WO2022009865A1 - Gasket, control method and system therefor, and program - Google Patents

Gasket, control method and system therefor, and program Download PDF

Info

Publication number
WO2022009865A1
WO2022009865A1 PCT/JP2021/025407 JP2021025407W WO2022009865A1 WO 2022009865 A1 WO2022009865 A1 WO 2022009865A1 JP 2021025407 W JP2021025407 W JP 2021025407W WO 2022009865 A1 WO2022009865 A1 WO 2022009865A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
load
shape
information
flanges
Prior art date
Application number
PCT/JP2021/025407
Other languages
French (fr)
Japanese (ja)
Inventor
淑子 赤松
清華 戸田
聡美 高橋
正 寺崎
義太朗 坂田
和也 菊永
正浩 江頭
Original Assignee
株式会社バルカー
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社バルカー
Priority to KR1020227043628A priority Critical patent/KR20230036064A/en
Priority to JP2022535333A priority patent/JPWO2022009865A1/ja
Priority to CN202180048450.6A priority patent/CN115917191A/en
Publication of WO2022009865A1 publication Critical patent/WO2022009865A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to, for example, gaskets used for fastening piping systems and management techniques thereof.
  • Tightening torque and bolt axial force value applied to the flange by bolts are used to tighten the gasket.
  • Tightening torque and bolt axial force value are information on tightening bolts that tighten between flanges.
  • the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and that the tightening force from the bolt can be easily grasped by measuring the bolt strain. be.
  • the tightening force of the bolt acts on the flange, and only indirectly acts on the gasket through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange.
  • the torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and do not represent the surface pressure acting on the gasket.
  • the torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
  • the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
  • Patent Documents 1 and 2 do not disclose or suggest such a problem.
  • the configurations disclosed in Patent Documents 1 and 2 cannot solve such a problem.
  • the purpose of the present disclosure is to directly observe the shape change of the gasket that receives the load between the flanges based on the above-mentioned problems and the above-mentioned findings, and to improve the gasket and its management technique by using the observation result for the management of the tightening of the gasket. There is something in it.
  • an outer cut is provided in the non-restraint portion adjacent to the restraint portion restrained between the flanges, and the outer cut is provided by the load received by the restraint portion.
  • the shape changes.
  • a step of installing a gasket having an outer cut whose shape changes by receiving a load between flanges, and the gasket constrained between the flanges are managed based on the shape.
  • a measuring means for measuring the shape of the outer cut provided on the gasket and management information for managing the tightening between the flanges based on the shape are generated. It includes a management server and an information presentation unit that presents the management information.
  • the shape information of the outer cut provided in the gasket which is restrained between the flanges and receives a load is acquired.
  • the computer realizes a function, a function of generating management information for managing the tightening of the gasket based on the shape information, and a function of presenting the management information.
  • the load received by the gasket from between the flanges causes strain on the gasket, and this strain can be manifested as a change in the shape of the outer cut of the gasket, and can be visualized as a change in the shape of the outer cut and easily recognized.
  • A is a plan view showing a gasket according to the first embodiment
  • B is an enlarged perspective view showing an IB portion of A.
  • It is a figure which shows the flange fastening part which concerns on 1st Embodiment.
  • A is a diagram showing an enlarged outer cut portion
  • B is a diagram showing a change in the shape of the outer cut.
  • a and B are diagrams showing a modified example of the outer cut.
  • It is a figure which shows the gasket management system which concerns on 1st Embodiment.
  • It is a figure which shows the gasket management database.
  • A is a diagram showing a comparative example
  • B is a diagram showing the setting of the shape observation unit.
  • It is a figure which shows the relationship between the shape change of a comparative example, and a load.
  • It is a figure which shows the relationship between the shape change of an Example and a load.
  • FIG. 1 shows the gasket 2 according to the first embodiment.
  • the configuration shown in the figure is an example, and the present disclosure is not limited to such a configuration.
  • the X-axis, the Y-axis, and the Z-axis are shown together as an example.
  • This gasket 2 is, for example, a sheet gasket processed with a material containing a polytetrafluoroethylene resin (PTFE: Polytetrafluoroethylene) and a filler.
  • PTFE polytetrafluoroethylene resin
  • a resin material or rubber material other than PTFE may be used for the gasket 2.
  • the gasket 2 has a restraining portion 2-1 on the inner diameter side and a non-constraining portion 2-2 on the outer diameter side.
  • the restraint portion 2-1 is a region that is in contact with the flanges 16-1 and 16-2 (FIGS. 2 and 3) and receives a load F from between the flanges 16-1 and 16-2.
  • the unconstrained portion 2-2 is a region that does not contact between the flanges 16-1 and 16-2.
  • Outer cuts 4-1, 4-2, 4-3, 4-4 (hereinafter, simply referred to as outer cut 4 when a specific position is not specified) are formed in the non-restraint portion 2-2. There is.
  • Each outer cut 4 is a notch portion in which the outermost edge portion of the gasket 2 is partially cut out and released, and is a means for facilitating the detection of a change in the shape of the gasket 2. Therefore, each outer cut 4 constitutes a shape observation unit for observing a shape change of the gasket 2 when a load F is applied to the restraint portion 2-1.
  • ⁇ Outer cut 4> B in FIG. 1 is an enlarged view of the outer cut 4 in the IB portion of A in FIG.
  • a vertical groove is cut by a certain length L from the peripheral surface of the outermost edge portion of the gasket 2 toward the center and released by a width W, and this vertical groove is formed on the upper and lower surfaces of the gasket 2. It penetrates. Therefore, in this outer cut 4, the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 are provided in the unconstrained portion 2-2 of the gasket 2.
  • the vertical surface portion 6 is exposed toward the peripheral surface of the gasket 2, and the facing surface portions 8-1 and 8-2 having a length L and a height D face each other with a constant width W.
  • the height D is the thickness of the gasket 2 before deformation. That is, the opening width between the facing surface portions 8-1 and 8-2 of the outer cut 4 can be measured.
  • each outer cut 4 may be set at a plurality of locations on the gasket 2. It is preferable that the set position is not biased in order to avoid the influence of the elastic interaction received from the flanges 16-1 and 16-2 and to improve the observation accuracy of the shape change.
  • each outer cut 4 is set at four locations on the X-axis and the Y-axis, and observation of shape change can be observed in a wide range.
  • FIG. 2 shows a notch in the flange fastening portion 12 including the gasket 2.
  • the flange fastening portion 12 is an example, and the present disclosure is not limited to the configuration shown in FIG.
  • the flange fastening portion 12 includes a flange 16-1 on the pipeline 14-1 side, a flange 16-2 on the pipeline 14-2 side (FIG. 3), a gasket 2, a plurality of bolts 18, and a nut 20.
  • the flange 16-1 is integrally formed with the end face of the pipeline 14-1, and similarly, the flange 16-2 is integrally formed with the end face of the pipeline 14-2.
  • the flanges 16-1 and 16-2 have a larger diameter than the pipelines 14-1 and 14-2, and a plurality of bolts 18 and nuts 20 are attached at predetermined angular intervals.
  • a gasket 2 is installed between the flanges 16-1 and 16-2 inside the bolt 18 and the nut 20.
  • the gasket 2 constitutes a sealing member for the flange fastening portion 12. Therefore, by tightening the bolts 18 and nuts 20, the gasket 2 is loaded by the load F applied to the flanges 16-1 and 16-2, and the gaskets 2 are sealed together with the fastening of the pipelines 14-1 and 14-2. ..
  • the restraining portion 2-1 of the gasket 2 is sandwiched between the flanges 16-1 and 16-2, and is in contact with the flanges 16-1 and 16-2 to be restrained.
  • the unconstrained portion 2-2 protrudes around the restraining portion 2-1 and does not contact the flanges 16-1 and 16-2, that is, it is not constrained by the flanges 16-1 and 16-2.
  • the restraint portion 2-1 receives the load F from the flanges 16-1 and 16-2 by tightening the bolt 18 and the nut 20.
  • the non-restraint portion 2-2 constitutes a free end that does not receive the load F.
  • each outer cut 4 of the non-restraint portion 2-2 constitutes a portion for observing the shape change appearing on the gasket 2.
  • FIG. 3 shows the III-III line cut end face of FIG.
  • the restraining portion 2-1 of the gasket 2 is sandwiched and restrained between the gasket seats 22 of the flanges 16-1 and 16-2.
  • the unconstrained portion 2-2 protrudes into the gap 24 between the flanges 16-1 and 16-2.
  • the non-constrained portion 2-2 is integrated with the restraint portion 2-1 and is supported between the flanges 16-1 and 16-2, and is a free end protruding into the gap 24. That is, the unrestrained portion 2-2 is in a cantilever state.
  • Strains and deformations that occur in the restraint portion 2-1 when the load F is received from the flanges 16-1 and 16-2 appear as shape changes in the non-constraint portion 2-2. This shape change can be easily observed by the outer cut 4. That is, the shape change of the gasket 2 that appears in the non-constrained portion 2-2 is distortion or deformation due to being pushed out from between the gasket seats 22, and the restrained portion 2-1 of the gasket 2 is from the flanges 16-1 and 16-2. Represents the load received.
  • the outer cut 4 is formed in order to make the strain generated in the unconstrained portion 2-2 manifest as a remarkable shape change and facilitate its observation.
  • the X-axis is taken in the tangential direction of the gasket 2
  • the Y-axis is taken in the center of the outer cut 4
  • the Z-axis is taken in the direction in which the load F is applied
  • the flange 16-1 is attached to the restraint portion 2-1.
  • This shape change includes a shape change in the circumferential direction of the gasket 2.
  • the unconstrained portion 2-2 is expanded in the radial direction as shown by arrows a and b.
  • ⁇ Y1 the unconstrained portion 2-2 spreads in the radial direction
  • ⁇ Y2 the vertical surface portion 6 of the outer cut 4 indicates the displacement in the radial direction.
  • the width W of the vertical surface portion 6 is expanded to the width W1
  • the width W of the end portions of the facing surface portions 8-1 and 8-2 is expanded to the width W2 (> W1).
  • Such a shape change increases or decreases in proportion to the load F received by the gasket 2 from the flanges 16-1 and 16-2.
  • the shape change in the XY-axis direction is illustrated, but it goes without saying that the shape change in the Z-axis direction and the thickness direction also appears in the shape of the outer cut 4.
  • the strain generated in the restrained portion 2-1 and the non-constrained portion 2-2 by receiving the load F from the flanges 16-1 and 16-2 is increased to the shape change of the outer cut 4 and becomes apparent, and its observation is easy. Can be.
  • outer cut 4 is not limited to the rectangular shape including the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 shown in FIG. 1B.
  • a and B in FIG. 5 show a modification of the outer cut 4.
  • the parts corresponding to B in FIG. 1 are designated by the same reference numerals.
  • the outer cut 4 may have the facing surface portions 8-1 and 8-2 formed on non-parallel surfaces except for the vertical surface portion 6, and the cross section may be formed in a “V” shape. Then, for example, as shown in B of FIG. 5, the vertical surface portion 6 may be formed on a curved surface. Even in such a form, the shape change that occurs in the non-constrained portion 2-2 when the load F is received by the restrained portion 2-1 can be easily observed from the outer cut 4.
  • a sensor member such as metal or resin may be installed in the space portion of the outer cut 4, and the shape change of the outer cut 4 may be extracted from this sensor member.
  • the management process of the gasket 2 is an example of the management method of the present disclosure.
  • This management step includes a generation step S1 of the restraint portion 2-1 and the non-constraint portion 2-2, an addition step S2 of the load F, a shape information acquisition step S3, and a presentation step S4 of the shape information and the like.
  • S1 to S4 attached to each step exemplify the order of each step, and the terms quoted are merely used for convenience.
  • Load F addition step S2 In the gasket 2, the load F is applied to the restraint portion 2-1 restrained by the flanges 16-1 and 16-2 by tightening the flanges 16-1 and 16-2. In response to this load F, the gasket 2 causes strain in the restraining portion 2-1 and causes a shape change in the non-constraining portion 2-2.
  • Shape information acquisition step S3 Regarding the shape change appearing in the unconstrained portion 2-2, the management server 30 (FIG. 6) receives the detection output of the strain sensor 28 and acquires the shape information of the outer cut 4.
  • the management server 30 generates presentation information including shape information and presents it by the information presentation unit 32 (FIG. 6).
  • the shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
  • FIG. 6 shows a gasket management system 26 for executing a management process by information processing.
  • the configuration shown in FIG. 6 is an example, and the present disclosure is not limited to such a configuration.
  • the same parts as those in FIG. 3 are designated by the same reference numerals.
  • This gasket management system 26 includes a strain sensor 28, a management server 30, and an information presentation unit 32.
  • the strain sensor 28 measures the shape change appearing in the outer cut 4 of the gasket 2 and outputs a detection signal indicating this shape change.
  • the strain sensor 28 is an example of a means for detecting a shape change and converting it into an electric signal.
  • a laser displacement meter, a camera, or the like may be used as the means for observing the shape change.
  • the laser displacement meter shines a laser beam on the outer cut 4, detects a change in the shape of the outer cut 4 with the reflected light, and observes the amount of the change.
  • the camera captures the outer cut 4, and the management server 30 detects the strain appearing in the outer cut 4 by the number of pixels, and acquires the shape information according to the strain.
  • the management server 30 is composed of a computer having a communication function.
  • the management server 30 includes a processor 34, a storage unit 36, an input / output (I / O) unit 38, and a communication unit 40.
  • the processor 34 executes an OS (Operating System) and a management program in the storage unit 36, and performs information processing for gasket management.
  • the storage unit 36 includes a storage medium for storing the OS and the management program.
  • the gasket management database (DB) 42 (FIG. 7) is stored in the storage unit 36.
  • the communication unit 40 inputs and presents information in cooperation with a management terminal (not shown).
  • the management terminal is also used for acquiring shape information and writing and reading the gasket management DB 42.
  • the information presentation unit 32 presents management information including load information and determination information related to the shape information under the control of the management server 30.
  • ⁇ Information processing of management server 30> For information processing of the management server 30, a) Processing for capturing the detection output of the strain sensor 28 b) Acquisition of shape information of the outer cut 4 c) Generation of presentation information including shape information d) Processing such as presentation of estimation information by the information presentation unit 32 is included.
  • FIG. 7 shows an example of the gasket management DB 42.
  • the gasket management file 44 is stored in the gasket management DB 42.
  • the gasket management file 44 includes a gasket information unit 46, an outer cut information unit 47, a time information unit 48, a load information unit 50, a strain sensor information unit 52, a detection information unit 54, a determination information unit 56, and a history information unit 58. It is set.
  • the gasket information unit 46 stores specification information for specifying the gasket 2.
  • the outer cut information unit 47 stores outer cut information such as the shapes representing the shapes of the outer cuts 4-1, 4-2, 4-3, and 4-4, and their arrangement positions and sizes.
  • Time information such as the measurement date and time is stored in the time information unit 48.
  • the load information unit 50 stores load information representing the load F applied to the gasket 2 from the flanges 16-1 and 16-2.
  • the determination information unit 56 stores determination information representing the determination result of the measurement information of the outer cut 4 and the determination result such as the load information estimated from the measurement information.
  • History information such as acquisition of shape information is stored in the history information unit 58.
  • the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, and the strain generated in the restraining portion 2-1 is applied to the non-constraining portion 2-2. It can be visualized as a shape change of the outer cut 4. That is, the shape change corresponding to the load F can be easily observed from the outer cut 4.
  • the shape information of the outer cut 4 can be acquired from the outer cut 4 by the detection output of each strain sensor 28, and the load received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated from the shape change.
  • the strain of the gasket 2 can be observed by the shape change of the outer cut 4, and the load received by the gasket 2 is estimated from the shape change without being affected by the tightening torque and the axial force of the bolt 18, and the gasket 2 is used.
  • the tightening state of can be determined.
  • the management method of the gasket 2 according to the second embodiment further includes an estimation step S5 based on inflection point information in the management step of the first embodiment.
  • the shape information including the shape change appearing in the outer cut 4 includes the inflection point (FIGS. 9 and 10) information for a specific load, and the management server 30 starts from the inflection point.
  • the tightened state of the gasket 2, that is, the surface pressure that the gasket 2 receives from the flanges 16-1 and 16-2 can be estimated.
  • the shape information can include inflection points as peculiar information of the load.
  • the load F that is, the surface pressure can be estimated from the shape change of the outer cut 4 received by the gasket 2, and the setting and adjustment of the load on the gasket 2 can be facilitated.
  • FIG. 8A shows the gasket 2 according to the comparative example.
  • the restrained portion 2-1 and the non-constrained portion 2-2 are set to have the same width or substantially the same width and are concentrically formed, and unlike the embodiment, the outer cut 4 is not provided.
  • shape observation units 60-1, 60-2, 60-3, and 60-4 are set at positions corresponding to the outer cut 4 of the embodiment.
  • the shape observation units 60-1, 60-2, 60-3, and 60-4 are arranged in the unconstrained unit 2-2 at an angular interval of 90 degrees at a center angle.
  • Table 1 shows the shape of the outer cut 4 of the gasket 2 and the measurement results thereof according to the embodiment.
  • the outer cut 4 is not formed.
  • m2 is the deformation of the gasket 2 in the 45 (deg) direction
  • This shape change has an inflection point, and the optimum load F can be specified from the relationship between the load F applied to the gasket 2 and the shape change inflection point, and can be used for judgment information on the completion of initial fastening.
  • FIG. 10 shows the relationship between the shape change appearing in the gasket 2 according to the embodiment and the load, with the load [kN] on the horizontal axis and the opening width [mm] of the outer cut 4 on the vertical axis.
  • Table 2 shows the relationship between the load of the outer cut 4 and the opening width W2.
  • the restraint portion 2-1 receives a load F from the flanges 16-1 and 16-2, and when this load increases, the opening width of the outer cut 4 increases according to the load.
  • This shape change has a remarkable inflection that is different from the comparative example. Therefore, according to the gasket 2 according to the embodiment, if the inflection point of the shape change appearing in each outer cut 4 or any of the outer cuts 4 is targeted, the relationship between the shape change and the load can be specified. ..
  • the gasket 2 it is possible to generate an inflection point in the shape information corresponding to a specific load.
  • a specific load can be estimated from the inflection point of the shape information, which can be used as a criterion for determining the completion of tightening.
  • the shape change appearing on the gasket 2 can be observed by the opening width W2 of the outer cut 4. That is, the opening width W2 of the outer cut 4 can be measured in advance for each load of the gasket 2, and the load can be easily estimated by comparing the opening width W2 with the measured value. In this estimation, the opening width W2 of the outer cut 4 is stored in a database for each load, and the load can be easily and accurately estimated by comparing with the measured value of the shape change.
  • the shape change appearing in the outer cut 4 of the non-restraint portion 2-2 can be measured, and the shape information representing the load can be obtained from the gasket 2. .. Therefore, the load can be estimated from the shape change of the gasket 2 due to the load F applied to the flanges 16-1 and 16-2 without being affected by the bolt 18 and the flanges 16-1 and 16-2.
  • the gasket 2 can also handle various diameters and thicknesses.
  • a management system that manages flange fastenings with gaskets between flanges. It is provided with a restraining portion that is restrained between the flanges and receives a load, a non-constraining portion that is not restrained between the flanges, and a notch portion provided in the non-constraining portion.
  • a gasket that receives the load and causes a change in the notch,
  • a measuring instrument that measures changes in the notch in contact with or without contact with the gasket.
  • a management server that acquires measurement information from the measuring instrument and generates management information including the tightening force between the flanges.
  • An information presenting unit that presents the management information in relation to the gasket or the flange fastening portion, and A management system.
  • a recording medium on which a program to be realized by a computer is recorded A function to acquire shape information including changes that occur in the notch in the unrestrained portion of the gasket due to the load being restrained between the flanges and receiving the load from the flanges. A function to generate management information including the tightening force between the flanges based on the shape information, and The function of presenting the management information and A recording medium on which a program for realizing the above-mentioned computer is recorded.
  • the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 are exemplified.
  • This form is an example, and has a shape having no vertical surface portion 6, a V-shaped shape in which the facing surface portions 8-1 and 8-2 are non-parallel, and a notch shape having a polygonal shape or a rectangular shape. May be good.
  • the load F applied to the gasket 2 sandwiched between the flanges 16-1 and 16-2 and the shape change of the gasket 2 are described.
  • the load F applied to the gasket 2 is equivalent to the surface pressure received by the gasket 2 from the flanges 16-1 and 16-2, and there is no qualitative difference between the two. That is, it is possible to estimate the surface pressure of the gasket 2 from the relationship between the load F applied to the gasket 2 and the shape change appearing in the outer cut 4.
  • the management server 30 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used.
  • a display unit that clearly indicates the change point may be presented in 32 (FIG. 6).
  • the method of management thereof, the system and the program the shape change of the outer cut deformed by receiving the load F from the flange can be easily observed, and the load is not affected by the tightening state of the bolt or the flange. And surface pressure can be estimated, and the tightening state of the gasket can be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gasket Seals (AREA)

Abstract

This gasket is provided with outer cuts (4-1, 4-2, 4-3, 4-4) in a non-restrained portion (2-2) disposed adjacent to a restrained portion (2-1) that is restrained between flanges (16-1, 16-2). The outer cuts change shape due to a load exerted on the restrained portion. The shapes of the outer cuts that have undergone a change under the aforementioned load are measured, and clamping of the gasket is controlled on the basis of the measured shapes. Accordingly, it is possible to directly observe a change in the shape of a gasket that is subjected to a load between flanges and to use the observation result for the purpose of controlling the clamping of the gasket so as to improve the gasket and control technology therefor.

Description

ガスケット、その管理の方法、システムおよびプログラムGaskets, their management methods, systems and programs
 本開示はたとえば、配管系統の締結などに用いられるガスケットおよびその管理技術に関する。
The present disclosure relates to, for example, gaskets used for fastening piping systems and management techniques thereof.
 ガスケットの締付けには、ボルトによりフランジに加えられる締付けトルクやボルト軸力値が伝統的に用いられている。締付けトルクやボルト軸力値はフランジ間を締め付けるボルトの締付けに関する情報である。 Traditionally, the tightening torque and bolt axial force value applied to the flange by bolts are used to tighten the gasket. Tightening torque and bolt axial force value are information on tightening bolts that tighten between flanges.
 このガスケットの締付けに関し、締付けトルクを把握するため、ガスケットや内部流体の種類に対応する締付け面圧、複数の締付力、ボルトに関する情報などを用いるシステムが知られている(たとえば、特許文献1)。ボルトの締付けに関し、ボルトに発生するひずみをデータ化し、ボルトの締付け状態を視認化することが知られている(たとえば、特許文献2)。 Regarding the tightening of this gasket, in order to grasp the tightening torque, a system using information on the tightening surface pressure corresponding to the type of gasket and internal fluid, a plurality of tightening forces, bolts, etc. is known (for example, Patent Document 1). ). Regarding the tightening of bolts, it is known that the strain generated in the bolts is converted into data and the tightened state of the bolts is visualized (for example, Patent Document 2).
特開2014-225219号公報Japanese Unexamined Patent Publication No. 2014-225219 特開2015-141345号公報Japanese Unexamined Patent Publication No. 2015-141345
 ところで、ガスケットの締付け管理にボルトの締付けトルクや軸力値が用いられる理由は、ボルトがフランジ間を締付ける手段であること、ボルトひずみを計測すればボルトからの締付け力を容易に把握できることなどがある。 By the way, the reason why the bolt tightening torque and axial force value are used for gasket tightening management is that the bolt is a means of tightening between flanges, and that the tightening force from the bolt can be easily grasped by measuring the bolt strain. be.
 しかしながら、ボルト、フランジおよびガスケットの関係を精査した結果、ボルトの締付け力は、フランジに作用しており、ガスケットにはフランジを媒介として間接的に作用しているにすぎない。つまり、フランジはボルトの締付けによる荷重を受け、この荷重がフランジを介してガスケットに作用しているにすぎない。ボルトに作用させたトルク値や軸力値は、フランジの一部に作用している荷重であり、ガスケットに作用する面圧を表すものではない。 However, as a result of scrutinizing the relationship between the bolt, the flange and the gasket, the tightening force of the bolt acts on the flange, and only indirectly acts on the gasket through the flange. That is, the flange receives a load due to the tightening of the bolt, and this load merely acts on the gasket through the flange. The torque value and the axial force value applied to the bolt are the loads acting on a part of the flange, and do not represent the surface pressure acting on the gasket.
 このため、ガスケットの締付け管理には次のような課題がある。 Therefore, there are the following problems in gasket tightening management.
 a)ボルトから取得したトルク値や軸力値はボルトに関する情報であり、ガスケットが受ける面圧を測定しているとは言えない。 A) The torque value and axial force value obtained from the bolt are information about the bolt, and it cannot be said that the surface pressure received by the gasket is measured.
 b)ガスケットがフランジから受ける面圧から見れば、ボルトのトルク値や軸力値は間接的な情報にすぎず、面圧の目安にすぎない。 B) From the viewpoint of the surface pressure that the gasket receives from the flange, the torque value and axial force value of the bolt are only indirect information and are only a guideline for the surface pressure.
 c)ボルトのトルク値や軸力値はボルトやフランジの締付け状態の影響を受け、この変動傾向を無視できない。 C) The torque value and axial force value of the bolt are affected by the tightening state of the bolt and flange, and this fluctuation tendency cannot be ignored.
 トルクレンチやボルト軸力計で測定したトルク値や軸力値でガスケットの面圧を推定した場合、ボルトやフランジの締付け状態の影響を受けると、ガスケットに付与される面圧(=推定面圧)と、実際にガスケットが受ける面圧(=実面圧)の関係は、
              推定面圧≠実面圧
となる。トルク値や軸力値の測定精度を高めても、推定面圧とガスケットの実面圧が一致しない。ガスケットが受ける面圧を把握することができない。
When the surface pressure of the gasket is estimated from the torque value or axial force value measured with a torque wrench or bolt axial force meter, the surface pressure applied to the gasket (= estimated surface pressure) when affected by the tightening state of the bolt or flange. ) And the surface pressure (= actual surface pressure) actually received by the gasket,
Estimated surface pressure ≠ actual surface pressure. Even if the measurement accuracy of the torque value and the axial force value is improved, the estimated surface pressure and the actual surface pressure of the gasket do not match. It is not possible to grasp the surface pressure that the gasket receives.
 斯かる課題について、発明者は、ガスケットの形状変化がフランジ間から受ける荷重に依存しており、その形状変化を観測することがガスケットの締付け管理上有益であるとの知見を得た。特許文献1、2には斯かる課題の開示や示唆はない。そして、特許文献1、2に開示された構成では斯かる課題を解決することができない。 Regarding such a problem, the inventor has found that the shape change of the gasket depends on the load received from between the flanges, and it is useful to observe the shape change in the tightening management of the gasket. Patent Documents 1 and 2 do not disclose or suggest such a problem. The configurations disclosed in Patent Documents 1 and 2 cannot solve such a problem.
 そこで、本開示の目的は上記課題および上記知見に基づき、フランジ間で荷重を受けるガスケットの形状変化を直接観測し、ガスケットの締付けの管理にその観測結果を用いてガスケットおよびその管理技術を向上させることにある。 Therefore, the purpose of the present disclosure is to directly observe the shape change of the gasket that receives the load between the flanges based on the above-mentioned problems and the above-mentioned findings, and to improve the gasket and its management technique by using the observation result for the management of the tightening of the gasket. There is something in it.
 上記目的を達成するため、本開示のガスケットの一側面によれば、フランジ間に拘束される拘束部に隣接する非拘束部にアウターカットを備え、前記拘束部で受けた荷重により前記アウターカットの形状が変化する。 In order to achieve the above object, according to one aspect of the gasket of the present disclosure, an outer cut is provided in the non-restraint portion adjacent to the restraint portion restrained between the flanges, and the outer cut is provided by the load received by the restraint portion. The shape changes.
 上記目的を達成するため、本開示の管理方法の一側面によれば、荷重を受けて形状が変化するアウターカットを備えるガスケットをフランジ間に設置する工程と、前記フランジ間に拘束された前記ガスケットに荷重を付加する工程と、前記荷重を受けて変化した前記アウターカットの形状を計測する工程と、前記形状に基づき前記ガスケットの締付けを管理する。 In order to achieve the above object, according to one aspect of the management method of the present disclosure, a step of installing a gasket having an outer cut whose shape changes by receiving a load between flanges, and the gasket constrained between the flanges. The step of applying a load to the gasket, the step of measuring the shape of the outer cut changed by receiving the load, and the tightening of the gasket are managed based on the shape.
 上記目的を達成するため、本開示の管理システムの一側面によれば、ガスケットに備えるアウターカットの形状を計測する計測手段と、前記形状に基づき前記フランジ間の締付けを管理する管理情報を生成する管理サーバと、前記管理情報を提示する情報提示部とを含む。 In order to achieve the above object, according to one aspect of the management system of the present disclosure, a measuring means for measuring the shape of the outer cut provided on the gasket and management information for managing the tightening between the flanges based on the shape are generated. It includes a management server and an information presentation unit that presents the management information.
 上記目的を達成するため、本開示のプログラムの一側面によれば、コンピュータにより実現するためのプログラムであって、フランジ間に拘束されて荷重を受けるガスケットに備えたアウターカットの形状情報を取得する機能と、前記形状情報に基づき前記ガスケットの締付けを管理する管理情報を生成する機能と前記管理情報を提示する機能とを前記コンピュータで実現する。 In order to achieve the above object, according to one aspect of the program of the present disclosure, which is a program to be realized by a computer, the shape information of the outer cut provided in the gasket which is restrained between the flanges and receives a load is acquired. The computer realizes a function, a function of generating management information for managing the tightening of the gasket based on the shape information, and a function of presenting the management information.
 本発明によれば、次の何れかの効果が得られる。 According to the present invention, any of the following effects can be obtained.
 (1) フランジ間からガスケットが受ける荷重でガスケットにひずみを生じさせ、このひずみをガスケットのアウターカットの形状変化を顕在化させることができ、アウターカットの形状変化として可視化でき、容易に認識できる。 (1) The load received by the gasket from between the flanges causes strain on the gasket, and this strain can be manifested as a change in the shape of the outer cut of the gasket, and can be visualized as a change in the shape of the outer cut and easily recognized.
 (2) アウターカットの形状変化を観測すれば、ボルトの締付け状態に影響を受けることなく、ガスケットに加えられる荷重を容易に把握でき、ガスケットの締付け管理を適正に行うことができる。 (2) By observing changes in the shape of the outer cut, the load applied to the gasket can be easily grasped without being affected by the tightening state of the bolt, and the tightening management of the gasket can be performed properly.
 (3) アウターカットの形状変化からガスケットに加えられる荷重を推定すれば、この荷重がフランジから受けるガスケットの実面圧と同等であり、締結管理やガスケットの寿命予測など、ガスケットの管理精度を高めることができる。 (3) If the load applied to the gasket is estimated from the change in the shape of the outer cut, this load is equivalent to the actual surface pressure of the gasket received from the flange, improving the management accuracy of the gasket such as fastening management and gasket life prediction. be able to.
 (4) アウターカットの形状変化や、この形状変化から推定される荷重は、ボルトのトルク値や軸力値と異なり、ガスケットの締付け状態を直接反映しているから、斯かる形状変化を観測し、荷重を推定すれば、従事者の技量によらずガスケットの管理精度を高めることができる。 (4) The shape change of the outer cut and the load estimated from this shape change directly reflect the tightening state of the gasket, unlike the torque value and axial force value of the bolt, so observe such shape change. If the load is estimated, the management accuracy of the gasket can be improved regardless of the skill of the worker.
 そして、本開示の技術の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
And other objects, features and advantages of the techniques of the present disclosure will be further clarified by reference to the accompanying drawings and each embodiment.
Aは第1の実施の形態に係るガスケットを示す平面図であり、BはAのIB部分を拡大して示す斜視図である。A is a plan view showing a gasket according to the first embodiment, and B is an enlarged perspective view showing an IB portion of A. 第1の実施の形態に係るフランジ締結部を示す図である。It is a figure which shows the flange fastening part which concerns on 1st Embodiment. 図2のIII -III 線部の切断端面を示す図である。It is a figure which shows the cut end face of the line part III-III of FIG. Aはアウターカット部分を拡大して示す図であり、Bはアウターカットの形状変化を示す図である。A is a diagram showing an enlarged outer cut portion, and B is a diagram showing a change in the shape of the outer cut. AおよびBはアウターカットの変形例を示す図である。A and B are diagrams showing a modified example of the outer cut. 第1の実施の形態に係るガスケット管理システムを示す図である。It is a figure which shows the gasket management system which concerns on 1st Embodiment. ガスケット管理データベースを示す図である。It is a figure which shows the gasket management database. Aは比較例を示す図であり、Bは形状観測部の設定を示す図である。A is a diagram showing a comparative example, and B is a diagram showing the setting of the shape observation unit. 比較例の形状変化と荷重の関係を示す図である。It is a figure which shows the relationship between the shape change of a comparative example, and a load. 実施例の形状変化と荷重の関係を示す図である。It is a figure which shows the relationship between the shape change of an Example and a load.
〔第1の実施の形態〕
 図1のAは、第1の実施の形態に係るガスケット2を示している。図に示す構成は一例であり、斯かる構成に本開示が限定されるものではない。図1では一例としてX軸、Y軸およびZ軸を併記している。
[First Embodiment]
A in FIG. 1 shows the gasket 2 according to the first embodiment. The configuration shown in the figure is an example, and the present disclosure is not limited to such a configuration. In FIG. 1, the X-axis, the Y-axis, and the Z-axis are shown together as an example.
 このガスケット2はたとえば、ポリテトラフルオロエチレン4フッ化エチレン樹脂(PTFE:Polytetrafluoroethylene)と充填材を配合した材料で加工されたシートガスケットである。ガスケット2にはPTFE以外の樹脂材料やゴム材料を用いてよい。 This gasket 2 is, for example, a sheet gasket processed with a material containing a polytetrafluoroethylene resin (PTFE: Polytetrafluoroethylene) and a filler. A resin material or rubber material other than PTFE may be used for the gasket 2.
 このガスケット2には内径側に拘束部2-1、外径側に非拘束部2-2が設定されている。拘束部2-1は、フランジ16-1、16-2(図2、図3)間に接してフランジ16-1、16-2間より荷重Fを受ける領域である。これに対し、非拘束部2-2はフランジ16-1、16-2間に接しない領域である。 The gasket 2 has a restraining portion 2-1 on the inner diameter side and a non-constraining portion 2-2 on the outer diameter side. The restraint portion 2-1 is a region that is in contact with the flanges 16-1 and 16-2 (FIGS. 2 and 3) and receives a load F from between the flanges 16-1 and 16-2. On the other hand, the unconstrained portion 2-2 is a region that does not contact between the flanges 16-1 and 16-2.
 非拘束部2-2にはアウターカット4-1、4-2、4-3、4-4(以下、特定の位置を指定しない場合には、単にアウターカット4と称する。)が形成されている。各アウターカット4はガスケット2の最外縁部を部分的に切欠いて解放させた切欠き部であって、ガスケット2の形状変化の検出を容易化するための手段である。したがって、各アウターカット4は拘束部2-1に荷重Fを受けた際にガスケット2の形状変化を観測するための形状観測部を構成する。 Outer cuts 4-1, 4-2, 4-3, 4-4 (hereinafter, simply referred to as outer cut 4 when a specific position is not specified) are formed in the non-restraint portion 2-2. There is. Each outer cut 4 is a notch portion in which the outermost edge portion of the gasket 2 is partially cut out and released, and is a means for facilitating the detection of a change in the shape of the gasket 2. Therefore, each outer cut 4 constitutes a shape observation unit for observing a shape change of the gasket 2 when a load F is applied to the restraint portion 2-1.
<アウターカット4>
 図1のBは、図1のAのIB部分にあるアウターカット4を拡大して示している。このアウターカット4では、ガスケット2の最外縁部の周面から中心方向に向かって一定の長さLだけ切り込み、幅Wで解放させた垂直溝であり、この垂直溝をガスケット2の上下面に貫通している。したがって、このアウターカット4ではガスケット2の非拘束部2-2内に垂直面部6および対向面部8-1、8-2を有する。垂直面部6がガスケット2の周囲面方向に向かって露出し、長さLおよび高さDの対向面部8-1、8-2が一定の幅Wで対向している。高さDはガスケット2の変形前の厚みである。つまり、アウターカット4の対向面部8-1、8-2間の開き幅を計測可能である。
<Outer cut 4>
B in FIG. 1 is an enlarged view of the outer cut 4 in the IB portion of A in FIG. In this outer cut 4, a vertical groove is cut by a certain length L from the peripheral surface of the outermost edge portion of the gasket 2 toward the center and released by a width W, and this vertical groove is formed on the upper and lower surfaces of the gasket 2. It penetrates. Therefore, in this outer cut 4, the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 are provided in the unconstrained portion 2-2 of the gasket 2. The vertical surface portion 6 is exposed toward the peripheral surface of the gasket 2, and the facing surface portions 8-1 and 8-2 having a length L and a height D face each other with a constant width W. The height D is the thickness of the gasket 2 before deformation. That is, the opening width between the facing surface portions 8-1 and 8-2 of the outer cut 4 can be measured.
 ガスケット2の形状変化を検出するには、各アウターカット4はガスケット2の複数箇所に設定してよい。フランジ16-1、16-2から受ける弾性相互作用の影響を回避し、また形状変化の観測精度を高めることからも、設定位置に偏りがないことが好ましい。この実施の形態では、各アウターカット4は、X軸およびY軸上の4箇所に設定され、形状変化の観測を広範囲で観測可能である。 In order to detect the change in the shape of the gasket 2, each outer cut 4 may be set at a plurality of locations on the gasket 2. It is preferable that the set position is not biased in order to avoid the influence of the elastic interaction received from the flanges 16-1 and 16-2 and to improve the observation accuracy of the shape change. In this embodiment, each outer cut 4 is set at four locations on the X-axis and the Y-axis, and observation of shape change can be observed in a wide range.
<フランジ締結部12>
 図2は、ガスケット2を含むフランジ締結部12を切欠いて示している。このフランジ締結部12は一例であり、図1に示す構成に本開示が限定されるものではない。
<Flange fastening part 12>
FIG. 2 shows a notch in the flange fastening portion 12 including the gasket 2. The flange fastening portion 12 is an example, and the present disclosure is not limited to the configuration shown in FIG.
 このフランジ締結部12には、管路14-1側のフランジ16-1、管路14-2側のフランジ16-2(図3)、ガスケット2、複数のボルト18およびナット20が含まれる。 The flange fastening portion 12 includes a flange 16-1 on the pipeline 14-1 side, a flange 16-2 on the pipeline 14-2 side (FIG. 3), a gasket 2, a plurality of bolts 18, and a nut 20.
 フランジ16-1は管路14-1の端面に一体に形成され、同様に、フランジ16-2は管路14-2の端面に一体に形成されている。フランジ16-1、16-2は管路14-1、14-2より大径であり、複数のボルト18およびナット20が所定の角度間隔で取り付けられている。フランジ16-1、16-2間にはボルト18およびナット20より内側にガスケット2が設置されている。ガスケット2はフランジ締結部12の封止部材を構成する。したがって、各ボルト18およびナット20の締付けにより、フランジ16-1、16-2に加えられる荷重Fによりガスケット2が荷重を受け、管路14-1、14-2の締結とともに封止が行われる。 The flange 16-1 is integrally formed with the end face of the pipeline 14-1, and similarly, the flange 16-2 is integrally formed with the end face of the pipeline 14-2. The flanges 16-1 and 16-2 have a larger diameter than the pipelines 14-1 and 14-2, and a plurality of bolts 18 and nuts 20 are attached at predetermined angular intervals. A gasket 2 is installed between the flanges 16-1 and 16-2 inside the bolt 18 and the nut 20. The gasket 2 constitutes a sealing member for the flange fastening portion 12. Therefore, by tightening the bolts 18 and nuts 20, the gasket 2 is loaded by the load F applied to the flanges 16-1 and 16-2, and the gaskets 2 are sealed together with the fastening of the pipelines 14-1 and 14-2. ..
 ガスケット2の拘束部2-1は、各フランジ16-1、16-2に挟まれ、フランジ16-1、16-2に接して拘束される。非拘束部2-2は拘束部2-1の周囲に突出し、フランジ16-1、16-2に接触しない、つまり、フランジ16-1、16-2に拘束されない。拘束部2-1には、ボルト18およびナット20の締付けにより、フランジ16-1、16-2から荷重Fを受ける。これに対し、非拘束部2-2は、荷重Fを受けない自由端を構成している。 The restraining portion 2-1 of the gasket 2 is sandwiched between the flanges 16-1 and 16-2, and is in contact with the flanges 16-1 and 16-2 to be restrained. The unconstrained portion 2-2 protrudes around the restraining portion 2-1 and does not contact the flanges 16-1 and 16-2, that is, it is not constrained by the flanges 16-1 and 16-2. The restraint portion 2-1 receives the load F from the flanges 16-1 and 16-2 by tightening the bolt 18 and the nut 20. On the other hand, the non-restraint portion 2-2 constitutes a free end that does not receive the load F.
 そして、フランジ16-1、16-2から拘束部2-1に荷重Fが作用すると、荷重Fによる拘束部2-1の荷重ひずみが拘束部2-1と一体の非拘束部2-2に波及し、アウターカット4に形状変化を生じさせる。これにより非拘束部2-2の各アウターカット4は、ガスケット2に現れる形状変化を観測するための部位を構成する。 Then, when the load F acts on the restraint portion 2-1 from the flanges 16-1 and 16-2, the load strain of the restraint portion 2-1 due to the load F is applied to the non-constraint portion 2-2 integrated with the restraint portion 2-1. It spreads and causes a shape change in the outer cut 4. As a result, each outer cut 4 of the non-restraint portion 2-2 constitutes a portion for observing the shape change appearing on the gasket 2.
<拘束部2-1、非拘束部2-2およびフランジ16-1、16-2の関係>
 図3は、図2の III-III 線切断端面を示している。ガスケット2の拘束部2-1は、フランジ16-1、16-2の各ガスケット座22の間に挟まれて拘束されている。これに対し、非拘束部2-2はフランジ16-1、16-2間の隙間24に突出している。非拘束部2-2は拘束部2-1と一体で、フランジ16-1、16-2間に支持されるとともに、隙間24に突出して自由端である。つまり、非拘束部2-2は片持ち梁状態にある。
<Relationship between restraint portion 2-1 and non-restraint portion 2-2 and flanges 16-1 and 16-2>
FIG. 3 shows the III-III line cut end face of FIG. The restraining portion 2-1 of the gasket 2 is sandwiched and restrained between the gasket seats 22 of the flanges 16-1 and 16-2. On the other hand, the unconstrained portion 2-2 protrudes into the gap 24 between the flanges 16-1 and 16-2. The non-constrained portion 2-2 is integrated with the restraint portion 2-1 and is supported between the flanges 16-1 and 16-2, and is a free end protruding into the gap 24. That is, the unrestrained portion 2-2 is in a cantilever state.
 フランジ16-1、16-2から荷重Fを受けて拘束部2-1に生じるひずみや変形などが非拘束部2-2に形状変化として現れる。この形状変化はアウターカット4により容易に観測できる。つまり、非拘束部2-2に現れるガスケット2の形状変化は、ガスケット座22間より押し出されることによるひずみないし変形であり、ガスケット2の拘束部2-1がフランジ16-1、16-2より受ける荷重を表す。 Strains and deformations that occur in the restraint portion 2-1 when the load F is received from the flanges 16-1 and 16-2 appear as shape changes in the non-constraint portion 2-2. This shape change can be easily observed by the outer cut 4. That is, the shape change of the gasket 2 that appears in the non-constrained portion 2-2 is distortion or deformation due to being pushed out from between the gasket seats 22, and the restrained portion 2-1 of the gasket 2 is from the flanges 16-1 and 16-2. Represents the load received.
<アウターカット4による形状変化の観測>
 アウターカット4は、非拘束部2-2に生じるひずみを顕著な形状変化として顕在化させ、その観測を容易化するために形成されている。
 図4のAに示すように、ガスケット2の接線方向にX軸、アウターカット4の中心にY軸、荷重Fの加わる方向にZ軸を取ると、拘束部2-1にフランジ16-1、16-2から荷重Fが加わると、フランジ16-1、16-2の間隔方向、この間隔方向と交差方向の形状変化(=ひずみ)を生じる。この形状変化にはガスケット2の周方向の形状変化が含まれる。
<Observation of shape change by outer cut 4>
The outer cut 4 is formed in order to make the strain generated in the unconstrained portion 2-2 manifest as a remarkable shape change and facilitate its observation.
As shown in A of FIG. 4, when the X-axis is taken in the tangential direction of the gasket 2, the Y-axis is taken in the center of the outer cut 4, and the Z-axis is taken in the direction in which the load F is applied, the flange 16-1 is attached to the restraint portion 2-1. When the load F is applied from 16-2, a shape change (= strain) occurs in the spacing direction of the gaskets 16-1 and 16-2, and in the spacing direction and the crossing direction. This shape change includes a shape change in the circumferential direction of the gasket 2.
 この形状変化におけるX軸およびY軸の方向の形状変化について、図4のBを参照する。非拘束部2-2は矢印a、bに示すように、径方向に拡張される。ΔY1は非拘束部2-2が径方向への広がり、ΔY2はアウターカット4の垂直面部6が径方向への変位を示している。このような変化に伴い、垂直面部6の幅Wは幅W1に拡張され、各対向面部8-1、8-2の終端部の幅Wは幅W2(>W1)に拡張される。このような形状変化はフランジ16-1、16-2からガスケット2が受ける荷重Fに比例して増減する。この例では、X-Y軸方向の形状変化を例示しているが、Z軸方向や厚み方向の形状変化もアウターカット4の形状に現れることは言うまでもない。 Refer to B in FIG. 4 for the shape change in the X-axis and Y-axis directions in this shape change. The unconstrained portion 2-2 is expanded in the radial direction as shown by arrows a and b. In ΔY1, the unconstrained portion 2-2 spreads in the radial direction, and in ΔY2, the vertical surface portion 6 of the outer cut 4 indicates the displacement in the radial direction. Along with such a change, the width W of the vertical surface portion 6 is expanded to the width W1, and the width W of the end portions of the facing surface portions 8-1 and 8-2 is expanded to the width W2 (> W1). Such a shape change increases or decreases in proportion to the load F received by the gasket 2 from the flanges 16-1 and 16-2. In this example, the shape change in the XY-axis direction is illustrated, but it goes without saying that the shape change in the Z-axis direction and the thickness direction also appears in the shape of the outer cut 4.
 したがって、フランジ16-1、16-2から荷重Fを受けて拘束部2-1および非拘束部2-2に生じるひずみはアウターカット4の形状変化に増大させて顕在化させ、その観測を容易にすることができる。 Therefore, the strain generated in the restrained portion 2-1 and the non-constrained portion 2-2 by receiving the load F from the flanges 16-1 and 16-2 is increased to the shape change of the outer cut 4 and becomes apparent, and its observation is easy. Can be.
<アウターカット4の変形例>
 アウターカット4は、図1のBに示す垂直面部6および対向面部8-1、8-2からなる長方形状に限定されない。図5のAおよびBはアウターカット4の変形例を示している。図5において、図1のBと対応する部分には同一符号を付してある。
<Modification example of outer cut 4>
The outer cut 4 is not limited to the rectangular shape including the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 shown in FIG. 1B. A and B in FIG. 5 show a modification of the outer cut 4. In FIG. 5, the parts corresponding to B in FIG. 1 are designated by the same reference numerals.
 アウターカット4は図5のAに示すように、垂直面部6を除き、対向面部8-1、8-2を不平行面に形成し、断面を「V」字の形状に形成してもよいし、たとえば、図5のBに示すように、垂直面部6を湾曲面に形成してもよい。このような形態としても、荷重Fを拘束部2-1で受けて非拘束部2-2に生じる形状変化をアウターカット4から容易に観測できる。 As shown in A of FIG. 5, the outer cut 4 may have the facing surface portions 8-1 and 8-2 formed on non-parallel surfaces except for the vertical surface portion 6, and the cross section may be formed in a “V” shape. Then, for example, as shown in B of FIG. 5, the vertical surface portion 6 may be formed on a curved surface. Even in such a form, the shape change that occurs in the non-constrained portion 2-2 when the load F is received by the restrained portion 2-1 can be easily observed from the outer cut 4.
 なお、アウターカット4の空間部分に金属や樹脂などのセンサ部材を設置し、このセンサ部材からアウターカット4の形状変化を取り出してもよい。 Note that a sensor member such as metal or resin may be installed in the space portion of the outer cut 4, and the shape change of the outer cut 4 may be extracted from this sensor member.
<ガスケット2の管理工程>
 ガスケット2の管理工程は本開示の管理方法の一例である。この管理工程には拘束部2-1および非拘束部2-2の生成工程S1、荷重Fの付加工程S2、形状情報の取得工程S3、形状情報などの提示工程S4を含んでいる。各工程に付したS1~S4は、各工程の順序を例示し、引用する用語も便宜上使用したにすぎない。
<Gasket 2 management process>
The management process of the gasket 2 is an example of the management method of the present disclosure. This management step includes a generation step S1 of the restraint portion 2-1 and the non-constraint portion 2-2, an addition step S2 of the load F, a shape information acquisition step S3, and a presentation step S4 of the shape information and the like. S1 to S4 attached to each step exemplify the order of each step, and the terms quoted are merely used for convenience.
 拘束部2-1および非拘束部2-2の生成工程S1: ガスケット2がフランジ16-1、16-2間に設置されると、フランジ16-1、16-2と接するガスケット2の部分が拘束部2-1となり、フランジ16-1、16-2に接しないガスケット2の部分が非拘束部2-2になる。つまり、ガスケット2の拘束部2-1および非拘束部2-2は、フランジ16-1、16-2間に設置されることにより生成される。 Generation step of generating the restrained portion 2-1 and the non-constrained portion 2-2 S1: When the gasket 2 is installed between the flanges 16-1 and 16-2, the portion of the gasket 2 in contact with the flanges 16-1 and 16-2 is formed. The portion of the gasket 2 that becomes the restraint portion 2-1 and does not contact the flanges 16-1 and 16-2 becomes the non-constraint portion 2-2. That is, the restraining portion 2-1 and the non-constraining portion 2-2 of the gasket 2 are generated by being installed between the flanges 16-1 and 16-2.
 荷重Fの付加工程S2: ガスケット2は、フランジ16-1、16-2に拘束される拘束部2-1に対し、フランジ16-1、16-2の締付けにより荷重Fが付加される。この荷重Fを受け、ガスケット2は拘束部2-1にひずみを生じ、非拘束部2-2に形状変化を生じる。 Load F addition step S2: In the gasket 2, the load F is applied to the restraint portion 2-1 restrained by the flanges 16-1 and 16-2 by tightening the flanges 16-1 and 16-2. In response to this load F, the gasket 2 causes strain in the restraining portion 2-1 and causes a shape change in the non-constraining portion 2-2.
 形状情報の取得工程S3: 非拘束部2-2に現れる形状変化について、管理サーバ30(図6)は、ひずみセンサ28の検出出力を受け、アウターカット4の形状情報を取得する。 Shape information acquisition step S3: Regarding the shape change appearing in the unconstrained portion 2-2, the management server 30 (FIG. 6) receives the detection output of the strain sensor 28 and acquires the shape information of the outer cut 4.
 形状情報などの提示工程S4: 管理サーバ30は、形状情報を含む提示情報を生成し、情報提示部32(図6)により提示する。 Presentation process of shape information and the like S4: The management server 30 generates presentation information including shape information and presents it by the information presentation unit 32 (FIG. 6).
 なお、形状情報の取得工程S3で取得した形状情報にN次微分(多段階微分)を施し、形状情報の変化点を際立たせる処理を行ってもよい。この処理結果を提示工程S4で提示情報に反映させれば、形状情報の変化点を明確化できる。 Note that the shape information acquired in the shape information acquisition step S3 may be subjected to Nth derivative (multi-step differentiation) to make the change points of the shape information stand out. If this processing result is reflected in the presentation information in the presentation step S4, the change point of the shape information can be clarified.
<ガスケット管理システム26>
 図6は、管理工程を情報処理により実行するためのガスケット管理システム26を示している。図6に示す構成は一例であり、本開示が斯かる構成に限定されるものではない。図6において、図3と同一部分には同一符号を付してある。
<Gasket management system 26>
FIG. 6 shows a gasket management system 26 for executing a management process by information processing. The configuration shown in FIG. 6 is an example, and the present disclosure is not limited to such a configuration. In FIG. 6, the same parts as those in FIG. 3 are designated by the same reference numerals.
 このガスケット管理システム26はひずみセンサ28、管理サーバ30および情報提示部32を備える。 This gasket management system 26 includes a strain sensor 28, a management server 30, and an information presentation unit 32.
 ひずみセンサ28はガスケット2のアウターカット4に現れる形状変化を計測し、この形状変化を表す検出信号を出力する。このひずみセンサ28は形状変化を検出して電気信号に変換する手段の一例である。形状変化の観測手段にはひずみセンサ28の他、レーザー変位計、カメラなどを用いてもよい。レーザー変位計はレーザー光をアウターカット4に当て、アウターカット4の形状変化を反射光で検出し、その変化量を観測する。カメラはアウターカット4を撮像し、管理サーバ30がアウターカット4に現れるひずみを画素数で検出し、ひずみに応じた形状情報を取得する。 The strain sensor 28 measures the shape change appearing in the outer cut 4 of the gasket 2 and outputs a detection signal indicating this shape change. The strain sensor 28 is an example of a means for detecting a shape change and converting it into an electric signal. In addition to the strain sensor 28, a laser displacement meter, a camera, or the like may be used as the means for observing the shape change. The laser displacement meter shines a laser beam on the outer cut 4, detects a change in the shape of the outer cut 4 with the reflected light, and observes the amount of the change. The camera captures the outer cut 4, and the management server 30 detects the strain appearing in the outer cut 4 by the number of pixels, and acquires the shape information according to the strain.
 管理サーバ30は通信機能を備えるコンピュータで構成される。この管理サーバ30は、プロセッサ34、記憶部36、入出力(I/O)部38、通信部40を備える。プロセッサ34は記憶部36にあるOS(Operating System)や管理プログラムを実行し、ガスケット管理のための情報処理を行う。記憶部36にはOSや管理プログラムを格納する記憶媒体を含む。この記憶部36にはガスケット管理データベース(DB)42(図7)が格納される。通信部40はプロセッサ34の制御により、図示していない管理端末と連係して情報の入力や提示を行う。管理端末は、形状情報の取得、ガスケット管理DB42の書込みや読取りなどにも活用される。 The management server 30 is composed of a computer having a communication function. The management server 30 includes a processor 34, a storage unit 36, an input / output (I / O) unit 38, and a communication unit 40. The processor 34 executes an OS (Operating System) and a management program in the storage unit 36, and performs information processing for gasket management. The storage unit 36 includes a storage medium for storing the OS and the management program. The gasket management database (DB) 42 (FIG. 7) is stored in the storage unit 36. Under the control of the processor 34, the communication unit 40 inputs and presents information in cooperation with a management terminal (not shown). The management terminal is also used for acquiring shape information and writing and reading the gasket management DB 42.
 また、情報提示部32は管理サーバ30の制御により形状情報に関係付けられた荷重情報や判定情報を含む管理情報を提示する。 Further, the information presentation unit 32 presents management information including load information and determination information related to the shape information under the control of the management server 30.
<管理サーバ30の情報処理>
 管理サーバ30の情報処理には、
 a)ひずみセンサ28の検出出力の取込み処理
 b)アウターカット4の形状情報の取得
 c)形状情報を含む提示情報の生成
 d)情報提示部32による推定情報の提示
などの処理が含まれる。
<Information processing of management server 30>
For information processing of the management server 30,
a) Processing for capturing the detection output of the strain sensor 28 b) Acquisition of shape information of the outer cut 4 c) Generation of presentation information including shape information d) Processing such as presentation of estimation information by the information presentation unit 32 is included.
<ガスケット管理DB42>
 図7は、ガスケット管理DB42の一例を示している。このガスケット管理DB42には、ガスケット管理ファイル44が格納されている。
<Gasket management DB42>
FIG. 7 shows an example of the gasket management DB 42. The gasket management file 44 is stored in the gasket management DB 42.
 このガスケット管理ファイル44には、ガスケット情報部46、アウターカット情報部47、時間情報部48、荷重情報部50、ひずみセンサ情報部52、検出情報部54、判定情報部56、履歴情報部58が設定されている。
 ガスケット情報部46には、ガスケット2の識別情報の他、ガスケット2を特定するための仕様情報が格納される。
The gasket management file 44 includes a gasket information unit 46, an outer cut information unit 47, a time information unit 48, a load information unit 50, a strain sensor information unit 52, a detection information unit 54, a determination information unit 56, and a history information unit 58. It is set.
In addition to the identification information of the gasket 2, the gasket information unit 46 stores specification information for specifying the gasket 2.
 アウターカット情報部47には、アウターカット4-1、4-2、4-3、4-4の形状を表す形状、その配置位置や大きさなどのアウターカット情報が格納される。 The outer cut information unit 47 stores outer cut information such as the shapes representing the shapes of the outer cuts 4-1, 4-2, 4-3, and 4-4, and their arrangement positions and sizes.
 時間情報部48には計測日時などの時間情報が格納される。 Time information such as the measurement date and time is stored in the time information unit 48.
 荷重情報部50には、フランジ16-1、16-2からガスケット2に加えられる荷重Fを表す荷重情報が格納される。 The load information unit 50 stores load information representing the load F applied to the gasket 2 from the flanges 16-1 and 16-2.
 ひずみセンサ情報部52には、ひずみセンサ28(=28-1、28-2、28-3、28-4)の種別、識別情報などを含むセンサ情報が格納される。 The strain sensor information unit 52 stores sensor information including the type of strain sensor 28 (= 28-1, 28-2, 28-3, 28-4), identification information, and the like.
 検出情報部54には各アウターカット4(=4-1、4-2、4-3、4-4)から得られた形状変化などの計測情報が格納される。 The detection information unit 54 stores measurement information such as shape changes obtained from each outer cut 4 (= 4-1, 4-2, 4-3, 4-4).
 判定情報部56には、アウターカット4の計測情報の判定結果や、この計測情報から推定した荷重情報などの判定結果を表す判定情報が格納される。 The determination information unit 56 stores determination information representing the determination result of the measurement information of the outer cut 4 and the determination result such as the load information estimated from the measurement information.
 履歴情報部58には、形状情報の取得などの履歴情報が格納される。 History information such as acquisition of shape information is stored in the history information unit 58.
<第1の実施の形態の効果>
 この第1の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the first embodiment>
According to this first embodiment, any of the following effects can be obtained.
 (1) ガスケット2にアウターカット4を備えたので、拘束部2-1にフランジ16-1、16-2から荷重Fを受け、拘束部2-1に生じるひずみを非拘束部2-2のアウターカット4の形状変化として可視化できる。つまり荷重Fに対応する形状変化をアウターカット4から容易に観測することができる。 (1) Since the gasket 2 is provided with the outer cut 4, the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2, and the strain generated in the restraining portion 2-1 is applied to the non-constraining portion 2-2. It can be visualized as a shape change of the outer cut 4. That is, the shape change corresponding to the load F can be easily observed from the outer cut 4.
 (2) アウターカット4から各ひずみセンサ28の検出出力によりアウターカット4の形状情報を取得し、ガスケット2がフランジ16-1、16-2から受ける荷重を形状変化から推定することができる。 (2) The shape information of the outer cut 4 can be acquired from the outer cut 4 by the detection output of each strain sensor 28, and the load received by the gasket 2 from the flanges 16-1 and 16-2 can be estimated from the shape change.
 (3) ガスケット2のひずみをアウターカット4の形状変化で観測でき、ボルト18の締付けトルクや軸力の影響を受けることなく、その形状変化からガスケット2が受けている荷重を推定し、ガスケット2の締付け状態を判定できる。 (3) The strain of the gasket 2 can be observed by the shape change of the outer cut 4, and the load received by the gasket 2 is estimated from the shape change without being affected by the tightening torque and the axial force of the bolt 18, and the gasket 2 is used. The tightening state of can be determined.
 (4) ガスケット2の締付け状態を従事者の技量に影響されることなく、管理精度を高めることができる。 (4) The tightening state of the gasket 2 can be improved in management accuracy without being affected by the skill of the worker.
〔第2の実施の形態〕
 第2の実施の形態に係るガスケット2の管理方法は、第1の実施の形態の管理工程にさらに、変曲点情報による推定工程S5を含んでいる。
[Second Embodiment]
The management method of the gasket 2 according to the second embodiment further includes an estimation step S5 based on inflection point information in the management step of the first embodiment.
 変曲点情報による推定工程S5では、アウターカット4に現れる形状変化を含む形状情報が特定の荷重に対する変曲点(図9、図10)情報を含み、管理サーバ30は、該変曲点からガスケット2の締付け状態、つまりガスケット2がフランジ16-1、16-2から受ける面圧を推定できる。 In the estimation step S5 based on the inflection point information, the shape information including the shape change appearing in the outer cut 4 includes the inflection point (FIGS. 9 and 10) information for a specific load, and the management server 30 starts from the inflection point. The tightened state of the gasket 2, that is, the surface pressure that the gasket 2 receives from the flanges 16-1 and 16-2 can be estimated.
<第2の実施の形態の効果>
 第2の実施の形態によれば、次の何れかの効果が得られる。
<Effect of the second embodiment>
According to the second embodiment, any of the following effects can be obtained.
 (1) 形状情報には荷重の特異情報として変曲点を含ませることができる。 (1) The shape information can include inflection points as peculiar information of the load.
 (2) この変曲点に設定すべき荷重を対応付けることにより、形状情報から変曲点を確認することで、特定の荷重を設定できる。 (2) By associating the load to be set with this inflection point, a specific load can be set by confirming the inflection point from the shape information.
 (3) ガスケット2が受けているアウターカット4の形状変化から荷重F、つまり面圧を推定でき、ガスケット2に対する荷重の設定および調整を容易化できる。
(3) The load F, that is, the surface pressure can be estimated from the shape change of the outer cut 4 received by the gasket 2, and the setting and adjustment of the load on the gasket 2 can be facilitated.
 本開示のガスケット2の実施例について、比較例とともに説明する。
 <比較例>
 図8のAは、比較例に係るガスケット2を示している。この比較例は、拘束部2-1および非拘束部2-2が同一幅またはほぼ同一幅で同心円状に設定され、実施例と異なり、アウターカット4を備えていない。
Examples of the gasket 2 of the present disclosure will be described together with comparative examples.
<Comparison example>
FIG. 8A shows the gasket 2 according to the comparative example. In this comparative example, the restrained portion 2-1 and the non-constrained portion 2-2 are set to have the same width or substantially the same width and are concentrically formed, and unlike the embodiment, the outer cut 4 is not provided.
 この比較例は図8のBに示すように、実施例のアウターカット4に相当する位置に形状観測部60-1、60-2、60-3、60-4が設定されている。各形状観測部60-1、60-2、60-3、60-4は非拘束部2-2に中心角度90度の角度間隔で配置されている。 In this comparative example, as shown in B of FIG. 8, shape observation units 60-1, 60-2, 60-3, and 60-4 are set at positions corresponding to the outer cut 4 of the embodiment. The shape observation units 60-1, 60-2, 60-3, and 60-4 are arranged in the unconstrained unit 2-2 at an angular interval of 90 degrees at a center angle.
<実施例>
 実施例に係るガスケット2のアウターカット4の形状、その計測結果などについて、表1に示す。
<Example>
Table 1 shows the shape of the outer cut 4 of the gasket 2 and the measurement results thereof according to the embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、比較例(=アウターカット無し)、実施例(=アウターカット有り)について、形状、形状変化、荷重を示している。
 比較例は、アウターカット4を形成していない。
 実施例は、幅W1=1mm、長さL1=3mmのアウターカット4を形成した。
Table 1 shows the shape, shape change, and load for the comparative example (= without outer cut) and the embodiment (= with outer cut).
In the comparative example, the outer cut 4 is not formed.
In the embodiment, an outer cut 4 having a width W1 = 1 mm and a length L1 = 3 mm was formed.
 比較例では周方向ひずみから変曲点荷重=140kNが得られ、極小点荷重は得られていない。同様に、実施例では周方向ひずみから変曲点荷重=125kNが得られ、アウターカット4の開き幅に変化が生じることを確認した。 In the comparative example, the inflection point load = 140 kN was obtained from the circumferential strain, and the minimum point load was not obtained. Similarly, in the examples, it was confirmed that the inflection point load = 125 kN was obtained from the circumferential strain, and that the opening width of the outer cut 4 changed.
<形状変化における変曲点情報>
 図9は、横軸に荷重〔kN〕、縦軸にひずみを取り、形状変化と荷重の関係を表している。図9には、たとえば角度=0(deg)、45(deg)、90(deg)をパラメータとし、比較例に係るガスケット2に現れる形状変化をひずみセンサ28による計測値を示している。
 m1は0(deg)方向(=ガスケット2の円周方向)のガスケット2の変形、m2は45(deg)方向のガスケット2の変形、m3は90(deg)方向(=ガスケット2の厚さ方向)の変形を示している。
<Inflection point information in shape change>
In FIG. 9, the horizontal axis is the load [kN] and the vertical axis is the strain, and the relationship between the shape change and the load is shown. FIG. 9 shows the measured values of the shape changes appearing in the gasket 2 according to the comparative example by the strain sensor 28, for example, with angles = 0 (deg), 45 (deg), and 90 (deg) as parameters.
m1 is the deformation of the gasket 2 in the 0 (deg) direction (= the circumferential direction of the gasket 2), m2 is the deformation of the gasket 2 in the 45 (deg) direction, and m3 is the deformation of the gasket 2 in the 90 (deg) direction (= the thickness direction of the gasket 2). ) Is shown.
 このようにフランジ16-1、16-2から拘束部2-1が荷重Fを受けると、非拘束部2-2には荷重Fに応じた形状変化を生じる。実施例においても図9と同様の計測結果が得られた。 When the restraining portion 2-1 receives the load F from the flanges 16-1 and 16-2 in this way, the shape of the non-constraining portion 2-2 changes according to the load F. In the examples, the same measurement results as in FIG. 9 were obtained.
 この形状変化には変曲点が生じており、ガスケット2に加える荷重Fと、形状変化の変曲点の関係から最適な荷重Fを特定し、初期締結完了の判断情報に利用できる。 This shape change has an inflection point, and the optimum load F can be specified from the relationship between the load F applied to the gasket 2 and the shape change inflection point, and can be used for judgment information on the completion of initial fastening.
 図10は、横軸に荷重〔kN〕、縦軸にアウターカット4の開き幅〔mm〕を取り、実施例に係るガスケット2に現れる形状変化と荷重の関係を示している。同様に、表2はアウターカット4の荷重と開き幅W2の関係を示している。 FIG. 10 shows the relationship between the shape change appearing in the gasket 2 according to the embodiment and the load, with the load [kN] on the horizontal axis and the opening width [mm] of the outer cut 4 on the vertical axis. Similarly, Table 2 shows the relationship between the load of the outer cut 4 and the opening width W2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 フランジ16-1、16-2から拘束部2-1が荷重Fを受け、この荷重が増加すると、その荷重に応じてアウターカット4の開き幅が増大する。この形状変化には比較例とは異なる顕著な変曲点が生じている。したがって、実施例に係るガスケット2によれば、各アウターカット4または何れかのアウターカット4に現れる形状変化の変曲点をターゲットにすれば、形状変化と荷重との関係を特定することができる。 The restraint portion 2-1 receives a load F from the flanges 16-1 and 16-2, and when this load increases, the opening width of the outer cut 4 increases according to the load. This shape change has a remarkable inflection that is different from the comparative example. Therefore, according to the gasket 2 according to the embodiment, if the inflection point of the shape change appearing in each outer cut 4 or any of the outer cuts 4 is targeted, the relationship between the shape change and the load can be specified. ..
 したがって、実施例に係るガスケット2では、特定の荷重に対応する形状情報に変曲点を生成させることができる。これにより、フランジ16-1、16-2の締付け時、形状情報の変曲点から特定の荷重を推測でき、締付け完了の判断基準とすることができる。 Therefore, in the gasket 2 according to the embodiment, it is possible to generate an inflection point in the shape information corresponding to a specific load. As a result, when the flanges 16-1 and 16-2 are tightened, a specific load can be estimated from the inflection point of the shape information, which can be used as a criterion for determining the completion of tightening.
<形状情報の変曲点の検出および締付け基準>
 実施例に係るガスケット2では、特定の荷重に対応する形状情報に変曲点を生成させることができる。これにより、フランジ16-1、16-2の締付け時、形状情報の変曲点から特定の荷重を推測でき、締付け完了の判断基準とすることができる。
<Detection of inflection points in shape information and tightening criteria>
In the gasket 2 according to the embodiment, it is possible to generate an inflection point in the shape information corresponding to a specific load. As a result, when the flanges 16-1 and 16-2 are tightened, a specific load can be estimated from the inflection point of the shape information, which can be used as a criterion for determining the completion of tightening.
<実施例の効果>
 ガスケット2に現れる形状変化は、アウターカット4の開き幅W2で観測できる。つまり、予めガスケット2の荷重ごとにアウターカット4の開き幅W2を計測し、その開き幅W2と実測値を比較して荷重を容易に推定できる。この推定は、荷重ごとにアウターカット4の開き幅W2をデータベース化し、形状変化の実測値との対比で荷重を容易にしかも正確な荷重を推定できる。
<Effect of Examples>
The shape change appearing on the gasket 2 can be observed by the opening width W2 of the outer cut 4. That is, the opening width W2 of the outer cut 4 can be measured in advance for each load of the gasket 2, and the load can be easily estimated by comparing the opening width W2 with the measured value. In this estimation, the opening width W2 of the outer cut 4 is stored in a database for each load, and the load can be easily and accurately estimated by comparing with the measured value of the shape change.
 このような形状変化の監視や計測ではトルク管理やボルト軸力の測定と異なり、非拘束部2-2のアウターカット4に現れる形状変化を計測し、ガスケット2から荷重を表す形状情報を取得できる。このため、ボルト18やフランジ16-1、16-2の影響を受けることなく、フランジ16-1、16-2に加えられる荷重Fによるガスケット2の形状変化から荷重を推定できる。 In such shape change monitoring and measurement, unlike torque management and bolt axial force measurement, the shape change appearing in the outer cut 4 of the non-restraint portion 2-2 can be measured, and the shape information representing the load can be obtained from the gasket 2. .. Therefore, the load can be estimated from the shape change of the gasket 2 due to the load F applied to the flanges 16-1 and 16-2 without being affected by the bolt 18 and the flanges 16-1 and 16-2.
 アウターカット4の加工形状について、ガスケット2も様々な口径や厚さに対応できることが確認された。 Regarding the processed shape of the outer cut 4, it was confirmed that the gasket 2 can also handle various diameters and thicknesses.
<付記>
 前記実施の形態および実施例に関し、以下に付記を開示する。
<Additional notes>
The following notes are disclosed with respect to the embodiments and examples.
(付記1)フランジ締結部のフランジ間に設置されるガスケットであって、
 前記フランジ間に拘束されて荷重を受ける拘束部と、
 前記フランジ間に拘束されない非拘束部と、
 前記非拘束部に設けられた切欠き部と、
を備え、前記荷重を受けて前記切欠き部に変化を生じる、ガスケット。
(Appendix 1) A gasket installed between the flanges of the flange fastening part.
A restraint portion that is restrained between the flanges and receives a load,
An unconstrained portion that is not constrained between the flanges,
The notch provided in the non-restraint portion and the
A gasket that receives the load and causes a change in the notch.
(付記2)フランジ間にガスケットを備えるフランジ締結部を管理する管理システムであって、
 前記フランジ間に拘束されて荷重を受ける拘束部と、前記フランジ間に拘束されない非拘束部と、前記非拘束部に設けられた切欠き部を備え、
 前記荷重を受けて前記切欠き部に変化を生じるガスケットと、
 前記切欠き部の変化を前記ガスケットと接触または非接触で計測する計測器と、
 前記計測器から計測情報を取得し、前記フランジ間の締付力を含む管理情報を生成する管理サーバと、
 前記管理情報を前記ガスケットまたは前記フランジ締結部に関係付けて提示する情報提示部と、
 を備える、管理システム。
(Appendix 2) A management system that manages flange fastenings with gaskets between flanges.
It is provided with a restraining portion that is restrained between the flanges and receives a load, a non-constraining portion that is not restrained between the flanges, and a notch portion provided in the non-constraining portion.
A gasket that receives the load and causes a change in the notch,
A measuring instrument that measures changes in the notch in contact with or without contact with the gasket.
A management server that acquires measurement information from the measuring instrument and generates management information including the tightening force between the flanges.
An information presenting unit that presents the management information in relation to the gasket or the flange fastening portion, and
A management system.
(付記3)コンピュータにより実現するためのプログラムを記録した記録媒体であって、
 フランジ間に拘束されて該フランジ間より荷重を受け、該荷重によりガスケットの非拘束部にある切欠き部に生じる変化を含む形状情報を取得する機能と、
 前記形状情報に基づき前記フランジ間の締付力を含む管理情報を生成する機能と、
 前記管理情報を提示する機能と、
 を前記コンピュータで実現するためのプログラムを記録した記録媒体。
(Appendix 3) A recording medium on which a program to be realized by a computer is recorded.
A function to acquire shape information including changes that occur in the notch in the unrestrained portion of the gasket due to the load being restrained between the flanges and receiving the load from the flanges.
A function to generate management information including the tightening force between the flanges based on the shape information, and
The function of presenting the management information and
A recording medium on which a program for realizing the above-mentioned computer is recorded.
〔他の実施の形態〕
 (1) 上記実施の形態および実施例ではフランジ締結部12における初期締結について、フランジ間からの荷重を受け、ガスケット2に生じた形状変化を観測することを例示したが、フランジ締結の初期締結に限定されるものではない。
[Other embodiments]
(1) In the above embodiments and examples, it is exemplified that the initial fastening at the flange fastening portion 12 receives a load from between the flanges and observes the shape change generated in the gasket 2, but the initial fastening of the flange fastening is performed. Not limited.
 (2) アウターカット4について、実施例では垂直面部6および対向面部8-1、8-2を例示している。この形態は一例であり、垂直面部6を有しない形状や、対向面部8-1、8-2を非平行としたたとえば、V字形状の他、多角形状や矩形形状の切欠き形状であってもよい。 (2) Regarding the outer cut 4, in the embodiment, the vertical surface portion 6 and the facing surface portions 8-1 and 8-2 are exemplified. This form is an example, and has a shape having no vertical surface portion 6, a V-shaped shape in which the facing surface portions 8-1 and 8-2 are non-parallel, and a notch shape having a polygonal shape or a rectangular shape. May be good.
 (3) 上記実施の形態、比較例および実施例ではフランジ16-1、16-2に挟まれてガスケット2に加えられる荷重Fとガスケット2の形状変化について述べている。ガスケット2に加えられる荷重Fはフランジ16-1、16-2からガスケット2が受ける面圧と等価であり、両者に質的な差異はない。つまり、ガスケット2に加える荷重Fとアウターカット4に現れる形状変化の関係から形状変化を以てガスケット2の面圧の推定が可能である。 (3) In the above-described embodiment, comparative example and embodiment, the load F applied to the gasket 2 sandwiched between the flanges 16-1 and 16-2 and the shape change of the gasket 2 are described. The load F applied to the gasket 2 is equivalent to the surface pressure received by the gasket 2 from the flanges 16-1 and 16-2, and there is no qualitative difference between the two. That is, it is possible to estimate the surface pressure of the gasket 2 from the relationship between the load F applied to the gasket 2 and the shape change appearing in the outer cut 4.
 (4) ガスケット2の管理工程のうち形状情報などの提示工程(S4)において、管理サーバ30で、取得した形状情報を多段階微分などの処理により提示情報を生成してもよく、情報提示部32(図6)に変化点を明示する表示部を提示してもよい。 (4) In the process of presenting shape information or the like in the management process of the gasket 2, the management server 30 may generate presentation information by processing the acquired shape information by multi-step differentiation or the like, and the information presentation unit may be used. A display unit that clearly indicates the change point may be presented in 32 (FIG. 6).
 以上説明したように、本開示の最も好ましい実施の形態等について説明した。本開示は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiments of the present disclosure have been described. The present disclosure is not limited to the above description. Various modifications and modifications can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the form for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present disclosure.
 本開示のガスケット、その管理の方法、システムおよびプログラムによれば、フランジから荷重Fを受けて変形するアウターカットの形状変化を容易に観測でき、ボルトやフランジの締付け状態の影響を受けることなく荷重や面圧を推定でき、ガスケットの締付け状態を管理することができる。
According to the gasket of the present disclosure, the method of management thereof, the system and the program, the shape change of the outer cut deformed by receiving the load F from the flange can be easily observed, and the load is not affected by the tightening state of the bolt or the flange. And surface pressure can be estimated, and the tightening state of the gasket can be controlled.
 2 ガスケット
 2-1 拘束部
 2-2 非拘束部
 4、4-1、4-2、4-3、4-4 アウターカット
 6 垂直面部
 8-1、8-2 対向面部
 12 フランジ締結部
 14-1、14-2 管路
 16-1、16-2 フランジ
 18 ボルト
 20 ナット
 22 ガスケット座
 24 隙間
 26 ガスケット管理システム
 28、28―1、28―2、28―3、28―4 ひずみセンサ
 30 管理サーバ
 32 情報提示部
 34 プロセッサ
 36 記憶部
 38 入出力(I/O)部
 40 通信部
 42 ガスケット管理データベース(DB)
 44 ガスケット管理ファイル
 46 ガスケット情報部
 47 アウターカット情報部
 48 時間情報部
 50 荷重情報部
 52 ひずみセンサ情報部
 54 検出情報部
 56 判定情報部
 58 履歴情報部
 60-1、60-2、60-3、60-4 形状観測部

                                                                                
2 Gasket 2-1 Restrained part 2-2 Non-restrained part 4,4-1, 4-2, 4-3, 4-4 Outer cut 6 Vertical surface part 8-1, 8-2 Facing surface part 12 Flange fastening part 14- 1, 14-2 Pipeline 16-1, 16-2 Flange 18 Bolt 20 Nut 22 Gasket seat 24 Gap 26 Gasket management system 28, 28-1, 28-2, 28-3, 28-4 Strain sensor 30 Management server 32 Information presentation unit 34 Processor 36 Storage unit 38 Input / output (I / O) unit 40 Communication unit 42 Gasket management database (DB)
44 Gasket management file 46 Gasket information unit 47 Outer cut information unit 48 Time information unit 50 Load information unit 52 Strain sensor information unit 54 Detection information unit 56 Judgment information unit 58 History information unit 60-1, 60-2, 60-3, 60-4 Shape observation unit

Claims (4)

  1.  フランジ間に拘束される拘束部に隣接する非拘束部にアウターカットを備え、前記拘束部で受けた荷重により前記アウターカットの形状が変化することを特徴とする、ガスケット。 A gasket characterized in that an outer cut is provided in a non-restraint portion adjacent to a restraint portion restrained between flanges, and the shape of the outer cut changes depending on the load received by the restraint portion.
  2.  荷重を受けて形状が変化するアウターカットを備えるガスケットをフランジ間に設置する工程と、
     前記フランジ間に拘束された前記ガスケットに荷重を付加する工程と、
     前記荷重を受けて変化した前記アウターカットの形状を計測する工程と、
     前記形状に基づき前記ガスケットの締付けを管理することを特徴とする、管理方法。
    The process of installing a gasket between flanges with an outer cut that changes shape under load, and
    The process of applying a load to the gasket restrained between the flanges, and
    The process of measuring the shape of the outer cut changed by receiving the load, and
    A management method comprising controlling the tightening of the gasket based on the shape.
  3.  ガスケットに備えるアウターカットの形状を計測する計測手段と、
     前記形状に基づきフランジ間の締付けを管理する管理情報を生成する管理サーバと、
     前記管理情報を提示する情報提示部と、
     を含むことを特徴とする、管理システム。
    A measuring means for measuring the shape of the outer cut provided on the gasket,
    A management server that generates management information that manages tightening between flanges based on the shape,
    The information presentation unit that presents the management information and
    A management system characterized by including.
  4.  コンピュータにより実現するためのプログラムであって、
     フランジ間に拘束されて荷重を受けるガスケットに備えたアウターカットの形状情報を取得する機能と、
     前記形状情報に基づき前記ガスケットの締付けを管理する管理情報を生成する機能と、
     前記管理情報を提示する機能と、
     を前記コンピュータで実現するためのプログラム。

                                                                                    
    It is a program to be realized by a computer.
    The function to acquire the shape information of the outer cut provided for the gasket that is restrained between the flanges and receives the load,
    A function to generate management information for managing the tightening of the gasket based on the shape information, and
    The function of presenting the management information and
    A program for realizing the above on the computer.

PCT/JP2021/025407 2020-07-08 2021-07-06 Gasket, control method and system therefor, and program WO2022009865A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227043628A KR20230036064A (en) 2020-07-08 2021-07-06 Gaskets, methods, systems and programs for their management
JP2022535333A JPWO2022009865A1 (en) 2020-07-08 2021-07-06
CN202180048450.6A CN115917191A (en) 2020-07-08 2021-07-06 Pad, and method, system, and program for managing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117731 2020-07-08
JP2020117731 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009865A1 true WO2022009865A1 (en) 2022-01-13

Family

ID=79553132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025407 WO2022009865A1 (en) 2020-07-08 2021-07-06 Gasket, control method and system therefor, and program

Country Status (5)

Country Link
JP (1) JPWO2022009865A1 (en)
KR (1) KR20230036064A (en)
CN (1) CN115917191A (en)
TW (1) TW202212717A (en)
WO (1) WO2022009865A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144154U (en) * 1982-03-24 1983-09-28 ヨツギ株式会社 gasket
JPH0583576U (en) * 1992-04-13 1993-11-12 株式会社川本製作所 Gasket for pipe flange
JPH09329281A (en) * 1996-06-07 1997-12-22 Toshiba Corp Flange fastening monitoring device
JP2007292628A (en) * 2006-04-26 2007-11-08 Hitachi Engineering & Services Co Ltd Flange fastening surveillance device
JP2014225219A (en) * 2013-11-07 2014-12-04 ニチアス株式会社 Gasket fastening calculation system, method for controlling gasket fastening calculation system, and program
JP2015141345A (en) * 2014-01-29 2015-08-03 日本バルカー工業株式会社 Flange fastening training system
WO2018008585A1 (en) * 2016-07-07 2018-01-11 日本バルカー工業株式会社 Training device and training method for constructing seal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144154U (en) * 1982-03-24 1983-09-28 ヨツギ株式会社 gasket
JPH0583576U (en) * 1992-04-13 1993-11-12 株式会社川本製作所 Gasket for pipe flange
JPH09329281A (en) * 1996-06-07 1997-12-22 Toshiba Corp Flange fastening monitoring device
JP2007292628A (en) * 2006-04-26 2007-11-08 Hitachi Engineering & Services Co Ltd Flange fastening surveillance device
JP2014225219A (en) * 2013-11-07 2014-12-04 ニチアス株式会社 Gasket fastening calculation system, method for controlling gasket fastening calculation system, and program
JP2015141345A (en) * 2014-01-29 2015-08-03 日本バルカー工業株式会社 Flange fastening training system
WO2018008585A1 (en) * 2016-07-07 2018-01-11 日本バルカー工業株式会社 Training device and training method for constructing seal

Also Published As

Publication number Publication date
JPWO2022009865A1 (en) 2022-01-13
TW202212717A (en) 2022-04-01
CN115917191A (en) 2023-04-04
KR20230036064A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
KR20200033969A (en) Integrated Fatigue Life Assessment Method for Welded Structures
JPS5980516A (en) Load indicating flange
Merklein et al. A method for the layer compression test considering the anisotropic material behavior
CN110666737B (en) Inspection system
US7159470B2 (en) Systems and methods of measuring residual stress in metallic materials
US9500544B2 (en) Process for checking that full threads are engaged in tightening and assembly
JP2010117334A (en) Method and instrument for measuring bolt axial force
WO2022009865A1 (en) Gasket, control method and system therefor, and program
US20060225484A1 (en) Bolt tension gauging system
WO2022009866A1 (en) Gasket and method, system, and program for management of same
Jäckel et al. Process-oriented flow curve determination at mechanical joining
US20080191476A1 (en) Joint for measuring device and method of manufacturing the joint
WO2022009864A1 (en) Gasket control method, system, and program
US20220023978A1 (en) Method for monitoring the quality of ultrasonic welding
EP0434766B1 (en) Method for monitoring gasket compression during fastener tensioning
Rosenfeld et al. Strain estimation using Vetco deformation tool data
JP2023553249A (en) Apparatus and method for determining the amount of force applied in a clamping component
JP5165498B2 (en) Crystal structure analysis method
Hashimura et al. Influence of configuration error in bolted joints on detection error of clamp force detection method
JP5583489B2 (en) Method and apparatus for evaluating damage of metal materials
Shuvaev et al. Quality Assurance of Assembling of GTE Threaded Joints by Ultrasonic Treatment upon the Required Strength Criterion
dos Santos et al. Loss of Preload in Bolted Joints: Comparative Analysis between Length Measurement by Ultrasonic Method and Checking Torque Method
Hashimura et al. Robustness of detection method for clamp force against configuration error in bolt/nut assemblies
Chen et al. Study on advanced assembly characteristics of locking with radial anti-loosening precision locked-nut while maintaining the design rigidity under dynamic precision fastening system
JP2022150276A (en) Bolt axial force examination method and bolt axial force examination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837137

Country of ref document: EP

Kind code of ref document: A1