WO2022007991A1 - Radial-folienlager zum lagern einer welle - Google Patents

Radial-folienlager zum lagern einer welle Download PDF

Info

Publication number
WO2022007991A1
WO2022007991A1 PCT/DE2021/100495 DE2021100495W WO2022007991A1 WO 2022007991 A1 WO2022007991 A1 WO 2022007991A1 DE 2021100495 W DE2021100495 W DE 2021100495W WO 2022007991 A1 WO2022007991 A1 WO 2022007991A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
corrugated
bearing
foils
side edges
Prior art date
Application number
PCT/DE2021/100495
Other languages
English (en)
French (fr)
Inventor
Bernhard Jakob
Wolfgang Braun
Michael Plogmann
Hermann Geyer
Christoph NEUFELD
Viktor PFARHERR
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US18/014,521 priority Critical patent/US20230258227A1/en
Priority to CN202180047664.1A priority patent/CN115812128A/zh
Priority to KR1020227043072A priority patent/KR20230008833A/ko
Publication of WO2022007991A1 publication Critical patent/WO2022007991A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Definitions

  • the invention relates to a radial foil bearing according to the preamble-forming features of claim 1, which can be used particularly advantageously for the oil-free storage of lightly loaded shafts running at high speeds, for example in turbocompressors for fuel cells in motor vehicles and the like.
  • Foil bearings are hydrodynamic or aerodynamic bearings in which, in the unloaded state, a bearing surface supporting the rotating shaft is formed by a thin and wear-resistant cover foil, which in turn is supported by an elastic corrugated foil arranged between the cover foil and a bearing housing.
  • a hydrodynamic or aerodynamic film forms between the shaft and the cover foil, which carries the shaft. Direct movement contact between the shaft and the cover film only occurs during start and stop processes.
  • a generic radial foil bearing for supporting a shaft is known, for example, from DE 102015224869 A1.
  • This foil bearing consists of a sleeve-like bearing housing with three foil packages arranged evenly distributed over the inner circumference of the bearing housing, each covering a section of the inner circumference of the bearing housing, each consisting of an elastic corrugated foil lying on the inner circumference of the bearing housing and of a corrugated foil lying on the underside and on the upper side there is a cover film forming a bearing surface for the shaft, with plug-in grooves being provided on the inner circumference of the bearing housing extending parallel to the bearing axis of rotation and protruding obliquely from the inside outwards into the bearing housing.
  • the air pressure caused by the shaft rotation drops continuously towards the two side edges of the cover film, which are connected to the ambient air pressure, and is then no longer sufficient directly below the side edges to compress the corrugated film, which is designed with a uniform radial spring stiffness.
  • the required distance between the cover film and the shaft cannot therefore arise at the side edges of the cover film, so that so-called edge runs can occur at these points, which lead to unwanted contacts between the cover film and the shaft, which are the cause of la damage up to a bearing failure.
  • the invention is therefore based on the object of designing a radial foil bearing in which the undesirable contacts between the cover foil and the shaft resulting from edge runners are effectively avoided and in which the aerodynamic film that forms between the shaft and the cover film during storage has a uniform thickness.
  • this object is achieved in a radial foil bearing according to the preamble of claim 1 in such a way that the corrugated foils have, on their side edges running in the circumferential direction, locally at least one narrowing that reduces their axial width, with which the radial spring stiffness of the corrugated foils in the area of their side edges is reducible.
  • waists are arranged on both side edges of the corrugated foils and both waists are designed in the shape of circular sections and symmetrically to one another with the same waist depths and the same waist lengths.
  • Such a design has proven to be particularly suitable for radial foil bearings, in which the radial loads are evenly distributed and misalignment of the shaft to be supported is largely ruled out.
  • the waists on both side edges of the corrugated foils are also formed in a circular segment but asymmetrical to each other with different waist depths and with the same or different waist lengths.
  • An asymmetrical configuration of the tails with the same tail lengths but different tail lengths has proven to be particularly suitable for radial foil bearings where the shaft to be supported is likely to be misaligned or with which a deflection of the shaft to be supported is to be counteracted.
  • the Waists on both side edges of the corrugated foils are designed asymmetrically in the circumferential direction and have the same waist depths and the same waist lengths.
  • Asymmetric in the circumferential direction means that the waists deviate from the shape of a segment of a circle and instead have a curved or arcuate contour.
  • the sidecuts on both side edges of the corrugated foils extend in the circumferential direction either from the first wave crest to the last wave crest or only from the second wave crest to the penultimate wave crest of each corrugated film.
  • the selection of these preferred waist lengths depends on the desired degree of reduction in the axial spring stiffness of the corrugated foils. In the case of radial foil bearings with larger inner diameters of the bearing housing and correspondingly longer corrugated foils and cover foils, waist lengths that are smaller than the ranges mentioned are also conceivable.
  • the waist depth is dimensioned such that the width of the corrugated foil between the deepest points of both waists is between 0.75% and 0.95% of the axial width of the corrugated foils whose end edges is.
  • the degree of reduction in the axial spring stiffness of the corrugated foils in the area of their side edges is neither too high nor too low.
  • the radial foil bearing designed according to the invention thus has the advantage over the radial foil bearings known from the prior art that its corrugated foils are locally connected by the formation of these corrugated foils
  • Axial width-reducing waists on their side edges have a reduced radial spring stiffness in the area of their side edges, so that the air pressure caused by the shaft rotation is also sufficient on the two side edges of the cover film connected to the ambient air pressure to compress the corrugated film in such a way that the required slight distance between rule between the cover foil and the corrugation.
  • the described edge movements which were previously the cause of bearing damage or bearing failures, can no longer occur at these points.
  • FIG. 1 shows a side view of a radial foil bearing designed according to the invention and carrying a shaft
  • FIG. 2 shows a perspective view of the radial foil bearing designed according to the invention with a partially broken cover foil
  • FIG. 3 two versions of a corrugated foil of the radial foil bearing according to the invention with symmetrical waisting
  • FIG. 4 two versions of a corrugated foil of the radial foil bearing according to the invention with asymmetrical waisting
  • FIG. 5 shows two versions of a corrugated foil of the radial foil bearing according to the invention with a shortened waist
  • FIG. 6 shows an embodiment of a corrugated foil of the radial foil bearing according to the invention with a waist that is asymmetrical in the circumferential direction.
  • these foil packs 4, 5, 6 each consist of an elastic corrugated foil 7 lying on the inner circumference 3 of the bearing housing 2 and of a cover foil 8 lying on the underside of the corrugated foil 7, which on the upper side forms a bearing surface for the Wave 13 forms.
  • plug-in grooves 9, 10 Arranged on the inner circumference 3 of the bearing housing 2 are six plug-in grooves 9, 10, which extend parallel to the axis of rotation of the bearing and protrude obliquely from the inside outwards into the bearing housing 2 11, 12 are used, which are arranged tangentially freely movable in the plug-in grooves 9, 10.
  • the corrugated foils 7 have locally on their side edges 14, 15 running in the circumferential direction at least one narrowing 16, 17 reducing their axial width B, with which the radial spring stiffness of the corrugated foils 7 in the area of their side edges 14 , 15 is reducible. This is intended to ensure that the air pressure caused by the rotation of the shaft 13 is also sufficient at the two side edges of the cover foils 8, which are connected to the ambient air pressure, to deflect the associated corrugated foils 7 in such a way that the required small distance between the cover foils 8 and the shaft 13 can occur and there are no longer any edge runs at these points, which were previously the cause of bearing damage or bearing failures.
  • waists 16, 17 are arranged on both side edges 14, 15 of the corrugated foils 7 and both waists 16, 17 are designed in the shape of a segment of a circle and are symmetrical to one another, in that they have the same waist depths Tn, TT2 and have the same waist lengths Tu, TL2.
  • the only difference between the two corrugated foils 7 shown and intended for different radial foil bearings is that the waist depths Tn, TT2 in the corrugated foil 7 shown on the left are greater than in the corrugated foil 7 shown on the right.
  • the alternative second embodiment of a corrugated foil 7 shown in FIG. 4 differs from the embodiment shown in FIG. 3 in that the narrowings 16, 17 on both side edges 14, 15 of the corrugated foils 7 are also in the form of a segment of a circle but are asymmetrical to one another.
  • the waists 16, 17 clearly have different waist depths Tn, TT2 with the same waist lengths Tu, Ti_2, with the waist depths Tn, TT2 in the corrugated foil 7 shown on the left also being greater than in the corrugated foil 7 shown on the right.
  • a third alternative embodiment a corrugated foil 7 can also be seen in FIG.
  • This embodiment is characterized in that the waisted stanchions 16, 17 on both side edges 14, 15 of the corrugated foils 7 are asymmetrical in the circumferential direction and have the same waist depths Tn, TT2 and the same waist lengths Tu, Ti_2.
  • the waists 16, 17 clearly deviate from the shape of a segment of a circle and instead have a curved or arcuate contour.
  • the drawings also show that the waists 16, 17 on both side edges 14, 15 of the corrugated foils 7 extend in the circumferential direction either, as shown in Figures 3 and 4, from the first crest Wi to the last crest Ws of each corrugated foil 7 , or as shown in Figures 5 and 6, only from the second crest W2 to the penultimate crest W4 of each corrugated foil 7 extend.
  • the selection of these preferred waist lengths Tu, Ti_2 depends on the desired degree of reduction in the axial spring stiffness of the corrugated foils 7.
  • the waist depths TTI, TT2 should always be dimensioned such that the width of the corrugated foil 7 is between the deepest points of both waists 16, 17 is between 0.75% and 0.95% of the axial width B of the corrugated foils 7 at their end edges 11, 12.
  • indicator list

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

Radial-Folienlager (1) zum Lagern einer Welle (13), umfassend ein hülsenartiges Lagergehäuse (2) mit wenigstens drei über den Innenumfang (3) des Lagergehäuses (2) verteilt angeordneten, jeweils einen Abschnitt des Innenumfangs (3) des Lagergehäuses (2) überdeckenden Folienpaketen (4, 5, 6), die jeweils aus einer am Innenumfang (3) des Lagergehäuses (2) anliegenden elastischen Wellfolie (7) sowie aus einer unterseitig auf der Wellfolie (7) aufliegenden und oberseitig eine Lagerfläche für die Welle (13) bildenden Deckfolie (8) bestehen, wobei am Innenumfang (3) des Lagergehäuses (2) sich parallel zur Lagerrotationsachse erstreckende, schräg von innen nach außen in das Lagergehäuse (2) hineinragende Stecknuten (9, 10) angeordnet sind, die zur Aufnahme der die Wellfolien (7) und die Deckfolien (8) jeweils in Umfangsrichtung begrenzenden und tangential frei beweglich in den Stecknuten (9, 10) angeordneten Endkanten (11, 12) dienen. Erfindungsgemäß weisen die Wellfolien (7) an ihren in Umfangsrichtung verlaufenden Seitenkanten (14, 15) zumindest örtlich jeweils eine deren Axialbreite (B) verringernde Taillierung (16, 17) auf, mit der die radiale Federsteifigkeit der Wellfolien (7) im Bereich ihrer Seitenkanten (14, 15) reduzierbar ist.

Description

Bezeichnung der Erfindung
Radial-Folienlagerzum Lagern einer Welle Gebiet der Erfindung
Die Erfindung betrifft ein Radial-Folienlager nach den oberbegriffsbildenden Merkmalen des Patentanspruchs 1, welches insbesondere vorteilhaft zur ölfrei en Lagerung gering belasteter, mit hoher Drehzahl laufender Wellen einsetzbar ist, beispielsweise bei Turbokompressoren für Brennstoffzellen in Kraftfahrzeu gen und dergleichen.
Hintergrund der Erfindung Folienlager sind hydrodynamische oder aerodynamische Lager, bei denen im unbelasteten Zustand eine die drehend gelagerte Welle abstützende Lagerflä che von einer dünnen und verschleißfesten Deckfolie gebildet wird, welche ih rerseits von einer zwischen der Deckfolie und einem Lagergehäuse angeordne ten elastischen Wellfolie abgestützt wird. Im Lagerbetrieb bildet sich zwischen der Welle und der Deckfolie ein hydrodynamischer oder aerodynamischer Film, welcher die Welle trägt. Nur bei Start- und Stoppvorgängen kommt es zu einem direkten Bewegungskontakt zwischen der Welle und der Deckfolie.
Ein gattungsbildendes Radial-Folienlager zur Lagerung einer Welle ist beispiels- weise aus der DE 102015224869 A1 bekannt. Dieses Folienlager besteht aus einem hülsenartigen Lagergehäuse mit drei über den Innenumfang des Lager gehäuses gleichmäßig verteilt angeordneten, jeweils einen Abschnitt des In nenumfangs des Lagergehäuses überdeckenden Folienpaketen, die jeweils aus einer am Innenumfang des Lagergehäuses anliegenden elastischen Wellfolie sowie aus einer unterseitig auf der Wellfolie aufliegenden und oberseitig eine Lagerfläche für die Welle bildenden Deckfolie bestehen, wobei am Innenumfang des Lagergehäuses sich parallel zur Lagerrotationsachse erstreckende, schräg von innen nach außen in das Lagergehäuse hineinragende Stecknuten ange- ordnet sind, die zur Aufnahme der die Deckfolien und die Wellfolien jeweils in Umfangsrichtung begrenzenden und in den Stecknuten tangential frei bewegli chen Endkanten dienen. Bei aerodynamischen Radial-Folienlagern hat es sich in der Praxis jedoch ge zeigt, dass der sich im Lagerbetrieb zwischen der Welle und der Deckfolie bil dende aerodynamische Film, welcher die Welle tragen soll, keine gleichmäßige Dicke aufweist. Es wurde festgestellt, dass der durch die Wellenrotation verur sachte Luftdruck im Lagerquerschnitt axial mittig am größten ist und dort aus- reicht, die elastische Wellfolie derart einzufedern, dass der erforderliche gering fügige Abstand zwischen der Deckfolie und der Welle entstehen kann. Zu den mit dem Umgebungsluftdruck verbundenen beiden Seitenrändern der Deckfolie hin fällt der durch die Wellenrotation verursachte Luftdruck dagegen kontinuier lich ab und reicht dann direkt unterhalb der Seitenränder nicht mehr aus, die mit einer gleichmäßigen radialen Federsteifigkeit ausgebildete Wellfolie einzufedern. Der erforderliche Abstand zwischen der Deckfolie und der Welle kann somit an den Seitenrändern der Deckfolie nicht entstehen, so dass es an diesen Stellen zu sogenannten Kantenläufern kommen kann, bei denen es zu unerwünschten Kontakten zwischen der Deckfolie und der Welle kommt, die ursächlich für La- gerschäden bis hin zum einem Lagerausfall sind.
Aufgabe der Erfindung
Ausgehend von den dargelegten Nachteilen der Lösungen des bekannten Stan- des der Technik liegt der Erfindung deshalb die Aufgabe zu Grunde, ein Radial- Folienlager zu konzipieren, bei dem die aus Kantenläufern resultierenden uner wünschten Kontakte zwischen der Deckfolie und der Welle wirksam vermieden werden und bei dem der sich im Lagerbetrieb zwischen der Welle und der Deck folie bildende aerodynamische Film eine gleichmäßige Dicke aufweist. Beschreibung der Erfindung
Erfindungsgemäß wird diese Aufgabe bei einem Radial-Folienlager nach dem Oberbegriff des Anspruchs 1 derart gelöst, dass die Wellfolien an ihren in Um- fangsrichtung verlaufenden Seitenkanten örtlich zumindest eine deren Axialbrei te verringernde Taillierung aufweisen, mit der die radiale Federsteifigkeit der Wellfolien im Bereich ihrer Seitenkanten reduzierbar ist..
Bevorzugte Ausgestaltungen und vorteilhafte Weiterbildungen des erfindungs- gemäß ausgebildeten Radial-Folienlagers werden in den Unteransprüchen 2 bis 7 beschrieben.
Danach ist es gemäß Anspruch 2 bei dem erfindungsgemäß ausgebildeten Ra dial-Folienlager vorgesehen, dass an beiden Seitenkanten der Wellfolien Taillie- rungen angeordnet sind und beide Taillierungen kreisabschnittförmig sowie symmetrisch zueinander mit gleichen Taillierungstiefen und gleichen Taillierungs- längen ausgebildet sind. Eine solche Ausbildung hat sich besonders bei Radial folienlagern als geeignet erwiesen, bei denen die Radialbelastungen gleichmä ßig und Schiefstellungen der zu lagernden Welle weitestgehend ausgeschlos- sen sind.
Nach Anspruch 3 ist es eine alternative Ausbildung des erfindungsgemäß aus gebildeten Radial-Folienlagers, dass die Taillierungen an beiden Seitenkanten der Wellfolien zwar ebenfalls kreisabschnittförmig jedoch unsymmetrisch zuein- ander mit unterschiedlichen Taillierungstiefen und mit gleichen oder ungleichen Taillierungslängen ausgebildet sind. Eine unsymmetrische Ausbildung der Tail lierungen mit gleichen Taillierungslängen aber unterschiedlichen Taillierungstie fen hat sich dabei als besonders geeignet für Radial-Folienlager erwiesen, bei denen bei der zu lagernden Welle mit Schiefstellungen zu rechnen ist oder mit denen einer Durchbiegung der zu lagernden Welle entgegengewirkt werden soll.
Gemäß Anspruch 4 kann es darüber hinaus noch eine weitere alternative Aus bildung des erfindungsgemäß ausgebildeten Radial-Folienlagers sein, dass die Taillierungen an beiden Seitenkanten der Wellfolien in Umfangsrichtung unsym metrisch ausgebildet sind und gleiche Taillierungstiefen sowie gleiche Taillie- rungslängen aufweisen. In Umfangsrichtung unsymmetrisch bedeutet dabei, dass die Taillierungen von einer Kreisabschnittsform abweichen und stattdes- sen eine kurven- oder bogenförmige Kontur aufweisen. Derartige Taillierungen können in Anwendungsfällen vorteilhaft sein, bei denen einer bestimmten Last richtung oder Lastposition entgegengewirkt werden soll.
Als zweckmäßige Weiterbildungen des erfindungsgemäß ausgebildeten Radial- Folienlagers wird es durch die Ansprüche 5 und 6 des Weiteren vorgeschlagen, dass die Taillierungen an beiden Seitenkanten der Wellfolien sich in Umfangs richtung entweder vom ersten Wellenberg bis zum letzten Wellenberg oder nur vom zweiten Wellenberg bis zum vorletzten Wellenberg jeder Wellfolie erstre cken. Die Auswahl dieser bevorzugten Taillierungslängen ist dabei abhängig vom gewünschten Grad der Reduzierung der axialen Federsteifigkeit der Wellfolien. Bei Radial-Folienlagern mit größeren Innendurchmessern des Lagergehäuses und entsprechend längeren Well- und Deckfolien sind auch Taillierungslängen denkbar, die kleiner als die gennannten Bereiche sind. Schließlich ist es gemäß Anspruch 6 noch eine vorteilhafte Ausgestaltung des erfindungsgemäß ausgebildeten Radial-Folienlagers, dass die Taillierungstiefe so bemessen ist, dass die Breite der Wellfolie zwischen den tiefsten Punkten beider Taillierungen zwischen 0,75% und 0,95% der Axialbreite der Wellfolien an deren Endkanten beträgt. Innerhalb dieses Bereiches ist gewährleistet, dass der Grad der Reduzierung der axialen Federsteifigkeit der Wellfolien im Bereich ihrer Seitenkanten nicht zu hoch und nicht zu niedrig ist. Möglich ist es aber auch, anstelle der Taillierungen sämtliche Wellfolien axial schmaler als die zu gehörigen Deckfolien auszubilden, wobei jedoch eine spezielle Fixierung der Wellfolien im Lagergehäuse, beispielsweise durch Verschweißen, notwendig ist.
Das erfindungsgemäß ausgebildete Radial-Folienlager weist somit gegenüber den aus dem Stand der Technik bekannten Radial-Folienlagern den Vorteil auf, dass dessen Wellfolien durch die Ausbildung dieser Wellfolien mit örtlich deren Axialbreite verringernden Taillierungen an ihren Seitenkanten eine reduzierte radiale Federsteifigkeit im Bereich ihrer Seitenkanten aufweisen, so dass der durch die Wellenrotation verursachte Luftdruck auch an den mit dem Umge bungsluftdruck verbundenen beiden Seitenränder der Deckfolie ausreicht, die Wellfolie derart einzufedern, dass der erforderliche geringfügige Abstand zwi schen der Deckfolie und der Welle entstehen kann. Dadurch kann es an diesen Stellen nicht mehr zu den beschriebenen Kantenläufern kommen, die bisher ur sächlich für Lagerschäden oder Lagerausfälle waren. Kurze Beschreibung der Zeichnungen
Eine bevorzugte Ausführungsform des erfindungsgemäß ausgebildeten Radial- Folienlagers wird nachfolgend unter Bezugnahme auf die beigefügten Zeich nungen näher erläutert. Dabei zeigen:
Figur 1 eine Seitenansicht eines eine Welle tragenden erfindungsgemäß ausgebildeten Radial-Folienlagers;
Figur 2 eine perspektivische Ansicht des erfindungsgemäß ausgebilde ten Radial-Folienlagers mit einer teilaufgebrochenen Deckfolie;
Figur 3 zwei Ausführungen einer Wellfolie des erfindungsgemäßen Ra- dial-Folienlagers mit symmetrischer Taillierung;
Figur 4 zwei Ausführungen einer Wellfolie des erfindungsgemäßen Ra dial-Folienlagers mit unsymmetrischer Taillierung;
Figur 5 zwei Ausführungen einer Wellfolie des erfindungsgemäßen Ra dial-Folienlagers mit verkürzter Taillierung;
Figur 6 eine Ausführung einer Wellfolie des erfindungsgemäßen Radial- Folienlagers mit in Umfangsrichtung unsymmetrischer Taillierung. Ausführliche Beschreibung der Zeichnungen
Aus Figur 1 geht deutlich ein Radial-Folienlager 1 zum Lagern einer Welle 13 hervor, welches aus einem hülsenartigen Lagergehäuse 2 mit wenigstens drei über den Innenumfang 3 des Lagergehäuses 2 verteilt angeordneten Folienpa keten 4, 5, 6 besteht, die jeweils einen Abschnitt des Innenumfangs 3 des La gergehäuses 2 überdecken. Diese Folienpakete 4, 5, 6 bestehen, wie auch in Figur 2 erkennbar ist, jeweils aus einer am Innenumfang 3 des Lagergehäuses 2 anliegenden elastischen Wellfolie 7 sowie aus einer unterseitig auf der Wellfo- lie 7 aufliegenden Deckfolie 8, die oberseitig eine Lagerfläche für die Welle 13 bildet. Dabei sind am Innenumfang 3 des Lagergehäuses 2 sechs sich parallel zur Lagerrotationsachse erstreckende, schräg von innen nach außen in das La gergehäuse 2 hineinragende Stecknuten 9, 10 angeordnet, die zur Aufnahme der die Wellfolien 7 und die Deckfolien 8 jeweils in Umfangsrichtung begren- zenden Endkanten 11, 12 dienen, welche tangential frei beweglich in den Stecknuten 9, 10 angeordnet sind.
Des Weiteren ist aus Figur 2 ersichtlich, dass die Wellfolien 7 an ihren in Um- fangsrichtung verlaufenden Seitenkanten 14, 15 örtlich zumindest eine deren Axialbreite B verringernde Taillierung 16, 17 aufweisen, mit der die radiale Fe dersteifigkeit der Wellfolien 7 im Bereich ihrer Seitenkanten 14, 15 reduzierbar ist. Dadurch soll erreicht werden, dass der durch die Rotation der Welle 13 ver ursachte Luftdruck auch an den mit dem Umgebungsluftdruck verbundenen beiden Seitenrändern der Deckfolien 8 ausreicht, die zugehörigen Wellfolien 7 derart einzufedern, dass der erforderliche geringfügige Abstand zwischen den Deckfolien 8 und der Welle 13 entstehen kann und es an diesen Stellen nicht mehr zu Kantenläufern kommt, die bisher ursächlich für Lagerschäden oder La gerausfälle waren. Bei der in Figur 3 gezeigten bevorzugten ersten Ausführungsform einer Wellfo lie 7 sind dabei an beiden Seitenkanten 14, 15 der Wellfolien 7 Taillierungen 16, 17 angeordnet und beide Taillierungen 16, 17 kreisabschnittförmig sowie sym metrisch zueinander ausgebildet, indem diese gleiche Taillierungstiefen Tn, TT2 und gleiche Taillierungslängen Tu, TL2 aufweisen. Der einzige Unterschied zwi schen den beiden abgebildeten und für verschiedene Radial-Folienlager vorge sehenen Wellfolien 7 ist, dass bei der links dargestellten Wellfolie 7 die Taillie- rungstiefen Tn, TT2 größer sind als bei der rechts dargestellten Wellfolie 7.
Die in Figur 4 gezeigte alternative zweite Ausführungsform einer Wellfolie 7 un terscheidet sich von der in Figur 3 gezeigten Ausführungsform dadurch, dass die Taillierungen 16, 17 an beiden Seitenkanten 14, 15 der Wellfolien 7 zwar ebenfalls kreisabschnittförmig jedoch unsymmetrisch zueinander ausgebildet sind. Deutlich sichtbar weisen die Taillierungen 16, 17 dabei unterschiedliche Taillierungstiefen Tn, TT2 mit gleichen Taillierungslängen Tu, Ti_2 auf, wobei auch hier bei der links dargestellten Wellfolie 7 die Taillierungstiefen Tn, TT2 größer sind als bei der rechts dargestellten Wellfolie 7. Eine dritte alternative Ausführungsform einer Wellfolie 7 ist zudem noch in Figur 6 zu sehen. Diese Ausführungsform zeichnet sich dadurch aus, dass die Taillie rungen 16, 17 an beiden Seitenkanten 14, 15 der Wellfolien 7 in Umfangsrich tung unsymmetrisch ausgebildet sind und gleiche Taillierungstiefen Tn, TT2 so wie gleiche Taillierungslängen Tu, Ti_2 aufweisen. Deutlich sichtbar weichen bei dieser Ausführungsform die Taillierungen 16, 17 von einer Kreisabschnittsform ab und weisen stattdessen eine kurven- oder bogenförmige Kontur auf.
Schließlich ist den Zeichnungen noch zu entnehmen, dass die Taillierungen 16, 17 an beiden Seitenkanten 14, 15 der Wellfolien 7 sich in Umfangsrichtung entweder, wie in den Figuren 3 und 4 dargestellt, vom ersten Wellenberg Wi bis zum letzten Wellenberg Ws jeder Wellfolie 7 erstrecken, oder wie in den Figuren 5 und 6 abgebildet, sich nur vom zweiten Wellenberg W2 bis zum vorletzten Wellenberg W4 jeder Wellfolie 7 erstrecken. Die Auswahl dieser bevorzugten Taillierungslängen Tu, Ti_2 ist dabei abhängig vom gewünschten Grad der Redu- zierung der axialen Federsteifigkeit der Wellfolien 7. Außerdem sollten die Tail lierungstiefen TTI , TT2 immer so bemessen sein, dass die Breite der Wellfolie 7 zwischen den tiefsten Punkten beider Taillierungen 16, 17 zwischen 0,75% und 0,95% der Axialbreite B der Wellfolien 7 an deren Endkanten 11, 12 beträgt. Bezugszahlenliste
1 Radial-Folienlager
2 Lagergehäuse
3 Innenumfang von 2
4 Folienpaket
5 Folienpaket
6 Folienpaket
7 Wellfolie
8 Deckfolie
9 Stecknut
10 Stecknut
11 Endkanten von 7
12 Endkanten von 8
13 Welle
14 Seitenkante von 7
15 Seitenkante von 7
16 Taillierung an 14
17 Taillierung an 15
B Axialbreite von 7
TTI Taillierungstiefe an14
TT2 Taillierungstiefe an 15
Tu Taillierungslänge an 14
T L2 Taillierungslänge an 15
Wl erster Wellenberg von 7
W2 zweiter Wellenberg von 7
W vorletzter Wellenberg von 7
Ws letzter Wellenberg von 7

Claims

Patentansprüche
1. Radial-Folienlager (1) zum Lagern einer Welle (13), umfassend ein hülsen artiges Lagergehäuse (2) mit wenigstens drei über den Innenumfang (3) des Lagergehäuses (2) verteilt angeordneten, jeweils einen Abschnitt des Innenumfangs (3) des Lagergehäuses (2) überdeckenden Folienpaketen (4, 5, 6), die jeweils aus einer am Innenumfang (3) des Lagergehäuses (2) an liegenden elastischen Wellfolie (7) sowie aus einer unterseitig auf der Well folie (7) aufliegenden und oberseitig eine Lagerfläche für die Welle (13) bil denden Deckfolie (8) bestehen, dadurch gekennzeichnet, dass die Wellfo- lien (7) an ihren in Umfangsrichtung verlaufenden Seitenkanten (14, 15) ört lich zumindest eine deren Axialbreite (B) verringernde Taillierung (16, 17) aufweisen, mit der die radiale Federsteifigkeit der Wellfolien (7) im Bereich ihrer Seitenkanten (14, 15) reduzierbar ist.
2. Radial-Folienlager (1) nach Anspruch 1, dadurch gekennzeichnet, dass an beiden Seitenkanten (14, 15) der Wellfolien (7) Taillierungen (16, 17) ange ordnet sind und beide Taillierungen (16, 17) kreisabschnittförmig sowie symmetrisch zueinander mit gleichen Taillierungstiefen (TT-I, TT2) und glei chen Taillierungslängen (Tu, Ti_2) ausgebildet sind.
3. Radial-Folienlager (1) nach Anspruch 1, dadurch gekennzeichnet, dass an beiden Seitenkanten (14, 15) der Wellfolien (7) Taillierungen (16, 17) ange ordnet sind und beide Taillierungen (16, 17) kreisabschnittförmig sowie un symmetrisch zueinander mit unterschiedlichen Taillierungstiefen (TT-I , TT2) und gleichen oder ungleichen Taillierungslängen (Tu, Ti_2) ausgebildet sind.
4. Radial-Folienlager (1) nach Anspruch 1, dadurch gekennzeichnet, dass an beiden Seitenkanten (14, 15) der Wellfolien (7) Taillierungen (16, 17) angeordnet sind und beide Taillierungen (16, 17) in Umfangsrichtung un- symmetrisch mit gleichen Taillierungstiefen (Tu, TT2) sowie gleichen Taillie rungslängen (Tu, TL2) ausgebildet sind.
5. Radial-Folienlager (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Taillierungen (16, 17) an beiden Seitenkanten (14, 15) der Wellfolien (7) sich in Umfangsrichtung vom ersten Wellenberg (Wi) bis zum letzten Wellenberg (Ws) jeder Wellfolie (7) erstrecken.
6. Radial-Folienlager (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Taillierungen (16, 17) an beiden Seitenkanten (14, 15) der Wellfolien (7) sich in Umfangsrichtung nur vom zweiten Wellenberg (W2) bis zum vorletzten Wellenberg (W4) jeder Wellfolie (7) erstrecken.
7. Radial-Folienlager (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Taillierungstiefe (TT) SO bemessen ist, dass die Breite der Wellfolie (7) zwischen den tiefsten Punkten beider Taillierungen (16, 17) zwischen 0,75% und 0,95% der Axialbreite (B) der Wellfolien (7) an deren Endkanten (11, 12) beträgt.
PCT/DE2021/100495 2020-07-07 2021-06-09 Radial-folienlager zum lagern einer welle WO2022007991A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/014,521 US20230258227A1 (en) 2020-07-07 2021-06-09 Radial foil bearing for supporting a shaft
CN202180047664.1A CN115812128A (zh) 2020-07-07 2021-06-09 用于对轴进行支承的径向箔轴承
KR1020227043072A KR20230008833A (ko) 2020-07-07 2021-06-09 샤프트를 지지하기 위한 레이디얼 포일 베어링

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020117888.3A DE102020117888A1 (de) 2020-07-07 2020-07-07 Radial-Folienlager zum Lagern einer Welle
DE102020117888.3 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007991A1 true WO2022007991A1 (de) 2022-01-13

Family

ID=76730250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100495 WO2022007991A1 (de) 2020-07-07 2021-06-09 Radial-folienlager zum lagern einer welle

Country Status (5)

Country Link
US (1) US20230258227A1 (de)
KR (1) KR20230008833A (de)
CN (1) CN115812128A (de)
DE (1) DE102020117888A1 (de)
WO (1) WO2022007991A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442391A1 (pl) * 2022-09-28 2024-01-03 Instytut Maszyn Przepływowych Im. Roberta Szewalskiego Polskiej Akademii Nauk Folia falista łożyska o asymetrycznym i regularnym rozmieszczeniu punktów podparcia folii

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118188697B (zh) * 2024-05-20 2024-07-16 中国电建集团透平科技有限公司 一种支承刚度可调的径向气体动压箔片轴承

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523518A (zh) * 2016-12-16 2017-03-22 南京航空航天大学 一种变宽式波箔动压气体径向轴承及其安装方法
DE102015224869A1 (de) 2015-12-10 2017-06-14 Schaeffler Technologies AG & Co. KG Folienlager

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698930B2 (en) 2000-12-01 2004-03-02 Mitsubishi Heavy Industries, Ltd. Foil gas bearing
WO2014062373A1 (en) * 2012-10-17 2014-04-24 Borgwarner Inc. An oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings
WO2015074686A1 (de) 2013-11-20 2015-05-28 Lux Powertrain S.A. Folie, folienanordnung mit einer anzahl von wenigstens drei gleichartigen folien, radialluftlager, mikrogasturbine und herstellungsverfahren für ein radialluftlage
KR102601001B1 (ko) * 2015-06-27 2023-11-13 보르그워너 인코퍼레이티드 전기 구동식 압축기용 공기 베어링 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224869A1 (de) 2015-12-10 2017-06-14 Schaeffler Technologies AG & Co. KG Folienlager
CN106523518A (zh) * 2016-12-16 2017-03-22 南京航空航天大学 一种变宽式波箔动压气体径向轴承及其安装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442391A1 (pl) * 2022-09-28 2024-01-03 Instytut Maszyn Przepływowych Im. Roberta Szewalskiego Polskiej Akademii Nauk Folia falista łożyska o asymetrycznym i regularnym rozmieszczeniu punktów podparcia folii

Also Published As

Publication number Publication date
US20230258227A1 (en) 2023-08-17
CN115812128A (zh) 2023-03-17
KR20230008833A (ko) 2023-01-16
DE102020117888A1 (de) 2022-01-13

Similar Documents

Publication Publication Date Title
DE2925058C2 (de) Drehfeste Preßfüge-Verbindung zweier Bauteile zur Übertragung von Drehmomenten
DE3345652C2 (de)
WO2022007991A1 (de) Radial-folienlager zum lagern einer welle
DE2725572C2 (de) Hydrodynamisches Gleitlager
DE3027262A1 (de) Im ziehverfahren hergestellte, duennwandige lagerbuechse
DE4305994A1 (en) Rotating ball joint - has bearing with inclined faces to base region having projections connecting to sleeve encasement
DE2945821C2 (de) Hydrodynamisches Wellenlager
WO1997028075A1 (de) Walze für eine wickelmaschine
WO2007143987A1 (de) Axialgleitlagerring
WO2020148028A1 (de) Folienaxiallager für brennstoffzellensysteme
EP2316666A2 (de) Fahrzeugluftreifen
EP2893207B1 (de) Axialkäfig für zylindrische wälzkörper
DE29615385U1 (de) Walze für eine Wickelmaschine
EP2478235A1 (de) Kugelrollenlager
EP2478236B1 (de) Kugelrollenlager
DE3406056A1 (de) Skikern
DE102004053125B4 (de) Wälzlageranordnung
DE102018128299A1 (de) Folienlager
EP0681930A1 (de) Laufflächenprofil
DE2923292C2 (de)
DE112022005328T5 (de) Luftfilmdrucklager
EP1837298A1 (de) Rad, insbesondere Lauf-oder Transportrad, insbesondere für Wellpappenherstellungsanlagen
WO2011003394A1 (de) Käfig für ein kugellager und verfahren zur herstellung des käfigs
DE102006050565A1 (de) Statorscheibe für eine Turbomolekularpumpe
DE19525558A1 (de) Buchse und Verfahren zum Herstellen derselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043072

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21736509

Country of ref document: EP

Kind code of ref document: A1