WO2022009864A1 - Gasket control method, system, and program - Google Patents

Gasket control method, system, and program Download PDF

Info

Publication number
WO2022009864A1
WO2022009864A1 PCT/JP2021/025406 JP2021025406W WO2022009864A1 WO 2022009864 A1 WO2022009864 A1 WO 2022009864A1 JP 2021025406 W JP2021025406 W JP 2021025406W WO 2022009864 A1 WO2022009864 A1 WO 2022009864A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
load
shape
flanges
shape change
Prior art date
Application number
PCT/JP2021/025406
Other languages
French (fr)
Japanese (ja)
Inventor
淑子 赤松
清華 戸田
聡美 高橋
正 寺崎
義太朗 坂田
和也 菊永
正浩 江頭
Original Assignee
株式会社バルカー
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社バルカー
Priority to CN202180048296.2A priority Critical patent/CN115812132A/en
Priority to KR1020227043627A priority patent/KR20230037495A/en
Priority to JP2022535332A priority patent/JPWO2022009864A1/ja
Publication of WO2022009864A1 publication Critical patent/WO2022009864A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to a gasket management technique used for, for example, fastening a piping system.
  • Tightening torque and bolt axial force value applied to the flange by bolts are used to tighten the gasket.
  • Tightening torque and bolt axial force value are information on tightening bolts that tighten between flanges.
  • the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and if the bolt strain is measured, the tightening force applied to the gasket from the bolt can be easily grasped. ,and so on.
  • the tightening force of the bolt acts on the flange, and only indirectly acts on the gasket through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange.
  • the torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and do not represent the surface pressure acting on the gasket.
  • the torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
  • the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
  • Patent Documents 1 to 3 do not disclose or suggest such a problem. Further, such a problem cannot be solved by the configurations disclosed in Patent Documents 1 to 3.
  • an object of the present disclosure is to observe a change in the shape of a gasket that receives a load between flanges based on the above problems and the above findings, and to use the observation result for management of gasket tightening.
  • the gasket management method of the present disclosure there is a step of applying a load to the gasket restrained between the flanges and a step of observing a shape change caused in the gasket due to the load.
  • the tightening of the gasket is controlled based on the shape change.
  • the shape change includes at least a change in the spacing direction between the flanges of the gasket, or a change in the spacing direction and the crossing direction, or both.
  • a measuring means for measuring a shape change of a gasket which is restrained between flanges and receives a load, and tightening between the flanges based on the shape change. It includes a management server that generates management information to be managed, and an information presentation unit that presents the management information.
  • a program to be realized by a computer in which a gasket is restrained between flanges and a load is received from between the flanges, and the load causes the gasket.
  • the computer realizes a function of acquiring shape information representing the shape change caused in the above and a function of generating management information for managing the tightening of the gasket based on the shape change.
  • the change in the shape of the gasket that occurs between the flanges represents the load that the gasket receives from between the flanges and the tightening state of the gasket, and the tightening of the gasket can be controlled by observing the change in the shape of the gasket.
  • FIG. 1 A is a diagram showing a gasket according to the first embodiment, and B is a diagram showing an example of a shape observing unit for the gasket. It is a figure which shows the shape change with respect to the load in the gasket which concerns on Example 1.
  • FIG. 1 A is a diagram showing a gasket according to the first embodiment, and B is a diagram showing an example of a shape observing unit for the gasket. It is a figure which shows the shape change with respect to the load in the gasket which concerns on Example 1.
  • A is a diagram showing a gasket according to the second embodiment
  • B is a perspective view showing an outer cut of the gasket
  • C is a diagram showing a shape change appearing in the outer cut. It is a figure which shows the shape change with respect to the load in the outer cut which concerns on Example 2.
  • FIG. A is a diagram showing the gasket according to the third embodiment
  • B is a perspective view for explaining the inner cut
  • C is a diagram showing a shape change appearing in the inner cut. It is a figure which shows the shape change with respect to the load in the gasket which concerns on Example 3.
  • FIG. It is a figure which shows an example of the shape observation of the gasket which concerns on Example 4.
  • A is a diagram showing shape changes on the outer diameter side and the inner diameter side
  • B is a diagram showing shape changes in the circumferential direction and the radial direction.
  • A is a diagram showing the shape of the gasket according to the fifth embodiment
  • B is a diagram showing an example of a state before a load is applied
  • C is a diagram showing an example of a state when a load of a predetermined value is applied. It is a figure which shows the shape observation example which concerns on Example 5.
  • FIG. 1 shows a flange fastening portion 2 according to the first embodiment.
  • the configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration.
  • the X-axis, the Y-axis, and the Z-axis are shown at the center of the flange fastening portion 2 as an example.
  • the flange fastening portion 2 has a pipeline 4-1 and a pipeline 4-2 arranged in the Z-axis direction.
  • a flange 6-1 is formed in the pipeline 4-1 as a means for fastening to the pipeline 4-2.
  • a flange 6-2 is formed in the pipeline 4-2 as a means for fastening to the pipeline 4-1.
  • a gasket 8 is arranged between the flanges 6-1 and 6-2.
  • the flanges 6-1 and 6-2 penetrate a plurality of bolts 10 at predetermined angular intervals (for example, 45 degrees) and are fastened to each bolt 10 with a nut 12.
  • the gasket 8 is a sealing member between the flanges 6-1 and 6-2, and is, for example, a sheet gasket in which PTFE (Polytetrafluoroethylene) and a filler are blended.
  • the gasket 8 may be a gasket using a resin or rubber other than PTFE.
  • the gasket 8 may be made of a metal material, or may be a combination of a metal material and a ceramic, a heat-resistant fiber material, or another material.
  • the gasket 8 includes a spiral gasket 80 (FIG. 5), a flat plate gasket having a sheet such as PTFE or graphite attached to the surface, a groove formed on the gasket surface, or a flange portion on the outer edge portion. Includes can profile gaskets and the like.
  • the gasket 8 has a restraining portion 8-1 on the inner peripheral side and a non-constraining portion 8-2 on the outer peripheral side.
  • the restraint portion 8-1 is sandwiched between the flanges 6-1 and 6-2 and restrained, and is a contact portion with the flanges 6-1 and 6-2, and is loaded from the flanges 6-1 and 6-2. This is the area that receives F.
  • This load F is a tightening load by each bolt 10 and nut 12.
  • the non-constrained portion 8-2 is integrated with the restrained portion 8-1, and is not constrained by the flanges 6-1 and 6-2, and is a region on the peripheral edge side of the gasket 8. That is, the unconstrained portion 8-2 is not in contact with the flanges 6-1 and 6-2, is not constrained by the flanges 6-1 and 6-2, and receives the load F from the flanges 6-1 and 6-2. It is an area that is not received.
  • a plurality of shape observation units 14-1, 14-2, 14-3, and 14-4 are set in the non-restraint unit 8-2.
  • Each shape observation unit 14-1, 14-2, 14-3, 14-4 is a region for observing a shape change appearing in the non-constrained portion 8-2 due to the load F received by the restrained portion 8-1.
  • shape observation units 14-1, 14-2, 14-3, 14 of arbitrary width are set at angle positions set at 90-degree intervals. -4 is arranged.
  • FIG. 2 shows the cut end face of the line II-II portion of FIG.
  • the restraint portion 8-1 is sandwiched and restrained between the gasket seats 16 of the flanges 6-1 and 6-2.
  • the non-restraint portion 8-2 protrudes into the gap 18 between the flanges 6-1 and 6-2.
  • the end portion of the gasket 8 is a free end in which when the restraining portion 8-1 receives the load F, strain with respect to this load appears as a shape change in the non-constraining portion 8-2, and constitutes a cantilever.
  • the gasket 8 that received this load F causes strain in the restraint portion 8-1, and this strain causes a shape change in the non-constrained portion 8-2.
  • This shape change is the amount of change according to the load F.
  • This shape change changes depending on the magnitude of the load F and the direction of action.
  • This shape change includes a change in the spacing direction (Z-axis direction) of the flanges 6-1 and 6-2 and a change in the crossing direction (X-axis direction, Y-axis direction) with respect to the spacing direction.
  • the shape change of the gasket 8 of the first embodiment includes a change in the thickness direction, the radial direction, or the circumferential direction of the gasket 8.
  • the management process of the gasket 8 is an example of the management method of the present disclosure.
  • This control step includes a generation step S1 of the restraint portion 8-1 and the non-constraint portion 8-2, a load F application step S2, a shape information acquisition step S3, and a shape information presentation step S4.
  • S1 to S4 attached to each step are the order of each step, and the terms quoted are only used for convenience.
  • Load F application step S2 In the gasket 8, the load F is applied to the restraint portion 8-1 restrained by the flanges 6-1 and 6-2 by tightening the flanges 6-1 and 6-2. In response to this load F, the strain of the restraint portion 8-1 causes a shape change in the non-constrained portion 8-2.
  • Shape information acquisition process S3 The management server 24 (FIG. 3) acquires shape information including the shape change appearing in the non-constrained portion 8-2.
  • the management server 24 generates presentation information including shape information and presents it by the information presentation unit 26 (FIG. 3).
  • the shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
  • FIG. 3 shows the gasket management system 20 according to the first embodiment.
  • This gasket management system 20 is a system for executing the above-mentioned management process by information processing.
  • the configuration shown in FIG. 3 is an example, and the present disclosure is not limited to such a configuration.
  • the same parts as those in FIG. 2 are designated by the same reference numerals.
  • the gasket management system 20 includes a strain sensor 22, a management server 24, and an information presentation unit 26.
  • the strain sensor 22 is an example of a measuring means for measuring a shape change from the shape observation unit 14 set in the unconstrained unit 8-2, and outputs a detection signal indicating the amount of change in the shape change generated in the shape observation unit 14. ..
  • a laser displacement meter, a camera, or the like may be used for the strain sensor 22 as a device for detecting a shape change and converting it into an electric signal.
  • the laser displacement meter shines a laser beam on the shape observation unit 14, detects the shape change of the shape observation unit 14 with the reflected light, and observes the amount of change.
  • the camera captures the shape observation unit 14, detects the shape change detected by the strain sensor 22 by the management server 24 by the number of pixels, and acquires the shape change information corresponding to the strain.
  • the management server 24 is composed of a computer having a communication function.
  • the management server 24 includes a processor 28, a storage unit 30, an input / output (I / O) unit 32, and a communication unit 34.
  • the processor 28 executes an OS (Operating System) and a management program in the storage unit 30, and performs information processing for gasket management.
  • the storage unit 30 includes a storage medium for storing the OS and the management program.
  • the gasket management database (DB) 36 (FIG. 4) is stored in the storage unit 30.
  • the communication unit 34 controls the processor 28 to input and present information in cooperation with a management terminal (not shown).
  • the management terminal is also used for acquiring shape information and writing and reading the gasket management DB 36.
  • the information presenting unit 26 under the control of the management server 24, presents management information including load information and determination information related to the change information representing the shape change.
  • ⁇ Information processing of management server 24> For information processing of the management server 24, a) Processing for capturing the detection output of the strain sensor 22 b) Acquisition of shape information of the gasket 8 including the shape change of the unconstrained portion 8-2 c) Processing such as presentation of information by the information presenting unit 26 is included.
  • FIG. 4 shows an example of the gasket management DB 36.
  • the gasket management file 38 is stored in the gasket management DB 36.
  • a gasket information unit 40 as an example of gasket management information, a gasket information unit 40, a shape detection information unit 41, a time information unit 42, a load information unit 44, a strain sensor information unit 46, a detection information unit 48, and history information
  • the unit 50 is set.
  • the gasket information unit 40 stores specification information for specifying the gasket 8.
  • the shape detection information unit 41 contains information on the shape observation units 14-1, 14-2, 14-3, and 14-4, for example, Example 1 (FIG. 6), Example 2 (FIG. 8), and Example 3 (. Shape observation unit information such as the form and arrangement position as shown in FIG. 10) is stored.
  • Time information such as the observation date and time is stored in the time information unit 42.
  • the load information unit 44 stores load information such as the load F applied between the flanges 6-1 and 6-2 by tightening the bolt 10 and the load conditions thereof.
  • the strain sensor information unit 46 stores the type of sensor that observes the shape change and the like.
  • the detection information unit 48 stores the detection values acquired by the strain sensor 22 from the shape observation units 14-1, 14-2, 14-3, and 14-4.
  • the history information unit 50 stores history information such as observation and information presentation such as shape change and load.
  • the shape change of the gasket 8 is caused by the load received by the gasket 8 from between the flanges 6-1 and 6-2, and represents the tightened state of the gasket 8. Therefore, by observing the shape change of the gasket 8 by the shape observing unit 14, the tightening state of the gasket 8 can be grasped and the tightening state can be managed.
  • the shape change of the gasket 8 represents the sealing between the flanges 6-1 and 6-2 by the gasket 8 between the flanges 6-1 and 6-2, and this shape change is directly observed from the gasket itself. Then, the hermeticity between the flanges 6-1 and 6-2 can be easily evaluated.
  • the management method of the gasket 8 according to the second embodiment further includes the estimation step S5 based on the inflection point information in the management method of the first embodiment.
  • the shape information includes the inflection point information of the shape change due to the specific load F, and the management server 24 can calculate the load F to be applied to the gasket 8 from the inflection point.
  • the inflection point represents, for example, a state in which the shape change in the circumferential direction of the gasket 8 changes significantly, and includes a minimum point.
  • the minimum point is a point where the change direction of the shape change changes, and is, for example, a transition point from a compressed state to an extended (tensile) state or an extended (tension) state to a compressed state.
  • Inflection point information can be acquired as peculiar information of shape change from shape information.
  • FIG. 5 shows the gasket management system 20 according to the third embodiment.
  • the configuration shown in FIG. 5 is an example, and the technique of the present disclosure is not limited to such a configuration.
  • This gasket management system 20 is arranged between the flanges 6-1 and 6-2, and the spiral gasket 80 is used as an observation target of the shape change due to the load F received from the flanges 6-1 and 6-2. Be done.
  • the gasket 80 is a laminated body in which a plurality of members having different diameters are coaxially arranged, and includes an outer ring 801, a gasket main body 802, and an inner ring 803.
  • the outer ring 801 and the inner ring 803 are made of a metal material such as stainless steel, carbon steel, or titanium, and are formed in a ring having a predetermined thickness or a shape close to the ring.
  • the gasket body 802 has a thin plate-shaped member made of, for example, a metal material, and a laminated body of a cushioning material (filler) such as graphite or fluororesin, which is spirally wound between the inner wall surface of the outer ring 801 and the outer wall surface of the inner ring 803. It is composed by winding around.
  • the laminate constituting the gasket main body 802 is formed, for example, in a cross section having a “V” shape or a waveform close to it. In this laminated body, for example, the end faces are fixed to the outer ring 801 and the inner ring 803 by spot welding.
  • the gasket 80 is restrained in which only the inner ring 803, a part or all of the inner ring 803 and the gasket body 802, and a part of the outer ring 801 come into contact with the gasket seat 16 (FIG. 2) to receive a load F. It may be part 8-1. That is, in the gasket 80, a part or all of the outer ring 801 becomes an unconstrained portion 8-2. In the gasket 80, the gasket main body 802 is deformed according to the load F from the flanges 6-1 and 6-2, and the outer ring 801 is distorted due to this deformation.
  • a shape observation unit 14 is set in a part of the outer ring 801 which is an unconstrained portion 8-2, and a shape change such as a strain generated in the outer ring 801 is measured by a strain sensor 22. Then, the gasket management system 20 grasps the load F applied to the gasket 80 and the tightened state of the gasket by utilizing the amount of change in the shape change. As for the management process of the tightened state of the gasket 80, the same process as that of the above embodiment may be performed.
  • FIG. 6A shows the gasket 8 according to the first embodiment.
  • the restrained portion 8-1 and the non-constrained portion 8-2 are set concentrically with the same width or substantially the same width.
  • the restraining portion 8-1 is a coplanar surface on the gasket 8, and may be a region automatically determined as a contact portion between the flanges 6-1 and 6-2 described above and the gasket seat 16, and the non-constraining portion 8 may be formed.
  • -2 may be a region separated from the gasket seat 16.
  • FIG. 6 shows a gasket 8 in which a plurality of shape observation units 14-1, 14-2, 14-3, and 14-4 are arranged.
  • the shape observation units 14-1, 14-2, 14-3, and 14-4 are arranged in the unconstrained unit 8-2 at an angular interval of 90 degrees at the center angle.
  • indicates the angle range in which the shape observation units 14-1, 14-2, 14-3, and 14-4 are set.
  • the arrangement positions of the shape observation units 14-1, 14-2, 14-3, and 14-4 may be set to positions that do not overlap with the arrangement positions of the bolts 10, but the arrangement position is not limited to this.
  • the shape change appearing in is shown by the measured value measured by the strain sensor 22.
  • m2 is the deformation of the gasket 8 in the 45 (deg) direction
  • the restraining portion 8-1 receives the load F from the flanges 6-1 and 6-2 in this way, the shape of the non-constraining portion 8-2 changes according to the load F.
  • An inflection occurs in this shape change, and the optimum load F can be specified from the relationship between the load F applied to the gasket 8 and the inflection point of the shape change, and can be used as information for determining the completion of initial fastening.
  • FIG. 8 shows the gasket 8 according to the second embodiment.
  • the restrained portion 8-1 and the non-constrained portion 8-2 are set to have the same width or substantially the same width and are concentrically set.
  • Outer cut 54 is formed in each shape observation unit 14-1, 14-2, 14-3, 14-4 in the non-restraint portion 8-2.
  • the outer cut 54 is formed in the outermost edge portion of the non-restraint portion 8-2 of the gasket 8, and has a notch shape having a non-closed portion in a part thereof.
  • a plurality of outer cuts 54 are formed on the gasket 8, and each outer cut 54 is arranged on the non-restraint portion 8-2 at an angular interval of 90 degrees at a center angle.
  • the outer cut 54 is, for example, a groove having a constant width W1 cut by a constant length L1 from the peripheral surface of the gasket 8 toward the center, and is an upper and lower surface of the gasket 8. It penetrates into. That is, the outer cut 54 has a vertical surface portion 56 and parallel surface portions 58 and 60 facing each other with a constant width W1 inside the gasket 8.
  • Such a shape change can be easily detected by the strain sensor 22.
  • a sensor member such as metal or resin may be installed in the space portion of the outer cut 54, and the shape change of the outer cut 54 may be extracted from the sensor member.
  • FIG. 9 shows the relationship between the shape change and the load appearing in the gasket 8 according to the second embodiment, with the load [kN] on the horizontal axis and the opening width (shape change) [mm] of the outer cut 54 on the vertical axis. .. Similarly, Table 1 shows the relationship between the opening width W2 of the outer cut 54 and the load F.
  • the opening width W2 of the outer cut 54 indicating the shape change with respect to the load F increases. .. An inflection occurs in this shape change. Therefore, when the second embodiment is used, if the inflection point of the shape change appearing in the shape observation units 14-1, 14-2, 14-3, 14-4 is targeted, the relationship between the shape change and the load F is used. Can be identified.
  • FIG. 10 shows the gasket 8 according to the third embodiment.
  • the restrained portion 8-1 and the non-constrained portion 8-2 are set concentrically with the same width or substantially the same width.
  • Inner cuts 62 are formed in the shape observation units 14-1, 14-2, 14-3, and 14-4 in the non-restraint portion 8-2.
  • the inner cut 62 is a through-hole portion formed in the unrestrained portion 8-2 of the gasket 8.
  • Each inner cut 62 is arranged in the non-restraint portion 8-2 at an angular interval of 90 degrees at the center angle, but is not limited to this.
  • the inner cut 62 is an arcuate groove portion concentric with the peripheral edge portion of the gasket 8 and having a constant width W, and penetrates the upper and lower surfaces of the gasket 8. That is, the inner cut 62 has vertical surface portions 64, 66, a constant length L2, and concentric arc portions 68, 70 facing each other with a width W3 inside the gasket 8.
  • a sensor member such as metal or resin may be installed in the space portion of the inner cut 62, and the shape change of the inner cut 62 may be extracted from this sensor member.
  • FIG. 11 shows the relationship between the shape change and the load appearing on the gasket 8 according to the third embodiment, with the load [kN] on the horizontal axis and the strain (shape change) of the inner cut 62 on the vertical axis.
  • the shape of the inner cut 62 representing the change in the load F changes.
  • This shape change has a minimum point included in the inflection point, and in the third embodiment as well, the relationship between the shape change and the load F can be specified by targeting the minimum point.
  • this minimum point is a point where the change direction of the shape change appearing in the unconstrained portion 8-2 of the gasket 8 changes, that is, the inner cut 62 is expanded (tensioned) or extended from the compressed state. This is the transition point from the (tensile) state to the compressed state.
  • the minimum point appears remarkably due to the shape change in the circumferential direction, but the minimum point may be the inflection point.
  • the change in shape in the circumferential direction may cause an inflection point in which the change in shape in the circumferential direction changes significantly, that is, not a minimum point.
  • Example 1 ⁇ Detection of inflection points in shape information and tightening criteria>
  • Example 2 ⁇ Detection of inflection points in shape information and tightening criteria>
  • inflection points can be generated in the shape information corresponding to a specific load F.
  • a specific load F can be estimated from the inflection point of the shape information, and can be used as a criterion for determining the completion of tightening.
  • Example 1 the outer cut 54 and the inner cut 62 are not processed.
  • an appropriate load F can be estimated by measuring the opening width W2 of the cut shape from the side surface.
  • the opening width W2 of the outer cut 54 is measured in advance for each load F applied to the gasket 8, and the load F is estimated by comparing the opening width W2 with the measured value. can.
  • the opening width W2 of the outer cut 54 is stored in a database for each load F, and the load F can be easily and accurately calculated by comparing with the measured value of the shape change.
  • a load F is applied to the flanges 6-1 and 6-2, and the inner wall surface of the through-hole-shaped inner cut 62 is closed (contacted), so that a remarkable change can be obtained.
  • the shape change of the non-restraint portion 8-2 (Example 1)
  • the shape change of the outer cut 54 (Example 2)
  • the inner cut The shape change (Example 3) of 62 can be measured, and the change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 8 without being affected by the bolt 10 and the flanges 6-1 and 6-2.
  • gasket 8 can also handle various diameters and thicknesses regarding the processed shapes of the outer cut 54 and the inner cut 62.
  • FIG. 12 shows a configuration example of the gasket 80 according to the fourth embodiment.
  • the outer ring 801 of the spiral gasket 80 constitutes the unconstrained portion 8-2.
  • the shape changes Qa and Qb on the outer edge side and the inner edge side of the outer ring 801 of the gasket 80 that expand and contract in the circumferential direction and the shape change R that expands and contracts in the radial direction of the gasket 80 are measured.
  • A has a load [kN] on the horizontal axis and a strain (shape change) in the circumferential direction on the vertical axis, and the shape change Qa appearing on the outer edge of the outer ring 801 and the shape change Qb appearing on the inner edge are measured by the strain sensor 22. The measured value is shown.
  • the strain on the inner edge side of the outer ring 801 is larger than the strain on the outer edge side. That is, since the shape of the outer ring 801 changes significantly on the inner edge side, it is easy to detect the change behavior of the gasket 80 or the gasket body 802 due to the load F.
  • B has a load [kN] on the horizontal axis and a strain (shape change) on the vertical axis, and the strain sensor 22 measures the shape change Qb in the circumferential direction appearing on the inner edge of the outer ring 801 and the shape change R appearing in the radial direction. The measured value is shown.
  • the measured value increases in the positive direction as the gasket surface pressure increases, so it can be understood that a force in the tensile direction is acting. Further, in the shape change R in the radial direction, the measured value increases in the negative direction as the gasket surface pressure increases, so that it can be understood that the compressed state is obtained.
  • FIG. 14A shows a configuration example of the gasket 80 according to the fifth embodiment.
  • the outer ring 801 constitutes the unconstrained portion 8-2.
  • an inner cut 82 having a predetermined length is formed on a part of the outer ring 801 of the gasket 80 along the outer circumference.
  • the inner cut 82 is a through-hole portion formed in the unrestrained portion 8-2 of the gasket 8.
  • the inner cut 82 is formed at a position of 5 [mm], for example, as a predetermined distance t from the outer edge portion of the outer ring 801.
  • the shape observation unit 14 is provided at the outer edge portion along the formation position of the inner cut 82.
  • the outer ring 801 has a predetermined width of, for example, 0.1 [mm] before the load F from the flanges 6-1 and 6-2 is applied to the gasket body 802.
  • the inner cut 82a is open.
  • the outer ring 801 is formed into an inner cut 82b in which a part or all of the opening portion is deformed and closed, as shown in FIG. 14, for example, C.
  • the gasket surface pressure due to the load F and the shape change Qc of the outer ring 801 in the state of the inner cut 82b are measured.
  • a load [kN] is applied on the horizontal axis and a strain (shape change) is applied on the vertical axis, and the shape change Qc in the circumferential direction appearing on the outer edge corresponding to the formation position of the inner cut 82b of the outer ring 801 is measured by the strain sensor 22. The measured value is shown.
  • the state of strain differs depending on the measurement position of the outer ring 801 due to the shape characteristics of the gasket body 802 formed in a spiral shape, and the state of the gasket and the state of load. Can be grasped in detail.
  • the load F from the flanges 6-1 and 6-2 is compared with the sheet gasket composed of a single member.
  • the load F applied from the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 80.
  • the inner cut 82 formed in the spiral gasket 80 has a remarkable change in the strain generated in the outer ring 801 due to the opening being closed by the load F from the flanges 6-1 and 6-2.
  • the shape changes Qa, Qb, and R (Example 4) that occur in the outer ring 801 are different from the torque management and the measurement of the bolt axial force in the monitoring and measurement of the shape change.
  • the shape change of the inner cut 82 (Example 5) the change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 80 without being affected by the bolt 10 and the flanges 6-1 and 6-2.
  • the vertical surface portion 56 and the parallel surface portions 58 and 60 are exemplified in the second embodiment, but these are examples.
  • the outer cut 54 may have a shape that does not have the vertical surface portion 56, or may have a V-shaped shape in which the parallel surface portions 58 and 60 are non-parallel, for example.
  • the inner cut 62 may have a shape in which the arcuate portions 68 and 70 do not have a constant width, or may be a parallel surface or a non-parallel surface instead of the arcuate shape.
  • the management server 24 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used.
  • a display unit that clearly indicates the change point may be presented in 26 (FIG. 3).
  • the gasket management method, system and program of the present disclosure it is possible to observe the change in the shape of the gasket due to the load received from the flange without measuring the axial force or torque value of the bolt that fastens between the flanges, and to observe the change in the shape of the gasket due to the load received from the flange. It is useful because the load on the gasket can be calculated from the shape information without being affected by the tightening state of the gasket, and it can be used for management information such as gasket replacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gasket Seals (AREA)

Abstract

Tightening of a gasket (8) held between flanges (6-1, 6-2) is controlled on the basis of a step in which a load due to tightening is applied, a step in which a change in the shape of the gasket generated by the load is observed, and the change in shape. The change in shape includes a change in the gasket in at least the direction of the interval between the flanges, or a change in a direction orthogonal to the interval direction, or both of said changes. Thus, if a change in the shape of the gasket receiving the load is observed, tightening of the gasket can be controlled.

Description

ガスケットの管理方法、システムおよびプログラムGasket management methods, systems and programs
 本開示は、たとえば配管系統の締結などに用いられるガスケットの管理技術に関する。
The present disclosure relates to a gasket management technique used for, for example, fastening a piping system.
 ガスケットの締付けには、ボルトによりフランジに加えられる締付けトルクやボルト軸力値が伝統的に用いられている。締付けトルクやボルト軸力値はフランジ間を締め付けるボルトの締付けに関する情報である。 Traditionally, the tightening torque and bolt axial force value applied to the flange by bolts are used to tighten the gasket. Tightening torque and bolt axial force value are information on tightening bolts that tighten between flanges.
 このガスケットの締付けに関し、締付けトルクを把握するため、ガスケットや内部流体の種類に対応する締付け面圧、複数の締付力、ボルトに関する情報などを用いるシステムが知られている(たとえば、特許文献1)。ボルトの締付けに関し、ボルトに発生するひずみをデータ化し、ボルトの締付け状態を視認化することが知られている(たとえば、特許文献2)。また、ガスケット内部に埋設したシート型圧力センサーにより、締結によってガスケットの一部に加わる力を測定するものが知られている(たとえば、特許文献3)。 Regarding the tightening of this gasket, in order to grasp the tightening torque, a system using information on the tightening surface pressure corresponding to the type of gasket and internal fluid, a plurality of tightening forces, bolts, etc. is known (for example, Patent Document 1). ). Regarding the tightening of bolts, it is known that the strain generated in the bolts is converted into data and the tightened state of the bolts is visualized (for example, Patent Document 2). Further, a sheet type pressure sensor embedded inside the gasket is known to measure the force applied to a part of the gasket by fastening (for example, Patent Document 3).
特開2014-225219号公報Japanese Unexamined Patent Publication No. 2014-225219 特開2015-141345号公報Japanese Unexamined Patent Publication No. 2015-141345 特許第4699935号公報Japanese Patent No. 46999935
 ところで、ガスケットの締付け管理にボルトの締付けトルクや軸力値が用いられる理由は、ボルトがフランジ間を締付ける手段であること、ボルトひずみを計測すればボルトからガスケットに加わる締付け力を容易に把握できること、などがある。 By the way, the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and if the bolt strain is measured, the tightening force applied to the gasket from the bolt can be easily grasped. ,and so on.
 しかしながら、ボルト、フランジおよびガスケットの関係を精査した結果、ボルトの締付け力は、フランジに作用しており、ガスケットにはフランジを媒介として間接的に作用しているにすぎない。つまり、フランジはボルトの締付けによる荷重を受け、この荷重がフランジを介してガスケットに作用しているにすぎない。ボルトに作用させたトルク値や軸力値は、フランジの一部に作用している荷重であり、ガスケットに作用する面圧を表すものではない。 However, as a result of scrutinizing the relationship between the bolt, the flange and the gasket, the tightening force of the bolt acts on the flange, and only indirectly acts on the gasket through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange. The torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and do not represent the surface pressure acting on the gasket.
 このため、ガスケットの締付け管理には次のような課題がある。 Therefore, there are the following problems in gasket tightening management.
 a)ボルトから取得したトルク値や軸力値はボルトに関する情報であり、ガスケットが受ける面圧を測定しているとは言えない。 A) The torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
 b)ガスケットがフランジから受ける面圧から見れば、ボルトのトルク値や軸力値は間接的な情報にすぎず、面圧の目安にすぎない。 B) From the viewpoint of the surface pressure that the gasket receives from the flange, the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
 c)ボルトのトルク値や軸力値はボルトやフランジの締付け状態の影響を受け、この変動傾向を無視できない。 C) The torque value and axial force value of the bolt are affected by the tightening state of the bolt and flange, and this fluctuation tendency cannot be ignored.
 トルクレンチやボルト軸力計で測定したトルク値や軸力値でガスケットの面圧を推定した場合、ボルトやフランジの締付け状態の影響を受けると、ガスケットに付与される面圧(=推定面圧)と、実際にガスケットが受ける面圧(=実面圧)の関係は、
            推定面圧≠実面圧
となる。トルク値や軸力値の測定精度を高めても、推定面圧とガスケットの実面圧が一致しない。ガスケットが受ける面圧を把握することができない。
When the surface pressure of the gasket is estimated from the torque value or axial force value measured with a torque wrench or bolt axial force meter, the surface pressure applied to the gasket (= estimated surface pressure) when affected by the tightening state of the bolt or flange. ) And the surface pressure (= actual surface pressure) actually received by the gasket,
Estimated surface pressure ≠ actual surface pressure. Even if the measurement accuracy of the torque value and the axial force value is improved, the estimated surface pressure and the actual surface pressure of the gasket do not match. It is not possible to grasp the surface pressure that the gasket receives.
 斯かる課題について、発明者は、ガスケットの形状変化がフランジ間から受ける荷重に依存しており、その形状変化を観測することがガスケットの締付け管理上有益であるとの知見を得た。特許文献1~3には斯かる課題の開示や示唆はない。そして、特許文献1~3に開示された構成では斯かる課題を解決することができない。 Regarding such a problem, the inventor has found that the shape change of the gasket depends on the load received from between the flanges, and it is useful to observe the shape change in the tightening management of the gasket. Patent Documents 1 to 3 do not disclose or suggest such a problem. Further, such a problem cannot be solved by the configurations disclosed in Patent Documents 1 to 3.
 そこで、本開示の目的は上記課題および上記知見に基づき、フランジ間で荷重を受けるガスケットの形状変化を観測し、ガスケットの締付けの管理にその観測結果を用いることにある。
Therefore, an object of the present disclosure is to observe a change in the shape of a gasket that receives a load between flanges based on the above problems and the above findings, and to use the observation result for management of gasket tightening.
 上記目的を達成するため、本開示のガスケットの管理方法の一側面によれば、フランジ間に拘束されたガスケットに荷重を付与する工程と、前記荷重により前記ガスケットに生じる形状変化を観測する工程とを含み、前記形状変化に基づき前記ガスケットの締付けを管理する。 In order to achieve the above object, according to one aspect of the gasket management method of the present disclosure, there is a step of applying a load to the gasket restrained between the flanges and a step of observing a shape change caused in the gasket due to the load. The tightening of the gasket is controlled based on the shape change.
 この管理方法において、前記形状変化は、前記ガスケットの少なくとも前記フランジ間の間隔方向の変化、または前記間隔方向と交差方向の変化の何れかまたは双方を含む。 In this management method, the shape change includes at least a change in the spacing direction between the flanges of the gasket, or a change in the spacing direction and the crossing direction, or both.
 上記目的を達成するため、本開示の管理システムの一側面によれば、フランジ間に拘束されて荷重を受けるガスケットの形状変化を計測する計測手段と、前記形状変化に基づき前記フランジ間の締付けを管理する管理情報を生成する管理サーバと、前記管理情報を提示する情報提示部とを含む。 In order to achieve the above object, according to one aspect of the management system of the present disclosure, a measuring means for measuring a shape change of a gasket which is restrained between flanges and receives a load, and tightening between the flanges based on the shape change. It includes a management server that generates management information to be managed, and an information presentation unit that presents the management information.
 上記目的を達成するため、本開示のプログラムの一側面によれば、コンピュータにより実現するためのプログラムであって、ガスケットがフランジ間に拘束されて該フランジ間より荷重を受け、該荷重により前記ガスケットに生じた形状変化を表す形状情報を取得する機能と、前記形状変化に基づき前記ガスケットの締付けを管理する管理情報を生成する機能とを前記コンピュータで実現する。
In order to achieve the above object, according to one aspect of the program of the present disclosure, it is a program to be realized by a computer, in which a gasket is restrained between flanges and a load is received from between the flanges, and the load causes the gasket. The computer realizes a function of acquiring shape information representing the shape change caused in the above and a function of generating management information for managing the tightening of the gasket based on the shape change.
 本発明によれば、次の何れかの効果が得られる。 According to the present invention, any of the following effects can be obtained.
 (1) フランジ間で生じるガスケットの形状変化は、ガスケットがフランジ間より受ける荷重、ガスケットの締付け状態を表しており、ガスケットの形状変化を観測すればガスケットの締付けを管理することができる。 (1) The change in the shape of the gasket that occurs between the flanges represents the load that the gasket receives from between the flanges and the tightening state of the gasket, and the tightening of the gasket can be controlled by observing the change in the shape of the gasket.
 (2) フランジ間で生じたガスケットの形状変化はフランジ間にあるガスケットの締付け状態やフランジ間の密閉性を表しており、この形状変化をガスケット自体から直に観測すれば締付け状態やフランジ間の密閉性を容易に評価できる。 (2) The change in the shape of the gasket between the flanges indicates the tightened state of the gasket between the flanges and the tightness between the flanges. If this shape change is directly observed from the gasket itself, the tightened state and the space between the flanges can be observed. The tightness can be easily evaluated.
 (3) 従前のボルトのトルク値や軸力値による管理に比較し、従事者の技量に依存することなくガスケットの締付け管理精度を高めることができる。 (3) Compared to the conventional management by bolt torque value and axial force value, the gasket tightening management accuracy can be improved without depending on the skill of the worker.
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
And other objects, features and advantages of the present invention will be further clarified by reference to the accompanying drawings and each embodiment.
第1の実施の形態に係るフランジ締結部を示す図である。It is a figure which shows the flange fastening part which concerns on 1st Embodiment. 図1のII-II線部の切断端面を示す図である。It is a figure which shows the cut end face of the II-II line part of FIG. 第1の実施の形態に係るガスケット管理システムを示す図である。It is a figure which shows the gasket management system which concerns on 1st Embodiment. ガスケット管理データベースを示す図である。It is a figure which shows the gasket management database. 第3の実施の形態に係るガスケット管理システムを示す図である。It is a figure which shows the gasket management system which concerns on 3rd Embodiment. Aは実施例1に係るガスケットを示す図であり、Bはガスケットに対する形状観測部の一例を示す図である。A is a diagram showing a gasket according to the first embodiment, and B is a diagram showing an example of a shape observing unit for the gasket. 実施例1に係るガスケットにおける荷重に対する形状変化を示す図である。It is a figure which shows the shape change with respect to the load in the gasket which concerns on Example 1. FIG. Aは実施例2に係るガスケットを示す図であり、Bはガスケットのアウターカットを示す斜視図であり、Cはアウターカットに表れる形状変化を示す図である。A is a diagram showing a gasket according to the second embodiment, B is a perspective view showing an outer cut of the gasket, and C is a diagram showing a shape change appearing in the outer cut. 実施例2に係るアウターカットにおける荷重に対する形状変化を示す図である。It is a figure which shows the shape change with respect to the load in the outer cut which concerns on Example 2. FIG. Aは実施例3に係るガスケットを示す図であり、Bはインナーカットを説明するための斜視図であり、Cはインナーカットに表れる形状変化を示す図である。A is a diagram showing the gasket according to the third embodiment, B is a perspective view for explaining the inner cut, and C is a diagram showing a shape change appearing in the inner cut. 実施例3に係るガスケットにおける荷重に対する形状変化を示す図である。It is a figure which shows the shape change with respect to the load in the gasket which concerns on Example 3. FIG. 実施例4に係るガスケットの形状観測の一例を示す図である。It is a figure which shows an example of the shape observation of the gasket which concerns on Example 4. FIG. 実施例4に係る形状観測例であって、Aは外径側と内径側の形状変化を示す図であり、Bは周方向と径方向の形状変化を示す図である。In the shape observation example according to the fourth embodiment, A is a diagram showing shape changes on the outer diameter side and the inner diameter side, and B is a diagram showing shape changes in the circumferential direction and the radial direction. Aは実施例5に係るガスケットの形状を示す図であり、Bは荷重付加前の状態例を示す図であり、Cは所定値の荷重を付加した場合の状態例を示す図である。A is a diagram showing the shape of the gasket according to the fifth embodiment, B is a diagram showing an example of a state before a load is applied, and C is a diagram showing an example of a state when a load of a predetermined value is applied. 実施例5に係る形状観測例を示す図である。It is a figure which shows the shape observation example which concerns on Example 5.
 〔第1の実施の形態〕
 図1は、第1の実施の形態に係るフランジ締結部2を示している。図1に示す構成は一例であり、斯かる構成に本開示が限定されるものではない。図1では一例としてフランジ締結部2の中心でX軸、Y軸およびZ軸を記載している。
 このフランジ締結部2はZ軸方向に管路4-1、管路4-2を配置している。管路4-1には管路4-2との締結手段としてフランジ6-1が形成されている。管路4-2には管路4-1との締結手段としてフランジ6-2が形成されている。
[First Embodiment]
FIG. 1 shows a flange fastening portion 2 according to the first embodiment. The configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration. In FIG. 1, the X-axis, the Y-axis, and the Z-axis are shown at the center of the flange fastening portion 2 as an example.
The flange fastening portion 2 has a pipeline 4-1 and a pipeline 4-2 arranged in the Z-axis direction. A flange 6-1 is formed in the pipeline 4-1 as a means for fastening to the pipeline 4-2. A flange 6-2 is formed in the pipeline 4-2 as a means for fastening to the pipeline 4-1.
 フランジ6-1、6-2間にはガスケット8が配置されている。フランジ6-1、6-2は所定の角度間隔(たとえば、45度)で複数のボルト10を貫通させ、各ボルト10とナット12で締結している。
 ガスケット8は、フランジ6-1、6-2間の封止部材であって、たとえば、PTFE(Polytetrafluoroethylene)と充填材を配合したシートガスケットである。このガスケット8はPTFE以外の樹脂やゴムを用いたガスケットでもよい。また、ガスケット8は、金属材料で構成されたものや、金属材料とセラミック、耐熱性の繊維材、その他の材料などを組み合わせたものであってもよい。さらに、ガスケット8は、うず巻き形のガスケット80(図5)や、平板状のガスケットの表面にPTFEや黒鉛などのシートが貼付けられたもの、ガスケット表面に溝が形成されたり外縁部分に鍔部を備えたカンプロファイルガスケットなどが含まれる。
A gasket 8 is arranged between the flanges 6-1 and 6-2. The flanges 6-1 and 6-2 penetrate a plurality of bolts 10 at predetermined angular intervals (for example, 45 degrees) and are fastened to each bolt 10 with a nut 12.
The gasket 8 is a sealing member between the flanges 6-1 and 6-2, and is, for example, a sheet gasket in which PTFE (Polytetrafluoroethylene) and a filler are blended. The gasket 8 may be a gasket using a resin or rubber other than PTFE. Further, the gasket 8 may be made of a metal material, or may be a combination of a metal material and a ceramic, a heat-resistant fiber material, or another material. Further, the gasket 8 includes a spiral gasket 80 (FIG. 5), a flat plate gasket having a sheet such as PTFE or graphite attached to the surface, a groove formed on the gasket surface, or a flange portion on the outer edge portion. Includes can profile gaskets and the like.
 このガスケット8には、内周側に拘束部8-1、外周側に非拘束部8-2が設定されている。拘束部8-1は、フランジ6-1、6-2の間に挟まれて拘束され、フランジ6-1、6-2との接触部であって、フランジ6-1、6-2より荷重Fを受ける領域である。この荷重Fは各ボルト10とナット12による締付け荷重である。 The gasket 8 has a restraining portion 8-1 on the inner peripheral side and a non-constraining portion 8-2 on the outer peripheral side. The restraint portion 8-1 is sandwiched between the flanges 6-1 and 6-2 and restrained, and is a contact portion with the flanges 6-1 and 6-2, and is loaded from the flanges 6-1 and 6-2. This is the area that receives F. This load F is a tightening load by each bolt 10 and nut 12.
 非拘束部8-2は拘束部8-1と一体であるとともに、フランジ6-1、6-2の拘束を受けず、ガスケット8の周縁側の領域である。つまり、非拘束部8-2はフランジ6-1、6-2と非接触であり、フランジ6-1、6-2に拘束されておらず、フランジ6-1、6-2より荷重Fを受けない領域である。 The non-constrained portion 8-2 is integrated with the restrained portion 8-1, and is not constrained by the flanges 6-1 and 6-2, and is a region on the peripheral edge side of the gasket 8. That is, the unconstrained portion 8-2 is not in contact with the flanges 6-1 and 6-2, is not constrained by the flanges 6-1 and 6-2, and receives the load F from the flanges 6-1 and 6-2. It is an area that is not received.
 そして、非拘束部8-2には複数の形状観測部14-1、14-2、14-3、14-4が設定されている。各形状観測部14-1、14-2、14-3、14-4は、拘束部8-1が受ける荷重Fにより非拘束部8-2に現れる形状変化を観測するための領域である。この第1の実施の形態ではX軸およびY軸が成す観測面を想定し、90度間隔で設定された角度位置に任意幅の形状観測部14-1、14-2、14-3、14-4が配置されている。 A plurality of shape observation units 14-1, 14-2, 14-3, and 14-4 are set in the non-restraint unit 8-2. Each shape observation unit 14-1, 14-2, 14-3, 14-4 is a region for observing a shape change appearing in the non-constrained portion 8-2 due to the load F received by the restrained portion 8-1. In this first embodiment, assuming an observation surface formed by the X-axis and the Y-axis, shape observation units 14-1, 14-2, 14-3, 14 of arbitrary width are set at angle positions set at 90-degree intervals. -4 is arranged.
<図1のII-II線切断端面>
 図2は、図1のII-II線部の切断端面を示している。拘束部8-1は、フランジ6-1、6-2の各ガスケット座16の間に挟まれて拘束されている。これに対し、非拘束部8-2はフランジ6-1、6-2間の隙間18に突出している。ガスケット8の端部は、拘束部8-1が荷重Fを受けると、この荷重に対するひずみが非拘束部8-2に形状変化として現れる自由端であり、片持ち梁を構成している。
<II-II line cut end face in Fig. 1>
FIG. 2 shows the cut end face of the line II-II portion of FIG. The restraint portion 8-1 is sandwiched and restrained between the gasket seats 16 of the flanges 6-1 and 6-2. On the other hand, the non-restraint portion 8-2 protrudes into the gap 18 between the flanges 6-1 and 6-2. The end portion of the gasket 8 is a free end in which when the restraining portion 8-1 receives the load F, strain with respect to this load appears as a shape change in the non-constraining portion 8-2, and constitutes a cantilever.
<非拘束部8-2に現れる形状変化の観測>
 フランジ6-1、6-2間を締結するため、ボルト10およびナット12を締付けると、ガスケット8の拘束部8-1はフランジ6-1、6-2間より荷重Fを受ける。
<Observation of shape change appearing in unconstrained part 8-2>
When the bolt 10 and the nut 12 are tightened to fasten the flanges 6-1 and 6-2, the restraining portion 8-1 of the gasket 8 receives the load F from between the flanges 6-1 and 6-2.
 この荷重Fを受けたガスケット8には拘束部8-1にひずみを生じ、このひずみが非拘束部8-2に形状変化を生じさせる。この形状変化は荷重Fに応じた変化量である。 The gasket 8 that received this load F causes strain in the restraint portion 8-1, and this strain causes a shape change in the non-constrained portion 8-2. This shape change is the amount of change according to the load F.
 この形状変化は荷重Fの大きさや作用方向によって変化する。この形状変化にはフランジ6-1、6-2の間隔方向(Z軸方向)、この間隔方向に対する交差方向(X軸方向、Y軸方向)の変化が含まれる。第1の実施の形態のガスケット8の形状変化では、ガスケット8の厚さ方向、径方向または周方向の変化が含まれる。 This shape change changes depending on the magnitude of the load F and the direction of action. This shape change includes a change in the spacing direction (Z-axis direction) of the flanges 6-1 and 6-2 and a change in the crossing direction (X-axis direction, Y-axis direction) with respect to the spacing direction. The shape change of the gasket 8 of the first embodiment includes a change in the thickness direction, the radial direction, or the circumferential direction of the gasket 8.
<ガスケット8の管理工程>
 ガスケット8の管理工程は本開示の管理方法の一例である。この管理工程には拘束部8-1および非拘束部8-2の生成工程S1、荷重Fの付与工程S2、形状情報の取得工程S3、形状情報などの提示工程S4を含んでいる。各工程に付したS1~S4は、各工程の順序であり、引用する用語も便宜上使用したにすぎない。
<Gasket 8 management process>
The management process of the gasket 8 is an example of the management method of the present disclosure. This control step includes a generation step S1 of the restraint portion 8-1 and the non-constraint portion 8-2, a load F application step S2, a shape information acquisition step S3, and a shape information presentation step S4. S1 to S4 attached to each step are the order of each step, and the terms quoted are only used for convenience.
 拘束部8-1および非拘束部8-2の生成工程S1: ガスケット8がフランジ6-1、6-2間に設置されると、フランジ6-1、6-2と接するガスケット8の部分が拘束部8-1となり、フランジ6-1、6-2に接しないガスケット8の部分が非拘束部8-2になる。つまり、ガスケット8の拘束部8-1および非拘束部8-2は、フランジ6-1、6-2間に設置されることにより生成される。 Generation step of generating the restrained portion 8-1 and the non-constrained portion 8-2 S1: When the gasket 8 is installed between the flanges 6-1 and 6-2, the portion of the gasket 8 in contact with the flanges 6-1 and 6-2 is formed. The portion of the gasket 8 that becomes the restraint portion 8-1 and does not contact the flanges 6-1 and 6-2 becomes the non-constraint portion 8-2. That is, the restrained portion 8-1 and the non-constrained portion 8-2 of the gasket 8 are generated by being installed between the flanges 6-1 and 6-2.
 荷重Fの付与工程S2: ガスケット8は、フランジ6-1、6-2により拘束される拘束部8-1に対し、フランジ6-1、6-2の締付けにより荷重Fが付与される。この荷重Fに応動し、拘束部8-1のひずみによって非拘束部8-2に形状変化を生じる。 Load F application step S2: In the gasket 8, the load F is applied to the restraint portion 8-1 restrained by the flanges 6-1 and 6-2 by tightening the flanges 6-1 and 6-2. In response to this load F, the strain of the restraint portion 8-1 causes a shape change in the non-constrained portion 8-2.
 形状情報の取得工程S3: 管理サーバ24(図3)は、非拘束部8-2に現れる形状変化を含む形状情報を取得する。 Shape information acquisition process S3: The management server 24 (FIG. 3) acquires shape information including the shape change appearing in the non-constrained portion 8-2.
 形状情報などの提示工程S4: 管理サーバ24は、形状情報を含む提示情報を生成し、情報提示部26(図3)により提示する。
 なお、形状情報の取得工程S3で取得した形状情報にN次微分(多段階微分)を施し、形状情報の変化点を際立たせる処理を行ってもよい。この処理結果を提示工程S4で提示情報に反映させれば、形状情報の変化点を明確化できる。
Presentation step of shape information and the like S4: The management server 24 generates presentation information including shape information and presents it by the information presentation unit 26 (FIG. 3).
The shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
<ガスケット管理システム20>
 図3は、第1の実施の形態に係るガスケット管理システム20を示している。このガスケット管理システム20は既述の管理工程を情報処理により実行するためのシステムである。図3に示す構成は一例であり、本開示が斯かる構成に限定されるものではない。図3において、図2と同一部分には同一符号を付してある。
 このガスケット管理システム20はひずみセンサ22、管理サーバ24および情報提示部26を備える。
<Gasket management system 20>
FIG. 3 shows the gasket management system 20 according to the first embodiment. This gasket management system 20 is a system for executing the above-mentioned management process by information processing. The configuration shown in FIG. 3 is an example, and the present disclosure is not limited to such a configuration. In FIG. 3, the same parts as those in FIG. 2 are designated by the same reference numerals.
The gasket management system 20 includes a strain sensor 22, a management server 24, and an information presentation unit 26.
 ひずみセンサ22は、非拘束部8-2に設定した形状観測部14から形状変化を計測する計測手段の一例であり、形状観測部14に生じた形状変化の変化量を表す検出信号を出力する。このひずみセンサ22には形状変化を検出して電気信号に変換する機器としてレーザー変位計、カメラなどを用いてもよい。 The strain sensor 22 is an example of a measuring means for measuring a shape change from the shape observation unit 14 set in the unconstrained unit 8-2, and outputs a detection signal indicating the amount of change in the shape change generated in the shape observation unit 14. .. A laser displacement meter, a camera, or the like may be used for the strain sensor 22 as a device for detecting a shape change and converting it into an electric signal.
 レーザー変位計は、レーザー光を形状観測部14に当て、形状観測部14の形状変化を反射光で検出し、変化量を観測する。カメラは、形状観測部14を撮像し、管理サーバ24がひずみセンサ22で検出した形状変化を画素数で検出し、ひずみに相当する形状の変化情報を取得する。 The laser displacement meter shines a laser beam on the shape observation unit 14, detects the shape change of the shape observation unit 14 with the reflected light, and observes the amount of change. The camera captures the shape observation unit 14, detects the shape change detected by the strain sensor 22 by the management server 24 by the number of pixels, and acquires the shape change information corresponding to the strain.
 管理サーバ24は通信機能を備えるコンピュータで構成される。この管理サーバ24は、プロセッサ28、記憶部30、入出力(I/O)部32、通信部34を備える。プロセッサ28は記憶部30にあるOS(Operating System)や管理プログラムを実行し、ガスケット管理のための情報処理を行う。記憶部30にはOSや管理プログラムを格納する記憶媒体を含む。この記憶部30にはガスケット管理データベース(DB)36(図4)が格納される。通信部34はプロセッサ28の制御により、図示していない管理端末と連係して情報の入力や提示を行う。管理端末は、形状情報の取得、ガスケット管理DB36の書込みや読取りなどにも活用される。 The management server 24 is composed of a computer having a communication function. The management server 24 includes a processor 28, a storage unit 30, an input / output (I / O) unit 32, and a communication unit 34. The processor 28 executes an OS (Operating System) and a management program in the storage unit 30, and performs information processing for gasket management. The storage unit 30 includes a storage medium for storing the OS and the management program. The gasket management database (DB) 36 (FIG. 4) is stored in the storage unit 30. The communication unit 34 controls the processor 28 to input and present information in cooperation with a management terminal (not shown). The management terminal is also used for acquiring shape information and writing and reading the gasket management DB 36.
 また、情報提示部26は管理サーバ24の制御により、形状変化を表す変化情報に関係付けられた荷重情報や判定情報を含む管理情報を提示する。 Further, the information presenting unit 26, under the control of the management server 24, presents management information including load information and determination information related to the change information representing the shape change.
<管理サーバ24の情報処理>
 管理サーバ24の情報処理には、
 a)ひずみセンサ22の検出出力の取込み処理
 b)非拘束部8-2の形状変化を含むガスケット8の形状情報の取得
 c)情報提示部26による情報の提示
などの処理が含まれる。
<Information processing of management server 24>
For information processing of the management server 24,
a) Processing for capturing the detection output of the strain sensor 22 b) Acquisition of shape information of the gasket 8 including the shape change of the unconstrained portion 8-2 c) Processing such as presentation of information by the information presenting unit 26 is included.
<ガスケット管理DB36>
 図4は、ガスケット管理DB36の一例を示している。このガスケット管理DB36には、ガスケット管理ファイル38が格納されている。
 このガスケット管理ファイル38には、ガスケットの管理情報の一例として、ガスケット情報部40、形状検出情報部41、時間情報部42、荷重情報部44、ひずみセンサ情報部46、検出情報部48、履歴情報部50が設定されている。
<Gasket management DB36>
FIG. 4 shows an example of the gasket management DB 36. The gasket management file 38 is stored in the gasket management DB 36.
In this gasket management file 38, as an example of gasket management information, a gasket information unit 40, a shape detection information unit 41, a time information unit 42, a load information unit 44, a strain sensor information unit 46, a detection information unit 48, and history information The unit 50 is set.
 ガスケット情報部40には、ガスケット8の識別情報の他、ガスケット8を特定するための仕様情報が格納される。 In addition to the identification information of the gasket 8, the gasket information unit 40 stores specification information for specifying the gasket 8.
 形状検出情報部41には、形状観測部14-1、14-2、14-3、14-4に関する情報たとえば、実施例1(図6)、実施例2(図8)、実施例3(図10)などの形態、配置位置などの形状観測部情報が格納される。 The shape detection information unit 41 contains information on the shape observation units 14-1, 14-2, 14-3, and 14-4, for example, Example 1 (FIG. 6), Example 2 (FIG. 8), and Example 3 (. Shape observation unit information such as the form and arrangement position as shown in FIG. 10) is stored.
 時間情報部42には観測日時など、時間情報が格納される。 Time information such as the observation date and time is stored in the time information unit 42.
 荷重情報部44には、ボルト10の締め付けによりフランジ6-1、6-2間に加えられる荷重F、その負荷条件などの荷重情報が格納される。 The load information unit 44 stores load information such as the load F applied between the flanges 6-1 and 6-2 by tightening the bolt 10 and the load conditions thereof.
 ひずみセンサ情報部46には、形状変化を観測するセンサの種別などが格納される。 The strain sensor information unit 46 stores the type of sensor that observes the shape change and the like.
 検出情報部48には、形状観測部14-1、14-2、14-3、14-4からひずみセンサ22が取得した検出値が格納される。 The detection information unit 48 stores the detection values acquired by the strain sensor 22 from the shape observation units 14-1, 14-2, 14-3, and 14-4.
 履歴情報部50には、形状変化や荷重などの観測や情報提示などの履歴情報が格納される。 The history information unit 50 stores history information such as observation and information presentation such as shape change and load.
<第1の実施の形態の効果>
 この第1の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the first embodiment>
According to this first embodiment, any of the following effects can be obtained.
 (1) ガスケット8の形状変化は、ガスケット8がフランジ6-1、6-2間より受ける荷重によって生じ、ガスケット8の締付け状態を表している。そこで、ガスケット8の形状観測部14によりその形状変化を観測することでガスケット8の締付け状態を把握し、締付け状態を管理できる。 (1) The shape change of the gasket 8 is caused by the load received by the gasket 8 from between the flanges 6-1 and 6-2, and represents the tightened state of the gasket 8. Therefore, by observing the shape change of the gasket 8 by the shape observing unit 14, the tightening state of the gasket 8 can be grasped and the tightening state can be managed.
 (2) ガスケット8の形状変化はフランジ6-1、6-2間にあるガスケット8によるフランジ6-1、6-2間の密閉性を表しており、この形状変化をガスケット自体から直に観測すれば、フランジ6-1、6-2間の密閉性を容易に評価することができる。 (2) The shape change of the gasket 8 represents the sealing between the flanges 6-1 and 6-2 by the gasket 8 between the flanges 6-1 and 6-2, and this shape change is directly observed from the gasket itself. Then, the hermeticity between the flanges 6-1 and 6-2 can be easily evaluated.
 (3) 従前のボルトのトルク値や軸力値による管理に比較し、従事者の技量に依存することなくガスケット8の締付け管理精度を高めることができる。 (3) Compared to the conventional management based on the bolt torque value and axial force value, the tightening management accuracy of the gasket 8 can be improved without depending on the skill of the worker.
〔第2の実施の形態〕
 第2の実施の形態に係るガスケット8の管理方法は、第1の実施の形態の管理方法にさらに、変曲点情報による推定工程S5を含んでいる。
 変曲点情報による推定工程S5では、形状情報が特定の荷重Fによる形状変化の変曲点情報を含み、管理サーバ24は、該変曲点からガスケット8に付与すべき荷重Fを算定できる。
[Second Embodiment]
The management method of the gasket 8 according to the second embodiment further includes the estimation step S5 based on the inflection point information in the management method of the first embodiment.
In the estimation step S5 based on the inflection point information, the shape information includes the inflection point information of the shape change due to the specific load F, and the management server 24 can calculate the load F to be applied to the gasket 8 from the inflection point.
 変曲点はガスケット8のたとえば、周方向の形状変化が大きく変化する状態を表し、極小点を含む。極小点は形状変化の変化方向が変わる点であり、たとえば、圧縮状態から伸長(引張)状態、または伸長(引張)状態から圧縮状態への移行点である。 The inflection point represents, for example, a state in which the shape change in the circumferential direction of the gasket 8 changes significantly, and includes a minimum point. The minimum point is a point where the change direction of the shape change changes, and is, for example, a transition point from a compressed state to an extended (tensile) state or an extended (tension) state to a compressed state.
<第2の実施の形態の効果>
 第2の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the second embodiment>
According to the second embodiment, any of the following effects can be obtained.
 (1) 形状情報から形状変化の特異情報として変曲点情報を取得できる。 (1) Inflection point information can be acquired as peculiar information of shape change from shape information.
 (2) この変曲点情報をガスケット8に付加すべき荷重Fに対応付けることにより、形状情報から変曲点情報を確認することで、ガスケット8に対する荷重の最適化を実現できる。 (2) By associating this inflection point information with the load F to be added to the gasket 8, it is possible to optimize the load on the gasket 8 by confirming the inflection point information from the shape information.
 (3) ガスケット8に対する荷重設定や荷重調整を容易化できる。 (3) It is possible to facilitate load setting and load adjustment for the gasket 8.
〔第3の実施の形態〕
 図5は、第3の実施の形態に係るガスケット管理システム20を示している。
 図5に示す構成は一例であり、本開示の技術が斯かる構成に限定されるものではない。
[Third Embodiment]
FIG. 5 shows the gasket management system 20 according to the third embodiment.
The configuration shown in FIG. 5 is an example, and the technique of the present disclosure is not limited to such a configuration.
 このガスケット管理システム20は、フランジ6-1、6-2間に配置されており、フランジ6-1、6-2から受けた荷重Fによる形状変化の観測対象として、うず巻き形のガスケット80が用いられる。このガスケット80は、たとえば図5に示すように、径の異なる複数の部材が同軸上に配置された積層体であって、外輪801、ガスケット本体802、内輪803を備える。 This gasket management system 20 is arranged between the flanges 6-1 and 6-2, and the spiral gasket 80 is used as an observation target of the shape change due to the load F received from the flanges 6-1 and 6-2. Be done. As shown in FIG. 5, for example, the gasket 80 is a laminated body in which a plurality of members having different diameters are coaxially arranged, and includes an outer ring 801, a gasket main body 802, and an inner ring 803.
 外輪801、内輪803は、たとえばステンレスや炭素鋼やチタンなどの金属材料が用いられており、所定厚さの円環またはそれに近い形状に形成されている。 The outer ring 801 and the inner ring 803 are made of a metal material such as stainless steel, carbon steel, or titanium, and are formed in a ring having a predetermined thickness or a shape close to the ring.
 ガスケット本体802は、たとえば金属材料で形成された薄板状の部材と、黒鉛やフッ素樹脂などの緩衝材(フィラー)の積層体を外輪801の内壁面と内輪803の外壁面との間でうず巻き状に巻回して構成されている。ガスケット本体802を構成する積層体は、たとえば断面が「V」形状、またはそれに近い波形に形成されている。この積層体は、たとえば端面が外輪801、内輪803に対してスポット溶接によって固着している。 The gasket body 802 has a thin plate-shaped member made of, for example, a metal material, and a laminated body of a cushioning material (filler) such as graphite or fluororesin, which is spirally wound between the inner wall surface of the outer ring 801 and the outer wall surface of the inner ring 803. It is composed by winding around. The laminate constituting the gasket main body 802 is formed, for example, in a cross section having a “V” shape or a waveform close to it. In this laminated body, for example, the end faces are fixed to the outer ring 801 and the inner ring 803 by spot welding.
 ガスケット80には、たとえばフランジ締結部2において、内輪803のみまたは内輪803とガスケット本体802の一部または全部、外輪801の一部がガスケット座16(図2)と当接して荷重Fを受ける拘束部8-1となればよい。つまり、ガスケット80は、外輪801の一部または全部が非拘束部8-2となる。ガスケット80は、フランジ6-1、6-2からの荷重Fに応じてガスケット本体802が変形するとともに、この変形を受けて外輪801にひずみが生じる。 For example, in the flange fastening portion 2, the gasket 80 is restrained in which only the inner ring 803, a part or all of the inner ring 803 and the gasket body 802, and a part of the outer ring 801 come into contact with the gasket seat 16 (FIG. 2) to receive a load F. It may be part 8-1. That is, in the gasket 80, a part or all of the outer ring 801 becomes an unconstrained portion 8-2. In the gasket 80, the gasket main body 802 is deformed according to the load F from the flanges 6-1 and 6-2, and the outer ring 801 is distorted due to this deformation.
 このガスケット管理システム20では、たとえば非拘束部8-2である外輪801の一部に形状観測部14を設定し、この外輪801に生じるひずみなどの形状変化をひずみセンサ22よって計測する。そしてガスケット管理システム20は、形状変化の変化量を利用してガスケット80に付加される荷重Fやガスケットの締付け状態を把握する。ガスケット80の締付け状態の管理処理については、上記実施形態と同様の処理を行えばよい。 In this gasket management system 20, for example, a shape observation unit 14 is set in a part of the outer ring 801 which is an unconstrained portion 8-2, and a shape change such as a strain generated in the outer ring 801 is measured by a strain sensor 22. Then, the gasket management system 20 grasps the load F applied to the gasket 80 and the tightened state of the gasket by utilizing the amount of change in the shape change. As for the management process of the tightened state of the gasket 80, the same process as that of the above embodiment may be performed.
<第3の実施の形態の効果>
 第3の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the third embodiment>
According to the third embodiment, any of the following effects can be obtained.
 (1) 第1の実施の形態および第2の実施の形態と同様の効果が得られる。 (1) The same effects as those of the first embodiment and the second embodiment can be obtained.
 (2) うず巻き形のガスケット80を用いる場合でも、フランジ6-1、6-2との非拘束部8-2の形状変化を計測することで締付け状態を把握することができる。
(2) Even when the spiral gasket 80 is used, the tightened state can be grasped by measuring the shape change of the unconstrained portion 8-2 with the flanges 6-1 and 6-2.
 <実施例1>
 図6のAは、実施例1に係るガスケット8を示している。この実施例1では、拘束部8-1および非拘束部8-2が同一幅またはほぼ同一幅で同心円状に設定されている。拘束部8-1はガスケット8上の同一平面であり、既述のフランジ6-1、6-2のガスケット座16との当接部分として自動的に決定される領域でよく、非拘束部8-2はガスケット座16から外れた領域とすればよい。
<Example 1>
FIG. 6A shows the gasket 8 according to the first embodiment. In the first embodiment, the restrained portion 8-1 and the non-constrained portion 8-2 are set concentrically with the same width or substantially the same width. The restraining portion 8-1 is a coplanar surface on the gasket 8, and may be a region automatically determined as a contact portion between the flanges 6-1 and 6-2 described above and the gasket seat 16, and the non-constraining portion 8 may be formed. -2 may be a region separated from the gasket seat 16.
 図6のBは、複数の形状観測部14-1、14-2、14-3、14-4を配置したガスケット8を示している。各形状観測部14-1、14-2、14-3、14-4は非拘束部8-2に中心角度90度の角度間隔で配置されている。θは形状観測部14-1、14-2、14-3、14-4が設定される角度範囲を示している。各形状観測部14-1、14-2、14-3、14-4の配置位置は、ボルト10の配置位置に重ならない位置に設定してよいが、これに限定されない。 B in FIG. 6 shows a gasket 8 in which a plurality of shape observation units 14-1, 14-2, 14-3, and 14-4 are arranged. The shape observation units 14-1, 14-2, 14-3, and 14-4 are arranged in the unconstrained unit 8-2 at an angular interval of 90 degrees at the center angle. θ indicates the angle range in which the shape observation units 14-1, 14-2, 14-3, and 14-4 are set. The arrangement positions of the shape observation units 14-1, 14-2, 14-3, and 14-4 may be set to positions that do not overlap with the arrangement positions of the bolts 10, but the arrangement position is not limited to this.
 図7は、横軸に荷重〔kN〕、縦軸にひずみ(形状変化)を取り、角度=0(deg)、45(deg)、90(deg)をパラメータとし、実施例1に係るガスケット8に現れる形状変化をひずみセンサ22で計測した計測値で示している。 In FIG. 7, the gasket 8 according to the first embodiment has a load [kN] on the horizontal axis, a strain (shape change) on the vertical axis, and angles = 0 (deg), 45 (deg), 90 (deg) as parameters. The shape change appearing in is shown by the measured value measured by the strain sensor 22.
 m1は0(deg)方向(=ガスケット8の円周方向)のガスケット8の変形、m2は45(deg)方向のガスケット8の変形、m3は90(deg)方向(=ガスケット8の厚さ方向)の変形を示している。 m1 is the deformation of the gasket 8 in the 0 (deg) direction (= circumferential direction of the gasket 8), m2 is the deformation of the gasket 8 in the 45 (deg) direction, and m3 is the deformation of the gasket 8 in the 90 (deg) direction (= thickness direction of the gasket 8). ) Is shown.
 このようにフランジ6-1、6-2から拘束部8-1が荷重Fを受けると、非拘束部8-2には荷重Fに応じた形状変化を生じる。
 この形状変化には変曲点が生じており、ガスケット8に加える荷重Fと、形状変化の変曲点の関係から最適な荷重Fを特定し、初期締結完了の判断情報に利用できる。
When the restraining portion 8-1 receives the load F from the flanges 6-1 and 6-2 in this way, the shape of the non-constraining portion 8-2 changes according to the load F.
An inflection occurs in this shape change, and the optimum load F can be specified from the relationship between the load F applied to the gasket 8 and the inflection point of the shape change, and can be used as information for determining the completion of initial fastening.
 <実施例2>
 図8のAは、実施例2に係るガスケット8を示している。この実施例2では、実施例1と同様に、拘束部8-1および非拘束部8-2が同一幅またはほぼ同一幅で同心円状に設定されている。
<Example 2>
A in FIG. 8 shows the gasket 8 according to the second embodiment. In the second embodiment, similarly to the first embodiment, the restrained portion 8-1 and the non-constrained portion 8-2 are set to have the same width or substantially the same width and are concentrically set.
 非拘束部8-2には各形状観測部14-1、14-2、14-3、14-4にアウターカット54が形成されている。このアウターカット54は、ガスケット8の非拘束部8-2の最外縁部に形成され、一部に非閉鎖部を持つ切欠き形状である。 Outer cut 54 is formed in each shape observation unit 14-1, 14-2, 14-3, 14-4 in the non-restraint portion 8-2. The outer cut 54 is formed in the outermost edge portion of the non-restraint portion 8-2 of the gasket 8, and has a notch shape having a non-closed portion in a part thereof.
 実施例2では、ガスケット8に複数のアウターカット54が形成されており、各アウターカット54は非拘束部8-2に中心角度90度の角度間隔で配置されている。 In the second embodiment, a plurality of outer cuts 54 are formed on the gasket 8, and each outer cut 54 is arranged on the non-restraint portion 8-2 at an angular interval of 90 degrees at a center angle.
 このアウターカット54はたとえば、図8のBに示すように、ガスケット8の周囲面から中心方向に向かって一定の長さL1だけ切り込まれた一定幅W1の溝であり、ガスケット8の上下面に貫通している。つまり、アウターカット54は、ガスケット8の内側に垂直面部56、一定幅W1で対向する平行面部58、60を有する。 As shown in B of FIG. 8, the outer cut 54 is, for example, a groove having a constant width W1 cut by a constant length L1 from the peripheral surface of the gasket 8 toward the center, and is an upper and lower surface of the gasket 8. It penetrates into. That is, the outer cut 54 has a vertical surface portion 56 and parallel surface portions 58 and 60 facing each other with a constant width W1 inside the gasket 8.
 このようなアウターカット54を備えるガスケット8の拘束部8-1にフランジ6-1、6-2から荷重Fが加わると、図8のCに示すように、荷重Fに応じて、垂直面部56は矢印aで示すように広がるとともに周縁方向に変位する。また、各平行面部58、60は、矢印b、cで示すように周縁方向に拡開する。このとき、ガスケット8の縁面は矢印dで示すように、外側に伸出する。 When a load F is applied from the flanges 6-1 and 6-2 to the restraint portion 8-1 of the gasket 8 provided with such an outer cut 54, as shown in FIG. 8C, the vertical surface portion 56 is applied according to the load F. Spreads as shown by the arrow a and is displaced toward the peripheral edge. Further, the parallel surface portions 58 and 60 are expanded in the peripheral direction as shown by arrows b and c. At this time, the edge surface of the gasket 8 extends outward as shown by the arrow d.
 このような形状変化は、ひずみセンサ22で容易に検出することができる。なお、アウターカット54の空間部分に金属や樹脂などのセンサ部材を設置し、このセンサ部材からアウターカット54の形状変化を取り出してもよい。 Such a shape change can be easily detected by the strain sensor 22. A sensor member such as metal or resin may be installed in the space portion of the outer cut 54, and the shape change of the outer cut 54 may be extracted from the sensor member.
 図9は、横軸に荷重〔kN〕、縦軸にアウターカット54の開き幅(形状変化)〔mm〕を取り、実施例2に係るガスケット8に現れる形状変化と荷重の関係を示している。同様に、表1はアウターカット54の開き幅W2と荷重Fの関係を示している。 FIG. 9 shows the relationship between the shape change and the load appearing in the gasket 8 according to the second embodiment, with the load [kN] on the horizontal axis and the opening width (shape change) [mm] of the outer cut 54 on the vertical axis. .. Similarly, Table 1 shows the relationship between the opening width W2 of the outer cut 54 and the load F.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 フランジ6-1、6-2から拘束部8-1が荷重Fを受け、拘束部8-1の荷重Fが増加すると、その荷重Fに対する形状変化を表すアウターカット54の開き幅W2が増大する。この形状変化には変曲点が生じている。したがって、実施例2を用いる場合には形状観測部14-1、14-2、14-3、14-4に現れる形状変化の変曲点をターゲットにすれば、形状変化と荷重Fとの関係を特定することができる。 When the restraint portion 8-1 receives the load F from the flanges 6-1 and 6-2 and the load F of the restraint portion 8-1 increases, the opening width W2 of the outer cut 54 indicating the shape change with respect to the load F increases. .. An inflection occurs in this shape change. Therefore, when the second embodiment is used, if the inflection point of the shape change appearing in the shape observation units 14-1, 14-2, 14-3, 14-4 is targeted, the relationship between the shape change and the load F is used. Can be identified.
 <実施例3>
 図10のAは、実施例3に係るガスケット8を示している。この実施例3では、実施例1、2と同様に、拘束部8-1および非拘束部8-2が同一幅またはほぼ同一幅で同心円状に設定されている。
<Example 3>
A in FIG. 10 shows the gasket 8 according to the third embodiment. In the third embodiment, similarly to the first and second embodiments, the restrained portion 8-1 and the non-constrained portion 8-2 are set concentrically with the same width or substantially the same width.
 非拘束部8-2には各形状観測部14-1、14-2、14-3、14-4にインナーカット62が形成されている。このインナーカット62は、ガスケット8の非拘束部8-2内に形成された貫通口部である。 Inner cuts 62 are formed in the shape observation units 14-1, 14-2, 14-3, and 14-4 in the non-restraint portion 8-2. The inner cut 62 is a through-hole portion formed in the unrestrained portion 8-2 of the gasket 8.
 各インナーカット62は非拘束部8-2に中心角度90度の角度間隔で配置されているが、これに限定されない。 Each inner cut 62 is arranged in the non-restraint portion 8-2 at an angular interval of 90 degrees at the center angle, but is not limited to this.
 このインナーカット62は図10のBに示すように、ガスケット8の周縁部と同心円状で一定幅Wの円弧状の溝部であり、ガスケット8の上下面に貫通している。つまり、インナーカット62は、ガスケット8の内側に垂直面部64、66、一定の長さL2および幅W3で対向する同心円状の円弧部68、70を有する。 As shown in B of FIG. 10, the inner cut 62 is an arcuate groove portion concentric with the peripheral edge portion of the gasket 8 and having a constant width W, and penetrates the upper and lower surfaces of the gasket 8. That is, the inner cut 62 has vertical surface portions 64, 66, a constant length L2, and concentric arc portions 68, 70 facing each other with a width W3 inside the gasket 8.
 このようなインナーカット62を備えるガスケット8の拘束部8-1にフランジ6-1、6-2から荷重Fが加わると、図10のCに示すように、荷重Fに応じて、矢印e、fで示すように、各円弧部68、70の距離が縮まり、ガスケット8の縁面は矢印gで示すように、外側に伸出する。このような形状変化は、ひずみセンサ22で容易に検出することができる。 When a load F is applied from the flanges 6-1 and 6-2 to the restraint portion 8-1 of the gasket 8 provided with such an inner cut 62, as shown in FIG. 10C, the arrow e, depending on the load F, As shown by f, the distance between the arc portions 68 and 70 is shortened, and the edge surface of the gasket 8 extends outward as shown by the arrow g. Such a shape change can be easily detected by the strain sensor 22.
 なお、インナーカット62の空間部分に金属や樹脂などのセンサ部材を設置し、このセンサ部材からインナーカット62の形状変化を取り出してもよい。 Note that a sensor member such as metal or resin may be installed in the space portion of the inner cut 62, and the shape change of the inner cut 62 may be extracted from this sensor member.
 図11は、横軸に荷重〔kN〕、縦軸にインナーカット62のひずみ(形状変化)を取り、実施例3に係るガスケット8に現れる形状変化と荷重の関係を示している。 FIG. 11 shows the relationship between the shape change and the load appearing on the gasket 8 according to the third embodiment, with the load [kN] on the horizontal axis and the strain (shape change) of the inner cut 62 on the vertical axis.
 フランジ6-1、6-2から拘束部8-1が荷重Fを受け、拘束部8-1に対する荷重Fが増加すると、その荷重Fの変化を表すインナーカット62の形状が変化する。この形状変化には変曲点に含まれる極小点が生じており、この実施例3においても、斯かる極小点をターゲットにして形状変化と荷重Fの関係を特定することができる。この極小点は、既述したように、ガスケット8の非拘束部8-2に現れる形状変化の変化方向が変わる点であり、つまり、インナーカット62が圧縮状態から伸長(引張)状態、または伸長(引張)状態から圧縮状態への移行点である。 When the restraint portion 8-1 receives the load F from the flanges 6-1 and 6-2 and the load F with respect to the restraint portion 8-1 increases, the shape of the inner cut 62 representing the change in the load F changes. This shape change has a minimum point included in the inflection point, and in the third embodiment as well, the relationship between the shape change and the load F can be specified by targeting the minimum point. As described above, this minimum point is a point where the change direction of the shape change appearing in the unconstrained portion 8-2 of the gasket 8 changes, that is, the inner cut 62 is expanded (tensioned) or extended from the compressed state. This is the transition point from the (tensile) state to the compressed state.
 したがって、実施例3によれば、荷重Fと形状変化の関係では、周方向の形状変化によって極小点が顕著に現れるが、極小点=変曲点の場合もある。また、周方向の形状変化によって極小点ではなく、つまり、周方向の形状変化が大きく変化する変曲点が生じる場合もある。 Therefore, according to the third embodiment, in the relationship between the load F and the shape change, the minimum point appears remarkably due to the shape change in the circumferential direction, but the minimum point may be the inflection point. In addition, the change in shape in the circumferential direction may cause an inflection point in which the change in shape in the circumferential direction changes significantly, that is, not a minimum point.
<形状情報の変曲点の検出および締付け基準>
 実施例1、実施例2、実施例3に示すように、特定の荷重Fに対応する形状情報に変曲点を生成させることができる。これにより、フランジ6-1、6-2の締付け時、形状情報の変曲点から特定の荷重Fを推測でき、締付け完了の判断基準とすることができる。
<Detection of inflection points in shape information and tightening criteria>
As shown in Example 1, Example 2, and Example 3, inflection points can be generated in the shape information corresponding to a specific load F. As a result, when the flanges 6-1 and 6-2 are tightened, a specific load F can be estimated from the inflection point of the shape information, and can be used as a criterion for determining the completion of tightening.
<実施例1、2、3の比較> <Comparison of Examples 1, 2 and 3>
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、実施例1(=アウターカット54およびインナーカット62:なし)、実施例2(=アウターカット54)、実施例3(=インナーカット62)について、形状、その形状変化、変曲点を示している。 Table 2 shows the shapes, shape changes, and inflection points of Example 1 (= outer cut 54 and inner cut 62: none), Example 2 (= outer cut 54), and Example 3 (= inner cut 62). Is shown.
 実施例1は、アウターカット54およびインナーカット62を加工していない。
 実施例2は、幅W1=1mm、長さL1=3mmのアウターカット54を形成した。
 実施例3-1は、インナーカット62について、幅W3=1mm、長さL2=30mmに設定した。
 実施例3-2は、幅W3=2mm、長さL2=30mmに設定した。
 実施例3-3は、幅W3=1mm、長さL2=50mmに設定した。
In Example 1, the outer cut 54 and the inner cut 62 are not processed.
In Example 2, an outer cut 54 having a width W1 = 1 mm and a length L1 = 3 mm was formed.
In Example 3-1 the inner cut 62 was set to have a width W3 = 1 mm and a length L2 = 30 mm.
In Example 3-2, the width W3 = 2 mm and the length L2 = 30 mm were set.
In Example 3-3, the width W3 = 1 mm and the length L2 = 50 mm were set.
 実施例1では周方向の形状変化から変曲点荷重=140kNが得られ、極小点荷重は得られていない。
 実施例2では周方向の形状変化から変曲点荷重=125kNが得られ、極小点荷重は得られていない。
 実施例3-1では周方向の形状変化から変曲点荷重=135kNが得られ、極小点荷重=135kNが得られた。
 実施例3-2では周方向の形状変化から変曲点荷重=115kNが得られ、極小点荷重=115kNが得られた。
 実施例3-3では周方向の形状変化から変曲点荷重=120kNが得られ、極小点荷重=120kNが得られた。
In Example 1, the inflection point load = 140 kN was obtained from the shape change in the circumferential direction, and the minimum point load was not obtained.
In Example 2, the inflection point load = 125 kN was obtained from the shape change in the circumferential direction, and the minimum point load was not obtained.
In Example 3-1, the inflection point load = 135 kN was obtained from the shape change in the circumferential direction, and the minimum point load = 135 kN was obtained.
In Example 3-2, the inflection point load = 115 kN was obtained from the shape change in the circumferential direction, and the minimum point load = 115 kN was obtained.
In Example 3-3, the inflection point load = 120 kN was obtained from the shape change in the circumferential direction, and the minimum point load = 120 kN was obtained.
<実施例1、2、3の効果>
 このような実施例1、2、3から明らかなように、アウターカット54では側面からカット形状の開き幅W2を測定することで、適正な荷重Fを推定することができる。アウターカット54を形状検出に用いる場合には、予めガスケット8に加える荷重Fごとにアウターカット54の開き幅W2を計測し、その開き幅W2と実測値を比較して荷重Fを推定することができる。この推定は、荷重Fごとにアウターカット54の開き幅W2をデータベース化し、形状変化の実測値との対比で荷重Fを容易にしかも正確に算定することができる。
<Effects of Examples 1, 2 and 3>
As is clear from Examples 1, 2 and 3, in the outer cut 54, an appropriate load F can be estimated by measuring the opening width W2 of the cut shape from the side surface. When the outer cut 54 is used for shape detection, the opening width W2 of the outer cut 54 is measured in advance for each load F applied to the gasket 8, and the load F is estimated by comparing the opening width W2 with the measured value. can. In this estimation, the opening width W2 of the outer cut 54 is stored in a database for each load F, and the load F can be easily and accurately calculated by comparing with the measured value of the shape change.
 インナーカット62では、フランジ6-1、6-2に荷重Fを受け、貫通孔状のインナーカット62の内壁面が閉じること(接触し)で顕著な変化が得られる。 In the inner cut 62, a load F is applied to the flanges 6-1 and 6-2, and the inner wall surface of the through-hole-shaped inner cut 62 is closed (contacted), so that a remarkable change can be obtained.
 このような形状変化の監視や計測ではトルク管理やボルト軸力の測定と異なり、非拘束部8-2の形状変化(実施例1)、アウターカット54の形状変化(実施例2)、インナーカット62の形状変化(実施例3)を計測し、ガスケット8から荷重Fを表す変化を取得できる。このため、ボルト10やフランジ6-1、6-2の影響を受けることなく、フランジ6-1、6-2に加えられる荷重Fをガスケット8の形状変化から推定できる。 In monitoring and measuring such shape changes, unlike torque management and bolt axial force measurement, the shape change of the non-restraint portion 8-2 (Example 1), the shape change of the outer cut 54 (Example 2), and the inner cut The shape change (Example 3) of 62 can be measured, and the change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 8 without being affected by the bolt 10 and the flanges 6-1 and 6-2.
 アウターカット54やインナーカット62の加工形状について、ガスケット8も様々な口径や厚さに対応できることが確認された。 It was confirmed that the gasket 8 can also handle various diameters and thicknesses regarding the processed shapes of the outer cut 54 and the inner cut 62.
 <実施例4>
 図12は、実施例4に係るガスケット80の構成例を示している。この実施例4では、たとえばうず巻き形のガスケット80のうち少なくとも外輪801が非拘束部8-2を構成している。この実施例4では、ガスケット80の外輪801の外縁側や内縁側であって円周方向に伸縮する形状変化Qa、Qbや、ガスケット80の径方向に伸縮する形状変化Rを計測対象としている。
<Example 4>
FIG. 12 shows a configuration example of the gasket 80 according to the fourth embodiment. In the fourth embodiment, for example, at least the outer ring 801 of the spiral gasket 80 constitutes the unconstrained portion 8-2. In the fourth embodiment, the shape changes Qa and Qb on the outer edge side and the inner edge side of the outer ring 801 of the gasket 80 that expand and contract in the circumferential direction and the shape change R that expands and contracts in the radial direction of the gasket 80 are measured.
 <周方向の形状変化Qa、Qbの計測>
 図13のAは、横軸に荷重〔kN〕、縦軸に周方向のひずみ(形状変化)をとり、外輪801の外縁に現れる形状変化Qaと内縁に現れる形状変化Qbをひずみセンサ22で計測した計測値を示している。
<Measurement of shape change Qa and Qb in the circumferential direction>
In FIG. 13, A has a load [kN] on the horizontal axis and a strain (shape change) in the circumferential direction on the vertical axis, and the shape change Qa appearing on the outer edge of the outer ring 801 and the shape change Qb appearing on the inner edge are measured by the strain sensor 22. The measured value is shown.
 外輪801には、内縁側のひずみが外縁側のひずみよりも大きな値となっている。すなわち、外輪801は、内縁側が大きく形状変化することから、荷重Fによるガスケット80、もしくはガスケット本体802の変化の挙動を検知し易い。 The strain on the inner edge side of the outer ring 801 is larger than the strain on the outer edge side. That is, since the shape of the outer ring 801 changes significantly on the inner edge side, it is easy to detect the change behavior of the gasket 80 or the gasket body 802 due to the load F.
 <周方向の形状変化Qbと、径方向の形状変化Rの計測>
 図13のBは、横軸に荷重〔kN〕、縦軸にひずみ(形状変化)をとり、外輪801の内縁に現れる周方向の形状変化Qbと径方向に現れる形状変化Rをひずみセンサ22で計測した計測値を示している。
<Measurement of shape change Qb in the circumferential direction and shape change R in the radial direction>
In FIG. 13, B has a load [kN] on the horizontal axis and a strain (shape change) on the vertical axis, and the strain sensor 22 measures the shape change Qb in the circumferential direction appearing on the inner edge of the outer ring 801 and the shape change R appearing in the radial direction. The measured value is shown.
 この計測結果から、周方向の形状変化Qbでは、ガスケット面圧が増加するに従って計測値が正の方向に増加していることから、引張り方向の力が作用していることが把握できる。また、径方向の形状変化Rでは、ガスケット面圧の増加に従って計測値が負の方向に大きくなっていることから、圧縮状態となっていることが把握できる。 From this measurement result, in the shape change Qb in the circumferential direction, the measured value increases in the positive direction as the gasket surface pressure increases, so it can be understood that a force in the tensile direction is acting. Further, in the shape change R in the radial direction, the measured value increases in the negative direction as the gasket surface pressure increases, so that it can be understood that the compressed state is obtained.
 <実施例5>
 図14のAは、実施例5に係るガスケット80の構成例を示している。この実施例5では、たとえば少なくとも外輪801が非拘束部8-2を構成している。この実施例5では、ガスケット80の外輪801の一部に外周に沿って所定長さのインナーカット82が形成されている。このインナーカット82は、ガスケット8の非拘束部8-2内に形成された貫通口部である。このインナーカット82は、たとえば外輪801の外縁部から所定距離tとして5〔mm〕の位置に形成されている。この実施例5では、たとえばインナーカッ
ト82の形成位置に沿った外縁部分に、形状観測部14を設けている。
<Example 5>
FIG. 14A shows a configuration example of the gasket 80 according to the fifth embodiment. In the fifth embodiment, for example, at least the outer ring 801 constitutes the unconstrained portion 8-2. In the fifth embodiment, an inner cut 82 having a predetermined length is formed on a part of the outer ring 801 of the gasket 80 along the outer circumference. The inner cut 82 is a through-hole portion formed in the unrestrained portion 8-2 of the gasket 8. The inner cut 82 is formed at a position of 5 [mm], for example, as a predetermined distance t from the outer edge portion of the outer ring 801. In the fifth embodiment, for example, the shape observation unit 14 is provided at the outer edge portion along the formation position of the inner cut 82.
 この外輪801は、たとえば図14のBに示すように、フランジ6-1、6-2からの荷重Fがガスケット本体802に付加される前は、所定の幅としてたとえば0.1〔mm〕
でインナーカット82aが開口している。そして、ガスケット本体802を通じて荷重Fが作用すると、外輪801は、たとえば図14のCに示すように、開口部分の一部または全部が変形し、閉塞したインナーカット82bとなる。実施例5では、荷重Fによるガスケット面圧とインナーカット82bの状態のときの外輪801の形状変化Qcを計測する。
As shown in B of FIG. 14, for example, the outer ring 801 has a predetermined width of, for example, 0.1 [mm] before the load F from the flanges 6-1 and 6-2 is applied to the gasket body 802.
The inner cut 82a is open. Then, when the load F acts through the gasket main body 802, the outer ring 801 is formed into an inner cut 82b in which a part or all of the opening portion is deformed and closed, as shown in FIG. 14, for example, C. In the fifth embodiment, the gasket surface pressure due to the load F and the shape change Qc of the outer ring 801 in the state of the inner cut 82b are measured.
 図15は、横軸に荷重〔kN〕、縦軸にひずみ(形状変化)をとり、外輪801のインナーカット82bの形成位置に対応した外縁に現れる周方向の形状変化Qcをひずみセンサ22で計測した計測値を示している。 In FIG. 15, a load [kN] is applied on the horizontal axis and a strain (shape change) is applied on the vertical axis, and the shape change Qc in the circumferential direction appearing on the outer edge corresponding to the formation position of the inner cut 82b of the outer ring 801 is measured by the strain sensor 22. The measured value is shown.
 この計測結果において、ガスケットに係る荷重が増加した場合、たとえば加重し始めてから所定の値まではひずみに大きな変化が無く、その後荷重が所定の値を超えると、ひずみセンサーにおいて負の値が計測されている。これは、たとえば外輪801の外縁部が周方向に圧縮されたことを示す形状変化が生じている。そして周方向のひずみは、たとえば荷重が220kN付近で極小点が現れた後、正方向に値が増加していく。 In this measurement result, when the load on the gasket increases, for example, there is no significant change in strain from the start of loading to a predetermined value, and then when the load exceeds a predetermined value, a negative value is measured by the strain sensor. ing. This causes, for example, a shape change indicating that the outer edge portion of the outer ring 801 is compressed in the circumferential direction. Then, the strain in the circumferential direction increases in the positive direction after a minimum point appears when the load is around 220 kN, for example.
 <実施例4、5の効果>
 実施例4、5によれば、以下のような効果が期待できる。
<Effects of Examples 4 and 5>
According to Examples 4 and 5, the following effects can be expected.
 (1) フランジ6-1、6-2間に挟んだうず巻き形のガスケット80の外輪801の形状変化を計測することで、荷重Fによるガスケット80の面圧を把握できる。 (1) By measuring the shape change of the outer ring 801 of the spirally wound gasket 80 sandwiched between the flanges 6-1 and 6-2, the surface pressure of the gasket 80 due to the load F can be grasped.
 (2) うず巻き形のガスケット80では、巻回状に形成されたガスケット本体802の形状的特徴により、外輪801の計測位置に応じてひずみの状態に相違点があり、ガスケットの状態や荷重の状態を詳細に把握することが可能となる。 (2) In the spiral-wound gasket 80, the state of strain differs depending on the measurement position of the outer ring 801 due to the shape characteristics of the gasket body 802 formed in a spiral shape, and the state of the gasket and the state of load. Can be grasped in detail.
 (3) うず巻き形のガスケット80は、ガスケット本体802と外輪801とが別部材であることから、単一部材で構成されたシートガスケットに比べて、フランジ6-1、6-2からの荷重Fに対し、非拘束部8-2に生じるひずみの形成傾向が異なるが、フランジ6-1、6-2から加えられる荷重Fをガスケット80の形状変化から推定できる。 (3) Since the gasket body 802 and the outer ring 801 are separate members of the spirally wound gasket 80, the load F from the flanges 6-1 and 6-2 is compared with the sheet gasket composed of a single member. On the other hand, although the tendency of strain formation generated in the unconstrained portion 8-2 is different, the load F applied from the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 80.
 (4) うず巻き形のガスケット80に形成したインナーカット82は、フランジ6-1、6-2からの荷重Fにより開口部が閉塞することで、外輪801に生じるひずみに顕著な変化が得られる。 (4) The inner cut 82 formed in the spiral gasket 80 has a remarkable change in the strain generated in the outer ring 801 due to the opening being closed by the load F from the flanges 6-1 and 6-2.
 (5) うず巻き形のガスケット80を用いたフランジ締結部2では、形状変化の監視や計測ではトルク管理やボルト軸力の測定と異なり、外輪801に生じる形状変化Qa、Qb、R(実施例4)や、インナーカット82の形状変化(実施例5)を計測することで、ガスケット8から荷重Fを表す変化を取得できる。このため、ボルト10やフランジ6-1、6-2の影響を受けることなく、フランジ6-1、6-2に加えられる荷重Fをガスケット80の形状変化から推定できる。 (5) In the flange fastening portion 2 using the spirally wound gasket 80, the shape changes Qa, Qb, and R (Example 4) that occur in the outer ring 801 are different from the torque management and the measurement of the bolt axial force in the monitoring and measurement of the shape change. ) And the shape change of the inner cut 82 (Example 5), the change representing the load F can be obtained from the gasket 8. Therefore, the load F applied to the flanges 6-1 and 6-2 can be estimated from the shape change of the gasket 80 without being affected by the bolt 10 and the flanges 6-1 and 6-2.
〔他の実施の形態〕
 (1) アウターカット54について、実施例2では垂直面部56および平行面部58、60を例示しているが、これらは一例である。アウターカット54は、垂直面部56を有しない形状や、平行面部58、60を非平行としたたとえば、V字形状であってもよい。
[Other embodiments]
(1) Regarding the outer cut 54, the vertical surface portion 56 and the parallel surface portions 58 and 60 are exemplified in the second embodiment, but these are examples. The outer cut 54 may have a shape that does not have the vertical surface portion 56, or may have a V-shaped shape in which the parallel surface portions 58 and 60 are non-parallel, for example.
 (2) インナーカット62について、実施例3では同心円状の円弧部68、70を例示しているが、これらは一例である。インナーカット62は、円弧部68、70が一定幅としない形状であってもよいし、円弧状に代えて平行面または非平行面としてもよい。 (2) Regarding the inner cut 62, the concentric arc portions 68 and 70 are illustrated in the third embodiment, but these are examples. The inner cut 62 may have a shape in which the arcuate portions 68 and 70 do not have a constant width, or may be a parallel surface or a non-parallel surface instead of the arcuate shape.
(3) ガスケット8の管理工程のうち形状情報などの提示工程(S4)において、管理サーバ24で、取得した形状情報を多段階微分などの処理により提示情報を生成してもよく、情報提示部26(図3)に変化点を明示する表示部を提示してもよい。 (3) In the process of presenting shape information or the like in the management process of the gasket 8, the management server 24 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used. A display unit that clearly indicates the change point may be presented in 26 (FIG. 3).
 以上説明したように、本開示の最も好ましい実施の形態等について説明した。本開示は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiments of the present disclosure have been described. The present disclosure is not limited to the above description. Various modifications and modifications can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the form for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present disclosure.
 本開示のガスケットの管理の方法、システムおよびプログラムによれば、フランジ間を締結するボルトの軸力やトルク値を計測することなく、フランジから受ける荷重によるガスケットの形状変化を観測し、ボルトやフランジの締付け状態の影響を受けることなく、形状情報からガスケットに対する荷重を算定でき、ガスケット交換などの管理情報に活用できるなど、有益である。
According to the gasket management method, system and program of the present disclosure, it is possible to observe the change in the shape of the gasket due to the load received from the flange without measuring the axial force or torque value of the bolt that fastens between the flanges, and to observe the change in the shape of the gasket due to the load received from the flange. It is useful because the load on the gasket can be calculated from the shape information without being affected by the tightening state of the gasket, and it can be used for management information such as gasket replacement.
 2 フランジ締結部
 4-1、4-2 管路
 6-1、6-2フランジ
 8、80 ガスケット
 8-1 拘束部
 8-2 非拘束部
 10 ボルト
 12 ナット
 14、14-1、14-2、14-3、14-4 形状観測部
 16 ガスケット座
 18 隙間
 20 ガスケット管理システム
 22 ひずみセンサ
 24 管理サーバ
 26 情報提示部
 28 プロセッサ
 30 記憶部
 32 入出力(I/O)部
 34 通信部
 36 ガスケット管理データベース(DB)
 38 ガスケット管理ファイル
 40 ガスケット情報部
 41 形状検出情報部
 42 時間情報部
 44 荷重情報部
 46 ひずみセンサ情報部
 48 検出情報部
 50 履歴情報部
 54 アウターカット
 56 垂直面部
 58、60 平行面部
 62、82 インナーカット
 64、66 垂直面部
 68、70 円弧部
 801 外輪
 802 ガスケット本体
 803 内輪

                                                                                
2 Flange fastening part 4-1, 4-2 Pipeline 6-1, 6-2 Flange 8,80 Gasket 8-1 Restraint part 8-2 Non-restraint part 10 Bolt 12 Nut 14, 14-1, 14-2, 14-3, 14-4 Shape observation unit 16 Gasket seat 18 Gap 20 Gasket management system 22 Strain sensor 24 Management server 26 Information presentation unit 28 Processor 30 Storage unit 32 Input / output (I / O) unit 34 Communication unit 36 Gasket management database (DB)
38 Gasket management file 40 Gasket information section 41 Shape detection information section 42 Time information section 44 Load information section 46 Strain sensor information section 48 Detection information section 50 History information section 54 Outer cut 56 Vertical surface section 58, 60 Parallel surface section 62, 82 Inner cut 64, 66 Vertical surface part 68, 70 Arc part 801 Outer ring 802 Gasket body 803 Inner ring

Claims (4)

  1.  フランジ間に拘束されたガスケットに荷重を付与する工程と、
     前記荷重により前記ガスケットに生じる形状変化を観測する工程と、
     を含み、前記形状変化に基づき前記ガスケットの締付けを管理することを特徴とする、管理方法。
    The process of applying a load to the gasket restrained between the flanges,
    The process of observing the shape change caused by the gasket due to the load, and
    A management method comprising and controlling the tightening of the gasket based on the shape change.
  2.  前記形状変化は、前記ガスケットの少なくとも前記フランジ間の間隔方向の変化、または前記間隔方向と交差方向の変化の何れかまたは双方を含むことを特徴とする、請求項1に記載の管理方法。 The management method according to claim 1, wherein the shape change includes at least a change in the spacing direction between the flanges of the gasket, or a change in the spacing direction and the crossing direction, or both.
  3.  フランジ間に拘束されて荷重を受けるガスケットの形状変化を計測する計測手段と、
     前記形状変化に基づき前記フランジ間の締付けを管理する管理情報を生成する管理サーバと、
     前記管理情報を提示する情報提示部と、
     を含むことを特徴とする、管理システム。
    A measuring means that measures the shape change of the gasket that is restrained between the flanges and receives the load,
    A management server that generates management information that manages tightening between flanges based on the shape change, and
    The information presentation unit that presents the management information and
    A management system characterized by including.
  4.  コンピュータにより実現するためのプログラムであって、
     ガスケットがフランジ間に拘束されて該フランジ間より荷重を受け、該荷重により前記ガスケットに生じた形状変化を表す形状情報を取得する機能と、
     前記形状変化に基づき前記ガスケットの締付けを管理する管理情報を生成する機能と、
     を前記コンピュータで実現するためのプログラム。

                                                                                    
    It is a program to be realized by a computer.
    A function in which a gasket is restrained between flanges and a load is received from between the flanges, and shape information indicating a shape change caused in the gasket due to the load is acquired.
    A function to generate management information for managing the tightening of the gasket based on the shape change, and
    A program for realizing the above on the computer.

PCT/JP2021/025406 2020-07-08 2021-07-06 Gasket control method, system, and program WO2022009864A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180048296.2A CN115812132A (en) 2020-07-08 2021-07-06 Pad management method, system, and program
KR1020227043627A KR20230037495A (en) 2020-07-08 2021-07-06 Gasket management methods, systems and programs
JP2022535332A JPWO2022009864A1 (en) 2020-07-08 2021-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117730 2020-07-08
JP2020117730 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009864A1 true WO2022009864A1 (en) 2022-01-13

Family

ID=79553146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025406 WO2022009864A1 (en) 2020-07-08 2021-07-06 Gasket control method, system, and program

Country Status (5)

Country Link
JP (1) JPWO2022009864A1 (en)
KR (1) KR20230037495A (en)
CN (1) CN115812132A (en)
TW (1) TW202219404A (en)
WO (1) WO2022009864A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040647A (en) * 2011-08-15 2013-02-28 Hitachi-Ge Nuclear Energy Ltd Gasket interference measuring method of flange
WO2018008585A1 (en) * 2016-07-07 2018-01-11 日本バルカー工業株式会社 Training device and training method for constructing seal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699935B2 (en) 2006-04-26 2011-06-15 株式会社日立エンジニアリング・アンド・サービス Flange fastening monitoring device
JP2014225219A (en) 2013-11-07 2014-12-04 ニチアス株式会社 Gasket fastening calculation system, method for controlling gasket fastening calculation system, and program
JP2015141345A (en) 2014-01-29 2015-08-03 日本バルカー工業株式会社 Flange fastening training system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040647A (en) * 2011-08-15 2013-02-28 Hitachi-Ge Nuclear Energy Ltd Gasket interference measuring method of flange
WO2018008585A1 (en) * 2016-07-07 2018-01-11 日本バルカー工業株式会社 Training device and training method for constructing seal

Also Published As

Publication number Publication date
JPWO2022009864A1 (en) 2022-01-13
KR20230037495A (en) 2023-03-16
TW202219404A (en) 2022-05-16
CN115812132A (en) 2023-03-17

Similar Documents

Publication Publication Date Title
KR20200033969A (en) Integrated Fatigue Life Assessment Method for Welded Structures
CN102288352B (en) Method and device for determining torque coefficient of bolt
Merklein et al. A method for the layer compression test considering the anisotropic material behavior
JPS5980516A (en) Load indicating flange
CN110530571B (en) Method for calibrating pretightening force of sensor-equipped external thread fastener
KR102198659B1 (en) Fastening practice device, fastening practice method, fastening practice program and fastening practice system
US9500544B2 (en) Process for checking that full threads are engaged in tightening and assembly
JP7354093B2 (en) Seal construction management method, seal construction management device, seal construction management program, seal construction management system
JPWO2009153881A1 (en) Method and device for measuring stress of bolted portion
WO2022009864A1 (en) Gasket control method, system, and program
WO2022009866A1 (en) Gasket and method, system, and program for management of same
US20190310156A1 (en) Systems and methods for calibrating a tool
WO2022009865A1 (en) Gasket, control method and system therefor, and program
US20210191357A1 (en) Method for controlling a level of quality of screwing by a screwdriver, associated device and program implementing the method
EP2924305A1 (en) A shaft clamp assembly and a method of using the same
JP2013040647A (en) Gasket interference measuring method of flange
KR20210038572A (en) Temperature sensor system
JP2023553249A (en) Apparatus and method for determining the amount of force applied in a clamping component
Shuvaev et al. Quality Assurance of Assembling of GTE Threaded Joints by Ultrasonic Treatment upon the Required Strength Criterion
JP5036411B2 (en) Method of tightening male screw parts and torque wrench
JP4767184B2 (en) Soundness evaluation method for boiler pipes and attached pipes
Coppieters et al. Large Strain Flow Curve Identification for sheet metal: Process informed method selection
Leibing et al. Component testing and numerical calculation of a bolted high temperature power plant pipe flange under complex, near-service loads
ROMAN et al. Influence of bolts bending on the strength of flanges joints of pressure vessels
JP2021089239A (en) Torque sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838765

Country of ref document: EP

Kind code of ref document: A1