WO2022009367A1 - 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置 - Google Patents

光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置 Download PDF

Info

Publication number
WO2022009367A1
WO2022009367A1 PCT/JP2020/026804 JP2020026804W WO2022009367A1 WO 2022009367 A1 WO2022009367 A1 WO 2022009367A1 JP 2020026804 W JP2020026804 W JP 2020026804W WO 2022009367 A1 WO2022009367 A1 WO 2022009367A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
network system
optical network
electric power
unit
Prior art date
Application number
PCT/JP2020/026804
Other languages
English (en)
French (fr)
Inventor
卓威 植松
栄伸 廣田
裕之 飯田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/026804 priority Critical patent/WO2022009367A1/ja
Priority to US18/014,283 priority patent/US20230269005A1/en
Priority to JP2022534582A priority patent/JP7459943B2/ja
Publication of WO2022009367A1 publication Critical patent/WO2022009367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Definitions

  • the present disclosure relates to a bus wiring type optical network system, its operation method, and an optical line termination device included therein.
  • FIG. 1 is a diagram illustrating a bus wiring type optical network system 300.
  • the optical network system 300 is constructed by installing an optical combined demultiplexing circuit 12 and an optical line termination device 11 on the subscriber side for an optical bus core wire 50 extending from an optical line termination device 10 on the telecommunications carrier side according to needs. Will be done. Therefore, the number of optical fiber cores can be reduced as compared with the star type wiring method such as the conventional GE-PON (IEEE802.3ah), so that an optical network can be economically constructed.
  • the star type wiring method such as the conventional GE-PON (IEEE802.3ah)
  • the photosynthetic demultiplexing circuit 12 for example, a method using a side surface polishing method has been studied as a method for manufacturing a photosynthetic demultiplexing circuit that is non-destructive and has low insertion loss with respect to the current optical fiber core wire (optical bus core wire).
  • Non-Patent Document 1 With the above technology, optical fiber demultiplexing can be performed without cutting the current optical fiber core wire, and subscriber in-service can be realized.
  • the optical fiber coupler described in Non-Patent Document 1 is used as an optical fiber demultiplexing circuit 12
  • N is an integer of 2 or more
  • the light Lsb that reaches the port Tf is absorbed by a terminator or the like.
  • an object of the present invention is to provide an optical network system having high power efficiency, an operation method thereof, and an optical line termination device capable of realizing the above-mentioned problems.
  • the optical network system according to the present invention transmits the power of the optical signal transmitted from the optical line terminal device on the subscriber side without being combined with the optical bus core wire. We decided to reuse it to improve power efficiency.
  • the optical network system is a bus wiring type optical network system.
  • An optical network unit that transmits optical signals and An optical demultiplexing circuit that inputs a part of the optical signal to the optical bus core wire, A photoelectric conversion unit that converts other than the optical signal into electric power, To prepare for.
  • the operation method of the optical network system according to the present invention is an operation method of a bus wiring type optical network system. Input a part of the optical signal transmitted by the optical network unit to the optical bus core wire, and convert the other of the optical signal into electric power. It is characterized by.
  • the optical line terminal device is an optical line terminal device connected to an optical bus core wire of a bus wiring type optical network system.
  • An optical transmission / reception unit that receives an optical signal from the optical bus core wire and transmits an optical signal to the optical bus core wire.
  • a photoelectric conversion unit that converts the transmitted optical signal that was not input to the optical bus core wire into electric power, and a photoelectric conversion unit. It is characterized by having.
  • This optical network system can reuse the power of the optical signal transmitted through the optical bus core wire without merging it as electric power, and can improve power efficiency. Therefore, the present invention can provide a highly power-efficient optical network system, an operation method thereof, and an optical line termination device capable of realizing the same.
  • the optical line terminal device of the optical network system according to the present invention may use the electric power for its own driving.
  • optical network system may use the electric power to drive a sensing device or a switching device.
  • optical network system may further include a power storage unit for storing the electric power.
  • the present invention can provide a highly power-efficient optical network system, an operation method thereof, and an optical line termination device capable of realizing the same.
  • FIG. 3 is a diagram illustrating the optical network system 301 of the present embodiment.
  • the optical network system 301 is a bus wiring type optical network system.
  • An optical network unit 11a that transmits an optical signal Ls
  • An optical demultiplexing circuit 12 that inputs a part Lsa of the optical signal Ls to the optical bus core wire 50
  • the photoelectric conversion unit 13 that converts the other Lsb of the optical signal Ls into electric power, and It is characterized by having.
  • the photosynthetic demultiplexing circuit 12 is, for example, the optical fiber coupler described with reference to FIG.
  • the optical network system 301 does not combine with the optical bus core wire 50 in the optical junction demultiplexing circuit 12 among the optical signals Ls of intensity P [mW] transmitted from the optical line termination device 11a on the subscriber side, and goes to the port Tf.
  • the optical signal Lsb having a transmitted intensity P (1-1 / N) [mW] is recovered.
  • the photoelectric conversion unit 13 converts the recovered optical signal Lsb into electric power, and the optical line termination device 11a or the like reuses the electric power. That is, the optical network system 301 can effectively utilize the electric power by reusing the electric power that was wasted at the port Tf of the optical fiber coupler.
  • the optical signal Lsa having an intensity of P / N [mW] joins the optical bus core wire 50 and reaches the optical line terminal device 10 on the communication carrier side.
  • the optical network system 301 reduces the electric power supplied from the outside to the optical line termination device 11a or the like by P (1-1 / N)) [mW] as compared with the optical network system 300.
  • P 0.5 [mW]
  • N 32
  • the reduction amount is 0.48 [mW]
  • the maximum per network is about 15. 3 [kWh] Power can be reduced.
  • FIG. 4 is a diagram illustrating the structure of the optical network unit 11a of the present embodiment.
  • the optical line termination device 11a is an optical line termination device connected to the optical bus core wire 50 of the bus wiring type optical network system.
  • An optical transmission / reception unit 21 that receives an optical signal from the optical bus core wire 50 and transmits an optical signal Ls to the optical bus core wire 50.
  • the photoelectric conversion unit 13 that converts the optical signal Lsb that was not input to the optical bus core wire 50 among the transmitted optical signals Ls into electric power, and It is characterized by having.
  • the optical signal Lsa having an intensity of P / N [mW] joins the optical bus core wire 50 and reaches the optical line terminal device 10 on the communication carrier side.
  • the optical line terminal device 11a has a built-in photoelectric conversion unit 13 described in the first embodiment. Further, the optical network unit 11a also includes a signal processing unit 22 that processes an optical signal received by the optical transmission / reception unit 21 and an optical signal Ls transmitted by the optical transmission / reception unit 21.
  • the optical transmission / reception unit 21 and the signal processing unit 22 are an optical transmission / reception unit and a signal processing unit that are also provided in the conventional optical line termination device 11 described with reference to FIG.
  • the optical network unit 11a newly includes a photoelectric conversion unit 13.
  • the photoelectric conversion unit 13 is an optical signal Lsb among the optical signals Ls transmitted from the optical transmission / reception unit 21 of the optical line terminal device 11a, which is transmitted to the port Tf without joining the optical bus core wire 50 in the optical junction demultiplexing circuit 12. Is received and converted into electric power.
  • the converted electric power is sent to the optical transmission / reception unit 21 or the signal processing unit 22 for reuse. Therefore, the optical line termination device 11a can effectively utilize the electric power by reusing the electric power that was wasted at the port Tf of the optical fiber coupler as described in the first embodiment.
  • FIG. 5 is a diagram illustrating the structure of the optical network unit 11a of the present embodiment.
  • the optical network unit 11a is characterized by further including a power storage unit 14 for storing the electric power in addition to the structure described in the second embodiment.
  • the difference from the second embodiment, that is, the power storage unit 14, will be described.
  • the optical line terminal device 11a of the present embodiment may be provided with a power storage unit 14 and may be configured to store the electric power converted by the photoelectric conversion unit 13.
  • the optical line terminating device 11a of the second embodiment has a configuration in which the electricity transmitted from the photoelectric conversion unit 13 is immediately used, whereas the optical line terminating device 11a of the present embodiment uses the electric power generated by the photoelectric conversion unit 13. It is configured to be stored in the power storage unit 14 and to use the stored power at an arbitrary timing.
  • the optical network unit 11a of the present embodiment can operate even when commercial power is cut off due to a disaster or the like.
  • FIG. 6 is a diagram illustrating the optical network system 302 of the present embodiment.
  • the optical network system 302 is characterized in that the photoelectric conversion unit 13 is in the vicinity of the optical junction demultiplexing circuit 12 and the storage unit 14 for storing the electric power is further provided with respect to the optical network system 301 of FIG.
  • the photoelectric conversion unit 13 and the power storage unit 14 do not need to be provided in the optical line termination device 11a as described in the second and third embodiments, and are in or near the optical line demultiplexing circuit 12 (for example, in the optical wiring closure 15 or optical). It may be in the wiring cabinet).
  • optical network system 302 can be reduced because the optical line termination device on the subscriber side may be the conventional optical line termination device 11 instead of the optical line termination device 11a. Further, the optical network system 302 can use the electric power generated by the photoelectric conversion unit 13 and the electric power stored in the storage unit 14 as electric power for a sensing device, a switching device, and the like.
  • Optical line termination device 11 and 11a on the communication carrier side Optical line termination device 12 on the subscriber side: Optical combined demultiplexing circuit 13: Photosynthetic conversion unit 14: Storage unit 15: Closure 21: Optical transmission / reception unit 22: Photoelectric conversion Part 50: Optical bus core wire 300-302: Optical network system

Abstract

本発明は、高い電力効率の光ネットワークシステム、その動作方法、及びそれを実現できる光回線終端装置を提供することを目的とする。 本発明に係る光ネットワークシステム301は、バス配線型の光ネットワークシステムであって、光信号Lsを送信する光回線終端装置11aと、光信号Lsの一部を光バス心線50に入力する光合分波回路12と、光信号Lsの他を電力に変換する光電変換部13と、備えることを特徴とする。光ネットワークシステム301は、光ファイバカプラのポートTfで無駄となっていた電力を再利用することで電力を有効活用できる。

Description

光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置
 本開示は、バス配線型の光ネットワークシステム、その動作方法、及びそれに含まれる光回線終端装置に関する。
 図1は、バス配線型の光ネットワークシステム300を説明する図である。光ネットワークシステム300は、通信事業者側の光回線終端装置10から延びる光バス心線50に対し、ニーズに応じて光合分波回路12と加入者側の光回線終端装置11が設置されて構築される。そのため、従来のGE-PON(IEEE802.3ah)をはじめとするスター型配線方式と比較して光ファイバ心線数を削減できるため、経済的に光ネットワークを構築することができる。
 光合分波回路12は、例えば、現用の光ファイバ心線(光バス心線)に対して非破壊かつ低挿入損失な光合分波回路の作製方法として、側面研磨法を用いた方法が検討されている(非特許文献1)。上記技術により現用の光ファイバ心線を切断せずに光合分波でき、加入者のインサービスを実現できる。
植松他、"側面研磨法を用いた光分岐の基礎検討"、 信学技報、 vol. 119、 no. 223、 OFT2019-36、 pp. 23-26、 Oct. 2019.
 ここで、1本の光バス心線50に対して光回線終端装置11をN個接続する光ネットワークにおいて、たとえば図2のように非特許文献1に記載の光ファイバカプラを光合分波回路12として用いる場合を考える。この場合、通信事業者側の光回線終端装置から送出される光信号LsをN個(Nは2以上の整数)の光回線終端装置で分け合うため、光合分波回路は、分岐比を1/N(たとえばN=32のとき約3%)として接続する。そのため、光合分波回路12では、加入者側の光回線終端装置11から出力された光信号Lsの内、1/N(たとえばN=32のとき約3%)の光Lsaは光バス心線50に合波して通信事業者側の光回線終端装置10に到達するが、1-1/N(たとえばN=32のとき約97%)の光Lsbは光バス心線50に合波せず透過し、光回線終端装置11が接続されていないポートTfへ到達する。ポートTfへ到達した光Lsbは終端器等で吸収される。このため、光ファイバカプラの光合分波回路12で光回線終端装置11を光バス心線50に接続すると電力効率が低下する(N=32では約3%)。つまり、光ファイバカプラの光合分波回路を用いる光ネットワークシステムには、電力効率を高めることが困難という課題がある。
 そこで本発明は、上記課題を解決すべく、高い電力効率の光ネットワークシステム、その動作方法、及びそれを実現できる光回線終端装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る光ネットワークシステムは、加入者側の光回線終端装置から送信された光信号の内、光バス心線に合波せず透過する光信号の電力を再利用し、電力効率を向上させることとした。
 具体的には、本発明に係る光ネットワークシステムは、バス配線型の光ネットワークシステムであって、
 光信号を送信する光回線終端装置と、
 前記光信号の一部を光バス心線に入力する光合分波回路と、
 前記光信号の他を電力に変換する光電変換部と、
を備える。
 また、本発明に係る光ネットワークシステムの動作方法は、バス配線型の光ネットワークシステムの動作方法であって、
 光回線終端装置が送信した光信号の一部を光バス心線に入力すること、及び
 前記光信号の他を電力に変換すること、
を特徴とする。
 さらに、本発明に係る光回線終端装置は、バス配線型の光ネットワークシステムの光バス心線に接続される光回線終端装置であって、
 前記光バス心線からの光信号を受信し、前記光バス心線への光信号を送信する光送受信部と、
 送信した前記光信号のうち前記光バス心線に入力しなかった光信号を電力に変換する光電変換部と、
を備えることを特徴とする。
 本光ネットワークシステムは、光バス心線に合波せずに透過した光信号のパワーを電力として再利用することができ、電力効率を向上させることができる。従って、本発明は、高い電力効率の光ネットワークシステム、その動作方法、及びそれを実現できる光回線終端装置を提供することができる。
 ここで、本発明に係る光ネットワークシステムの前記光回線終端装置は、前記電力を自身の駆動に利用してもよい。
 また、本発明に係る光ネットワークシステムは、前記電力をセンシングデバイス又はスイッチングデバイスの駆動に利用してもよい。
 さらに、本発明に係る光ネットワークシステムは、前記電力を蓄積する蓄電部をさらに備えてもよい。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、高い電力効率の光ネットワークシステム、その動作方法、及びそれを実現できる光回線終端装置を提供することができる。
バス配線型の光ネットワークシステムを説明する図である。 本発明の課題を説明する図である。 本発明に係る光ネットワークシステムを説明する図である。 本発明に係る光ネットワークシステムを説明する図である。 本発明に係る光ネットワークシステムを説明する図である。 本発明に係る光ネットワークシステムを説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図3は、本実施形態の光ネットワークシステム301を説明する図である。光ネットワークシステム301は、バス配線型の光ネットワークシステムであって、
 光信号Lsを送信する光回線終端装置11aと、
 光信号Lsの一部Lsaを光バス心線50に入力する光合分波回路12と、
 光信号Lsの他Lsbを電力に変換する光電変換部13と、
を備えることを特徴とする。
 光合分波回路12は、例えば、図2で説明した光ファイバカプラである。
 光ネットワークシステム301は、加入者側の光回線終端装置11aから送信された強度P[mW]の光信号Lsの内、光合分波回路12において光バス心線50に合波せずポートTfへ透過する強度P(1-1/N)[mW]の光信号Lsbを回収する。そして、光電変換部13は、回収した光信号Lsbを電力に変換し、光回線終端装置11a等でその電力を再利用する。つまり、光ネットワークシステム301は、光ファイバカプラのポートTfで無駄となっていた電力を再利用することで電力を有効活用できる。
 なお、光信号Lsの内、強度P/N[mW]の光信号Lsaは光バス心線50に合波して通信事業者側の光回線終端装置10に到達する。
 光ネットワークシステム301は、電力を再利用することで光ネットワークシステム300と比較し、外部から光回線終端装置11a等に供給する電力をP(1-1/N))[mW]だけ削減することができる。たとえば、一般的なGE-PON方式の場合(P=0.5[mW]、N=32)とすると、削減量は0.48[mW]となり、一つのネットワーク当たり1年間で最大約15.3[kWh]電力を削減できる。
(実施形態2)
 図4は、本実施形態の光回線終端装置11aの構造を説明する図である。光回線終端装置11aは、バス配線型の光ネットワークシステムの光バス心線50に接続される光回線終端装置であって、
 光バス心線50からの光信号を受信し、光バス心線50への光信号Lsを送信する光送受信部21と、
 送信した光信号Lsのうち光バス心線50に入力しなかった光信号Lsbを電力に変換する光電変換部13と、
を備えることを特徴とする。
 なお、光信号Lsの内、強度P/N[mW]の光信号Lsaは光バス心線50に合波して通信事業者側の光回線終端装置10に到達する。
 本実施形態は、光回線終端装置11aが実施形態1で説明した光電変換部13を内蔵する構成である。また、光回線終端装置11aは、光送受信部21が受信した光信号及び光送受信部21が送信する光信号Lsを処理する信号処理部22も備えている。
 光送受信部21と信号処理部22は、図2で説明した従来の光回線終端装置11にも具備されている光送受信部と信号処理部である。光回線終端装置11aは、これに加え、新たに光電変換部13を備える。光電変換部13は、光回線終端装置11aの光送受信部21から送信された光信号Lsの内、光合分波回路12において光バス心線50に合波せずポートTfへ透過する光信号Lsbを受光して電力に変換する。変換された電力は光送受信部21または信号処理部22に送出され再利用される。従って、光回線終端装置11aは、実施形態1で説明したように光ファイバカプラのポートTfで無駄となっていた電力を再利用することで電力を有効活用できる。
(実施形態3)
 図5は、本実施形態の光回線終端装置11aの構造を説明する図である。光回線終端装置11aは、実施形態2で説明した構造に対し、前記電力を蓄積する蓄電部14をさらに備えることを特徴とする。本実施形態では、実施形態2との相違点、すなわち蓄電部14について説明する。
 本実施形態の光回線終端装置11aは蓄電部14を備え、光電変換部13で変換された電力を蓄える構成としてもよい。実施形態2の光回線終端装置11aは光電変換部13から送出される電気を即座に使用する構成であることに対し、本実施形態の光回線終端装置11aは光電変換部13で発生した電力を蓄電部14に蓄えておき、任意のタイミングで蓄えた電力を利用する構成である。たとえば、本実施形態の光回線終端装置11aは、災害などで商用電力が途絶えた時でも動作することができる。
(実施形態4)
 図6は、本実施形態の光ネットワークシステム302を説明する図である。光ネットワークシステム302は、図3の光ネットワークシステム301に対し、光電変換部13が光合分波回路12の近傍にあること、及び前記電力を蓄積する蓄電部14をさらに備えることを特徴とする。
 光電変換部13および蓄電部14は、実施形態2や3で説明したように光回線終端装置11a内に備える必要はなく、光合分波回路12やその近傍(たとえば光配線用クロージャ15内や光配線用キャビネット内)にあってもよい。
 光ネットワークシステム302は、加入者側の光回線終端装置が光回線終端装置11aではなく従前の光回線終端装置11でよいため、導入コストを削減できる。また、光ネットワークシステム302は、光電変換部13が発生させた電力および蓄電部14が蓄積する電力を、センシングデバイスやスイッチングデバイスなどの電力として利用できる。
10:通信事業者側の光回線終端装置
11、11a:加入者側の光回線終端装置
12:光合分波回路
13:光電変換部
14:蓄電部
15:クロージャ
21:光送受信部
22:光電変換部
50:光バス心線
300~302:光ネットワークシステム

Claims (8)

  1.  バス配線型の光ネットワークシステムであって、
     光信号を送信する光回線終端装置と、
     前記光信号の一部を光バス心線に入力する光合分波回路と、
     前記光信号の他を電力に変換する光電変換部と、
    を備えることを特徴とする光ネットワークシステム。
  2.  前記光回線終端装置は、前記電力を自身の駆動に利用することを特徴とする請求項1に記載の光ネットワークシステム。
  3.  前記電力をセンシングデバイス又はスイッチングデバイスの駆動に利用することを特徴とする請求項1に記載の光ネットワークシステム。
  4.  前記電力を蓄積する蓄電部をさらに備えることを特徴とする請求項1から3のいずれかに記載の光ネットワークシステム。
  5.  バス配線型の光ネットワークシステムの動作方法であって、
     光回線終端装置が送信した光信号の一部を光バス心線に入力すること、及び
     前記光信号の他を電力に変換すること、
    を特徴とする光ネットワークシステムの動作方法。
  6.  バス配線型の光ネットワークシステムの光バス心線に接続される光回線終端装置であって、
     前記光バス心線からの光信号を受信し、前記光バス心線への光信号を送信する光送受信部と、
     送信した前記光信号のうち前記光バス心線に入力しなかった光信号を電力に変換する光電変換部と、
    を備えることを特徴とする光回線終端装置。
  7.  前記電力を自身の駆動に利用することを特徴とする請求項6に記載の光回線終端装置。
  8.  前記電力を蓄積する蓄電部をさらに備えることを特徴とする請求項6又は7に記載の光回線終端装置。
PCT/JP2020/026804 2020-07-09 2020-07-09 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置 WO2022009367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/026804 WO2022009367A1 (ja) 2020-07-09 2020-07-09 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置
US18/014,283 US20230269005A1 (en) 2020-07-09 2020-07-09 Optical network system, operating method of optical network system, and optical line terminator
JP2022534582A JP7459943B2 (ja) 2020-07-09 2020-07-09 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026804 WO2022009367A1 (ja) 2020-07-09 2020-07-09 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置

Publications (1)

Publication Number Publication Date
WO2022009367A1 true WO2022009367A1 (ja) 2022-01-13

Family

ID=79552441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026804 WO2022009367A1 (ja) 2020-07-09 2020-07-09 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置

Country Status (3)

Country Link
US (1) US20230269005A1 (ja)
JP (1) JP7459943B2 (ja)
WO (1) WO2022009367A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121794A (en) * 1980-12-01 1982-07-29 Siemens Ag Sensor system utilizing optical fiber
JPS5868197A (ja) * 1981-09-24 1983-04-22 シ−メンス・アクチエンゲゼルシヤフト 遠隔測定装置
JPH01118815A (ja) * 1987-11-02 1989-05-11 Nippon Telegr & Teleph Corp <Ntt> 多点間光通信用光信号合流分岐装置
JP2004172860A (ja) * 2002-11-19 2004-06-17 Oki Electric Ind Co Ltd 位相同期型光変調システムおよび光変調素子
JP2013106290A (ja) * 2011-11-16 2013-05-30 Mitsubishi Electric Corp 補助電源装置
US20180294913A1 (en) * 2017-04-07 2018-10-11 Alcatel-Lucent Usa Inc. Optical transport system employing direct-detection self-coherent receivers and compatible transmitters
JP2019501542A (ja) * 2015-11-16 2019-01-17 イーオースペース,インコーポレイテッド 光信号処理を用いた高rf周波数アナログ光ファイバリンク
US20190081709A1 (en) * 2016-02-18 2019-03-14 Apriori Network Systems, Llc. Secured fiber link system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544668B2 (en) 2010-12-13 2017-01-10 Neophotonics Corporation Optical network communication system with optical line terminal transceiver and method of operation thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121794A (en) * 1980-12-01 1982-07-29 Siemens Ag Sensor system utilizing optical fiber
JPS5868197A (ja) * 1981-09-24 1983-04-22 シ−メンス・アクチエンゲゼルシヤフト 遠隔測定装置
JPH01118815A (ja) * 1987-11-02 1989-05-11 Nippon Telegr & Teleph Corp <Ntt> 多点間光通信用光信号合流分岐装置
JP2004172860A (ja) * 2002-11-19 2004-06-17 Oki Electric Ind Co Ltd 位相同期型光変調システムおよび光変調素子
JP2013106290A (ja) * 2011-11-16 2013-05-30 Mitsubishi Electric Corp 補助電源装置
JP2019501542A (ja) * 2015-11-16 2019-01-17 イーオースペース,インコーポレイテッド 光信号処理を用いた高rf周波数アナログ光ファイバリンク
US20190081709A1 (en) * 2016-02-18 2019-03-14 Apriori Network Systems, Llc. Secured fiber link system
US20180294913A1 (en) * 2017-04-07 2018-10-11 Alcatel-Lucent Usa Inc. Optical transport system employing direct-detection self-coherent receivers and compatible transmitters

Also Published As

Publication number Publication date
US20230269005A1 (en) 2023-08-24
JP7459943B2 (ja) 2024-04-02
JPWO2022009367A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
EP3134986B1 (en) Apparatus and system for managing wavelengths in optical networks
EP3641163A1 (en) Optical module and network device
EP2991366A2 (en) Optical transmission system, mode coupler, and optical transmission method
RU2739069C1 (ru) Устройство для организации перегонной связи и способ организации перегонной связи (варианты)
JP2004222222A (ja) 移動通信システムにおけるアナログ光伝送延長を利用した多重連結分散型基地局装置/中継装置
CN103023568B (zh) 线卡、光模块及光网络设备
CN108512623B (zh) 量子信道与经典信道的合纤qkd系统及其传输方法
WO2022009367A1 (ja) 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置
WO2023179785A1 (zh) 光纤连接盒、数据处理方法、计算机存储介质
CN106817323B (zh) 一种可片上集成的物理层组播光交换节点装置及网络
WO2024002140A1 (zh) 一种有源光缆、光通信网络及光通信方法
CN107431552B (zh) 光模块及网络设备
CN218848394U (zh) 光电混合分路器
CN111064513A (zh) 可见光通信供能一体化网络架构
WO2023284540A1 (zh) 单纤双向光模块、高波特率信号传输方法及5g前传网络
CN105577285A (zh) 光模块
KR100581061B1 (ko) 광전달망 시스템에서 광감시채널의 광채널 오버헤드스위칭 장치 및 이를 이용한 광채널 유지보수 신호 전달장치
US11784742B2 (en) Optical module, management and control information processing method, and communication system
JP4845935B2 (ja) 無線装置
CN111917507A (zh) 集成化波分系统和设备
CN204350014U (zh) 基于半导体全光波长转换器的光传输设备
CN103974150B (zh) 一种光同轴单元及光电混合系统中的信号传输方法
AU2021104489A4 (en) Visible light communication system based on optical fiber power supply
WO2006120723A1 (ja) フォトダイオードアレイ及び光マイクロ波伝送システム受信装置
RU2071183C1 (ru) Групповое абонентское оборудование синхронной цифровой интегральной сети

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944280

Country of ref document: EP

Kind code of ref document: A1