WO2022118787A1 - Vehicle power supply device - Google Patents

Vehicle power supply device Download PDF

Info

Publication number
WO2022118787A1
WO2022118787A1 PCT/JP2021/043604 JP2021043604W WO2022118787A1 WO 2022118787 A1 WO2022118787 A1 WO 2022118787A1 JP 2021043604 W JP2021043604 W JP 2021043604W WO 2022118787 A1 WO2022118787 A1 WO 2022118787A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
batteries
power supply
battery
state
Prior art date
Application number
PCT/JP2021/043604
Other languages
French (fr)
Japanese (ja)
Inventor
将義 廣田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2022118787A1 publication Critical patent/WO2022118787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/16Conversion of dc power input into dc power output without intermediate conversion into ac by dynamic converters
    • H02M3/18Conversion of dc power input into dc power output without intermediate conversion into ac by dynamic converters using capacitors or batteries which are alternately charged and discharged, e.g. charged in parallel and discharged in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • This disclosure relates to a vehicle power supply.
  • Patent Document 1 discloses a battery control device mounted on an electric vehicle.
  • a plurality of batteries are connected in parallel when the electric vehicle is running, and a plurality of batteries are connected in series when the plurality of batteries are charged by the external power feeding device.
  • a smoothing capacitor is generally provided in the inverter.
  • pre-charge a precharge operation in which the current is suppressed.
  • a configuration for performing this type of precharging operation for example, a configuration in which a precharging circuit is provided in parallel with the system main relay provided between the battery and the power path can be considered.
  • the precharge circuit can be realized by, for example, a circuit in which a precharge relay and a precharge resistor are provided in series. However, in this example, it is essential to use a precharge circuit.
  • the present disclosure provides a configuration capable of suppressing the current and supplying electric power to the electric power path in a state where the electric power supply from the battery to the electric power path is cut off.
  • the vehicle power supply which is one of the disclosures, is A plurality of batteries, a power path that is a path to which power is supplied from the plurality of batteries, a switching unit that switches the plurality of batteries between series connection and parallel connection, and power from the plurality of batteries to the power path.
  • a vehicle power supply device used in a vehicle power supply system having a relay unit that switches between an on state that allows supply and an off state that does not allow supply. With the converter A control unit that controls the converter, Have, The control unit causes the converter to supply electric power to the power path when a predetermined condition is satisfied when the relay unit is in the off state.
  • the vehicle power supply device which is one of the present disclosures, can supply electric power to the electric power path by suppressing the current in a state where the electric power supply from the battery to the electric power path is cut off.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle system including a vehicle power supply device according to a first embodiment.
  • FIG. 2 is a schematic diagram schematically illustrating a vehicle equipped with the in-vehicle system of FIG.
  • FIG. 3 is a circuit diagram illustrating a specific configuration of a part of the converter in the in-vehicle system of FIG.
  • FIG. 4 is a circuit diagram illustrating a specific configuration of a part of the converter in the vehicle power supply device of the second embodiment.
  • a plurality of batteries a power path that is a path to which power is supplied from the plurality of batteries, a switching unit that switches the plurality of batteries between series connection and parallel connection, and the power path from the plurality of batteries.
  • a vehicle power supply device used in a vehicle power supply system having a relay unit that switches between an on state that allows power supply to and an off state that does not allow power supply to the vehicle.
  • the control unit is a vehicle power supply device that causes the converter to perform an operation of supplying electric power to the power path when a predetermined condition is satisfied when the relay unit is in the off state.
  • the control unit controls the converter and supplies electric power to the electric power path even when the electric power is not directly supplied from the battery to the electric power path. Can be done. Therefore, when the power supply device for a vehicle should supply electric power to the electric power path while suppressing a large current from the battery, the operation is such that the electric power is supplied while suppressing the current by the circuit existing between the battery and the electric power path. It is possible to supply electric power to the electric power path without requiring.
  • the vehicle power supply device of [2] has the following features in the vehicle power supply device described in [1] above.
  • the converter includes a plurality of power conversion units, and further has a second switching unit that switches between a state in which the plurality of power conversion units are connected in series and a state in which the series connection is disconnected.
  • the control unit controls the second switching unit so that the plurality of power conversion units are connected in series, and the plurality of power conversion units.
  • the unit is made to perform an operation of supplying electric power to the electric power path.
  • the vehicle power supply device of the above [2] can switch between a method of connecting a plurality of power conversion units in series to perform power conversion and a method of canceling the series connection. Then, this vehicle power supply device can operate so as to supply electric power while connecting a plurality of power conversion units in series when the electric power should be supplied to the electric power path while suppressing a large current from the battery. This is advantageous when a high voltage is applied to the power path.
  • the vehicle power supply device of [3] has the following features in the vehicle power supply device described in [2] above.
  • Each of the above power conversion units is provided corresponding to each of the above batteries and performs power conversion in both directions.
  • each power conversion unit can charge and discharge each battery, it is easy to perform an operation of correcting the imbalance of a plurality of batteries.
  • the vehicle power supply device of [4] has the following features in the vehicle power supply device according to any one of the above [1] to [3].
  • the electric power path is a path for supplying electric power from the plurality of batteries to the drive unit of the vehicle.
  • a capacitor is electrically connected to the power path.
  • the control unit Before supplying power from the plurality of batteries to the drive unit while connecting the plurality of batteries in series, the control unit operates the converter while turning off the relay unit to make the capacitor first.
  • the first precharge operation for charging the charging voltage is performed.
  • the control unit operates the converter while turning off the relay unit before supplying power from the plurality of batteries to the drive unit while connecting the plurality of batteries in parallel to connect the capacitor to the capacitor.
  • a second precharging operation is performed in which a second charging voltage smaller than the first charging voltage is charged.
  • the power supply from the plurality of batteries to the capacitor before supplying power to the drive unit by connecting a plurality of batteries in series, the power supply from the plurality of batteries to the capacitor is cut off, and relatively.
  • the capacitor can be charged to charge up to a high first charge voltage.
  • the power supply from the plurality of batteries to the capacitor before supplying power to the drive unit by connecting a plurality of batteries in parallel, the power supply from the plurality of batteries to the capacitor is cut off, and the second is relatively low.
  • the capacitor can be charged to charge up to the charging voltage. Therefore, regardless of which connection state the plurality of batteries are connected to, a more appropriate precharge operation can be performed while keeping the relay unit in the off state before the connection.
  • the vehicle power supply device of [5] has the following features in the vehicle power supply device according to any one of [1] to [4].
  • the control unit performs power conversion using the power supplied from the second battery different from the plurality of batteries as the input power, and performs the power conversion. Is made to perform the operation of supplying the output power to the power conversion unit.
  • the vehicle power supply device of the above [5] uses the electric power supplied from the second battery when the electric power should be supplied to the electric power path while suppressing the large current from the battery, and is appropriately converted by the converter. Therefore, electric power can be supplied to the electric power path.
  • the vehicle power supply device of [6] has the following features in the vehicle power supply device according to [5].
  • the plurality of batteries have a first battery and a second battery.
  • the converter has a first power conversion unit and a second power conversion unit.
  • the first power conversion unit uses the power supplied from the first battery as input power to supply power to a conductive path different from the power path, and inputs power supplied from the conductive path.
  • the power conversion operation of supplying power to the first battery is performed.
  • the second power conversion unit uses the power supplied from the second battery as input power to supply power to the conductive path, and the second battery using the power supplied from the conductive path as input power. Performs a power conversion operation to supply power to the power.
  • the conductive path is a path electrically connected to the second battery.
  • the vehicle power supply device of the above [6] can supply electric power to the electric power path while suppressing a large current from the battery, and can realize a configuration that can easily correct the imbalance of a plurality of batteries. Moreover, since this vehicle power supply device is provided with a plurality of power conversion units that are connected to different batteries and can be charged and discharged individually between each battery and the second battery, redundancy can be achieved. can.
  • the vehicle power supply device of [7] has the following features in the vehicle power supply device according to [6].
  • the converter includes a plurality of first conversion units, a transformer, and a second conversion unit.
  • the transformer includes a plurality of first coils and a second coil, and the plurality of the first coils and the second coil are magnetically coupled. Each of the first coils is provided corresponding to each of the first conversion units.
  • Each of the first conversion units has a conversion operation of converting DC power based on the power from each of the batteries and outputting AC power to each of the first coils, and AC generated by each of the first coils.
  • a conversion operation that converts electric power and outputs DC electric power can be performed in both directions.
  • the second conversion unit converts the AC power generated by the second coil and outputs the DC power to the second battery, and converts the DC power based on the power from the second battery. The conversion operation of outputting AC power to the second coil can be performed in both directions.
  • the vehicle power supply device of the above [7] can supply electric power to the electric power path while suppressing a large current from the battery, and integrates a conversion unit into a configuration that makes it easy to correct the imbalance of a plurality of batteries. It can be realized by the configured configuration.
  • FIG. 1 shows a vehicle power supply device 10 according to the first embodiment of the present disclosure.
  • the vehicle power supply device 10 is also simply referred to as a power supply device 10.
  • the power supply device 10 is a device used as a part of the in-vehicle system 2 mounted on the vehicle 1.
  • the vehicle 1 is a vehicle equipped with a power supply device 10, and is, for example, a vehicle such as a PHEV (Plug-in Hybrid Electric Vehicle) or an EV (Electric Vehicle).
  • PHEV Plug-in Hybrid Electric Vehicle
  • EV Electric Vehicle
  • the in-vehicle system 2 includes a vehicle power supply system 3, a drive unit 4, a high voltage load 5, a low voltage load 8, and the like.
  • the vehicle power supply system 3 is also simply referred to as a power supply system 3.
  • the power supply system 3 includes a power supply device 10, a low voltage battery 70, and a high voltage battery 82.
  • the drive unit 4 includes an inverter 7 and a motor 6.
  • the inverter 7 generates AC power (for example, three-phase AC) from DC power based on the power supplied from the high-voltage battery 82, and supplies the AC power to the motor 6.
  • the motor 6 is, for example, a main engine system motor.
  • the motor 6 is a device that rotates based on the electric power supplied from the high-voltage battery 82 and applies a rotational force to the wheels of the vehicle 1.
  • the high-voltage load 5 shown in FIG. 2 is a load that can operate by receiving power supplied from the high-voltage battery 82.
  • the high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these.
  • the high voltage load 5 shown in FIG. 2 includes the high voltage loads 5A and 5B shown in FIG.
  • the low voltage load 8 is, for example, an accessory device necessary for operating an engine and a motor. This accessory is, for example, a starter motor, an alternator, a radiator cooling fan, and the like.
  • the low voltage load 8 may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like.
  • the low voltage load 8 is electrically connected to the third conductive paths 96A and 96B, and is supplied with electric power via the third conductive paths 96A and 96B.
  • the state in which the vehicle is running includes the state in which the vehicle 1 is moving, but is not limited to the state in which the vehicle 1 is moving.
  • the vehicle 1 moves when the accelerator is stepped on.
  • the vehicle is running it includes a state in which the vehicle 1 is stopped without moving and power is supplied to any or all of the low voltage loads 8. If the vehicle 1 is a PHEV, the idling state of the engine is also included when the vehicle is running.
  • the power supply system 3 has a low voltage battery 70, a high voltage battery 82, and a power supply device 10.
  • the high voltage battery 82 has a plurality of batteries (first high voltage battery 82A, second high voltage battery 82B).
  • the power supply system 3 is a system in which a plurality of batteries (first high-voltage battery 82A, second high-voltage battery 82B) are switched between series connection and parallel connection.
  • the first high voltage battery 82A is also referred to as a battery 82A.
  • the second high voltage battery 82B is also referred to as a battery 82B.
  • the high-voltage battery 82 is a power source in which the battery 82A and the battery 82B are switched between series connection and parallel connection by a switching operation by the switching unit 84 described later.
  • the high-voltage battery 82 is configured to be rechargeable and dischargeable.
  • the high voltage battery 82 outputs a high voltage (for example, about 300 V) for driving the drive unit 4.
  • the output voltage of the battery 82A and the battery 82B at the time of full charge is higher than the output voltage of the low pressure battery 70 at the time of full charge.
  • the battery 82A and the battery 82B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
  • the low voltage battery 70 corresponds to an example of a power storage unit.
  • the low voltage battery 70 is configured to be rechargeable and dischargeable.
  • the low voltage battery 70 supplies power to the low voltage load 8.
  • the low voltage battery 70 may be composed of a lead storage battery or another type of storage battery.
  • the low voltage battery 70 outputs a predetermined voltage (for example, 12V) when fully charged.
  • one electrode is electrically connected to the third conductive path 96A
  • the other electrode is electrically connected to the third conductive path 96B.
  • One electrode of the low voltage battery 70 and the third conductive path 96A have, for example, the same potential.
  • the other electrode of the low voltage battery 70 and the third conductive path 96B are, for example, equipotential.
  • the high voltage battery 82 is charged based on the electric power supplied from the external power source.
  • a charging current is supplied via the power supply paths 90A and 90B based on the electric power supplied from the external power source.
  • a quick charger is connected to the connection terminal (not shown) of the vehicle 1, and a voltage exceeding the voltage specifications of the batteries 82A and 82B (for example, 800V) can be supplied from the quick charger.
  • a DC voltage for example, 800V
  • a relatively high DC voltage is applied to charge the batteries 82A and 82B
  • the control device or the control unit 18 switches the switching unit 84 to the first switching state, whereby the battery is charged.
  • the 82A and the battery 82B are connected in series. Then, with the battery 82A and the battery 82B connected in series in this way, these batteries are charged.
  • a quick charger is connected to the connection terminal of the vehicle 1, and a voltage (for example, 400 V) corresponding to the voltage specifications of the batteries 82A and 82B can be supplied from the quick charger.
  • a DC voltage for example, 400V
  • a circuit (not shown).
  • the control device or the control unit 18 switches the switching unit 84 to the second switching state, whereby the battery is charged.
  • the 82A and the battery 82B are connected in parallel.
  • the power path 94 has a pair of power paths 94A and 94B.
  • the power paths 94A and 94B are paths for supplying electric power from the plurality of batteries 82A and 82B to the drive unit 4, and specifically, are paths for supplying electric power from the plurality of batteries 82A and 82B to the inverter 7.
  • the power path 94A is electrically connected to the electrode having the highest potential in the battery 82A when the relay unit 91 is in the ON state, and has the same potential as this electrode.
  • the power path 94B is electrically connected to the electrode having the lowest potential in the battery 82B when the relay unit 92 is in the ON state, and has the same potential as this electrode.
  • the capacitor 9 of the drive unit 4 is electrically connected to the power paths 94A and 94B.
  • the power path 94A is electrically connected to one electrode of the capacitor 9.
  • the power path 94A is electrically connected to the other electrode of the capacitor 9.
  • the capacitor 9 is a smoothing capacitor.
  • the relay units 91 and 92 function as the system main relay.
  • the relay units 91 and 92 may be semiconductor relays or mechanical relays.
  • the relay units 91 and 92 switch between an on state that allows power supply from the plurality of batteries 82A and 82B to the power paths 94A and 94B and an off state that does not allow power supply.
  • both the relay units 91 and 92 are in the ON state, power supply from the plurality of batteries 82A and 82B to the drive unit 4 is permitted.
  • both the relay units 91 and 92 are in the off state, the power supply from the plurality of batteries 82A and 82B to the drive unit 4 is cut off.
  • the on / off operation of the relay units 91 and 92 may be controlled by, for example, a control device (not shown), or the on / off operation may be controlled by the control unit 18.
  • the relay units 86 and 88 are switches that switch between the high voltage battery 82 and the converter 40 between the conduction state and the cutoff state.
  • the relay units 86 and 88 may be a semiconductor relay or a mechanical relay.
  • the on / off operation of the relay units 86 and 88 may be controlled by, for example, a control device (not shown), or the on / off operation may be controlled by the control unit 18.
  • a control device not shown
  • the relay unit 86 is in the ON state, a short circuit occurs between the electrode on the low potential side of the battery 82A and the first conductive path 12 connected to the power conversion unit 50.
  • the relay unit 86 is in the off state, the space between the low potential side electrode of the battery 82A and the first conductive path 12 is cut off.
  • the relay unit 88 When the relay unit 88 is in the ON state, a short circuit occurs between the electrode on the high potential side of the battery 82B and the second conductive path 21 connected to the power conversion unit 50. When the relay unit 88 is in the off state, the space between the electrode on the high potential side of the battery 82B and the second conductive path 21 is cut off.
  • the switching unit 84 includes a plurality of switches 84A, 84B, 84C.
  • the plurality of switches 84A, 84B, 84C may be a semiconductor relay or a mechanical relay.
  • the switching unit 84 is a switching circuit for switching between a state in which the battery 82A and the battery 82B are connected in series (series connection) and a state in which the battery 82A and the battery 82B are connected in parallel (parallel connection).
  • the switching unit 84 connects the battery 82A and the battery 82B in series when the switch 84B is in the ON state and the switches 84A and 84C are in the OFF state in the first switching state.
  • the switching unit 84 connects the battery 82A and the battery 82B in parallel when the switch 84B is in the off state and the switches 84A and 84C are in the second switching state.
  • the switching unit 84 is controlled by a control device.
  • the control device that controls the switching unit 84 may be the control unit 18, or may be a device different from the control unit 18.
  • the control device may cause the switching unit 84 to perform an operation of connecting a plurality of batteries 82A and 82B in series and an operation of connecting them in parallel.
  • the control unit 18 can control the switch 84B to be in the on state and the switches 84A and 84C to be in the off state, and the switch 84B to be in the off state and the switches 84A and 84C to be in the on state. ..
  • the power supply device 10 shown in FIG. 1 is a device capable of performing power conversion by inputting power supplied from a high voltage battery 82 or a low voltage battery 70.
  • the power supply device 10 mainly includes a converter 40, switches 31, 32, 33, fuses 35, 36, 37, 38, a control unit 18, and the like.
  • the control unit 18 is a device that mainly controls various devices in the power supply device 10.
  • the control unit 18 has a calculation function, an information processing function, a storage function, and the like.
  • the control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device.
  • the control unit 18 controls the converter 40. Specific examples of control of the converter 40 by the control unit 18 will be described in detail later.
  • the converter 40 is a device capable of performing a conversion operation of converting the electric power input from each of the plurality of batteries 82A and 82B and outputting the electric power to the third conductive paths 96A and 96B.
  • the third conductive paths 96A and 96B correspond to an example of the conductive paths.
  • the third conductive paths 96A and 96B are paths for supplying electric power to the low voltage load 8.
  • Each of the third conductive paths 96A and 96B is a path electrically connected to each of the electrodes of the low-voltage battery 70.
  • the converter 40 includes a plurality of power conversion units 50 and 60.
  • Each of the plurality of power conversion units 50 and 60 is provided corresponding to each of the plurality of batteries 82A and 82B, and performs power conversion in both directions. Both the power conversion units 50 and 60 are configured as bidirectional DCDC converters.
  • the power conversion unit 50 functions as a first DCDC converter.
  • the power conversion unit 60 functions as a second DCDC converter.
  • Each of the plurality of power conversion units 50 and 60 is provided corresponding to each of the plurality of batteries 82A and 82B, respectively.
  • the voltage corresponding to the output voltage of the battery 82A is the power conversion unit 50. It is applied between the pair of first conductive paths 11 and 12, which are input / output paths on one side. Further, when a plurality of batteries 82A and 82B are connected in series and the relay units 91 and 92 and the relay units 86 and 88 are in the ON state, the voltage corresponding to the output voltage of the battery 82B is converted into electric power. It is applied between a pair of second conductive paths 21 and 22, which are input and output on one side of the unit 60.
  • Each of the plurality of power conversion units 50 and 60 has a first conversion operation of converting input power according to the power supplied from the corresponding battery and supplying output power to the third conductive paths 96A and 96B, and a third.
  • the second conversion operation of converting the input power according to the power from the conductive paths 96A and 96B and outputting the power to the corresponding battery is performed.
  • the power conversion unit 50 functions as a first power conversion unit, and supplies power to the third conductive lines 96A and 96B different from the power lines 94A and 94B by using the power supplied from the battery 82A (first battery) as input power. Can perform power conversion operation. Further, the power conversion unit 50 can perform a power conversion operation of supplying power to the battery 82A by using the power supplied from the third conductive paths 96A and 96B as input power. Specifically, the power conversion unit 50 steps down the DC voltage applied between the first conductive paths 11 and 12, and applies the DC voltage between the third conductive paths 96A and 96B in the first conversion operation (1st conversion operation). Step-down operation) can be performed.
  • the power conversion unit 50 performs a second conversion operation (boost operation) so as to boost the DC voltage applied between the third conductive paths 96A and 96B and apply the DC voltage between the first conductive paths 11 and 12. obtain.
  • the circuit configuration of the power conversion unit 50 is not particularly limited as long as it functions as a bidirectional DCDC converter, but in a typical example of the power supply device 10 described below, a circuit as shown in FIG. 3 is adopted. There is. In the example of FIG. 3, the power conversion unit 50 is configured as an isolated bidirectional DCDC converter.
  • the power conversion unit 50 includes a first conversion circuit 51, a transformer 53, and a second conversion circuit 52.
  • the first conversion circuit 51 has a function of converting DC power and AC power in both directions.
  • the first conversion circuit 51 has a function of converting a DC voltage applied between the first conductive paths 11 and 12 to generate an AC voltage in the first coil 53A.
  • the first conversion circuit 51 also has a function of converting an AC voltage generated in the first coil 53A and outputting a DC voltage between the first conductive paths 11 and 12.
  • the first conversion circuit 51 includes a capacitor 51A and switch elements 51C, 51D, 51E, 51F constituting a full bridge circuit.
  • the transformer 53 includes a first coil 53A connected to the first conversion circuit 51 and a second coil 53B connected to the second conversion circuit 52. The first coil 53A and the second coil 53B are magnetically coupled.
  • the second conversion circuit 52 has a function of converting AC power and DC power in both directions.
  • the second conversion circuit 52 has a function of converting an AC voltage generated in the second coil 53B and outputting a DC voltage between the third conductive paths 96A and 96B.
  • the second conversion circuit 52 also has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 53B.
  • the second conversion circuit 52 includes switch elements 52C, 52D, an inductor 52E, a capacitor 52A, and the like.
  • the power conversion unit 60 functions as a second power conversion unit, and can perform a power conversion operation of supplying power to the third conductive paths 96A and 96B using the power supplied from the battery 82B (second battery) as input power.
  • the power conversion unit 60 can perform a power conversion operation of supplying power to the battery 82B (second battery) using the power supplied from the third conductive paths 96A and 96B as input power.
  • the power conversion unit 60 steps down the DC voltage applied between the second conductive paths 21 and 22 so as to apply the DC voltage between the third conductive paths 96A and 96B (1st conversion operation). Step-down operation) can be performed.
  • the power conversion unit 60 performs a second conversion operation (boost operation) so as to boost the DC voltage applied between the third conductive paths 96A and 96B and apply the DC voltage between the second conductive paths 21 and 22. obtain.
  • the circuit configuration of the power conversion unit 60 is not particularly limited as long as it functions as a bidirectional DCDC converter, but the circuit can be, for example, as shown in FIG. In the example of FIG. 3, the power conversion unit 60 is configured as an isolated bidirectional DCDC converter.
  • the power conversion unit 60 includes a first conversion circuit 61, a transformer 63, and a second conversion circuit 62.
  • the first conversion circuit 61 has a function of converting DC power and AC power in both directions.
  • the first conversion circuit 61 has a function of converting a DC voltage applied between the second conductive paths 21 and 22 to generate an AC voltage in the first coil 63A.
  • the first conversion circuit 61 also has a function of converting an AC voltage generated in the first coil 63A and outputting a DC voltage between the second conductive paths 21 and 22.
  • the first conversion circuit 61 includes a capacitor 61A and switch elements 61C, 61D, 61E, 61F constituting a full bridge circuit.
  • the transformer 63 includes a first coil 63A connected to the first conversion circuit 61 and a second coil 63B connected to the second conversion circuit 62.
  • the first coil 63A and the second coil 63B are magnetically coupled.
  • the second conversion circuit 62 has a function of converting AC power and DC power in both directions.
  • the second conversion circuit 62 has a function of converting an AC voltage generated in the second coil 63B and outputting a DC voltage between the third conductive paths 96A and 96B.
  • the second conversion circuit 62 has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 63B.
  • the second conversion circuit 62 includes switch elements 62C, 62D, an inductor 62E, a capacitor 62A, and the like.
  • the power supply device 10 has a switch 33.
  • the switch 33 corresponds to an example of the second switching unit.
  • the switch 33 switches the converter 40 between a state in which a plurality of power conversion units 50 and 60 are connected in series and a connection in which the series connection is disconnected.
  • a high voltage load 5A and a high voltage load 5B are provided as specific examples of the high voltage load 5 shown in FIG.
  • each of the high-pressure loads 5A and 5B is provided in a configuration in which the batteries 82A and 82B are connected in parallel to each of the plurality of batteries 82A and 82B.
  • a high-pressure load 5A is provided in a configuration that can be connected in parallel with the battery 82A.
  • a high-pressure load 5B is provided in a configuration that can be connected in parallel with the battery 82B.
  • One end of the high voltage load 5A is electrically connected to the first conductive path 11, and the other end is electrically connected to the first conductive path 12.
  • the current supplied from the battery 82A or the power conversion unit 50 via the first conductive paths 11 and 12 can be supplied to the high voltage load 5A.
  • One end of the high voltage load 5B is electrically connected to the second conductive path 21, and the other end is electrically connected to the second conductive path 22.
  • the current supplied from the battery 82B or the power conversion unit 60 via the second conductive paths 21 and 22 may be supplied to the high voltage load 5B.
  • the switch 31 and the fuses 35 and 36 are provided in the first conductive path 11.
  • the switch 31 is a switch that switches the first conductive path 11 between a conductive state and a cutoff state.
  • the switch 31 is in the off state, the power path 94A and the high voltage load 5A are in a non-conducting state, and the power path 94A and the power conversion unit 50 are in a non-conducting state.
  • the switch 31 is on, the power path 94A and the high voltage load 5A are in a conductive state via the first conductive path 11, and the power path 94A and the power conversion unit 50 are connected to each other via the first conductive path 11. Becomes a conductive state.
  • the first conductive path 11 includes a conductive path 11A connected to the power path 94A and conductive paths 11B and 11C branching from the conductive path 11A.
  • the switch 31 is provided in the conductive path 11A and switches the conductive path 11A between a conductive state and a cutoff state.
  • the fuse 35 is provided in the conductive path 11C.
  • the fuse 36 is provided in the conductive path 11B.
  • the first conductive path 12 includes a conductive path 12A that can be electrically connected to an electrode on the low potential side of the battery 82A, and conductive paths 12B and 12C that branch from the conductive path 12A.
  • the power conversion unit 50 is connected to the conductive paths 11B and 12B.
  • the high voltage load 5A is connected to the conductive paths 11C and 12C.
  • the switch 32 and the fuses 37 and 38 are provided in the second conductive path 22.
  • the switch 32 is a switch that switches the second conductive path 22 between a conductive state and a cutoff state.
  • the switch 32 is in the off state, the power path 94B and the high-voltage load 5B are in a non-conducting state, and the power path 94B and the power conversion unit 60 are in a non-conducting state.
  • the switch 32 is on, the power path 94B and the high voltage load 5B are in a conductive state via the second conductive path 22, and the power path 94B and the power conversion unit 60 are connected to each other via the second conductive path 22. Becomes a conductive state.
  • the second conductive path 22 includes a conductive path 22A connected to the power path 94B and conductive paths 22B and 22C branching from the conductive path 22A.
  • the switch 32 is provided in the conductive path 22A and switches the conductive path 22A between a conductive state and a cutoff state.
  • the second conductive path 21 includes a conductive path 21A that can be electrically connected to an electrode on the high potential side of the battery 82B, and conductive paths 21B and 21C that branch from the conductive path 21A.
  • the power conversion unit 60 is connected to the conductive paths 21B and 22B.
  • the high voltage load 5B is connected to the conductive paths 21C and 22C.
  • the fuse 37 is provided in the conductive path 21B.
  • the fuse 38 is provided in the conductive path 21C.
  • the control unit 18 causes any or each of the plurality of power conversion units 50 and 60 to perform a power conversion operation.
  • the relay units 86, 88, 91, 92 are controlled to the ON state by the control unit 18 or another control device. Then, the control unit 18 puts the switches 31 and 32 in the on state and puts the switch 33 in the off state.
  • the relay units 86, 88, 91, 92 are turned on, the switches 31 and 32 are turned on, and the switch 33 is turned off, the power conversion unit 50 is connected to the battery 82A in parallel.
  • the power conversion unit 60 is connected to the battery 82B in parallel.
  • the switching unit 84 may be in the first switching state or in the second switching state.
  • the switching unit 84 is switched to the first switching state, the battery 82A and the battery 82B are connected in series, the relay units 86, 88, 91, 92 and the switches 31 and 32 are turned on, and the switch 33 is turned off.
  • the control unit 18 causes either or both of the power conversion unit 50 and the power conversion unit 60 to perform the power conversion operation.
  • the control unit 18 performs a step-down operation of stepping down the DC voltage applied between the first conductive paths 11 and 12 and applying the DC voltage between the third conductive paths 96A and 96B to the power conversion unit 50.
  • the control unit 18 performs a step-down operation of stepping down the DC voltage applied between the second conductive paths 21 and 22 to the power conversion unit 60 and applying a DC voltage between the third conductive paths 96A and 96B.
  • the DC voltage applied between the third conductive paths 96A and 96B may be boosted to perform a boosting operation in which the DC voltage is applied between the second conductive paths 21 and 22. Does not have to be operated.
  • the power supply device 10 may perform a precharge operation of charging the capacitor 9 while cutting off the power supply from the batteries 82A and 82B when the capacitor 9 is not sufficiently charged.
  • a start switch (not shown) is turned off, the capacitor 9 is discharged by a discharge circuit.
  • the start switch is a switch that is a condition for operating the drive unit 4, and is a switch that switches to the on state by the start operation of the user and switches to the off state by the stop operation.
  • the drive unit 4 operates on condition that the start switch is in the on state, and the drive unit 4 does not operate when the start switch is in the off state.
  • the relay units 91 and 92 are switched to the off state by the control device.
  • the start switch is switched from the off state to the on state
  • the control unit 18 turns the switches 31, 32 and 33 into the on state. That is, when the above predetermined conditions are satisfied when the relay units 91 and 92 are in the off state, the control unit 18 connects a plurality of power conversion units 50 and 60 in series, and in this state, the plurality of power conversion units 50, The capacitor 9 is charged (precharge operation) by causing 60 to perform an operation of supplying electric power to the power paths 94A and 94B.
  • the above predetermined conditions are merely examples, and other predetermined conditions may be predetermined conditions.
  • the control unit 18 uses the power supplied from the low voltage battery 70 (second battery) via the third conductive paths 96A and 96B as the input power, and outputs the output power to the power paths 94A and 94B.
  • a plurality of power conversion units 50 and 60 are made to perform a power conversion operation so as to supply the power.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a DC voltage between the conductive paths 11B and 12B to the power conversion unit 50. Let me.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a DC voltage between the conductive paths 21B and 22B to the power conversion unit 60. Let me do it.
  • the control unit 18 performs a precharge operation so as to cause the power conversion units 50 and 60 to perform a boosting operation in parallel in this way, and the output voltage of the power conversion units 50 and 60 at the time of this precharge operation is It is based on the state in which the batteries 82A and 82B are planned to be connected to the power paths 94A and 94B after the precharge operation, that is, the degree of the driving voltage applied to the drive unit 4.
  • the relay unit 91 is planned to be supplied in the precharge operation.
  • the converter 40 is operated to perform the first precharge operation of charging the capacitor 9 to the first charging voltage (for example, 800V).
  • a control device for example, an external ECU (Electronic Control Unit) (not shown) is scheduled to be driven by the first method (driving in which the batteries 82A and 82B are connected in series) after the above-mentioned predetermined conditions are satisfied.
  • the control unit 18 When it has a function of determining whether or not it is present and the driving of the first method is scheduled, it is necessary to drive the control unit 18 with predetermined first information (for example, 800V) after the above-mentioned predetermined condition is satisfied.
  • predetermined first information for example, 800V
  • the signal shown) is given. Therefore, when the control unit 18 receives the first information from the control device after the predetermined condition is satisfied, the control unit 18 operates the converter 40 when the relay units 91 and 92 are in the off state to charge the capacitor 9 to the first charge voltage ( For example, the first precharge operation of charging to 800 V) is performed.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a first value DC voltage between the conductive paths 11B and 12B. Let the power conversion unit 50 do this. Further, in the first precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a second value DC voltage between the conductive paths 21B and 22B. Let the power conversion unit 60 perform the operation.
  • the first value and the second value may be different, but are preferably the same. In a typical example, the first value and the second value are both 400V. That is, in the first precharge operation, a voltage of 800 V is applied between the power paths 94A and 94B by the converter 40.
  • the voltage applied by the converter 40 to the power paths 94A and 94B during the first precharge operation is the same as or about the same as the first charge voltage.
  • the driving power is supplied from the batteries 82A and 82B to the power lines 94A and 94B in a state where the batteries 82A and 82B are connected in series. Will be done.
  • a predetermined voltage from the batteries 82A and 82B to the power lines 94A and 94B
  • the control unit 18 or a control device determines or detects whether or not the first precharge operation is completed, and after the first precharge operation is completed, the relay units 91 and 92 are used. It may be turned on.
  • the relay unit 91 is planned to be supplied in the precharge operation.
  • the converter 40 is operated to perform a second precharge operation of charging the capacitor 9 to a second charging voltage (for example, 400V).
  • the charging voltage of the capacitor 9 in the second precharging operation (second charging voltage) is smaller than the charging voltage of the capacitor 9 in the first precharging operation (first charging voltage).
  • a control device determines whether or not the second method of driving (driving with the batteries 82A and 82B connected in parallel) is planned after the above-mentioned predetermined conditions are satisfied.
  • the predetermined second information for example, a signal indicating that the driving is performed at 400V
  • the control unit 18 determines whether or not the second method of driving (driving with the batteries 82A and 82B connected in parallel) is planned after the above-mentioned predetermined conditions are satisfied.
  • control unit 18 when the control unit 18 receives the second information from the control device after the predetermined condition is satisfied, the control unit 18 operates the converter 40 when the relay units 91 and 92 are in the off state to charge the capacitor 9 to the second charge voltage (for example, a second precharge operation for charging to 400 V) is performed.
  • the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a third value DC voltage between the conductive paths 11B and 12B. Let the power conversion unit 50 do this. Further, in the second precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a fourth value DC voltage between the conductive paths 21B and 22B. Let the power conversion unit 60 perform the operation.
  • the third value and the fourth value may be different, but are preferably the same. In a typical example, the third value and the fourth value are both 200V. That is, in the second precharge operation, a voltage of 400 V is applied between the power paths 94A and 94B by the converter 40.
  • the voltage applied by the converter 40 to the power paths 94A and 94B during the second precharge operation is the same as or about the same as the second charge voltage.
  • the driving power is supplied from the batteries 82A and 82B to the power lines 94A and 94B in a state where the batteries 82A and 82B are connected in parallel. Will be done.
  • a predetermined voltage from the batteries 82A and 82B to the power lines 94A and 94B
  • the control unit 18 or a control device determines or detects whether or not the second precharge operation is completed, and after the second precharge operation is completed, the relay units 91 and 92 are used. It may be turned on.
  • the control unit 18 causes the converter 40 to perform an operation of supplying electric power to the power paths 94A and 94B when a predetermined condition is satisfied when the relay units 91 and 92 are in the off state.
  • the control unit 18 controls the converter 40 to the power lines 94A and 94B. It is possible to perform an operation of supplying electric power.
  • the power supply device 10 should supply power to the power lines 94A and 94B while suppressing a large current from the batteries 82A and 82B, it is essential to supply power while suppressing the current by a separate precharge circuit. It is possible to supply electric power to the power lines 94A and 94B without using the above.
  • the power supply device 10 can switch between a method in which a plurality of power conversion units 50 and 60 are connected in series to perform power conversion and a method in which the series connection is canceled.
  • the power supply device 10 should supply power to the power lines 94A and 94B while suppressing a large current from the batteries 82A and 82B, the power supply device 10 supplies power while connecting a plurality of power conversion units 50 and 60 in series. Therefore, it is advantageous when a high voltage is applied to the power lines 94A and 94B.
  • each of the plurality of power conversion units 50 and 60 can charge and discharge each of the plurality of batteries 82A and 82B, so that the degree of freedom in charging and discharging the batteries is high, and the plurality of batteries It is easy to perform an operation to correct the imbalance of 82A and 82B.
  • the power supply device 10 Before the power supply device 10 is connected in series with the plurality of batteries 82A and 82B to supply power to the drive unit 4, the power supply device 10 is in a state where the power supply from the plurality of batteries 82A and 82B to the capacitor 9 is cut off.
  • the capacitor 9 can be charged so as to charge to a high first charging voltage.
  • the power supply device 10 is in a state where the power supply from the plurality of batteries 82A and 82B to the capacitor 9 is cut off before the plurality of batteries 82A and 82B are connected in parallel to supply power to the drive unit 4.
  • the capacitor 9 can be charged so as to charge to a relatively low second charging voltage. Therefore, regardless of which connection state the plurality of batteries 82A and 82B are connected to, a more appropriate precharge operation can be performed while keeping the relay units 91 and 92 in the off state before the connection.
  • the power supply device 10 utilizes the power supplied from the low-voltage battery 70 (second battery) when power should be supplied to the power paths 94A and 94B while suppressing a large current from the plurality of batteries 82A and 82B, and is a converter. After being appropriately converted by 40, electric power can be supplied to the power lines 94A and 94B.
  • the power supply device 10 can supply electric power to the power paths 94A and 94B while suppressing a large current from the plurality of batteries 82A and 82B, and realizes a configuration that makes it easy to correct the imbalance of the plurality of batteries 82A and 82B. can.
  • the power supply device 10 is provided with a plurality of power conversion units that are connected to different batteries and can be charged and discharged individually between each of the plurality of batteries 82A and 82B and the low voltage battery 70 (second battery). Therefore, redundancy can be achieved.
  • the following description relates to the vehicle power supply device 210 of the second embodiment.
  • the circuit configuration of the vehicle power supply device 210 of the second embodiment is different from that of the vehicle power supply device 10 of the first embodiment only in that the converter 40 shown in FIG. 1 and the like is changed to the converter 240. That is, in the power supply device 10 of FIG. 1, the configuration in which the converter 40 is changed to the converter 240 is the power supply device 210 of the second embodiment. Therefore, in the following description, FIG. 1 is referred to for parts other than the converter 40.
  • the vehicle power supply 210 is also simply referred to as a power supply 10.
  • the converter 240 includes a plurality of first conversion units 241A and 241B, a transformer 243, and a second conversion unit 242.
  • the transformer 243 includes a plurality of first coils 243A, 243B and a second coil 243C, and the plurality of first coils 243A, 243B and the second coil 243C are magnetically coupled.
  • Each of the plurality of first coils 243A and 243B is provided corresponding to each of the plurality of first conversion units 241A and 241B.
  • Each of the plurality of first conversion units 241A and 241B converts DC power based on the power from each of the battery 82A and the battery 82B, and outputs AC power to each of the plurality of first coils 243A and 243B.
  • the plurality of first conversion units 241A and 241B correspond to an example of the plurality of power conversion units.
  • the first conversion unit 241A has a function of converting DC power and AC power in both directions.
  • the first conversion unit 241A has a function of converting a DC voltage applied between the conductive paths 11B and 12B and generating an AC voltage in the first coil 243A.
  • the first conversion unit 241A also has a function of converting an AC voltage generated in the first coil 243A and outputting a DC voltage between the conductive paths 11B and 12B.
  • the first conversion unit 241A includes a capacitor 251A and switch elements 251C, 251D, 251E, 251F constituting a full bridge circuit.
  • the first conversion unit 241B has a function of converting DC power and AC power in both directions.
  • the first conversion unit 241B has a function of converting a DC voltage applied between the conductive paths 21B and 22B and generating an AC voltage in the first coil 243B.
  • the first conversion unit 241B also has a function of converting an AC voltage generated in the first coil 243B and outputting a DC voltage between the conductive paths 21B and 22B.
  • the first conversion unit 241B includes a capacitor 261A and switch elements 261C, 261D, 261E, 261F constituting a full bridge circuit.
  • the second conversion unit 242 has a function of converting AC power and DC power in both directions.
  • the second conversion unit 242 has a function of converting an AC voltage generated in the second coil 243C and outputting a DC voltage between the third conductive paths 96A and 96B.
  • the second conversion unit 242 also has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 53B.
  • the second conversion unit 242 includes switch elements 252C, 252D, an inductor 252E, a capacitor 252A, and the like.
  • the same operation as in the first embodiment (when a predetermined condition is satisfied when the relay units 91 and 92 are in the off state, the power path 94A with respect to the converter 240 , 94B) can be made to perform the operation of supplying electric power).
  • the power supply device 210 can also perform the above-mentioned first precharge operation and the second precharge operation in the same manner as the power supply device 10.
  • the switching unit 84 is not included in the power supply device 10, but the switching unit 84 may be included in the power supply device. That is, the switching unit 84 may be configured as a part of the power supply device.
  • two batteries 82A and 82B are provided as a plurality of batteries, but three or more batteries may be provided.
  • each bidirectional DCDC converter may be provided for each battery.
  • the switching unit may be configured to switch between three or more batteries in series connection and parallel connection.
  • Vehicle 2 In-vehicle system 3: Vehicle power supply system 4: Drive unit 8: Low voltage load 9: Capacitors 10, 210: Vehicle power supply device 11, 12: First conductive path 18: Control unit 21, 22: Second Conductive path 33: Switch (second switching unit) 40, 240: Converters 50, 60: Power converter 70: Low voltage battery 82: High voltage battery 82A: First high voltage battery (battery) 82B: Second high voltage battery (battery) 84: Switching unit 84A: Switch 84B: Switch 84C: Switch 91, 92: Relay unit 94: Power path 94A, 94B: Power path 96A, 96B: Third conductive path 241A: First conversion unit (power conversion unit) 241B: First conversion unit (power conversion unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

A vehicle power supply system (3) has a plurality of batteries (82A, 82B), power lines (94A, 94B), a switching unit (84), and relay units (91, 92). The switching unit (84) switches the plurality of batteries (82A, 82B) between series connection and parallel connection. The relay units (91, 92) switch between an ON state in which power supply from the plurality of batteries (82A, 82B) to the power lines (94A, 94B) is permitted and an OFF state in which the power supply is not permitted. This vehicle power supply device (10) is used in the vehicle power supply system (3). The vehicle power supply device (10) has a convertor (40) and a control unit (18). When the relay units (91, 92) are in the OFF state, if a predetermined condition is satisfied, the control unit (18) performs an operation of supplying power to the power lines (94A, 94B) with respect to the convertor (40).

Description

車両用電源装置Vehicle power supply
 本開示は、車両用電源装置に関する。 This disclosure relates to a vehicle power supply.
 特許文献1には、電気自動車に搭載されるバッテリ制御装置が開示されている。特許文献1に開示されるバッテリ制御装置は、電気自動車の走行時には複数のバッテリを並列接続とし、外部給電装置による複数のバッテリの充電時には複数のバッテリを直列接続とする。 Patent Document 1 discloses a battery control device mounted on an electric vehicle. In the battery control device disclosed in Patent Document 1, a plurality of batteries are connected in parallel when the electric vehicle is running, and a plurality of batteries are connected in series when the plurality of batteries are charged by the external power feeding device.
特開2018-85790号公報Japanese Unexamined Patent Publication No. 2018-85790
 バッテリから電力路を介して電力を供給する場合、バッテリから大電流を供給する前に電流を抑えて予備的に電力供給を行うべき場合がある。例えば、PHEV(Plug-in Hybrid Electric Vehicle)やEV(Electric Vehicle)等の車両では、一般的に、インバータに平滑コンデンサが設けられている。この車両では、インバータへの電力供給を開始する際には、電流を抑えたプリチャージ動作(予備充電)によって平滑コンデンサをある程度充電した後に、バッテリからの大電流を許容することが望まれる。 When supplying power from the battery via the power path, it may be necessary to suppress the current and supply power in advance before supplying a large current from the battery. For example, in vehicles such as PHEV (Plug-in Hybrid Electric Vehicle) and EV (Electric Vehicle), a smoothing capacitor is generally provided in the inverter. In this vehicle, when starting the power supply to the inverter, it is desired to allow a large current from the battery after charging the smoothing capacitor to some extent by a precharge operation (pre-charge) in which the current is suppressed.
 この種のプリチャージ動作を行う構成としては、例えば、バッテリと電力路の間に設けられたシステムメインリレーと並列にプリチャージ回路を設ける構成が考えられる。プリチャージ回路は、例えば、プリチャージリレーとプリチャージ抵抗を直列に設けた回路などによって実現できる。しかし、この例では、プリチャージ回路を使用することが必須となってしまう。 As a configuration for performing this type of precharging operation, for example, a configuration in which a precharging circuit is provided in parallel with the system main relay provided between the battery and the power path can be considered. The precharge circuit can be realized by, for example, a circuit in which a precharge relay and a precharge resistor are provided in series. However, in this example, it is essential to use a precharge circuit.
 本開示は、バッテリから電力路への電力供給が遮断された状態で、電流を抑えて電力路へ電力を供給することが可能な構成を提供する。 The present disclosure provides a configuration capable of suppressing the current and supplying electric power to the electric power path in a state where the electric power supply from the battery to the electric power path is cut off.
 本開示の一つである車両用電源装置は、
 複数のバッテリと、前記複数のバッテリから電力が供給される経路である電力路と、前記複数のバッテリを直列接続と並列接続とに切り替える切替部と、前記複数のバッテリから前記電力路への電力供給を許容するオン状態と許容しないオフ状態とに切り替わるリレー部と、を有する車両用電源システムに用いられる車両用電源装置であって、
 コンバータと、
 前記コンバータを制御する制御部と、
 を有し、
 前記制御部は、前記リレー部がオフ状態のときに所定条件が成立した場合に、前記コンバータに対して前記電力路に電力を供給する動作を行わせる。
The vehicle power supply, which is one of the disclosures, is
A plurality of batteries, a power path that is a path to which power is supplied from the plurality of batteries, a switching unit that switches the plurality of batteries between series connection and parallel connection, and power from the plurality of batteries to the power path. A vehicle power supply device used in a vehicle power supply system having a relay unit that switches between an on state that allows supply and an off state that does not allow supply.
With the converter
A control unit that controls the converter,
Have,
The control unit causes the converter to supply electric power to the power path when a predetermined condition is satisfied when the relay unit is in the off state.
 本開示の一つである車両用電源装置は、バッテリから電力路への電力供給が遮断された状態で、電流を抑えて電力路へ電力を供給することが可能である。 The vehicle power supply device, which is one of the present disclosures, can supply electric power to the electric power path by suppressing the current in a state where the electric power supply from the battery to the electric power path is cut off.
図1は、第1実施形態の車両用電源装置を含む車載システムを概略的に例示するブロック図である。FIG. 1 is a block diagram schematically illustrating an in-vehicle system including a vehicle power supply device according to a first embodiment. 図2は、図1の車載システムを搭載した車両を模式的に例示する模式図である。FIG. 2 is a schematic diagram schematically illustrating a vehicle equipped with the in-vehicle system of FIG. 図3は、図1の車載システムにおけるコンバータの一部の具体的構成を例示する回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration of a part of the converter in the in-vehicle system of FIG. 図4は、第2実施形態の車両用電源装置におけるコンバータの一部の具体的構成を例示する回路図である。FIG. 4 is a circuit diagram illustrating a specific configuration of a part of the converter in the vehicle power supply device of the second embodiment.
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔7〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。 In the following, the embodiments of the present disclosure are listed and exemplified. The features [1] to [7] exemplified below may be combined in any way within a consistent range.
 〔1〕複数のバッテリと、前記複数のバッテリから電力が供給される経路である電力路と、前記複数のバッテリを直列接続と並列接続とに切り替える切替部と、前記複数のバッテリから前記電力路への電力供給を許容するオン状態と許容しないオフ状態とに切り替わるリレー部と、を有する車両用電源システムに用いられる車両用電源装置であって、
 コンバータと、
 前記コンバータを制御する制御部と、
 を有し、
 前記制御部は、前記リレー部がオフ状態のときに所定条件が成立した場合に、前記コンバータに対して前記電力路に電力を供給する動作を行わせる
 車両用電源装置。
[1] A plurality of batteries, a power path that is a path to which power is supplied from the plurality of batteries, a switching unit that switches the plurality of batteries between series connection and parallel connection, and the power path from the plurality of batteries. A vehicle power supply device used in a vehicle power supply system having a relay unit that switches between an on state that allows power supply to and an off state that does not allow power supply to the vehicle.
With the converter
A control unit that controls the converter,
Have,
The control unit is a vehicle power supply device that causes the converter to perform an operation of supplying electric power to the power path when a predetermined condition is satisfied when the relay unit is in the off state.
 上記の〔1〕の車両用電源装置は、バッテリから電力路への直接的な電力供給が行われない状態であっても、制御部がコンバータを制御し、電力路へと電力を供給する動作を行わせることができる。よって、この車両用電源装置は、バッテリからの大電流を抑えながら電力路に電力を供給すべき場合に、バッテリと電力路の間に存在する回路によって電流を抑えながら電力を供給するような動作を必須とせずに、電力路へ電力を供給することができる。 In the vehicle power supply device of the above [1], the control unit controls the converter and supplies electric power to the electric power path even when the electric power is not directly supplied from the battery to the electric power path. Can be done. Therefore, when the power supply device for a vehicle should supply electric power to the electric power path while suppressing a large current from the battery, the operation is such that the electric power is supplied while suppressing the current by the circuit existing between the battery and the electric power path. It is possible to supply electric power to the electric power path without requiring.
 〔2〕の車両用電源装置は、上記の〔1〕に記載の車両用電源装置において、次の特徴を有する。上記コンバータは、複数の電力変換部を備え、更に、複数の上記電力変換部を直列に接続した状態と直列接続を解除した状態とに切り替える第2切替部を有する。上記制御部は、上記リレー部がオフ状態のときに上記所定条件が成立した場合、複数の上記電力変換部を直列接続とするように上記第2切替部を制御しつつ、複数の上記電力変換部に対して上記電力路に電力を供給する動作を行わせる。 The vehicle power supply device of [2] has the following features in the vehicle power supply device described in [1] above. The converter includes a plurality of power conversion units, and further has a second switching unit that switches between a state in which the plurality of power conversion units are connected in series and a state in which the series connection is disconnected. When the predetermined condition is satisfied when the relay unit is in the off state, the control unit controls the second switching unit so that the plurality of power conversion units are connected in series, and the plurality of power conversion units. The unit is made to perform an operation of supplying electric power to the electric power path.
 上記の〔2〕の車両用電源装置は、複数の電力変換部を直列に接続して電力変換を行う方式と、直列接続を解除した方式とを切り替えることができる。そして、この車両用電源装置は、バッテリからの大電流を抑えながら電力路に電力を供給すべき場合に、複数の電力変換部を直列接続としつつ電力を供給するように動作することができるため、高い電圧を電力路に印加する場合に有利である。 The vehicle power supply device of the above [2] can switch between a method of connecting a plurality of power conversion units in series to perform power conversion and a method of canceling the series connection. Then, this vehicle power supply device can operate so as to supply electric power while connecting a plurality of power conversion units in series when the electric power should be supplied to the electric power path while suppressing a large current from the battery. This is advantageous when a high voltage is applied to the power path.
 〔3〕の車両用電源装置は、上記の〔2〕に記載の車両用電源装置において、次の特徴を有する。各々の上記電力変換部は、各々の上記バッテリに対応して設けられ、双方向に電力変換を行う。 The vehicle power supply device of [3] has the following features in the vehicle power supply device described in [2] above. Each of the above power conversion units is provided corresponding to each of the above batteries and performs power conversion in both directions.
 上記の〔3〕の車両用電源装置は、各々の電力変換部が各々のバッテリを充放電させることができるため、複数のバッテリの不均衡を是正する動作を行いやすい。 In the vehicle power supply device of the above [3], since each power conversion unit can charge and discharge each battery, it is easy to perform an operation of correcting the imbalance of a plurality of batteries.
 〔4〕の車両用電源装置は、上記の〔1〕から〔3〕のいずれか一つに記載の車両用電源装置において、次の特徴を有する。上記電力路は、上記複数のバッテリから車両の駆動部に電力を供給する経路である。上記電力路にはコンデンサが電気的に接続される。上記制御部は、上記複数のバッテリを直列接続としつつ上記複数のバッテリから上記駆動部に電力を供給する前には、上記リレー部をオフ状態としつつ上記コンバータを動作させて上記コンデンサを第1充電電圧に充電させる第1プリチャージ動作を行う。上記制御部は、上記複数のバッテリを上記並列接続としつつ上記複数のバッテリから上記駆動部に電力を供給する前には、上記リレー部をオフ状態としつつ上記コンバータを動作させて上記コンデンサを上記第1充電電圧よりも小さい第2充電電圧に充電させる第2プリチャージ動作を行う。 The vehicle power supply device of [4] has the following features in the vehicle power supply device according to any one of the above [1] to [3]. The electric power path is a path for supplying electric power from the plurality of batteries to the drive unit of the vehicle. A capacitor is electrically connected to the power path. Before supplying power from the plurality of batteries to the drive unit while connecting the plurality of batteries in series, the control unit operates the converter while turning off the relay unit to make the capacitor first. The first precharge operation for charging the charging voltage is performed. The control unit operates the converter while turning off the relay unit before supplying power from the plurality of batteries to the drive unit while connecting the plurality of batteries in parallel to connect the capacitor to the capacitor. A second precharging operation is performed in which a second charging voltage smaller than the first charging voltage is charged.
 上記の〔4〕の車両用電源装置は、複数のバッテリを直列に接続して駆動部に電力を供給する前には、複数のバッテリからコンデンサへの電力供給を遮断した状態で、相対的に高い第1充電電圧まで充電させるようにコンデンサを充電することができる。更に、この車両用電源装置は、複数のバッテリを並列に接続して駆動部に電力を供給する前には、複数のバッテリからコンデンサへの電力供給を遮断した状態で、相対的に低い第2充電電圧まで充電させるようにコンデンサを充電することができる。よって、複数のバッテリがいずれの接続状態で接続される場合でも、その接続前に、リレー部をオフ状態で維持しながらより適切なプリチャージ動作を行うことができる。 In the vehicle power supply device of the above [4], before supplying power to the drive unit by connecting a plurality of batteries in series, the power supply from the plurality of batteries to the capacitor is cut off, and relatively. The capacitor can be charged to charge up to a high first charge voltage. Further, in this vehicle power supply device, before supplying power to the drive unit by connecting a plurality of batteries in parallel, the power supply from the plurality of batteries to the capacitor is cut off, and the second is relatively low. The capacitor can be charged to charge up to the charging voltage. Therefore, regardless of which connection state the plurality of batteries are connected to, a more appropriate precharge operation can be performed while keeping the relay unit in the off state before the connection.
 〔5〕の車両用電源装置は、〔1〕から〔4〕のいずれか一つに記載の車両用電源装置において、次の特徴を有する。上記制御部は、上記リレー部がオフ状態のときに上記所定条件が成立した場合に、上記複数のバッテリとは異なる第2バッテリから供給される電力を入力電力として電力変換を行いつつ上記電力路に出力電力を供給する動作を上記電力変換部に行わせる。 The vehicle power supply device of [5] has the following features in the vehicle power supply device according to any one of [1] to [4]. When the predetermined condition is satisfied when the relay unit is in the off state, the control unit performs power conversion using the power supplied from the second battery different from the plurality of batteries as the input power, and performs the power conversion. Is made to perform the operation of supplying the output power to the power conversion unit.
 上記の〔5〕の車両用電源装置は、バッテリからの大電流を抑えながら電力路に電力を供給すべき場合に、第2バッテリから供給される電力を利用し、コンバータによって適切に変換した上で、電力路に電力を供給することができる。 The vehicle power supply device of the above [5] uses the electric power supplied from the second battery when the electric power should be supplied to the electric power path while suppressing the large current from the battery, and is appropriately converted by the converter. Therefore, electric power can be supplied to the electric power path.
 〔6〕の車両用電源装置は、〔5〕に記載の車両用電源装置において、次の特徴を有する。上記複数のバッテリは、第1バッテリと第2バッテリとを有する。上記コンバータは、第1電力変換部と第2電力変換部とを有する。上記第1電力変換部は、上記第1バッテリから供給される電力を入力電力として上記電力路とは異なる導電路に電力を供給する電力変換動作と、上記導電路から供給される電力を入力電力として上記第1バッテリに電力を供給する電力変換動作とを行う。上記第2電力変換部は、上記第2バッテリから供給される電力を入力電力として上記導電路に電力を供給する電力変換動作と、上記導電路から供給される電力を入力電力として上記第2バッテリに電力を供給する電力変換動作とを行う。上記導電路は、上記第2バッテリに電気的に接続される経路である。 The vehicle power supply device of [6] has the following features in the vehicle power supply device according to [5]. The plurality of batteries have a first battery and a second battery. The converter has a first power conversion unit and a second power conversion unit. The first power conversion unit uses the power supplied from the first battery as input power to supply power to a conductive path different from the power path, and inputs power supplied from the conductive path. The power conversion operation of supplying power to the first battery is performed. The second power conversion unit uses the power supplied from the second battery as input power to supply power to the conductive path, and the second battery using the power supplied from the conductive path as input power. Performs a power conversion operation to supply power to the power. The conductive path is a path electrically connected to the second battery.
 上記の〔6〕の車両用電源装置は、バッテリからの大電流を抑えながら電力路に電力を供給することができ、且つ、複数のバッテリの不均衡を是正しやすい構成を実現できる。しかも、この車両用電源装置は、別々のバッテリに接続されて個別に充放電し得る電力変換部が、各バッテリと第2バッテリとの間に複数設けられているため、冗長化を図ることができる。 The vehicle power supply device of the above [6] can supply electric power to the electric power path while suppressing a large current from the battery, and can realize a configuration that can easily correct the imbalance of a plurality of batteries. Moreover, since this vehicle power supply device is provided with a plurality of power conversion units that are connected to different batteries and can be charged and discharged individually between each battery and the second battery, redundancy can be achieved. can.
 〔7〕の車両用電源装置は、〔6〕に記載の車両用電源装置において、次の特徴を有する。上記コンバータは、複数の第1変換部と、トランスと、第2変換部と、を備える。上記トランスは、複数の第1コイルと第2コイルとを備え、複数の上記第1コイルと上記第2コイルとが磁気結合されている。各々の上記第1変換部にそれぞれ対応して各々の上記第1コイルが設けられる。各々の上記第1変換部は、各々の上記バッテリからの電力に基づく直流電力を変換して各々の上記第1コイルに交流電力を出力する変換動作と、各々の上記第1コイルで発生する交流電力を変換して直流電力をそれぞれ出力する変換動作と、を双方向に行い得る。上記第2変換部は、上記第2コイルで発生する交流電力を変換して上記第2バッテリに向けて直流電力を出力する変換動作と、上記第2バッテリからの電力に基づく直流電力を変換して上記第2コイルに交流電力を出力する変換動作と、を双方向に行い得る。 The vehicle power supply device of [7] has the following features in the vehicle power supply device according to [6]. The converter includes a plurality of first conversion units, a transformer, and a second conversion unit. The transformer includes a plurality of first coils and a second coil, and the plurality of the first coils and the second coil are magnetically coupled. Each of the first coils is provided corresponding to each of the first conversion units. Each of the first conversion units has a conversion operation of converting DC power based on the power from each of the batteries and outputting AC power to each of the first coils, and AC generated by each of the first coils. A conversion operation that converts electric power and outputs DC electric power can be performed in both directions. The second conversion unit converts the AC power generated by the second coil and outputs the DC power to the second battery, and converts the DC power based on the power from the second battery. The conversion operation of outputting AC power to the second coil can be performed in both directions.
 上記の〔7〕の車両用電源装置は、バッテリからの大電流を抑えながら電力路に電力を供給することができ、且つ、複数のバッテリの不均衡を是正しやすい構成を、変換部を統合させた構成によって実現することができる。 The vehicle power supply device of the above [7] can supply electric power to the electric power path while suppressing a large current from the battery, and integrates a conversion unit into a configuration that makes it easy to correct the imbalance of a plurality of batteries. It can be realized by the configured configuration.
 <第1実施形態>
 (車載システムの概要)
 図1には、本開示の第1実施形態に係る車両用電源装置10が示される。車両用電源装置10は、単に電源装置10とも称される。図2に示されるように、電源装置10は、車両1に搭載される車載システム2の一部として用いられる装置である。車両1は、電源装置10を搭載した車両であり、例えば、PHEV(Plug-in Hybrid Electric Vehicle)、EV(Electric Vehicle)等の車両である。
<First Embodiment>
(Overview of in-vehicle system)
FIG. 1 shows a vehicle power supply device 10 according to the first embodiment of the present disclosure. The vehicle power supply device 10 is also simply referred to as a power supply device 10. As shown in FIG. 2, the power supply device 10 is a device used as a part of the in-vehicle system 2 mounted on the vehicle 1. The vehicle 1 is a vehicle equipped with a power supply device 10, and is, for example, a vehicle such as a PHEV (Plug-in Hybrid Electric Vehicle) or an EV (Electric Vehicle).
 図2のように、車載システム2は、車両用電源システム3、駆動部4、高圧負荷5、低圧負荷8などを含む。車両用電源システム3は、単に電源システム3とも称される。電源システム3は、電源装置10と低圧バッテリ70と高圧バッテリ82とを有する。 As shown in FIG. 2, the in-vehicle system 2 includes a vehicle power supply system 3, a drive unit 4, a high voltage load 5, a low voltage load 8, and the like. The vehicle power supply system 3 is also simply referred to as a power supply system 3. The power supply system 3 includes a power supply device 10, a low voltage battery 70, and a high voltage battery 82.
 図1に示されるように、駆動部4は、インバータ7とモータ6とを含む。インバータ7は、高圧バッテリ82から供給される電力に基づく直流電力から交流電力(例えば三相交流)を生成し、モータ6に供給する。モータ6は、例えば主機系モータである。モータ6は、高圧バッテリ82から供給される電力に基づいて回転し、車両1の車輪に対して回転力を与える装置である。 As shown in FIG. 1, the drive unit 4 includes an inverter 7 and a motor 6. The inverter 7 generates AC power (for example, three-phase AC) from DC power based on the power supplied from the high-voltage battery 82, and supplies the AC power to the motor 6. The motor 6 is, for example, a main engine system motor. The motor 6 is a device that rotates based on the electric power supplied from the high-voltage battery 82 and applies a rotational force to the wheels of the vehicle 1.
 図2に示される高圧負荷5は、高圧バッテリ82から電力の供給を受けて動作し得る負荷である。高圧負荷5は、例えば、エアコンやヒータなどであり、これら以外の電気機器であってもよい。図2に示される高圧負荷5は、図1に示される高圧負荷5A,5Bを備える。 The high-voltage load 5 shown in FIG. 2 is a load that can operate by receiving power supplied from the high-voltage battery 82. The high-voltage load 5 is, for example, an air conditioner, a heater, or the like, and may be an electric device other than these. The high voltage load 5 shown in FIG. 2 includes the high voltage loads 5A and 5B shown in FIG.
 低圧負荷8は、例えば、エンジン及びモータを稼動するのに必要な付属機器である。この付属機器は、例えば、セルモータ、オルタネータ及びラジエータクーリングファン等である。低圧負荷8は、電動パワーステアリングシステム、電動パーキングブレーキ、照明、ワイパー駆動部、ナビゲーション装置等を含んでいてもよい。低圧負荷8は、第3導電路96A,96Bに電気的に接続され、第3導電路96A,96Bを介して電力の供給を受ける。 The low voltage load 8 is, for example, an accessory device necessary for operating an engine and a motor. This accessory is, for example, a starter motor, an alternator, a radiator cooling fan, and the like. The low voltage load 8 may include an electric power steering system, an electric parking brake, lighting, a wiper drive unit, a navigation device, and the like. The low voltage load 8 is electrically connected to the third conductive paths 96A and 96B, and is supplied with electric power via the third conductive paths 96A and 96B.
 本明細書において、車両走行時とは、車両1が移動している状態を含むが、車両1が移動している状態に限らない。車両走行時は、アクセルを踏めば車両1が移動する状態も含む。車両走行時は、車両1が移動せずに停止しつつ低圧負荷8のいずれか又は全てに電力を供給している状態を含む。車両1がPHEVであれば、車両走行時はエンジンのアイドリング状態をも含む。 In the present specification, the state in which the vehicle is running includes the state in which the vehicle 1 is moving, but is not limited to the state in which the vehicle 1 is moving. When the vehicle is running, the vehicle 1 moves when the accelerator is stepped on. When the vehicle is running, it includes a state in which the vehicle 1 is stopped without moving and power is supplied to any or all of the low voltage loads 8. If the vehicle 1 is a PHEV, the idling state of the engine is also included when the vehicle is running.
 電源システム3は、低圧バッテリ70と、高圧バッテリ82と、電源装置10とを有する。高圧バッテリ82は、複数のバッテリ(第1高圧バッテリ82A、第2高圧バッテリ82B)を有する。電源システム3は、複数のバッテリ(第1高圧バッテリ82A、第2高圧バッテリ82B)が直列接続と並列接続とに切り替わるシステムである。第1高圧バッテリ82Aは、バッテリ82Aとも称される。第2高圧バッテリ82Bはバッテリ82Bとも称される。高圧バッテリ82は、後述される切替部84による切り替え動作により、バッテリ82Aとバッテリ82Bとが直列接続と並列接続とに切り替わる電源である。高圧バッテリ82は、充放電可能に構成される。高圧バッテリ82は、駆動部4を駆動するための高電圧(例えば、約300V)を出力する。バッテリ82A及びバッテリ82Bのそれぞれの満充電時の出力電圧は、低圧バッテリ70の満充電時の出力電圧よりも高い。バッテリ82A及びバッテリ82Bは、リチウムイオン電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。 The power supply system 3 has a low voltage battery 70, a high voltage battery 82, and a power supply device 10. The high voltage battery 82 has a plurality of batteries (first high voltage battery 82A, second high voltage battery 82B). The power supply system 3 is a system in which a plurality of batteries (first high-voltage battery 82A, second high-voltage battery 82B) are switched between series connection and parallel connection. The first high voltage battery 82A is also referred to as a battery 82A. The second high voltage battery 82B is also referred to as a battery 82B. The high-voltage battery 82 is a power source in which the battery 82A and the battery 82B are switched between series connection and parallel connection by a switching operation by the switching unit 84 described later. The high-voltage battery 82 is configured to be rechargeable and dischargeable. The high voltage battery 82 outputs a high voltage (for example, about 300 V) for driving the drive unit 4. The output voltage of the battery 82A and the battery 82B at the time of full charge is higher than the output voltage of the low pressure battery 70 at the time of full charge. The battery 82A and the battery 82B may be composed of a lithium ion battery or may be composed of other types of storage batteries.
 低圧バッテリ70は、蓄電部の一例に相当する。低圧バッテリ70は、充放電可能に構成される。低圧バッテリ70は、低圧負荷8に電力を供給する。低圧バッテリ70は、鉛蓄電池によって構成されていてもよく、その他の種類の蓄電池によって構成されていてもよい。低圧バッテリ70は、満充電時に所定電圧(例えば12V)を出力する。低圧バッテリ70は、一方の電極が第3導電路96Aに電気的に接続され、他方の電極が第3導電路96Bに電気的に接続される。低圧バッテリ70の一方の電極と第3導電路96Aは、例えば同電位である。低圧バッテリ70の他方の電極と第3導電路96Bは、例えば同電位である。 The low voltage battery 70 corresponds to an example of a power storage unit. The low voltage battery 70 is configured to be rechargeable and dischargeable. The low voltage battery 70 supplies power to the low voltage load 8. The low voltage battery 70 may be composed of a lead storage battery or another type of storage battery. The low voltage battery 70 outputs a predetermined voltage (for example, 12V) when fully charged. In the low voltage battery 70, one electrode is electrically connected to the third conductive path 96A, and the other electrode is electrically connected to the third conductive path 96B. One electrode of the low voltage battery 70 and the third conductive path 96A have, for example, the same potential. The other electrode of the low voltage battery 70 and the third conductive path 96B are, for example, equipotential.
 電源システム3は、車両1に対して外部電源(図示省略)が接続された際に、外部電源から供給される電力に基づいて高圧バッテリ82が充電される。車両1に外部電源が接続された場合、例えば、外部電源から供給される電力に基づき、電力供給路90A,90Bを介して充電電流が供給される。 In the power supply system 3, when an external power source (not shown) is connected to the vehicle 1, the high voltage battery 82 is charged based on the electric power supplied from the external power source. When an external power source is connected to the vehicle 1, for example, a charging current is supplied via the power supply paths 90A and 90B based on the electric power supplied from the external power source.
 電源システム3では、車両1の接続端子(図示省略)に対して急速充電器が接続され、急速充電器から各バッテリ82A,82Bの電圧仕様を超える電圧(例えば800V)が供給されうる。この場合、図示されていない回路を介して、電力供給路90A,90B間に、各バッテリ82A,82Bの電圧仕様を超える直流電圧(例えば800V)が印加される。このように、相対的に高い直流電圧が印加されて各バッテリ82A,82Bが充電される場合、図示されていない制御装置又は制御部18が切替部84を第1切替状態に切り替えることで、バッテリ82A及びバッテリ82Bが直列に接続される。そして、このようにバッテリ82A及びバッテリ82Bが直列に接続された状態で、これらのバッテリが充電される。 In the power supply system 3, a quick charger is connected to the connection terminal (not shown) of the vehicle 1, and a voltage exceeding the voltage specifications of the batteries 82A and 82B (for example, 800V) can be supplied from the quick charger. In this case, a DC voltage (for example, 800V) exceeding the voltage specifications of the batteries 82A and 82B is applied between the power supply paths 90A and 90B via a circuit (not shown). As described above, when a relatively high DC voltage is applied to charge the batteries 82A and 82B, the control device or the control unit 18 (not shown) switches the switching unit 84 to the first switching state, whereby the battery is charged. The 82A and the battery 82B are connected in series. Then, with the battery 82A and the battery 82B connected in series in this way, these batteries are charged.
 一方、電源システム3では、車両1の接続端子に対して急速充電器が接続され、急速充電器から各バッテリ82A,82Bの電圧仕様に合った電圧(例えば400V)も供給されうる。この場合、図示されていない回路を介して、電力供給路90A,90B間に、各バッテリ82A,82Bの電圧仕様に合った直流電圧(例えば、400V)が印加される。このように、相対的に低い直流電圧が印加されて各バッテリ82A,82Bが充電される場合、図示されていない制御装置又は制御部18が切替部84を第2切替状態に切り替えることで、バッテリ82A及びバッテリ82Bが並列に接続される。 On the other hand, in the power supply system 3, a quick charger is connected to the connection terminal of the vehicle 1, and a voltage (for example, 400 V) corresponding to the voltage specifications of the batteries 82A and 82B can be supplied from the quick charger. In this case, a DC voltage (for example, 400V) suitable for the voltage specifications of the batteries 82A and 82B is applied between the power supply paths 90A and 90B via a circuit (not shown). When the batteries 82A and 82B are charged by applying a relatively low DC voltage as described above, the control device or the control unit 18 (not shown) switches the switching unit 84 to the second switching state, whereby the battery is charged. The 82A and the battery 82B are connected in parallel.
 電力路94は、一対の電力路94A,94Bを有する。電力路94A,94Bは、複数のバッテリ82A,82Bから駆動部4に電力を供給する経路であり、具体的には、複数のバッテリ82A,82Bからインバータ7に電力を供給する経路である。リレー部91,92がいずれもオン状態のときには、電力路94A,94Bを介して複数のバッテリ82A,82Bから駆動部4へと電力が供給され得る。電力路94Aは、リレー部91がオン状態のときにバッテリ82Aにおける最も電位の高い電極に電気的に接続され、この電極と同電位とされる。電力路94Bは、リレー部92がオン状態のときにバッテリ82Bにおける最も電位の低い電極に電気的に接続され、この電極と同電位とされる。電力路94A,94Bには、駆動部4のコンデンサ9が電気的に接続される。電力路94Aは、コンデンサ9の一方の電極に電気的に接続される。電力路94Aは、コンデンサ9の他方の電極に電気的に接続される。コンデンサ9は、平滑用のコンデンサである。 The power path 94 has a pair of power paths 94A and 94B. The power paths 94A and 94B are paths for supplying electric power from the plurality of batteries 82A and 82B to the drive unit 4, and specifically, are paths for supplying electric power from the plurality of batteries 82A and 82B to the inverter 7. When both the relay units 91 and 92 are in the ON state, power can be supplied from the plurality of batteries 82A and 82B to the drive unit 4 via the power paths 94A and 94B. The power path 94A is electrically connected to the electrode having the highest potential in the battery 82A when the relay unit 91 is in the ON state, and has the same potential as this electrode. The power path 94B is electrically connected to the electrode having the lowest potential in the battery 82B when the relay unit 92 is in the ON state, and has the same potential as this electrode. The capacitor 9 of the drive unit 4 is electrically connected to the power paths 94A and 94B. The power path 94A is electrically connected to one electrode of the capacitor 9. The power path 94A is electrically connected to the other electrode of the capacitor 9. The capacitor 9 is a smoothing capacitor.
 リレー部91,92は、システムメインリレーとして機能する。リレー部91,92は、半導体リレーであってもよく、機械式リレーであってもよい。リレー部91,92は、複数のバッテリ82A,82Bから電力路94A,94Bへの電力供給を許容するオン状態と許容しないオフ状態とに切り替わる。リレー部91,92がいずれもオン状態のときには、複数のバッテリ82A,82Bから駆動部4への電力供給が許容される。リレー部91,92がいずれもオフ状態のときには、複数のバッテリ82A,82Bから駆動部4への電力供給が遮断される。リレー部91,92は、例えば、図示されていない制御装置によってオンオフ動作が制御されてもよく、制御部18によってオンオフ動作が制御されてもよい。 The relay units 91 and 92 function as the system main relay. The relay units 91 and 92 may be semiconductor relays or mechanical relays. The relay units 91 and 92 switch between an on state that allows power supply from the plurality of batteries 82A and 82B to the power paths 94A and 94B and an off state that does not allow power supply. When both the relay units 91 and 92 are in the ON state, power supply from the plurality of batteries 82A and 82B to the drive unit 4 is permitted. When both the relay units 91 and 92 are in the off state, the power supply from the plurality of batteries 82A and 82B to the drive unit 4 is cut off. The on / off operation of the relay units 91 and 92 may be controlled by, for example, a control device (not shown), or the on / off operation may be controlled by the control unit 18.
 リレー部86,88は、高圧バッテリ82とコンバータ40の間を導通状態と遮断状態とに切り替えるスイッチである。リレー部86,88は、半導体リレーであってもよく、機械式リレーであってもよい。リレー部86,88は、例えば、図示されていない制御装置によってオンオフ動作が制御されてもよく、制御部18によってオンオフ動作が制御されてもよい。リレー部86がオン状態のときには、バッテリ82Aの低電位側の電極と電力変換部50に接続される第1導電路12との間が短絡する。リレー部86がオフ状態のときには、バッテリ82Aの低電位側の電極と第1導電路12の間が遮断される。リレー部88がオン状態のときには、バッテリ82Bの高電位側の電極と電力変換部50に接続される第2導電路21との間が短絡する。リレー部88がオフ状態のときには、バッテリ82Bの高電位側の電極と第2導電路21の間が遮断される。 The relay units 86 and 88 are switches that switch between the high voltage battery 82 and the converter 40 between the conduction state and the cutoff state. The relay units 86 and 88 may be a semiconductor relay or a mechanical relay. The on / off operation of the relay units 86 and 88 may be controlled by, for example, a control device (not shown), or the on / off operation may be controlled by the control unit 18. When the relay unit 86 is in the ON state, a short circuit occurs between the electrode on the low potential side of the battery 82A and the first conductive path 12 connected to the power conversion unit 50. When the relay unit 86 is in the off state, the space between the low potential side electrode of the battery 82A and the first conductive path 12 is cut off. When the relay unit 88 is in the ON state, a short circuit occurs between the electrode on the high potential side of the battery 82B and the second conductive path 21 connected to the power conversion unit 50. When the relay unit 88 is in the off state, the space between the electrode on the high potential side of the battery 82B and the second conductive path 21 is cut off.
 切替部84は、複数のスイッチ84A,84B,84Cを備える。複数のスイッチ84A,84B,84Cは、半導体リレーであってもよく、機械式リレーであってもよい。切替部84は、バッテリ82A及びバッテリ82Bを直列に接続した状態(直列接続)と並列に接続した状態(並列接続)とに切り替える切替回路である。切替部84は、スイッチ84Bがオン状態であり且つスイッチ84A,84Cがオフ状態である第1切替状態のときにバッテリ82A及びバッテリ82Bを直列接続とする。切替部84は、スイッチ84Bがオフ状態であり且つスイッチ84A,84Cがオン状態である第2切替状態のときにバッテリ82A及びバッテリ82Bを並列接続とする。 The switching unit 84 includes a plurality of switches 84A, 84B, 84C. The plurality of switches 84A, 84B, 84C may be a semiconductor relay or a mechanical relay. The switching unit 84 is a switching circuit for switching between a state in which the battery 82A and the battery 82B are connected in series (series connection) and a state in which the battery 82A and the battery 82B are connected in parallel (parallel connection). The switching unit 84 connects the battery 82A and the battery 82B in series when the switch 84B is in the ON state and the switches 84A and 84C are in the OFF state in the first switching state. The switching unit 84 connects the battery 82A and the battery 82B in parallel when the switch 84B is in the off state and the switches 84A and 84C are in the second switching state.
 切替部84は、制御装置によって制御される。切替部84を制御する制御装置は、制御部18であってもよく、制御部18とは異なる装置であってもよい。制御装置は、切替部84に対し、複数のバッテリ82A,82Bを直列に接続する動作と、並列に接続する動作とを行わせ得る。具体的には、制御部18は、スイッチ84Bをオン状態とし且つスイッチ84A,84Cをオフ状態にする制御と、スイッチ84Bをオフ状態とし且つスイッチ84A,84Cをオン状態にする制御とを行い得る。 The switching unit 84 is controlled by a control device. The control device that controls the switching unit 84 may be the control unit 18, or may be a device different from the control unit 18. The control device may cause the switching unit 84 to perform an operation of connecting a plurality of batteries 82A and 82B in series and an operation of connecting them in parallel. Specifically, the control unit 18 can control the switch 84B to be in the on state and the switches 84A and 84C to be in the off state, and the switch 84B to be in the off state and the switches 84A and 84C to be in the on state. ..
 (電源装置)
 図1に示される電源装置10は、高圧バッテリ82や低圧バッテリ70から供給される電力を入力として電力変換を行い得る装置である。電源装置10は、主に、コンバータ40、スイッチ31,32,33、ヒューズ35,36,37,38、制御部18などを有する。
(Power supply)
The power supply device 10 shown in FIG. 1 is a device capable of performing power conversion by inputting power supplied from a high voltage battery 82 or a low voltage battery 70. The power supply device 10 mainly includes a converter 40, switches 31, 32, 33, fuses 35, 36, 37, 38, a control unit 18, and the like.
 制御部18は、主に電源装置10内の装置に対して各種制御を行う装置である。制御部18は、演算機能、情報処理機能、記憶機能などを有する。制御部18は、複数の電子制御装置によって構成されていてもよく、単一の電子制御装置によって構成されていてもよい。制御部18は、コンバータ40を制御する。制御部18によるコンバータ40に対する制御の具体例は、後に詳述される。 The control unit 18 is a device that mainly controls various devices in the power supply device 10. The control unit 18 has a calculation function, an information processing function, a storage function, and the like. The control unit 18 may be configured by a plurality of electronic control devices, or may be configured by a single electronic control device. The control unit 18 controls the converter 40. Specific examples of control of the converter 40 by the control unit 18 will be described in detail later.
 コンバータ40は、複数のバッテリ82A,82Bの各々から入力される電力を変換し、第3導電路96A,96Bに電力を出力する変換動作を行い得る装置である。第3導電路96A,96Bは、導電路の一例に相当する。第3導電路96A,96Bは、低圧負荷8へ電力を供給する経路である。第3導電路96A,96Bの各々は、低圧バッテリ70の両電極の各々に電気的に接続される経路である。 The converter 40 is a device capable of performing a conversion operation of converting the electric power input from each of the plurality of batteries 82A and 82B and outputting the electric power to the third conductive paths 96A and 96B. The third conductive paths 96A and 96B correspond to an example of the conductive paths. The third conductive paths 96A and 96B are paths for supplying electric power to the low voltage load 8. Each of the third conductive paths 96A and 96B is a path electrically connected to each of the electrodes of the low-voltage battery 70.
 コンバータ40は、複数の電力変換部50,60を備える。複数の電力変換部50,60の各々は、複数のバッテリ82A,82Bの各々に対応して設けられ、双方向に電力変換を行う。電力変換部50,60はいずれも双方向のDCDCコンバータとして構成されている。電力変換部50は、第1のDCDCコンバータとして機能する。電力変換部60は、第2のDCDCコンバータとして機能する。これら複数の電力変換部50,60の各々は、複数のバッテリ82A,82Bの各々にそれぞれ対応して設けられる。具体的には、複数のバッテリ82A,82Bが直列に接続されている状態で、リレー部91,92及びリレー部86,88がオン状態である場合に、各バッテリの出力電圧に応じた電圧が、各DCDCコンバータの一方側の入出力路である各々の一対の導電路間に印加される。 The converter 40 includes a plurality of power conversion units 50 and 60. Each of the plurality of power conversion units 50 and 60 is provided corresponding to each of the plurality of batteries 82A and 82B, and performs power conversion in both directions. Both the power conversion units 50 and 60 are configured as bidirectional DCDC converters. The power conversion unit 50 functions as a first DCDC converter. The power conversion unit 60 functions as a second DCDC converter. Each of the plurality of power conversion units 50 and 60 is provided corresponding to each of the plurality of batteries 82A and 82B, respectively. Specifically, when a plurality of batteries 82A and 82B are connected in series and the relay units 91 and 92 and the relay units 86 and 88 are on, the voltage corresponding to the output voltage of each battery is set. , Is applied between each pair of conductive paths, which are input / output paths on one side of each DCDC converter.
 複数のバッテリ82A,82Bが直列に接続されている状態で、リレー部91,92及びリレー部86,88がオン状態である場合には、バッテリ82Aの出力電圧に応じた電圧が電力変換部50の一方側の入出力路である一対の第1導電路11,12間に印加される。また、複数のバッテリ82A,82Bが直列に接続されている状態で、リレー部91,92及びリレー部86,88がオン状態である場合には、バッテリ82Bの出力電圧に応じた電圧が電力変換部60の一方側の入出力である一対の第2導電路21,22間に印加される。複数の電力変換部50,60の各々は、対応するバッテリから供給される電力に応じた入力電力を変換して第3導電路96A,96Bに出力電力を供給する第1変換動作と、第3導電路96A,96Bからの電力に応じた入力電力を変換して対応するバッテリに向けて電力を出力する第2変換動作と、を行う。 When a plurality of batteries 82A and 82B are connected in series and the relay units 91 and 92 and the relay units 86 and 88 are on, the voltage corresponding to the output voltage of the battery 82A is the power conversion unit 50. It is applied between the pair of first conductive paths 11 and 12, which are input / output paths on one side. Further, when a plurality of batteries 82A and 82B are connected in series and the relay units 91 and 92 and the relay units 86 and 88 are in the ON state, the voltage corresponding to the output voltage of the battery 82B is converted into electric power. It is applied between a pair of second conductive paths 21 and 22, which are input and output on one side of the unit 60. Each of the plurality of power conversion units 50 and 60 has a first conversion operation of converting input power according to the power supplied from the corresponding battery and supplying output power to the third conductive paths 96A and 96B, and a third. The second conversion operation of converting the input power according to the power from the conductive paths 96A and 96B and outputting the power to the corresponding battery is performed.
 電力変換部50は、第1電力変換部として機能し、バッテリ82A(第1バッテリ)から供給される電力を入力電力として電力路94A,94Bとは異なる第3導電路96A,96Bに電力を供給する電力変換動作を行い得る。更に、電力変換部50は、第3導電路96A,96Bから供給される電力を入力電力としてバッテリ82Aに電力を供給する電力変換動作を行い得る。具体的には、電力変換部50は、第1導電路11,12間に印加された直流電圧を降圧して第3導電路96A,96B間に直流電圧を印加するように第1変換動作(降圧動作)を行い得る。電力変換部50は、第3導電路96A,96B間に印加された直流電圧を昇圧して第1導電路11,12間に直流電圧を印加するように第2変換動作(昇圧動作)を行い得る。電力変換部50は、双方向のDCDCコンバータとして機能する構成であれば、回路構成は特に限定されないが、以下で説明される電源装置10の代表例では、図3のような回路が採用されている。図3の例では、電力変換部50は、絶縁型の双方向DCDCコンバータとして構成される。電力変換部50は、第1変換回路51とトランス53と第2変換回路52とを備える。 The power conversion unit 50 functions as a first power conversion unit, and supplies power to the third conductive lines 96A and 96B different from the power lines 94A and 94B by using the power supplied from the battery 82A (first battery) as input power. Can perform power conversion operation. Further, the power conversion unit 50 can perform a power conversion operation of supplying power to the battery 82A by using the power supplied from the third conductive paths 96A and 96B as input power. Specifically, the power conversion unit 50 steps down the DC voltage applied between the first conductive paths 11 and 12, and applies the DC voltage between the third conductive paths 96A and 96B in the first conversion operation (1st conversion operation). Step-down operation) can be performed. The power conversion unit 50 performs a second conversion operation (boost operation) so as to boost the DC voltage applied between the third conductive paths 96A and 96B and apply the DC voltage between the first conductive paths 11 and 12. obtain. The circuit configuration of the power conversion unit 50 is not particularly limited as long as it functions as a bidirectional DCDC converter, but in a typical example of the power supply device 10 described below, a circuit as shown in FIG. 3 is adopted. There is. In the example of FIG. 3, the power conversion unit 50 is configured as an isolated bidirectional DCDC converter. The power conversion unit 50 includes a first conversion circuit 51, a transformer 53, and a second conversion circuit 52.
 第1変換回路51は、双方向に直流電力と交流電力とを変換する機能を有する。第1変換回路51は、第1導電路11,12間に印加された直流電圧を変換して第1コイル53Aに交流電圧を発生させる機能を有する。第1変換回路51は、第1コイル53Aに発生した交流電圧を変換して第1導電路11,12間に直流電圧を出力する機能も有する。第1変換回路51は、コンデンサ51Aと、フルブリッジ回路を構成するスイッチ素子51C,51D,51E,51Fを含む。トランス53は、第1変換回路51に接続される第1コイル53Aと、第2変換回路52に接続される第2コイル53Bとを備える。第1コイル53Aと第2コイル53Bは、磁気結合されている。第2変換回路52は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換回路52は、第2コイル53Bに発生する交流電圧を変換して第3導電路96A,96B間に直流電圧を出力する機能を有する。第2変換回路52は、第3導電路96A,96B間に印加された直流電圧を変換して第2コイル53Bに交流電圧を発生させる機能も有する。第2変換回路52は、スイッチ素子52C,52D、インダクタ52E、コンデンサ52Aなどを含む。 The first conversion circuit 51 has a function of converting DC power and AC power in both directions. The first conversion circuit 51 has a function of converting a DC voltage applied between the first conductive paths 11 and 12 to generate an AC voltage in the first coil 53A. The first conversion circuit 51 also has a function of converting an AC voltage generated in the first coil 53A and outputting a DC voltage between the first conductive paths 11 and 12. The first conversion circuit 51 includes a capacitor 51A and switch elements 51C, 51D, 51E, 51F constituting a full bridge circuit. The transformer 53 includes a first coil 53A connected to the first conversion circuit 51 and a second coil 53B connected to the second conversion circuit 52. The first coil 53A and the second coil 53B are magnetically coupled. The second conversion circuit 52 has a function of converting AC power and DC power in both directions. The second conversion circuit 52 has a function of converting an AC voltage generated in the second coil 53B and outputting a DC voltage between the third conductive paths 96A and 96B. The second conversion circuit 52 also has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 53B. The second conversion circuit 52 includes switch elements 52C, 52D, an inductor 52E, a capacitor 52A, and the like.
 電力変換部60は、第2電力変換部として機能し、バッテリ82B(第2バッテリ)から供給される電力を入力電力として第3導電路96A,96Bに電力を供給する電力変換動作を行い得る。電力変換部60は、第3導電路96A,96Bから供給される電力を入力電力としてバッテリ82B(第2バッテリ)に電力を供給する電力変換動作を行い得る。具体的には、電力変換部60は、第2導電路21,22間に印加された直流電圧を降圧して第3導電路96A,96B間に直流電圧を印加するように第1変換動作(降圧動作)を行い得る。電力変換部60は、第3導電路96A,96B間に印加された直流電圧を昇圧して第2導電路21,22間に直流電圧を印加するように第2変換動作(昇圧動作)を行い得る。電力変換部60は、双方向のDCDCコンバータとして機能する構成であれば、回路構成は特に限定されないが、例えば、図3のような回路とすることができる。図3の例では、電力変換部60は、絶縁型の双方向DCDCコンバータとして構成される。電力変換部60は、第1変換回路61とトランス63と第2変換回路62とを備える。 The power conversion unit 60 functions as a second power conversion unit, and can perform a power conversion operation of supplying power to the third conductive paths 96A and 96B using the power supplied from the battery 82B (second battery) as input power. The power conversion unit 60 can perform a power conversion operation of supplying power to the battery 82B (second battery) using the power supplied from the third conductive paths 96A and 96B as input power. Specifically, the power conversion unit 60 steps down the DC voltage applied between the second conductive paths 21 and 22 so as to apply the DC voltage between the third conductive paths 96A and 96B (1st conversion operation). Step-down operation) can be performed. The power conversion unit 60 performs a second conversion operation (boost operation) so as to boost the DC voltage applied between the third conductive paths 96A and 96B and apply the DC voltage between the second conductive paths 21 and 22. obtain. The circuit configuration of the power conversion unit 60 is not particularly limited as long as it functions as a bidirectional DCDC converter, but the circuit can be, for example, as shown in FIG. In the example of FIG. 3, the power conversion unit 60 is configured as an isolated bidirectional DCDC converter. The power conversion unit 60 includes a first conversion circuit 61, a transformer 63, and a second conversion circuit 62.
 第1変換回路61は、双方向に直流電力と交流電力とを変換する機能を有する。第1変換回路61は、第2導電路21,22間に印加される直流電圧を変換して第1コイル63Aに交流電圧を発生させる機能を有する。第1変換回路61は、第1コイル63Aに発生した交流電圧を変換して第2導電路21,22間に直流電圧を出力する機能も有する。第1変換回路61は、コンデンサ61Aと、フルブリッジ回路を構成するスイッチ素子61C,61D,61E,61Fを含む。トランス63は、第1変換回路61に接続される第1コイル63Aと、第2変換回路62に接続される第2コイル63Bとを備える。第1コイル63Aと第2コイル63Bは、磁気結合されている。第2変換回路62は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換回路62は、第2コイル63Bに発生する交流電圧を変換して第3導電路96A,96B間に直流電圧を出力する機能を有する。第2変換回路62は、第3導電路96A,96B間に印加された直流電圧を変換して第2コイル63Bに交流電圧を発生させる機能を有する。第2変換回路62は、スイッチ素子62C,62D、インダクタ62E、コンデンサ62Aなどを含む。 The first conversion circuit 61 has a function of converting DC power and AC power in both directions. The first conversion circuit 61 has a function of converting a DC voltage applied between the second conductive paths 21 and 22 to generate an AC voltage in the first coil 63A. The first conversion circuit 61 also has a function of converting an AC voltage generated in the first coil 63A and outputting a DC voltage between the second conductive paths 21 and 22. The first conversion circuit 61 includes a capacitor 61A and switch elements 61C, 61D, 61E, 61F constituting a full bridge circuit. The transformer 63 includes a first coil 63A connected to the first conversion circuit 61 and a second coil 63B connected to the second conversion circuit 62. The first coil 63A and the second coil 63B are magnetically coupled. The second conversion circuit 62 has a function of converting AC power and DC power in both directions. The second conversion circuit 62 has a function of converting an AC voltage generated in the second coil 63B and outputting a DC voltage between the third conductive paths 96A and 96B. The second conversion circuit 62 has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 63B. The second conversion circuit 62 includes switch elements 62C, 62D, an inductor 62E, a capacitor 62A, and the like.
 電源装置10は、スイッチ33を有する。スイッチ33は、第2切替部の一例に相当する。スイッチ33は、コンバータ40を複数の電力変換部50,60が直列に接続された状態と直列接続が解除された接続とに切り替える。 The power supply device 10 has a switch 33. The switch 33 corresponds to an example of the second switching unit. The switch 33 switches the converter 40 between a state in which a plurality of power conversion units 50 and 60 are connected in series and a connection in which the series connection is disconnected.
 図1の例では、図2で示される高圧負荷5の具体例として、高圧負荷5Aと高圧負荷5Bとが設けられている。図1の例では、複数のバッテリ82A,82Bの各々とそれぞれ並列に接続される構成で高圧負荷5A,5Bの各々が設けられている。具体的には、バッテリ82Aと並列に接続され得る構成で高圧負荷5Aが設けられている。そして、バッテリ82Bと並列に接続され得る構成で高圧負荷5Bが設けられている。高圧負荷5Aは、一端が第1導電路11に電気的に接続され、他端が第1導電路12に電気的に接続されている。この構成では、例えば、バッテリ82A又は電力変換部50から第1導電路11,12を介して供給される電流が、高圧負荷5Aに供給され得る。高圧負荷5Bは、一端が第2導電路21に電気的に接続され、他端が第2導電路22に電気的に接続されている。この構成では、例えば、バッテリ82B又は電力変換部60から第2導電路21,22を介して供給される電流が、高圧負荷5Bに供給され得る。 In the example of FIG. 1, a high voltage load 5A and a high voltage load 5B are provided as specific examples of the high voltage load 5 shown in FIG. In the example of FIG. 1, each of the high- pressure loads 5A and 5B is provided in a configuration in which the batteries 82A and 82B are connected in parallel to each of the plurality of batteries 82A and 82B. Specifically, a high-pressure load 5A is provided in a configuration that can be connected in parallel with the battery 82A. A high-pressure load 5B is provided in a configuration that can be connected in parallel with the battery 82B. One end of the high voltage load 5A is electrically connected to the first conductive path 11, and the other end is electrically connected to the first conductive path 12. In this configuration, for example, the current supplied from the battery 82A or the power conversion unit 50 via the first conductive paths 11 and 12 can be supplied to the high voltage load 5A. One end of the high voltage load 5B is electrically connected to the second conductive path 21, and the other end is electrically connected to the second conductive path 22. In this configuration, for example, the current supplied from the battery 82B or the power conversion unit 60 via the second conductive paths 21 and 22 may be supplied to the high voltage load 5B.
 図1の代表例では、第1導電路11にはスイッチ31及びヒューズ35,36が設けられている。スイッチ31は、第1導電路11を導通状態と遮断状態とに切り替えるスイッチである。スイッチ31がオフ状態のときには、電力路94Aと高圧負荷5Aとの間が非導通状態となり、電力路94Aと電力変換部50との間が非導通状態となる。スイッチ31がオン状態のときには、第1導電路11を介して電力路94Aと高圧負荷5Aとの間が導通状態となり、第1導電路11を介して電力路94Aと電力変換部50との間が導通状態となる。第1導電路11は、電力路94Aに接続される導電路11Aと導電路11Aから分岐する導電路11B,11Cとを備える。スイッチ31は、導電路11Aに設けられ導電路11Aを導通状態と遮断状態とに切り替える。ヒューズ35は、導電路11Cに設けられる。ヒューズ36は、導電路11Bに設けられる。第1導電路12は、バッテリ82Aの低電位側の電極に電気的に接続され得る導電路12Aと導電路12Aから分岐する導電路12B,12Cとを備える。電力変換部50は、具体的には導電路11B,12Bに接続される。高圧負荷5Aは、具体的には導電路11C,12Cに接続される。 In the representative example of FIG. 1, the switch 31 and the fuses 35 and 36 are provided in the first conductive path 11. The switch 31 is a switch that switches the first conductive path 11 between a conductive state and a cutoff state. When the switch 31 is in the off state, the power path 94A and the high voltage load 5A are in a non-conducting state, and the power path 94A and the power conversion unit 50 are in a non-conducting state. When the switch 31 is on, the power path 94A and the high voltage load 5A are in a conductive state via the first conductive path 11, and the power path 94A and the power conversion unit 50 are connected to each other via the first conductive path 11. Becomes a conductive state. The first conductive path 11 includes a conductive path 11A connected to the power path 94A and conductive paths 11B and 11C branching from the conductive path 11A. The switch 31 is provided in the conductive path 11A and switches the conductive path 11A between a conductive state and a cutoff state. The fuse 35 is provided in the conductive path 11C. The fuse 36 is provided in the conductive path 11B. The first conductive path 12 includes a conductive path 12A that can be electrically connected to an electrode on the low potential side of the battery 82A, and conductive paths 12B and 12C that branch from the conductive path 12A. Specifically, the power conversion unit 50 is connected to the conductive paths 11B and 12B. Specifically, the high voltage load 5A is connected to the conductive paths 11C and 12C.
 図1の代表例では、第2導電路22にはスイッチ32及びヒューズ37,38が設けられている。スイッチ32は、第2導電路22を導通状態と遮断状態とに切り替えるスイッチである。スイッチ32がオフ状態のときには、電力路94Bと高圧負荷5Bとの間が非導通状態となり、電力路94Bと電力変換部60との間が非導通状態となる。スイッチ32がオン状態のときには、第2導電路22を介して電力路94Bと高圧負荷5Bとの間が導通状態となり、第2導電路22を介して電力路94Bと電力変換部60との間が導通状態となる。第2導電路22は、電力路94Bに接続される導電路22Aと導電路22Aから分岐する導電路22B,22Cとを備える。スイッチ32は、導電路22Aに設けられ導電路22Aを導通状態と遮断状態とに切り替える。第2導電路21は、バッテリ82Bの高電位側の電極に電気的に接続され得る導電路21Aと導電路21Aから分岐する導電路21B,21Cとを備える。電力変換部60は、具体的には導電路21B,22Bに接続される。高圧負荷5Bは、具体的には導電路21C,22Cに接続される。ヒューズ37は、導電路21Bに設けられる。ヒューズ38は、導電路21Cに設けられる。 In the representative example of FIG. 1, the switch 32 and the fuses 37 and 38 are provided in the second conductive path 22. The switch 32 is a switch that switches the second conductive path 22 between a conductive state and a cutoff state. When the switch 32 is in the off state, the power path 94B and the high-voltage load 5B are in a non-conducting state, and the power path 94B and the power conversion unit 60 are in a non-conducting state. When the switch 32 is on, the power path 94B and the high voltage load 5B are in a conductive state via the second conductive path 22, and the power path 94B and the power conversion unit 60 are connected to each other via the second conductive path 22. Becomes a conductive state. The second conductive path 22 includes a conductive path 22A connected to the power path 94B and conductive paths 22B and 22C branching from the conductive path 22A. The switch 32 is provided in the conductive path 22A and switches the conductive path 22A between a conductive state and a cutoff state. The second conductive path 21 includes a conductive path 21A that can be electrically connected to an electrode on the high potential side of the battery 82B, and conductive paths 21B and 21C that branch from the conductive path 21A. Specifically, the power conversion unit 60 is connected to the conductive paths 21B and 22B. Specifically, the high voltage load 5B is connected to the conductive paths 21C and 22C. The fuse 37 is provided in the conductive path 21B. The fuse 38 is provided in the conductive path 21C.
 (高圧バッテリと低圧バッテリの間の電力変換動作)
 制御部18は、所定の電力変換条件が成立した場合に、複数の電力変換部50,60のいずれか又はそれぞれに対し、電力変換動作を行わせる。この場合、制御部18又は他の制御装置によってリレー部86,88,91,92は、オン状態に制御される。そして、制御部18は、スイッチ31,32をオン状態とし、スイッチ33をオフ状態とする。リレー部86,88,91,92がオン状態とされ、スイッチ31,32がオン状態とされ、スイッチ33がオフ状態とされると、電力変換部50は、バッテリ82Aに並列に接続された状態となり、電力変換部60は、バッテリ82Bに並列に接続された状態となる。この場合、切替部84は、第1切替状態とされてもよく、第2切替状態とされてもよい。
(Power conversion operation between high voltage battery and low voltage battery)
When a predetermined power conversion condition is satisfied, the control unit 18 causes any or each of the plurality of power conversion units 50 and 60 to perform a power conversion operation. In this case, the relay units 86, 88, 91, 92 are controlled to the ON state by the control unit 18 or another control device. Then, the control unit 18 puts the switches 31 and 32 in the on state and puts the switch 33 in the off state. When the relay units 86, 88, 91, 92 are turned on, the switches 31 and 32 are turned on, and the switch 33 is turned off, the power conversion unit 50 is connected to the battery 82A in parallel. The power conversion unit 60 is connected to the battery 82B in parallel. In this case, the switching unit 84 may be in the first switching state or in the second switching state.
 例えば、切替部84が第1切替状態に切り替えられてバッテリ82A,バッテリ82Bが直列に接続され、リレー部86,88,91,92及びスイッチ31,32がオン状態とされ、スイッチ33がオフ状態とされた状態で、制御部18は、電力変換部50及び電力変換部60のいずれか又は両方に電力変換動作を行わせる。この場合、制御部18は、電力変換部50に対し、第1導電路11,12間に印加された直流電圧を降圧して第3導電路96A,96B間に直流電圧を印加する降圧動作を行わせてもよく、第3導電路96A,96B間に印加された直流電圧を昇圧して第1導電路11,12間に直流電圧を印加する昇圧動作を行わせてもよく、電力変換部50を動作させなくてもよい。また、制御部18は、電力変換部60に対し、第2導電路21,22間に印加された直流電圧を降圧して第3導電路96A,96B間に直流電圧を印加する降圧動作を行わせてもよく、第3導電路96A,96B間に印加された直流電圧を昇圧して第2導電路21,22間に直流電圧を印加する昇圧動作を行わせてもよく、電力変換部60を動作させなくてもよい。 For example, the switching unit 84 is switched to the first switching state, the battery 82A and the battery 82B are connected in series, the relay units 86, 88, 91, 92 and the switches 31 and 32 are turned on, and the switch 33 is turned off. In this state, the control unit 18 causes either or both of the power conversion unit 50 and the power conversion unit 60 to perform the power conversion operation. In this case, the control unit 18 performs a step-down operation of stepping down the DC voltage applied between the first conductive paths 11 and 12 and applying the DC voltage between the third conductive paths 96A and 96B to the power conversion unit 50. It may be performed, or a boosting operation of boosting the DC voltage applied between the third conductive paths 96A and 96B and applying a DC voltage between the first conductive paths 11 and 12 may be performed, and the power conversion unit may be performed. It is not necessary to operate 50. Further, the control unit 18 performs a step-down operation of stepping down the DC voltage applied between the second conductive paths 21 and 22 to the power conversion unit 60 and applying a DC voltage between the third conductive paths 96A and 96B. The DC voltage applied between the third conductive paths 96A and 96B may be boosted to perform a boosting operation in which the DC voltage is applied between the second conductive paths 21 and 22. Does not have to be operated.
 (プリチャージ動作)
 電源装置10は、コンデンサ9が十分に充電されていないときに、バッテリ82A,82Bからの電力供給を遮断しつつコンデンサ9を充電するプリチャージ動作を行い得る。車両1では、例えば図示されていない始動スイッチがオフ状態になったときに、放電回路によってコンデンサ9を放電する。始動スイッチは、駆動部4を動作させる条件となるスイッチであり、使用者の始動操作によってオン状態に切り替わり、停止操作によってオフ状態に切り替わるスイッチである。始動スイッチがオン状態であることを条件として駆動部4が動作し、始動スイッチがオフ状態である場合には駆動部4は動作しない。始動スイッチがオフ状態に切り替わった場合には、制御装置によってリレー部91,92がオフ状態に切り替えられる。
(Precharge operation)
The power supply device 10 may perform a precharge operation of charging the capacitor 9 while cutting off the power supply from the batteries 82A and 82B when the capacitor 9 is not sufficiently charged. In the vehicle 1, for example, when a start switch (not shown) is turned off, the capacitor 9 is discharged by a discharge circuit. The start switch is a switch that is a condition for operating the drive unit 4, and is a switch that switches to the on state by the start operation of the user and switches to the off state by the stop operation. The drive unit 4 operates on condition that the start switch is in the on state, and the drive unit 4 does not operate when the start switch is in the off state. When the start switch is switched to the off state, the relay units 91 and 92 are switched to the off state by the control device.
 以下の説明では、「始動スイッチがオフ状態からオン状態に切り替わること」が所定条件である。制御部18は、リレー部91,92がオフ状態のときに上記の所定条件が成立した場合、スイッチ31,32,33をオン状態とする。つまり、制御部18は、リレー部91,92がオフ状態のとき上記所定条件が成立した場合、複数の電力変換部50,60を直列に接続し、この状態で、複数の電力変換部50,60に対して電力路94A,94Bに電力を供給する動作を行わせることで、コンデンサ9の充電(プリチャージ動作)を行う。上記所定条件はあくまで一例であり、予め定められた他の条件が所定条件であってよい。 In the following explanation, "the start switch is switched from the off state to the on state" is a predetermined condition. When the above-mentioned predetermined conditions are satisfied when the relay units 91 and 92 are in the off state, the control unit 18 turns the switches 31, 32 and 33 into the on state. That is, when the above predetermined conditions are satisfied when the relay units 91 and 92 are in the off state, the control unit 18 connects a plurality of power conversion units 50 and 60 in series, and in this state, the plurality of power conversion units 50, The capacitor 9 is charged (precharge operation) by causing 60 to perform an operation of supplying electric power to the power paths 94A and 94B. The above predetermined conditions are merely examples, and other predetermined conditions may be predetermined conditions.
 制御部18は、上記プリチャージ動作の際に、低圧バッテリ70(第2バッテリ)から第3導電路96A,96Bを介して供給される電力を入力電力とし、電力路94A,94Bに出力電力を供給するように複数の電力変換部50,60に電力変換動作を行わせる。このプリチャージ動作では、制御部18は、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路11B,12B間に直流電圧を印加する昇圧動作を電力変換部50に行わせる。更に、プリチャージ動作では、制御部18は、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路21B,22B間に直流電圧を印加する昇圧動作を電力変換部60に行わせる。制御部18は、このように電力変換部50,60に昇圧動作を並行して行わせるようにプリチャージ動作を行うが、このプリチャージ動作のときの電力変換部50,60の出力電圧は、プリチャージ動作後にバッテリ82A,82Bをどのような状態で電力路94A,94Bに接続することが予定されているか、即ち、駆動部4に与える駆動用の電圧がどの程度かに基づく。 During the precharge operation, the control unit 18 uses the power supplied from the low voltage battery 70 (second battery) via the third conductive paths 96A and 96B as the input power, and outputs the output power to the power paths 94A and 94B. A plurality of power conversion units 50 and 60 are made to perform a power conversion operation so as to supply the power. In this precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a DC voltage between the conductive paths 11B and 12B to the power conversion unit 50. Let me. Further, in the precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a DC voltage between the conductive paths 21B and 22B to the power conversion unit 60. Let me do it. The control unit 18 performs a precharge operation so as to cause the power conversion units 50 and 60 to perform a boosting operation in parallel in this way, and the output voltage of the power conversion units 50 and 60 at the time of this precharge operation is It is based on the state in which the batteries 82A and 82B are planned to be connected to the power paths 94A and 94B after the precharge operation, that is, the degree of the driving voltage applied to the drive unit 4.
 例えば、プリチャージ動作後に複数のバッテリ82A,82Bを直列接続としつつ電力路94A,94Bに接続して駆動部4に電力を供給することが予定されている場合、プリチャージ動作では、リレー部91,92がオフ状態のときにコンバータ40を動作させてコンデンサ9を第1充電電圧(例えば、800V)に充電させる第1プリチャージ動作を行う。なお、図示されていない制御装置(例えば外部ECU(Electronic Control Unit)など)は、上記所定条件の成立後に、この第1方式の駆動(バッテリ82A,82Bを直列接続とする駆動)が予定されている否かを判定する機能を有し、第1方式の駆動が予定されている場合には、上記所定条件の成立後に制御部18に対して所定の第1情報(例えば800Vで駆動することを示す信号)を与えるようになっている。従って、制御部18は、上記所定条件の成立後に制御装置から上記第1情報を受けた場合、リレー部91,92がオフ状態のときにコンバータ40を動作させてコンデンサ9を第1充電電圧(例えば、800V)に充電させる第1プリチャージ動作を行う。 For example, when it is planned to connect a plurality of batteries 82A and 82B in series after the precharge operation and connect them to the power paths 94A and 94B to supply power to the drive unit 4, the relay unit 91 is planned to be supplied in the precharge operation. When the and 92 are in the off state, the converter 40 is operated to perform the first precharge operation of charging the capacitor 9 to the first charging voltage (for example, 800V). A control device (for example, an external ECU (Electronic Control Unit)) (not shown) is scheduled to be driven by the first method (driving in which the batteries 82A and 82B are connected in series) after the above-mentioned predetermined conditions are satisfied. When it has a function of determining whether or not it is present and the driving of the first method is scheduled, it is necessary to drive the control unit 18 with predetermined first information (for example, 800V) after the above-mentioned predetermined condition is satisfied. The signal shown) is given. Therefore, when the control unit 18 receives the first information from the control device after the predetermined condition is satisfied, the control unit 18 operates the converter 40 when the relay units 91 and 92 are in the off state to charge the capacitor 9 to the first charge voltage ( For example, the first precharge operation of charging to 800 V) is performed.
 制御部18は、第1プリチャージ動作では、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路11B,12B間に第1の値の直流電圧を印加する昇圧動作を電力変換部50に行わせる。更に、第1プリチャージ動作では、制御部18は、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路21B,22B間に第2の値の直流電圧を印加する昇圧動作を電力変換部60に行わせる。上記第1の値と上記第2の値は異なっていてもよいが、同一であることが望ましい。代表例では、上記第1の値及び上記第2の値はいずれも400Vである。つまり、第1プリチャージ動作では、コンバータ40によって電力路94A,94B間に800Vの電圧が印加される。第1プリチャージ動作のときにコンバータ40が電力路94A,94Bに印加する電圧は、第1充電電圧と同一又は同程度である。 In the first precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a first value DC voltage between the conductive paths 11B and 12B. Let the power conversion unit 50 do this. Further, in the first precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a second value DC voltage between the conductive paths 21B and 22B. Let the power conversion unit 60 perform the operation. The first value and the second value may be different, but are preferably the same. In a typical example, the first value and the second value are both 400V. That is, in the first precharge operation, a voltage of 800 V is applied between the power paths 94A and 94B by the converter 40. The voltage applied by the converter 40 to the power paths 94A and 94B during the first precharge operation is the same as or about the same as the first charge voltage.
 このように、第1プリチャージ動作が行われる場合、第1プリチャージ動作後にはバッテリ82A,82Bが直列に接続された状態でバッテリ82A,82Bから電力路94A,94Bに駆動用の電力が供給される。この例では、第1プリチャージ動作後にリレー部91,92がオン状態とされ、バッテリ82A,82Bが直列に接続されていれば、バッテリ82A,82Bから電力路94A,94Bに対して所定電圧(例えば、800V)が印加され、このような供給電圧に基づいて駆動部4が駆動される。なお、この例では、制御部18又は図示されていない制御装置が、第1プリチャージ動作が終了したか否かを判定又は検知し、第1プリチャージ動作が終了した後にリレー部91,92をオン状態とすればよい。 In this way, when the first precharge operation is performed, after the first precharge operation, the driving power is supplied from the batteries 82A and 82B to the power lines 94A and 94B in a state where the batteries 82A and 82B are connected in series. Will be done. In this example, if the relay units 91 and 92 are turned on after the first precharge operation and the batteries 82A and 82B are connected in series, a predetermined voltage (from the batteries 82A and 82B to the power lines 94A and 94B) For example, 800V) is applied, and the drive unit 4 is driven based on such a supply voltage. In this example, the control unit 18 or a control device (not shown) determines or detects whether or not the first precharge operation is completed, and after the first precharge operation is completed, the relay units 91 and 92 are used. It may be turned on.
 一方、プリチャージ動作後に複数のバッテリ82A,82Bを並列接続としつつ電力路94A,94Bに接続して駆動部4に電力を供給することが予定されている場合、プリチャージ動作では、リレー部91,92がオフ状態のときにコンバータ40を動作させてコンデンサ9を第2充電電圧(例えば、400V)に充電させる第2プリチャージ動作を行う。第2プリチャージ動作でのコンデンサ9の充電電圧(第2充電電圧)は、第1プリチャージ動作でのコンデンサ9の充電電圧(第1充電電圧)よりも小さい。なお、図示されていない制御装置(例えば外部ECUなど)は、上記所定条件の成立後に、この第2方式の駆動(バッテリ82A,82Bを並列接続とする駆動)が予定されている否かを判定する機能を有し、この第2方式の駆動が予定されている場合には、上記所定条件の成立後に制御部18に対して所定の第2情報(例えば、400Vで駆動することを示す信号)を与えるようになっている。従って、制御部18は、上記所定条件の成立後に制御装置から上記第2情報を受けた場合、リレー部91,92がオフ状態のときにコンバータ40を動作させてコンデンサ9を第2充電電圧(例えば、400V)に充電させる第2プリチャージ動作を行う。 On the other hand, when it is planned to connect a plurality of batteries 82A and 82B in parallel to the power paths 94A and 94B to supply power to the drive unit 4 after the precharge operation, the relay unit 91 is planned to be supplied in the precharge operation. When 92 is in the off state, the converter 40 is operated to perform a second precharge operation of charging the capacitor 9 to a second charging voltage (for example, 400V). The charging voltage of the capacitor 9 in the second precharging operation (second charging voltage) is smaller than the charging voltage of the capacitor 9 in the first precharging operation (first charging voltage). A control device (for example, an external ECU) (not shown) determines whether or not the second method of driving (driving with the batteries 82A and 82B connected in parallel) is planned after the above-mentioned predetermined conditions are satisfied. When the driving of this second method is planned, the predetermined second information (for example, a signal indicating that the driving is performed at 400V) is given to the control unit 18 after the above-mentioned predetermined condition is satisfied. Is to be given. Therefore, when the control unit 18 receives the second information from the control device after the predetermined condition is satisfied, the control unit 18 operates the converter 40 when the relay units 91 and 92 are in the off state to charge the capacitor 9 to the second charge voltage ( For example, a second precharge operation for charging to 400 V) is performed.
 制御部18は、第2プリチャージ動作では、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路11B,12B間に第3の値の直流電圧を印加する昇圧動作を電力変換部50に行わせる。更に、第2プリチャージ動作では、制御部18は、第3導電路96A,96B間に印加された直流電圧を昇圧して導電路21B,22B間に第4の値の直流電圧を印加する昇圧動作を電力変換部60に行わせる。上記第3の値と上記第4の値は異なっていてもよいが、同一であることが望ましい。代表例では、上記第3の値及び上記第4の値はいずれも200Vである。つまり、第2プリチャージ動作では、コンバータ40によって電力路94A,94B間に400Vの電圧が印加される。第2プリチャージ動作のときにコンバータ40が電力路94A,94Bに印加する電圧は、第2充電電圧と同一又は同程度である。 In the second precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a third value DC voltage between the conductive paths 11B and 12B. Let the power conversion unit 50 do this. Further, in the second precharge operation, the control unit 18 boosts the DC voltage applied between the third conductive paths 96A and 96B and applies a fourth value DC voltage between the conductive paths 21B and 22B. Let the power conversion unit 60 perform the operation. The third value and the fourth value may be different, but are preferably the same. In a typical example, the third value and the fourth value are both 200V. That is, in the second precharge operation, a voltage of 400 V is applied between the power paths 94A and 94B by the converter 40. The voltage applied by the converter 40 to the power paths 94A and 94B during the second precharge operation is the same as or about the same as the second charge voltage.
 このように、第2プリチャージ動作が行われる場合、第2プリチャージ動作後にはバッテリ82A,82Bが並列に接続された状態でバッテリ82A,82Bから電力路94A,94Bに駆動用の電力が供給される。この例では、第2プリチャージ動作後にリレー部91,92がオン状態とされ、バッテリ82A,82Bが並列に接続されていれば、バッテリ82A,82Bから電力路94A,94Bに対して所定電圧(例えば、400V)が印加され、このような供給電圧に基づいて駆動部4が駆動される。なお、この例では、制御部18又は図示されていない制御装置が、第2プリチャージ動作が終了したか否かを判定又は検知し、第2プリチャージ動作が終了した後にリレー部91,92をオン状態とすればよい。 In this way, when the second precharge operation is performed, after the second precharge operation, the driving power is supplied from the batteries 82A and 82B to the power lines 94A and 94B in a state where the batteries 82A and 82B are connected in parallel. Will be done. In this example, if the relay units 91 and 92 are turned on after the second precharge operation and the batteries 82A and 82B are connected in parallel, a predetermined voltage (from the batteries 82A and 82B to the power lines 94A and 94B) For example, 400V) is applied, and the drive unit 4 is driven based on such a supply voltage. In this example, the control unit 18 or a control device (not shown) determines or detects whether or not the second precharge operation is completed, and after the second precharge operation is completed, the relay units 91 and 92 are used. It may be turned on.
 次の説明は、電源装置10の効果の一例に関する。
 電源装置10では、制御部18は、リレー部91,92がオフ状態のときに所定条件が成立した場合に、コンバータ40に対して電力路94A,94Bに電力を供給する動作を行わせる。この電源装置10は、バッテリ82A,82Bから電力路94A,94Bへの直接的な電力供給が行われない状態であっても、制御部18がコンバータ40を制御し、電力路94A,94Bへと電力を供給する動作を行わせることができる。よって、この電源装置10は、バッテリ82A,82Bからの大電流を抑えながら電力路94A,94Bに電力を供給すべき場合に、別途のプリチャージ回路によって電流を抑えながら電力を供給することを必須とせずに、電力路94A,94Bへ電力を供給することができる。
The following description relates to an example of the effect of the power supply device 10.
In the power supply device 10, the control unit 18 causes the converter 40 to perform an operation of supplying electric power to the power paths 94A and 94B when a predetermined condition is satisfied when the relay units 91 and 92 are in the off state. In this power supply device 10, even when the direct power supply from the batteries 82A and 82B to the power lines 94A and 94B is not performed, the control unit 18 controls the converter 40 to the power lines 94A and 94B. It is possible to perform an operation of supplying electric power. Therefore, when the power supply device 10 should supply power to the power lines 94A and 94B while suppressing a large current from the batteries 82A and 82B, it is essential to supply power while suppressing the current by a separate precharge circuit. It is possible to supply electric power to the power lines 94A and 94B without using the above.
 電源装置10は、複数の電力変換部50,60を直列に接続して電力変換を行う方式と、直列接続を解除した方式とを切り替えることができる。そして、この電源装置10は、バッテリ82A,82Bからの大電流を抑えながら電力路94A,94Bに電力を供給すべき場合に、複数の電力変換部50,60を直列接続としつつ電力を供給するように動作することができるため、高い電圧を電力路94A,94Bに印加する場合に有利である。 The power supply device 10 can switch between a method in which a plurality of power conversion units 50 and 60 are connected in series to perform power conversion and a method in which the series connection is canceled. When the power supply device 10 should supply power to the power lines 94A and 94B while suppressing a large current from the batteries 82A and 82B, the power supply device 10 supplies power while connecting a plurality of power conversion units 50 and 60 in series. Therefore, it is advantageous when a high voltage is applied to the power lines 94A and 94B.
 電源装置10では、複数の電力変換部50,60の各々が、複数のバッテリ82A,82Bの各々を充放電させることができるため、バッテリを充放電する上での自由度が高く、複数のバッテリ82A,82Bの不均衡を是正する動作を行いやすい。 In the power supply device 10, each of the plurality of power conversion units 50 and 60 can charge and discharge each of the plurality of batteries 82A and 82B, so that the degree of freedom in charging and discharging the batteries is high, and the plurality of batteries It is easy to perform an operation to correct the imbalance of 82A and 82B.
 電源装置10は、複数のバッテリ82A,82Bを直列に接続して駆動部4に電力を供給する前には、複数のバッテリ82A,82Bからコンデンサ9への電力供給を遮断した状態で、相対的に高い第1充電電圧まで充電させるようにコンデンサ9を充電することができる。一方で、電源装置10は、複数のバッテリ82A,82Bを並列に接続して駆動部4に電力を供給する前には、複数のバッテリ82A,82Bからコンデンサ9への電力供給を遮断した状態で、相対的に低い第2充電電圧まで充電させるようにコンデンサ9を充電することができる。よって、複数のバッテリ82A,82Bがいずれの接続状態で接続される場合でも、その接続前に、リレー部91,92をオフ状態で維持しながらより適切なプリチャージ動作を行うことができる。 Before the power supply device 10 is connected in series with the plurality of batteries 82A and 82B to supply power to the drive unit 4, the power supply device 10 is in a state where the power supply from the plurality of batteries 82A and 82B to the capacitor 9 is cut off. The capacitor 9 can be charged so as to charge to a high first charging voltage. On the other hand, the power supply device 10 is in a state where the power supply from the plurality of batteries 82A and 82B to the capacitor 9 is cut off before the plurality of batteries 82A and 82B are connected in parallel to supply power to the drive unit 4. The capacitor 9 can be charged so as to charge to a relatively low second charging voltage. Therefore, regardless of which connection state the plurality of batteries 82A and 82B are connected to, a more appropriate precharge operation can be performed while keeping the relay units 91 and 92 in the off state before the connection.
 電源装置10は、複数のバッテリ82A,82Bからの大電流を抑えながら電力路94A,94Bに電力を供給すべき場合に、低圧バッテリ70(第2バッテリ)から供給される電力を利用し、コンバータ40によって適切に変換した上で、電力路94A,94Bに電力を供給することができる。 The power supply device 10 utilizes the power supplied from the low-voltage battery 70 (second battery) when power should be supplied to the power paths 94A and 94B while suppressing a large current from the plurality of batteries 82A and 82B, and is a converter. After being appropriately converted by 40, electric power can be supplied to the power lines 94A and 94B.
 電源装置10は、複数のバッテリ82A,82Bからの大電流を抑えながら電力路94A,94Bに電力を供給することができ、且つ、複数のバッテリ82A,82Bの不均衡を是正しやすい構成を実現できる。しかも、電源装置10は、別々のバッテリに接続されて個別に充放電し得る電力変換部が、複数のバッテリ82A,82Bの各々と低圧バッテリ70(第2バッテリ)との間に複数設けられているため、冗長化を図ることができる。 The power supply device 10 can supply electric power to the power paths 94A and 94B while suppressing a large current from the plurality of batteries 82A and 82B, and realizes a configuration that makes it easy to correct the imbalance of the plurality of batteries 82A and 82B. can. Moreover, the power supply device 10 is provided with a plurality of power conversion units that are connected to different batteries and can be charged and discharged individually between each of the plurality of batteries 82A and 82B and the low voltage battery 70 (second battery). Therefore, redundancy can be achieved.
 <第2実施形態>
 次の説明は、第2実施形態の車両用電源装置210に関する。
 第2実施形態の車両用電源装置210の回路構成は、図1等で示されるコンバータ40をコンバータ240に変更した点のみが第1実施形態の車両用電源装置10と異なる。つまり、図1の電源装置10においてコンバータ40をコンバータ240に変更した構成が第2実施形態の電源装置210である。よって、以下の説明では、コンバータ40以外の部分については、図1が参照される。車両用電源装置210は、単に電源装置10とも称される。
<Second Embodiment>
The following description relates to the vehicle power supply device 210 of the second embodiment.
The circuit configuration of the vehicle power supply device 210 of the second embodiment is different from that of the vehicle power supply device 10 of the first embodiment only in that the converter 40 shown in FIG. 1 and the like is changed to the converter 240. That is, in the power supply device 10 of FIG. 1, the configuration in which the converter 40 is changed to the converter 240 is the power supply device 210 of the second embodiment. Therefore, in the following description, FIG. 1 is referred to for parts other than the converter 40. The vehicle power supply 210 is also simply referred to as a power supply 10.
 図4のように、コンバータ240は、複数の第1変換部241A,241Bと、トランス243と、第2変換部242と、を備える。トランス243は、複数の第1コイル243A,243Bと第2コイル243Cとを備え、複数の第1コイル243A,243Bと第2コイル243Cとが磁気結合されている。複数の第1変換部241A,241Bの各々にそれぞれ対応して複数の第1コイル243A,243Bの各々が設けられる。複数の第1変換部241A,241Bの各々は、バッテリ82A及びバッテリ82Bの各々からの電力に基づく直流電力を変換して複数の第1コイル243A,243Bの各々に交流電力を出力する。複数の第1変換部241A,241Bは、複数の電力変換部の一例に相当する。 As shown in FIG. 4, the converter 240 includes a plurality of first conversion units 241A and 241B, a transformer 243, and a second conversion unit 242. The transformer 243 includes a plurality of first coils 243A, 243B and a second coil 243C, and the plurality of first coils 243A, 243B and the second coil 243C are magnetically coupled. Each of the plurality of first coils 243A and 243B is provided corresponding to each of the plurality of first conversion units 241A and 241B. Each of the plurality of first conversion units 241A and 241B converts DC power based on the power from each of the battery 82A and the battery 82B, and outputs AC power to each of the plurality of first coils 243A and 243B. The plurality of first conversion units 241A and 241B correspond to an example of the plurality of power conversion units.
 第1変換部241Aは、双方向に直流電力と交流電力とを変換する機能を有する。第1変換部241Aは、導電路11B,12B間に印加される直流電圧を変換し、第1コイル243Aに交流電圧を発生させる機能を有する。第1変換部241Aは、第1コイル243Aに発生した交流電圧を変換し、導電路11B,12B間に直流電圧を出力する機能も有する。第1変換部241Aは、コンデンサ251Aと、フルブリッジ回路を構成するスイッチ素子251C,251D,251E,251Fを含む。 The first conversion unit 241A has a function of converting DC power and AC power in both directions. The first conversion unit 241A has a function of converting a DC voltage applied between the conductive paths 11B and 12B and generating an AC voltage in the first coil 243A. The first conversion unit 241A also has a function of converting an AC voltage generated in the first coil 243A and outputting a DC voltage between the conductive paths 11B and 12B. The first conversion unit 241A includes a capacitor 251A and switch elements 251C, 251D, 251E, 251F constituting a full bridge circuit.
 第1変換部241Bは、双方向に直流電力と交流電力とを変換する機能を有する。第1変換部241Bは、導電路21B,22B間に印加される直流電圧を変換し、第1コイル243Bに交流電圧を発生させる機能を有する。第1変換部241Bは、第1コイル243Bに発生した交流電圧を変換し、導電路21B,22B間に直流電圧を出力する機能も有する。第1変換部241Bは、コンデンサ261Aと、フルブリッジ回路を構成するスイッチ素子261C,261D,261E,261Fを含む。 The first conversion unit 241B has a function of converting DC power and AC power in both directions. The first conversion unit 241B has a function of converting a DC voltage applied between the conductive paths 21B and 22B and generating an AC voltage in the first coil 243B. The first conversion unit 241B also has a function of converting an AC voltage generated in the first coil 243B and outputting a DC voltage between the conductive paths 21B and 22B. The first conversion unit 241B includes a capacitor 261A and switch elements 261C, 261D, 261E, 261F constituting a full bridge circuit.
 第2変換部242は、双方向に交流電力と直流電力とを変換する機能を有する。第2変換部242は、第2コイル243Cに発生する交流電圧を変換して第3導電路96A,96B間に直流電圧を出力する機能を有する。第2変換部242は、第3導電路96A,96B間に印加された直流電圧を変換して第2コイル53Bに交流電圧を発生させる機能も有する。第2変換部242は、スイッチ素子252C,252D、インダクタ252E、コンデンサ252Aなどを含む。 The second conversion unit 242 has a function of converting AC power and DC power in both directions. The second conversion unit 242 has a function of converting an AC voltage generated in the second coil 243C and outputting a DC voltage between the third conductive paths 96A and 96B. The second conversion unit 242 also has a function of converting the DC voltage applied between the third conductive paths 96A and 96B to generate an AC voltage in the second coil 53B. The second conversion unit 242 includes switch elements 252C, 252D, an inductor 252E, a capacitor 252A, and the like.
 このようなコンバータ240を備えた電源装置210によっても、第1実施形態と同様の動作(リレー部91,92がオフ状態のときに所定条件が成立した場合に、コンバータ240に対して電力路94A,94B)に電力を供給する動作を行わせること)を実現できる。具体的には、電源装置210も、上述の第1プリチャージ動作や第2プリチャージ動作を電源装置10と同様に行うことができる。 Even with the power supply device 210 provided with such a converter 240, the same operation as in the first embodiment (when a predetermined condition is satisfied when the relay units 91 and 92 are in the off state, the power path 94A with respect to the converter 240 , 94B) can be made to perform the operation of supplying electric power). Specifically, the power supply device 210 can also perform the above-mentioned first precharge operation and the second precharge operation in the same manner as the power supply device 10.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above with reference to the description and drawings. For example, the features of the embodiments described above or below can be combined in any combination within a consistent range. Further, any of the features of the above-mentioned or later-described embodiments may be omitted unless it is clearly stated as essential. Further, the above-described embodiment may be modified as follows.
 上述された実施形態では、切替部84が電源装置10に含まれていないが、切替部84が電源装置に含まれていてもよい。つまり、切替部84が電源装置の一部として構成されていてもよい。 In the above-described embodiment, the switching unit 84 is not included in the power supply device 10, but the switching unit 84 may be included in the power supply device. That is, the switching unit 84 may be configured as a part of the power supply device.
 第1実施形態では、複数のバッテリとして2つのバッテリ82A,82Bが設けられていたが、3以上のバッテリが設けられていてもよい。この場合、例えば、各々のバッテリに対して各々の双方向DCDCコンバータが設けられていればよい。3以上のバッテリが設けられるいずれの場合でも、切替部は、3以上のバッテリを直列接続と並列接続とに切り替える構成であればよい。 In the first embodiment, two batteries 82A and 82B are provided as a plurality of batteries, but three or more batteries may be provided. In this case, for example, each bidirectional DCDC converter may be provided for each battery. In any case where three or more batteries are provided, the switching unit may be configured to switch between three or more batteries in series connection and parallel connection.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is not limited to the embodiments disclosed here, but includes all modifications within the scope indicated by the claims or within the scope equivalent to the claims. Is intended.
1      :車両
2      :車載システム
3      :車両用電源システム
4      :駆動部
8      :低圧負荷
9      :コンデンサ
10,210 :車両用電源装置
11,12  :第1導電路
18     :制御部
21,22  :第2導電路
33     :スイッチ(第2切替部)
40,240 :コンバータ
50,60  :電力変換部
70     :低圧バッテリ
82     :高圧バッテリ
82A    :第1高圧バッテリ(バッテリ)
82B    :第2高圧バッテリ(バッテリ)
84     :切替部
84A    :スイッチ
84B    :スイッチ
84C    :スイッチ
91,92  :リレー部
94     :電力路
94A,94B:電力路
96A,96B:第3導電路
241A   :第1変換部(電力変換部)
241B   :第1変換部(電力変換部)
1: Vehicle 2: In-vehicle system 3: Vehicle power supply system 4: Drive unit 8: Low voltage load 9: Capacitors 10, 210: Vehicle power supply device 11, 12: First conductive path 18: Control unit 21, 22: Second Conductive path 33: Switch (second switching unit)
40, 240: Converters 50, 60: Power converter 70: Low voltage battery 82: High voltage battery 82A: First high voltage battery (battery)
82B: Second high voltage battery (battery)
84: Switching unit 84A: Switch 84B: Switch 84C: Switch 91, 92: Relay unit 94: Power path 94A, 94B: Power path 96A, 96B: Third conductive path 241A: First conversion unit (power conversion unit)
241B: First conversion unit (power conversion unit)

Claims (4)

  1.  複数のバッテリと、前記複数のバッテリから電力が供給される経路である電力路と、前記複数のバッテリを直列接続と並列接続とに切り替える切替部と、前記複数のバッテリから前記電力路への電力供給を許容するオン状態と許容しないオフ状態とに切り替わるリレー部と、を有する車両用電源システムに用いられる車両用電源装置であって、
     コンバータと、
     前記コンバータを制御する制御部と、
     を有し、
     前記制御部は、前記リレー部がオフ状態のときに所定条件が成立した場合に、前記コンバータに対して前記電力路に電力を供給する動作を行わせる車両用電源装置。
    A plurality of batteries, a power path that is a path to which power is supplied from the plurality of batteries, a switching unit that switches the plurality of batteries between series connection and parallel connection, and power from the plurality of batteries to the power path. A vehicle power supply device used in a vehicle power supply system having a relay unit that switches between an on state that allows supply and an off state that does not allow supply.
    With the converter
    A control unit that controls the converter,
    Have,
    The control unit is a vehicle power supply device that causes the converter to supply electric power to the power path when a predetermined condition is satisfied when the relay unit is in the off state.
  2.  前記コンバータは、複数の電力変換部を備え、
     更に、複数の前記電力変換部を直列に接続した状態と直列接続を解除した状態とに切り替える第2切替部を有し、
     前記制御部は、前記リレー部がオフ状態のときに前記所定条件が成立した場合、複数の前記電力変換部を直列接続とするように前記第2切替部を制御しつつ、複数の前記電力変換部に対して前記電力路に電力を供給する動作を行わせる請求項1に記載の車両用電源装置。
    The converter includes a plurality of power converters.
    Further, it has a second switching unit that switches between a state in which the plurality of power conversion units are connected in series and a state in which the series connection is disconnected.
    When the predetermined condition is satisfied when the relay unit is in the off state, the control unit controls the second switching unit so that the plurality of power conversion units are connected in series, and the plurality of power conversion units. The vehicle power supply device according to claim 1, wherein the unit is operated to supply electric power to the electric power path.
  3.  各々の前記電力変換部は、各々の前記バッテリに対応して設けられ、双方向に電力変換を行う請求項2に記載の車両用電源装置。 The vehicle power supply device according to claim 2, wherein each of the power conversion units is provided corresponding to each of the batteries and performs power conversion in both directions.
  4.  前記電力路は、前記複数のバッテリから車両の駆動部に電力を供給する経路であり、
     前記電力路にはコンデンサが電気的に接続され、
     前記制御部は、前記複数のバッテリを直列接続としつつ前記複数のバッテリから前記駆動部に電力を供給する前には、前記リレー部をオフ状態としつつ前記コンバータを動作させて前記コンデンサを第1充電電圧に充電させる第1プリチャージ動作を行い、前記複数のバッテリを前記並列接続としつつ前記複数のバッテリから前記駆動部に電力を供給する前には、前記リレー部をオフ状態としつつ前記コンバータを動作させて前記コンデンサを前記第1充電電圧よりも小さい第2充電電圧に充電させる第2プリチャージ動作を行う請求項1から請求項3のいずれか一項に記載の車両用電源装置。
    The electric power path is a path for supplying electric power from the plurality of batteries to the drive unit of the vehicle.
    A capacitor is electrically connected to the power path,
    The control unit operates the converter while turning off the relay unit before supplying electric power from the plurality of batteries to the drive unit while connecting the plurality of batteries in series to obtain the capacitor. Before performing the first precharging operation to charge the charging voltage and supplying electric power from the plurality of batteries to the drive unit while connecting the plurality of batteries in parallel, the converter is turned off while the relay unit is turned off. The vehicle power supply device according to any one of claims 1 to 3, wherein a second precharging operation is performed in which the capacitor is charged to a second charging voltage smaller than the first charging voltage.
PCT/JP2021/043604 2020-12-01 2021-11-29 Vehicle power supply device WO2022118787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020199405A JP2022087465A (en) 2020-12-01 2020-12-01 Vehicular power supply device
JP2020-199405 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022118787A1 true WO2022118787A1 (en) 2022-06-09

Family

ID=81853892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043604 WO2022118787A1 (en) 2020-12-01 2021-11-29 Vehicle power supply device

Country Status (2)

Country Link
JP (1) JP2022087465A (en)
WO (1) WO2022118787A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192278A (en) * 2012-03-12 2013-09-26 Toyota Motor Corp Electric vehicle
WO2020184630A1 (en) * 2019-03-12 2020-09-17 株式会社デンソー Energy storage system
WO2020230202A1 (en) * 2019-05-10 2020-11-19 株式会社オートネットワーク技術研究所 Conversion device, conversion system, switch device, vehicle including said conversion device, said conversion system, and said switch device, and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192278A (en) * 2012-03-12 2013-09-26 Toyota Motor Corp Electric vehicle
WO2020184630A1 (en) * 2019-03-12 2020-09-17 株式会社デンソー Energy storage system
WO2020230202A1 (en) * 2019-05-10 2020-11-19 株式会社オートネットワーク技術研究所 Conversion device, conversion system, switch device, vehicle including said conversion device, said conversion system, and said switch device, and control method

Also Published As

Publication number Publication date
JP2022087465A (en) 2022-06-13

Similar Documents

Publication Publication Date Title
US6930404B1 (en) Power supply for an automotive vehicle
US9365114B2 (en) High voltage system of electric vehicles
US20150298631A1 (en) Electric transportation means, associated method and associated rechargeable battery
JP4952229B2 (en) Power supply circuit control device
WO2014203549A1 (en) Power supply device for auxiliary device battery
JP7254270B2 (en) vehicle drive
JP6546422B2 (en) Battery system controller
JP2019088142A (en) Electric power system for vehicle
JP2008099528A (en) Control unit for power circuit
JP2020501498A (en) Electric vehicle battery charging system and method using multilayer division system
KR101549551B1 (en) Driving apparatus for electric vehicle
JP2003095039A (en) Power source system for automobile
CN111746308B (en) Electric power system and control method thereof
WO2022118787A1 (en) Vehicle power supply device
JP4075836B2 (en) Vehicle power supply
WO2022009982A1 (en) Converting device
WO2022009983A1 (en) Power control device
EP4222015A1 (en) A transformer with split winding circuitry for an electric vehicle
JP2018121397A (en) Electric vehicle
GB2599388A (en) Electrical vehicle circuitry
WO2021059833A1 (en) Conversion device and conversion system
WO2021059523A9 (en) Power supply system
WO2022009984A1 (en) Conversion device
JP5682529B2 (en) Power system
GB2613830A (en) Electrical vehicle circuitry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900540

Country of ref document: EP

Kind code of ref document: A1