WO2022009866A1 - Gasket and method, system, and program for management of same - Google Patents

Gasket and method, system, and program for management of same Download PDF

Info

Publication number
WO2022009866A1
WO2022009866A1 PCT/JP2021/025408 JP2021025408W WO2022009866A1 WO 2022009866 A1 WO2022009866 A1 WO 2022009866A1 JP 2021025408 W JP2021025408 W JP 2021025408W WO 2022009866 A1 WO2022009866 A1 WO 2022009866A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
shape
load
information
inner cut
Prior art date
Application number
PCT/JP2021/025408
Other languages
French (fr)
Japanese (ja)
Inventor
淑子 赤松
清華 戸田
聡美 高橋
正 寺崎
義太朗 坂田
和也 菊永
正浩 江頭
Original Assignee
株式会社バルカー
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社バルカー
Priority to JP2022535334A priority Critical patent/JPWO2022009866A1/ja
Priority to KR1020227043629A priority patent/KR20230036065A/en
Priority to CN202180048466.7A priority patent/CN115777046A/en
Publication of WO2022009866A1 publication Critical patent/WO2022009866A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to, for example, gaskets used for fastening piping systems and management techniques thereof.
  • Tightening torque and bolt axial force value applied to the flange by the bolt are traditionally used. Tightening torque and bolt axial force value are tightening information about bolts that tighten between flanges.
  • Tightening torque and bolt axial force value are tightening information about bolts that tighten between flanges.
  • Patent Document 1 a system using information on the tightening surface pressure corresponding to the type of gasket and internal fluid, a plurality of tightening forces, bolts, etc. is known (for example, Patent Document 1).
  • Patent Document 2 Regarding the tightening of bolts, it is known that the strain generated in the bolts is converted into data and the tightened state of the bolts is visualized.
  • a sheet type pressure sensor embedded inside the gasket is known to measure the force applied to a part of the gasket by fastening (for example, Patent Document 3).
  • the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and that the tightening force from the bolt can be easily grasped by measuring the bolt strain. be.
  • the tightening force of the bolt acts on the flange, and the gasket merely acts indirectly through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange.
  • the torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and cannot be said to represent the surface pressure acting on the gasket.
  • the torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
  • the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
  • Patent Documents 1 to 3 do not disclose or suggest such a problem. Further, such a problem cannot be solved by the configurations disclosed in Patent Documents 1 to 3.
  • the purpose of the present disclosure is to directly observe the shape change of the gasket that receives the load between the flanges based on the above-mentioned problems and the above-mentioned findings, and to improve the gasket and its management technique by using the observation result for the management of the tightening of the gasket. It is to plan.
  • the non-constrained portion adjacent to the restrained portion constrained between the flanges is provided with an inner cut, and the inner cut is provided by the load applied to the restrained portion.
  • the shape of is changed.
  • the minimum point information can be further obtained from the shape change of the inner cut.
  • the step of installing a gasket having an inner cut whose shape changes under load, and the flange being restrained between the flanges is managed based on the shape.
  • This management method may further include a step of acquiring minimum point information from the shape change of the inner cut.
  • a measuring means for measuring the shape of the inner cut formed on the peripheral edge of the gasket, and management information for managing the tightening of the gasket based on the shape includes a management server that generates the above, and an information presentation unit that presents the management information.
  • the program of the present disclosure is a program to be realized by a computer, and the shape information of the inner cut provided in the gasket which is restrained between the flanges and receives a load is acquired.
  • the computer realizes a function, a function of generating management information for managing the tightening of the gasket based on the shape information, and a function of presenting the management information.
  • the computer further realizes a function of acquiring minimum point information from the shape change of the inner cut.
  • A is a plan view showing a gasket according to the first embodiment
  • B is an enlarged perspective view showing an IB portion of A.
  • It is a figure which shows the flange fastening part which concerns on 1st Embodiment.
  • A is a diagram showing an enlarged inner cut
  • B is a diagram showing a change in the shape of the inner cut.
  • A, B and C are diagrams showing a modified example of the inner cut.
  • It is a figure which shows the gasket management system which concerns on 1st Embodiment.
  • It is a figure which shows the gasket management database.
  • A is a diagram showing a comparative example
  • B is a diagram showing the setting of the shape observation unit.
  • A is a diagram showing the shape of the gasket according to the fifth embodiment
  • B is a diagram showing an example of a state before a load is applied
  • C is a diagram showing an example of a state when a load of a predetermined value is applied. It is a figure which shows the shape observation example which concerns on Example 5.
  • FIG. 1 shows the gasket 2 according to the first embodiment.
  • the configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration.
  • the X-axis, the Y-axis, and the Z-axis are shown together as an example.
  • This gasket 2 is, for example, a sheet gasket processed with a material containing a polytetrafluoroethylene resin (PTFE: Polytetrafluoroethylene) and a filler.
  • PTFE polytetrafluoroethylene resin
  • a resin material or rubber material other than PTFE may be used for the gasket 2.
  • the gasket 2 may be made of a metal material, or may be a combination of a metal material and a ceramic, a heat-resistant fiber material, or another material.
  • the gasket 2 includes a spiral gasket 70 (FIG. 12), a flat plate gasket having a sheet such as PTFE or graphite attached to the surface, a groove formed on the gasket surface, or a flange portion on the outer edge portion. Includes can profile gaskets and the like.
  • the gasket 2 has a restraining portion 2-1 on the inner diameter side and a non-constraining portion 2-2 on the outer diameter side.
  • the restraint portion 2-1 is a region that is in contact with the flanges 16-1 and 16-2 (FIGS. 2 and 3) and receives a load F from between the flanges 16-1 and 16-2.
  • the unconstrained portion 2-2 is a region that does not contact between the flanges 16-1 and 16-2.
  • Inner cuts 4-1, 4-2, 4-3, 4-4 (hereinafter, simply referred to as inner cut 4 when a specific position is not specified) are formed in the non-restraint portion 2-2. There is.
  • Each inner cut 4 is a through hole portion penetrated through the front and back of the unrestrained portion 2-2 of the gasket 2, and is a means for facilitating the detection of the shape change of the gasket 2. Therefore, each inner cut 4 constitutes a shape observation unit for observing the shape change of the gasket 2 when the load F is applied to the restraint portion 2-1.
  • ⁇ Inner cut 4> B in FIG. 1 is an enlarged view of the inner cut 4 in the IB portion of A in FIG.
  • this inner cut 4 it is a through hole portion penetrating the upper and lower surfaces of the gasket 2 with a long side length L and a width W having a constant arc shape in the circumferential direction of the gasket 2.
  • Each inner cut 4 has vertical surface portions 6-1 and 6-2 facing each other with a constant width W, inner peripheral surface portions 8-1 facing each other with a long side length L, and outer peripheral surface portions 8-2.
  • the height D is the thickness of the gasket 2 before deformation.
  • each inner cut 4 may be set at a plurality of locations on the gasket 2. It is preferable that the set position is not biased in order to avoid the influence of the elastic interaction received from the flanges 16-1 and 16-2 and to improve the detection accuracy of the shape change.
  • each inner cut 4 is set at four locations on the X-axis and the Y-axis, and the shape change can be detected in a wide range.
  • FIG. 2 shows a notch in the flange fastening portion 12 including the gasket 2.
  • the flange fastening portion 12 is an example, and the present disclosure is not limited to the configuration shown in FIG.
  • the flange fastening portion 12 includes a flange 16-1 on the pipeline 14-1 side, a flange 16-2 on the pipeline 14-2 side (FIG. 3), a gasket 2, a plurality of bolts 18, and a nut 20.
  • the flange 16-1 is integrally formed with the end face of the pipeline 14-1, and similarly, the flange 16-2 is integrally formed with the end face of the pipeline 14-2.
  • the flanges 16-1 and 16-2 have a larger diameter than the pipelines 14-1 and 14-2, and a plurality of bolts 18 and nuts 20 are attached at predetermined angular intervals.
  • a gasket 2 is installed between the flanges 16-1 and 16-2 inside the bolt 18 and the nut 20.
  • the gasket 2 constitutes a sealing member for the flange fastening portion 12. Therefore, by tightening the bolts 18 and nuts 20, the gasket 2 is loaded by the load F applied to the flanges 16-1 and 16-2, and the gaskets 2 are sealed together with the fastening of the pipelines 14-1 and 14-2. ..
  • the restraining portion 2-1 of the gasket 2 is sandwiched between the flanges 16-1 and 16-2, and is in contact with the flanges 16-1 and 16-2 to be restrained.
  • the unconstrained portion 2-2 protrudes around the restraining portion 2-1 and does not contact the flanges 16-1 and 16-2, that is, it is not constrained by the flanges 16-1 and 16-2.
  • the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, whereas the non-constraining portion 2-2 constitutes a free end that does not receive the load F. ing.
  • each inner cut 4 of the non-restraint portion 2-2 constitutes a portion for detecting a shape change appearing on the gasket 2. Assuming that the load F acts in the Z-axis direction, the strain occurs in the X-axis and Y-axis directions, for example.
  • FIG. 3 shows the III-III line cut end face of FIG.
  • the restraining portion 2-1 of the gasket 2 is sandwiched and restrained between the gasket seats 22 of the flanges 16-1 and 16-2.
  • the unconstrained portion 2-2 protrudes into the gap 24 between the flanges 16-1 and 16-2.
  • the non-constrained portion 2-2 is integrated with the restraint portion 2-1 and is supported between the flanges 16-1 and 16-2, and is a free end protruding into the gap 24. That is, the unrestrained portion 2-2 is in a cantilever state.
  • Strains and deformations that occur in the restraint portion 2-1 when the load F is received from the flanges 16-1 and 16-2 appear as shape changes in the non-constraint portion 2-2. This shape change can be easily observed from the inner cut 4. That is, the shape change of the gasket 2 that appears in the non-constrained portion 2-2 is distortion or deformation due to being pushed out from between the gasket seats 22, and the restrained portion 2-1 of the gasket 2 is from the flanges 16-1 and 16-2. Represents the load received.
  • the inner cut 4 is formed in order to make the strain generated in the unconstrained portion 2-2 manifest as a remarkable shape change and facilitate its observation.
  • the unrestrained portion 2-2 spreads by ⁇ Y in the radial direction of the gasket 2 (indicated by the arrow a), and the inner peripheral surface portion 8-1, the outer peripheral surface portion 8-2, and the vertical surface portion 6 -1 and 6-2 also move in the radial direction of the gasket 2.
  • the width W of the inner cut 4 is narrowed to the width ⁇ W as the distance between the inner peripheral surface portion 8-1 and the outer peripheral surface portion 8-2 is indicated by arrows b and c.
  • the shape change in the XY-axis direction is illustrated, but it goes without saying that the shape change in the Z-axis direction and the thickness direction also appears in the shape of the inner cut 4.
  • the strain generated in the restrained portion 2-1 and the non-constrained portion 2-2 by receiving the load F from the flanges 16-1 and 16-2 is manifested as a shape change of the inner cut 4, and its observation is facilitated. Can be done.
  • the inner cut 4 is not limited to the form shown in B of FIG. A, B, and C in FIG. 5 show a modification of the inner cut 4.
  • the parts corresponding to B in FIG. 1 are designated by the same reference numerals.
  • the inner cut 4 is a parallel surface or non-parallel surface composed of linear facing surface portions 9-1 and 9-2 instead of the above-mentioned inner peripheral surface portion 8-1 and outer peripheral surface portion 8-2. It may be formed on parallel surfaces, or as shown in FIG. 5B, it may be formed in a square or fan shape consisting of four surfaces of the facing surface portions 7-1 and 7-2 and the facing surface portions 9-1 and 9-2. good. Further, as shown in C of FIG. 5, by forming the surface portions 9-11 and 9-12 on the facing surface portions 9-1, the widths of the facing surface portions 9-1 and 9-2 are partially different, for example. , Wa, Wb (Wa ⁇ Wb). Even in such a form, the shape change that occurs in the non-constrained portion 2-2 when the load F is received by the restrained portion 2-1 can be easily detected from the inner cut 4.
  • a sensor member such as metal or resin may be installed in the space portion of the inner cut 4, and the shape change of the inner cut 4 may be extracted from this sensor member.
  • the management process of the gasket 2 is an example of the management method of the present disclosure.
  • This management step includes a generation step S1 of the restraint portion 2-1 and the non-constraint portion 2-2, an addition step S2 of the load F, a shape information acquisition step S3, and a presentation step S4 of the shape information and the like.
  • S1 to S4 attached to each step exemplify the order of each step, and the terms quoted are only used for convenience.
  • Load F addition step S2 In the gasket 2, the load F is applied to the restraint portion 2-1 restrained by the flanges 16-1 and 16-2 by tightening the flanges 16-1 and 16-2. In response to this load F, the gasket 2 causes strain in the restraining portion 2-1 and causes a shape change in the non-constraining portion 2-2.
  • Shape information acquisition step S3 Regarding the shape change appearing in the unconstrained portion 2-2, the management server 30 (FIG. 6) receives the detection output of the strain sensor 28 and acquires the shape information of the inner cut 4.
  • the management server 30 generates presentation information including shape information and presents it by the information presentation unit 32 (FIG. 6).
  • the shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
  • FIG. 6 shows a gasket management system 26 for executing a management process by information processing.
  • the configuration shown in FIG. 6 is an example, and the present disclosure is not limited to such a configuration.
  • the same parts as those in FIG. 3 are designated by the same reference numerals.
  • This gasket management system 26 includes a strain sensor 28, a management server 30, and an information presentation unit 32.
  • the strain sensor 28 measures the shape change appearing in the inner cut 4 of the gasket 2 and outputs a detection signal indicating this shape change.
  • the strain sensor 28 is an example of a means for detecting a shape change and converting it into an electric signal.
  • a laser displacement meter, a camera, or the like may be used as the means for observing the shape change.
  • the laser displacement meter shines a laser beam on the inner cut 4, detects a change in the shape of the inner cut 4 with the reflected light, and observes the amount of the change.
  • the camera captures the inner cut 4, and the management server 30 detects the strain appearing in the inner cut 4 by the number of pixels, and acquires the shape information according to the strain.
  • the management server 30 is composed of a computer having a communication function.
  • the management server 30 includes a processor 34, a storage unit 36, an input / output (I / O) unit 38, and a communication unit 40.
  • the processor 34 executes an OS (Operating System) and a management program in the storage unit 36, and performs information processing for gasket management.
  • the storage unit 36 includes a storage medium for storing the OS and the management program.
  • the gasket management database (DB) 42 (FIG. 7) is stored in the storage unit 36.
  • the communication unit 40 inputs and presents information in cooperation with a management terminal (not shown).
  • the management terminal is also used for acquiring shape information and writing and reading the gasket management DB 42.
  • the information presenting unit 32 presents shape information including a load and determination information under the control of the management server 30.
  • ⁇ Information processing of management server 30> For information processing of the management server 30, a) Processing for capturing the detection output of the strain sensor 28 b) Acquisition of shape information of the inner cut 4 c) Generation of presentation information including shape information d) Processing such as presentation of estimation information by the information presentation unit 32 is included.
  • FIG. 7 shows an example of the gasket management DB 42.
  • This gasket management DB 42 is used for processing such as estimating a load from shape information.
  • the gasket management file 44 is stored in the gasket management DB 42.
  • the gasket management file 44 includes a gasket information unit 46, an inner cut information unit 47, a time information unit 48, a load information unit 50, a strain sensor information unit 52, a detection information unit 54, a judgment information unit 56, and a history information unit 58. It is set.
  • the gasket information unit 46 stores specification information for specifying the gasket 2.
  • the inner cut information unit 47 stores shape information such as the shape representing the inner cuts 4-1, 4-2, 4-3, and 4-4, and the arrangement position and size thereof.
  • Time information such as the measurement date and time is stored in the time information unit 48.
  • the load information unit 50 stores load information representing the load F applied between the flanges 16-1 and 16-2 by tightening the bolt 18.
  • the determination information unit 56 stores estimated load information representing the load estimated from the shape information by the information processing of the management server 30.
  • the history information unit 58 stores history information such as shape information acquisition and estimation processing.
  • the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, and the strain generated in the restraining portion 2-1 is applied to the non-constraining portion 2-2. It can be visualized as a shape change of the inner cut 4, and the shape change corresponding to the load F can be easily observed from the inner cut 4.
  • the shape information of the inner cut 4 can be acquired from the inner cut 4 by the detection output of each strain sensor 28, and the load received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated from the shape change.
  • the strain of the gasket 2 can be observed by the shape change of the inner cut 4, and the load received by the gasket 2 is estimated from the shape change without being affected by the tightening torque and the axial force of the bolt 18, and the gasket 2 is used.
  • the tightening state of can be determined.
  • the management method of the gasket 2 according to the second embodiment further includes the estimation step S5 based on the minimum point information in the management method of the first embodiment.
  • the shape information can include a minimum point as peculiar information of the load.
  • the load F that is, the surface pressure can be estimated from the shape change of the inner cut 4 received by the gasket 2, and the monitoring or adjustment of the tightened state with respect to the gasket 2 can be facilitated.
  • FIG. 8A shows the gasket 2 according to the comparative example.
  • the restrained portion 2-1 and the non-constrained portion 2-2 are set concentrically with the same width or substantially the same width.
  • shape observation units 60-1, 60-2, 60-3, 60-4 are set at positions corresponding to the inner cut 4 of the embodiment. ing.
  • the shape observation units 60-1, 60-2, 60-3, and 60-4 are arranged in the unconstrained unit 2-2 at an angular interval of 90 degrees at a center angle.
  • the arrangement positions of the shape observation units 60-1, 60-2, 60-3, and 60-4 are set to positions that do not overlap with the arrangement positions of the bolts 18.
  • Table 1 shows the shape of the inner cut 4 of the gasket 2 and the measurement results thereof according to the embodiment.
  • Example 1 the shape of the inner cut 4 in Example 1, Example 2, Example 3, and Example 4, the distance between the long sides at the completion of tightening, the minimum point load, and the dimensional information and load information of the comparative example are shown. Shows.
  • FIG. 9 shows the relationship between the shape change (change in the distance between long sides) and the load according to Example 1, Example 2, Example 3, and Example 4.
  • n1 shows the change in Example 1
  • n2 shows the change in Example 2
  • n3 shows the change in Example 3
  • n4 shows the change in Example 4. Comparing these, it can be seen that the shape changes of n1 and n2 are remarkable, and it is easy to identify the load applied to the gasket 2 by observing the shape changes.
  • FIG. 10 shows the relationship between the minimum point information appearing in the shape change and the load by taking the load on the horizontal axis and the strain on the vertical axis.
  • o1 shows a shape change in the 0 (deg) direction
  • o2 shows a shape change in the 45 (deg) direction
  • o3 shows a shape change in the 90 (deg) direction.
  • the minimum point is generated in the shape change in Examples 1 and 2.
  • FIG. 11 shows the relationship between the inflection point appearing in the shape change and the load when the long side length L of the inner cut 4 is short.
  • p1 shows a shape change in the 0 (deg) direction
  • p2 shows a shape change in the 45 (deg) direction
  • p3 shows a shape change in the 90 (deg) direction.
  • the relationship between the shape change and the load can be specified by measuring the shape change of the inner cut 4.
  • the shape change appearing in the inner cut 4 of the non-restraint portion 2-2 can be measured, and the shape information representing the load can be obtained from the gasket 2. .. Therefore, the load can be estimated from the shape change of the gasket 2 due to the load F applied to the flanges 16-1 and 16-2 without being affected by the bolt 18 and the flanges 16-1 and 16-2.
  • the gasket 2 can also handle various diameters and thicknesses.
  • FIG. 12 shows a configuration example of the gasket 70 according to the fifth embodiment.
  • This gasket 70 is, for example, a laminated body in which a plurality of members having different diameters are coaxially arranged, and is a spiral-wound gasket provided with an outer ring 701, a gasket main body 702, and an inner ring 703.
  • the gasket 70 is, for example, a restraint portion 2-1 in which only the inner ring 703, a part or all of the inner ring 703 and the gasket body 702, and a part of the outer ring 701 come into contact with the gasket seat 22 (FIG. 3) and receive a load F. .. That is, in the gasket 70, a part or all of the outer ring 701 becomes an unconstrained portion 2-2.
  • the gasket body 702 of the gasket 70 is deformed according to the load F from the flanges 16-1 and 16-2, and the outer ring 701 is distorted due to this deformation.
  • the gasket 70 has one or a plurality of inner cuts 4 formed on a part of the outer ring 701.
  • the inner cut 4 is, for example, 5 [mm] as a predetermined distance t from the outer edge portion of the outer ring 701. It is formed at the position of.
  • the shape of the inner cut 4 is measured and the surface pressure state of the gasket 70 is managed.
  • the strain sensor 28 of the gasket management system 26 may be used.
  • the gasket management system 26 calculates the shape of the inner cut 4 based on the measured shape change Qa.
  • the management process of the tightened state of the gasket 70 the same process as that of the above embodiment may be performed.
  • the outer ring 701 and the inner ring 703 are made of a metal material such as stainless steel, carbon steel, or titanium, and are formed in a ring having a predetermined thickness or a shape close to the ring.
  • a thin plate-shaped member made of a metal material and a laminated body of a cushioning material (filler) such as graphite or fluororesin are spirally wound between the inner wall surface of the outer ring 701 and the outer wall surface of the inner ring 703. It is composed by winding around.
  • the laminate constituting the gasket main body 702 is formed, for example, in a cross section having a “V” shape or a waveform close to the “V” shape.
  • the end faces are fixed to the outer ring 701 and the inner ring 703 by spot welding.
  • the outer ring 701 has an inner cut 4a opened with a predetermined width before the load F from the flanges 16-1 and 16-2 is applied to the gasket main body 702. Then, when the load F acts through the gasket body 702, the outer ring 701 is formed into an inner cut 4b in which a part or all of the opening portion is deformed and closed, as shown in FIG. 15, for example, C.
  • FIG. 13 shows the measured values of the circumferential shape change Qa (FIG. 12) appearing on the outer edge of the outer ring 701 measured by the strain sensor 28, with the load [kN] on the horizontal axis and the strain (shape change) on the vertical axis. ing.
  • the shape change of the inner cut 4 is measured from the shape change Qa that occurs in the outer ring 801.
  • a change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 16-1 and 16-2 can be estimated from the shape change of the gasket 70 without being affected by the bolts 18 and the flanges 16-1 and 16-2.
  • a management system that manages flange fastenings with gaskets between flanges.
  • a restraining portion that is restrained between the flanges and receives a load
  • a non-constraining portion that is not restrained between the flanges
  • a through hole portion provided in the non-constraining portion
  • a gasket that receives the load and causes a change in the through hole
  • a measuring instrument that measures changes in the through-hole portion in contact with or without contact with the gasket.
  • a management server that acquires measurement information from the measuring instrument and generates management information including the tightening force between the flanges.
  • An information presenting unit that presents the management information in relation to the gasket or the flange fastening portion, and A management system.
  • a recording medium on which a program to be realized by a computer is recorded A function to acquire shape information including changes that occur in the through hole in the non-constrained portion of the gasket due to being restrained between the flanges and receiving a load from the flanges. A function to generate management information including the tightening force between the flanges based on the shape information, and The function of presenting the management information and A recording medium on which a program for realizing the above-mentioned computer is recorded.
  • the initial fastening at the flange fastening portion 12 receives a load from between the flanges and observes the shape change generated in the gasket 2, but the initial fastening of the flange fastening is performed. Not limited.
  • the shape of the inner cut 4 described above is an example, and even if it is an arc shape having no vertical surface portion 6, or a polygonal shape or a rectangular through hole portion having a linear parallel surface portion or a non-parallel surface portion. good.
  • the load F applied to the gasket 2 sandwiched between the flanges 16-1 and 16-2 and the shape change of the gasket 2 are described.
  • the load F applied to the gasket 2 is equivalent to the surface pressure received by the gasket 2 from the flanges 16-1 and 16-2, and there is no qualitative difference between the two. That is, the surface pressure of the gasket 2 can be estimated from the relationship between the load F applied to the gasket 2 and the shape change appearing in the inner cut 4.
  • the management server 30 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used.
  • a display unit that clearly indicates the change point may be presented in 32 (FIG. 6).
  • the shape change of the inner cut of the gasket can be observed for the gasket for fastening between the flanges, so that the gasket is not affected by the tightening state of the bolt or the flange. It can be used for management information such as gasket tightening management and replacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gasket Seals (AREA)

Abstract

The present invention has an inner cut (4) in a non-restrained part (2-2) that is adjacent to a restrained part (2-1) that is restrained between flanges (16-1, 16-2), and the shape of the inner cut changes as a result of the load applied to the restrained part. Minimum information can be obtained from the change in shape of the inner cut. Thus, the change in shape of a gasket that is subjected to a load between flanges is observed directly, and the results of the observation are used in the management of the fastening of the gasket, improving the gasket and the management thereof.

Description

ガスケット、その管理の方法、システムおよびプログラムGaskets, their management methods, systems and programs
 本開示はたとえば、配管系統の締結などに用いられるガスケットおよびその管理技術に関する。
The present disclosure relates to, for example, gaskets used for fastening piping systems and management techniques thereof.
 ガスケットの締付け管理には、ボルトによりフランジに加えられる締付けトルクやボルト軸力値が伝統的に用いられている。締付けトルクやボルト軸力値はフランジ間を締め付けるボルトに関する締付け情報である。
 このガスケットの締付けに関し、締付けトルクを把握するため、ガスケットや内部流体の種類に対応する締付け面圧、複数の締付け力、ボルトに関する情報などを用いるシステムが知られている(たとえば、特許文献1)。ボルトの締付けに関し、ボルトに発生するひずみをデータ化し、ボルトの締付け状態を視認化することが知られている(たとえば、特許文献2)。また、ガスケット内部に埋設したシート型圧力センサーにより、締結によってガスケットの一部に加わる力を測定するものが知られている(たとえば、特許文献3)。
For gasket tightening control, the tightening torque and bolt axial force value applied to the flange by the bolt are traditionally used. Tightening torque and bolt axial force value are tightening information about bolts that tighten between flanges.
Regarding the tightening of this gasket, in order to grasp the tightening torque, a system using information on the tightening surface pressure corresponding to the type of gasket and internal fluid, a plurality of tightening forces, bolts, etc. is known (for example, Patent Document 1). .. Regarding the tightening of bolts, it is known that the strain generated in the bolts is converted into data and the tightened state of the bolts is visualized (for example, Patent Document 2). Further, a sheet type pressure sensor embedded inside the gasket is known to measure the force applied to a part of the gasket by fastening (for example, Patent Document 3).
特開2014-225219号公報Japanese Unexamined Patent Publication No. 2014-225219 特開2015-141345号公報Japanese Unexamined Patent Publication No. 2015-141345 特許第4699935号公報Japanese Patent No. 46999935
 ところで、ガスケットの締付け管理にボルトの締付けトルクや軸力値が用いられる理由は、ボルトがフランジ間を締付ける手段であること、ボルトひずみを計測すればボルトからの締付け力を容易に把握できることなどがある。 By the way, the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and that the tightening force from the bolt can be easily grasped by measuring the bolt strain. be.
 しかしながら、ボルト、フランジおよびガスケットの関係を精査した結果、ボルトの締付け力はフランジに作用しており、ガスケットにはフランジを媒介として間接的に作用しているにすぎない。つまり、フランジはボルトの締付けによる荷重を受け、この荷重がフランジを介してガスケットに作用しているにすぎない。ボルトに作用させたトルク値や軸力値は、フランジの一部に作用している荷重であり、ガスケットに作用する面圧を表しているとは言えない。 However, as a result of scrutinizing the relationship between the bolt, the flange and the gasket, the tightening force of the bolt acts on the flange, and the gasket merely acts indirectly through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange. The torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and cannot be said to represent the surface pressure acting on the gasket.
 このため、ガスケットの締付け管理には次のような課題がある。 Therefore, there are the following problems in gasket tightening management.
 a)ボルトから取得したトルク値や軸力値はボルトに関する情報であり、ガスケットが受ける面圧を測定しているとは言えない。 A) The torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
 b)ガスケットがフランジから受ける面圧から見れば、ボルトのトルク値や軸力値は間接的な情報にすぎず、面圧の目安にすぎない。 B) From the viewpoint of the surface pressure that the gasket receives from the flange, the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
 c)ボルトのトルク値や軸力値はボルトやフランジの締付け状態の影響を受け、この変動傾向を無視できない。 C) The torque value and axial force value of the bolt are affected by the tightening state of the bolt and flange, and this fluctuation tendency cannot be ignored.
 トルクレンチやボルト軸力計で計測したトルク値や軸力値でガスケットの面圧を推定した場合、ボルトやフランジの締付け状態の影響を受けると、ガスケットに付与される面圧(=推定面圧)と、実際にガスケットが受ける面圧(=実面圧)の関係は、
             推定面圧≠実面圧
となる。トルク値や軸力値の測定精度を高めても、推定面圧とガスケットの実面圧が一致しない。ガスケットが受ける面圧を把握することができない。
When the surface pressure of the gasket is estimated from the torque value or axial force value measured with a torque wrench or bolt axial force meter, the surface pressure applied to the gasket (= estimated surface pressure) when affected by the tightening state of the bolt or flange. ) And the surface pressure (= actual surface pressure) actually received by the gasket,
Estimated surface pressure ≠ actual surface pressure. Even if the measurement accuracy of the torque value and the axial force value is improved, the estimated surface pressure and the actual surface pressure of the gasket do not match. It is not possible to grasp the surface pressure that the gasket receives.
 斯かる課題について、発明者は、ガスケットの形状変化がフランジ間から受ける荷重に依存しており、その形状変化を観測することがガスケットの締付け管理上有益であるとの知見を得た。特許文献1~3には斯かる課題の開示や示唆はない。そして、特許文献1~3に開示された構成では斯かる課題を解決することができない。 Regarding such a problem, the inventor has found that the shape change of the gasket depends on the load received from between the flanges, and it is useful to observe the shape change in the tightening management of the gasket. Patent Documents 1 to 3 do not disclose or suggest such a problem. Further, such a problem cannot be solved by the configurations disclosed in Patent Documents 1 to 3.
 そこで、本開示の目的は上記課題および上記知見に基づき、フランジ間で荷重を受けるガスケットの形状変化を直接観測し、ガスケットの締付けの管理にその観測結果を用いてガスケットおよびその管理技術の向上を図ることにある。 Therefore, the purpose of the present disclosure is to directly observe the shape change of the gasket that receives the load between the flanges based on the above-mentioned problems and the above-mentioned findings, and to improve the gasket and its management technique by using the observation result for the management of the tightening of the gasket. It is to plan.
 上記目的を達成するため、本開示のガスケットの一側面によれば、フランジ間に拘束される拘束部に隣接する非拘束部にインナーカットを備え、前記拘束部に加えられた荷重により前記インナーカットの形状が変化する。 In order to achieve the above object, according to one aspect of the gasket of the present disclosure, the non-constrained portion adjacent to the restrained portion constrained between the flanges is provided with an inner cut, and the inner cut is provided by the load applied to the restrained portion. The shape of is changed.
 このガスケットにおいて、さらに、前記インナーカットの形状変化から極小点情報が得られる。 In this gasket, the minimum point information can be further obtained from the shape change of the inner cut.
 上記目的を達成するため、本開示の管理方法の一側面によれば、荷重を受けて形状が変化するインナーカットを備えるガスケットを設置する工程と、フランジ間に拘束された前記ガスケットに、該フランジ間より荷重を付加する工程と、前記荷重により変化した前記インナーカットの形状を計測する工程と、前記形状に基づき前記フランジ間の締付けを管理する。 In order to achieve the above object, according to one aspect of the management method of the present disclosure, the step of installing a gasket having an inner cut whose shape changes under load, and the flange being restrained between the flanges. The step of applying a load from between, the step of measuring the shape of the inner cut changed by the load, and the tightening between the flanges are managed based on the shape.
 この管理方法において、さらに、前記インナーカットの形状変化から極小点情報を取得する工程を含んでよい。 This management method may further include a step of acquiring minimum point information from the shape change of the inner cut.
 上記目的を達成するため、本開示の管理システムの一側面によれば、ガスケットの周縁に形成されたインナーカットの形状を計測する計測手段と、前記形状に基づき前記ガスケットの締付けを管理する管理情報を生成する管理サーバと、前記管理情報を提示する情報提示部とを含む。 In order to achieve the above object, according to one aspect of the management system of the present disclosure, a measuring means for measuring the shape of the inner cut formed on the peripheral edge of the gasket, and management information for managing the tightening of the gasket based on the shape. Includes a management server that generates the above, and an information presentation unit that presents the management information.
 上記目的を達成するため、本開示のプログラムの一側面によれば、コンピュータにより実現するためのプログラムであって、フランジ間に拘束されて荷重を受けるガスケットに備えたインナーカットの形状情報を取得する機能と、前記形状情報に基づき前記ガスケットの締付けを管理する管理情報を生成する機能と、前記管理情報を提示する機能とを前記コンピュータで実現する。 In order to achieve the above object, according to one aspect of the program of the present disclosure, it is a program to be realized by a computer, and the shape information of the inner cut provided in the gasket which is restrained between the flanges and receives a load is acquired. The computer realizes a function, a function of generating management information for managing the tightening of the gasket based on the shape information, and a function of presenting the management information.
 このプログラムにおいて、さらに、前記インナーカットの形状変化から極小点情報を取得する機能を前記コンピュータで実現する。 In this program, the computer further realizes a function of acquiring minimum point information from the shape change of the inner cut.
 本発明によれば、次の何れかの効果が得られる。 According to the present invention, any of the following effects can be obtained.
 (1) フランジ間からガスケットが受ける荷重によってガスケットにひずみが生じ、ガスケットのインナーカットの形状変化に顕在化させることができる。そしてインナーカットの形状変化が可視化でき、容易に認識できる。 (1) The load received by the gasket from between the flanges causes strain on the gasket, which can be manifested in the shape change of the inner cut of the gasket. And the shape change of the inner cut can be visualized and easily recognized.
 (2) インナーカットの形状変化を観測すれば、ボルトの締付け状態に影響を受けることなく、ガスケットに加えられる荷重を容易に把握でき、ガスケットの締付け管理を適正に行うことができる。 (2) By observing the shape change of the inner cut, the load applied to the gasket can be easily grasped without being affected by the tightening state of the bolt, and the tightening management of the gasket can be performed properly.
 (3) インナーカットの形状変化からガスケットに加えられる荷重を推定する。推定した荷重がフランジから受けるガスケットの実面圧と同等である。このためこの手法が締結管理やガスケットの寿命予測など、ガスケットの管理精度を高めることができる。 (3) Estimate the load applied to the gasket from the shape change of the inner cut. The estimated load is equivalent to the actual surface pressure of the gasket received from the flange. Therefore, this method can improve the management accuracy of gaskets such as fastening management and gasket life prediction.
 (4) インナーカットの形状変化や、この形状変化から推定される荷重は、ボルトのトルク値や軸力値と異なり、ガスケットの締付け状態を直接反映している。このため斯かる形状変化を観測し、荷重を推定すれば、従事者の技量によらずガスケットの管理精度を高めることができる。 (4) The shape change of the inner cut and the load estimated from this shape change directly reflect the tightening state of the gasket, unlike the torque value and axial force value of the bolt. Therefore, by observing such a shape change and estimating the load, it is possible to improve the management accuracy of the gasket regardless of the skill of the worker.
 そして、本開示の技術の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。 And other objectives, features and advantages of the techniques of the present disclosure will be further clarified by reference to the accompanying drawings and each embodiment.
Aは第1の実施の形態に係るガスケットを示す平面図であり、BはAのIB部分を拡大して示す斜視図である。A is a plan view showing a gasket according to the first embodiment, and B is an enlarged perspective view showing an IB portion of A. 第1の実施の形態に係るフランジ締結部を示す図である。It is a figure which shows the flange fastening part which concerns on 1st Embodiment. 図2のIII -III 線切断端面を示す図である。It is a figure which shows the III-III line cut end face of FIG. Aはインナーカットを拡大して示す図であり、Bはインナーカットの形状変化を示す図である。A is a diagram showing an enlarged inner cut, and B is a diagram showing a change in the shape of the inner cut. A、BおよびCは、インナーカットの変形例を示す図である。A, B and C are diagrams showing a modified example of the inner cut. 第1の実施の形態に係るガスケット管理システムを示す図である。It is a figure which shows the gasket management system which concerns on 1st Embodiment. ガスケット管理データベースを示す図である。It is a figure which shows the gasket management database. Aは比較例を示す図であり、Bは形状観測部の設定を示す図である。A is a diagram showing a comparative example, and B is a diagram showing the setting of the shape observation unit. 実施例1、実施例2、実施例3および実施例4に係る形状変化と荷重の関係を示す図である。It is a figure which shows the relationship between the shape change and the load which concerns on Example 1, Example 2, Example 3 and Example 4. 形状変化に現れる極小点と荷重の関係を示す図である。It is a figure which shows the relationship between the minimum point appearing in a shape change and a load. 形状変化に現れる変曲点(極小点なし)と荷重の関係を示す図である。It is a figure which shows the relationship between the inflection point (without the minimum point) appearing in a shape change, and a load. Aは実施例5に係るガスケットの形状を示す図であり、Bは荷重付加前の状態例を示す図であり、Cは所定値の荷重を付加した場合の状態例を示す図である。A is a diagram showing the shape of the gasket according to the fifth embodiment, B is a diagram showing an example of a state before a load is applied, and C is a diagram showing an example of a state when a load of a predetermined value is applied. 実施例5に係る形状観測例を示す図である。It is a figure which shows the shape observation example which concerns on Example 5.
〔第1の実施の形態〕
 図1のAは、第1の実施の形態に係るガスケット2を示している。図1に示す構成は一例であり、斯かる構成に本開示が限定されるものではない。図1では一例としてX軸、Y軸およびZ軸を併記している。
[First Embodiment]
A in FIG. 1 shows the gasket 2 according to the first embodiment. The configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration. In FIG. 1, the X-axis, the Y-axis, and the Z-axis are shown together as an example.
 このガスケット2はたとえば、ポリテトラフルオロエチレン4フッ化エチレン樹脂(PTFE:Polytetrafluoroethylene)と充填材を配合した材料で加工されたシートガスケットである。ガスケット2にはPTFE以外の樹脂材料やゴム材料を用いてよい。そのほか、ガスケット2は、金属材料で構成されたものや、金属材料とセラミック、耐熱性の繊維材、その他の材料などを組み合わせたものであってもよい。さらに、ガスケット2は、うず巻き形のガスケット70(図12)や、平板状のガスケットの表面にPTFEや黒鉛などのシートが貼付けられたもの、ガスケット表面に溝が形成されたり外縁部分に鍔部を備えたカンプロファイルガスケットなどが含まれる。 This gasket 2 is, for example, a sheet gasket processed with a material containing a polytetrafluoroethylene resin (PTFE: Polytetrafluoroethylene) and a filler. A resin material or rubber material other than PTFE may be used for the gasket 2. In addition, the gasket 2 may be made of a metal material, or may be a combination of a metal material and a ceramic, a heat-resistant fiber material, or another material. Further, the gasket 2 includes a spiral gasket 70 (FIG. 12), a flat plate gasket having a sheet such as PTFE or graphite attached to the surface, a groove formed on the gasket surface, or a flange portion on the outer edge portion. Includes can profile gaskets and the like.
 このガスケット2には内径側に拘束部2-1、外径側に非拘束部2-2が設定されている。拘束部2-1は、フランジ16-1、16-2(図2、図3)間に接してフランジ16-1、16-2間より荷重Fを受ける領域である。これに対し、非拘束部2-2はフランジ16-1、16-2間に接しない領域である。 The gasket 2 has a restraining portion 2-1 on the inner diameter side and a non-constraining portion 2-2 on the outer diameter side. The restraint portion 2-1 is a region that is in contact with the flanges 16-1 and 16-2 (FIGS. 2 and 3) and receives a load F from between the flanges 16-1 and 16-2. On the other hand, the unconstrained portion 2-2 is a region that does not contact between the flanges 16-1 and 16-2.
 非拘束部2-2にはインナーカット4-1、4-2、4-3、4-4(以下、特定の位置を指定しない場合には、単にインナーカット4と称する。)が形成されている。各インナーカット4はガスケット2の非拘束部2-2の表裏に貫通させた貫通孔部であって、ガスケット2の形状変化の検出を容易化するための手段である。したがって、各インナーカット4は拘束部2-1に荷重Fを受けた際にガスケット2の形状変化を観測するための形状観測部を構成する。 Inner cuts 4-1, 4-2, 4-3, 4-4 (hereinafter, simply referred to as inner cut 4 when a specific position is not specified) are formed in the non-restraint portion 2-2. There is. Each inner cut 4 is a through hole portion penetrated through the front and back of the unrestrained portion 2-2 of the gasket 2, and is a means for facilitating the detection of the shape change of the gasket 2. Therefore, each inner cut 4 constitutes a shape observation unit for observing the shape change of the gasket 2 when the load F is applied to the restraint portion 2-1.
<インナーカット4>
 図1のBは、図1のAのIB部分にあるインナーカット4を拡大して示している。このインナーカット4では、ガスケット2の周方向に一定の円弧状の長辺長Lおよび幅Wでガスケット2の上下面に貫通している貫通孔部である。各インナーカット4は、一定の幅Wで対向する垂直面部6-1、6-2、長辺長Lで対向する内周面部8-1および外周面部8-2を有する。高さDはガスケット2の変形前の厚みである。
<Inner cut 4>
B in FIG. 1 is an enlarged view of the inner cut 4 in the IB portion of A in FIG. In this inner cut 4, it is a through hole portion penetrating the upper and lower surfaces of the gasket 2 with a long side length L and a width W having a constant arc shape in the circumferential direction of the gasket 2. Each inner cut 4 has vertical surface portions 6-1 and 6-2 facing each other with a constant width W, inner peripheral surface portions 8-1 facing each other with a long side length L, and outer peripheral surface portions 8-2. The height D is the thickness of the gasket 2 before deformation.
 ガスケット2の形状変化を検出するには、各インナーカット4はガスケット2の複数箇所に設定してよい。フランジ16-1、16-2から受ける弾性相互作用の影響を回避し、また形状変化の検出精度を高めることからも、設定位置に偏りがないことが好ましい。この実施の形態では、各インナーカット4は、X軸およびY軸上の4箇所に設定され、形状変化を広範囲で検出可能である。 In order to detect the change in the shape of the gasket 2, each inner cut 4 may be set at a plurality of locations on the gasket 2. It is preferable that the set position is not biased in order to avoid the influence of the elastic interaction received from the flanges 16-1 and 16-2 and to improve the detection accuracy of the shape change. In this embodiment, each inner cut 4 is set at four locations on the X-axis and the Y-axis, and the shape change can be detected in a wide range.
<フランジ締結部12>
 図2は、ガスケット2を含むフランジ締結部12を切欠いて示している。このフランジ締結部12は一例であり、図2に示す構成に本開示が限定されるものではない。
<Flange fastening part 12>
FIG. 2 shows a notch in the flange fastening portion 12 including the gasket 2. The flange fastening portion 12 is an example, and the present disclosure is not limited to the configuration shown in FIG.
 このフランジ締結部12には、管路14-1側のフランジ16-1、管路14-2側のフランジ16-2(図3)、ガスケット2、複数のボルト18およびナット20が含まれる。 The flange fastening portion 12 includes a flange 16-1 on the pipeline 14-1 side, a flange 16-2 on the pipeline 14-2 side (FIG. 3), a gasket 2, a plurality of bolts 18, and a nut 20.
 フランジ16-1は管路14-1の端面に一体に形成され、同様に、フランジ16-2は管路14-2の端面に一体に形成されている。フランジ16-1、16-2は管路14-1、14-2より大径であり、複数のボルト18およびナット20が所定の角度間隔で取り付けられている。 The flange 16-1 is integrally formed with the end face of the pipeline 14-1, and similarly, the flange 16-2 is integrally formed with the end face of the pipeline 14-2. The flanges 16-1 and 16-2 have a larger diameter than the pipelines 14-1 and 14-2, and a plurality of bolts 18 and nuts 20 are attached at predetermined angular intervals.
 フランジ16-1、16-2間にはボルト18およびナット20より内側にガスケット2が設置されている。ガスケット2はフランジ締結部12の封止部材を構成する。したがって、各ボルト18およびナット20の締付けにより、フランジ16-1、16-2に加えられる荷重Fによりガスケット2が荷重を受け、管路14-1、14-2の締結とともに封止が行われる。 A gasket 2 is installed between the flanges 16-1 and 16-2 inside the bolt 18 and the nut 20. The gasket 2 constitutes a sealing member for the flange fastening portion 12. Therefore, by tightening the bolts 18 and nuts 20, the gasket 2 is loaded by the load F applied to the flanges 16-1 and 16-2, and the gaskets 2 are sealed together with the fastening of the pipelines 14-1 and 14-2. ..
 ガスケット2の拘束部2-1は、各フランジ16-1、16-2に挟まれ、フランジ16-1、16-2に接して拘束される。非拘束部2-2は拘束部2-1の周囲に突出し、フランジ16-1、16-2に接触しない、つまり、フランジ16-1、16-2に拘束されない。 The restraining portion 2-1 of the gasket 2 is sandwiched between the flanges 16-1 and 16-2, and is in contact with the flanges 16-1 and 16-2 to be restrained. The unconstrained portion 2-2 protrudes around the restraining portion 2-1 and does not contact the flanges 16-1 and 16-2, that is, it is not constrained by the flanges 16-1 and 16-2.
 ボルト18およびナット20の締付けにより、フランジ16-1、16-2から拘束部2-1が荷重Fを受けるのに対し、非拘束部2-2は、荷重Fを受けない自由端を構成している。 By tightening the bolt 18 and the nut 20, the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, whereas the non-constraining portion 2-2 constitutes a free end that does not receive the load F. ing.
 そして、フランジ16-1、16-2から拘束部2-1に荷重Fが作用すると、荷重Fによる拘束部2-1の荷重ひずみが拘束部2-1と一体の非拘束部2-2に波及し、インナーカット4に形状変化を生じさせる。これにより非拘束部2-2の各インナーカット4は、ガスケット2に現れる形状変化を検出する部位を構成する。Z軸方向に荷重Fが作用するものとすれば、ひずみはたとえば、X軸およびY軸方向に生じる。 Then, when the load F acts on the restraint portion 2-1 from the flanges 16-1 and 16-2, the load strain of the restraint portion 2-1 due to the load F is applied to the non-constraint portion 2-2 integrated with the restraint portion 2-1. It spreads and causes a shape change in the inner cut 4. As a result, each inner cut 4 of the non-restraint portion 2-2 constitutes a portion for detecting a shape change appearing on the gasket 2. Assuming that the load F acts in the Z-axis direction, the strain occurs in the X-axis and Y-axis directions, for example.
<拘束部2-1、非拘束部2-2およびフランジ16-1、16-2の関係>
 図3は、図2の III-III 線切断端面を示している。ガスケット2の拘束部2-1は、フランジ16-1、16-2の各ガスケット座22の間に挟まれて拘束されている。これに対し、非拘束部2-2はフランジ16-1、16-2間の隙間24に突出している。非拘束部2-2は拘束部2-1と一体で、フランジ16-1、16-2間に支持されるとともに、隙間24に突出して自由端である。つまり、非拘束部2-2は片持ち梁状態にある。
<Relationship between restraint portion 2-1 and non-restraint portion 2-2 and flanges 16-1 and 16-2>
FIG. 3 shows the III-III line cut end face of FIG. The restraining portion 2-1 of the gasket 2 is sandwiched and restrained between the gasket seats 22 of the flanges 16-1 and 16-2. On the other hand, the unconstrained portion 2-2 protrudes into the gap 24 between the flanges 16-1 and 16-2. The non-constrained portion 2-2 is integrated with the restraint portion 2-1 and is supported between the flanges 16-1 and 16-2, and is a free end protruding into the gap 24. That is, the unrestrained portion 2-2 is in a cantilever state.
 フランジ16-1、16-2から荷重Fを受けて拘束部2-1に生じるひずみや変形などが非拘束部2-2に形状変化として現れる。この形状変化はインナーカット4から容易に観測できる。つまり、非拘束部2-2に現れるガスケット2の形状変化は、ガスケット座22間より押し出されることによるひずみないし変形であり、ガスケット2の拘束部2-1がフランジ16-1、16-2より受ける荷重を表す。 Strains and deformations that occur in the restraint portion 2-1 when the load F is received from the flanges 16-1 and 16-2 appear as shape changes in the non-constraint portion 2-2. This shape change can be easily observed from the inner cut 4. That is, the shape change of the gasket 2 that appears in the non-constrained portion 2-2 is distortion or deformation due to being pushed out from between the gasket seats 22, and the restrained portion 2-1 of the gasket 2 is from the flanges 16-1 and 16-2. Represents the load received.
<インナーカット4の形状変化の観測>
 インナーカット4は、非拘束部2-2に生じているひずみを顕著な形状変化として顕在化させ、その観測を容易化するために形成されている。
<Observation of shape change of inner cut 4>
The inner cut 4 is formed in order to make the strain generated in the unconstrained portion 2-2 manifest as a remarkable shape change and facilitate its observation.
 図4のAは、インナーカット4の原形状を示している。ガスケット2の接線方向にX軸、インナーカット4の中心にY軸、荷重Fの加わる方向にZ軸を取れば、拘束部2-1にフランジ16-1、16-2から荷重Fが加わると、フランジ16-1、16-2の間隔方向、この間隔方向と交差方向の形状変化(=ひずみ)を生じる。この形状変化にはガスケット2の周方向の形状変化が含まれる。 A in FIG. 4 shows the original shape of the inner cut 4. If the X-axis is taken in the tangential direction of the gasket 2, the Y-axis is in the center of the inner cut 4, and the Z-axis is in the direction in which the load F is applied, the load F is applied to the restraint portion 2-1 from the flanges 16-1 and 16-2. , A shape change (= strain) occurs in the spacing direction of the flanges 16-1 and 16-2, and in the spacing direction and the crossing direction. This shape change includes a shape change in the circumferential direction of the gasket 2.
 図4のBに示すように、非拘束部2-2は、ガスケット2の径方向(矢印aで示す)にΔYだけ広がるとともに、内周面部8-1および外周面部8-2、垂直面部6-1、6-2もガスケット2の径方向に移動する。同時に、内周面部8-1および外周面部8-2の間隔距離が矢印bおよび矢印cで示すように、インナーカット4の幅Wが幅ΔWに狭められる。これらは、拘束部2-1に加えられた荷重F、つまり、ガスケット2が受けている荷重を表すガスケット2の形状変化である。この例では、X-Y軸方向の形状変化を例示しているが、Z軸方向や厚み方向の形状変化もインナーカット4の形状に現れることは言うまでもない。 As shown in B of FIG. 4, the unrestrained portion 2-2 spreads by ΔY in the radial direction of the gasket 2 (indicated by the arrow a), and the inner peripheral surface portion 8-1, the outer peripheral surface portion 8-2, and the vertical surface portion 6 -1 and 6-2 also move in the radial direction of the gasket 2. At the same time, the width W of the inner cut 4 is narrowed to the width ΔW as the distance between the inner peripheral surface portion 8-1 and the outer peripheral surface portion 8-2 is indicated by arrows b and c. These are the load F applied to the restraint portion 2-1, that is, the shape change of the gasket 2 representing the load received by the gasket 2. In this example, the shape change in the XY-axis direction is illustrated, but it goes without saying that the shape change in the Z-axis direction and the thickness direction also appears in the shape of the inner cut 4.
 したがって、フランジ16-1、16-2から荷重Fを受けて拘束部2-1および非拘束部2-2に生じるひずみはインナーカット4の形状変化として顕在化させ、その観測を容易にすることができる。 Therefore, the strain generated in the restrained portion 2-1 and the non-constrained portion 2-2 by receiving the load F from the flanges 16-1 and 16-2 is manifested as a shape change of the inner cut 4, and its observation is facilitated. Can be done.
<インナーカット4の変形例>
 インナーカット4は図1のBに示す形態に限定されない。図5のA、BおよびCはインナーカット4の変形例を示している。図5において、図1のBと対応する部分には同一符号を付してある。
<Modification example of inner cut 4>
The inner cut 4 is not limited to the form shown in B of FIG. A, B, and C in FIG. 5 show a modification of the inner cut 4. In FIG. 5, the parts corresponding to B in FIG. 1 are designated by the same reference numerals.
 インナーカット4は、図5のAに示すように、既述の内周面部8-1、外周面部8-2に代えて直線状の対向面部9-1、9-2からなる平行面または不平行面に形成してもよいし、図5のBに示すように、対向面部7-1、7-2および対向面部9-1、9-2の四面からなる方形または扇状に形成してもよい。また、図5のCに示すように、対向面部9-1に面部9-11、9-12を形成することにより、対向面部9-1、9-2の面間が部分的に異なる幅たとえば、Wa、Wb(Wa<Wb)のように形成してもよい。このような形態としても、荷重Fを拘束部2-1で受けて非拘束部2-2に生じる形状変化をインナーカット4から容易に検出できる。 As shown in A of FIG. 5, the inner cut 4 is a parallel surface or non-parallel surface composed of linear facing surface portions 9-1 and 9-2 instead of the above-mentioned inner peripheral surface portion 8-1 and outer peripheral surface portion 8-2. It may be formed on parallel surfaces, or as shown in FIG. 5B, it may be formed in a square or fan shape consisting of four surfaces of the facing surface portions 7-1 and 7-2 and the facing surface portions 9-1 and 9-2. good. Further, as shown in C of FIG. 5, by forming the surface portions 9-11 and 9-12 on the facing surface portions 9-1, the widths of the facing surface portions 9-1 and 9-2 are partially different, for example. , Wa, Wb (Wa <Wb). Even in such a form, the shape change that occurs in the non-constrained portion 2-2 when the load F is received by the restrained portion 2-1 can be easily detected from the inner cut 4.
 なお、インナーカット4の空間部分に金属や樹脂などのセンサ部材を設置し、このセンサ部材からインナーカット4の形状変化を取り出してもよい。 Note that a sensor member such as metal or resin may be installed in the space portion of the inner cut 4, and the shape change of the inner cut 4 may be extracted from this sensor member.
<ガスケット2の管理工程>
 ガスケット2の管理工程は本開示の管理方法の一例である。この管理工程には拘束部2-1および非拘束部2-2の生成工程S1、荷重Fの付加工程S2、形状情報の取得工程S3、形状情報などの提示工程S4を含んでいる。各工程に付したS1~S4は、各工程の順序を例示しており、引用する用語も便宜上使用したにすぎない。
<Gasket 2 management process>
The management process of the gasket 2 is an example of the management method of the present disclosure. This management step includes a generation step S1 of the restraint portion 2-1 and the non-constraint portion 2-2, an addition step S2 of the load F, a shape information acquisition step S3, and a presentation step S4 of the shape information and the like. S1 to S4 attached to each step exemplify the order of each step, and the terms quoted are only used for convenience.
 拘束部2-1および非拘束部2-2の生成工程S1: ガスケット2がフランジ16-1、16-2間に設置されると、フランジ16-1、16-2と接するガスケット2の部分が拘束部2-1となり、フランジ16-1、16-2に接しないガスケット2の部分が非拘束部2-2になる。つまり、ガスケット2の拘束部2-1および非拘束部2-2は、フランジ16-1、16-2間に設置されることにより生成される。 Generation step of generating the restrained portion 2-1 and the non-constrained portion 2-2 S1: When the gasket 2 is installed between the flanges 16-1 and 16-2, the portion of the gasket 2 in contact with the flanges 16-1 and 16-2 is formed. The portion of the gasket 2 that becomes the restraint portion 2-1 and does not contact the flanges 16-1 and 16-2 becomes the non-constraint portion 2-2. That is, the restraining portion 2-1 and the non-constraining portion 2-2 of the gasket 2 are generated by being installed between the flanges 16-1 and 16-2.
 荷重Fの付加工程S2: ガスケット2は、フランジ16-1、16-2により拘束される拘束部2-1に対し、フランジ16-1、16-2の締付けにより荷重Fが付加される。この荷重Fを受け、ガスケット2は拘束部2-1にひずみを生じ、非拘束部2-2に形状変化を生じる。 Load F addition step S2: In the gasket 2, the load F is applied to the restraint portion 2-1 restrained by the flanges 16-1 and 16-2 by tightening the flanges 16-1 and 16-2. In response to this load F, the gasket 2 causes strain in the restraining portion 2-1 and causes a shape change in the non-constraining portion 2-2.
 形状情報の取得工程S3: 非拘束部2-2に現れる形状変化について、管理サーバ30(図6)は、ひずみセンサ28の検出出力を受け、インナーカット4の形状情報を取得する。 Shape information acquisition step S3: Regarding the shape change appearing in the unconstrained portion 2-2, the management server 30 (FIG. 6) receives the detection output of the strain sensor 28 and acquires the shape information of the inner cut 4.
 形状情報などの提示工程S4: 管理サーバ30は、形状情報を含む提示情報を生成し、情報提示部32(図6)により提示する。 Presentation process of shape information and the like S4: The management server 30 generates presentation information including shape information and presents it by the information presentation unit 32 (FIG. 6).
 なお、形状情報の取得工程S3で取得した形状情報にN次微分(多段階微分)を施し、形状情報の変化点を際立たせる処理を行ってもよい。この処理結果を提示工程S4で提示情報に反映させれば、形状情報の変化点を明確化できる。 Note that the shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
<ガスケット管理システム26>
 図6は、管理工程を情報処理により実行するためのガスケット管理システム26を示している。図6に示す構成は一例であり、本開示が斯かる構成に限定されるものではない。図6において、図3と同一部分には同一符号を付してある。
<Gasket management system 26>
FIG. 6 shows a gasket management system 26 for executing a management process by information processing. The configuration shown in FIG. 6 is an example, and the present disclosure is not limited to such a configuration. In FIG. 6, the same parts as those in FIG. 3 are designated by the same reference numerals.
 このガスケット管理システム26はひずみセンサ28、管理サーバ30および情報提示部32を備える。 This gasket management system 26 includes a strain sensor 28, a management server 30, and an information presentation unit 32.
 ひずみセンサ28はガスケット2のインナーカット4に現れる形状変化を計測し、この形状変化を表す検出信号を出力する。このひずみセンサ28は形状変化を検出して電気信号に変換する手段の一例である。形状変化の観測手段にはひずみセンサ28の他、レーザー変位計、カメラなどを用いてもよい。レーザー変位計はレーザー光をインナーカット4に当て、インナーカット4の形状変化を反射光で検出し、その変化量を観測する。カメラはインナーカット4を撮像し、管理サーバ30がインナーカット4に現れるひずみを画素数で検出し、ひずみに応じた形状情報を取得する。 The strain sensor 28 measures the shape change appearing in the inner cut 4 of the gasket 2 and outputs a detection signal indicating this shape change. The strain sensor 28 is an example of a means for detecting a shape change and converting it into an electric signal. In addition to the strain sensor 28, a laser displacement meter, a camera, or the like may be used as the means for observing the shape change. The laser displacement meter shines a laser beam on the inner cut 4, detects a change in the shape of the inner cut 4 with the reflected light, and observes the amount of the change. The camera captures the inner cut 4, and the management server 30 detects the strain appearing in the inner cut 4 by the number of pixels, and acquires the shape information according to the strain.
 管理サーバ30は通信機能を備えるコンピュータで構成される。この管理サーバ30は、プロセッサ34、記憶部36、入出力(I/O)部38、通信部40を備える。プロセッサ34は記憶部36にあるOS(Operating System)や管理プログラムを実行し、ガスケット管理のための情報処理を行う。記憶部36にはOSや管理プログラムを格納する記憶媒体を含む。この記憶部36にはガスケット管理データベース(DB)42(図7)が格納される。通信部40はプロセッサ34の制御により、図示していない管理端末と連係して情報の入力や提示を行う。管理端末は、形状情報の取得、ガスケット管理DB42の書込みや読取りなどにも活用される。 The management server 30 is composed of a computer having a communication function. The management server 30 includes a processor 34, a storage unit 36, an input / output (I / O) unit 38, and a communication unit 40. The processor 34 executes an OS (Operating System) and a management program in the storage unit 36, and performs information processing for gasket management. The storage unit 36 includes a storage medium for storing the OS and the management program. The gasket management database (DB) 42 (FIG. 7) is stored in the storage unit 36. Under the control of the processor 34, the communication unit 40 inputs and presents information in cooperation with a management terminal (not shown). The management terminal is also used for acquiring shape information and writing and reading the gasket management DB 42.
 また、情報提示部32は管理サーバ30の制御により荷重を含む形状情報や判定情報を提示する。 Further, the information presenting unit 32 presents shape information including a load and determination information under the control of the management server 30.
<管理サーバ30の情報処理>
 管理サーバ30の情報処理には、
 a)ひずみセンサ28の検出出力の取込み処理
 b)インナーカット4の形状情報の取得
 c)形状情報を含む提示情報の生成
 d)情報提示部32による推定情報の提示
などの処理が含まれる。
<Information processing of management server 30>
For information processing of the management server 30,
a) Processing for capturing the detection output of the strain sensor 28 b) Acquisition of shape information of the inner cut 4 c) Generation of presentation information including shape information d) Processing such as presentation of estimation information by the information presentation unit 32 is included.
<ガスケット管理DB42>
 図7は、ガスケット管理DB42の一例を示している。このガスケット管理DB42は、形状情報から荷重を推定する処理などに利用される。このガスケット管理DB42には、ガスケット管理ファイル44が格納されている。
<Gasket management DB42>
FIG. 7 shows an example of the gasket management DB 42. This gasket management DB 42 is used for processing such as estimating a load from shape information. The gasket management file 44 is stored in the gasket management DB 42.
 このガスケット管理ファイル44には、ガスケット情報部46、インナーカット情報部47、時間情報部48、荷重情報部50、ひずみセンサ情報部52、検出情報部54、判定情報部56、履歴情報部58が設定されている。
 ガスケット情報部46には、ガスケット2の識別情報の他、ガスケット2を特定するための仕様情報が格納される。
The gasket management file 44 includes a gasket information unit 46, an inner cut information unit 47, a time information unit 48, a load information unit 50, a strain sensor information unit 52, a detection information unit 54, a judgment information unit 56, and a history information unit 58. It is set.
In addition to the identification information of the gasket 2, the gasket information unit 46 stores specification information for specifying the gasket 2.
 インナーカット情報部47には、インナーカット4-1、4-2、4-3、4-4を表す形状、その配置位置や大きさなどの形状情報が格納される。 The inner cut information unit 47 stores shape information such as the shape representing the inner cuts 4-1, 4-2, 4-3, and 4-4, and the arrangement position and size thereof.
 時間情報部48には計測日時などの時間情報が格納される。 Time information such as the measurement date and time is stored in the time information unit 48.
 荷重情報部50には、ボルト18の締め付けによりフランジ16-1、16-2間に加えられる荷重Fを表す荷重情報が格納される。 The load information unit 50 stores load information representing the load F applied between the flanges 16-1 and 16-2 by tightening the bolt 18.
 ひずみセンサ情報部52には、形状を検出するひずみセンサ28(=28-1、28-2、28-3、28-4)の種別、識別情報などを含むセンサ情報が格納される。 The strain sensor information unit 52 stores sensor information including the type and identification information of the strain sensor 28 (= 28-1, 28-2, 28-3, 28-4) that detects the shape.
 検出情報部54には各インナーカット4(=4-1、4-2、4-3、4-4)から得られた形状検出値が格納される。 The shape detection value obtained from each inner cut 4 (= 4-1, 4-2, 4-3, 4-4) is stored in the detection information unit 54.
 判定情報部56には、管理サーバ30の情報処理で形状情報から推定された荷重を表す推定荷重情報が格納される。 The determination information unit 56 stores estimated load information representing the load estimated from the shape information by the information processing of the management server 30.
 履歴情報部58には、形状情報の取得、推定処理などの履歴情報が格納される。 The history information unit 58 stores history information such as shape information acquisition and estimation processing.
<第1の実施の形態の効果>
 第1の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the first embodiment>
According to the first embodiment, any of the following effects can be obtained.
 (1) ガスケット2にインナーカット4を備えたので、拘束部2-1にフランジ16-1、16-2から荷重Fを受け、拘束部2-1に生じるひずみを非拘束部2-2のインナーカット4の形状変化として可視化でき、荷重Fに対応する形状変化をインナーカット4から容易に観測することができる。 (1) Since the gasket 2 is provided with the inner cut 4, the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, and the strain generated in the restraining portion 2-1 is applied to the non-constraining portion 2-2. It can be visualized as a shape change of the inner cut 4, and the shape change corresponding to the load F can be easily observed from the inner cut 4.
 (2) インナーカット4から各ひずみセンサ28の検出出力によりインナーカット4の形状情報を取得し、ガスケット2がフランジ16-1、16-2から受ける荷重を形状変化から推定することができる。 (2) The shape information of the inner cut 4 can be acquired from the inner cut 4 by the detection output of each strain sensor 28, and the load received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated from the shape change.
 (3) ガスケット2のひずみをインナーカット4の形状変化で観測でき、ボルト18の締付けトルクや軸力の影響を受けることなく、その形状変化からガスケット2が受けている荷重を推定し、ガスケット2の締付け状態を判定できる。 (3) The strain of the gasket 2 can be observed by the shape change of the inner cut 4, and the load received by the gasket 2 is estimated from the shape change without being affected by the tightening torque and the axial force of the bolt 18, and the gasket 2 is used. The tightening state of can be determined.
 (4) ガスケット2の締付け状態を従事者の技量に影響されることなく、管理精度を高めることができる。 (4) The tightening state of the gasket 2 can be improved in management accuracy without being affected by the skill of the worker.
〔第2の実施の形態〕
 第2の実施の形態に係るガスケット2の管理方法は、第1の実施の形態の管理方法にさらに、極小点情報による推定工程S5を含んでいる。
[Second Embodiment]
The management method of the gasket 2 according to the second embodiment further includes the estimation step S5 based on the minimum point information in the management method of the first embodiment.
 極小点情報による推定工程S5では、インナーカット4に現れる形状変化を含む形状情報が特定の荷重に対する極小点(図10)を含み、管理サーバ30は、該極小点からガスケット2の締付け状態、つまりガスケット2がフランジ16-1、16-2から受ける荷重(=面圧)を推定できる。 In the estimation step S5 based on the minimum point information, the shape information including the shape change appearing in the inner cut 4 includes the minimum point (FIG. 10) for a specific load, and the management server 30 is in a tightened state of the gasket 2 from the minimum point, that is, The load (= surface pressure) received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated.
<第2の実施の形態の効果>
 第2の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the second embodiment>
According to the second embodiment, any of the following effects can be obtained.
 (1) 形状情報には荷重の特異情報として極小点を含ませることができる。 (1) The shape information can include a minimum point as peculiar information of the load.
 (2) この極小点を設定すべき荷重に対応付けることにより、形状情報から極小点を確認することで、特定の荷重に設定できる。 (2) By associating this minimum point with the load to be set, it is possible to set a specific load by confirming the minimum point from the shape information.
 (3) ガスケット2が受けているインナーカット4の形状変化から荷重F、つまり面圧を推定でき、ガスケット2に対する締付け状態の監視ないし調整を容易化できる。
(3) The load F, that is, the surface pressure can be estimated from the shape change of the inner cut 4 received by the gasket 2, and the monitoring or adjustment of the tightened state with respect to the gasket 2 can be facilitated.
 本開示のガスケット2の実施例について、比較例とともに説明する。
 <比較例>
 図8のAは、比較例に係るガスケット2を示している。この比較例では、拘束部2-1および非拘束部2-2が同一幅またはほぼ同一幅で同心円状に設定されている。
Examples of the gasket 2 of the present disclosure will be described together with comparative examples.
<Comparison example>
FIG. 8A shows the gasket 2 according to the comparative example. In this comparative example, the restrained portion 2-1 and the non-constrained portion 2-2 are set concentrically with the same width or substantially the same width.
 この比較例に係るガスケット2では、図8のBに示すように、実施例のインナーカット4に相当する位置に形状観測部60-1、60-2、60-3、60-4が設定されている。各形状観測部60-1、60-2、60-3、60-4は非拘束部2-2に中心角度90度の角度間隔で配置されている。各形状観測部60-1、60-2、60-3、60-4の配置位置は、ボルト18の配置位置に重ならない位置に設定されている。 In the gasket 2 according to this comparative example, as shown in B of FIG. 8, shape observation units 60-1, 60-2, 60-3, 60-4 are set at positions corresponding to the inner cut 4 of the embodiment. ing. The shape observation units 60-1, 60-2, 60-3, and 60-4 are arranged in the unconstrained unit 2-2 at an angular interval of 90 degrees at a center angle. The arrangement positions of the shape observation units 60-1, 60-2, 60-3, and 60-4 are set to positions that do not overlap with the arrangement positions of the bolts 18.
<実施例1-4>
 実施例に係るガスケット2のインナーカット4の形状、その計測結果などについて、表1に示す。
<Example 1-4>
Table 1 shows the shape of the inner cut 4 of the gasket 2 and the measurement results thereof according to the embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1には、実施例1、実施例2、実施例3、実施例4におけるインナーカット4の形状、締付け完了時の長辺間距離、極小点荷重とともに比較例の寸法情報や荷重情報を示している。 In Table 1, the shape of the inner cut 4 in Example 1, Example 2, Example 3, and Example 4, the distance between the long sides at the completion of tightening, the minimum point load, and the dimensional information and load information of the comparative example are shown. Shows.
 実施例1では長辺長=65mm、短辺長(長辺間距離)=1mm、ガスケット2の周長=327mm、長辺長/周長=0.20、アスペクト比=65、締付け完了時の長辺間距離=0mm、極小点荷重=145kNを得た。 In Example 1, the long side length = 65 mm, the short side length (distance between long sides) = 1 mm, the circumference length of the gasket 2 = 327 mm, the long side length / circumference length = 0.20, the aspect ratio = 65, and when tightening is completed. A distance between long sides = 0 mm and a minimum point load = 145 kN were obtained.
 実施例2では長辺長=65mm、短辺長(長辺間距離)=3mm、ガスケット2の周長=327mm、長辺長/周長=0.20、アスペクト比=22において、締付け完了時の長辺間距離=0mm、極小点荷重=195kNを得た。 In Example 2, the long side length = 65 mm, the short side length (distance between long sides) = 3 mm, the circumference length of the gasket 2 = 327 mm, the long side length / circumference length = 0.20, and the aspect ratio = 22, when the tightening is completed. The distance between the long sides of the above = 0 mm and the minimum point load = 195 kN were obtained.
 実施例3では長辺長=16mm、短辺長(長辺間距離)=1mm、ガスケット2の周長=327mm、長辺長/周長=0.05、アスペクト比=16において、締付け完了時の長辺間距離=0.6mm、極小点荷重=特定不能を得た。 In Example 3, the long side length = 16 mm, the short side length (distance between long sides) = 1 mm, the peripheral length of the gasket 2 = 327 mm, the long side length / peripheral length = 0.05, and the aspect ratio = 16, when tightening is completed. Distance between long sides = 0.6 mm, minimum point load = unspecified.
 実施例4では長辺長=16mm、短辺長(長辺間距離)=3mm、ガスケット2の周長=327mm、長辺長/周長=0.05、アスペクト比=5において、締付け完了時の長辺間距離=2.6mm、極小点荷重=特定不能を得た。 In Example 4, the long side length = 16 mm, the short side length (distance between long sides) = 3 mm, the peripheral length of the gasket 2 = 327 mm, the long side length / peripheral length = 0.05, and the aspect ratio = 5, when the tightening is completed. Distance between long sides = 2.6 mm, minimum point load = unspecified.
 そして、比較例ではインナーカット4が存在しないため、対応データは存在しない。 And since the inner cut 4 does not exist in the comparative example, there is no corresponding data.
<インナーカットの長辺間距離と荷重の関係>
 図9は、実施例1、実施例2、実施例3および実施例4に係る形状変化(長辺間距離の変化)と荷重の関係を示している。
<Relationship between the distance between the long sides of the inner cut and the load>
FIG. 9 shows the relationship between the shape change (change in the distance between long sides) and the load according to Example 1, Example 2, Example 3, and Example 4.
 長辺間距離の変化と荷重の関係について、n1は実施例1、n2は実施例2、n3は実施例3、n4は実施例4の変化を示している。
 これらを比較すると、n1、n2の形状変化が顕著であり、形状変化を観測すれば、ガスケット2に加えられる荷重の特定が容易であることが判る。
Regarding the relationship between the change in the distance between the long sides and the load, n1 shows the change in Example 1, n2 shows the change in Example 2, n3 shows the change in Example 3, and n4 shows the change in Example 4.
Comparing these, it can be seen that the shape changes of n1 and n2 are remarkable, and it is easy to identify the load applied to the gasket 2 by observing the shape changes.
<形状変化における極小点情報>
 インナーカット4の長辺長Lが長い場合について、図10は、横軸に荷重、縦軸にひずみを取り、形状変化に現れる極小点情報と荷重の関係を示している。
<Minimum point information in shape change>
Regarding the case where the long side length L of the inner cut 4 is long, FIG. 10 shows the relationship between the minimum point information appearing in the shape change and the load by taking the load on the horizontal axis and the strain on the vertical axis.
 図10において、o1は0(deg)方向の形状変化、o2は45(deg)方向の形状変化、o3は90(deg)方向の形状変化を示している。
 このように実施例1、2における形状変化に極小点が生じている。
In FIG. 10, o1 shows a shape change in the 0 (deg) direction, o2 shows a shape change in the 45 (deg) direction, and o3 shows a shape change in the 90 (deg) direction.
As described above, the minimum point is generated in the shape change in Examples 1 and 2.
<形状変化における変曲点情報>
 図11は、インナーカット4の長辺長Lが短い場合について、形状変化に現れる変曲点と荷重の関係を示している。
<Inflection point information in shape change>
FIG. 11 shows the relationship between the inflection point appearing in the shape change and the load when the long side length L of the inner cut 4 is short.
 図11において、p1は0(deg)方向の形状変化、p2は45(deg)方向の形状変化、p3は90(deg)方向の形状変化を示している。
 インナーカット4の長辺長Lが短い場合には、インナーカット4の内周面部8-1および外周面部8-2に接触しない。このため、形状変化には極小点が生じない。つまり、0(deg)方向の周方向ひずみに実施例3、4では変曲点のみが得られる。
In FIG. 11, p1 shows a shape change in the 0 (deg) direction, p2 shows a shape change in the 45 (deg) direction, and p3 shows a shape change in the 90 (deg) direction.
When the long side length L of the inner cut 4 is short, it does not come into contact with the inner peripheral surface portion 8-1 and the outer peripheral surface portion 8-2 of the inner cut 4. Therefore, no minimum point is generated in the shape change. That is, in Examples 3 and 4, only the inflection point is obtained for the circumferential strain in the 0 (deg) direction.
<実施例の効果>
 このような実施例から明らかなように、インナーカット4の形状変化を計測することで、形状変化と荷重の関係を特定できる。
<Effect of Examples>
As is clear from such an embodiment, the relationship between the shape change and the load can be specified by measuring the shape change of the inner cut 4.
 実施例1~4では何れも変曲点情報または極小点情報が得られるが、インナーカット4の長辺長Lを長くした場合には、極小点情報を得ることができる。この極小点情報を基準としてガスケット2の締付け状態、つまりガスケット2がフランジ16-1、16-2から受ける荷重(=面圧)を推定し、フランジ締結部12における締結状態を判断できる。 In all of Examples 1 to 4, inflection point information or minimum point information can be obtained, but when the long side length L of the inner cut 4 is lengthened, the minimum point information can be obtained. Based on this minimum point information, the tightened state of the gasket 2, that is, the load (= surface pressure) received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated, and the tightened state at the flange fastening portion 12 can be determined.
 このような形状変化の監視や計測ではトルク管理やボルト軸力の測定と異なり、非拘束部2-2のインナーカット4に現れる形状変化を計測し、ガスケット2から荷重を表す形状情報を取得できる。このため、ボルト18やフランジ16-1、16-2の影響を受けることなく、フランジ16-1、16-2に加えられる荷重Fによるガスケット2の形状変化から荷重を推定することができる。 In such shape change monitoring and measurement, unlike torque management and bolt axial force measurement, the shape change appearing in the inner cut 4 of the non-restraint portion 2-2 can be measured, and the shape information representing the load can be obtained from the gasket 2. .. Therefore, the load can be estimated from the shape change of the gasket 2 due to the load F applied to the flanges 16-1 and 16-2 without being affected by the bolt 18 and the flanges 16-1 and 16-2.
 インナーカット4の加工形状について、ガスケット2も様々な口径や厚さに対応できることが確認された。 Regarding the processed shape of the inner cut 4, it was confirmed that the gasket 2 can also handle various diameters and thicknesses.
<実施例5>
 図12は、実施例5に係るガスケット70の構成例を示している。
<Example 5>
FIG. 12 shows a configuration example of the gasket 70 according to the fifth embodiment.
 このガスケット70は、たとえば径の異なる複数の部材が同軸上に配置された積層体であって、外輪701、ガスケット本体702、内輪703を備えるうず巻き形のガスケットである。このガスケット70は、たとえば内輪703のみまたは内輪703とガスケット本体702の一部または全部、外輪701の一部がガスケット座22(図3)と当接して荷重Fを受ける拘束部2-1である。つまり、ガスケット70は、外輪701の一部または全部が非拘束部2-2となる。そしてガスケット70は、フランジ16-1、16-2からの荷重Fに応じてガスケット本体702が変形するとともに、この変形を受けて外輪701にひずみが生じる。 This gasket 70 is, for example, a laminated body in which a plurality of members having different diameters are coaxially arranged, and is a spiral-wound gasket provided with an outer ring 701, a gasket main body 702, and an inner ring 703. The gasket 70 is, for example, a restraint portion 2-1 in which only the inner ring 703, a part or all of the inner ring 703 and the gasket body 702, and a part of the outer ring 701 come into contact with the gasket seat 22 (FIG. 3) and receive a load F. .. That is, in the gasket 70, a part or all of the outer ring 701 becomes an unconstrained portion 2-2. The gasket body 702 of the gasket 70 is deformed according to the load F from the flanges 16-1 and 16-2, and the outer ring 701 is distorted due to this deformation.
 ガスケット70は、外輪701の一部に1または複数のインナーカット4が形成されている。インナーカット4は、たとえば外輪701の外縁部から所定距離tとして5〔mm〕
の位置に形成されている。この実施例5では、たとえばインナーカット4の形成位置に沿った外縁部分の形状変化Qaを観測することで、インナーカット4の形状を測定するとともに、ガスケット70の面圧状態を管理する。形状変化Qaの観測には、たとえばガスケット管理システム26のひずみセンサ28を用いればよい。また、ガスケット管理システム26は、計測した形状変化Qaに基づいてインナーカット4の形状を算出する。ガスケット70の締付け状態の管理処理については、上記実施の形態と同様の処理を行えばよい。
The gasket 70 has one or a plurality of inner cuts 4 formed on a part of the outer ring 701. The inner cut 4 is, for example, 5 [mm] as a predetermined distance t from the outer edge portion of the outer ring 701.
It is formed at the position of. In the fifth embodiment, for example, by observing the shape change Qa of the outer edge portion along the formation position of the inner cut 4, the shape of the inner cut 4 is measured and the surface pressure state of the gasket 70 is managed. For the observation of the shape change Qa, for example, the strain sensor 28 of the gasket management system 26 may be used. Further, the gasket management system 26 calculates the shape of the inner cut 4 based on the measured shape change Qa. As for the management process of the tightened state of the gasket 70, the same process as that of the above embodiment may be performed.
 <ガスケット70の構成について>
 外輪701、内輪703は、たとえばステンレスや炭素鋼やチタンなどの金属材料が用いられており、所定厚さの円環またはそれに近い形状に形成されている。ガスケット本体702は、たとえば金属材料で形成された薄板状の部材と、黒鉛やフッ素樹脂などの緩衝材(フィラー)の積層体を外輪701の内壁面と内輪703の外壁面との間でうず巻き状に巻回して構成されている。ガスケット本体702を構成する積層体は、たとえば断面が「V」形状、またはそれに近い波形に形成されている。この積層体は、たとえば端面が外輪701、内輪703に対してスポット溶接によって固着している。
<About the configuration of the gasket 70>
The outer ring 701 and the inner ring 703 are made of a metal material such as stainless steel, carbon steel, or titanium, and are formed in a ring having a predetermined thickness or a shape close to the ring. In the gasket body 702, for example, a thin plate-shaped member made of a metal material and a laminated body of a cushioning material (filler) such as graphite or fluororesin are spirally wound between the inner wall surface of the outer ring 701 and the outer wall surface of the inner ring 703. It is composed by winding around. The laminate constituting the gasket main body 702 is formed, for example, in a cross section having a “V” shape or a waveform close to the “V” shape. In this laminated body, for example, the end faces are fixed to the outer ring 701 and the inner ring 703 by spot welding.
 外輪701は、たとえば図12のBに示すように、フランジ16-1、16-2からの荷重Fがガスケット本体702に付加される前は、所定の幅でインナーカット4aが開口している。そして、ガスケット本体702を通じて荷重Fが作用すると、外輪701は、たとえば図15のCに示すように、開口部分の一部または全部が変形し、閉塞したインナーカット4bとなる。 As shown in B of FIG. 12, for example, the outer ring 701 has an inner cut 4a opened with a predetermined width before the load F from the flanges 16-1 and 16-2 is applied to the gasket main body 702. Then, when the load F acts through the gasket body 702, the outer ring 701 is formed into an inner cut 4b in which a part or all of the opening portion is deformed and closed, as shown in FIG. 15, for example, C.
 図13は、横軸に荷重〔kN〕、縦軸にひずみ(形状変化)をとり、外輪701の外縁に現れる周方向の形状変化Qa(図12)をひずみセンサ28で計測した計測値を示している。 FIG. 13 shows the measured values of the circumferential shape change Qa (FIG. 12) appearing on the outer edge of the outer ring 701 measured by the strain sensor 28, with the load [kN] on the horizontal axis and the strain (shape change) on the vertical axis. ing.
 この計測結果において、ガスケットに係る荷重が増加した場合、たとえば加重し始めてから所定の値までは大きな変化が無く、その後荷重が所定の値を超えると、ひずみセンサーにおいて負の値が計測されている。これは、たとえば外輪701の外縁部が周方向に圧縮されたことを示す形状変化が生じたことが現れている。そして周方向のひずみは、たとえば荷重が220kN付近で極小点が現れた後、正方向に値が増加していく。 In this measurement result, when the load on the gasket increases, for example, there is no significant change from the start of weighting to a predetermined value, and then when the load exceeds the predetermined value, a negative value is measured by the strain sensor. .. This indicates that, for example, a shape change has occurred indicating that the outer edge portion of the outer ring 701 is compressed in the circumferential direction. Then, the strain in the circumferential direction increases in the positive direction after a minimum point appears when the load is around 220 kN, for example.
<実施例5の効果>
 (1) フランジ16-1、16-2間に挟んだうず巻き形のガスケット70の外輪701の形状変化を計測することで、荷重Fによるガスケット70の面圧を把握できる。
<Effect of Example 5>
(1) By measuring the shape change of the outer ring 701 of the spirally wound gasket 70 sandwiched between the flanges 16-1 and 16-2, the surface pressure of the gasket 70 due to the load F can be grasped.
 (2) うず巻き形のガスケット70を用いる場合、形状変化の監視や計測ではトルク管理やボルト軸力の測定と異なり、外輪801に生じる形状変化Qaからインナーカット4の形状変化を計測することで、ガスケット8から荷重Fを表す変化を取得できる。このため、ボルト18やフランジ16-1、16-2の影響を受けることなく、フランジ16-1、16-2に加えられる荷重Fをガスケット70の形状変化から推定できる。 (2) When the spiral-wound gasket 70 is used, unlike torque management and bolt axial force measurement in shape change monitoring and measurement, the shape change of the inner cut 4 is measured from the shape change Qa that occurs in the outer ring 801. A change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 16-1 and 16-2 can be estimated from the shape change of the gasket 70 without being affected by the bolts 18 and the flanges 16-1 and 16-2.
<付記>
 前記実施の形態および実施例に関し、以下に付記を開示する。
<Additional Notes>
The following notes are disclosed with respect to the embodiments and examples.
(付記1)フランジ締結部のフランジ間に設置されるガスケットであって、
 前記フランジ間に拘束されて荷重を受ける拘束部と、
 前記フランジ間に拘束されない非拘束部と、
 前記非拘束部に設けられた貫通孔部と、
 を備え、前記荷重を受けて前記貫通孔部に変化を生じる、ガスケット。
(Appendix 1) A gasket installed between the flanges of the flange fastening part.
A restraint portion that is restrained between the flanges and receives a load,
An unconstrained portion that is not constrained between the flanges,
The through hole provided in the non-restraint portion and the through hole portion
A gasket comprising, which receives the load and causes a change in the through hole portion.
(付記2)フランジ間にガスケットを備えるフランジ締結部を管理する管理システムであって、
 前記フランジ間に拘束されて荷重を受ける拘束部と、前記フランジ間に拘束されない非拘束部と、前記非拘束部に設けられた貫通孔部を備え、
 前記荷重を受けて前記貫通孔部に変化を生じるガスケットと、
 前記貫通孔部の変化を前記ガスケットと接触または非接触で計測する計測器と、
 前記計測器から計測情報を取得し、前記フランジ間の締付け力を含む管理情報を生成する管理サーバと、
 前記管理情報を前記ガスケットまたは前記フランジ締結部に関係付けて提示する情報提示部と、
 を備える、管理システム。
(Appendix 2) A management system that manages flange fastenings with gaskets between flanges.
A restraining portion that is restrained between the flanges and receives a load, a non-constraining portion that is not restrained between the flanges, and a through hole portion provided in the non-constraining portion are provided.
A gasket that receives the load and causes a change in the through hole,
A measuring instrument that measures changes in the through-hole portion in contact with or without contact with the gasket.
A management server that acquires measurement information from the measuring instrument and generates management information including the tightening force between the flanges.
An information presenting unit that presents the management information in relation to the gasket or the flange fastening portion, and
A management system.
(付記3)コンピュータにより実現するためのプログラムを記録した記録媒体であって、
 フランジ間に拘束されて該フランジ間より荷重を受け、該荷重によりガスケットの非拘束部にある貫通孔部に生じる変化を含む形状情報を取得する機能と、
 前記形状情報に基づき前記フランジ間の締付け力を含む管理情報を生成する機能と、
 前記管理情報を提示する機能と、
 を前記コンピュータで実現するためのプログラムを記録した記録媒体。
(Appendix 3) A recording medium on which a program to be realized by a computer is recorded.
A function to acquire shape information including changes that occur in the through hole in the non-constrained portion of the gasket due to being restrained between the flanges and receiving a load from the flanges.
A function to generate management information including the tightening force between the flanges based on the shape information, and
The function of presenting the management information and
A recording medium on which a program for realizing the above-mentioned computer is recorded.
〔他の実施の形態〕 [Other embodiments]
 (1) 上記実施の形態および実施例ではフランジ締結部12における初期締結について、フランジ間からの荷重を受け、ガスケット2に生じた形状変化を観測することを例示したが、フランジ締結の初期締結に限定されるものではない。 (1) In the above embodiments and examples, it is exemplified that the initial fastening at the flange fastening portion 12 receives a load from between the flanges and observes the shape change generated in the gasket 2, but the initial fastening of the flange fastening is performed. Not limited.
 (2) 既述したインナーカット4の形状は一例であり、垂直面部6を有しない円弧形状や、直線状の平行面部または非平行面とした多角形状や矩形形状の貫通孔部であってもよい。 (2) The shape of the inner cut 4 described above is an example, and even if it is an arc shape having no vertical surface portion 6, or a polygonal shape or a rectangular through hole portion having a linear parallel surface portion or a non-parallel surface portion. good.
 (3) 上記実施の形態、比較例および実施例ではフランジ16-1、16-2に挟まれてガスケット2に加えられる荷重Fとガスケット2の形状変化について述べている。ガスケット2に加えられる荷重Fはフランジ16-1、16-2からガスケット2が受ける面圧と等価であり、両者に質的な差異はない。つまり、ガスケット2に加える荷重Fとインナーカット4に現れる形状変化の関係から形状変化を以てガスケット2の面圧の推定が可能である。 (3) In the above-described embodiment, comparative example and embodiment, the load F applied to the gasket 2 sandwiched between the flanges 16-1 and 16-2 and the shape change of the gasket 2 are described. The load F applied to the gasket 2 is equivalent to the surface pressure received by the gasket 2 from the flanges 16-1 and 16-2, and there is no qualitative difference between the two. That is, the surface pressure of the gasket 2 can be estimated from the relationship between the load F applied to the gasket 2 and the shape change appearing in the inner cut 4.
(4) ガスケット2の管理工程のうち形状情報などの提示工程(S4)において、管理サーバ30で、取得した形状情報を多段階微分などの処理により提示情報を生成してもよく、情報提示部32(図6)に変化点を明示する表示部を提示してもよい。 (4) In the process of presenting shape information or the like in the management process of the gasket 2, the management server 30 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used. A display unit that clearly indicates the change point may be presented in 32 (FIG. 6).
 以上説明したように、本開示の最も好ましい実施の形態等について説明した。本開示は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiments of the present disclosure have been described. The present disclosure is not limited to the above description. Various modifications and modifications can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the form for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present disclosure.
 本開示のガスケット、その管理の方法、システムおよびプログラムによれば、フランジ間を締結するガスケットについて、ガスケットのインナーカットの形状変化を観測できるので、ボルトやフランジの締付け状態の影響を受けることなく、ガスケットの締付け管理や交換などの管理情報に活用できる。
According to the gasket of the present disclosure, its management method, system and program, the shape change of the inner cut of the gasket can be observed for the gasket for fastening between the flanges, so that the gasket is not affected by the tightening state of the bolt or the flange. It can be used for management information such as gasket tightening management and replacement.
 2、70 ガスケット
 2-1 拘束部
 2-2 非拘束部
 4、4-1、4-2、4-3、4-4、4a、4b インナーカット
 6、6-1、6-2、 垂直面部
 7-1、7-2、9-1、9-2 対向面部
 8-1 内周面部
 8-2 外周面部
 9-11、9-12 面部
 12 フランジ締結部
 14-1、14-2 管路
 16-1、16-2フランジ
 18 ボルト
 20 ナット
 22 ガスケット座
 24 隙間
 26 ガスケット管理システム
 28 ひずみセンサ
 30 管理サーバ
 32 情報提示部
 34 プロセッサ
 36 記憶部
 38 入出力(I/O)部
 40 通信部
 42 ガスケット管理データベース(DB)
 44 ガスケット管理ファイル
 46 ガスケット情報部
 47 インナーカット情報部
 48 時間情報部
 50 荷重情報部
 52 ひずみセンサ情報部
 54 検出情報部
 56 判定情報部
 58 履歴情報部
 60-1、60-2、60-3,60-4 形状観測部
 701 外輪
 702 ガスケット本体
 703 内輪

                                                                                
2, 70 Gasket 2-1 Restrained part 2-2 Non-restrained part 4,4-1, 4-2, 4-3, 4-4, 4a, 4b Inner cut 6,6-1, 6-2, Vertical surface part 7-1, 7-2, 9-1, 9-2 Facing surface part 8-1 Inner peripheral surface part 8-2 Outer peripheral surface part 9-11, 9-12 Surface part 12 Flange fastening part 14-1, 14-2 Pipeline 16 -1, 16-2 Flange 18 Bolt 20 Nut 22 Gasket seat 24 Gap 26 Gasket management system 28 Strain sensor 30 Management server 32 Information presentation unit 34 Processor 36 Storage unit 38 Input / output (I / O) unit 40 Communication unit 42 Gasket management Database (DB)
44 Gasket management file 46 Gasket information unit 47 Inner cut information unit 48 Time information unit 50 Load information unit 52 Strain sensor information unit 54 Detection information unit 56 Judgment information unit 58 History information unit 60-1, 60-2, 60-3, 60-4 Shape observation unit 701 Outer ring 702 Gasket body 703 Inner ring

Claims (7)

  1.  フランジ間に拘束される拘束部に隣接する非拘束部にインナーカットを備え、前記拘束部に加えられた荷重により前記インナーカットの形状が変化することを特徴とする、ガスケット。 A gasket characterized in that the non-constrained portion adjacent to the restrained portion constrained between the flanges is provided with an inner cut, and the shape of the inner cut changes depending on the load applied to the restrained portion.
  2.  さらに、前記インナーカットの形状変化から極小点情報が得られることを特徴とする、請求項1に記載のガスケット。 Further, the gasket according to claim 1, wherein the minimum point information can be obtained from the shape change of the inner cut.
  3.  荷重を受けて形状が変化するインナーカットを備えるガスケットを設置する工程と、
     フランジ間に拘束された前記ガスケットに、該フランジ間より荷重を付加する工程と、
     前記荷重により変化した前記インナーカットの形状を計測する工程と、
     前記形状に基づき前記フランジ間の締付けを管理することを特徴とする、管理方法。
    The process of installing a gasket with an inner cut that changes shape under load, and
    A process of applying a load from between the flanges to the gasket restrained between the flanges, and
    The process of measuring the shape of the inner cut changed by the load and
    A management method comprising controlling the tightening between the flanges based on the shape.
  4.  さらに、前記インナーカットの形状変化から極小点情報を取得する工程を含むことを特徴とする、請求項3に記載の管理方法。 The management method according to claim 3, further comprising a step of acquiring minimum point information from the shape change of the inner cut.
  5.  ガスケットの周縁に形成されたインナーカットの形状を計測する計測手段と、
     前記形状に基づき前記ガスケットの締付けを管理する管理情報を生成する管理サーバと、
     前記管理情報を提示する情報提示部と、
     を含むことを特徴とする、管理システム。
    A measuring means for measuring the shape of the inner cut formed on the periphery of the gasket,
    A management server that generates management information that manages the tightening of the gasket based on the shape, and
    The information presentation unit that presents the management information and
    A management system characterized by including.
  6.  コンピュータにより実現するためのプログラムであって、
     フランジ間に拘束されて荷重を受けるガスケットに備えたインナーカットの形状情報を取得する機能と、
     前記形状情報に基づき前記ガスケットの締付けを管理する管理情報を生成する機能と、
     前記管理情報を提示する機能と、
     を前記コンピュータで実現するためのプログラム。
    It is a program to be realized by a computer.
    The function to acquire the shape information of the inner cut provided for the gasket that is restrained between the flanges and receives the load,
    A function to generate management information for managing the tightening of the gasket based on the shape information, and
    The function of presenting the management information and
    A program for realizing the above on the computer.
  7.  さらに、前記インナーカットの形状変化から極小点情報を取得する機能を前記コンピュータで実現するための請求項6に記載のプログラム。


                                                                                    
    The program according to claim 6, further, for realizing the function of acquiring the minimum point information from the shape change of the inner cut with the computer.


PCT/JP2021/025408 2020-07-08 2021-07-06 Gasket and method, system, and program for management of same WO2022009866A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022535334A JPWO2022009866A1 (en) 2020-07-08 2021-07-06
KR1020227043629A KR20230036065A (en) 2020-07-08 2021-07-06 Gaskets, methods, systems and programs for their management
CN202180048466.7A CN115777046A (en) 2020-07-08 2021-07-06 Pad, and method, system, and program for managing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117732 2020-07-08
JP2020117732 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009866A1 true WO2022009866A1 (en) 2022-01-13

Family

ID=79553144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025408 WO2022009866A1 (en) 2020-07-08 2021-07-06 Gasket and method, system, and program for management of same

Country Status (5)

Country Link
JP (1) JPWO2022009866A1 (en)
KR (1) KR20230036065A (en)
CN (1) CN115777046A (en)
TW (1) TW202206724A (en)
WO (1) WO2022009866A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583576U (en) * 1992-04-13 1993-11-12 株式会社川本製作所 Gasket for pipe flange
JPH09329281A (en) * 1996-06-07 1997-12-22 Toshiba Corp Flange fastening monitoring device
JP2013040647A (en) * 2011-08-15 2013-02-28 Hitachi-Ge Nuclear Energy Ltd Gasket interference measuring method of flange

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699935B2 (en) 2006-04-26 2011-06-15 株式会社日立エンジニアリング・アンド・サービス Flange fastening monitoring device
JP2014225219A (en) 2013-11-07 2014-12-04 ニチアス株式会社 Gasket fastening calculation system, method for controlling gasket fastening calculation system, and program
JP2015141345A (en) 2014-01-29 2015-08-03 日本バルカー工業株式会社 Flange fastening training system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583576U (en) * 1992-04-13 1993-11-12 株式会社川本製作所 Gasket for pipe flange
JPH09329281A (en) * 1996-06-07 1997-12-22 Toshiba Corp Flange fastening monitoring device
JP2013040647A (en) * 2011-08-15 2013-02-28 Hitachi-Ge Nuclear Energy Ltd Gasket interference measuring method of flange

Also Published As

Publication number Publication date
TW202206724A (en) 2022-02-16
JPWO2022009866A1 (en) 2022-01-13
CN115777046A (en) 2023-03-10
KR20230036065A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP7257055B2 (en) Unified Fatigue Life Evaluation Method for Welded Structures
US7159470B2 (en) Systems and methods of measuring residual stress in metallic materials
CN102288352B (en) Method and device for determining torque coefficient of bolt
Merklein et al. A method for the layer compression test considering the anisotropic material behavior
KR101629538B1 (en) Method of processing steam generator tubes of nuclear power plant
Kang et al. Constitutive behavior of AA5754 sheet materials at large strains
WO2022009866A1 (en) Gasket and method, system, and program for management of same
WO2022009865A1 (en) Gasket, control method and system therefor, and program
WO2022009864A1 (en) Gasket control method, system, and program
Sims Fatigue test methods, problems and standards
TWI826551B (en) Determination system, determination program, determination method and learning system for sealing construction
JP2022150276A (en) Bolt axial force examination method and bolt axial force examination device
Dharmadhikari et al. Energy dissipation metrics for fatigue damage detection in the short crack regime for aluminum alloys
WO2019189293A1 (en) Device and method for measuring gap between flanges, and program
Jang et al. J and CTOD-based tensile strain capacity prediction for pipelines with a surface crack in girth weld
Kalyanam et al. “Apparent Net-Section-Collapse” Methodology for Circumferential Surface Flaws in Piping
JP7093928B2 (en) Deterioration diagnostic methods, equipment and systems for polycrystalline metal materials
Coppieters et al. Large Strain Flow Curve Identification for sheet metal: Process informed method selection
Shuvaev et al. Quality Assurance of Assembling of GTE Threaded Joints by Ultrasonic Treatment upon the Required Strength Criterion
Lahiri et al. Infrared thermography-based studies on hydrotesting of stainless steel pressure vessels
ROMAN et al. Influence of bolts bending on the strength of flanges joints of pressure vessels
JP4865741B2 (en) Damage evaluation method for bent part of steel pipe
Smith The effect of crack-system compliance on the leakage area for a circumferentially cracked pipe subjected to combined axial and bending loadings
dos Santos et al. Loss of Preload in Bolted Joints: Comparative Analysis between Length Measurement by Ultrasonic Method and Checking Torque Method
Alexandrov et al. Statistical model for assessing the reliability of non-destructive testing systems by solving inverse problems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836787

Country of ref document: EP

Kind code of ref document: A1