an example of operation in the second mode in the in-vehicle system of FIG. 図7は、図1の車載システムにおける第3モード時の動作の一例を説明する説明図である。FIG. 7 is an explanatory diagram illustrating an example of operation in the third mode in the in-vehicle system of FIG. 図8は、図1の車載システムにおける第4モード時の動作の一例を説明する説明図である。FIG. 8 is an explanatory diagram illustrating an example of operation in the fourth mode in the in-vehicle system of FIG. 図9は、第2実施形態の変換装置を含む車載システムについて、一部を具体化し、一部を省略して示すブロック図である。FIG. 9 is a block diagram showing a part of the in-vehicle system including the conversion device of the second embodiment, with a part thereof being embodied and a part omitted. 図10は、図9の車載システムにおける電力変換部の一部の具体的構成を例示する回路図である。FIG. 10 is a circuit diagram illustrating a specific configuration of a part of the power conversion unit in the in-vehicle system of FIG. 図11は、図9の車載システムにおける第1モード時の動作の一例を説明する説明図である。FIG. 11 is an explanatory diagram illustrating an example of operation in the first mode in the in-vehicle system of FIG. 図12は、図9の車載システムにおける第2モード時の動作の一例を説明する説明図である。FIG. 12 is an explanatory diagram illustrating an example of operation in the second mode in the in-vehicle system of FIG. 図13は、図9の車載システムにおける第3モード時の動作の一例を説明する説明図である。FIG. 13 is an explanatory diagram illustrating an example of operation in the third mode in the in-vehicle system of FIG. 図14は、第3実施形態の変換装置を含む車載システムを概略的に例示するブロック図である。FIG. 14 is a block diagram schematically illustrating an in-vehicle system including the conversion device of the third embodiment. 図15は、第3実施形態の変換装置について、一部を具体化し、一部を省略して示す回路図である。FIG. 15 is a circuit diagram showing a part of the conversion device of the third embodiment embodied and a part omitted. 図16は、第4実施形態の変換装置について、一部を具体化し、一部を省略して示す回路図である。FIG. 16 is a circuit diagram showing a part of the conversion device of the fourth embodiment embodied and a part omitted.
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔27〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。 In the following, the embodiments of the present disclosure are listed and exemplified. The features [1] to [27] exemplified below may be combined in any way within a consistent range.
 〔1〕複数のバッテリが少なくとも並列に接続され得る電源システムに用いられる変換装置であって、
 各々の前記バッテリから入力される電力を変換し、前記バッテリとは異なる導電路に電力を出力する第1変換動作を行う電力変換部を有し、
 前記電力変換部は、少なくともいずれかの前記バッテリに対して個別に電力を出力する第2変換動作を行う変換装置。
[1] A converter used in a power supply system in which a plurality of batteries can be connected at least in parallel.
It has a power conversion unit that performs a first conversion operation that converts the power input from each of the batteries and outputs the power to a conductive path different from that of the battery.
The power conversion unit is a conversion device that performs a second conversion operation that individually outputs power to at least one of the batteries.
 上記の〔1〕の変換装置では、電力変換部は、各々のバッテリから供給される電力を入力として電力変換を行う第1変換動作だけでなく、少なくともいずれかのバッテリに対して個別に電力を出力する第2変換動作も行うことができる。よって、この変換装置は、第1変換動作だけが実現可能な装置よりも、複数のバッテリの不均衡を是正しやすい。 In the conversion device of the above [1], the power conversion unit not only performs the first conversion operation of performing power conversion by using the power supplied from each battery as an input, but also individually supplies power to at least one of the batteries. The second conversion operation to output can also be performed. Therefore, this conversion device is easier to correct the imbalance of a plurality of batteries than the device that can realize only the first conversion operation.
 〔2〕の変換装置は、上記の〔1〕に記載の変換装置において、次の特徴を有する。上記電力変換部は、複数のコンバータを備える。各々の上記バッテリにそれぞれ対応して各々の上記コンバータが設けられる。複数の上記コンバータの少なくともいずれかが、双方向に電力変換を行う。 The conversion device of [2] has the following features in the conversion device according to the above [1]. The power conversion unit includes a plurality of converters. Each of the above converters is provided corresponding to each of the above batteries. At least one of the plurality of converters performs power conversion in both directions.
 上記の〔2〕の変換装置は、各バッテリに対応して各コンバータが設けられるため、複数のバッテリの不均衡を是正しやすい構成を実現しつつ、複数のコンバータによって冗長化を図ることができる。 In the conversion device of the above [2], since each converter is provided corresponding to each battery, it is possible to realize a configuration that makes it easy to correct the imbalance of a plurality of batteries, and to achieve redundancy by a plurality of converters. ..
 〔3〕の変換装置は、上記の〔2〕に記載の変換装置において、次の特徴を有する。上記電力変換部は、外部からの一部充電指示に応じて、少なくともいずれか一の上記コンバータが一の上記バッテリから供給される電力に基づいて上記導電路に電力を出力するように上記第1変換動作を行い、他の上記コンバータが上記導電路から供給される電力に基づいて他の上記バッテリに電力を出力するように上記第2変換動作を行う。 The conversion device of [3] has the following features in the conversion device described in [2] above. The first power conversion unit outputs power to the conductive path based on the power supplied from one battery by at least one of the converters in response to a partial charging instruction from the outside. The conversion operation is performed, and the second conversion operation is performed so that the other converter outputs power to the other battery based on the power supplied from the conductive path.
 上記の〔3〕の変換装置は、一のバッテリの電力に基づく一のコンバータの電力変換によって導電路に電力を供給し、この電力を利用した他のコンバータの電力変換によって他のバッテリを充電することができる。よって、この変換装置は、複数のバッテリの不均衡をより迅速に是正することができる。 The conversion device of the above [3] supplies electric power to the conductive path by the electric power conversion of one converter based on the electric power of one battery, and charges another battery by the electric power conversion of another converter using this electric power. be able to. Therefore, this converter can correct the imbalance of a plurality of batteries more quickly.
 〔4〕の変換装置は、上記の〔2〕又は〔3〕に記載の変換装置において、次の特徴を有する。上記導電路は、複数の上記バッテリとは異なる第2バッテリに電気的に接続される。上記電力変換部は、外部からの一部停止指示に応じて、一の上記コンバータの変換動作を停止させつつ、他の上記コンバータが上記第2バッテリから供給される電力に基づいて他の上記バッテリに電力を出力するように上記第2変換動作を行う。 The conversion device of [4] has the following features in the conversion device according to the above [2] or [3]. The conductive path is electrically connected to a second battery different from the plurality of batteries. The power conversion unit stops the conversion operation of one converter in response to a partial stop instruction from the outside, and the other converter is based on the power supplied from the second battery to the other battery. The second conversion operation is performed so as to output electric power to.
 上記の〔4〕の変換装置は、一のバッテリからの電力供給よりも第2バッテリからの電力供給を優先して、他のバッテリ側に電力を供給することができる。 The conversion device of the above [4] can supply power to the other battery side by giving priority to the power supply from the second battery over the power supply from one battery.
 〔5〕の変換装置は、上記の〔2〕から〔4〕のいずれか一つに記載の変換装置において、次の特徴を有する。上記電力変換部は、複数の遮断部を有する。各々の上記遮断部は、各々の上記コンバータと上記導電路との間にそれぞれ設けられる。上記遮断部は、オン状態のときには自身を介して上記コンバータと上記導電路との間で電力が伝送されることを許容し、オフ状態のときには自身を介して上記コンバータと上記導電路との間で電力が伝送されることを遮断する。 The conversion device of [5] has the following features in the conversion device according to any one of the above [2] to [4]. The power conversion unit has a plurality of cutoff units. Each of the above-mentioned cutoff portions is provided between each of the above-mentioned converters and the above-mentioned conductive path. The cutoff portion allows electric power to be transmitted between the converter and the conductive path via itself when it is in the on state, and between the converter and the conductive path via itself when it is in the off state. Blocks the transmission of power.
 上記の〔5〕の変換装置は、各々の上記コンバータと上記導電路との間に各遮断部がそれぞれ設けられるため、必要に応じて、各コンバータと上記導電路との間を個別に遮断することができる。 In the conversion device of the above [5], since each cutoff portion is provided between each of the converters and the conductive path, each converter and the conductive path are individually cut off as necessary. be able to.
 〔6〕の変換装置は、上記の〔5〕に記載の変換装置において、次の特徴を有する。〔6〕の変換装置は、複数の上記遮断部を制御する遮断制御部と、複数の上記コンバータを制御するコンバータ制御部と、複数の上記コンバータの各々の故障を検出する故障検出部と、を有する。上記遮断制御部は、上記故障検出部によっていずれかの上記コンバータの故障が検出された場合に、故障が検出された上記コンバータと上記導電路との間に設けられた上記遮断部をオフ状態に切り替える。上記コンバータ制御部は、上記故障検出部によっていずれかの上記コンバータの故障が検出された場合、故障が検出されていない上記コンバータを動作させる。 The conversion device of [6] has the following features in the conversion device according to [5] above. The conversion device of [6] includes a cutoff control unit that controls a plurality of the above-mentioned cutoff units, a converter control unit that controls the plurality of the above-mentioned converters, and a failure detection unit that detects a failure of each of the plurality of the above-mentioned converters. Have. When the failure detection unit detects a failure of any of the converters, the cutoff control unit turns off the cutoff unit provided between the converter where the failure is detected and the conductive path. Switch. When the failure detection unit detects a failure of any of the converters, the converter control unit operates the converter in which the failure is not detected.
 上記の〔6〕の変換装置は、いずれかコンバータが故障した場合に、その故障したコンバータと上記導電路の間を個別に遮断し、故障が生じたコンバータを導電路から電気的に切り離すことができる。そして、この変換装置は、このように故障が生じたコンバータの影響を抑えた状態で故障が生じていないコンバータを動作させて電力変換を継続することができる。 When any of the converters in the above-mentioned [6] fails, the converter can individually cut off between the failed converter and the conductive path, and electrically disconnect the failed converter from the conductive path. can. Then, this conversion device can continue the power conversion by operating the converter in which the failure has not occurred while suppressing the influence of the converter in which the failure has occurred.
 〔7〕の変換装置は、上記の〔2〕から〔6〕のいずれか一つに記載の変換装置において、次の特徴を有する。複数の上記バッテリは、第1電池部と第2電池部とを備える。複数の上記コンバータは、第1コンバータと第2コンバータとを備える。上記第1電池部と上記第1コンバータとの間には、上記第1電池部の両端電圧に基づく電圧が印加される経路である第1配線部及び第2配線部が設けられる。上記第2電池部と上記第2コンバータとの間には、上記第2電池部の両端電圧に基づく電圧が印加される経路である第3配線部及び第4配線部が設けられる。上記第1コンバータは、上記第1配線部と上記第2配線部との間に印加された電圧を変換して上記導電路に出力電圧を印加する動作を行う。上記第2コンバータは、上記第3配線部と上記第4配線部との間に印加された電圧を変換して上記導電路に出力電圧を印加する動作を行う。更に、〔7〕の変換装置は、上記第1配線部と上記第3配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第1リレー部を備える。更に、〔7〕の変換装置は、上記第2配線部と上記第4配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第2リレー部と、を有する。 The conversion device of [7] has the following features in the conversion device according to any one of the above [2] to [6]. The plurality of batteries include a first battery unit and a second battery unit. The plurality of converters include a first converter and a second converter. Between the first battery unit and the first converter, a first wiring unit and a second wiring unit, which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided. Between the second battery unit and the second converter, a third wiring unit and a fourth wiring unit, which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided. The first converter performs an operation of converting a voltage applied between the first wiring unit and the second wiring unit and applying an output voltage to the conductive path. The second converter performs an operation of converting a voltage applied between the third wiring portion and the fourth wiring portion and applying an output voltage to the conductive path. Further, the conversion device of [7] includes a first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off the energization. Further, the conversion device of [7] has a second relay unit that switches between an on state that permits energization between the second wiring unit and the fourth wiring unit and an off state that cuts off the energization.
 上記の〔7〕の変換装置は、第1リレー部及び第2リレー部がオン状態のときには、第1配線部及び第2配線部に対して、第1電池部だけでなく第2電池部からも電力が供給される。また、第1リレー部及び第2リレー部がオン状態のときには、第3配線部及び第4配線部に対して、第1電池部だけでなく第2電池部からも電力が供給される。よって、第1コンバータ及び第2コンバータのいずれもが、両電池部からの電力に基づいて電力変換を行い得る。一方、第1リレー部及び第2リレー部がオフ状態のときには、第1配線部と第3配線部との間が遮断され、第2配線部と第4配線部との間が遮断される。よって、第1電池部の影響を抑えて第2コンバータが独立して動作することができ、第2電池部の影響を抑えて第1コンバータが独立して動作することができる。 In the conversion device of the above [7], when the first relay unit and the second relay unit are in the ON state, not only the first battery unit but also the second battery unit with respect to the first wiring unit and the second wiring unit. Is also powered. Further, when the first relay unit and the second relay unit are in the ON state, electric power is supplied to the third wiring unit and the fourth wiring unit not only from the first battery unit but also from the second battery unit. Therefore, both the first converter and the second converter can perform power conversion based on the power from both battery units. On the other hand, when the first relay unit and the second relay unit are in the off state, the space between the first wiring unit and the third wiring unit is cut off, and the space between the second wiring unit and the fourth wiring unit is cut off. Therefore, the second converter can operate independently while suppressing the influence of the first battery unit, and the first converter can operate independently while suppressing the influence of the second battery unit.
 〔8〕の変換装置は、上記の〔1〕に記載の変換装置において、次の特徴を有する。上記電力変換部は、複数の第1変換部と、トランスと、第2変換部と、を備える。上記トランスは、複数の第1コイルと第2コイルとを備え、複数の上記第1コイルと上記第2コイルとが磁気結合されている。各々の上記第1変換部にそれぞれ対応して各々の上記第1コイルが設けられる。各々の上記第1変換部は、各々の上記バッテリからの電力に基づく直流電力を変換して各々の上記第1コイルに交流電力を出力する。少なくともいずれかの上記第1変換部が双方向に電力変換を行う。 The conversion device of [8] has the following features in the conversion device according to the above [1]. The power conversion unit includes a plurality of first conversion units, a transformer, and a second conversion unit. The transformer includes a plurality of first coils and a second coil, and the plurality of the first coils and the second coil are magnetically coupled. Each of the first coils is provided corresponding to each of the first conversion units. Each of the first conversion units converts DC power based on the power from each of the batteries and outputs AC power to each of the first coils. At least one of the first conversion units performs power conversion in both directions.
 上記の〔8〕の変換装置は、複数のバッテリの不均衡を是正しやすい構成を、変換部を統合させた構成によって実現することができる。 The conversion device of the above [8] can realize a configuration that easily corrects the imbalance of a plurality of batteries by a configuration in which the conversion unit is integrated.
 〔9〕の変換装置は、上記の〔8〕に記載の変換装置において、次の特徴を有する。上記電力変換部は、外部からの一部充電指示に応じて、少なくともいずれか一の上記バッテリから供給される電力に基づいて、複数の上記第1変換部及び上記トランスによって電力変換を行い、他の上記バッテリに電力を供給するように上記第2変換動作を行う。 The conversion device of [9] has the following features in the conversion device according to the above [8]. The power conversion unit performs power conversion by a plurality of the first conversion units and the transformer based on the power supplied from at least one of the batteries in response to a partial charge instruction from the outside, and the other The second conversion operation is performed so as to supply electric power to the battery.
 上記の〔9〕の変換装置は、一のバッテリから供給される電力に基づいて他のバッテリに電力を供給する変換動作を、第2変換部の動作を抑えて行うことができ、効率をより高めることができる。 The conversion device of the above [9] can perform a conversion operation of supplying power to another battery based on the power supplied from one battery while suppressing the operation of the second conversion unit, thereby further improving efficiency. Can be enhanced.
 〔10〕の変換装置は、上記の〔8〕又は〔9〕に記載の変換装置において、次の特徴を有する。上記導電路は、複数の上記バッテリとは異なる第2バッテリに電気的に接続される。上記電力変換部は、外部からの一部停止指示に応じて、いずれか一の上記バッテリに対応する一の上記第1変換部の変換動作を停止させつつ、他の上記バッテリに対応する他の上記第1変換部と上記トランスと上記第2変換部とが上記第2バッテリから供給される電力に基づいて他の上記バッテリに電力を出力するように上記第2変換動作を行う。 The conversion device of [10] has the following features in the conversion device according to the above [8] or [9]. The conductive path is electrically connected to a second battery different from the plurality of batteries. The power conversion unit, in response to a partial stop instruction from the outside, stops the conversion operation of one of the first conversion units corresponding to any one of the above batteries, while the other power conversion unit corresponds to the other battery. The second conversion operation is performed so that the first conversion unit, the transformer, and the second conversion unit output electric power to the other batteries based on the electric power supplied from the second battery.
 上記の〔10〕の変換装置は、一のバッテリからの電力供給よりも第2バッテリからの電力供給を優先して、他のバッテリ側に電力を供給することができる。 The conversion device of the above [10] can supply power to the other battery side by giving priority to the power supply from the second battery over the power supply from one battery.
 〔11〕の変換装置は、〔8〕から〔10〕のいずれか一つに記載の変換装置において、次の特徴を有する。複数の上記バッテリは、第1電池部と第2電池部とを備える。複数の上記第1変換部は、一の上記第1変換部と他の上記第1変換部とを備える。上記第1電池部と一の上記第1変換部との間には、上記第1電池部の両端電圧に基づく電圧が印加される経路である第1配線部及び第2配線部が設けられる。上記第2電池部と他の上記第1変換部との間には、上記第2電池部の両端電圧に基づく電圧が印加される経路である第3配線部及び第4配線部が設けられる。一の上記第1変換部は、上記第1配線部と上記第2配線部との間に印加された電圧を変換して一の上記第1コイルに交流電圧を生じさせる動作を行う。他の上記第1変換部は、上記第3配線部と上記第4配線部との間に印加された電圧を変換して他の上記第1コイルに交流電圧を生じさせる動作を行う。更に、〔11〕の変換装置は、上記第1配線部と上記第3配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第1リレー部と、上記第2配線部と上記第4配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第2リレー部と、を有する。 The conversion device of [11] has the following features in the conversion device according to any one of [8] to [10]. The plurality of batteries include a first battery unit and a second battery unit. The plurality of first conversion units include one of the first conversion units and the other first conversion unit. Between the first battery unit and one of the first conversion units, a first wiring unit and a second wiring unit, which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided. Between the second battery unit and the other first conversion unit, a third wiring unit and a fourth wiring unit, which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided. The first conversion unit performs an operation of converting a voltage applied between the first wiring unit and the second wiring unit to generate an AC voltage in the first coil. The other first conversion unit performs an operation of converting the voltage applied between the third wiring unit and the fourth wiring unit to generate an AC voltage in the other first coil. Further, the conversion device of [11] has a first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off the energization, and the second relay unit. It has a second relay unit that switches between an on state that permits energization and an off state that cuts off energization between the wiring unit and the fourth wiring unit.
 上記の〔11〕の変換装置は、第1リレー部及び第2リレー部がオン状態のときには、第1配線部及び第2配線部に対して、第1電池部だけでなく第2電池部からも電力が供給される。また、第1リレー部及び第2リレー部がオン状態のときには、第3配線部及び第4配線部に対して、第1電池部だけでなく第2電池部からも電力が供給される。よって、一の第1変換部及び他の第1変換部のいずれもが、両電池部からの電力に基づいて電力変換を行い得る。一方、第1リレー部及び第2リレー部がオフ状態のときには、第1配線部と第3配線部との間が遮断され、第2配線部と第4配線部との間が遮断される。よって、第1電池部の影響を抑えて他の第1変換部が独立して動作することができ、第2電池部の影響を抑えて一の第1変換部が独立して動作することができる。 In the conversion device of the above [11], when the first relay unit and the second relay unit are in the ON state, not only the first battery unit but also the second battery unit with respect to the first wiring unit and the second wiring unit. Is also powered. Further, when the first relay unit and the second relay unit are in the ON state, electric power is supplied to the third wiring unit and the fourth wiring unit not only from the first battery unit but also from the second battery unit. Therefore, any one of the first conversion unit and the other first conversion unit can perform power conversion based on the power from both battery units. On the other hand, when the first relay unit and the second relay unit are in the off state, the space between the first wiring unit and the third wiring unit is cut off, and the space between the second wiring unit and the fourth wiring unit is cut off. Therefore, the influence of the first battery unit can be suppressed and the other first conversion unit can operate independently, and the influence of the second battery unit can be suppressed and the first conversion unit can operate independently. can.
 〔12〕の変換装置は、〔7〕又は〔11〕のいずれか一つに記載の変換装置において、次の特徴を有する。〔12〕の変換装置は、上記第1リレー部及び上記第2リレー部を制御するリレー制御部と、上記第1電池部からの電力供給の異常及び上記第2電池部からの電力供給の異常を検出する異常検出部と、を有する。上記リレー制御部は、上記異常検出部によって上記第1電池部及び上記第2電池部のいずれかからの電力供給の異常が検出された場合に、上記第1リレー部及び上記第2リレー部をオフ状態に切り替える。 The conversion device of [12] has the following features in the conversion device according to any one of [7] and [11]. The conversion device of [12] includes a relay control unit that controls the first relay unit and the second relay unit, an abnormality in power supply from the first battery unit, and an abnormality in power supply from the second battery unit. It has an abnormality detection unit for detecting. When the abnormality detection unit detects an abnormality in the power supply from either the first battery unit or the second battery unit, the relay control unit sets the first relay unit and the second relay unit. Switch to the off state.
 上記の〔12〕の変換装置は、いずれかの電池部からの電力供給が異常である場合に、第1リレー部及び第2リレー部をオフ状態に切り替えて、第1リレー部及び第2リレー部を介しての通電を遮断することができる。よって、この場合には、第1コンバータ及び第2コンバータが電池部側の回路において電気的に切り離され、異常が生じた電池部の影響が第1コンバータ及び第2コンバータの両方に及ぶことを抑えることができる。 The conversion device of the above [12] switches the first relay unit and the second relay unit to the off state when the power supply from any of the battery units is abnormal, and the first relay unit and the second relay unit. It is possible to cut off the energization through the unit. Therefore, in this case, the first converter and the second converter are electrically separated in the circuit on the battery part side, and the influence of the battery part in which the abnormality occurs is suppressed from affecting both the first converter and the second converter. be able to.
 〔13〕の変換装置は、〔1〕から〔12〕のいずれか一つに記載の変換装置において、次の特徴を有する。上記導電路は、複数の上記バッテリとは異なる第2バッテリに電気的に接続される。上記電力変換部は、所定条件が成立した場合に、上記第2バッテリからの電力に基づいて電力変換を行い、少なくともいずれかの上記バッテリに対して個別に電力を出力するように上記第2変換動作を行う。 The conversion device of [13] has the following features in the conversion device according to any one of [1] to [12]. The conductive path is electrically connected to a second battery different from the plurality of batteries. When a predetermined condition is satisfied, the power conversion unit performs power conversion based on the power from the second battery, and outputs the power individually to at least one of the batteries. Do the action.
 上記の〔13〕の変換装置は、第2バッテリからの電力を利用して複数のバッテリの不均衡を是正し得る。 The conversion device of the above [13] can correct the imbalance of a plurality of batteries by utilizing the electric power from the second battery.
 〔14〕の変換装置は、〔1〕から〔13〕のいずれか一つに記載の変換装置において、次の特徴を有する。上記変換装置は、上記電力変換部を制御する制御部を備える。上記制御部は、所定の開始条件が成立した場合に、上記電力変換部に対し、複数の上記バッテリの出力電圧又はSOC(State Of Charge)の差を小さくする動作を行わせる。 The conversion device of [14] has the following features in the conversion device according to any one of [1] to [13]. The conversion device includes a control unit that controls the power conversion unit. When a predetermined start condition is satisfied, the control unit causes the power conversion unit to perform an operation of reducing the difference between the output voltages of the plurality of batteries or the SOC (State Of Charge).
 上記の〔14〕の変換装置は、開始条件が成立した場合に、複数のバッテリの出力電圧又はSOCの差を小さくするように電力変換部を動作させることができる。 The conversion device of the above [14] can operate the power conversion unit so as to reduce the difference between the output voltages or SOCs of a plurality of batteries when the start condition is satisfied.
 〔15〕上記の〔1〕から〔14〕のいずれか一つに記載の変換装置において、上記電源システムは、複数の上記バッテリが直列接続と並列接続とに切り替わるシステムである。 [15] In the conversion device according to any one of the above [1] to [14], the power supply system is a system in which a plurality of the batteries are switched between series connection and parallel connection.
 上記の〔15〕の変換装置では、複数のバッテリが直列接続と並列接続とに切り替わるようなシステムにおいて、複数のバッテリの不均衡を是正しやすい。 In the above conversion device [15], it is easy to correct the imbalance of a plurality of batteries in a system in which a plurality of batteries are switched between a series connection and a parallel connection.
 〔16〕上記の〔1〕から〔14〕のいずれか一つに記載の変換装置において、上記電源システムは、複数の上記バッテリが並列に接続され、直列接続に切り替わらないシステムである。 [16] In the conversion device according to any one of the above [1] to [14], the power supply system is a system in which a plurality of the above batteries are connected in parallel and does not switch to the series connection.
 上記の〔16〕の変換装置では、複数のバッテリが並列接続で維持されるようなシステムにおいて、複数のバッテリの不均衡を是正しやすい。 In the above conversion device [16], it is easy to correct the imbalance of a plurality of batteries in a system in which a plurality of batteries are maintained in parallel connection.
 〔17〕上記の〔1〕から〔15〕のいずれか一つに記載の変換装置において、更に、次の特徴を有する。〔17〕の変換装置は、上記電力変換部を制御する制御部と、切替回路と、上記切替回路を制御する切替制御部と、を有する。上記電源システムは、上記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有する。上記切替回路は、複数の上記バッテリを一対の上記電力路の間に直列に接続した状態と並列に接続した状態とに切り替わる。複数の上記バッテリを一対の上記電力路の間に直列に接続しつつ直列接続された複数の上記バッテリから上記負荷に電力を供給するように上記切替制御部が上記切替回路を制御した状態で、上記制御部は、上記電力変換部に対して上記第1変換動作及び上記第2変換動作の少なくともいずれかを行わせる。 [17] The conversion device according to any one of the above [1] to [15] further has the following features. The conversion device of [17] includes a control unit that controls the power conversion unit, a switching circuit, and a switching control unit that controls the switching circuit. The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system. The switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel. In a state where the switching control unit controls the switching circuit so as to supply power to the load from the plurality of batteries connected in series while connecting the plurality of batteries in series between the pair of power paths. The control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation.
 〔17〕の変換装置は、複数のバッテリを直列に接続した状態で負荷に供給でき、その状態で、複数の高圧バッテリの電力調整を行うことができる。 The conversion device of [17] can supply a load with a plurality of batteries connected in series, and can adjust the power of the plurality of high-voltage batteries in that state.
 〔18〕上記の〔1〕から〔15〕、〔17〕のいずれか一つに記載の変換装置において、更に、次の特徴を有する。〔18〕の変換装置は、切替回路と、上記切替回路を制御する切替制御部と、を有する。上記電源システムは、上記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有する。上記切替回路は、複数の上記バッテリを一対の上記電力路の間に直列に接続した状態と並列に接続した状態とに切り替わる。上記切替制御部は、上記車両の走行中に複数の上記バッテリを一対の上記電力路の間に直列に接続した状態と並列に接続した状態とに切り替えるように上記切替回路を制御する。 [18] The conversion device according to any one of the above [1] to [15] and [17] further has the following features. The conversion device of [18] includes a switching circuit and a switching control unit that controls the switching circuit. The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system. The switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel. The switching control unit controls the switching circuit so as to switch between a state in which a plurality of the batteries are connected in series between the pair of electric power paths and a state in which the plurality of batteries are connected in parallel while the vehicle is traveling.
 〔18〕の変換装置は、車両の走行中に複数のバッテリの直並列を切り替えることができ、このようなものにおいて、複数のバッテリの不均衡を是正しやすい機能を付加することができる。 The conversion device of [18] can switch the series-parallel of a plurality of batteries while the vehicle is running, and in such a case, it is possible to add a function that easily corrects the imbalance of the plurality of batteries.
 〔19〕上記の〔18〕に記載の変換装置において、更に、次の特徴を有する。上記切替制御部は、上記車両の走行中に上記車両の走行状態に応じて複数の上記バッテリを直列接続状態と並列接続状態とに切り替える。 [19] The conversion device according to the above [18] further has the following features. The switching control unit switches a plurality of the batteries into a series connection state and a parallel connection state according to the traveling state of the vehicle while the vehicle is traveling.
 〔19〕の変換装置は、車両の走行中に走行状態に応じて複数のバッテリの直並列を切り替えることができ、このようなものにおいて、複数のバッテリの不均衡を是正しやすい機能を付加することができる。 The conversion device of [19] can switch the series-parallel of a plurality of batteries according to the traveling state while the vehicle is traveling, and in such a case, adds a function of easily correcting the imbalance of the plurality of batteries. be able to.
 〔20〕上記の〔17〕に記載の変換装置において、更に、次の特徴を有する。上記切替制御部は、上記車両の走行中に上記車両の走行状態に応じて複数の上記バッテリを一対の上記電力路の間に直列に接続した状態と並列に接続した状態とに切り替える。上記制御部は、上記車両の走行中において少なくとも複数の上記バッテリが直列接続状態のときに上記電力変換部に対して上記第1変換動作及び上記第2変換動作の少なくともいずれかを行わせる。 [20] The conversion device according to the above [17] further has the following features. The switching control unit switches between a state in which a plurality of the batteries are connected in series between the pair of electric power paths and a state in which the batteries are connected in parallel, depending on the traveling state of the vehicle while the vehicle is traveling. The control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation when at least a plurality of the batteries are connected in series while the vehicle is running.
 〔20〕の変換装置は、車両の走行中に走行状態に応じて複数のバッテリの直並列を切り替えることができ、このようなものにおいて、複数のバッテリの不均衡を是正しやすい機能を付加することができる。しかも、少なくとも走行状態に応じてバッテリが直列接続状態とされたときに第1変換動作及び第2変換動作の少なくともいずれかを行わせることができるため、走行状態に応じて直並列が切り替えられる複数のバッテリに対して、より早めに不均衡を是正しやすくなる。 The conversion device of [20] can switch the series-parallel of a plurality of batteries according to the traveling state while the vehicle is traveling, and in such a case, adds a function of easily correcting the imbalance of the plurality of batteries. be able to. Moreover, since at least one of the first conversion operation and the second conversion operation can be performed when the batteries are connected in series according to the traveling state, the series and parallel can be switched according to the traveling state. It will be easier to correct the imbalance earlier for the battery.
 〔21〕上記の〔1〕から〔20〕のいずれか一つに記載の変換装置において、更に、次の特徴を有する。〔21〕の変換装置は、切替回路と、上記切替回路を制御する切替制御部と、複数の上記バッテリの中から電力供給の異常が発生したバッテリを検出する異常検出部と、を有する。上記電源システムは、上記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有する。上記切替回路は、複数の上記バッテリのうち一部を一対の上記電力路の間に接続した状態と、複数の上記バッテリを一対の上記電力路の間に並列に接続した状態とに切り替わる。上記切替制御部は、いずれかの上記バッテリの上記電力供給の異常が上記異常検出部によって検出された場合に、上記電力供給の異常が検出されていない上記バッテリを一対の上記電力路の間に接続する。 [21] The conversion device according to any one of the above [1] to [20] further has the following features. The conversion device of [21] includes a switching circuit, a switching control unit that controls the switching circuit, and an abnormality detecting unit that detects a battery in which an abnormality in power supply has occurred from among the plurality of the batteries. The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system. The switching circuit switches between a state in which a part of the plurality of batteries is connected between the pair of power paths and a state in which the plurality of batteries are connected in parallel between the pair of power paths. When the abnormality of the power supply of any of the batteries is detected by the abnormality detection unit, the switching control unit puts the battery in which the abnormality of the power supply is not detected between the pair of power paths. Connecting.
 〔21〕の変換装置は、複数のバッテリの不均衡を是正する機能と、複数のバッテリの各々の失陥を検出する機能とを両立することができる。そして、いずれかのバッテリの失陥が検出された場合には、失陥が検出されていない正常なバッテリから負荷に電力を供給することができる。 The conversion device of [21] can have both a function of correcting an imbalance of a plurality of batteries and a function of detecting the failure of each of the plurality of batteries. Then, when a failure of any of the batteries is detected, power can be supplied to the load from a normal battery in which the failure is not detected.
 〔22〕上記の〔21〕に記載の変換装置において、更に、次の特徴を有する。上記切替制御部は、上記車両の走行中に複数の上記バッテリを一対の上記電力路の間に並列に接続することが可能であり、上記切替制御部は、上記車両の走行中にいずれかの上記バッテリの上記電力供給の異常が上記異常検出部によって検出された場合に、上記電力供給の異常が検出されていない上記バッテリを一対の上記電力路の間に接続する。 [22] The conversion device according to the above [21] further has the following features. The switching control unit can connect a plurality of the batteries in parallel between the pair of electric power paths while the vehicle is running, and the switching control unit can connect any of the batteries while the vehicle is running. When the abnormality of the power supply of the battery is detected by the abnormality detection unit, the battery in which the abnormality of the power supply is not detected is connected between the pair of power paths.
 〔22〕の変換装置は、走行中に複数のバッテリを並列接続としつつ負荷を動作させることができ、更に、バッテリの不均衡を是正する機能が付加されているため、並列接続状態で負荷に電力を供給する際に、循環電流を生じにくくすることができる。しかも、走行中にいずれかのバッテリの失陥が検出された場合には、失陥が検出されていない正常なバッテリによって負荷を動作させることができるため、走行中において循環電流の抑制とバッテリ失陥の対策を両立することができる。 The conversion device of [22] can operate the load while connecting a plurality of batteries in parallel while driving, and further, since the function of correcting the imbalance of the batteries is added, the load is applied in the parallel connection state. When supplying electric power, it is possible to make it difficult to generate a circulating current. Moreover, if any battery failure is detected during driving, the load can be operated by a normal battery in which no failure is detected, so that the circulating current is suppressed and the battery is lost while driving. It is possible to achieve both countermeasures against the fall.
 〔23〕の変換装置は、〔1〕から〔22〕のいずれか一つに記載の変換装置において、次の特徴を有する。上記電力変換部は、外部から一部充電指示を受ける場合において、第1条件の場合に、いずれか一の上記バッテリからの電力に基づいて上記導電路に電力を供給するように上記第1変換動作を行い、上記導電路からの電力に基づいて他の上記バッテリに電力を供給するように上記第2変換動作を行う。そして、上記電力変換部から上記導電路に供給される電力に基づく電力が上記導電路に電気的に接続される負荷又は第2バッテリに供給される。 The conversion device of [23] has the following features in the conversion device according to any one of [1] to [22]. In the case of receiving a partial charging instruction from the outside, the power conversion unit performs the first conversion so as to supply power to the conductive path based on the power from any one of the batteries in the case of the first condition. The operation is performed, and the second conversion operation is performed so as to supply electric power to the other batteries based on the electric power from the conductive path. Then, the electric power based on the electric power supplied from the electric power conversion unit to the conductive path is supplied to the load or the second battery electrically connected to the conductive path.
 上記の〔23〕の変換装置では、電力変換部が外部から一部充電指示を受けた場合且つ第1条件の場合に、一のバッテリからの電力を入力とする電力変換により、負荷又は第2バッテリに対する電力供給と、他のバッテリの充電とを並行して行うことができる。 In the conversion device of the above [23], when the power conversion unit receives a partial charge instruction from the outside and in the first condition, the load or the second is performed by power conversion using the power from one battery as an input. It is possible to supply power to a battery and charge another battery in parallel.
 〔24〕の変換装置は、〔1〕から〔23〕のいずれか一つに記載の変換装置において、次の特徴を有する。上記電力変換部は、外部から一部充電指示を受ける場合において、第2条件の場合に、いずれか一の上記バッテリからの電力に基づいて上記導電路に電力を供給するように上記第1変換動作を行い、上記電力変換部から上記導電路に供給される電力と上記導電路に電気的に接続される第2バッテリからの電力とに基づく入力電力を変換して他の上記バッテリに電力を供給するように上記第2変換動作を行う。 The conversion device of [24] has the following features in the conversion device according to any one of [1] to [23]. In the case of receiving a partial charging instruction from the outside, the power conversion unit performs the first conversion so as to supply power to the conductive path based on the power from any one of the batteries under the second condition. It operates and converts the input power based on the power supplied from the power conversion unit to the conductive path and the power from the second battery electrically connected to the conductive path to transfer the power to the other batteries. The second conversion operation is performed so as to supply.
 上記の〔24〕の変換装置は、電力変換部が外部から一部充電指示を受けた場合且つ第2条件の場合に、導電路に供給される電力をより大きく確保しつつ、この電力を入力とする電力変換により、他のバッテリに電力を供給することができる。 The above-mentioned conversion device [24] inputs this power while securing a larger amount of power supplied to the conductive path when the power conversion unit receives a partial charging instruction from the outside and in the second condition. By the power conversion, it is possible to supply power to another battery.
 〔25〕の変換装置は、上記〔2〕から〔7〕のいずれか一つに記載の変換装置、又は上記〔12〕から上記〔24〕のいずれか一つに記載の変換装置における上記〔2〕から上記〔7〕のいずれかを引用する変換装置において、次の特徴を有する。上記コンバータは、一の変換部とトランスと他の変換部とを有する。上記トランスは、互いに磁気結合した一次側コイル及び二次側コイルを備える。上記一の変換部は、当該一の変換部に対応する上記バッテリからの電力に基づいて当該バッテリに対応する一対の一方側導電路間に印加される直流電圧を交流電圧に変換して上記一次側コイルに交流電圧を生じさせる第1の動作と、上記一次側コイルに生じた交流電圧を直流電圧に変換して上記一対の一方側導電路間に直流電圧を印加する第2の動作とを行う。上記他の変換部は、上記二次側コイルに生じた交流電圧を直流電圧に変換して上記他の変換部に対応する一対の他方側導電路間に直流電圧を印加する第3の動作と、上記一対の他方側導電路間に印加された直流電圧を変換して上記二次側コイルに交流電圧を生じさせる第4の動作と、を行う。 The conversion device of [25] is the conversion device according to any one of the above [2] to [7], or the above-mentioned [12] to the above-mentioned conversion device according to any one of [24]. The conversion device quoting any of the above [7] from 2] has the following features. The converter has one converter, a transformer, and another converter. The transformer includes a primary coil and a secondary coil that are magnetically coupled to each other. The one conversion unit converts the DC voltage applied between the pair of one-side conductive paths corresponding to the battery based on the power from the battery corresponding to the one conversion unit into an AC voltage, and the primary conversion unit. The first operation of generating an AC voltage in the side coil and the second operation of converting the AC voltage generated in the primary side coil into a DC voltage and applying the DC voltage between the pair of one-side conductive paths. conduct. The other conversion unit has a third operation of converting the AC voltage generated in the secondary side coil into a DC voltage and applying the DC voltage between the pair of other side conductive paths corresponding to the other conversion units. The fourth operation of converting the DC voltage applied between the pair of other-side conductive paths to generate an AC voltage in the secondary-side coil is performed.
 上記の〔25〕の変換装置は、複数のコンバータの各々が絶縁型のコンバータによって構成され、且つ各々のコンバータが対応する蓄電部と導電路との間で双方向に電力変換を行うことができる。 In the above-mentioned conversion device [25], each of the plurality of converters is composed of an isolated converter, and the power conversion can be performed bidirectionally between the storage unit and the conductive path corresponding to each converter. ..
 〔26〕の変換装置は、上記〔25〕に記載の変換装置において、次の特徴を有する。複数の上記コンバータにおいて、一のコンバータの上記トランスにおける上記一次側コイル及び上記二次側コイルと、他のコンバータの上記トランスにおける上記一次側コイル及び上記二次側コイルとが磁気結合している。 The conversion device of [26] has the following features in the conversion device according to the above [25]. In the plurality of converters, the primary coil and the secondary coil in the transformer of one converter and the primary coil and the secondary coil in the transformer of another converter are magnetically coupled.
 上記の〔26〕の変換装置は、一のコンバータ及び他のコンバータにおいて電力変換の自由度を高めることができる。 The above-mentioned conversion device [26] can increase the degree of freedom of power conversion in one converter and another converter.
 〔27〕の変換装置は、上記〔26〕に記載の変換装置において、次の特徴を有する。〔27〕の変換装置は、複数の上記コンバータを制御するコンバータ制御部を有する。上記コンバータ制御部は、上記一のコンバータ及び上記他のコンバータの上記他の変換部の動作を停止させた状態で、上記一のコンバータ及び上記他のコンバータのいずれか片方の上記一の変換部に上記第1の動作を行わせつつ、もう片方の上記一の変換部に上記第2の動作を行わせる変換制御を行う。 The conversion device of [27] has the following features in the conversion device according to the above [26]. The conversion device of [27] has a converter control unit that controls a plurality of the above converters. The converter control unit is applied to one of the converters of the converter and the other converter in a state where the operation of the converter of the converter and the other converter of the other converter is stopped. While performing the first operation, conversion control is performed so that the other conversion unit performs the second operation.
 上記の〔27〕の変換装置は、複数のコンバータを経由して複数のバッテリの不均衡を是正するにあたり、一のコンバータ及び他のコンバータの各々の他の変換部を停止させた状態で、一方のバッテリからの電力に基づいて他方のバッテリを充電することができる。 In the above-mentioned conversion device [27], in correcting the imbalance of a plurality of batteries via the plurality of converters, one converter and the other conversion unit of each of the other converters are stopped. The other battery can be charged based on the power from one of the batteries.
 <第1実施形態>
 (車載システムの概要)
 図1には、本開示の第1実施形態に係る変換装置10が示される。図2に示されるように、変換装置10は、車両1に搭載される車載システム2の一部として用いられる装置である。車両1は、変換装置10を搭載した車両であり、例えば、PHEV(Plug-in Hybrid Electric Vehicle)、EV(Electric Vehicle)等の車両である。
<First Embodiment>
(Overview of in-vehicle system)
FIG. 1 shows a conversion device 10 according to the first embodiment of the present disclosure. As shown in FIG. 2, the conversion device 10 is a device used as a part of the in-vehicle system 2 mounted on the vehicle 1. The vehicle 1 is a vehicle equipped with a conversion device 10, and is, for example, a vehicle such as a PHEV (Plug-in Hybrid Electric Vehicle) or an EV (Electric Vehicle).
 図2のように、車載システム2は、電源システム3、駆動部4、高圧負荷5、低圧負荷8などを含む。電源システム3は、変換装置10と低圧バッテリ32と高圧バッテリ34とを有する。 As shown in FIG. 2, the in-vehicle system 2 includes a power supply system 3, a drive unit 4, a high voltage load 5, a low voltage load 8, and the like. The power supply system 3 includes a conversion device 10, a low voltage battery 32, and a high voltage battery 34.
 駆動部4は、インバータ7とモータ6とを含む。インバータ7は、高圧バッテリ34から供給される電力に基づく直流電力から交流電力(例えば三相交流)を生成し、モータ6に供給する。モータ6は、例えば主機系モータである。モータ6は、高圧バッテリ34から供給される電力に基づいて回転し、車両1の車輪に対して回転力を与える装置である。 The drive unit 4 includes an inverter 7 and a motor 6. The inverter 7 generates AC power (for example, three-phase AC) from DC power based on the power supplied from the high-voltage battery 34, and supplies it to the motor 6. The motor 6 is, for example, a main engine system motor. The motor 6 is a device that rotates based on the electric power supplied from the high-voltage battery 34 and applies a rotational force to the wheels of the vehicle 1.
 高圧負荷5は、高圧バッテリ34から電力の供給を受けて動作し得る負荷である。高圧負荷5は、例えば、エアコンやヒータなどであり、これら以外の電気機器であってもよい。 The high-voltage load 5 is a load that can operate by receiving power supplied from the high-voltage battery 34. The high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these.
 低圧負荷8は、例えば、エンジン及びモータを稼動するのに必要な付属機器である。この付属機器は、例えば、セルモータ、オルタネータ及びラジエータクーリングファン等である。低圧負荷8は、電動パワーステアリングシステム、電動パーキングブレーキ、照明、ワイパー駆動部、ナビゲーション装置等を含んでいてもよい。 The low voltage load 8 is, for example, an accessory device necessary for operating an engine and a motor. This accessory is, for example, a starter motor, an alternator, a radiator cooling fan, and the like. The low voltage load 8 may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like.
 本明細書において、車両走行時とは、車両1が移動している状態を含むが、車両1が移動している状態に限らない。車両走行時は、アクセルを踏めば車両1が移動する状態も含む。車両走行時は、車両1が移動せずに停止しつつ低圧負荷8のいずれか又は全てに電力を供給している状態を含む。車両1がPHEVであれば、車両走行時はエンジンのアイドリング状態をも含む。 In the present specification, the state in which the vehicle is running includes the state in which the vehicle 1 is moving, but is not limited to the state in which the vehicle 1 is moving. When the vehicle is running, the vehicle 1 moves when the accelerator is stepped on. When the vehicle is running, it includes a state in which the vehicle 1 is stopped without moving and power is supplied to any or all of the low voltage loads 8. If the vehicle 1 is a PHEV, the idling state of the engine is also included when the vehicle is running.
 電源システム3は、複数のバッテリ34A,34Bが直列接続と並列接続とに切り替わるシステムである。電源システム3は、低圧バッテリ32と、高圧バッテリ34と、変換装置10とを有する。 The power supply system 3 is a system in which a plurality of batteries 34A and 34B are switched between series connection and parallel connection. The power supply system 3 includes a low voltage battery 32, a high voltage battery 34, and a conversion device 10.
 電源システム3は、車両1に対して外部交流電源(図示省略)が接続された際に、外部交流電源から供給される交流電力に基づいて高圧バッテリ34及び低圧バッテリ32を充電し得る。車両1は、外部交流電源が接続される接続端子(図示省略)を有し、接続端子に対して外部交流電源(図示省略)が接続され得る。 The power supply system 3 can charge the high voltage battery 34 and the low voltage battery 32 based on the AC power supplied from the external AC power source when the external AC power source (not shown) is connected to the vehicle 1. The vehicle 1 has a connection terminal (not shown) to which an external AC power supply is connected, and an external AC power supply (not shown) may be connected to the connection terminal.
 電源システム3では、車両1の接続端子に対して急速充電器が接続され、急速充電器から各バッテリ34A,34Bの電圧仕様を超える電圧(例えば800V)が供給される場合、図示しない回路を介して、端子9A,9B間には、各バッテリ34A,34Bの電圧仕様を超える直流電圧(例えば800V)が印加される。この場合、制御部18がスイッチ部14を制御して第1高圧バッテリ34A及び第2高圧バッテリ34Bを直接に接続することができる。 In the power supply system 3, when a quick charger is connected to the connection terminal of the vehicle 1 and a voltage exceeding the voltage specifications of the batteries 34A and 34B (for example, 800V) is supplied from the quick charger, a circuit (not shown) is used. A DC voltage (for example, 800V) exceeding the voltage specifications of the batteries 34A and 34B is applied between the terminals 9A and 9B. In this case, the control unit 18 can control the switch unit 14 to directly connect the first high voltage battery 34A and the second high voltage battery 34B.
 一方、電源システム3では、車両1の接続端子に対して急速充電器が接続され、急速充電器から各バッテリ34A,34Bの電圧仕様に合った電圧(例えば400V)が供給される場合、図示しない回路を介して、端子9A,9B間には、各バッテリ34A,34Bの電圧仕様に合った直流電圧(例えば、400V)が印加される。この場合、制御部18がスイッチ部14を制御して第1高圧バッテリ34A及び第2高圧バッテリ34Bを並列に接続することができる。 On the other hand, in the power supply system 3, when a quick charger is connected to the connection terminal of the vehicle 1 and a voltage (for example, 400 V) corresponding to the voltage specifications of the batteries 34A and 34B is supplied from the quick charger, it is not shown. A DC voltage (for example, 400V) suitable for the voltage specifications of the batteries 34A and 34B is applied between the terminals 9A and 9B via the circuit. In this case, the control unit 18 can control the switch unit 14 to connect the first high voltage battery 34A and the second high voltage battery 34B in parallel.
 端子9Aは、スイッチ26Aを介して電力路28Aが電気的に接続されている。スイッチ26Aは、端子9Aと電力路28Aとの間を導通状態と遮断状態とに切り替える。端子9Bは、スイッチ26Bを介して電力路28B電気的に接続されている。スイッチ26Bは、端子9Bと電力路28Bとの間を導通状態と遮断状態とに切り替える。スイッチ26A,26Bは、半導体リレーであってもよく、機械式リレーであってもよい。電力路28Aは、第1高圧バッテリ34Aにおける最も電位の高い電極に電気的に接続され、例えばこの電極と同電位とされる。電力路28Bは、第2高圧バッテリ34Bにおける最も電位の低い電極に電気的に接続され、例えばこの電極と同電位とされる。電力路28A,28Bは、高圧バッテリ34からインバータ7に電力を供給する経路である。電力路28Aには、電力路28Aを通電可能状態と通電遮断状態とに切り替えるリレー93が設けられる。リレー93がオフ状態のときには電力路28Aの通電が遮断される。電力路28Bには、リレー94及びヒューズ97が設けられる。ヒューズ97は、電力路28Bに過剰な電流が流れた場合に電力路28Bの通電を遮断する。更に、リレー95と抵抗96とが直列に設けられた直列構成部が、リレー94に対して並列に接続されている。リレー94がオフ状態のときにはこの直列構成部を介して電流が流れ、リレー94,95がオフ状態のときには電力路28Bの通電が遮断される。リレー93,94,95は、半導体リレーであってもよく、機械式リレーであってもよい。 The power path 28A is electrically connected to the terminal 9A via the switch 26A. The switch 26A switches between the conduction state and the cutoff state between the terminal 9A and the power path 28A. The terminal 9B is electrically connected to the power path 28B via the switch 26B. The switch 26B switches between the continuity state and the cutoff state between the terminal 9B and the power path 28B. The switches 26A and 26B may be semiconductor relays or mechanical relays. The power path 28A is electrically connected to the electrode having the highest potential in the first high voltage battery 34A, and is, for example, the same potential as this electrode. The power path 28B is electrically connected to the electrode having the lowest potential in the second high voltage battery 34B, and is, for example, the same potential as this electrode. The power paths 28A and 28B are paths for supplying electric power from the high-voltage battery 34 to the inverter 7. The power path 28A is provided with a relay 93 that switches the power path 28A between an energizable state and an energization cutoff state. When the relay 93 is in the off state, the energization of the power path 28A is cut off. A relay 94 and a fuse 97 are provided in the power path 28B. The fuse 97 cuts off the energization of the power path 28B when an excessive current flows through the power path 28B. Further, a series component in which the relay 95 and the resistor 96 are provided in series is connected in parallel to the relay 94. When the relay 94 is in the off state, a current flows through the series component, and when the relays 94 and 95 are in the off state, the energization of the power path 28B is cut off. The relays 93, 94, 95 may be a semiconductor relay or a mechanical relay.
 高圧バッテリ34は、複数のバッテリを備え、具体的には、第1高圧バッテリ34A及び第2高圧バッテリ34Bを備える。第1高圧バッテリ34A及び第2高圧バッテリ34Bは、いずれもバッテリの一例に相当する。第1高圧バッテリ34Aは、第1電池部の一例に相当する。第2高圧バッテリ34Bは、第2電池部の一例に相当する。高圧バッテリ34は、後述のスイッチ部14による切り替え動作により、第1高圧バッテリ34Aと第2高圧バッテリ34Bとが直列接続と並列接続とに切り替わる電源である。高圧バッテリ34は、充放電可能に構成される。高圧バッテリ34は、駆動部4を駆動するための高電圧(例えば、約300V)を出力する。第1高圧バッテリ34A及び第2高圧バッテリ34Bのそれぞれの満充電時の出力電圧は、低圧バッテリ32の満充電時の出力電圧よりも高い。第1高圧バッテリ34A及び第2高圧バッテリ34Bは、リチウムイオン電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。 The high-voltage battery 34 includes a plurality of batteries, specifically, a first high-voltage battery 34A and a second high-voltage battery 34B. The first high voltage battery 34A and the second high voltage battery 34B both correspond to an example of a battery. The first high voltage battery 34A corresponds to an example of the first battery unit. The second high voltage battery 34B corresponds to an example of the second battery unit. The high-voltage battery 34 is a power source in which the first high-voltage battery 34A and the second high-voltage battery 34B are switched between series connection and parallel connection by a switching operation by the switch unit 14 described later. The high-voltage battery 34 is configured to be rechargeable and dischargeable. The high voltage battery 34 outputs a high voltage (for example, about 300 V) for driving the drive unit 4. The output voltage of each of the first high-voltage battery 34A and the second high-voltage battery 34B when fully charged is higher than the output voltage of the low-voltage battery 32 when fully charged. The first high-voltage battery 34A and the second high-voltage battery 34B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
 低圧バッテリ32は、蓄電部の一例に相当する。低圧バッテリ32は、充放電可能に構成される。低圧バッテリ32は、低圧負荷8に電力を供給する。低圧バッテリ32は、鉛蓄電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。低圧バッテリ32は、満充電時に所定電圧(例えば12V)を出力する。 The low voltage battery 32 corresponds to an example of a power storage unit. The low voltage battery 32 is configured to be rechargeable and dischargeable. The low voltage battery 32 supplies power to the low voltage load 8. The low voltage battery 32 may be composed of a lead storage battery or another type of storage battery. The low voltage battery 32 outputs a predetermined voltage (for example, 12V) when fully charged.
 (変換装置の構成)
 図1のように、変換装置10は、主に、電力制御装置12及びスイッチ部14を有する。
(Configuration of converter)
As shown in FIG. 1, the conversion device 10 mainly includes a power control device 12 and a switch unit 14.
 スイッチ部14は、複数のスイッチ14A,14B,14Cを備える。複数のスイッチ14A,14B,14Cは、半導体リレーであってもよく、機械式リレーであってもよい。スイッチ部14は、第1高圧バッテリ34A及び第2高圧バッテリ34Bを直列接続と並列接続とに切り替える切替回路である。スイッチ部14は、スイッチ14Bがオン状態であり且つスイッチ14A,14Cがオフ状態であるときに第1高圧バッテリ34A及び第2高圧バッテリ34Bを直列接続とする。スイッチ部14は、スイッチ14Bがオフ状態であり且つスイッチ14A,14Cがオン状態であるときに第1高圧バッテリ34A及び第2高圧バッテリ34Bを並列接続とする。スイッチ部14は、制御部18によって制御される。制御部18は、スイッチ部14の切り替えを制御する。制御部18は、少なくとも、スイッチ14Bをオン状態とし且つスイッチ14A,14Cをオフ状態にする制御と、スイッチ14Bをオフ状態とし且つスイッチ14A,14Cをオン状態にする制御とを行い得る。 The switch unit 14 includes a plurality of switches 14A, 14B, 14C. The plurality of switches 14A, 14B, 14C may be a semiconductor relay or a mechanical relay. The switch unit 14 is a switching circuit for switching the first high-voltage battery 34A and the second high-voltage battery 34B between series connection and parallel connection. The switch unit 14 connects the first high-voltage battery 34A and the second high-voltage battery 34B in series when the switch 14B is in the on state and the switches 14A and 14C are in the off state. The switch unit 14 connects the first high-voltage battery 34A and the second high-voltage battery 34B in parallel when the switch 14B is in the off state and the switches 14A and 14C are in the on state. The switch unit 14 is controlled by the control unit 18. The control unit 18 controls the switching of the switch unit 14. The control unit 18 may at least control the switch 14B to be in the on state and the switches 14A and 14C to be in the off state and the switch 14B to be in the off state and the switches 14A and 14C to be in the on state.
 電力制御装置12は、高圧バッテリ34や低圧バッテリ32から供給される電力を入力として電力変換を行い得る装置である。電力制御装置12は、主に、電力変換部40、管理装置17、及び制御部18を有する。 The power control device 12 is a device capable of performing power conversion by inputting power supplied from the high voltage battery 34 or the low voltage battery 32. The power control device 12 mainly includes a power conversion unit 40, a management device 17, and a control unit 18.
 制御部18は、車載システム2内の装置に対して各種制御を行う装置である。制御部18は、演算機能、情報処理機能、記憶機能などを有する。制御部18は、複数の電子制御装置によって構成されていてもよく、単一の電子制御装置によって構成されていてもよい。制御部18は、例えば電力変換部40を制御する。制御部18による電力変換部40の制御の具体例は、後に詳述される。 The control unit 18 is a device that performs various controls on the devices in the in-vehicle system 2. The control unit 18 has a calculation function, an information processing function, a storage function, and the like. The control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device. The control unit 18 controls, for example, the power conversion unit 40. Specific examples of control of the power conversion unit 40 by the control unit 18 will be described in detail later.
 管理装置17は、高圧バッテリ34を監視する機能を有する。管理装置17は、高圧バッテリ34を構成する複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の各々の出力電圧、SOC(State Of Charge)を継続的に検出する。 The management device 17 has a function of monitoring the high voltage battery 34. The management device 17 continuously detects the output voltage and SOC (State Of Charge) of each of the plurality of batteries (first high-voltage battery 34A and second high-voltage battery 34B) constituting the high-voltage battery 34.
 電力変換部40は、各バッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34Bの各々)から入力される電力を変換し、第1高圧バッテリ34A及び第2高圧バッテリ34Bとは異なる第3導電路23A,23Bに電力を出力する第1変換動作を行う。第3導電路23A,23Bは、導電路の一例に相当する。電力変換部40は、第1電力変換部50及び第2電力変換部60を備える。第1電力変換部50及び第2電力変換部60はいずれもコンバータの一例に相当する。第1電力変換部50は、第1コンバータの一例に相当する。第2電力変換部60は、第2コンバータの一例に相当する。これら複数のコンバータ(第1電力変換部50及び第2電力変換部60)の各々は、複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の各々にそれぞれ対応して設けられる。具体的には、各バッテリの出力電圧が、各コンバータの一方側の入出力路である各々の一対の導電路間に印加される。例えば、第1高圧バッテリ34Aの出力電圧が第1電力変換部50の一方側の入出力路である一対の第1導電路21A,21B間に印加されるように、第1高圧バッテリ34Aに対応して第1電力変換部50が設けられる。また、第2高圧バッテリ34Bの出力電圧が第2電力変換部60の一方側の入出力である一対の第2導電路22A,22B間に印加されるように、第2高圧バッテリ34Bに対応して第2電力変換部60が設けられる。第1電力変換部50及び第2電力変換部60の各々は、双方向に電力変換を行う。第1導電路21Aは、第1配線部の一例に相当する。第1導電路21Bは、第2配線部の一例に相当する。第2導電路22Aは、第3配線部の一例に相当する。第2導電路22Bは、第4配線部の一例に相当する。 The power conversion unit 40 converts the power input from each battery (each of the first high voltage battery 34A and the second high voltage battery 34B), and the third conductive path different from the first high voltage battery 34A and the second high voltage battery 34B. The first conversion operation of outputting power to 23A and 23B is performed. The third conductive paths 23A and 23B correspond to an example of the conductive paths. The power conversion unit 40 includes a first power conversion unit 50 and a second power conversion unit 60. Both the first power conversion unit 50 and the second power conversion unit 60 correspond to an example of a converter. The first power conversion unit 50 corresponds to an example of the first converter. The second power conversion unit 60 corresponds to an example of the second converter. Each of these plurality of converters (first power conversion unit 50 and second power conversion unit 60) is provided corresponding to each of the plurality of batteries (first high voltage battery 34A and second high voltage battery 34B). Specifically, the output voltage of each battery is applied between each pair of conductive paths, which are input / output paths on one side of each converter. For example, it corresponds to the first high voltage battery 34A so that the output voltage of the first high voltage battery 34A is applied between the pair of first conductive paths 21A and 21B which are input / output paths on one side of the first power conversion unit 50. The first power conversion unit 50 is provided. Further, it corresponds to the second high voltage battery 34B so that the output voltage of the second high voltage battery 34B is applied between the pair of second conductive paths 22A and 22B which are the input / output on one side of the second power conversion unit 60. A second power conversion unit 60 is provided. Each of the first power conversion unit 50 and the second power conversion unit 60 performs power conversion in both directions. The first conductive path 21A corresponds to an example of the first wiring portion. The first conductive path 21B corresponds to an example of the second wiring portion. The second conductive path 22A corresponds to an example of the third wiring portion. The second conductive path 22B corresponds to an example of the fourth wiring portion.
 第1電力変換部50と第3導電路23Aの間には遮断部91が設けられる。遮断部91は、公知のリレーとして構成される。遮断部91がオン状態のときには、遮断部91を介しての双方向の通電が許容され、遮断部91がオフ状態のときには遮断部91を介しての双方向の通電が遮断される。第2電力変換部60と第3導電路23Aの間には遮断部92が設けられる。遮断部92がオン状態のときには、遮断部92を介しての双方向の通電が許容され、遮断部92がオフ状態のときには遮断部92を介しての双方向の通電が遮断される。遮断部91,92は、半導体リレー(例えば、第3実施形態のように、2つのFETを逆向きに配置した突合せ方式のリレーなど)であってもよく、機械式リレーであってもよい。 A cutoff unit 91 is provided between the first power conversion unit 50 and the third conductive path 23A. The cutoff unit 91 is configured as a known relay. When the cutoff unit 91 is on, bidirectional energization via the cutoff unit 91 is allowed, and when the cutoff unit 91 is off, bidirectional energization via the cutoff unit 91 is cut off. A blocking unit 92 is provided between the second power conversion unit 60 and the third conductive path 23A. When the cutoff unit 92 is on, bidirectional energization via the cutoff unit 92 is allowed, and when the cutoff unit 92 is off, bidirectional energization via the cutoff unit 92 is cut off. The cutoff units 91 and 92 may be semiconductor relays (for example, butt-type relays in which two FETs are arranged in opposite directions as in the third embodiment), or may be mechanical relays.
 第1電力変換部50は、双方向のDCDCコンバータとして機能する。第1電力変換部50は、第1導電路21A,21B間に印加された直流電圧を降圧して第3導電路23A,23B間に直流電圧を印加するように降圧動作を行い得る。第1電力変換部50は、第3導電路23A,23B間に印加された直流電圧を昇圧して第1導電路21A,21B間に直流電圧を印加するように昇圧動作を行い得る。第1電力変換部50は、双方向のDCDCコンバータとして機能する構成であれば、回路構成は特に限定されないが、以下で説明される変換装置10の代表例では、図3のような回路が採用されている。図3の例では、第1電力変換部50は、絶縁型の双方向DCDCコンバータとして構成される。第1電力変換部50は、第1変換回路51とトランス53と第2変換回路52とを備える。 The first power conversion unit 50 functions as a bidirectional DCDC converter. The first power conversion unit 50 may perform a step-down operation so as to step down the DC voltage applied between the first conductive paths 21A and 21B and apply a DC voltage between the third conductive paths 23A and 23B. The first power conversion unit 50 may perform a boosting operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the first conductive paths 21A and 21B. The circuit configuration of the first power conversion unit 50 is not particularly limited as long as it functions as a bidirectional DCDC converter, but in a typical example of the conversion device 10 described below, a circuit as shown in FIG. 3 is adopted. Has been done. In the example of FIG. 3, the first power conversion unit 50 is configured as an isolated bidirectional DCDC converter. The first power conversion unit 50 includes a first conversion circuit 51, a transformer 53, and a second conversion circuit 52.
 第1変換回路51は、一の変換部の一例に相当する。第1変換回路51は、双方向に直流電力と交流電力とを変換する機能を有する。第1変換回路51は、第1導電路21A,21B間に印加された直流電圧を変換して第1コイル53Aに交流電圧を発生させる動作(第1の動作)を行う機能を有する。第1変換回路51は、第1コイル53Aに発生した交流電圧を変換して第1導電路21A,21B間に直流電圧を出力する動作(第2の動作)を行う機能も有する。第1変換回路51は、コンデンサ51Aと、フルブリッジ回路を構成するスイッチ素子51C,51D,51E,51Fを含む。トランス53は、第1変換回路51に接続される第1コイル53Aと、第2変換回路52に接続される第2コイル53Bとを備える。第1コイル53Aと第2コイル53Bは、磁気結合されている。第2変換回路52は、他の変換部の一例に相当する。第1コイル53Aは、一次側コイルの一例に相当する。第2コイル53Bは、二次側コイルの一例に相当する。第2変換回路52は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換回路52は、第2コイル53Bに発生する交流電圧を変換して第3導電路23A,23B間に直流電圧を出力する動作(第3の動作)を行う機能を有する。第2変換回路52は、第3導電路23A,23B間に印加された直流電圧を変換して第2コイル53Bに交流電圧を発生させる動作(第4の動作)を行う機能も有する。第2変換回路52は、スイッチ素子52C,52D、インダクタ52E、コンデンサ52Aなどを含む。 The first conversion circuit 51 corresponds to an example of one conversion unit. The first conversion circuit 51 has a function of converting DC power and AC power in both directions. The first conversion circuit 51 has a function of converting the DC voltage applied between the first conductive paths 21A and 21B to generate an AC voltage in the first coil 53A (first operation). The first conversion circuit 51 also has a function of converting an AC voltage generated in the first coil 53A and outputting a DC voltage between the first conductive paths 21A and 21B (second operation). The first conversion circuit 51 includes a capacitor 51A and switch elements 51C, 51D, 51E, 51F constituting a full bridge circuit. The transformer 53 includes a first coil 53A connected to the first conversion circuit 51 and a second coil 53B connected to the second conversion circuit 52. The first coil 53A and the second coil 53B are magnetically coupled. The second conversion circuit 52 corresponds to an example of another conversion unit. The first coil 53A corresponds to an example of the primary coil. The second coil 53B corresponds to an example of the secondary coil. The second conversion circuit 52 has a function of converting AC power and DC power in both directions. The second conversion circuit 52 has a function of converting an AC voltage generated in the second coil 53B and outputting a DC voltage between the third conductive paths 23A and 23B (third operation). The second conversion circuit 52 also has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 53B (fourth operation). The second conversion circuit 52 includes switch elements 52C, 52D, an inductor 52E, a capacitor 52A, and the like.
 第2電力変換部60は、双方向のDCDCコンバータとして機能する。第2電力変換部60は、第2導電路22A,22B間に印加された直流電圧を降圧して第3導電路23A,23B間に直流電圧を印加するように降圧動作を行い得る。第2電力変換部60は、第3導電路23A,23B間に印加された直流電圧を昇圧して第2導電路22A,22B間に直流電圧を印加するように昇圧動作を行い得る。第2電力変換部60は、双方向のDCDCコンバータとして機能する構成であれば、回路構成は特に限定されないが、例えば、図3のような回路とすることができる。図3の例では、第2電力変換部60は、絶縁型の双方向DCDCコンバータとして構成される。第2電力変換部60は、第1変換回路61とトランス63と第2変換回路62とを備える。 The second power conversion unit 60 functions as a bidirectional DCDC converter. The second power conversion unit 60 may perform a step-down operation so as to step down the DC voltage applied between the second conductive paths 22A and 22B and apply a DC voltage between the third conductive paths 23A and 23B. The second power conversion unit 60 may perform a boosting operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the second conductive paths 22A and 22B. The circuit configuration of the second power conversion unit 60 is not particularly limited as long as it functions as a bidirectional DCDC converter, but the circuit can be, for example, as shown in FIG. In the example of FIG. 3, the second power conversion unit 60 is configured as an isolated bidirectional DCDC converter. The second power conversion unit 60 includes a first conversion circuit 61, a transformer 63, and a second conversion circuit 62.
 第1変換回路61は、一の変換部の一例に相当する。第1変換回路61は、双方向に直流電力と交流電力とを変換する機能を有する。第1変換回路61は、第2導電路22A,22B間に印加される直流電圧を変換して第1コイル63Aに交流電圧を発生させる動作(第1の動作)を行う機能を有する。第1変換回路61は、第1コイル63Aに発生した交流電圧を変換して第2導電路22A,22B間に直流電圧を出力する動作(第2の動作)を行う機能も有する。第1変換回路61は、コンデンサ61Aと、フルブリッジ回路を構成するスイッチ素子61C,61D,61E,61Fを含む。トランス63は、第1変換回路61に接続される第1コイル63Aと、第2変換回路62に接続される第2コイル63Bとを備える。第1コイル63Aと第2コイル63Bは、磁気結合されている。第2変換回路52は、他の変換部の一例に相当する。第1コイル63Aは、一次側コイルの一例に相当する。第2コイル63Bは、二次側コイルの一例に相当する。第2変換回路62は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換回路62は、第2コイル63Bに発生する交流電圧を変換して第3導電路23A,23B間に直流電圧を出力する動作(第3の動作)を行う機能を有する。第2変換回路62は、第3導電路23A,23B間に印加された直流電圧を変換して第2コイル63Bに交流電圧を発生させる動作(第4の動作)を行う機能を有する。第2変換回路62は、スイッチ素子62C,62D、インダクタ62E、コンデンサ62Aなどを含む。図3の構成はあくまで一例であり、第1電力変換部50及び第2電力変換部60の一部又は両方をOn Board Charger(車載充電器)としてもよい。 The first conversion circuit 61 corresponds to an example of one conversion unit. The first conversion circuit 61 has a function of converting DC power and AC power in both directions. The first conversion circuit 61 has a function of converting the DC voltage applied between the second conductive paths 22A and 22B to generate an AC voltage in the first coil 63A (first operation). The first conversion circuit 61 also has a function of converting an AC voltage generated in the first coil 63A and outputting a DC voltage between the second conductive paths 22A and 22B (second operation). The first conversion circuit 61 includes a capacitor 61A and switch elements 61C, 61D, 61E, 61F constituting a full bridge circuit. The transformer 63 includes a first coil 63A connected to the first conversion circuit 61 and a second coil 63B connected to the second conversion circuit 62. The first coil 63A and the second coil 63B are magnetically coupled. The second conversion circuit 52 corresponds to an example of another conversion unit. The first coil 63A corresponds to an example of the primary coil. The second coil 63B corresponds to an example of the secondary coil. The second conversion circuit 62 has a function of converting AC power and DC power in both directions. The second conversion circuit 62 has a function of converting an AC voltage generated in the second coil 63B and outputting a DC voltage between the third conductive paths 23A and 23B (third operation). The second conversion circuit 62 has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 63B (fourth operation). The second conversion circuit 62 includes switch elements 62C, 62D, an inductor 62E, a capacitor 62A, and the like. The configuration of FIG. 3 is merely an example, and a part or both of the first power conversion unit 50 and the second power conversion unit 60 may be an On Board Charger (vehicle-mounted charger).
 以下で説明される変換装置10の代表例は、図4のような具体的構成をなすものである。なお、図4~図8では、遮断部91,92は省略されている。図4の例に係る変換装置10では、図2で示される高圧負荷5の具体例として、第1高圧負荷5Aと第2高圧負荷5Bとが設けられている。図4の例では、各バッテリとそれぞれ並列に接続される構成で各高圧負荷が設けられている。具体的には、第1高圧バッテリ34Aと並列に接続される構成で第1高圧負荷5Aが設けられている。そして、第2高圧バッテリ34Bと並列に接続される構成で第2高圧負荷5Bが設けられている。第1高圧負荷5Aは、一端が第1導電路21Aに電気的に接続され、他端が第1導電路21Bに電気的に接続されている。この構成では、例えば、第1高圧バッテリ34A又は第1電力変換部50から第1導電路21Aを介して供給される電流が、第1高圧負荷5Aに供給され得る。第2高圧負荷5Bは、一端が第2導電路22Aに電気的に接続され、他端が第2導電路22Bに電気的に接続されている。この構成では、例えば、第2高圧バッテリ34B又は第2電力変換部60から第2導電路22Aを介して供給される電流が、第2高圧負荷5Bに供給され得る。 A typical example of the conversion device 10 described below has a specific configuration as shown in FIG. In FIGS. 4 to 8, the blocking portions 91 and 92 are omitted. In the conversion device 10 according to the example of FIG. 4, a first high voltage load 5A and a second high voltage load 5B are provided as specific examples of the high voltage load 5 shown in FIG. In the example of FIG. 4, each high-voltage load is provided in a configuration in which each battery is connected in parallel. Specifically, the first high-voltage load 5A is provided in a configuration connected in parallel with the first high-voltage battery 34A. A second high-voltage load 5B is provided so as to be connected in parallel with the second high-voltage battery 34B. One end of the first high voltage load 5A is electrically connected to the first conductive path 21A, and the other end is electrically connected to the first conductive path 21B. In this configuration, for example, the current supplied from the first high voltage battery 34A or the first power conversion unit 50 via the first conductive path 21A can be supplied to the first high voltage load 5A. One end of the second high voltage load 5B is electrically connected to the second conductive path 22A, and the other end is electrically connected to the second conductive path 22B. In this configuration, for example, the current supplied from the second high voltage battery 34B or the second power conversion unit 60 via the second conductive path 22A can be supplied to the second high voltage load 5B.
 図4の代表例では、第1導電路21Aにはスイッチ26A及びヒューズ24が設けられている。スイッチ26Aは、第1導電路21Aを導通状態と遮断状態とに切り替えるスイッチである。第1導電路21Bにはスイッチ26Bが設けられている。スイッチ26Bは、第1導電路21Bを導通状態と遮断状態とに切り替えるスイッチである。第2導電路22Aにはスイッチ27A及びヒューズ25が設けられている。スイッチ27Aは、第2導電路22Aを導通状態と遮断状態とに切り替えるスイッチである。第2導電路22Bにはスイッチ27Bが設けられている。スイッチ27Bは、第2導電路22Bを導通状態と遮断状態とに切り替えるスイッチである。 In the representative example of FIG. 4, the switch 26A and the fuse 24 are provided in the first conductive path 21A. The switch 26A is a switch that switches the first conductive path 21A between a conductive state and a cutoff state. A switch 26B is provided on the first conductive path 21B. The switch 26B is a switch that switches the first conductive path 21B between a conductive state and a cutoff state. The second conductive path 22A is provided with a switch 27A and a fuse 25. The switch 27A is a switch that switches the second conductive path 22A between a conductive state and a cutoff state. A switch 27B is provided on the second conductive path 22B. The switch 27B is a switch that switches the second conductive path 22B between a conductive state and a cutoff state.
 (不均衡抑制動作の概要)
 変換装置10は、所定の判定時期に所定条件が成立したか否かを判定し、上記判定時期に上記所定条件が成立した場合に、複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の不均衡を抑制する動作を行う。所定の判定時期は、例えば、高圧バッテリ34が直列接続のときであってもよく、その他の時期であってもよい。例えば、制御部18は、車両の始動スイッチがオン状態となっている車両始動中に所定条件が成立したか否かを判定してもよく、外部交流電源と変換装置10とが電気的に接続された場合に所定条件が成立したか否かを判定してもよい。以下の説明では、「車両の始動スイッチがオン状態となっている車両始動中において高圧バッテリ34が直列接続のとき」が判定時期である。
(Overview of imbalance suppression operation)
The conversion device 10 determines whether or not the predetermined condition is satisfied at the predetermined determination time, and when the predetermined condition is satisfied at the predetermined determination time, the plurality of batteries (first high voltage battery 34A and second high voltage battery 34B). ) Is performed to suppress the imbalance. The predetermined determination time may be, for example, when the high-voltage batteries 34 are connected in series, or may be other times. For example, the control unit 18 may determine whether or not a predetermined condition is satisfied while the vehicle is starting with the vehicle start switch turned on, and the external AC power supply and the conversion device 10 are electrically connected. If this is the case, it may be determined whether or not the predetermined condition is satisfied. In the following description, "when the high-voltage battery 34 is connected in series while the vehicle is starting with the vehicle start switch turned on" is the determination time.
 具体的には、制御部18が、上記判定時期に上記所定条件が成立したか否かを判定する。所定条件は、例えば、「複数のバッテリにおいて、いずれか一のバッテリの出力電圧と他のバッテリの出力電圧の差が一定値以上に大きくなったこと」である。バッテリの出力電圧は、例えば、当該バッテリにおいて最も電位の低い電極と最も電位の高い電極の電位差である。以下の説明の例では、制御部18は、第1高圧バッテリ34Aの出力電圧Vaと第2高圧バッテリ34Bの出力電圧Vbの差の絶対値(|Va-Vb|)が閾値V1以上になったことを「所定条件が成立したこと」とする。そして、制御部18は、上記判定時期に|Va-Vb|≧V1となった場合に、電力変換部40に不均衡抑制動作を行わせる。 Specifically, the control unit 18 determines whether or not the predetermined condition is satisfied at the determination time. The predetermined condition is, for example, "in a plurality of batteries, the difference between the output voltage of any one battery and the output voltage of the other battery becomes larger than a certain value". The output voltage of a battery is, for example, the potential difference between the electrode having the lowest potential and the electrode having the highest potential in the battery. In the example of the following description, in the control unit 18, the absolute value (| Va-Vb |) of the difference between the output voltage Va of the first high voltage battery 34A and the output voltage Vb of the second high voltage battery 34B becomes the threshold value V1 or more. That is "the predetermined condition is satisfied". Then, the control unit 18 causes the power conversion unit 40 to perform an imbalance suppression operation when | Va—Vb | ≧ V1 at the above determination time.
 図1の例では、管理装置17は、自身に対して電力が供給されているとき(例えば、車両の始動中)に第1高圧バッテリ34Aの出力電圧Va及び第2高圧バッテリ34Bの出力電圧Vbを継続的に監視し、出力電圧Va,Vbを継続的に制御部18に与える。管理装置17は、短い時間間隔で定期的に出力電圧Va,Vbを制御部18に与えてもよく、予め定められた条件が成立した場合に出力電圧Va,Vbを制御部18に与えてもよい。制御部18は、管理装置17から送信される出力電圧Va,Vbの情報を取得することで、継続的に出力電圧Va,Vbを監視する。制御部18は、上記判定時期に出力電圧Va,Vbを監視し、|Va-Vb|≧V1となるか否かを継続的に判定する。制御部18は、|Va-Vb|≧V1となるか否かを短い時間間隔で定期的に判定してもよく、予め定められた条件が成立した場合に|Va-Vb|≧V1となるか否かを判定してもよい。 In the example of FIG. 1, the management device 17 has an output voltage Va of the first high voltage battery 34A and an output voltage Vb of the second high voltage battery 34B when power is supplied to itself (for example, while the vehicle is starting). Is continuously monitored, and the output voltages Va and Vb are continuously applied to the control unit 18. The management device 17 may periodically supply the output voltages Va and Vb to the control unit 18 at short time intervals, or may supply the output voltages Va and Vb to the control unit 18 when predetermined conditions are satisfied. good. The control unit 18 continuously monitors the output voltages Va and Vb by acquiring the information of the output voltages Va and Vb transmitted from the management device 17. The control unit 18 monitors the output voltages Va and Vb at the above determination time, and continuously determines whether or not | Va—Vb | ≧ V1. The control unit 18 may periodically determine whether or not | Va-Vb | ≧ V1 at short time intervals, and when a predetermined condition is satisfied, | Va-Vb | ≧ V1. It may be determined whether or not.
 制御部18は、上記判定時期に|Va-Vb|≧V1であると判定した場合、電力変換部40に不均衡抑制動作を行わせる。電力変換部40に不均衡抑制動作を行わせる時期は上記判定時期であってもよく、予め定められた別の所定時期であってもよい。制御部18は、電力変換部40に不均衡抑制動作を行わせる場合、複数のバッテリのうち、出力電圧が大きい方のバッテリを放電状態又は充電停止状態とし、出力電圧が小さい方のバッテリを充電するように電力変換部40に電力変換を行わせる。このように、制御部18は、所定の開始条件が成立した場合(即ち、上記判定時期に上記所定条件が成立した場合)に、電力変換部40に対し、複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の出力電圧Va,Vbの差を小さくする動作を行わせる。 When the control unit 18 determines that | Va-Vb | ≧ V1 at the above determination time, the power conversion unit 40 causes the power conversion unit 40 to perform an imbalance suppression operation. The time for causing the power conversion unit 40 to perform the imbalance suppression operation may be the above-mentioned determination time, or may be another predetermined time. When the power conversion unit 40 is to perform the imbalance suppression operation, the control unit 18 sets the battery having the larger output voltage into the discharged state or the charging stopped state, and charges the battery having the smaller output voltage. The power conversion unit 40 is made to perform power conversion so as to be performed. As described above, when the predetermined start condition is satisfied (that is, when the predetermined condition is satisfied at the determination time), the control unit 18 has a plurality of batteries (first high voltage battery 34A) for the power conversion unit 40. And the operation of reducing the difference between the output voltages Va and Vb of the second high-voltage battery 34B) is performed.
 不均衡抑制動作としては、例えば、図5~図8のような動作を行わせることができる。図5、図6の動作は、低圧バッテリ32の電力を用いずに、高圧バッテリ34のうちの一のバッテリからの電力を利用して降圧動作及び昇圧動作を行い、他のバッテリを充電する動作である。図7、図8の動作は、低圧バッテリ32からの電力を利用して昇圧動作を行い、他のバッテリを充電する動作である。なお、図5~図8の例では、第1高圧バッテリ34Aの出力電圧Vaが第2高圧バッテリ34Bの出力電圧Vbよりも大きく、|Va-Vb|≧V1である。 As the imbalance suppressing operation, for example, the operations shown in FIGS. 5 to 8 can be performed. The operation of FIGS. 5 and 6 is an operation of performing a step-down operation and a boosting operation by using the electric power from one of the high-voltage batteries 34 without using the electric power of the low-voltage battery 32, and charging the other battery. Is. The operations of FIGS. 7 and 8 are operations in which a boosting operation is performed using the electric power from the low voltage battery 32 to charge another battery. In the examples of FIGS. 5 to 8, the output voltage Va of the first high-voltage battery 34A is larger than the output voltage Vb of the second high-voltage battery 34B, and | Va-Vb | ≧ V1.
 図5、図6、図8の動作では、複数のバッテリのうちの出力電圧が相対的に大きい方のバッテリに対応したコンバータが、出力電圧が大きい方のバッテリから第1導電路21A又は第2導電路22Aの一方を介して自身に供給される電力を入力電力として降圧動作(第1変換動作)を行い、第3導電路23Aに電力を出力する。更に、複数のバッテリのうちの出力電圧が相対的に小さい方のバッテリに対応したコンバータが、第3導電路23Aを介して自身に供給される電力を入力電力として昇圧動作(第2変換動作)を行い、第1導電路21A又は第2導電路22Aの他方に電力を出力する。図5、図6、図8の例では、制御部18が複数のコンバータの一つに第1変換動作を行わせ、他に第2変換動作を行わせる指示(制御)が「外部からの一部充電指示」の一例に相当する。一部充電指示は、複数のバッテリのうちの一のバッテリを放電させ、他のバッテリを充電するように電力変換部を制御する指示である。即ち、電力変換部40を後述の第1モード、第2モード、第4モードのいずれかで動作させる指示が「外部からの一部充電指示」の一例に相当する。電力変換部40は、このような外部(制御部18)からの一部充電指示に応じて、一のコンバータが一のバッテリから供給される電力に基づいて第3導電路23Aに電力を出力するように第1変換動作を行い、他のコンバータが第3導電路23Aから供給される電力に基づいて他のバッテリに電力を出力するように第2変換動作を行う。 In the operations of FIGS. 5, 6 and 8, the converter corresponding to the battery having the relatively large output voltage among the plurality of batteries has the first conductive path 21A or the second from the battery having the larger output voltage. A step-down operation (first conversion operation) is performed using the electric power supplied to itself via one of the conductive paths 22A as an input power, and the electric power is output to the third conductive path 23A. Further, the converter corresponding to the battery having the relatively smaller output voltage among the plurality of batteries performs a boosting operation (second conversion operation) using the power supplied to itself via the third conductive path 23A as the input power. Is performed, and power is output to the other of the first conductive path 21A or the second conductive path 22A. In the examples of FIGS. 5, 6, and 8, the control unit 18 causes one of the plurality of converters to perform the first conversion operation, and the other instruction (control) to perform the second conversion operation is "one from the outside." It corresponds to an example of "part charge instruction". The partial charge instruction is an instruction to control the power conversion unit so as to discharge one of the plurality of batteries and charge the other battery. That is, the instruction to operate the power conversion unit 40 in any of the first mode, the second mode, and the fourth mode described later corresponds to an example of the "partial charge instruction from the outside". The power conversion unit 40 outputs electric power to the third conductive path 23A based on the electric power supplied from one battery by one converter in response to such a partial charging instruction from the outside (control unit 18). The first conversion operation is performed as described above, and the second conversion operation is performed so that the other converter outputs power to the other battery based on the power supplied from the third conductive path 23A.
 図7の動作では、制御部18が複数のコンバータのうちの一つを停止させ、他のコンバータに第2変換動作を行わせる指示(制御)が「外部からの一部停止指示」の一例に相当する。即ち、電力変換部40を後述の第3モードで動作させる指示が「外部からの一部停止指示」の一例に相当する。一部停止指示は、複数のコンバータのうちの一のコンバータを停止させ、他のコンバータに対応する他のバッテリを充電するように電力変換部を制御する指示である。電力変換部40は、このような外部(制御部18)からの一部停止指示に応じて、一のコンバータが変換動作を停止しつつ、他のコンバータが低圧バッテリ32から供給される電力に基づいて他のバッテリに電力を出力するように第2変換動作を行う。 In the operation of FIG. 7, the instruction (control) in which the control unit 18 stops one of the plurality of converters and causes the other converter to perform the second conversion operation is an example of the “partial stop instruction from the outside”. Equivalent to. That is, the instruction to operate the power conversion unit 40 in the third mode described later corresponds to an example of "partial stop instruction from the outside". The partial stop instruction is an instruction to control the power conversion unit so as to stop one of the plurality of converters and charge another battery corresponding to the other converter. The power conversion unit 40 is based on the power supplied from the low voltage battery 32 to the other converter while the conversion operation is stopped by one converter in response to such a partial stop instruction from the outside (control unit 18). The second conversion operation is performed so as to output power to another battery.
 (第1モードの動作)
 制御部18は、上記判定時期に上記所定条件が成立した場合において第1動作条件が成立した場合に、図5のように電力変換部40を第1モードで動作させる。第1動作条件は、例えば、後述の第2動作条件、第3動作条件、第4動作条件を満たさない場合である。制御部18は、図5のように電力変換部40を第1モードで動作させる場合、第1電力変換部50に対し、第1導電路21A,21B間に印加された直流電圧を降圧して第3導電路23A,23B間に直流電圧を印加するように第1変換動作(降圧動作)を行わせる。そして、制御部18は、この第1変換動作と並行して、第3導電路23A,23B間に印加された直流電圧を昇圧して第2導電路22A,22B間に直流電圧を印加するように、第2電力変換部60に第2変換動作(昇圧動作)を行わせる。電力変換部40は、第1モードの動作時には、第1電力変換部50が第3導電路23Aに電力を供給するが、この電力は全て第2電力変換部60が第2変換動作を行う際の入力電力として用いられる。つまり、電力変換部40は、第1モードの動作時には、低圧バッテリ32及び低圧負荷8に電力を供給しない。
(Operation in the first mode)
The control unit 18 operates the power conversion unit 40 in the first mode as shown in FIG. 5 when the first operation condition is satisfied when the predetermined condition is satisfied at the determination time. The first operating condition is, for example, a case where the second operating condition, the third operating condition, and the fourth operating condition, which will be described later, are not satisfied. When the power conversion unit 40 is operated in the first mode as shown in FIG. 5, the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50. The first conversion operation (step-down operation) is performed so that a DC voltage is applied between the third conductive paths 23A and 23B. Then, in parallel with this first conversion operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B. The second power conversion unit 60 is made to perform the second conversion operation (boosting operation). When the power conversion unit 40 operates in the first mode, the first power conversion unit 50 supplies power to the third conductive path 23A, and all of this power is used when the second power conversion unit 60 performs the second conversion operation. It is used as the input power of. That is, the power conversion unit 40 does not supply power to the low voltage battery 32 and the low voltage load 8 during the operation of the first mode.
 図5の例では、制御部18は、電力変換部40を第1モードで動作させる場合、例えば、第1電力変換部50が第1変換動作によって第3導電路23Aに出力する電流と、第2電力変換部60が第2変換動作において第3導電路23Aから入力する電流とが同じになるように第1電力変換部50及び第2電力変換部60を動作させる。なお、制御部18は、第1導電路21A,21Bを介した第1電力変換部50の入出力電流及び入出力電圧を監視している。更に、制御部18は、第3導電路23A,23Bを介した第1電力変換部50の入出力電流及び入出力電圧を監視している。更に、制御部18は、第2導電路22A,22Bを介した第2電力変換部60の入出力電流及び入出力電圧を監視している。更に、制御部18は、第3導電路23A,23Bを介した第2電力変換部60の入出力電流及び入出力電圧を監視している。 In the example of FIG. 5, when the power conversion unit 40 is operated in the first mode, the control unit 18 has, for example, the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation, and the first (2) The first power conversion unit 50 and the second power conversion unit 60 are operated so that the current input from the third conductive path 23A is the same as the current input by the power conversion unit 60 in the second conversion operation. The control unit 18 monitors the input / output current and the input / output voltage of the first power conversion unit 50 via the first conductive paths 21A and 21B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the first power conversion unit 50 via the third conductive paths 23A and 23B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the second power conversion unit 60 via the second conductive paths 22A and 22B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the second power conversion unit 60 via the third conductive paths 23A and 23B.
 (第2モードの動作)
 制御部18は、上記判定時期に上記所定条件が成立した場合において第2動作条件が成立した場合に、図6のように電力変換部40を第2モードで動作させる。第2動作条件は、例えば、「低圧負荷8に供給される負荷電流が一定値以上」である。電力変換部40が第2モードで動作する場合とは、「電力変換部40が外部から一部充電指示を受ける場合において第1条件の場合」である。この場合の第1条件は、「制御部18から電力変換部40に与えられる指示が、第2変換動作によって出力する電力よりも第1変換動作によって出力する電力を大きくする指示である」という条件である。制御部18は、図6のように電力変換部40を第2モードで動作させる場合、第1電力変換部50に対し、第1導電路21A,21B間に印加された直流電圧を降圧して第3導電路23A,23B間に直流電圧を印加するように第1変換動作(降圧動作)を行わせる。そして、制御部18は、この第1変換動作と並行して、第3導電路23A,23B間に印加された直流電圧を昇圧して第2導電路22A,22B間に直流電圧を印加するように、第2電力変換部60に第2変換動作(昇圧動作)を行わせる。電力変換部40は、図6のように第2モードの動作を行う時には、第1電力変換部50が第3導電路23Aに電力を供給するが、この電力の一部は、第2電力変換部60が第2変換動作を行う際の入力電力として用いられ、他の一部は、低圧バッテリ32又は低圧負荷8に供給される。
(Operation in the second mode)
The control unit 18 operates the power conversion unit 40 in the second mode as shown in FIG. 6 when the second operating condition is satisfied when the predetermined condition is satisfied at the determination time. The second operating condition is, for example, "the load current supplied to the low voltage load 8 is equal to or higher than a certain value". The case where the power conversion unit 40 operates in the second mode is "the case where the power conversion unit 40 receives a partial charge instruction from the outside and the first condition is met". The first condition in this case is that "the instruction given from the control unit 18 to the power conversion unit 40 is an instruction to make the power output by the first conversion operation larger than the power output by the second conversion operation". Is. When the power conversion unit 40 is operated in the second mode as shown in FIG. 6, the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50. The first conversion operation (step-down operation) is performed so that a DC voltage is applied between the third conductive paths 23A and 23B. Then, in parallel with this first conversion operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B. The second power conversion unit 60 is made to perform the second conversion operation (boosting operation). When the power conversion unit 40 operates in the second mode as shown in FIG. 6, the first power conversion unit 50 supplies power to the third conductive path 23A, and a part of this power is converted to the second power. The unit 60 is used as input power when performing the second conversion operation, and the other part is supplied to the low pressure battery 32 or the low pressure load 8.
 図6の例では、制御部18は、電力変換部40を第2モードで動作させる場合、例えば、第2電力変換部60が第2変換動作において第3導電路23Aから入力する電流よりも、第1電力変換部50が第1変換動作によって第3導電路23Aに出力する電流のほうが大きくなるように第1電力変換部50及び第2電力変換部60を動作させる。 In the example of FIG. 6, when the power conversion unit 40 is operated in the second mode, for example, the control unit 18 is more than the current input from the third conductive path 23A by the second power conversion unit 60 in the second conversion operation. The first power conversion unit 50 and the second power conversion unit 60 are operated so that the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation becomes larger.
 制御部18は、上記判定時期に上記所定条件が成立した場合において第3動作条件が成立した場合に、図7のように電力変換部40を第3モードで動作させる。第3動作条件は、例えば、「出力電圧が大きい方のバッテリ(図7の例では第1高圧バッテリ34A)のSOCが所定値未満」である。制御部18は、電力変換部40を第3モードで動作させる場合、出力電圧が大きい方である一方のバッテリに対応するコンバータの動作を停止させ、出力電圧が小さい方である他方のバッテリに対応するコンバータに対し、低圧バッテリ32(第2バッテリ)から供給される電力に基づいて他方のバッテリに電力を出力するように第2変換動作を行わせる。例えば、電力変換部40は、図7のように第3モードの動作を行う時には、第1電力変換部50の動作を停止させ、低圧バッテリ32(第2バッテリ)から供給される電力に基づき、第3導電路23A,23B間に印加された直流電圧を昇圧して第2導電路22A,22B間に直流電圧を印加するように、第2電力変換部60に第2変換動作を行わせる。 The control unit 18 operates the power conversion unit 40 in the third mode as shown in FIG. 7 when the third operating condition is satisfied when the predetermined condition is satisfied at the determination time. The third operating condition is, for example, "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the example of FIG. 7) is less than a predetermined value". When the power conversion unit 40 is operated in the third mode, the control unit 18 stops the operation of the converter corresponding to the one battery having the larger output voltage, and corresponds to the other battery having the smaller output voltage. The converter is made to perform the second conversion operation so as to output the electric power to the other battery based on the electric power supplied from the low voltage battery 32 (second battery). For example, when the power conversion unit 40 operates in the third mode as shown in FIG. 7, the operation of the first power conversion unit 50 is stopped, and the power conversion unit 40 is based on the power supplied from the low voltage battery 32 (second battery). The second power conversion unit 60 is made to perform the second conversion operation so as to boost the DC voltage applied between the third conductive paths 23A and 23B and apply the DC voltage between the second conductive paths 22A and 22B.
 制御部18は、上記判定時期に上記所定条件が成立した場合において第4動作条件が成立した場合に、図8のように電力変換部40を第4モードで動作させる。第4動作条件は、例えば、「複数のバッテリのうちの出力電圧の小さいバッテリに対応して設けられた高圧負荷への負荷電流が閾値電流以上」である。例えば、第1高圧バッテリ34Aよりも第2高圧バッテリ34Bのほうが出力電圧が小さい場合、出力電圧が相対的に小さい第2高圧バッテリ34Bに対応して設けられた第2高圧負荷5Bへの負荷電流が閾値電流以上である場合、第4動作条件が成立したものとする。 The control unit 18 operates the power conversion unit 40 in the fourth mode as shown in FIG. 8 when the fourth operating condition is satisfied when the predetermined condition is satisfied at the determination time. The fourth operating condition is, for example, "the load current to the high voltage load provided corresponding to the battery having a small output voltage among the plurality of batteries is equal to or greater than the threshold current". For example, when the output voltage of the second high-voltage battery 34B is smaller than that of the first high-voltage battery 34A, the load current to the second high-voltage load 5B provided corresponding to the second high-voltage battery 34B having a relatively small output voltage. When is equal to or greater than the threshold current, it is assumed that the fourth operating condition is satisfied.
 第4モードで動作する場合とは、電力変換部40が外部から一部充電指示を受ける場合において第2条件の場合である。この場合の第2条件は、「電力変換部40に与えられる指示が、第1変換動作によって出力する電力よりも第2変換動作によって出力する電力を大きくする指示である」という条件である。制御部18は、図8ように電力変換部40を第4モードで動作させる場合、第1電力変換部50に対し、第1導電路21A,21B間に印加された直流電圧を降圧して第3導電路23A,23B間に直流電圧を印加するように第1変換動作(降圧動作)を行わせる。そして、制御部18は、この第1変換動作と並行して、第3導電路23A,23B間に印加された直流電圧を昇圧して第2導電路22A,22B間に直流電圧を印加するように、第2電力変換部60に第2変換動作(昇圧動作)を行わせる。電力変換部40は、図8のように第4モードの動作を行う時には、第1電力変換部50が第3導電路23Aに電力を供給するが、この電力の全てと低圧バッテリ32から供給される電力とを合わせた電力が、第2電力変換部60が第2変換動作を行う際の入力電力として用いられる。 The case of operating in the fourth mode is the case of the second condition when the power conversion unit 40 receives a partial charge instruction from the outside. The second condition in this case is that "the instruction given to the power conversion unit 40 is an instruction to make the power output by the second conversion operation larger than the power output by the first conversion operation". When the power conversion unit 40 is operated in the fourth mode as shown in FIG. 8, the control unit 18 steps down the DC voltage applied between the first conductive paths 21A and 21B to the first power conversion unit 50. 3 The first conversion operation (step-down operation) is performed so that a DC voltage is applied between the conductive paths 23A and 23B. Then, in parallel with this first conversion operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 23A and 23B and applies the DC voltage between the second conductive paths 22A and 22B. The second power conversion unit 60 is made to perform the second conversion operation (boosting operation). When the power conversion unit 40 operates in the fourth mode as shown in FIG. 8, the first power conversion unit 50 supplies power to the third conductive path 23A, and all of this power and the low-voltage battery 32 supply power. The electric power combined with the electric power is used as the input electric power when the second electric power conversion unit 60 performs the second conversion operation.
 図8の例では、制御部18は、電力変換部40を第4モードで動作させる場合、例えば、第1電力変換部50が第1変換動作によって第3導電路23Aに出力する電流よりも、第2電力変換部60が第2変換動作において第3導電路23Aから入力する電流のほうが大きくなるように第1電力変換部50及び第2電力変換部60を動作させる。 In the example of FIG. 8, when the power conversion unit 40 is operated in the fourth mode, for example, the control unit 18 is more than the current output by the first power conversion unit 50 to the third conductive path 23A by the first conversion operation. The first power conversion unit 50 and the second power conversion unit 60 are operated so that the current input from the third conductive path 23A by the second power conversion unit 60 is larger in the second conversion operation.
 制御部18は、電力変換部40を第1~第4モードのいずれで動作させる場合でも、終了条件が成立した場合に不均衡抑制動作を終了する。終了条件は、例えば、第1高圧バッテリ34Aの出力電圧Vaと第2高圧バッテリ34Bの出力電圧Vbの差の絶対値が上記閾値V1よりも小さい一定値以下になった場合であってもよく、Va=Vbとなった場合であってもよく、不均衡抑制動作の開始から一定時間が経過した場合であってもよい。 The control unit 18 ends the imbalance suppression operation when the end condition is satisfied, regardless of whether the power conversion unit 40 is operated in any of the first to fourth modes. The termination condition may be, for example, when the absolute value of the difference between the output voltage Va of the first high-voltage battery 34A and the output voltage Vb of the second high-voltage battery 34B is smaller than the threshold value V1 and becomes a constant value or less. It may be the case where Va = Vb, or the case where a certain time has elapsed from the start of the imbalance suppression operation.
 次の説明は、第1実施形態の効果に関する。
 変換装置10では、電力変換部40は、高圧バッテリ34を構成する複数のバッテリに関し、各バッテリから供給される電力を入力として電力変換を行う第1変換動作だけでなく、いずれかのバッテリに対して個別に電力を出力する第2変換動作も行うことができる。よって、変換装置10は、第1変換動作だけが実現可能な装置よりも、複数のバッテリの不均衡を是正しやすい。
The following description relates to the effect of the first embodiment.
In the conversion device 10, the power conversion unit 40 not only performs a first conversion operation in which power is converted by using the power supplied from each battery as an input for a plurality of batteries constituting the high-voltage battery 34, but also for any of the batteries. A second conversion operation that outputs electric power individually can also be performed. Therefore, the conversion device 10 is easier to correct the imbalance of a plurality of batteries than the device that can realize only the first conversion operation.
 変換装置10は、高圧バッテリ34を構成する各バッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)にそれぞれ対応して各コンバータ(第1電力変換部50、第2電力変換部60)が設けられる。よって、この変換装置10は、複数のバッテリの不均衡を是正しやすい構成を実現しつつ、複数のコンバータによって冗長化を図ることができる。 The conversion device 10 is provided with each converter (first power conversion unit 50, second power conversion unit 60) corresponding to each battery (first high voltage battery 34A, second high voltage battery 34B) constituting the high voltage battery 34. Be done. Therefore, the conversion device 10 can be made redundant by a plurality of converters while realizing a configuration that makes it easy to correct the imbalance of the plurality of batteries.
 変換装置10は、図5、図6、図8のように、一のバッテリの電力に基づく一のコンバータの電力変換によって第3導電路23A,23Bに電力を供給し、この電力を利用した他のコンバータの電力変換によって他のバッテリを充電することができる。よって、この変換装置10は、複数のバッテリの不均衡をより迅速に是正することができる。 As shown in FIGS. 5, 6, and 8, the conversion device 10 supplies electric power to the third conductive paths 23A and 23B by converting the electric power of one converter based on the electric power of one battery, and uses this electric power. Other batteries can be charged by the power conversion of the converter. Therefore, the conversion device 10 can correct the imbalance of the plurality of batteries more quickly.
 変換装置10は、図7、図8のように、低圧バッテリ32(第2バッテリ)からの電力を利用して複数のバッテリの不均衡を是正し得る。 As shown in FIGS. 7 and 8, the conversion device 10 can correct the imbalance of a plurality of batteries by using the electric power from the low voltage battery 32 (second battery).
 変換装置10は、図7のように、一のバッテリからの電力供給よりも低圧バッテリ32(第2バッテリ)からの電力供給を優先して、他のバッテリ側に電力を供給することもできる。 As shown in FIG. 7, the conversion device 10 can supply power to the other battery side by giving priority to the power supply from the low-voltage battery 32 (second battery) over the power supply from one battery.
 変換装置10は、上述の開始条件が成立した場合に、複数のバッテリの出力電圧の差を小さくするように電力変換部40を動作させることができる。 The conversion device 10 can operate the power conversion unit 40 so as to reduce the difference between the output voltages of the plurality of batteries when the above-mentioned start condition is satisfied.
 <第2実施形態>
 次の説明は、第2実施形態の変換装置210に関する。
 第2実施形態の変換装置210の回路構成は、図1等で示される電力変換部40を電力変換部240に変更した点のみが第1実施形態の変換装置10と異なる。つまり、図1の変換装置10において電力変換部40を電力変換部240に変更した構成が第2実施形態の変換装置210である。よって、以下の説明では、電力変換部40以外の部分については、図1が参照される。図9の車載システム202の装置構成は、電力変換部40を電力変換部240に変更した点のみが第1実施形態の車載システム2(図1、図4等)と異なり、その他の点は、第1実施形態の車載システム2と同一である。図9の電源システム203の装置構成は、電力変換部40を電力変換部240に変更した点のみが第1実施形態の電源システム3(図1、図4等)と異なり、その他の点は、第1実施形態の電源システム3と同一である。車載システム202の動作は、電力変換部240の動作以外は、車載システム2と同様である。
<Second Embodiment>
The following description relates to the conversion device 210 of the second embodiment.
The circuit configuration of the conversion device 210 of the second embodiment is different from that of the conversion device 10 of the first embodiment only in that the power conversion unit 40 shown in FIG. 1 and the like is changed to the power conversion unit 240. That is, the conversion device 210 of the second embodiment has a configuration in which the power conversion unit 40 is changed to the power conversion unit 240 in the conversion device 10 of FIG. Therefore, in the following description, FIG. 1 is referred to for parts other than the power conversion unit 40. The device configuration of the vehicle-mounted system 202 of FIG. 9 differs from the vehicle-mounted system 2 (FIGS. 1, 4, etc.) of the first embodiment only in that the power conversion unit 40 is changed to the power conversion unit 240, and the other points are different. It is the same as the in-vehicle system 2 of the first embodiment. The apparatus configuration of the power supply system 203 of FIG. 9 differs from the power supply system 3 of the first embodiment (FIGS. 1, 4, etc.) only in that the power conversion unit 40 is changed to the power conversion unit 240, and the other points are different. It is the same as the power supply system 3 of the first embodiment. The operation of the in-vehicle system 202 is the same as that of the in-vehicle system 2 except for the operation of the power conversion unit 240.
 第2実施形態の変換装置210が適用される電源システム203も、図1、図9のように、複数のバッテリ(第1高圧バッテリ34A,第2高圧バッテリ34B)が直列接続と並列接続とに切り替わる電源システムである。第2実施形態の変換装置210は、電力変換部240を有する。電力変換部240は、各々のバッテリ(第1高圧バッテリ34A,第2高圧バッテリ34B)から入力される電力を変換し、各バッテリとは異なる第3導電路23A,23Bに電力を出力するように第1変換動作を行い得る。電力変換部240は、第1高圧バッテリ34A及び第2高圧バッテリ34Bの各々に対して個別に電力を出力するように第2変換動作を行い得る。 In the power supply system 203 to which the conversion device 210 of the second embodiment is applied, as shown in FIGS. 1 and 9, a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B) are connected in series and in parallel. It is a switching power supply system. The conversion device 210 of the second embodiment has a power conversion unit 240. The power conversion unit 240 converts the power input from each battery (first high-voltage battery 34A, second high-voltage battery 34B) and outputs the power to the third conductive paths 23A and 23B different from each battery. The first conversion operation can be performed. The power conversion unit 240 may perform a second conversion operation so as to individually output power to each of the first high-voltage battery 34A and the second high-voltage battery 34B.
 図10のように、電力変換部240は、複数の第1変換部241A,241Bと、トランス243と、第2変換部242と、を備える。トランス243は、複数の第1コイル243A,243Bと第2コイル243Cとを備え、複数の第1コイル243A,243Bと第2コイル243Cとが磁気結合されている。複数の第1変換部241A,241Bの各々にそれぞれ対応して複数の第1コイル243A,243Bの各々が設けられる。複数の第1変換部241A,241Bの各々は、第1高圧バッテリ34A及び第2高圧バッテリ34Bの各々からの電力に基づく直流電力を変換して複数の第1コイル243A,243Bの各々に交流電力を出力する。 As shown in FIG. 10, the power conversion unit 240 includes a plurality of first conversion units 241A and 241B, a transformer 243, and a second conversion unit 242. The transformer 243 includes a plurality of first coils 243A, 243B and a second coil 243C, and the plurality of first coils 243A, 243B and the second coil 243C are magnetically coupled. Each of the plurality of first coils 243A and 243B is provided corresponding to each of the plurality of first conversion units 241A and 241B. Each of the plurality of first conversion units 241A and 241B converts DC power based on the power from each of the first high voltage battery 34A and the second high voltage battery 34B, and converts AC power into each of the plurality of first coils 243A and 243B. Is output.
 第1変換部241Aは、双方向に直流電力と交流電力とを変換する機能を有する。第1変換部241Aは、第1導電路21A,21B間に印加される直流電圧を変換し、第1コイル243Aに交流電圧を発生させる機能を有する。第1変換部241Aは、第1コイル243Aに発生した交流電圧を変換し、第1導電路21A,21B間に直流電圧を出力する機能も有する。第1変換部241Aは、コンデンサ251Aと、フルブリッジ回路を構成するスイッチ素子251C,251D,251E,251Fを含む。 The first conversion unit 241A has a function of converting DC power and AC power in both directions. The first conversion unit 241A has a function of converting a DC voltage applied between the first conductive paths 21A and 21B and generating an AC voltage in the first coil 243A. The first conversion unit 241A also has a function of converting an AC voltage generated in the first coil 243A and outputting a DC voltage between the first conductive paths 21A and 21B. The first conversion unit 241A includes a capacitor 251A and switch elements 251C, 251D, 251E, 251F constituting a full bridge circuit.
 第1変換部241Bは、双方向に直流電力と交流電力とを変換する機能を有する。第1変換部241Bは、第2導電路22A,22B間に印加される直流電圧を変換し、第1コイル243Bに交流電圧を発生させる機能を有する。第1変換部241Bは、第1コイル243Bに発生した交流電圧を変換し、第2導電路22A,22B間に直流電圧を出力する機能も有する。第1変換部241Bは、コンデンサ261Aと、フルブリッジ回路を構成するスイッチ素子261C,261D,261E,261Fを含む。 The first conversion unit 241B has a function of converting DC power and AC power in both directions. The first conversion unit 241B has a function of converting the DC voltage applied between the second conductive paths 22A and 22B and generating an AC voltage in the first coil 243B. The first conversion unit 241B also has a function of converting an AC voltage generated in the first coil 243B and outputting a DC voltage between the second conductive paths 22A and 22B. The first conversion unit 241B includes a capacitor 261A and switch elements 261C, 261D, 261E, 261F constituting a full bridge circuit.
 第2変換部242は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換部242は、第2コイル243Cに発生する交流電圧を変換して第3導電路23A,23B間に直流電圧を出力する機能を有する。第2変換部242は、第3導電路23A,23B間に印加された直流電圧を変換して第2コイル53Bに交流電圧を発生させる機能も有する。第2変換部242は、スイッチ素子252C,252D、インダクタ252E、コンデンサ252Aなどを含む。 The second conversion unit 242 has a function of converting AC power and DC power in both directions. The second conversion unit 242 has a function of converting an AC voltage generated in the second coil 243C and outputting a DC voltage between the third conductive paths 23A and 23B. The second conversion unit 242 also has a function of converting the DC voltage applied between the third conductive paths 23A and 23B to generate an AC voltage in the second coil 53B. The second conversion unit 242 includes switch elements 252C, 252D, an inductor 252E, a capacitor 252A, and the like.
 変換装置210は、変換装置10と同様に、所定の判定時期に所定条件が成立したか否かを判定し、上記判定時期に上記所定条件が成立した場合に、複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の不均衡を抑制する動作を行う。上記判定時期や上記所定条件は、第1実施形態の変換装置10と同様とすることができる。以下の例では、図1で示される制御部18が、上記判定時期に|Va-Vb|≧V1であると判定した場合、電力変換部240に不均衡抑制動作を行わせる。電力変換部240に不均衡抑制動作を行わせる時期は上記判定時期であってもよく、予め定められた別の所定時期であってもよい。制御部18は、電力変換部240に不均衡抑制動作を行わせる場合、複数のバッテリのうち、出力電圧が大きい方のバッテリを放電状態又は充電停止状態とし、出力電圧が小さい方のバッテリを充電するように電力変換部240に電力変換を行わせる。このように、制御部18は、所定の開始条件が成立した場合(即ち、上記判定時期に上記所定条件が成立した場合)に、電力変換部240に対し、複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の出力電圧Va,Vbの差を小さくする動作を行わせる。 Similar to the conversion device 10, the conversion device 210 determines whether or not the predetermined condition is satisfied at the predetermined determination time, and when the predetermined condition is satisfied at the determination time, the plurality of batteries (first high voltage battery). The operation of suppressing the imbalance of the 34A and the second high voltage battery 34B) is performed. The determination timing and the predetermined conditions can be the same as those of the conversion device 10 of the first embodiment. In the following example, when the control unit 18 shown in FIG. 1 determines that | Va—Vb | ≧ V1 at the above determination time, the power conversion unit 240 is made to perform an imbalance suppression operation. The time for causing the power conversion unit 240 to perform the imbalance suppression operation may be the above-mentioned determination time, or may be another predetermined time. When the power conversion unit 240 is to perform the imbalance suppression operation, the control unit 18 sets the battery having the larger output voltage into the discharged state or the charging stopped state, and charges the battery having the smaller output voltage. The power conversion unit 240 is made to perform power conversion so as to be performed. As described above, when the predetermined start condition is satisfied (that is, when the predetermined condition is satisfied at the determination time), the control unit 18 has a plurality of batteries (first high voltage battery 34A) for the power conversion unit 240. And the operation of reducing the difference between the output voltages Va and Vb of the second high-voltage battery 34B) is performed.
 制御部18は、不均衡抑制動作として、例えば、図11~図13のような動作を電力変換部240に行わせることができる。図11、図12の動作は、低圧バッテリ32の電力を用いずに、高圧バッテリ34のうちの一のバッテリからの電力を利用して変換動作を行い、他のバッテリを充電する動作である。図13の動作は、低圧バッテリ32からの電力を利用して昇圧動作を行い、高圧バッテリ34のうちのいずれかのバッテリを充電する動作である。なお、図11~図13の例では、第1高圧バッテリ34Aの出力電圧Vaが第2高圧バッテリ34Bの出力電圧Vbよりも大きく、|Va-Vb|≧V1である。 The control unit 18 can cause the power conversion unit 240 to perform the operations shown in FIGS. 11 to 13, for example, as the imbalance suppression operation. The operations of FIGS. 11 and 12 are operations in which the conversion operation is performed by using the electric power from one of the high-voltage batteries 34 without using the electric power of the low-voltage battery 32, and the other batteries are charged. The operation of FIG. 13 is an operation of performing a step-up operation using the electric power from the low-voltage battery 32 to charge one of the high-voltage batteries 34. In the examples of FIGS. 11 to 13, the output voltage Va of the first high-voltage battery 34A is larger than the output voltage Vb of the second high-voltage battery 34B, and | Va-Vb | ≧ V1.
 制御部18は、上記判定時期に上記所定条件が成立した場合において第1動作条件が成立した場合に、図11のように電力変換部240を第1モードで動作させる。第1動作条件は、例えば、後述の第2動作条件、第3動作条件を満たさない場合である。制御部18が図11の動作を行うように電力変換部240に与える指示が「外部からの一部充電指示」の一例に相当する。電力変換部240は、このような外部からの一部充電指示に応じて、一のバッテリから供給される電力に基づいて、複数の第1変換部241A,241B及びトランス243によって電力変換を行い、他のバッテリに電力を供給するように第2変換動作を行う。制御部18は、図11のように電力変換部240を第1モードで動作させる場合、第2変換部242は停止状態を維持し、第1変換部241Aに対して第1導電路21A,21B間に印加された直流電圧を入力とする変換動作を行わせることで第1コイル243Aに交流電圧を発生させ、これに応じて発生する第1コイル243Bの交流電圧を入力として、第1変換部241Bに変換動作を行わせることで第2導電路22A,22B間に直流電圧を印加するように、複数の第1変換部241A,241Bを動作させる。 The control unit 18 operates the power conversion unit 240 in the first mode as shown in FIG. 11 when the first operating condition is satisfied when the predetermined condition is satisfied at the determination time. The first operating condition is, for example, a case where the second operating condition and the third operating condition described later are not satisfied. The instruction given to the power conversion unit 240 so that the control unit 18 performs the operation shown in FIG. 11 corresponds to an example of "partial charge instruction from the outside". The power conversion unit 240 performs power conversion by a plurality of first conversion units 241A, 241B and a transformer 243 based on the power supplied from one battery in response to such a partial charge instruction from the outside. The second conversion operation is performed so as to supply power to another battery. When the control unit 18 operates the power conversion unit 240 in the first mode as shown in FIG. 11, the second conversion unit 242 maintains the stopped state, and the first conductive paths 21A and 21B with respect to the first conversion unit 241A. An AC voltage is generated in the first coil 243A by performing a conversion operation with the DC voltage applied between them as an input, and the AC voltage of the first coil 243B generated in response to the AC voltage is used as an input in the first conversion unit. By causing the 241B to perform the conversion operation, the plurality of first conversion units 241A and 241B are operated so as to apply a DC voltage between the second conductive paths 22A and 22B.
 なお、制御部18は、第1導電路21A,21Bを介した第1変換部241Aの入出力電流及び入出力電圧を監視している。更に、制御部18は、第2導電路22A,22Bを介した第1変換部241Bの入出力電流及び入出力電圧を監視している。更に、制御部18は、第3導電路23A,23Bを介した第2変換部242の入出力電流及び入出力電圧を監視している。 The control unit 18 monitors the input / output current and the input / output voltage of the first conversion unit 241A via the first conductive paths 21A and 21B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the first conversion unit 241B via the second conductive paths 22A and 22B. Further, the control unit 18 monitors the input / output current and the input / output voltage of the second conversion unit 242 via the third conductive paths 23A and 23B.
 制御部18は、上記判定時期に上記所定条件が成立した場合において第2動作条件が成立した場合に、図12のように電力変換部240を第2モードで動作させる。第2動作条件は、例えば、低圧負荷8へと流れる負荷電流が所定値以上の場合である。制御部18が図12の動作を行うように電力変換部240に与える指示も「外部からの一部充電指示」の一例に相当する。制御部18は、図12のように電力変換部240を第2モードで動作させる場合、第1変換部241Aに対して第1導電路21A,21B間に印加された直流電圧を入力とする変換動作を行わせることで第1コイル243Aに交流電圧を発生させる。更に、制御部18は、第1コイル243Aに交流電圧が発生することに応じて第1コイル243Bに発生する交流電圧を入力とする変換動作を第1変換部241Bに行わせることで、第2導電路22A,22B間に直流電圧を印加する。更に、制御部18は、第1コイル243Aに交流電圧が発生することに応じて第2コイル243Cに発生する交流電圧を入力として第2変換部242に変換動作を行わせることで、第3導電路23A,23B間に直流電圧を印加する。 The control unit 18 operates the power conversion unit 240 in the second mode as shown in FIG. 12 when the second operating condition is satisfied when the predetermined condition is satisfied at the determination time. The second operating condition is, for example, a case where the load current flowing to the low voltage load 8 is a predetermined value or more. The instruction given to the power conversion unit 240 so that the control unit 18 performs the operation shown in FIG. 12 also corresponds to an example of the “partial charge instruction from the outside”. When the power conversion unit 240 is operated in the second mode as shown in FIG. 12, the control unit 18 inputs the DC voltage applied between the first conductive paths 21A and 21B to the first conversion unit 241A. By performing the operation, an AC voltage is generated in the first coil 243A. Further, the control unit 18 causes the first conversion unit 241B to perform a conversion operation in which the AC voltage generated in the first coil 243B is input in response to the generation of the AC voltage in the first coil 243A. A DC voltage is applied between the conductive paths 22A and 22B. Further, the control unit 18 causes the second conversion unit 242 to perform a conversion operation by inputting the AC voltage generated in the second coil 243C in response to the generation of the AC voltage in the first coil 243A, thereby causing the third conductivity. A DC voltage is applied between the paths 23A and 23B.
 制御部18は、上記判定時期に上記所定条件が成立した場合において第3動作条件が成立した場合に、図13のように電力変換部240を第3モードで動作させる。第3動作条件は、例えば、「出力電圧が大きい方のバッテリ(図13の例では第1高圧バッテリ34A)のSOCが所定値未満」である。制御部18は、電力変換部240を第3モードで動作させる場合、出力電圧が大きい方のバッテリに対応する一の第1変換部の変換動作を停止させつつ、他の第1変換部とトランス243と第2変換部242とが低圧バッテリ32(第2バッテリ)から供給される電力に基づいて他の第1変換部に対応する他のバッテリに電力を出力するように電力変換部240に第2変換動作を行わせる。制御部18が、図13の動作を行うように電力変換部240に与える指示は、「外部からの一部停止指示」の一例に相当する。 The control unit 18 operates the power conversion unit 240 in the third mode as shown in FIG. 13 when the third operating condition is satisfied when the predetermined condition is satisfied at the determination time. The third operating condition is, for example, "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the example of FIG. 13) is less than a predetermined value". When the power conversion unit 240 is operated in the third mode, the control unit 18 stops the conversion operation of the first conversion unit corresponding to the battery having the larger output voltage, while stopping the conversion operation with the other first conversion unit and the transformer. The power conversion unit 240 is provided with power so that the 243 and the second conversion unit 242 output power to another battery corresponding to the other first conversion unit based on the power supplied from the low voltage battery 32 (second battery). 2 Perform the conversion operation. The instruction given by the control unit 18 to the power conversion unit 240 so as to perform the operation of FIG. 13 corresponds to an example of "partial stop instruction from the outside".
 制御部18は、図13のように電力変換部240を第3モードで動作させる場合、第1変換部241Aを停止状態で維持し、第2変換部242に対して第3導電路23A,23B間に印加された直流電圧を入力とする変換動作を行わせることで第2コイル243Cに交流電圧を発生させる。更に、制御部18は、第2コイル243Cに交流電圧が発生することに応じて第1コイル243Bに発生する交流電圧を入力とする変換動作を第1変換部241Bに行わせることで、第2導電路22A,22B間に直流電圧を印加する。 When the power conversion unit 240 is operated in the third mode as shown in FIG. 13, the control unit 18 maintains the first conversion unit 241A in a stopped state, and the third conductive paths 23A and 23B with respect to the second conversion unit 242. An AC voltage is generated in the second coil 243C by performing a conversion operation using the DC voltage applied between them as an input. Further, the control unit 18 causes the first conversion unit 241B to perform a conversion operation in which the AC voltage generated in the first coil 243B is input in response to the generation of the AC voltage in the second coil 243C. A DC voltage is applied between the conductive paths 22A and 22B.
 <第3実施形態>
 次の説明は、第3実施形態の変換装置310に関する。
 図14には、第3実施形態に係る変換装置310が示される。変換装置310は、車両に搭載される車載システム302の一部として用いられる装置である。車載システム302が搭載された車両は、図2の車両1を変更し、車載システム2に代えて車載システム302が搭載されたものである。
<Third Embodiment>
The following description relates to the conversion device 310 of the third embodiment.
FIG. 14 shows the conversion device 310 according to the third embodiment. The conversion device 310 is a device used as a part of the in-vehicle system 302 mounted on the vehicle. The vehicle equipped with the in-vehicle system 302 is a vehicle in which the in-vehicle system 302 is installed in place of the in-vehicle system 2 by modifying the vehicle 1 in FIG.
 図14に示される車載システム302は、電源システム303、駆動部4、高圧負荷5、低圧負荷8、電力路28A,28Bなどを含む。電力路28A,28Bには、図1に示される端子9A,9Bと同様の機能を有する端子が設けられていてもよい。また、電力路28A,28Bには、図1に示されるスイッチ26A,26Bと同様の機能を有するスイッチが設けられていてもよい。 The in-vehicle system 302 shown in FIG. 14 includes a power supply system 303, a drive unit 4, a high voltage load 5, a low voltage load 8, power paths 28A, 28B, and the like. The power paths 28A and 28B may be provided with terminals having the same functions as the terminals 9A and 9B shown in FIG. Further, the power paths 28A and 28B may be provided with switches having the same functions as the switches 26A and 26B shown in FIG.
 駆動部4は、図1等で示される車載システム2の駆動部4と同一の構成をなし、車載システム2の駆動部4と同一の機能を有する。低圧負荷8は、図1等で示される車載システム2の低圧負荷8と同一の構成をなし、車載システム2の低圧負荷8と同一の機能を有する。高圧負荷5は、電力路28A,28Bに電気的に接続され、高圧バッテリ34から電力の供給を受けて動作し得る負荷である。高圧負荷5は、例えば、エアコンやヒータなどであり、これら以外の電気機器であってもよい。 The drive unit 4 has the same configuration as the drive unit 4 of the vehicle-mounted system 2 shown in FIG. 1 and the like, and has the same function as the drive unit 4 of the vehicle-mounted system 2. The low-voltage load 8 has the same configuration as the low-voltage load 8 of the vehicle-mounted system 2 shown in FIG. 1 and the like, and has the same function as the low-voltage load 8 of the vehicle-mounted system 2. The high-voltage load 5 is a load that is electrically connected to the power paths 28A and 28B and can operate by being supplied with electric power from the high-voltage battery 34. The high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these.
 電源システム303は、変換装置310と低圧バッテリ32と高圧バッテリ34とを有する。電源システム303は、複数のバッテリ34A,34Bが並列に接続され、複数のバッテリ34A,34Bが直列接続に切り替わらないシステムである。 The power supply system 303 includes a conversion device 310, a low voltage battery 32, and a high voltage battery 34. The power supply system 303 is a system in which a plurality of batteries 34A and 34B are connected in parallel, and the plurality of batteries 34A and 34B are not switched to a series connection.
 電源システム303は、車載システム302が搭載された車両に対して外部交流電源(図示省略)が接続された際に、外部交流電源から供給される交流電力に基づいて高圧バッテリ34を充電し得る。車載システム302が搭載された車両は、外部交流電源が接続される接続端子(図示省略)を有し、接続端子に対して外部交流電源(図示省略)が接続され得る。電源システム303では、車両の接続端子に対して急速充電器が接続された場合に、急速充電器から供給される電力に基づいて高圧バッテリ34に直流電圧を印加する充電回路(図示省略)を有する。 The power supply system 303 can charge the high voltage battery 34 based on the AC power supplied from the external AC power source when the external AC power source (not shown) is connected to the vehicle equipped with the in-vehicle system 302. The vehicle equipped with the in-vehicle system 302 has a connection terminal (not shown) to which an external AC power supply is connected, and an external AC power supply (not shown) may be connected to the connection terminal. The power supply system 303 has a charging circuit (not shown) that applies a DC voltage to the high voltage battery 34 based on the electric power supplied from the quick charger when the quick charger is connected to the connection terminal of the vehicle. ..
 電力路28Aは、第1高圧バッテリ34A及び第2高圧バッテリ34Bの各々における最も電位の高い電極に電気的に接続され得る。電力路28A,28Bは、高圧バッテリ34からインバータ7に電力を供給する経路である。 The power path 28A may be electrically connected to the highest potential electrode in each of the first high voltage battery 34A and the second high voltage battery 34B. The power paths 28A and 28B are paths for supplying electric power from the high-voltage battery 34 to the inverter 7.
 高圧バッテリ34は、複数のバッテリを備える。図14の構成において、高圧バッテリ34は、第1高圧バッテリ34A及び第2高圧バッテリ34Bを備える。第1高圧バッテリ34A及び第2高圧バッテリ34Bは、いずれもバッテリの一例に相当する。第1高圧バッテリ34Aは、第1電池部の一例に相当する。第2高圧バッテリ34Bは、第2電池部の一例に相当する。高圧バッテリ34は、第1高圧バッテリ34Aと第2高圧バッテリ34Bとが並列に接続され、直列接続に切り替わらない電源である。高圧バッテリ34は、充放電可能に構成される。高圧バッテリ34から電力が供給される場合、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれか一方から電力が供給されるか、又は両方が並列に接続された状態で電力が供給される。高圧バッテリ34は、駆動部4を駆動するための高電圧(例えば、約300V)を出力する。第1高圧バッテリ34A及び第2高圧バッテリ34Bのそれぞれの満充電時の出力電圧は、低圧バッテリ32の満充電時の出力電圧よりも高い。第1高圧バッテリ34A及び第2高圧バッテリ34Bは、リチウムイオン電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。 The high voltage battery 34 includes a plurality of batteries. In the configuration of FIG. 14, the high voltage battery 34 includes a first high voltage battery 34A and a second high voltage battery 34B. The first high voltage battery 34A and the second high voltage battery 34B both correspond to an example of a battery. The first high voltage battery 34A corresponds to an example of the first battery unit. The second high voltage battery 34B corresponds to an example of the second battery unit. The high-voltage battery 34 is a power source in which the first high-voltage battery 34A and the second high-voltage battery 34B are connected in parallel and do not switch to the series connection. The high-voltage battery 34 is configured to be rechargeable and dischargeable. When power is supplied from the high-voltage battery 34, power is supplied from either one of the first high-voltage battery 34A and the second high-voltage battery 34B, or power is supplied in a state where both are connected in parallel. The high voltage battery 34 outputs a high voltage (for example, about 300 V) for driving the drive unit 4. The output voltage of each of the first high-voltage battery 34A and the second high-voltage battery 34B when fully charged is higher than the output voltage of the low-voltage battery 32 when fully charged. The first high-voltage battery 34A and the second high-voltage battery 34B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
 第1高圧バッテリ34Aと電力路28Aとの間には、リレー393Aが設けられる。リレー393Aがオフ状態のときには、第1高圧バッテリ34Aにおける最も電位が高い電極(高電位側電極)と電力路28Aとの間が電気的に切り離され、リレー393Aを介しての通電が遮断される。リレー393Aがオン状態のときには、第1高圧バッテリ34Aの上記高電位側電極と電力路28Aとの間が電気的に接続され、第1高圧バッテリ34Aの上記高電位側電極と電力路28Aの間が短絡する。 A relay 393A is provided between the first high voltage battery 34A and the power path 28A. When the relay 393A is in the off state, the electrode having the highest potential (high potential side electrode) in the first high-voltage battery 34A and the power path 28A are electrically disconnected, and the energization via the relay 393A is cut off. .. When the relay 393A is in the ON state, the high potential side electrode of the first high pressure battery 34A and the power path 28A are electrically connected, and between the high potential side electrode of the first high pressure battery 34A and the power path 28A. Shorts out.
 第1高圧バッテリ34Aと電力路28Bとの間には、リレー394Aが設けられる。リレー394Aがオフ状態のときには、第1高圧バッテリ34Aにおける最も電位が低い電極(低電位側電極)と電力路28Bとの間において、リレー394Aを介しての通電が遮断される。リレー394Aがオン状態のときには、第1高圧バッテリ34Aの上記低電位側電極と電力路28Bとの間が電気的に接続され、第1高圧バッテリ34Aの上記低電位側電極と電力路28Bの間が短絡する。更に、リレー395Aと抵抗396Aとが直列に設けられた直列構成部が、リレー394Aに対して並列に接続されている。リレー393Aがオン状態であり、リレー394Aがオフ状態であり、リレー395Aがオン状態である場合、この直列構成部を介して電流が流れ得る。この場合、電流を抑えた電力供給がなされる。リレー394A,395Aがオフ状態のときには、第1高圧バッテリ34Aと電力路28Bの間の通電が遮断される。リレー393A,394A,395Aは、半導体リレーであってもよく、機械式リレーであってもよい。 A relay 394A is provided between the first high voltage battery 34A and the power path 28B. When the relay 394A is in the off state, the energization via the relay 394A is cut off between the electrode having the lowest potential (low potential side electrode) in the first high voltage battery 34A and the power path 28B. When the relay 394A is on, the low potential side electrode of the first high pressure battery 34A and the power path 28B are electrically connected, and between the low potential side electrode of the first high pressure battery 34A and the power path 28B. Shorts out. Further, a series component in which the relay 395A and the resistor 396A are provided in series is connected in parallel to the relay 394A. When the relay 393A is in the on state, the relay 394A is in the off state, and the relay 395A is in the on state, a current can flow through the series component. In this case, the electric power is supplied while suppressing the current. When the relays 394A and 395A are in the off state, the energization between the first high voltage battery 34A and the power path 28B is cut off. The relays 393A, 394A, and 395A may be semiconductor relays or mechanical relays.
 第2高圧バッテリ34Bと電力路28Aとの間には、リレー393Bが設けられる。リレー393Bがオフ状態のときには、第2高圧バッテリ34Bにおける最も電位が高い電極(高電位側電極)と電力路28Aとの間が電気的に切り離され、リレー393Bを介しての通電が遮断される。リレー393Bがオン状態のときには、第2高圧バッテリ34Bの上記高電位側電極と電力路28Aとの間が電気的に接続され、第2高圧バッテリ34Bの上記高電位側電極と電力路28Aの間が短絡する。 A relay 393B is provided between the second high voltage battery 34B and the power path 28A. When the relay 393B is in the off state, the electrode having the highest potential (high potential side electrode) in the second high-voltage battery 34B and the power path 28A are electrically disconnected, and the energization via the relay 393B is cut off. .. When the relay 393B is in the ON state, the high potential side electrode of the second high voltage battery 34B and the power path 28A are electrically connected, and between the high potential side electrode of the second high pressure battery 34B and the power path 28A. Shorts out.
 第2高圧バッテリ34Bと電力路28Bとの間には、リレー394Bが設けられる。リレー394Bがオフ状態のときには、第2高圧バッテリ34Bにおける最も電位が低い電極(低電位側電極)と電力路28Bとの間において、リレー394Bを介しての通電が遮断される。リレー394Bがオン状態のときには、第2高圧バッテリ34Bの上記低電位側電極と電力路28Bとの間が電気的に接続され、第2高圧バッテリ34Bの上記低電位側電極と電力路28Bの間が短絡する。更に、リレー395Bと抵抗396Bとが直列に設けられた直列構成部が、リレー394Bに対して並列に接続されている。リレー393Bがオン状態であり、リレー394Bがオフ状態であり、リレー395Bがオン状態である場合、この直列構成部を介して電流が流れ得る。この場合、電流を抑えた電力供給がなされる。リレー394B,395Bがオフ状態のときには、第2高圧バッテリ34Bと電力路28Bの間の通電が遮断される。リレー393B,394B,395Bは、半導体リレーであってもよく、機械式リレーであってもよい。 A relay 394B is provided between the second high voltage battery 34B and the power path 28B. When the relay 394B is in the off state, the power supply via the relay 394B is cut off between the electrode having the lowest potential (low potential side electrode) in the second high voltage battery 34B and the power path 28B. When the relay 394B is on, the low potential side electrode of the second high pressure battery 34B and the power path 28B are electrically connected, and between the low potential side electrode of the second high pressure battery 34B and the power path 28B. Shorts out. Further, a series component in which the relay 395B and the resistor 396B are provided in series is connected in parallel to the relay 394B. When the relay 393B is in the on state, the relay 394B is in the off state, and the relay 395B is in the on state, a current can flow through the series component. In this case, the electric power is supplied while suppressing the current. When the relays 394B and 395B are in the off state, the energization between the second high voltage battery 34B and the power path 28B is cut off. The relays 393B, 394B, and 395B may be semiconductor relays or mechanical relays.
 低圧バッテリ32は、第2バッテリの一例に相当し、蓄電部の一例に相当する。低圧バッテリ32は、充放電可能に構成される。低圧バッテリ32は、低圧負荷8に電力を供給する。低圧バッテリ32は、鉛蓄電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。低圧バッテリ32は、満充電時に所定電圧(例えば12V)を出力する。 The low voltage battery 32 corresponds to an example of the second battery and corresponds to an example of the power storage unit. The low voltage battery 32 is configured to be rechargeable and dischargeable. The low voltage battery 32 supplies power to the low voltage load 8. The low voltage battery 32 may be composed of a lead storage battery or another type of storage battery. The low voltage battery 32 outputs a predetermined voltage (for example, 12V) when fully charged.
 (変換装置の構成)
 図14のように、変換装置310は、主に、電力変換部40、制御部18、管理装置17、第1リレー部331、第2リレー部332、を備える。変換装置310は、電力制御装置として機能する。変換装置310は、高圧バッテリ34や低圧バッテリ32から供給される電力を入力として電力変換を行い得る装置である。符号370は、DCDCコンバータであり、電力変換部40、第1リレー部331、第2リレー部332などによって構成される。
(Configuration of converter)
As shown in FIG. 14, the conversion device 310 mainly includes a power conversion unit 40, a control unit 18, a management device 17, a first relay unit 331, and a second relay unit 332. The conversion device 310 functions as a power control device. The conversion device 310 is a device capable of performing power conversion by inputting power supplied from the high voltage battery 34 or the low voltage battery 32. Reference numeral 370 is a DCDC converter, which is composed of a power conversion unit 40, a first relay unit 331, a second relay unit 332, and the like.
 制御部18は、車載システム302内の装置に対して各種制御を行う装置である。制御部18は、演算機能、情報処理機能、記憶機能などを有する。制御部18は、複数の電子制御装置によって構成されていてもよく、単一の電子制御装置によって構成されていてもよい。制御部18は、例えば電力変換部40を制御する。制御部18による電力変換部40の制御の具体例は、後に詳述される。 The control unit 18 is a device that performs various controls on the devices in the in-vehicle system 302. The control unit 18 has a calculation function, an information processing function, a storage function, and the like. The control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device. The control unit 18 controls, for example, the power conversion unit 40. Specific examples of control of the power conversion unit 40 by the control unit 18 will be described in detail later.
 管理装置17は、高圧バッテリ34を監視する機能を有する。管理装置17は、高圧バッテリ34を構成する複数のバッテリ(第1高圧バッテリ34A及び第2高圧バッテリ34B)の各々の出力電圧、SOC(State Of Charge)を継続的に検出する。 The management device 17 has a function of monitoring the high voltage battery 34. The management device 17 continuously detects the output voltage and SOC (State Of Charge) of each of the plurality of batteries (first high-voltage battery 34A and second high-voltage battery 34B) constituting the high-voltage battery 34.
 変換装置310の電力変換部40は、図1、図2等で示される第1実施形態の電力変換部40と同様の構成をなし、同様に機能する。変換装置310の電力変換部40も、複数のコンバータを備える。図14、図15のように、変換装置310の電力変換部40は、複数のコンバータとしての第1電力変換部50及び第2電力変換部60を備える。第1電力変換部50は、第1コンバータの一例に相当する。第2電力変換部60は、第2コンバータの一例に相当する。第1電力変換部50及び第2電力変換部60の各々は、双方向に電力変換を行う。 The power conversion unit 40 of the conversion device 310 has the same configuration as the power conversion unit 40 of the first embodiment shown in FIGS. 1, 2, and the like, and functions in the same manner. The power conversion unit 40 of the conversion device 310 also includes a plurality of converters. As shown in FIGS. 14 and 15, the power conversion unit 40 of the conversion device 310 includes a first power conversion unit 50 and a second power conversion unit 60 as a plurality of converters. The first power conversion unit 50 corresponds to an example of the first converter. The second power conversion unit 60 corresponds to an example of the second converter. Each of the first power conversion unit 50 and the second power conversion unit 60 performs power conversion in both directions.
 複数のコンバータ(第1電力変換部50、第2電力変換部60)の各々は、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)の各々にそれぞれ対応して設けられている。第1高圧バッテリ34Aに対応して第1電力変換部50が設けられている。第2高圧バッテリ34Bに対応して第2電力変換部60が設けられている。第1電力変換部50は、自身に対応する第1高圧バッテリ34Aとは異なる第2高圧バッテリ34Bからの電力供給が遮断された状態でも、第1高圧バッテリ34Aから電力供給を受け得るように対応して設けられる。第2電力変換部60は、自身に対応する第2高圧バッテリ34Bとは異なる第1高圧バッテリ34Aからの電力供給が遮断された状態でも、第2高圧バッテリ34Bから電力供給を受け得るように対応して設けられる。 Each of the plurality of converters (first power conversion unit 50, second power conversion unit 60) is provided corresponding to each of the plurality of batteries (first high voltage battery 34A, second high voltage battery 34B). A first power conversion unit 50 is provided corresponding to the first high voltage battery 34A. A second power conversion unit 60 is provided corresponding to the second high voltage battery 34B. The first power conversion unit 50 responds so that it can receive power supply from the first high voltage battery 34A even when the power supply from the second high voltage battery 34B different from the first high voltage battery 34A corresponding to itself is cut off. Is provided. The second power conversion unit 60 responds so that it can receive power supply from the second high voltage battery 34B even when the power supply from the first high voltage battery 34A, which is different from the second high voltage battery 34B corresponding to itself, is cut off. Is provided.
 第1高圧バッテリ34A(第1電池部)の上記高電位側電極(最も電位の大きい電極)と第1端子371との間には第1導電路21A(第1配線部)が設けられる。第1高圧バッテリ34Aの上記低電位側電極(最も電位の小さい電極)と第2端子372との間には第1導電路21B(第2配線部)が設けられる。第1端子371は、第1導電路21Aを介して第1高圧バッテリ34Aの上記高電位側電極に電気的に接続され得る。第1端子371は、常に第1導電路21Aを介して第1高圧バッテリ34Aの上記高電位側電極に短絡していてもよい。或いは、第1導電路21Aにスイッチが介在していてもよく、この場合には、第1導電路21Aの上記スイッチがオン状態である場合に第1端子371が第1高圧バッテリ34Aの上記高電位側電極に短絡していてもよい。第2端子372は、第1導電路21Bを介して第1高圧バッテリ34Aの上記低電位側電極に電気的に接続され得る。第2端子372は、常に第1導電路21Bを介して第1高圧バッテリ34Aの上記低電位側電極に短絡していてもよい。或いは、第1導電路21Bにスイッチが介在していてもよく、この場合には、第1導電路21Bの上記スイッチがオン状態である場合に第2端子372が第1高圧バッテリ34Aの上記低電位側電極に短絡してもよい。第1導電路21A,21Bは、第1高圧バッテリ34Aの両端電圧に基づく電圧が印加される経路である。 A first conductive path 21A (first wiring section) is provided between the high potential side electrode (the electrode having the highest potential) of the first high voltage battery 34A (first battery section) and the first terminal 371. A first conductive path 21B (second wiring portion) is provided between the low-potential side electrode (the electrode having the lowest potential) of the first high-voltage battery 34A and the second terminal 372. The first terminal 371 may be electrically connected to the high potential side electrode of the first high voltage battery 34A via the first conductive path 21A. The first terminal 371 may always be short-circuited to the high potential side electrode of the first high voltage battery 34A via the first conductive path 21A. Alternatively, a switch may be interposed in the first conductive path 21A. In this case, when the switch of the first conductive path 21A is in the ON state, the first terminal 371 is the height of the first high voltage battery 34A. It may be short-circuited to the potential side electrode. The second terminal 372 may be electrically connected to the low potential side electrode of the first high voltage battery 34A via the first conductive path 21B. The second terminal 372 may always be short-circuited to the low potential side electrode of the first high voltage battery 34A via the first conductive path 21B. Alternatively, a switch may be interposed in the first conductive path 21B. In this case, when the switch of the first conductive path 21B is in the ON state, the second terminal 372 is the low voltage of the first high voltage battery 34A. It may be short-circuited to the potential side electrode. The first conductive paths 21A and 21B are paths to which a voltage based on the voltage across the first high voltage battery 34A is applied.
 第1電力変換部50は、一方側の第1導電路21Aと他方側の第1導電路21Bとの間に印加された電圧を降圧するように電圧変換し、一方の第3導電路23Aと他方の第3導電路23Bとの間に出力電圧を印加する動作を行う。第1電力変換部50は、図1、図2等で示される第1実施形態の第1電力変換部50と同一の構成をなし、同一の機能を有する。図15の例でも、第1電力変換部50は、第1変換回路51(一の変換部)とトランス53と第2変換回路52(他の変換部)とを有する。トランス53は、互いに磁気結合した第1コイル53A(一次側コイル)及び第2コイル53B(二次側コイル)を備える。トランス53は、第1コイル53A及び第2コイル53Bの一方に交流電圧が生じた場合に、これに応じた交流電圧を他方に生じさせる。第1変換回路51(一の変換部)は、第1変換回路51に対応する第1高圧バッテリ54Aからの電力に基づいて第1の動作を行い得る。第1の動作は、第1高圧バッテリ54Aに対応する一対の第1導電路21A,21B(一対の一方側導電路)間に印加される直流電圧を交流電圧に変換して第1コイル53Aに交流電圧を生じさせる動作である。第1変換回路51は、第1コイル53Aに生じた交流電圧を直流電圧に変換して一対の第1導電路21A,21B間に直流電圧を印加する第2の動作を行い得る。第2変換回路52は、第2コイル53Bに生じた交流電圧を直流電圧に変換して第2変換回路52に対応する一対の導電路21C,21D(一対の他方側導電路)間に直流電圧を印加する第3の動作を行い得る。第2変換回路52は、一対の導電路21C,21D間に印加された直流電圧を変換して第2コイル53Bに交流電圧を生じさせる第4の動作を行い得る。導電路21Cは、遮断部91がオン状態である場合に第3導電路23Aと短絡する導電路である。導電路21Dは、第3導電路23Bと短絡する導電路である。導電路21Dは、グラウンドに電気的に接続される導電路である。 The first power conversion unit 50 converts the voltage applied between the first conductive path 21A on one side and the first conductive path 21B on the other side so as to step down the voltage, and converts the voltage into the third conductive path 23A on one side. An operation of applying an output voltage to the other third conductive path 23B is performed. The first power conversion unit 50 has the same configuration as the first power conversion unit 50 of the first embodiment shown in FIGS. 1, 2, and the like, and has the same function. Also in the example of FIG. 15, the first power conversion unit 50 has a first conversion circuit 51 (one conversion unit), a transformer 53, and a second conversion circuit 52 (another conversion unit). The transformer 53 includes a first coil 53A (primary coil) and a second coil 53B (secondary coil) that are magnetically coupled to each other. When an AC voltage is generated in one of the first coil 53A and the second coil 53B, the transformer 53 generates an AC voltage corresponding to the AC voltage in the other. The first conversion circuit 51 (one conversion unit) can perform the first operation based on the electric power from the first high voltage battery 54A corresponding to the first conversion circuit 51. In the first operation, the DC voltage applied between the pair of first conductive paths 21A and 21B (a pair of one-side conductive paths) corresponding to the first high-voltage battery 54A is converted into an AC voltage and used in the first coil 53A. This is an operation that generates an AC voltage. The first conversion circuit 51 may perform a second operation of converting an AC voltage generated in the first coil 53A into a DC voltage and applying a DC voltage between the pair of first conductive paths 21A and 21B. The second conversion circuit 52 converts the AC voltage generated in the second coil 53B into a DC voltage, and the DC voltage between the pair of conductive paths 21C and 21D (the pair of conductive paths on the other side) corresponding to the second conversion circuit 52. A third operation can be performed. The second conversion circuit 52 may perform a fourth operation of converting the DC voltage applied between the pair of conductive paths 21C and 21D to generate an AC voltage in the second coil 53B. The conductive path 21C is a conductive path that short-circuits with the third conductive path 23A when the blocking portion 91 is in the ON state. The conductive path 21D is a conductive path short-circuited with the third conductive path 23B. The conductive path 21D is a conductive path electrically connected to the ground.
 第2高圧バッテリ34B(第2電池部)の上記高電位側電極(最も電位の大きい電極)と第3端子373との間には第2導電路22A(第3配線部)が設けられる。第2高圧バッテリ34Bの上記低電位側電極(最も電位の小さい電極)と第4端子374との間には第2導電路22B(第4配線部)が設けられる。第3端子373は、第2導電路22Aを介して第2高圧バッテリ34Bの上記高電位側電極に電気的に接続され得る。第3端子373は、常に第2導電路22Aを介して第2高圧バッテリ34Bの上記高電位側電極に短絡していてもよい。或いは、第2導電路22Aにスイッチが介在していてもよく、この場合には、第2導電路22Aの上記スイッチがオン状態である場合に第3端子373は第2高圧バッテリ34Bの高電位側電極に短絡してもよい。第4端子374は、第2導電路22Bを介して第2高圧バッテリ34Bの上記低電位側電極に電気的に接続され得る。第4端子374は、常に第2導電路22Bを介して第2高圧バッテリ34Bの上記低電位側電極に短絡していてもよい。或いは、第2導電路22Bにスイッチが介在していてもよく、この場合には、第2導電路22Bの上記スイッチがオン状態である場合に第4端子374は第2高圧バッテリ34Bの低電位側電極に短絡していてもよい。 A second conductive path 22A (third wiring section) is provided between the high potential side electrode (the electrode having the highest potential) of the second high voltage battery 34B (second battery section) and the third terminal 373. A second conductive path 22B (fourth wiring portion) is provided between the low-potential side electrode (the electrode having the smallest potential) of the second high-voltage battery 34B and the fourth terminal 374. The third terminal 373 may be electrically connected to the high potential side electrode of the second high voltage battery 34B via the second conductive path 22A. The third terminal 373 may always be short-circuited to the high potential side electrode of the second high voltage battery 34B via the second conductive path 22A. Alternatively, a switch may be interposed in the second conductive path 22A. In this case, when the switch of the second conductive path 22A is in the ON state, the third terminal 373 has a high potential of the second high voltage battery 34B. It may be short-circuited to the side electrode. The fourth terminal 374 may be electrically connected to the low potential side electrode of the second high voltage battery 34B via the second conductive path 22B. The fourth terminal 374 may always be short-circuited to the low potential side electrode of the second high voltage battery 34B via the second conductive path 22B. Alternatively, a switch may be interposed in the second conductive path 22B. In this case, when the switch of the second conductive path 22B is in the ON state, the fourth terminal 374 has a low potential of the second high voltage battery 34B. It may be short-circuited to the side electrode.
 第2導電路22A,22Bは、第2高圧バッテリ34Bの両端電圧に基づく電圧が印加される経路である。第2電力変換部60は、一方側の第2導電路22Aと他方側の第2導電路22Bとの間に印加された電圧を降圧するように電圧変換し、一方の第3導電路23Aと他方の第3導電路23Bとの間に出力電圧を印加する動作を行う。第2電力変換部60は、図1、図2等で示される第1実施形態の第2電力変換部60と同一の構成をなし、同一の機能を有する。図15の例でも、第2電力変換部60は、第1変換回路61(一の変換部)とトランス63と第2変換回路62(他の変換部)とを有する。トランス63は、互いに磁気結合した第1コイル63A(一次側コイル)及び第2コイル63B(二次側コイル)を備える。トランス63は、第1コイル63A及び第2コイル63Bの一方に交流電圧が生じた場合に、これに応じた交流電圧を他方に生じさせる。第1変換回路61(一の変換部)は、第1変換回路61に対応する第2高圧バッテリ54Bからの電力に基づいて第1の動作を行い得る。第1の動作は、第2高圧バッテリ54Bに対応する一対の第2導電路22A,22B(一対の一方側導電路)間に印加される直流電圧を交流電圧に変換して第1コイル63Aに交流電圧を生じさせる動作である。第1変換回路61は、第1コイル53Aに生じた交流電圧を直流電圧に変換して一対の第2導電路22A,22B間に直流電圧を印加する第2の動作を行い得る。第2変換回路62は、第2コイル53Bに生じた交流電圧を直流電圧に変換して第2変換回路62に対応する一対の導電路22C,22D(一対の他方側導電路)間に直流電圧を印加する第3の動作を行い得る。第2変換回路62は、一対の導電路22C,22D間に印加された直流電圧を変換して第2コイル63Bに交流電圧を生じさせる第4の動作を行い得る。導電路22Cは、遮断部92がオン状態である場合に第3導電路23Aと短絡する導電路である。導電路22Dは、第3導電路23Bと短絡する導電路である。 The second conductive paths 22A and 22B are paths to which a voltage based on the voltage across the second high voltage battery 34B is applied. The second power conversion unit 60 converts the voltage applied between the second conductive path 22A on one side and the second conductive path 22B on the other side so as to step down the voltage, and the second conductive path 23A and the third conductive path 23A on the other side. An operation of applying an output voltage to the other third conductive path 23B is performed. The second power conversion unit 60 has the same configuration as the second power conversion unit 60 of the first embodiment shown in FIGS. 1, 2, and the like, and has the same function. Also in the example of FIG. 15, the second power conversion unit 60 has a first conversion circuit 61 (one conversion unit), a transformer 63, and a second conversion circuit 62 (another conversion unit). The transformer 63 includes a first coil 63A (primary coil) and a second coil 63B (secondary coil) that are magnetically coupled to each other. When an AC voltage is generated in one of the first coil 63A and the second coil 63B, the transformer 63 generates an AC voltage corresponding to the AC voltage in the other. The first conversion circuit 61 (one conversion unit) may perform the first operation based on the electric power from the second high voltage battery 54B corresponding to the first conversion circuit 61. In the first operation, the DC voltage applied between the pair of second conductive paths 22A and 22B (a pair of one-side conductive paths) corresponding to the second high-voltage battery 54B is converted into an AC voltage and used in the first coil 63A. This is an operation that generates an AC voltage. The first conversion circuit 61 may perform a second operation of converting an AC voltage generated in the first coil 53A into a DC voltage and applying a DC voltage between the pair of second conductive paths 22A and 22B. The second conversion circuit 62 converts the AC voltage generated in the second coil 53B into a DC voltage, and the DC voltage between the pair of conductive paths 22C and 22D (the pair of conductive paths on the other side) corresponding to the second conversion circuit 62. A third operation can be performed. The second conversion circuit 62 may perform a fourth operation of converting the DC voltage applied between the pair of conductive paths 22C and 22D to generate an AC voltage in the second coil 63B. The conductive path 22C is a conductive path that short-circuits with the third conductive path 23A when the blocking portion 92 is in the ON state. The conductive path 22D is a conductive path short-circuited with the third conductive path 23B.
 電力変換部40は、複数の遮断部91,92を有する。複数の遮断部91,92の各々は、第1電力変換部50及び第2電力変換部60の各々と第3導電路23Aとの間にそれぞれ設けられる。遮断部91は、オン状態のときには自身を介して第1電力変換部50と第3導電路23Aとの間で電力が伝送されることを許容し、オフ状態のときには自身を介して第1電力変換部50と第3導電路23Aとの間で電力が伝送されることを遮断する。遮断部91は、互いに逆向きに配置されたFET91A,91Bによって構成されている。FET91A,91Bがいずれもオフ状態である場合が遮断部91のオフ状態であり、この場合には、遮断部91を介しての通電が双方向で遮断される。FET91A,91Bがいずれもオン状態である場合が遮断部91のオン状態であり、この場合には、遮断部91を介しての通電が双方向で許容される。遮断部92は、オン状態のときには自身を介して第2電力変換部60と第3導電路23Aとの間で電力が伝送されることを許容し、オフ状態のときには自身を介して第2電力変換部60と第3導電路23Aとの間で電力が伝送されることを遮断する。遮断部92は、互いに逆向きに配置されたFET92A,92Bによって構成されている。FET92A,92Bがいずれもオフ状態である場合が遮断部92のオフ状態であり、この場合には、遮断部92を介しての通電が双方向で遮断される。FET92A,92Bがいずれもオン状態である場合が遮断部92のオン状態であり、この場合には、遮断部92を介しての通電が双方向で許容される。 The power conversion unit 40 has a plurality of cutoff units 91 and 92. Each of the plurality of cutoff units 91 and 92 is provided between each of the first power conversion unit 50 and the second power conversion unit 60 and the third conductive path 23A, respectively. The cutoff unit 91 allows power to be transmitted between the first power conversion unit 50 and the third conductive path 23A via itself when it is in the on state, and allows the first power to be transmitted via itself when it is in the off state. It cuts off the transmission of electric power between the conversion unit 50 and the third conductive path 23A. The blocking unit 91 is composed of FETs 91A and 91B arranged in opposite directions to each other. When both the FETs 91A and 91B are in the off state, the cutoff unit 91 is in the off state. In this case, the energization via the cutoff unit 91 is cut off in both directions. When both the FETs 91A and 91B are in the ON state, the cutoff unit 91 is in the ON state. In this case, energization via the cutoff unit 91 is allowed in both directions. The cutoff unit 92 allows power to be transmitted between the second power conversion unit 60 and the third conductive path 23A via itself when it is in the on state, and allows the second power to be transmitted via itself when it is in the off state. It cuts off the transmission of electric power between the conversion unit 60 and the third conductive path 23A. The blocking unit 92 is composed of FETs 92A and 92B arranged in opposite directions to each other. When both the FETs 92A and 92B are in the off state, the cutoff unit 92 is in the off state. In this case, the energization via the cutoff unit 92 is cut off in both directions. When both the FETs 92A and 92B are in the ON state, the cutoff unit 92 is in the ON state. In this case, energization via the cutoff unit 92 is allowed in both directions.
 第1リレー部331は、第1導電路21A(第1配線部)と第2導電路22A(第3配線部)との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる。第1リレー部331は、互いに逆向きに配置されたFET331A,331Bによって構成されている。FET331A,331Bがいずれもオフ状態である場合が第1リレー部331のオフ状態であり、この場合には、第1リレー部331を介しての通電が双方向で遮断される。第1リレー部331がオフ状態のときには、第1導電路21Aと第2導電路22Aとの間において第1リレー部331を介して電流は流れない。第1リレー部331がオン状態のときには、第1導電路21Aと第2導電路22Aとの間が短絡する。 The first relay section 331 switches between an on state that allows energization between the first conductive path 21A (first wiring section) and the second conductive path 22A (third wiring section) and an off state that cuts off the energization. .. The first relay unit 331 is composed of FETs 331A and 331B arranged in opposite directions to each other. When both the FETs 331A and 331B are in the off state, the first relay unit 331 is in the off state. In this case, the energization via the first relay unit 331 is cut off in both directions. When the first relay section 331 is in the off state, no current flows between the first conductive path 21A and the second conductive path 22A via the first relay section 331. When the first relay portion 331 is in the ON state, the first conductive path 21A and the second conductive path 22A are short-circuited.
 第2リレー部332は、第1導電路21B(第2配線部)と第2導電路22B(第4配線部)との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる。第2リレー部332は、互いに逆向きに配置されたFET332A,332Bによって構成されている。FET332A,332Bがいずれもオフ状態である場合が第2リレー部332のオフ状態であり、この場合には、第2リレー部332を介しての通電が双方向で遮断される。第2リレー部332がオフ状態のときには、第1導電路21Bと第2導電路22Bとの間において第2リレー部332を介して電流は流れない。第2リレー部332がオン状態のときには、第1導電路21Bと第2導電路22Bとの間が短絡する。なお、FET331B,332Bは省略されても良い。 The second relay section 332 switches between an on state that permits energization between the first conductive path 21B (second wiring section) and the second conductive path 22B (fourth wiring section) and an off state that cuts off the energization. .. The second relay unit 332 is composed of FETs 332A and 332B arranged in opposite directions to each other. When both the FETs 332A and 332B are in the off state, the second relay unit 332 is in the off state. In this case, the energization via the second relay unit 332 is cut off in both directions. When the second relay section 332 is in the off state, no current flows between the first conductive path 21B and the second conductive path 22B via the second relay section 332. When the second relay portion 332 is in the ON state, the first conductive path 21B and the second conductive path 22B are short-circuited. The FETs 331B and 332B may be omitted.
 (変換装置の基本動作)
 第3実施形態の変換装置310は、第1実施形態と同様の方法で不均衡抑制動作を行い得る。図14に示される制御部18は、所定の開始条件が成立した場合に、電力変換部40に対し、第1高圧バッテリ54A及び第2高圧バッテリ54Bの出力電圧又はSOCの差を小さくする動作を行わせる。所定の開始条件は、第1実施形態における所定の開始条件と同一の条件とすることができる。具体的には、変換装置310は、第1実施形態と同様の方法で、第1モードの動作、第2モードの動作、第3モードの動作、第4モードの動作をいずれも行うことができる。変換装置310が第1モードの動作を行う場合の第1動作条件は第1実施形態と同一とすることができ、第1モードの動作も第1実施形態と同一とすることができる。変換装置310が第2モードの動作を行う場合の第2動作条件は第1実施形態と同一とすることができ、第2モードの動作も第1実施形態と同一とすることができる。変換装置310が第3モードの動作を行う場合の第3動作条件は第1実施形態と同一とすることができ、第3モードの動作も第3実施形態と同一とすることができる。変換装置310が第4モードの動作を行う場合の第4動作条件は第1実施形態と同一とすることができ、第4モードの動作も第1実施形態と同一とすることができる。変換装置310がいずれのモードで動作する場合でも、終了条件は第1実施形態と同一とすることができる。
(Basic operation of converter)
The conversion device 310 of the third embodiment can perform the imbalance suppression operation in the same manner as that of the first embodiment. The control unit 18 shown in FIG. 14 operates the power conversion unit 40 to reduce the difference in output voltage or SOC between the first high-voltage battery 54A and the second high-voltage battery 54B when a predetermined start condition is satisfied. Let me do it. The predetermined start condition can be the same as the predetermined start condition in the first embodiment. Specifically, the conversion device 310 can perform the operation of the first mode, the operation of the second mode, the operation of the third mode, and the operation of the fourth mode in the same manner as in the first embodiment. .. The first operating condition when the conversion device 310 performs the operation of the first mode can be the same as that of the first embodiment, and the operation of the first mode can also be the same as that of the first embodiment. The second operating condition when the conversion device 310 performs the operation of the second mode can be the same as that of the first embodiment, and the operation of the second mode can also be the same as that of the first embodiment. The third operating condition when the conversion device 310 performs the operation of the third mode can be the same as that of the first embodiment, and the operation of the third mode can also be the same as that of the third embodiment. The fourth operating condition when the conversion device 310 performs the operation of the fourth mode can be the same as that of the first embodiment, and the operation of the fourth mode can also be the same as that of the first embodiment. Regardless of which mode the conversion device 310 operates in, the termination condition can be the same as that of the first embodiment.
 (変換装置の保護動作)
 本実施形態では、制御部18が遮断制御部の一例に相当し、遮断部91,92を制御する。制御部18は、コンバータ制御部の一例に相当し、第1電力変換部50及び第2電力変換部60を制御する。制御部18は、故障検出部としても機能し、第1電力変換部50及び第2電力変換部60の各々の故障を検出する。例えば、制御部18は、遮断部91がオン状態であるときに導電路21Cの電圧が閾値以下に低下した場合に、第1電力変換部50が故障であると判定する。また、制御部18は、遮断部92がオン状態であるときに導電路22Cの電圧が閾値以下に低下した場合に、第2電力変換部60が故障であると判定する。この場合の上記閾値は、低圧バッテリ32が満充電時に第3導電路23A,23B間に印加する電圧よりも低い値である。
(Protective operation of converter)
In the present embodiment, the control unit 18 corresponds to an example of the cutoff control unit, and controls the cutoff units 91 and 92. The control unit 18 corresponds to an example of the converter control unit, and controls the first power conversion unit 50 and the second power conversion unit 60. The control unit 18 also functions as a failure detection unit, and detects the failure of each of the first power conversion unit 50 and the second power conversion unit 60. For example, the control unit 18 determines that the first power conversion unit 50 is out of order when the voltage of the conductive path 21C drops below the threshold value when the cutoff unit 91 is in the ON state. Further, the control unit 18 determines that the second power conversion unit 60 is out of order when the voltage of the conductive path 22C drops below the threshold value when the cutoff unit 92 is in the ON state. In this case, the threshold value is lower than the voltage applied between the third conductive paths 23A and 23B when the low-voltage battery 32 is fully charged.
 制御部18(遮断制御部)は、自身によって第1電力変換部50及び第2電力変換部60のいずれかの故障が検出された場合に、故障が検出されたコンバータと第3導電路23Aとの間に設けられた遮断部をオフ状態に切り替える。そして、制御部18(コンバータ制御部)は、自身によっていずれかのコンバータの故障が検出された場合、故障が検出されていないコンバータを動作させる。 When the control unit 18 (cutoff control unit) detects a failure of either the first power conversion unit 50 or the second power conversion unit 60, the control unit 18 (disconnection control unit) includes the converter and the third conductive path 23A in which the failure is detected. The cutoff portion provided between the two is switched to the off state. Then, when the failure of any of the converters is detected by itself, the control unit 18 (converter control unit) operates the converter in which the failure is not detected.
 例えば、制御部18は、第1電力変換部50の故障を検出し、第2電力変換部60の故障を検出していない場合、遮断部91をオフ状態に切り替え、第2電力変換部60を動作させる。具体的には、制御部18は、第1電力変換部50及び第2電力変換部60に第1変換動作を行わせているときに第1電力変換部50の故障を検出した場合、第1電力変換部50の動作を停止させるとともに遮断部91をオフ状態に切り替え、第2電力変換部60の故障を検出していなければ第2電力変換部60に第1変換動作を継続させることができる。同様に、制御部18は、第2電力変換部60の故障を検出し、第1電力変換部50の故障を検出していない場合、遮断部92をオフ状態に切り替え、第1電力変換部50を動作させる。例えば、制御部18は、第1電力変換部50及び第2電力変換部60に第1変換動作を行わせているときに第2電力変換部60の故障を検出した場合、第2電力変換部60の動作を停止させるとともに遮断部92をオフ状態に切り替え、第1電力変換部50の故障を検出していなければ第1電力変換部50に第1変換動作を継続させることができる。 For example, if the control unit 18 detects a failure of the first power conversion unit 50 and does not detect a failure of the second power conversion unit 60, the control unit 18 switches the cutoff unit 91 to the off state and switches the second power conversion unit 60 to the off state. Make it work. Specifically, when the control unit 18 detects a failure of the first power conversion unit 50 while causing the first power conversion unit 50 and the second power conversion unit 60 to perform the first conversion operation, the first The operation of the power conversion unit 50 can be stopped and the cutoff unit 91 can be switched to the off state, and if the failure of the second power conversion unit 60 is not detected, the second power conversion unit 60 can continue the first conversion operation. .. Similarly, the control unit 18 detects the failure of the second power conversion unit 60, and if the failure of the first power conversion unit 50 is not detected, the control unit 18 switches the cutoff unit 92 to the off state and the first power conversion unit 50. To operate. For example, when the control unit 18 detects a failure of the second power conversion unit 60 while causing the first power conversion unit 50 and the second power conversion unit 60 to perform the first conversion operation, the control unit 18 detects a failure of the second power conversion unit 60. The operation of the 60 can be stopped and the cutoff unit 92 can be switched to the off state, and if the failure of the first power conversion unit 50 is not detected, the first power conversion unit 50 can continue the first conversion operation.
 このように、変換装置310は、各々のコンバータと第3導電路23Aとの間に各遮断部91,92がそれぞれ設けられるため、必要に応じて、各コンバータと第3導電路23Aとの間を個別に遮断することができる。そして、変換装置310は、いずれかコンバータが故障した場合に、その故障したコンバータと第3導電路23Aの間を個別に遮断し、故障が生じたコンバータを第3導電路23Aから電気的に切り離すことができる。更に、変換装置310は、このように故障が生じたコンバータの影響を抑えた状態で、故障が生じていないコンバータを動作させて電力変換を継続することができる。 As described above, in the conversion device 310, the blocking portions 91 and 92 are provided between each converter and the third conductive path 23A, respectively. Therefore, if necessary, between each converter and the third conductive path 23A. Can be individually blocked. Then, when any of the converters fails, the conversion device 310 individually cuts off between the failed converter and the third conductive path 23A, and electrically disconnects the failed converter from the third conductive path 23A. be able to. Further, the conversion device 310 can continue the power conversion by operating the converter in which the failure has not occurred while suppressing the influence of the converter in which the failure has occurred.
 制御部18は、リレー制御部の一例に相当し、第1リレー部331及び第2リレー部332を制御する。制御部18は、異常検出部の一例に相当し、第1高圧バッテリ34A(第1電池部)からの電力供給の異常及び第2高圧バッテリ34B(第2電池部)からの電力供給の異常を検出する。例えば、制御部18は、第1導電路21A,21B間に印加される電圧が閾値電圧以下である場合に第1高圧バッテリ34Aからの電力供給が異常であると判定する。この場合の閾値電圧は、満充電時の第1高圧バッテリ34Aの出力電圧(両端電圧)よりも低い値である。同様に、制御部18は、第2導電路22A,22B間に印加される電圧が閾値電圧以下である場合に第2高圧バッテリ34Bからの電力供給が異常であると判定する。この場合の閾値電圧は、満充電時の第2高圧バッテリ34Bの出力電圧(両端電圧)よりも低い値である。制御部18は、自身によって第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれかからの電力供給の異常が検出された場合に、第1リレー部331及び第2リレー部332をオフ状態に切り替える。 The control unit 18 corresponds to an example of the relay control unit, and controls the first relay unit 331 and the second relay unit 332. The control unit 18 corresponds to an example of an abnormality detection unit, and detects an abnormality in the power supply from the first high-voltage battery 34A (first battery unit) and an abnormality in the power supply from the second high-voltage battery 34B (second battery unit). To detect. For example, the control unit 18 determines that the power supply from the first high voltage battery 34A is abnormal when the voltage applied between the first conductive paths 21A and 21B is equal to or less than the threshold voltage. The threshold voltage in this case is a value lower than the output voltage (voltage across) of the first high voltage battery 34A at the time of full charge. Similarly, the control unit 18 determines that the power supply from the second high voltage battery 34B is abnormal when the voltage applied between the second conductive paths 22A and 22B is equal to or less than the threshold voltage. The threshold voltage in this case is a value lower than the output voltage (voltage across) of the second high voltage battery 34B at the time of full charge. The control unit 18 switches the first relay unit 331 and the second relay unit 332 to the off state when an abnormality in the power supply from either the first high voltage battery 34A or the second high voltage battery 34B is detected by itself. ..
 例えば、制御部18は、第1高圧バッテリ34Aの出力電圧(両端電圧)が第1導電路21A,21B間に印加された状態で、第1電力変換部50が第1変換動作又は第2変換動作を行い、第2高圧バッテリ34Bの出力電圧(両端電圧)が第2導電路22A,22B間に印加された状態で、第2電力変換部60が第1変換動作又は第2変換動作を行っていた場合において、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれか一方からの電力供給が異常であると判定した場合、第1リレー部331及び第2リレー部332をオフ状態に切り替え、電力供給が異常とされるバッテリに対応するコンバータの第1変換回路の動作を停止させる。一方で、制御部18は、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれか他方からの電力供給が異常でないと判定した場合、第1リレー部331及び第2リレー部332をオフ状態で維持したまま、電力供給が異常でないと判定されたバッテリに対応するコンバータの動作を継続させる。 For example, in the control unit 18, the first power conversion unit 50 performs the first conversion operation or the second conversion in a state where the output voltage (voltage across the ends) of the first high voltage battery 34A is applied between the first conductive paths 21A and 21B. The second power conversion unit 60 performs the first conversion operation or the second conversion operation in a state where the operation is performed and the output voltage (voltage across the ends) of the second high voltage battery 34B is applied between the second conductive paths 22A and 22B. If it is determined that the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is abnormal, the first relay unit 331 and the second relay unit 332 are switched to the off state. The operation of the first conversion circuit of the converter corresponding to the battery whose power supply is abnormal is stopped. On the other hand, when the control unit 18 determines that the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is not abnormal, the first relay unit 331 and the second relay unit 332 are turned off. While maintaining the operation, the converter corresponding to the battery for which the power supply is determined to be normal is continued to operate.
 変換装置310は、第1リレー部331及び第2リレー部332がオン状態のときには、第1導電路21A,21Bに対して、第1高圧バッテリ34Aだけでなく第2高圧バッテリ34Bからも電力が供給される。また、第1リレー部331及び第2リレー部332がオン状態のときには、第2導電路22A,22Bに対して、第1高圧バッテリ34Aだけでなく第2高圧バッテリ34Bからも電力が供給される。よって、第1電力変換部50及び第2電力変換部60のいずれもが、両電池部からの電力に基づいて電力変換を行い得る。一方、第1リレー部331及び第2リレー部332がオフ状態のときには、第1導電路21Aと第2導電路22Aの間が遮断され、第1導電路21Bと第2導電路22Bの間が遮断される。よって、第1高圧バッテリ34Aの影響を抑えて第2電力変換部60が独立して動作することができ、第2高圧バッテリ34Bの影響を抑えて第1電力変換部50が独立して動作することができる。具体的には、変換装置310は、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれかからの電力供給が異常である場合に、第1リレー部331及び第2リレー部332をオフ状態に切り替えて、第1リレー部331及び第2リレー部332を介しての通電を遮断することができる。よって、この場合には、第1電力変換部50及び第2電力変換部60が電池部側の回路において互いに電気的に切り離され、異常が生じた電池部の影響が第1電力変換部50及び第2電力変換部60の両方に及ぶことを抑えることができる。 When the first relay unit 331 and the second relay unit 332 are in the ON state, the conversion device 310 receives power from not only the first high voltage battery 34A but also the second high voltage battery 34B with respect to the first conductive paths 21A and 21B. Be supplied. Further, when the first relay unit 331 and the second relay unit 332 are in the ON state, electric power is supplied to the second conductive paths 22A and 22B not only from the first high voltage battery 34A but also from the second high voltage battery 34B. .. Therefore, both the first power conversion unit 50 and the second power conversion unit 60 can perform power conversion based on the power from both battery units. On the other hand, when the first relay section 331 and the second relay section 332 are in the off state, the space between the first conductive path 21A and the second conductive path 22A is cut off, and the space between the first conductive path 21B and the second conductive path 22B is blocked. It is blocked. Therefore, the second power conversion unit 60 can operate independently while suppressing the influence of the first high voltage battery 34A, and the first power conversion unit 50 can operate independently while suppressing the influence of the second high voltage battery 34B. be able to. Specifically, the conversion device 310 turns off the first relay unit 331 and the second relay unit 332 when the power supply from either the first high-voltage battery 34A or the second high-voltage battery 34B is abnormal. By switching, it is possible to cut off the energization via the first relay unit 331 and the second relay unit 332. Therefore, in this case, the first power conversion unit 50 and the second power conversion unit 60 are electrically separated from each other in the circuit on the battery unit side, and the influence of the battery unit in which the abnormality occurs is affected by the first power conversion unit 50 and the battery unit. It is possible to suppress the influence on both of the second power conversion units 60.
 <第4実施形態>
 次の説明は第4実施形態に関する。
 第4実施形態の変換装置410は、第3実施形態で用いられるトランス53,63に代えてトランス453が設けられ、第1コイル53A,63A,第2コイル53B,63Bが磁気結合している点のみが第3実施形態と異なり、その他の点は、第3実施形態と同一である。変換装置410では、複数のコンバータにおいて、第1電力変換部50(一のコンバータ)のトランス53と第2電力変換部60(他のコンバータ)のトランス63とが一体化した構成でトランス453が構成されている。トランス453は、トランス53における第1コイル53A(一次側コイル)及び第2コイル53B(二次側コイル)と、トランス63における第1コイル63A(一次側コイル)及び第2コイル63B(二次側コイル)とが磁気結合している。
<Fourth Embodiment>
The following description relates to the fourth embodiment.
The conversion device 410 of the fourth embodiment is provided with a transformer 453 in place of the transformers 53 and 63 used in the third embodiment, and the first coils 53A and 63A and the second coils 53B and 63B are magnetically coupled. Only is different from the third embodiment, and other points are the same as the third embodiment. In the converter 410, the transformer 453 is configured by integrating the transformer 53 of the first power conversion unit 50 (one converter) and the transformer 63 of the second power conversion unit 60 (another converter) in a plurality of converters. Has been done. The transformer 453 has a first coil 53A (primary coil) and a second coil 53B (secondary coil) in the transformer 53, and a first coil 63A (primary coil) and a second coil 63B (secondary coil) in the transformer 63. The coil) is magnetically coupled.
 変換装置410は、トランス453以外は、変換装置310の構成を全て含む。変換装置410は、変換装置310が行う動作と同一の動作を行うことができる。 The conversion device 410 includes all the configurations of the conversion device 310 except for the transformer 453. The conversion device 410 can perform the same operation as that of the conversion device 310.
 更に、変換装置410では、制御部18(コンバータ制御部)は、第1電力変換部50(一のコンバータ)及び第2電力変換部60(他のコンバータ)の第2変換回路52,62(他の変換部)の動作を停止させた状態で、第1電力変換部50及び第2電力変換部60のいずれか片方の第1変換回路(一の変換部)に上述の第1の動作を行わせつつ、もう片方の第1変換回路(一の変換部)に上述の第2の動作を行わせるように変換制御を行ってもよい。上述の第1の動作は、対応するバッテリからの電力に基づく直流電圧を交流電圧に変換して一次側コイルに交流電圧を生じさせる動作である。上述の第2の動作は、一次側コイルに生じた交流電圧を直流電圧に変換して一対の一方側導電路間に直流電圧を印加する動作である。 Further, in the conversion device 410, the control unit 18 (converter control unit) is the second conversion circuit 52, 62 (other) of the first power conversion unit 50 (one converter) and the second power conversion unit 60 (other converter). In a state where the operation of the conversion unit) is stopped, the above-mentioned first operation is performed on the first conversion circuit (one conversion unit) of either the first power conversion unit 50 or the second power conversion unit 60. The conversion control may be performed so that the other first conversion circuit (one conversion unit) performs the above-mentioned second operation. The first operation described above is an operation of converting a DC voltage based on the power from the corresponding battery into an AC voltage to generate an AC voltage in the primary coil. The second operation described above is an operation of converting an AC voltage generated in the primary coil into a DC voltage and applying a DC voltage between the pair of one-side conductive paths.
 例えば、第1高圧バッテリ54Aにおける出力電圧又はSOCのいずれかの指標の値が第2高圧バッテリ54Bにおける当該指標の値よりも一定値以上大きい場合に、制御部18は、第2変換回路52,62の動作を停止させた状態で、第1電力変換部50の第1変換回路51に第1の動作を行わせつつ、第2電力変換部60の第1変換回路61に第2の動作を行わせるように変換制御を行ってもよい。このようにすれば、第2変換回路52,62の動作を停止させた状態で、第1高圧バッテリ54Aから放電し、第2高圧バッテリ54Bを充電して、上記指標の差を小さくすることができる。同様に、第2高圧バッテリ54Bにおける出力電圧又はSOCのいずれかの指標の値が第1高圧バッテリ54Aにおける当該指標の値よりも一定値以上大きい場合に、第2変換回路52,62の動作を停止させた状態で、第2電力変換部60の第1変換回路61に上述の第1の動作を行わせつつ、第1電力変換部50の第1変換回路51に上述の第2の動作を行わせるように変換制御を行ってもよい。このようにすれば、第2変換回路52,62の動作を停止させた状態で、第2高圧バッテリ54Bから放電し、第1高圧バッテリ54Aを充電して上記指標の差を小さくすることができる。 For example, when the value of either the output voltage or the SOC of the first high-voltage battery 54A is larger than a certain value or more than the value of the index in the second high-voltage battery 54B, the control unit 18 uses the second conversion circuit 52, With the operation of 62 stopped, the first conversion circuit 51 of the first power conversion unit 50 performs the first operation, and the first conversion circuit 61 of the second power conversion unit 60 performs the second operation. The conversion control may be performed so as to be performed. By doing so, with the operations of the second conversion circuits 52 and 62 stopped, the first high-voltage battery 54A can be discharged and the second high-voltage battery 54B can be charged to reduce the difference in the above indexes. can. Similarly, when the value of either the output voltage or the SOC of the second high-voltage battery 54B is larger than a certain value or more than the value of the index in the first high-voltage battery 54A, the operation of the second conversion circuits 52 and 62 is performed. In the stopped state, the first conversion circuit 61 of the second power conversion unit 60 performs the above-mentioned first operation, while the first conversion circuit 51 of the first power conversion unit 50 performs the above-mentioned second operation. The conversion control may be performed so as to be performed. By doing so, it is possible to discharge from the second high-voltage battery 54B and charge the first high-voltage battery 54A in a state where the operations of the second conversion circuits 52 and 62 are stopped to reduce the difference in the above indexes. ..
 <第5実施形態>
 次の説明は第5実施形態に関する。
 第5実施形態の変換装置は、第1~第3実施形態の変換装置10,210,310のいずれかの構成を全て含み、更に特徴を付加したものである。
<Fifth Embodiment>
The following description relates to the fifth embodiment.
The conversion device of the fifth embodiment includes all the configurations of any of the conversion devices 10, 210, and 310 of the first to third embodiments, and further features are added.
 上述された第1~第3実施形態の変換装置10,210,310はいずれも、電力変換部(電力変換部40又は電力変換部240)を制御する制御部18と、切替回路の一例に相当するスイッチ部14と、スイッチ部14(切替回路)を制御する制御部18と、を有している。制御部18は、切替制御部の一例に相当する。これらの変換装置10,210,310が用いられる電源システム3,203,303は、電源システムが搭載された車両1に設けられる駆動部4に対して電力を伝送する経路である一対の電力路28A,28Bを有している。駆動部4は、負荷の一例に相当する。スイッチ部14(切替回路)は、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)を一対の電力路28A,28Bの間に直列に接続した状態と並列に接続した状態とに切り替わる構成をなしている。 The conversion devices 10, 210, and 310 of the first to third embodiments described above correspond to the control unit 18 that controls the power conversion unit (power conversion unit 40 or power conversion unit 240) and an example of the switching circuit. It has a switch unit 14 to control the switch unit 14 and a control unit 18 to control the switch unit 14 (switching circuit). The control unit 18 corresponds to an example of a switching control unit. The power supply systems 3, 203, 303 in which these conversion devices 10, 210, and 310 are used are a pair of power paths 28A, which are paths for transmitting electric power to a drive unit 4 provided in a vehicle 1 on which the power supply system is mounted. , 28B. The drive unit 4 corresponds to an example of a load. The switch unit 14 (switching circuit) switches between a state in which a plurality of batteries (first high-voltage battery 34A, second high-voltage battery 34B) are connected in series between a pair of power paths 28A and 28B and a state in which they are connected in parallel. It has a structure.
 以下で説明される第5実施形態の特徴は、第1~第3実施形態の変換装置10,210,310のいずれにも適用することができる。以下では、第1実施形態の変換装置10に以下の特徴を追加した例が代表例として説明される。第5実施形態の代表例は、第1実施形態の変換装置10の特徴を全て含むため、以下では、適宜、図1~図8が参照される。 The features of the fifth embodiment described below can be applied to any of the conversion devices 10, 210, and 310 of the first to third embodiments. In the following, an example in which the following features are added to the conversion device 10 of the first embodiment will be described as a representative example. Since the representative example of the fifth embodiment includes all the features of the conversion device 10 of the first embodiment, FIGS. 1 to 8 are appropriately referred to below.
 第5実施形態の代表例の変換装置10は、図1のような構成をなす。この変換装置10では、制御部18(切替制御部)は、例えば、車両1の走行中に複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)を一対の電力路28A,28Bの間に直列に接続した状態と並列に接続した状態とに切り替えるようにスイッチ部14(切替回路)を制御する。制御部18(切替制御部)は、車両1の走行中に複数の前記バッテリを直列接続状態と並列接続状態とに切り替える場合、車両1の走行状態に応じて複数のバッテリを直列接続状態と並列接続状態とに切り替えてもよい。車両1の走行状態に応じて切り替える方法としては、例えば、車両1の速度が所定の速度を超える場合に直列接続状態に切り替え、車両1の速度が所定の速度以下である場合に並列接続状態に切り替える方法であってもよい。或いは、車両の走行状態に応じて切り替える方法としては、車両1が所定のエリアを走行しているときに直列接続状態に切り替え、所定のエリア外を走行しているときに並列接続状態に切り替える方法であってもよい。或いは、車両1の走行状態に応じて切り替える方法は、第1高圧バッテリ34A及び第2高圧バッテリ34Bの出力電圧の和が一定値未満であるときに、直列接続状態に切り替え、一定値以上であるときに並列接続状態に切り替える方法であってもよい。或いは、車両1の走行状態に応じて切り替える方法は、車両1が始動してから所定条件が成立するまでの間、並列接続状態とし、所定条件が成立した後に直列接続状態に切り替える方法であってもよい。 The conversion device 10 of the representative example of the fifth embodiment has the configuration as shown in FIG. In this conversion device 10, the control unit 18 (switching control unit), for example, inserts a plurality of batteries (first high-voltage battery 34A, second high-voltage battery 34B) between a pair of power paths 28A and 28B while the vehicle 1 is traveling. The switch unit 14 (switching circuit) is controlled so as to switch between a state of being connected in series and a state of being connected in parallel. When the control unit 18 (switching control unit) switches a plurality of the batteries between the series connection state and the parallel connection state while the vehicle 1 is running, the control unit 18 (switching control unit) switches the plurality of batteries in parallel with the series connection state according to the running state of the vehicle 1. You may switch to the connected state. As a method of switching according to the traveling state of the vehicle 1, for example, when the speed of the vehicle 1 exceeds a predetermined speed, the connection state is switched to the series connection state, and when the speed of the vehicle 1 is equal to or less than the predetermined speed, the connection state is changed to the parallel connection state. It may be a method of switching. Alternatively, as a method of switching according to the traveling state of the vehicle, a method of switching to a series connection state when the vehicle 1 is traveling in a predetermined area and switching to a parallel connection state when traveling outside the predetermined area. It may be. Alternatively, the method of switching according to the traveling state of the vehicle 1 is to switch to the series connection state when the sum of the output voltages of the first high voltage battery 34A and the second high voltage battery 34B is less than a certain value, and is equal to or more than a certain value. Sometimes it may be a method of switching to the parallel connection state. Alternatively, the method of switching according to the traveling state of the vehicle 1 is a method of switching to a parallel connection state from the start of the vehicle 1 until a predetermined condition is satisfied, and then switching to a series connection state after the predetermined condition is satisfied. May be good.
 このように動作する場合、第1高圧バッテリ34A及び第2高圧バッテリ34Bを一対の電力路28A,28Bの間に直列に接続しつつ直列接続された第1高圧バッテリ34A及び第2高圧バッテリ34Bから駆動部4(負荷)に電力を供給するように制御部18がスイッチ部14を制御した状態で、制御部18は、電力変換部40に対して第1変換動作及び第2変換動作の少なくともいずれかを行わせてもよい。例えば、車両1の走行中に第1高圧バッテリ34A及び第2高圧バッテリ34Bが直列接続状態に切り替えられた場合に、制御部18は、車両1の走行中且つ直列接続状態(即ち、直列に接続された第1高圧バッテリ34A及び第2高圧バッテリ34Bから駆動部4(負荷)に電力が供給される状態)において第1変換動作及び第2変換動作の少なくともいずれかを電力変換部40に行わせるように制御してもよい。制御部18は、車両の走行中に上記直列接続状態で電力変換部40を制御する場合、電力変換部40を第1~第4モードのいずれで動作させてもよい。電力変換部40を第1~第4モードのいずれで動作させるかは、第1実施形態と同様の方法で選択することができる。 When operating in this way, from the first high-voltage battery 34A and the second high-voltage battery 34B connected in series while connecting the first high-voltage battery 34A and the second high-voltage battery 34B in series between the pair of power paths 28A and 28B. With the control unit 18 controlling the switch unit 14 so as to supply power to the drive unit 4 (load), the control unit 18 has at least one of the first conversion operation and the second conversion operation with respect to the power conversion unit 40. May be done. For example, when the first high-voltage battery 34A and the second high-voltage battery 34B are switched to the series connection state while the vehicle 1 is running, the control unit 18 is in the running and series connection state (that is, connected in series) of the vehicle 1. In the state where power is supplied to the drive unit 4 (load) from the first high-voltage battery 34A and the second high-voltage battery 34B), the power conversion unit 40 is made to perform at least one of the first conversion operation and the second conversion operation. It may be controlled as follows. When the control unit 18 controls the power conversion unit 40 in the series connection state while the vehicle is traveling, the power conversion unit 40 may be operated in any of the first to fourth modes. Which of the first to fourth modes the power conversion unit 40 is operated can be selected by the same method as in the first embodiment.
 <第6実施形態>
 次の説明は第6実施形態に関する。
 第6実施形態の変換装置は、第1~第5実施形態の変換装置10,210,310,410のいずれかの構成を全て含み、更に特徴を付加したものである。第1~第5実施形態の変換装置10,210,310,410が用いられる電源システム3,203,303,403は、電源システムが搭載された車両1に設けられる駆動部4に対して電力を伝送する経路である一対の電力路28A,28Bを有している。駆動部4は、負荷の一例に相当する。
<Sixth Embodiment>
The following description relates to the sixth embodiment.
The conversion device of the sixth embodiment includes all the configurations of any one of the conversion devices 10, 210, 310, 410 of the first to fifth embodiments, and further features are added. The power supply systems 3, 203, 303, and 403 in which the conversion devices 10, 210, 310, and 410 of the first to fifth embodiments are used supply electric power to the drive unit 4 provided in the vehicle 1 on which the power supply system is mounted. It has a pair of power paths 28A and 28B that are transmission paths. The drive unit 4 corresponds to an example of a load.
 第1~第5実施形態の変換装置10,210,310,410はいずれも、電力変換部(電力変換部40又は電力変換部240)を制御する制御部18と、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)のうち一部(具体的には、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれか一方)を一対の電力路28A,28Bの間に接続した状態と、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)をいずれも一対の電力路28A,28Bの間に並列に接続した状態とに切り替わる切替回路と、切替回路を制御する切替制御部(制御部18)と、を有する。第1~第3、第5実施形態の変換装置10,210,310のいずれかに対して第6実施形態の機能を適用する場合、スイッチ部14が上記切替回路の一例に相当する。第4実施形態の変換装置410に対して第6実施形態の機能を適用する場合、リレー393A,393Bが上記切替回路の一例に相当する。 The conversion devices 10, 210, 310, and 410 of the first to fifth embodiments all include a control unit 18 that controls a power conversion unit (power conversion unit 40 or power conversion unit 240) and a plurality of batteries (first high voltage). A state in which a part of the battery 34A and the second high-voltage battery 34B) (specifically, one of the first high-voltage battery 34A and the second high-voltage battery 34B) is connected between the pair of power paths 28A and 28B. , A switching circuit that switches between a plurality of batteries (first high-voltage battery 34A, second high-voltage battery 34B) connected in parallel between a pair of power paths 28A and 28B, and a switching control unit that controls the switching circuit. (Control unit 18). When the function of the sixth embodiment is applied to any of the conversion devices 10, 210, and 310 of the first to third and fifth embodiments, the switch unit 14 corresponds to an example of the switching circuit. When the function of the sixth embodiment is applied to the conversion device 410 of the fourth embodiment, the relays 393A and 393B correspond to an example of the switching circuit.
 以下で説明される第6実施形態の特徴は、第1~第5実施形態の変換装置10,210,310,410のいずれにも適用することができる。 The features of the sixth embodiment described below can be applied to any of the conversion devices 10, 210, 310, 410 of the first to fifth embodiments.
 第6実施形態の変換装置は、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)の中から電力供給の異常が発生したバッテリを検出する異常検出部を有するという第1の特徴を備える。更に、第6実施形態の変換装置は、複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)のうちのいずれかのバッテリの電力供給の異常が異常検出部によって検出された場合に、切替制御部が電力供給の異常が検出されていないバッテリを一対の電力路28A,28Bの間に接続するという第2の特徴を備える。更に、第6実施形態の変換装置は、車両の走行中に切替制御部が複数のバッテリ(第1高圧バッテリ34A、第2高圧バッテリ34B)を一対の電力路28A,28Bの間に並列に接続することが可能であるという第3の特徴を備える。更には、第6実施形態の変換装置は、車両の走行中にいずれかのバッテリの電力供給の異常が異常検出部によって検出された場合に、切替制御部が電力供給の異常が検出されていないバッテリを一対の電力路28A,28Bの間に接続するという第4の特徴を備える。 The conversion device of the sixth embodiment has a first feature that it has an abnormality detection unit that detects a battery in which an abnormality in power supply has occurred from among a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B). Be prepared. Further, in the conversion device of the sixth embodiment, when an abnormality in the power supply of any one of the plurality of batteries (first high-pressure battery 34A, second high-pressure battery 34B) is detected by the abnormality detection unit, the conversion device has a plurality of batteries (first high-pressure battery 34A, second high-pressure battery 34B). The switching control unit has a second feature that a battery in which an abnormality in power supply is not detected is connected between a pair of power paths 28A and 28B. Further, in the conversion device of the sixth embodiment, the switching control unit connects a plurality of batteries (first high voltage battery 34A, second high voltage battery 34B) in parallel between the pair of power paths 28A and 28B while the vehicle is traveling. It has a third feature that it is possible to do so. Further, in the conversion device of the sixth embodiment, when the abnormality of the power supply of any of the batteries is detected by the abnormality detection unit while the vehicle is running, the switching control unit does not detect the abnormality of the power supply. It has a fourth feature that the battery is connected between the pair of power lines 28A and 28B.
 以下では、第1実施形態の変換装置10に以下の特徴を追加した例が代表例として説明される。第6実施形態の代表例は、第1実施形態の変換装置10の特徴を全て含むため、以下では、適宜、図1~図8が参照される。第6実施形態の代表例の変換装置10は、図1のような構成をなす。この変換装置10は、例えば、管理装置17が異常検出部の一例に相当し、第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれかにおいて電力供給の異常が生じているか否かを判定する。代表例では、「電力供給の異常」は、「第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれかの出力電圧が閾値電圧以下であること」である。但し、「電力供給の異常」は、例えば、「第1高圧バッテリ34A及び第2高圧バッテリ34BのいずれかのSOCが閾値以下であること」であってもよく、その他の異常であってもよい。 In the following, an example in which the following features are added to the conversion device 10 of the first embodiment will be described as a representative example. Since the representative example of the sixth embodiment includes all the features of the conversion device 10 of the first embodiment, FIGS. 1 to 8 are appropriately referred to below. The conversion device 10 of the representative example of the sixth embodiment has the configuration as shown in FIG. The conversion device 10 determines, for example, whether or not the management device 17 corresponds to an example of the abnormality detection unit, and whether or not an abnormality in the power supply has occurred in either the first high-voltage battery 34A or the second high-voltage battery 34B. In a typical example, the "abnormal power supply" is "the output voltage of either the first high voltage battery 34A or the second high voltage battery 34B is equal to or less than the threshold voltage". However, the "abnormality of power supply" may be, for example, "the SOC of either the first high voltage battery 34A or the second high voltage battery 34B is equal to or less than the threshold value", or may be another abnormality. ..
 変換装置10では、第1高圧バッテリ34A及び第2高圧バッテリ34Bのうちのいずれかのバッテリの出力電圧が閾値電圧以下であることが異常検出部(管理装置17)によって検出された場合に、制御部18(切替制御部)が、電力供給の異常が検出されていないバッテリを一対の電力路28A,28Bの間に接続するようにスイッチ部14(切替回路)を切り替える。異常検出部による異常検出や、切替回路による切替動作は、車両の走行中になされてもよく、走行中以外の期間になされてもよい。 The conversion device 10 controls when the abnormality detection unit (management device 17) detects that the output voltage of any one of the first high-voltage battery 34A and the second high-voltage battery 34B is equal to or lower than the threshold voltage. The unit 18 (switching control unit) switches the switch unit 14 (switching circuit) so as to connect a battery in which an abnormality in the power supply has not been detected between the pair of power paths 28A and 28B. The abnormality detection by the abnormality detection unit and the switching operation by the switching circuit may be performed while the vehicle is running, or may be performed during a period other than the running.
 例えば、制御部18(切替制御部)は、車両の走行中に第1高圧バッテリ34A及び第2高圧バッテリ34Bを一対の電力路28A,28Bの間に並列に接続することができ、この並列接続状態で、第1高圧バッテリ34A及び第2高圧バッテリ34Bから駆動部4(負荷)に電力を供給することが可能である。変換装置10では、車両の走行中に第1高圧バッテリ34A及び第2高圧バッテリ34Bのいずれかのバッテリの出力電圧が閾値電圧以下であることが異常検出部(管理装置17)によって検出された場合に、出力電圧が閾値電圧以下であることが検出されたバッテリを一対の電力路28A,28Bから電気的に遮断(導通を遮断)し、出力電圧が閾値電圧以下であることが検出されていないバッテリを一対の電力路28A,28Bに電気的に接続した状態を維持(導通状態を維持)するように、スイッチ部14(切替回路)を動作させる。例えば、制御部18は、車両の走行中に第1高圧バッテリ34A及び第2高圧バッテリ34Bを一対の電力路28A,28Bの間に並列に接続した状態で駆動部4(負荷)に電力を供給している最中に、第1高圧バッテリ34Aの出力電圧が閾値電圧以下となったことが異常検出部(管理装置17)によって検出された場合に、第1高圧バッテリ34Aを一対の電力路28A,28Bから電気的に遮断し、出力電圧が閾値電圧以下であることが検出されていない第2高圧バッテリ34Bを一対の電力路28A,28Bに電気的に接続した状態を維持するように、スイッチ部14(切替回路)を動作させる。 For example, the control unit 18 (switching control unit) can connect the first high-voltage battery 34A and the second high-voltage battery 34B in parallel between the pair of electric power paths 28A and 28B while the vehicle is running, and the parallel connection thereof. In this state, it is possible to supply electric power to the drive unit 4 (load) from the first high-voltage battery 34A and the second high-voltage battery 34B. In the conversion device 10, when the abnormality detection unit (management device 17) detects that the output voltage of either the first high-voltage battery 34A or the second high-voltage battery 34B is equal to or lower than the threshold voltage while the vehicle is running. In addition, the battery in which the output voltage is detected to be below the threshold voltage is electrically cut off from the pair of power paths 28A and 28B (conduction is cut off), and it is not detected that the output voltage is below the threshold voltage. The switch unit 14 (switching circuit) is operated so as to maintain the state in which the battery is electrically connected to the pair of power paths 28A and 28B (maintain the conduction state). For example, the control unit 18 supplies power to the drive unit 4 (load) in a state where the first high voltage battery 34A and the second high voltage battery 34B are connected in parallel between the pair of power paths 28A and 28B while the vehicle is running. When the abnormality detection unit (management device 17) detects that the output voltage of the first high-voltage battery 34A is equal to or lower than the threshold voltage, the first high-voltage battery 34A is connected to the pair of power paths 28A. , 28B is electrically cut off, and a switch is used to maintain the state in which the second high-voltage battery 34B, whose output voltage is not detected to be below the threshold voltage, is electrically connected to the pair of power paths 28A and 28B. The unit 14 (switching circuit) is operated.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above with reference to the description and drawings. For example, the features of the embodiments described above or below can be combined in any combination within a consistent range. Further, any of the features of the above-mentioned or later-described embodiments may be omitted unless it is clearly stated as essential. Further, the above-described embodiment may be modified as follows.
 上述された実施形態では、制御部18が変換装置に含まれていたが、制御部が変換装置に含まれていなくてもよい。即ち、制御部が変換装置とは別の装置として構成されていてもよい。 In the above-described embodiment, the control unit 18 is included in the conversion device, but the control unit may not be included in the conversion device. That is, the control unit may be configured as a device different from the conversion device.
 上述された実施形態では、スイッチ部14が変換装置に含まれていたが、スイッチ部14が変換装置に含まれていなくてもよい。即ち、スイッチ部14が変換装置とは別の装置として構成されていてもよい。 In the above-described embodiment, the switch unit 14 is included in the conversion device, but the switch unit 14 may not be included in the conversion device. That is, the switch unit 14 may be configured as a device different from the conversion device.
 上述された実施形態では、管理装置17が変換装置に含まれていたが、管理装置17が変換装置に含まれていなくてもよい。即ち、管理装置17が変換装置とは別の装置として構成されていてもよい。 In the above-described embodiment, the management device 17 is included in the conversion device, but the management device 17 may not be included in the conversion device. That is, the management device 17 may be configured as a device different from the conversion device.
 電力変換部40,240は、複数のバッテリのうちの全てのバッテリに対して個別に電力を出力するように第2変換動作を行い得るものであったが、この例に限定されない。電力変換部は、複数のバッテリのうちの一部のバッテリに対してのみ個別に電力を出力するように双方向に電力変換を行うものであってもよい。 The power conversion units 40 and 240 could perform the second conversion operation so as to individually output power to all the batteries among the plurality of batteries, but the present invention is not limited to this example. The power conversion unit may perform power conversion in both directions so as to individually output power to only a part of the plurality of batteries.
 上述された実施形態では、変換装置10,210は、上述の開始条件が成立した場合、出力電圧の差を小さくするように不均衡抑制動作を行うが、この例に限定されない。変換装置10,210は、上述の開始条件が成立した場合、SOC(State Of Charge)の差を小さくするように不均衡抑制動作を行ってもよい。この場合、上述の実施形態において、複数のバッテリのうち出力電圧が相対的に高いバッテリを、複数のバッテリのうちSOCが相対的に高いバッテリに置き換え、複数のバッテリのうち出力電圧が相対的に低いバッテリを、複数のバッテリのうちSOCが相対的に低いバッテリに置き換えればよい。この場合、制御部18は、複数のバッテリのSOCの差の絶対値が閾値以上である場合に不均衡抑制動作を行わせればよい。制御部18は、電力変換部40に不均衡抑制動作を行わせる場合、複数のバッテリのうち、SOCが大きい方のバッテリを放電状態又は充電停止状態とし、SOCが小さい方のバッテリを充電するように電力変換部40に電力変換を行わせればよい。そして、制御部18は、複数のバッテリのSOCの差の絶対値が上記閾値よりも小さい一定値以下になった場合に不均衡抑制動作を終了すればよい。 In the above-described embodiment, the conversion devices 10 and 210 perform an imbalance suppression operation so as to reduce the difference in output voltage when the above-mentioned start condition is satisfied, but the present invention is not limited to this example. When the above-mentioned start conditions are satisfied, the conversion devices 10 and 210 may perform an imbalance suppression operation so as to reduce the difference in SOC (State Of Charge). In this case, in the above-described embodiment, the battery having a relatively high output voltage among the plurality of batteries is replaced with the battery having a relatively high SOC among the plurality of batteries, and the output voltage among the plurality of batteries is relatively high. The low battery may be replaced with a battery having a relatively low SOC among a plurality of batteries. In this case, the control unit 18 may perform the imbalance suppression operation when the absolute value of the difference in SOCs of the plurality of batteries is equal to or greater than the threshold value. When the power conversion unit 40 is to perform the imbalance suppression operation, the control unit 18 sets the battery having the larger SOC among the plurality of batteries in the discharged state or the charge stop state, and charges the battery having the smaller SOC. May cause the power conversion unit 40 to perform power conversion. Then, the control unit 18 may end the imbalance suppression operation when the absolute value of the difference between the SOCs of the plurality of batteries becomes a certain value or less, which is smaller than the above threshold value.
 制御部18は、不均衡抑制動作を行う場合、出力電圧又はSOCが大きい方のバッテリに供給する充電電流よりも、小さい方のバッテリに供給する充電電流のほうが大きくなるように電力変換部40,240に電力変換を行わせてもよい。 When the control unit 18 performs the imbalance suppression operation, the power conversion unit 40, so that the charging current supplied to the battery having the smaller output voltage or SOC is larger than the charging current supplied to the battery having the larger SOC. The 240 may be made to perform power conversion.
 上述された実施形態では、複数のバッテリとして2つのバッテリが設けられていたが、3以上のバッテリが設けられていてもよい。この場合、各々のバッテリに対して各々のコンバータが設けられていればよい。第2実施形態では、複数のバッテリとして2つのバッテリが設けられていたが、3以上のバッテリが設けられていてもよい。この場合、各々のバッテリに対して各々の第1変換部が設けられていればよい。この場合、トランスには、3以上の第1コイルが設けられていればよく、各々の第1変換部に対応して各第1コイルが設けられていればよい。 In the above-described embodiment, two batteries are provided as a plurality of batteries, but three or more batteries may be provided. In this case, each converter may be provided for each battery. In the second embodiment, two batteries are provided as a plurality of batteries, but three or more batteries may be provided. In this case, each first conversion unit may be provided for each battery. In this case, the transformer may be provided with three or more first coils, and each first coil may be provided corresponding to each first conversion unit.
 上述されたいずれの実施形態でも、第3動作条件は、「低圧バッテリ32の出力電圧が閾値電圧以上」であってもよい。或いは、第3動作条件は、「低圧バッテリ32の出力電圧が閾値電圧以上」且つ「出力電圧が大きい方のバッテリ(図7、図13の例では第1高圧バッテリ34A)のSOCが所定値未満」であってもよい。 In any of the above-described embodiments, the third operating condition may be "the output voltage of the low voltage battery 32 is equal to or higher than the threshold voltage". Alternatively, the third operating condition is that "the output voltage of the low voltage battery 32 is equal to or higher than the threshold voltage" and "the SOC of the battery having the larger output voltage (the first high voltage battery 34A in the examples of FIGS. 7 and 13) is less than a predetermined value. May be.
 第3実施形態の説明では、制御部18が故障検出部として機能する一例が示されたが、故障の検出方法は上述の例に限定されない。例えば、第1電力変換部50において導電路21Cを流れる電流が過電流閾値以上である場合、又は、導電路21Cの電圧が過電圧閾値以上である場合に第1電力変換部50が故障であると判定し、遮断部91をオフ状態としてもよい。同様に、第2電力変換部60において導電路22Cを流れる電流が過電流閾値以上である場合、又は、導電路22Cの電圧が過電圧閾値以上である場合に第2電力変換部60が故障であると判定し、遮断部92をオフ状態としてもよい。 In the description of the third embodiment, an example in which the control unit 18 functions as a failure detection unit is shown, but the failure detection method is not limited to the above example. For example, if the current flowing through the conductive path 21C in the first power conversion unit 50 is equal to or greater than the overcurrent threshold value, or if the voltage of the conductive path 21C is equal to or greater than the overvoltage threshold value, the first power conversion unit 50 is out of order. The determination may be made and the cutoff unit 91 may be turned off. Similarly, when the current flowing through the conductive path 22C in the second power conversion unit 60 is equal to or greater than the overcurrent threshold value, or when the voltage of the conductive path 22C is equal to or greater than the overvoltage threshold value, the second power conversion unit 60 is out of order. It may be determined that the cutoff unit 92 is turned off.
 第3実施形態の説明では、制御部18が異常検出部として機能する一例が示されたが、異常の検出方法は上述の例に限定されない。例えば、制御部18は、第1高圧バッテリ54AのSOC又は出力電圧が所定値未満である場合に、第1高圧バッテリ54Aからの電力供給が異常であると判定してもよい。同様に、第2高圧バッテリ54BのSOC又は出力電圧が所定値未満である場合に、第2高圧バッテリ54Bからの電力供給が異常であると判定してもよい。 In the description of the third embodiment, an example in which the control unit 18 functions as an abnormality detection unit is shown, but the abnormality detection method is not limited to the above example. For example, the control unit 18 may determine that the power supply from the first high voltage battery 54A is abnormal when the SOC or output voltage of the first high voltage battery 54A is less than a predetermined value. Similarly, when the SOC or output voltage of the second high voltage battery 54B is less than a predetermined value, it may be determined that the power supply from the second high voltage battery 54B is abnormal.
 第3実施形態では、変換装置310において電力変換部40が用いられていたが、この電力変換部40に代えて第2実施形態における電力変換部240が用いられてもよい。このように変換装置310において電力変換部240が用いられる場合、変換装置310は、第2実施形態の変換装置210において電力変換部240が行う動作と同一の動作を電力変換部240に行わせてもよい。 In the third embodiment, the power conversion unit 40 is used in the conversion device 310, but the power conversion unit 240 in the second embodiment may be used instead of the power conversion unit 40. When the power conversion unit 240 is used in the conversion device 310 in this way, the conversion device 310 causes the power conversion unit 240 to perform the same operation as the operation performed by the power conversion unit 240 in the conversion device 210 of the second embodiment. May be good.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is not limited to the embodiments disclosed here, but includes all modifications within the scope indicated by the claims or within the scope equivalent to the claims. Is intended.
1    :車両
3,203,303    :電源システム
4    :駆動部(負荷)
10,210,310,410   :変換装置
14   :スイッチ部(切替回路)
18   :制御部(遮断制御部、コンバータ制御部、故障検出部、リレー制御部、異常検出部、切替制御部)
21A  :第1導電路(第1配線部)
21B  :第1導電路(第2配線部)
22A  :第2導電路(第3配線部)
22B  :第2導電路(第4配線部)
23A  :第3導電路(導電路)
23B  :第3導電路(導電路)
28A,28B  :電力路
32   :低圧バッテリ(第2バッテリ)
34   :高圧バッテリ
34A  :第1高圧バッテリ(バッテリ、第1電池部)
34B  :第2高圧バッテリ(バッテリ、第2電池部)
40,240   :電力変換部
50   :第1電力変換部(コンバータ、第1コンバータ)
51   :第1変換回路(一の第1変換部)
52   :第2変換回路(他の第1変換部)
53   :トランス
53A  :第1コイル
53B  :第2コイル
60   :第2電力変換部(コンバータ、第2コンバータ)
61   :第1変換回路
62   :第2変換回路
63   :トランス
63A  :第1コイル
63B  :第2コイル
91,92   :遮断部
241A :第1変換部
241B :第1変換部
242  :第2変換部
243  :トランス
243A :第1コイル
243B :第1コイル
243C :第2コイル
331  :第1リレー部
332  :第2リレー部
1: Vehicles 3, 203, 303: Power supply system 4: Drive unit (load)
10, 210, 310, 410: Conversion device 14: Switch section (switching circuit)
18: Control unit (cutoff control unit, converter control unit, failure detection unit, relay control unit, abnormality detection unit, switching control unit)
21A: First conductive path (first wiring section)
21B: First conductive path (second wiring section)
22A: 2nd conductive path (3rd wiring section)
22B: 2nd conductive path (4th wiring section)
23A: Third conductive path (conductive path)
23B: Third conductive path (conductive path)
28A, 28B: Power path 32: Low voltage battery (second battery)
34: High voltage battery 34A: First high voltage battery (battery, first battery section)
34B: 2nd high voltage battery (battery, 2nd battery part)
40, 240: Power conversion unit 50: First power conversion unit (converter, first converter)
51: First conversion circuit (first conversion unit of one)
52: Second conversion circuit (other first conversion unit)
53: Transformer 53A: First coil 53B: Second coil 60: Second power converter (converter, second converter)
61: 1st conversion circuit 62: 2nd conversion circuit 63: Transformer 63A: 1st coil 63B: 2nd coil 91, 92: Blocking unit 241A: 1st conversion unit 241B: 1st conversion unit 242: 2nd conversion unit 243 : Transformer 243A: 1st coil 243B: 1st coil 243C: 2nd coil 331: 1st relay section 332: 2nd relay section

Claims (22)

  1.  複数のバッテリが少なくとも並列に接続され得る電源システムに用いられる変換装置であって、
     各々の前記バッテリから入力される電力を変換し、前記バッテリとは異なる導電路に電力を出力する第1変換動作を行う電力変換部を有し、
     前記電力変換部は、少なくともいずれかの前記バッテリに対して個別に電力を出力する第2変換動作を行う変換装置。
    A converter used in power systems where multiple batteries can be connected at least in parallel.
    It has a power conversion unit that performs a first conversion operation that converts the power input from each of the batteries and outputs the power to a conductive path different from that of the battery.
    The power conversion unit is a conversion device that performs a second conversion operation that individually outputs power to at least one of the batteries.
  2.  前記電力変換部は、複数のコンバータを備え、
     各々の前記バッテリにそれぞれ対応して各々の前記コンバータが設けられ、
     複数の前記コンバータの少なくともいずれかが双方向に電力変換を行う請求項1に記載の変換装置。
    The power conversion unit includes a plurality of converters and has a plurality of converters.
    Each said converter is provided corresponding to each said battery, respectively.
    The conversion device according to claim 1, wherein at least one of the plurality of converters performs power conversion in both directions.
  3.  前記電力変換部は、外部からの一部充電指示に応じて、少なくともいずれか一の前記コンバータが一の前記バッテリから供給される電力に基づいて前記導電路に電力を出力するように前記第1変換動作を行い、他の前記コンバータが前記導電路から供給される電力に基づいて他の前記バッテリに電力を出力するように前記第2変換動作を行う請求項2に記載の変換装置。 The first power conversion unit outputs power to the conductive path based on the power supplied from one battery by at least one of the converters in response to a partial charging instruction from the outside. The conversion device according to claim 2, wherein the conversion operation is performed, and the second conversion operation is performed so that the other converter outputs electric power to the other battery based on the electric power supplied from the conductive path.
  4.  前記導電路は、複数の前記バッテリとは異なる第2バッテリに電気的に接続され、
     前記電力変換部は、外部からの一部停止指示に応じて、一の前記コンバータの変換動作を停止させつつ、他の前記コンバータが前記第2バッテリから供給される電力に基づいて他の前記バッテリに電力を出力するように前記第2変換動作を行う請求項2又は請求項3に記載の変換装置。
    The conductive path is electrically connected to a plurality of second batteries different from the battery.
    The power conversion unit stops the conversion operation of one of the converters in response to a partial stop instruction from the outside, and the other converter is based on the power supplied from the second battery to the other battery. The conversion device according to claim 2 or 3, wherein the second conversion operation is performed so as to output electric power to.
  5.  前記電力変換部は、複数の遮断部を有し、
     各々の前記遮断部は、各々の前記コンバータと前記導電路との間にそれぞれ設けられ、
     前記遮断部は、オン状態のときには自身を介して前記コンバータと前記導電路との間で電力が伝送されることを許容し、オフ状態のときには自身を介して前記コンバータと前記導電路との間で電力が伝送されることを遮断する請求項2から請求項4のいずれか一項に記載の変換装置。
    The power conversion unit has a plurality of cutoff units and has a plurality of cutoff units.
    Each of the cutoffs is provided between each of the converters and the conductive path, respectively.
    The cutoff allows power to be transmitted between the converter and the conductive path through itself when in the on state, and between the converter and the conductive path via itself when in the off state. The conversion device according to any one of claims 2 to 4, wherein the transmission of electric power is cut off.
  6.  複数の前記遮断部を制御する遮断制御部と、
     複数の前記コンバータを制御するコンバータ制御部と、
     複数の前記コンバータの各々の故障を検出する故障検出部と、
    を有し、
     前記遮断制御部は、前記故障検出部によっていずれかの前記コンバータの故障が検出された場合に、故障が検出された前記コンバータと前記導電路との間に設けられた前記遮断部をオフ状態に切り替え、
     前記コンバータ制御部は、前記故障検出部によっていずれかの前記コンバータの故障が検出された場合、故障が検出されていない前記コンバータを動作させる請求項5に記載の変換装置。
    A cutoff control unit that controls a plurality of the cutoff units,
    A converter control unit that controls a plurality of the converters,
    A failure detection unit that detects the failure of each of the plurality of converters,
    Have,
    When the failure detection unit detects a failure of any of the converters, the cutoff control unit turns off the cutoff unit provided between the converter where the failure is detected and the conductive path. switching,
    The conversion device according to claim 5, wherein the converter control unit operates the converter in which the failure is not detected when the failure detection unit detects the failure of any of the converters.
  7.  複数の前記バッテリは、第1電池部と第2電池部とを備え、
     複数の前記コンバータは、第1コンバータと第2コンバータとを備え、
     前記第1電池部と前記第1コンバータとの間には、前記第1電池部の両端電圧に基づく電圧が印加される経路である第1配線部及び第2配線部が設けられ、
     前記第2電池部と前記第2コンバータとの間には、前記第2電池部の両端電圧に基づく電圧が印加される経路である第3配線部及び第4配線部が設けられ、
     前記第1コンバータは、前記第1配線部と前記第2配線部との間に印加された電圧を変換して前記導電路に出力電圧を印加する動作を行い、
     前記第2コンバータは、前記第3配線部と前記第4配線部との間に印加された電圧を変換して前記導電路に出力電圧を印加する動作を行い、
     更に、前記第1配線部と前記第3配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第1リレー部と、前記第2配線部と前記第4配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第2リレー部と、を有する請求項2から請求項6のいずれか一項に記載の変換装置。
    The plurality of batteries include a first battery unit and a second battery unit.
    The plurality of converters include a first converter and a second converter.
    Between the first battery unit and the first converter, a first wiring unit and a second wiring unit, which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided.
    Between the second battery unit and the second converter, a third wiring unit and a fourth wiring unit, which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided.
    The first converter performs an operation of converting a voltage applied between the first wiring portion and the second wiring portion and applying an output voltage to the conductive path.
    The second converter performs an operation of converting a voltage applied between the third wiring portion and the fourth wiring portion and applying an output voltage to the conductive path.
    Further, a first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off energization, and the second wiring unit and the fourth wiring unit. The conversion device according to any one of claims 2 to 6, comprising a second relay unit that switches between an on state that permits energization and an off state that cuts off energization.
  8.  前記電力変換部は、複数の第1変換部と、トランスと、第2変換部と、を備え、
     前記トランスは、複数の第1コイルと第2コイルとを備え、複数の前記第1コイルと前記第2コイルとが磁気結合されており、
     各々の前記第1変換部にそれぞれ対応して各々の前記第1コイルが設けられ、
     各々の前記第1変換部は、各々の前記バッテリからの電力に基づく直流電力を変換して各々の前記第1コイルに交流電力を出力し、
     少なくともいずれかの前記第1変換部が双方向に電力変換を行う請求項1に記載の変換装置。
    The power conversion unit includes a plurality of first conversion units, a transformer, and a second conversion unit.
    The transformer includes a plurality of first coils and a second coil, and the plurality of the first coils and the second coil are magnetically coupled to each other.
    Each of the first coils is provided corresponding to each of the first conversion units.
    Each of the first conversion units converts DC power based on the power from each of the batteries and outputs AC power to each of the first coils.
    The conversion device according to claim 1, wherein at least one of the first conversion units performs power conversion in both directions.
  9.  前記電力変換部は、外部からの一部充電指示に応じて、少なくともいずれか一の前記バッテリから供給される電力に基づいて、複数の前記第1変換部及び前記トランスによって電力変換を行い、他の前記バッテリに電力を供給するように前記第2変換動作を行う請求項8に記載の変換装置。 The power conversion unit performs power conversion by the plurality of first conversion units and the transformer based on the power supplied from at least one of the batteries in response to a partial charge instruction from the outside, and the other The conversion device according to claim 8, wherein the second conversion operation is performed so as to supply electric power to the battery.
  10.  前記導電路は、複数の前記バッテリとは異なる第2バッテリに電気的に接続され、
     前記電力変換部は、外部からの一部停止指示に応じて、一の前記第1変換部の変換動作を停止させつつ、他の前記第1変換部と前記トランスと前記第2変換部とが前記第2バッテリから供給される電力に基づいて他の前記バッテリに電力を出力するように前記第2変換動作を行う請求項8又は請求項9に記載の変換装置。
    The conductive path is electrically connected to a plurality of second batteries different from the battery.
    The power conversion unit stops the conversion operation of one of the first conversion units in response to a partial stop instruction from the outside, while the other first conversion unit, the transformer, and the second conversion unit The conversion device according to claim 8 or 9, wherein the second conversion operation is performed so as to output electric power to another battery based on the electric power supplied from the second battery.
  11.  複数の前記バッテリは、第1電池部と第2電池部とを備え、
     複数の前記第1変換部は、一の前記第1変換部と他の前記第1変換部とを備え、
     前記第1電池部と一の前記第1変換部との間には、前記第1電池部の両端電圧に基づく電圧が印加される経路である第1配線部及び第2配線部が設けられ、
     前記第2電池部と他の前記第1変換部との間には、前記第2電池部の両端電圧に基づく電圧が印加される経路である第3配線部及び第4配線部が設けられ、
     一の前記第1変換部は、前記第1配線部と前記第2配線部との間に印加された電圧を変換して一の前記第1コイルに交流電圧を生じさせる動作を行い、
     他の前記第1変換部は、前記第3配線部と前記第4配線部との間に印加された電圧を変換して他の前記第1コイルに交流電圧を生じさせる動作を行い、
     前記第1配線部と前記第3配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第1リレー部と、前記第2配線部と前記第4配線部との間の通電を許可するオン状態と通電を遮断するオフ状態とに切り替わる第2リレー部と、を有する請求項8から請求項10のいずれか一項に記載の変換装置。
    The plurality of batteries include a first battery unit and a second battery unit.
    The plurality of first conversion units include one said first conversion unit and another said first conversion unit.
    Between the first battery unit and the first conversion unit, a first wiring unit and a second wiring unit, which are paths to which a voltage based on the voltage across the first battery unit is applied, are provided.
    Between the second battery unit and the other first conversion unit, a third wiring unit and a fourth wiring unit, which are paths to which a voltage based on the voltage across the second battery unit is applied, are provided.
    The first conversion unit performs an operation of converting a voltage applied between the first wiring unit and the second wiring unit to generate an AC voltage in the first coil.
    The other first conversion unit performs an operation of converting the voltage applied between the third wiring unit and the fourth wiring unit to generate an AC voltage in the other first coil.
    A first relay unit that switches between an on state that permits energization between the first wiring unit and the third wiring unit and an off state that cuts off energization, and the second wiring unit and the fourth wiring unit. The conversion device according to any one of claims 8 to 10, further comprising a second relay unit that switches between an on state that permits energization and an off state that cuts off energization.
  12.  前記第1リレー部及び前記第2リレー部を制御するリレー制御部と、
     前記第1電池部からの電力供給の異常及び前記第2電池部からの電力供給の異常を検出する異常検出部と、
    を有し、
     前記リレー制御部は、前記異常検出部によって前記第1電池部及び前記第2電池部のいずれかからの電力供給の異常が検出された場合に、前記第1リレー部及び前記第2リレー部をオフ状態に切り替える請求項7又は請求項11に記載の変換装置。
    A relay control unit that controls the first relay unit and the second relay unit,
    An abnormality detection unit that detects an abnormality in the power supply from the first battery unit and an abnormality in the power supply from the second battery unit.
    Have,
    The relay control unit sets the first relay unit and the second relay unit when an abnormality in power supply from either the first battery unit or the second battery unit is detected by the abnormality detection unit. The conversion device according to claim 7 or 11, which switches to the off state.
  13.  前記導電路は、複数の前記バッテリとは異なる第2バッテリに電気的に接続され、
     前記電力変換部は、所定条件が成立した場合に、前記第2バッテリからの電力に基づいて電力変換を行い、少なくともいずれかの前記バッテリに対して個別に電力を出力するように前記第2変換動作を行う請求項1から請求項12のいずれか一項に記載の変換装置。
    The conductive path is electrically connected to a plurality of second batteries different from the battery.
    When a predetermined condition is satisfied, the power conversion unit performs power conversion based on the power from the second battery, and outputs the power individually to at least one of the batteries. The conversion device according to any one of claims 1 to 12, which operates.
  14.  前記電力変換部を制御する制御部を備え、
     前記制御部は、所定の開始条件が成立した場合に、前記電力変換部に対し、複数の前記バッテリの出力電圧又はSOC(State Of Charge)の差を小さくする動作を行わせる請求項1から請求項13のいずれか一項に記載の変換装置。
    A control unit that controls the power conversion unit is provided.
    According to claim 1, the control unit causes the power conversion unit to perform an operation of reducing the difference between the output voltages or SOCs (State Of Charge) of a plurality of the batteries when a predetermined start condition is satisfied. Item 12. The conversion device according to any one of items 13.
  15.  前記電源システムは、複数の前記バッテリが直列接続と並列接続とに切り替わるシステムである請求項1から請求項14のいずれか一項に記載の変換装置。 The conversion device according to any one of claims 1 to 14, wherein the power supply system is a system in which a plurality of the batteries are switched between series connection and parallel connection.
  16.  前記電源システムは、複数の前記バッテリが並列に接続され、直列接続に切り替わらないシステムである請求項1から請求項14のいずれか一項に記載の変換装置。 The conversion device according to any one of claims 1 to 14, wherein the power supply system is a system in which a plurality of the batteries are connected in parallel and does not switch to series connection.
  17.  前記電力変換部を制御する制御部と、
     切替回路と、
     前記切替回路を制御する切替制御部と、
     を有し、
     前記電源システムは、前記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有し、
     前記切替回路は、複数の前記バッテリを一対の前記電力路の間に直列に接続した状態と並列に接続した状態とに切り替わり、
     複数の前記バッテリを一対の前記電力路の間に直列に接続しつつ直列接続された複数の前記バッテリから前記負荷に電力を供給するように前記切替制御部が前記切替回路を制御した状態で、前記制御部は、前記電力変換部に対して前記第1変換動作及び前記第2変換動作の少なくともいずれかを行わせる請求項1から請求項15のいずれか一項に記載の変換装置。
    A control unit that controls the power conversion unit and
    Switching circuit and
    A switching control unit that controls the switching circuit and
    Have,
    The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
    The switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel.
    In a state where the switching control unit controls the switching circuit so as to supply power to the load from the plurality of batteries connected in series while connecting the plurality of batteries in series between the pair of power paths. The conversion device according to any one of claims 1 to 15, wherein the control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation.
  18.  切替回路と、
     前記切替回路を制御する切替制御部と、
     を有し、
     前記電源システムは、前記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有し、
     前記切替回路は、複数の前記バッテリを一対の前記電力路の間に直列に接続した状態と並列に接続した状態とに切り替わり、
     前記切替制御部は、前記車両の走行中に複数の前記バッテリを一対の前記電力路の間に直列に接続した状態と並列に接続した状態とに切り替えるように前記切替回路を制御する請求項1から請求項15、請求項17のいずれか一項に記載の変換装置。
    Switching circuit and
    A switching control unit that controls the switching circuit and
    Have,
    The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
    The switching circuit switches between a state in which a plurality of the batteries are connected in series between the pair of power paths and a state in which the plurality of batteries are connected in parallel.
    The switching control unit controls the switching circuit so as to switch between a state in which a plurality of the batteries are connected in series and a state in which they are connected in parallel between a pair of electric power paths while the vehicle is traveling. The conversion device according to any one of claims 15 and 17.
  19.  前記切替制御部は、前記車両の走行中に前記車両の走行状態に応じて複数の前記バッテリを直列接続状態と並列接続状態とに切り替える請求項18に記載の変換装置。 The conversion device according to claim 18, wherein the switching control unit switches a plurality of the batteries into a series connection state and a parallel connection state according to the traveling state of the vehicle while the vehicle is traveling.
  20.  前記切替制御部は、前記車両の走行中に前記車両の走行状態に応じて複数の前記バッテリを一対の前記電力路の間に直列に接続した状態と並列に接続した状態とに切り替え、
     前記制御部は、前記車両の走行中において少なくとも複数の前記バッテリが直列接続状態のときに前記電力変換部に対して前記第1変換動作及び前記第2変換動作の少なくともいずれかを行わせる請求項17に記載の変換装置。
    The switching control unit switches between a state in which a plurality of the batteries are connected in series between the pair of electric power paths and a state in which the batteries are connected in parallel according to the traveling state of the vehicle while the vehicle is traveling.
    A claim that the control unit causes the power conversion unit to perform at least one of the first conversion operation and the second conversion operation when at least a plurality of the batteries are connected in series while the vehicle is running. 17. The conversion device according to 17.
  21.  切替回路と、
     前記切替回路を制御する切替制御部と、
     複数の前記バッテリの中から電力供給の異常が発生したバッテリを検出する異常検出部と、
     を有し、
     前記電源システムは、前記電源システムが搭載された車両に設けられる負荷に対して電力を伝送する経路である一対の電力路を有し、
     前記切替回路は、複数の前記バッテリのうち一部を一対の前記電力路の間に接続した状態と、複数の前記バッテリを一対の前記電力路の間に並列に接続した状態とに切り替わり、
     前記切替制御部は、いずれかの前記バッテリの前記電力供給の異常が前記異常検出部によって検出された場合に、前記電力供給の異常が検出されていない前記バッテリを一対の前記電力路の間に接続する請求項1から請求項20のいずれか一項に記載の変換装置。
    Switching circuit and
    A switching control unit that controls the switching circuit and
    An abnormality detection unit that detects a battery in which an abnormality in power supply has occurred from among the plurality of batteries,
    Have,
    The power supply system has a pair of power paths that are paths for transmitting power to a load provided in a vehicle equipped with the power supply system.
    The switching circuit switches between a state in which a part of the plurality of batteries is connected between the pair of power paths and a state in which the plurality of batteries are connected in parallel between the pair of power paths.
    When the abnormality of the power supply of any of the batteries is detected by the abnormality detection unit, the switching control unit places the battery in which the abnormality of the power supply is not detected between the pair of power paths. The conversion device according to any one of claims 1 to 20 to be connected.
  22.  前記切替制御部は、前記車両の走行中に複数の前記バッテリを一対の前記電力路の間に並列に接続することが可能であり、
     前記切替制御部は、前記車両の走行中にいずれかの前記バッテリの前記電力供給の異常が前記異常検出部によって検出された場合に、前記電力供給の異常が検出されていない前記バッテリを一対の前記電力路の間に接続する請求項21に記載の変換装置。
    The switching control unit can connect a plurality of the batteries in parallel between the pair of electric power paths while the vehicle is traveling.
    When the abnormality of the power supply of any of the batteries is detected by the abnormality detection unit while the vehicle is running, the switching control unit sets a pair of the batteries in which the abnormality of the power supply is not detected. The conversion device according to claim 21, which is connected between the power paths.
PCT/JP2021/025943 2020-07-10 2021-07-09 Conversion device WO2022009984A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020118991 2020-07-10
JP2020-118991 2020-07-10
JP2021014233 2021-02-01
JP2021-014233 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022009984A1 true WO2022009984A1 (en) 2022-01-13

Family

ID=79552549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025943 WO2022009984A1 (en) 2020-07-10 2021-07-09 Conversion device

Country Status (1)

Country Link
WO (1) WO2022009984A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230029A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Uninterruptible power supply unit
JP2019161724A (en) * 2018-03-08 2019-09-19 Tdk株式会社 Converter device
WO2019244680A1 (en) * 2018-06-18 2019-12-26 田中 正一 Electric vehicle power system
WO2020054828A1 (en) * 2018-09-13 2020-03-19 本田技研工業株式会社 Power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230029A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Uninterruptible power supply unit
JP2019161724A (en) * 2018-03-08 2019-09-19 Tdk株式会社 Converter device
WO2019244680A1 (en) * 2018-06-18 2019-12-26 田中 正一 Electric vehicle power system
WO2020054828A1 (en) * 2018-09-13 2020-03-19 本田技研工業株式会社 Power supply system

Similar Documents

Publication Publication Date Title
CN111264014B (en) Power storage system
WO2020230202A1 (en) Conversion device, conversion system, switch device, vehicle including said conversion device, said conversion system, and said switch device, and control method
JP4061335B2 (en) Power storage system
JP6973669B2 (en) Power supply system and vehicles equipped with it
KR20160088822A (en) Electric power storage system
CN108068624B (en) Automobile
WO2017208750A1 (en) Relay device and power source device
CN107963040B (en) Battery pack device, operating method for battery pack device, and vehicle
WO2020183902A1 (en) Power supply system for mobile object
JP6187341B2 (en) In-vehicle charging system
US20210107376A1 (en) On-board electrical system and method for operating an on-board network
JP6546422B2 (en) Battery system controller
US20230062219A1 (en) Power source system
WO2022009984A1 (en) Conversion device
JP2012110175A (en) Power storage device control apparatus and vehicle mounting the same thereon and power storage device control method
WO2022118787A1 (en) Vehicle power supply device
WO2021166750A1 (en) Power supply system
JP7095612B2 (en) Vehicle power circuit
KR101894133B1 (en) Charging device for a plug-in vehicle, and plug-in vehicle
WO2022009983A1 (en) Power control device
WO2022009982A1 (en) Converting device
WO2021106345A1 (en) Vehicle-mounted battery system
JP2022117722A (en) Power source control device
US20230015170A1 (en) System for the electric power supply of a vehicle
WO2021059833A1 (en) Conversion device and conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP