WO2022007373A1 - 转子增压式燃气轮机 - Google Patents

转子增压式燃气轮机 Download PDF

Info

Publication number
WO2022007373A1
WO2022007373A1 PCT/CN2021/000142 CN2021000142W WO2022007373A1 WO 2022007373 A1 WO2022007373 A1 WO 2022007373A1 CN 2021000142 W CN2021000142 W CN 2021000142W WO 2022007373 A1 WO2022007373 A1 WO 2022007373A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
air
air outlet
ventilation
outlet
Prior art date
Application number
PCT/CN2021/000142
Other languages
English (en)
French (fr)
Inventor
韩培洲
Original Assignee
韩培洲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩培洲 filed Critical 韩培洲
Publication of WO2022007373A1 publication Critical patent/WO2022007373A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a gas turbine, in particular to a rotor supercharged gas turbine.
  • the purpose of the present invention is to provide a rotor supercharged gas turbine.
  • the pressure of the gas entering the turbine is higher and the output power is higher, which is equivalent to the gas turbine having a piston-type internal combustion engine. the "top dead center”. Since the gas pressure entering the turbine is increased through the rotor, the efficiency of the gas turbine is also improved, and the correspondingly low efficiency of the low-power gas turbine can be overcome.
  • the rotor supercharged gas turbine of the present invention includes a rotor supercharged gas turbine, which includes a compressor and a turbine connected by a crankshaft.
  • a rotor supercharged gas turbine which includes a compressor and a turbine connected by a crankshaft.
  • several combustion chambers with the same shape and equal spacing are densely arranged on the rotor in the circumferential direction.
  • the moving gear is then driven by the drive gear on the crankshaft through the intermediate transmission gear and the intermediate transmission gear.
  • the compressed air outlet of the compressor is communicated with the ventilation inlet on the rotor shell, and the ventilation outlet on the rear side of the rotor shell leads to the turbine.
  • the ventilation inlet and the ventilation outlet on the rotor shell are at the same angular position, and the angle occupied by the ventilation inlet and the ventilation outlet is wider, which is basically equal to or slightly larger than the width occupied by the two adjacent combustion chambers on the rotor.
  • the rotor casing is divided into two or more equal distribution angle zones, from the start position of each air distribution angle zone on the rotor casing to the end position along the direction of rotor rotation, and is connected with the rotor casing.
  • the positions of the combustion chambers correspond to each other, and are sequentially provided with a ventilation inlet and a ventilation outlet located at the same angle, an injection cavity equipped with an injector, an ignition cavity equipped with a spark plug, and several first air outlets arranged in sequence.
  • the second air outlet, the third air outlet, the fourth air outlet and the fifth air outlet... there is a nozzle plate on the front side of the turbine, and the nozzle plate is also divided into several air distribution angles with the rotor shell
  • the ventilation outlet, the first air outlet, the second air outlet, the third air outlet, the fourth air outlet and the fifth air outlet set in each of several air distribution angle zones on the rotor shell
  • the air ports are arranged along the respective air pipes by displacement, they are connected with the ventilation nozzle, the fifth air port, the third air port, the first air port, and the first air port in the following order in the air distribution angle area on the nozzle plate.
  • the second air port and the fourth air port... After the plate is installed, it becomes the first air outlet as the middle maximum pressure air outlet, and then the corresponding remaining air outlets are arranged in order on the left and right sides of the first air outlet in the order of decreasing pressure.
  • the combustion chambers on the rotor can be made into pit combustion chambers and are evenly distributed on the circumference of the rotor.
  • the rotor can be made cylindrical, or it can be made into a truncated cone.
  • the air port, the second air outlet, the third air outlet, the fourth air outlet and the fifth air outlet... are all arranged on the intermediate casing between the front end cover and the rear end cover, and the ignition chamber with the spark plug is close to the turbine.
  • each of the first air outlet, second air outlet, third air outlet, fourth air outlet and fifth air outlet... on the intermediate casing is also arranged at a position close to the turbine side.
  • the combustion chamber on the rotor can also be made into a can-shaped combustion chamber, which is evenly distributed in the cylindrical body of the rotor. air outlet.
  • the corresponding ventilation inlets in each air distribution angle area on the rotor shell are arranged on the front end cover corresponding to the front-side air inlet of the barrel-shaped combustion chamber.
  • Each corresponding ventilation outlet, fuel injection cavity, ignition cavity and several first air outlet, second air outlet, third air outlet, fourth air outlet and fifth air outlet arranged in sequence on the shell are all provided
  • the ventilation inlets on the front end cover and the corresponding ventilation outlets on the rear end cover are aligned with each other.
  • the front end cover is also provided with a fuel injection chamber aligned with the rear end cover and the installed fuel injector.
  • the ventilation pipes connected from the ventilation outlets on the rotor shell can also be arranged in such a way that the ventilation pipes do not lead to the nozzle disk on the front side of the turbine, but lead to the first-stage turbine and the second-stage turbine.
  • the position of the corresponding air vent on the turbine casing is at an angular position where the air flow pressure in the turbine casing is the smallest.
  • the compressed air outlet on the compressor casing is connected to each ventilation inlet on the rotor casing through each compressed air delivery pipe after passing through the intercooler.
  • a driven fan and an outer duct casing are arranged at the front of the compressor, and the compressed air outlets on the compressor casing are respectively distributed with a number of uniformly distributed in the middle of the outer duct.
  • the air inlet end of the cooler is connected, and the air outlet end of each intercooler is connected with each corresponding ventilation inlet on the rotor shell respectively.
  • the intercooler is made into a streamlined flat tube structure, on the streamlined flat tube of the intercooler A corresponding number of cooling fins are arranged along the airflow direction.
  • the gas flowing out of the compressor is charged into the combustion chamber on the rotor through the ventilation inlet, it is transferred to the ignition chamber with the rotor for high-pressure combustion and forms high-pressure gas, so that the high-pressure gas in the combustion chamber is
  • the gas is first transferred to the first gas outlet of the gas to push the turbine to do work, then the working gas with a slight pressure drop is transferred to the second gas outlet of the gas to push the turbine to do work, and then to the third gas outlet to push the turbine to work.
  • the remaining working gas will be ejected from the remaining air ports on the left and right sides in the order of decreasing pressure to push the turbine, and there will be no power loss due to too much change in the pulsating pressure of the working gas. , and will not cause damage to the turbine.
  • the rotor in the rotor supercharged gas turbine separates the compressor and the turbine, it is equivalent to the gas turbine also has It is similar to the "top dead center" in the piston internal combustion engine, allowing the gas turbine to obtain a higher work pressure of the gas before the turbine.
  • the temperature and pressure of the working gas ejected from the remaining left and right ports gradually decrease, so that the average temperature of the working gas decreases accordingly.
  • the thermal load on the turbine is significantly reduced, which is conducive to prolonging the service life of the gas turbine and reducing the manufacturing cost of turbine components.
  • the corresponding reduction in the circulating temperature of the gas turbine will not only significantly reduce the thermal load on the turbine, but also reduce the production of NO and nitrogen oxides due to low-temperature combustion. Helps to reduce exhaust pollution.
  • FIG. 1 is a general structural diagram of a rotor supercharged gas turbine of the present invention.
  • FIG. 2 is a cross-sectional view of the rotor supercharged gas turbine taken along the line A-A in FIG. 1 .
  • FIG. 3 is a cross-sectional view of the injector arrangement and rotor combustion chamber along line B-B of FIG. 2 .
  • FIG. 4 is a cross-sectional view of the spark plug arrangement and rotor combustion chamber along line C-C of FIG. 2 .
  • FIG. 5 is a cross-sectional view of the first air outlet and the first air delivery pipe along the line D-D in FIG. 2 .
  • FIG. 6 is a cross-sectional view of a rotor structure employing a truncated cone.
  • FIG. 7 is a diagram showing the communication arrangement between the first to sixth air outlets on the rotor casing and the corresponding jet ports on the turbine front jet disc after being displaced and arranged by their respective gas pipes.
  • Fig. 8 is a configuration diagram of a rotor using a can combustion chamber.
  • FIG. 9 is a structural cross-sectional view of the ventilation inlet, the can-shaped combustion chamber and the ventilation outlet on the rotor casing.
  • Fig. 10 is a structural cross-sectional view of the fuel injection chamber with the fuel injector and the cylindrical combustion chamber on the rotor casing.
  • Fig. 11 is a cross-sectional view of the structure of the ignition chamber and the can-shaped combustion chamber with the spark plug on the rotor casing.
  • FIG. 12 is a structural arrangement diagram in which the ventilation outlet on the rotor casing communicates with the ventilation port on the turbine casing at the corresponding position between the first-stage turbine and the second-stage turbine through an air delivery pipe.
  • Fig. 13 is a structural arrangement diagram in which each compressed air outlet on the compressor casing communicates with each corresponding ventilation inlet on the rotor casing through the intercooler in the outer duct.
  • FIG. 1 is an overall structural diagram of a rotor-supercharged gas turbine of the present invention. As can be seen from the figure, this rotor-supercharged gas turbine includes a compressor 9 and a turbine 25 connected by a crankshaft 23.
  • a rotor 41 is provided between the compressor 9 and the turbine 25, and the rotor is mounted on the front end cover 29, In the rotor casing 28 formed by the intermediate casing 30 and the rear end cover 39 , a plurality of combustion chambers 45 with the same shape and equal spacing are arranged densely on the rotor 41 in the circumferential direction.
  • the combustion chambers 45 on the rotor 41 in FIG. 1 are formed as dimpled combustion chambers 48 and are uniformly distributed on the circumferential surface 54 of the rotor.
  • the rotor 41 can be made into a cylindrical shape as shown in FIG.
  • the rotor 41 is made into a truncated cone shape as shown in FIG. 6, as long as the rotor 41 is moved closer to the intermediate casing 30 in the axial direction by a circular ring gasket with a sloped guide surface, the distance between the inner wall of the intermediate casing and the inner wall of the intermediate casing can be reduced. the sealing gap.
  • the compressed air outlet 55 of the compressor 9 communicates with the ventilation inlet 31 on the rotor casing 28 through the gas delivery pipeline 68 , and the ventilation outlet 7 on the rear side of the rotor casing leads to the turbine 25 .
  • the ventilation inlet 31 on the rotor shell 28 and the ventilation outlet 7 are at the same angular position, and the angle occupied by the ventilation inlet and the ventilation outlet is wider, as shown in FIG.
  • the width occupied by two adjacent combustion chambers 45 can ensure that the ventilation inlet 31 and the ventilation outlet 7 on the rotor shell 28 can always be communicated with the combustion chamber 45, so that the compressor 9 can discharge air through the compressed air outlet 55.
  • the compressed air can continuously flow into the ventilation inlet 31 on the rotor shell, and fill the corresponding combustion chamber 45 on the rotor, quickly squeeze out the low-pressure working gas in the combustion chamber, and let the low-pressure working gas also be replaced.
  • the air outlet 7 is quickly discharged to the outside.
  • the rotor casing 28 is divided into two or more equal distribution angle zones 40 .
  • the rotor casing 28 is divided into four equal distribution angles. District 40. From the start position of each valve angle zone 40 on the rotor housing 28 to the end position in the direction of rotation of the rotor 41 (as indicated by the turning arrow 66), and corresponding to the position of the combustion chamber 45 on the rotor, in order There are ventilation inlet 31 and ventilation outlet 7 at the same angle, fuel injection cavity 34 equipped with fuel injector 35, ignition cavity 36 equipped with spark plug 37 and several first air outlets 1 arranged in sequence. , the second air outlet 2, the third air outlet 3, the fourth air outlet 4, the fifth air outlet 5 and the sixth air outlet 6.
  • the ignition chamber 36 and a number of sequentially arranged first air outlet 1, second air outlet 2, third air outlet 3, fourth air outlet 4 and fifth air outlet 5... are all arranged on the front end cover 29 and the on the intermediate housing 30 between the rear end covers 39 .
  • two (or more) fuel injectors 35 may be installed on the corresponding fuel injection chambers 34, so that the fuel injectors can inject fuel Evenly sprayed in the elongated pit combustion chamber 48 .
  • the ignition chamber 36 with the spark plug 37 is arranged close to the turbine 25 side (refer to FIG. 4 ), so that the spark plug ignites the fuel-air mixture in the combustion chamber 48 near the turbine side first.
  • the fuel-air mixture in the turned combustion chamber 48 will be naturally ignited by the high temperature working gas in the ignition chamber 36, and the spark plug 37 is only ignited when the gas turbine is started.
  • the first air outlet 1 , the second air outlet 2 , the third air outlet 3 , the fourth air outlet 4 , the fifth air outlet 5 and the sixth air outlet 6 on the intermediate casing 30 are also arranged on the side facing the turbine 25 . position (refer to the setting position of the first air outlet 1 in FIG. 5 ).
  • a nozzle disc 32 is provided on the front side of the turbine 25. As shown in FIG. 1 and FIG. 7, the nozzle disc 32 is also divided into a number of distribution angle areas 40 that are the same as and corresponding to the several air distribution angle areas 40 on the rear end cover 39 of the rotor shell.
  • the fifth air outlet 5 and the sixth air outlet 6 are respectively arranged along the respective air pipes by displacement, they are then connected with the air distribution angle areas 40' on the spout plate 32 in the following order, in turn with the ventilation.
  • the nozzle 7', the fifth nozzle 5', the third nozzle 3', the first nozzle 1', the second nozzle 2', the fourth nozzle 4' and the sixth nozzle 6' are connected in sequence ( In FIG.
  • the opposite side forms the odd-numbered air ports of the third air port 3' and the fifth air port 5'.
  • the working gas in the combustion chamber is at a relatively high pressure when it is just sprayed out of the first air outlet, it is depressurized step by step through the subsequent air outlets, and is arranged by the displacement of the nozzle plate 32.
  • the working gas with higher pressure is in the After a part of the first gas outlet is sprayed out, the remaining working gas will be sprayed out from the remaining gas ports on the left and right sides in the order of decreasing pressure to push the turbine, and there will be no large fluctuations in the working gas pressure. , so there is no loss of pulsating power and no damage to the turbine.
  • the angle of the first air outlet 1' is also It is aligned with the first air outlet 1 on the rear end cover 39 . Because the fifth air pipe 15 connecting the fifth air outlet 5 and the fifth air injection port 5' has to cross the first air pipe 11, the second air pipe 12, the third air pipe 13 and the fourth air pipe 14, the fifth air pipe is also the longest. The length of the sixth air pipe 16 between the sixth air outlet 6 and the sixth air outlet 6' is also relatively short.
  • a ceramic thermal insulation layer can be sprayed on the inner walls of these gas pipes, A ceramic thermal insulation layer should also be provided on the inner wall of the ignition chamber 36 and the inner wall of the combustion chamber.
  • the rotor 41 For the transmission between the rotor and the crankshaft, if the rotor 41 is directly mounted on the crankshaft 23 to make the rotor rotate at the same speed as the compressor 9 and the turbine 25, when the gas turbine is running, the compressed air from the compressor 9 is replaced by The gas inlet 31 enters, and can squeeze out all the low-pressure gas in the rotor combustion chamber 45 after work is done, and quickly exchange it out through the ventilation outlet 7, then the structure of directly mounting the rotor 41 on the crankshaft 23 is convenient. It is the simplest layout structure. If making the rotor rotate at the same speed with the compressor and turbine cannot make good ventilation in the rotor combustion chamber 45, as shown in FIG. 44 and the intermediate transmission gear 64 are driven by the drive gear 24 on the crankshaft 23 at a variable speed. In practice, the rotor 41 is driven by the acceleration or deceleration, which needs to be tested and confirmed during the operation of the gas turbine.
  • the combustion chamber on the rotor 41 can be made into a cylindrical combustion chamber 49, which is evenly distributed in the cylindrical body of the rotor. 49 has a front air inlet 52 at the front end face of the rotor and a rear air outlet 53 at the rear end face of the rotor.
  • the corresponding ventilation inlets 31 in each air distribution angle area 40 on the rotor shell 28 are arranged on the front end cover 29 corresponding to the front air inlet 52 of the barrel-shaped combustion chamber.
  • Each corresponding ventilation outlet 7 (refer to FIG. 9 )
  • the fuel injection chamber 34 (refer to FIG.
  • the ignition chamber 36 (refer to FIG. 11 ) and several first air outlets, second air outlets, third air outlets arranged in sequence
  • the air outlet, the fourth air outlet and the fifth air outlet (not shown) are all provided on the rear end cover 39 .
  • the ventilation inlet 31 on the front end cover 29 and the corresponding ventilation outlet 7 on the rear end cover 39 are aligned with each other, and the width of the ventilation inlet and outlet is also substantially equal to or slightly larger than the two adjacent cylindrical shapes on the rotor 41.
  • the width occupied by the combustion chamber 49 When the size of the cylindrical combustion chamber 49 is long, as shown in FIG. 10 , the front end cover 29 is also provided with a fuel injection chamber 34 aligned with the rear end cover 39 and the installed fuel injector 35 to ensure that the The fuel can be completely injected into the combustion chamber.
  • the ventilation gas pipe 17 connected from each ventilation outlet 7 on the rotor shell 28 is not open.
  • the arrangement of the ventilation pipes 17 in this way helps to quickly exchange the compressed air entering the combustion chamber with the low-pressure gas after work because the gas pressure behind the first-stage turbine 26 has been reduced accordingly.
  • the compressed air outlet 55 on the compressor casing 20 can first lead to the intercooler, and then pass through the compressed air pipes and the intercooler respectively.
  • the ventilation inlets 31 on the rotor casing 28 communicate with each other (not shown). After the compressed air flowing out of the compressor is cooled by the intercooler, the heat load on the turbine is correspondingly reduced due to the reduction of the circulating temperature of the gas turbine, and the production of NO nitrogen oxides is also reduced due to low-temperature combustion.
  • each compressed air outlet 55 on the casing 20 is respectively connected with the air inlet ends of a plurality of intercoolers 60 evenly distributed in the outer duct 58, and the air outlet ends of each intercooler are respectively connected with the corresponding ventilation ends on the rotor casing 28.
  • the inlet 31 is connected, the intercooler 60 is made into a streamlined flat tube structure, and a corresponding number of cooling fins 61 are arranged on the streamlined flat tube of the intercooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

一种转子(41)增压式燃气轮机,在压气机(9)与涡轮(25)之间设有其上带有若干个燃烧室(45)的转子(41),该转子(41)装在转子壳(28)内,在转子壳(28)上依次设有处在同一角度内的换气进口(31)与换气出口(7)、装有喷油器(35)的喷油腔(34)、装有火花塞(37)的点火腔(36)和若干个依次顺序排列的第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……,从这些出气口喷出的作功燃气经各相应变位排列的输气管(11-17)从喷口盘(32)上的各相应喷气口(1'-7')喷出,推动涡轮(25)对外作功。

Description

转子增压式燃气轮机
技术领域 本发明涉及一种燃气轮机,特别是转子增压式燃气轮机。
背景技术 在普通燃气轮机中,采用的是由压气机、燃烧室和涡轮组合而成的结构运转,压气机的出口压力几乎与涡轮的进口压力相同,只是进入涡轮的作功燃气由于温度更高、膨胀比更大而能向外输出动力。在活塞式内燃机中,活塞在上止点前压缩,上止点后燃烧作功,上止点前、后的压力是完全不同的,在上止点后燃油空气混合气因燃烧压力更大,发动机输出功率也更多。
发明内容 本发明的目的是提供一种转子增压式燃气轮机,通过在压气机与涡轮之间增设转子装置,使进入涡轮的燃气压力更大,输出功率更多,相当于燃气轮机具有了活塞式内燃机的“上止点”。由于通过转子提高了进入涡轮的燃气压力,也提高了燃气轮机的效率,还可克服在小功率燃气轮机中效率会相应偏低的不足。
本发明的转子增压式燃气轮机包括一种转子增压式燃气轮机,包括压气机、通过机轴相连接的涡轮,在压气机与涡轮之间设有转子,该转子装在由前端盖、中间壳体和后端盖所构成的转子壳内,在转子上按圆周方向密集的排列有形状相同、间隔距离相等的若干个燃烧室,转子直接装在机轴上,或者通过转子轴套上的从动齿轮再经中间传动齿轮和中间传动齿轮被机轴上的驱动齿轮变速驱动,压气机的压缩空气出气口与转子壳上的换气进口连通,转子壳上后侧的换气出口通向涡轮,转子壳上的换气进口与换气出口处于同一角度位置上,换气进口和换气出口所占的角度较宽,基本等于或略大于转子上两个相邻燃烧室所占的宽度,在转子壳上划分有均等的两个或两个以上的若干配气角度区,从转子壳上每个配气角度区的开始位置、到顺转子旋转方向的末端位置处,并与转子上的燃烧室位置相对应,依次设有处在同一角度内的换气进口与换气出口、装有喷油器的喷油腔、装有火花塞的点火腔和若干个依次顺序排列的第一出气口、第二出气口、第三出气口、第四出气口及第五出气口……,在涡轮的前侧设有喷口盘,在该喷口盘上也划分有与转子壳上的若干配气角度区相同并对应的配气角度区,在转子壳上各若干配气角度区所设的换气出口、第一出气口、第二出气口、第三出气口、第四出气口及第五出气口分别沿各自的输气管 经变位排列后,再与喷口盘上的各配气角度区内按以下顺序依次与换气喷口、第五喷气口、第三喷气口、第一喷气口、第二喷气口和第四喷气口……的顺序排列相连,使转子壳上的第一出气口从压力最大开始、到压力逐渐变小的出气口排列顺序,经输气管的变位排列连接到喷口盘上后,变成以第一出气口为中间最大压力气口,再把相应的其余各气口按压力递减次序向第一出气口的左右两侧依次分别排列。
转子上的燃烧室可被制成凹坑燃烧室,并均布在转子的圆周面上。转子可被制成圆柱形,或者被制成截圆锥形。
在转子上的燃烧室被制成凹坑燃烧室后,转子壳上各若干配气角度区内的换气进口、换气出口、喷油腔、点火腔和若干个依次顺序排列的第一出气口、第二出气口、第三出气口、第四出气口及第五出气口……,都设置在前端盖与后端盖之间的中间壳体上,装有火花塞的点火腔靠向涡轮侧布置,中间壳体上的各个第一出气口、第二出气口、第三出气口、第四出气口及第五出气口……也设置在靠向涡轮侧的位置。当凹坑燃烧室尺寸较长时,在相应的喷油腔上可装有两个或两个以上的喷油器。
转子上的燃烧室还可被制成筒形燃烧室,并均布在转子的圆柱形体内,筒形燃烧室具有处在转子前端面的前侧进气口和处在转子后端面的后侧出气口。
在转子上的燃烧室被制成筒形燃烧室后,转子壳上各配气角度区内相应的换气进口设置在与筒形燃烧室的前侧进气口相对应的前端盖上,转子壳上的各相应换气出口、喷油腔、点火腔和若干个依次顺序排列的第一出气口、第二出气口、第三出气口、第四出气口及第五出气口……均设置在后端盖上,前端盖上的换气进口与后端盖上相对应的换气出口是相互对齐的。当筒形燃烧室的尺寸较长时,在前端盖上也设有与后端盖相对齐的喷油腔及所安装的喷油器。
从转子壳上各换气出口所接出的换气输气管还可这样布置,让换气输气管并不通向涡轮前侧的喷口盘,而是通向与第一级涡轮和第二级涡轮之间位置相对应的涡轮壳上的相应通气口,并且该通气口的位置处于涡轮壳内气流压力最小的角度位置处。
为了让转子增压式燃气轮机能进行中间冷却循环,压气机壳上的压缩空气出气口是在经过中间冷却器后,再分别经各压缩空气输气管与转子壳上的各换气进口相连通。
在把转子增压式燃气轮机作为飞机发动机时,在压气机的前部设有被带动的风扇和外涵道壳,压气机壳上的各压缩空气出气口分别与若干均布在外涵道内各中间冷却器的进气端相连,各中间冷却器的出气端再分别与转子壳上的各相应换气进口相连通,中间冷却器被制成流线型扁管结构,在中间冷却器的流线型扁管上设有相应数量的顺气流方向排列的散热片。
在本发明的转子增压式燃气轮机中,由于流出压气机的气体经换气进口充进转子上的燃烧室后,是随转子转到点火腔进行高压燃烧并形成高压燃气,让燃烧室内的高压燃气首先转到燃气的第一出气口去推动涡轮作功,然后压力稍降的作功燃气依次转到燃气的第二出气口去推动涡轮作功,再依次转到第三出气口推动涡轮作功……,让流出压气机的气体在进入转子燃烧室后,能经过燃烧形成更高压力的燃气再推动涡轮作功,让燃气轮机发出的功率更大,效率也相应的更高。由于转子增压式燃气轮机中的涡轮前燃气压力大幅度高于压气机的排气压力,与普通燃气轮机中的等压循环相比,压气机所消耗的压缩功相应减少,也让燃气轮机输出的功率更多。虽然燃烧室中的作功燃气刚喷出第一出气口时压力较大,但经随后的各出气口逐级降压,并被喷口盘的变位排列,压力较大的作功燃气在从第一出气口喷出一部分后,剩下的作功燃气会按压力递减次序从左右两侧其余的各气口分别喷出推动涡轮,不会出现因作功燃气脉动压力变化太大而造成功率损失,也不会对涡轮造成损坏。
与活塞内燃机中的上止点前压缩压力较低、上止点后的作功燃气压力更高相比,由于转子增压式燃气轮机中的转子隔开了压气机与涡轮,相当于燃气轮机也具有了类似活塞内燃机中的“上止点”,让燃气轮机获得了更高的涡轮前燃气作功压力。另外,因只有从第一出气口喷出的作功燃气温度和压力最高,从其余左右两侧各气口喷出的作功燃气温度和压力是逐渐降低的,让作功燃气的平均温度相应降低,使涡轮所受到的热负荷明显减小,有利于延长燃气轮机的使用寿命,也有利于降低涡轮部件的生产制造成本。在让压气机流出的压缩空气经中间冷却器中间冷却后,因燃气轮机循环温度的相应降低,不仅会明显减小涡轮所受到的热负荷,也会因低温燃烧而减少NO氮氧化物的产生,有利于降低排气污染。
附图说明 下面结合附图对本发明的转子增压式燃气轮机进行细的说明。
图1是本发明的转子增压式燃气轮机的总体结构图。
图2是沿图1中A-A线的转子增压式燃气轮机剖视图。
图3是沿图2中B-B线的喷油器布置和转子燃烧室的剖视图。
图4是沿图2中C-C线的火花塞布置和转子燃烧室的剖视图。
图5是沿图2中D-D线的第一出气口及第一输气管的剖视图。
图6是采用了截圆锥形的转子结构剖视图。
图7是转子壳上的各第一出气口至第六出气口经各自的输气管经变位排列后与涡轮前喷口盘上各相应喷气口的连通布置图。
图8是采用了筒形燃烧室的转子结构图。
图9是转子壳上的换气进口、筒形燃烧室和换气出口的结构剖视图。
图10是转子壳上的装有喷油器的喷油腔和筒形燃烧室的结构剖视图。
图11是转子壳上的装有火花塞的点火腔和筒形燃烧室的结构剖视图。
图12是转子壳上的换气出口经输气管与第一级涡轮和第二级涡轮之间位置相对应的涡轮壳上的通气口相连通的结构布置图。
图13是压气机壳上的各压缩空气出口分别经外涵道内的中间冷却器与转子壳上的各相应换气进口相连通的结构布置图。
具体实施方式 图1是本发明转子增压式燃气轮机的总体结构图,由图可见,这种转子增压式燃气轮机包括压气机9、通过机轴23相连接的涡轮25。为了让燃气轮机也具有类似活塞式内燃机中的“上止点”,获得更高的涡轮前作功燃气压力,在压气机9与涡轮25之间设有转子41,该转子装在由前端盖29、中间壳体30和后端盖39所构成的转子壳28内,在转子41上按圆周方向密集的排列有形状相同、间隔距离相等的若干个燃烧室45。图1中转子41上的燃烧室45被制成了凹坑燃烧室48,并均布在转子的圆周面54上。转子41可制成如图1中所示的圆柱形,并与中间壳体30的内壁保持着非常小的间隙,以防止气体过多的泄漏。或者把转子41制成如图6中所示的截圆锥形,只要用具有斜坡导面的圆环垫片沿轴向使转子41移近中间壳体30,就可减小与中间壳体内壁的密封间隙。
在图1中,压气机9的压缩空气出气口55经输气管路68与转子壳28上的换气进口31连通,转子壳上后侧的换气出口7通向涡轮25。转子壳28上的换气进口31与换气出口7处于同一角度位置上,换气进口和换气出口所占的角度较宽,如图2中所示,基本等于或略大于转子41上两个相邻燃烧室45所占的宽度,以便能保证让转子壳28上的换气进口31和换气出口7能始终被燃烧室45沟通,让压气机9经压缩空气出气端55所 排出的压缩空气能不间断连续的流进转子壳上的换气进口31,并充进转子上所对应的燃烧室45,快速挤走燃烧室内的低压作功燃气,并让低压作功燃气也从换气出口7快速向外排出。
在转子壳28上划分有均等的两个或两个以上的若干配气角度区40,在图2所示的增压式燃气轮机中,在转子壳28上划分出了四个均等的配气角度区40。在从转子壳28上的每个配气角度区40的开始位置、到顺转子41旋转方向(如转向箭头66所示)的末端位置处,并与转子上的燃烧室45位置相对应,依次设有处在同一角度内的换气进口31与换气出口7、装有喷油器35的喷油腔34、装有火花塞37的点火腔36和若干个依次顺序排列的第一出气口1、第二出气口2、第三出气口3、第四出气口4、第五出气口5及第六出气口6。实际中,各出气口所占的角度越小,排列间隔越密,可设置的出气口也相应越多,让相邻出气口之间的气体压力降低幅度也越小,直达到合适的数量为止。增压式燃气轮机的功率越大,所设置的出气口也会相应越多。
当转子上的燃烧室被制成了凹坑燃烧室48后,如图2中所示,转子壳28上各自配气角度区40内的换气进口31、换气出口7、喷油腔34、点火腔36和若干个依次顺序排列的第一出气口1、第二出气口2、第三出气口3、第四出气口4及第五出气口5……,都设置在前端盖29与后端盖39之间的中间壳体30上。
当凹坑燃烧室48尺寸较长时,如图3中所示,在相应的喷油腔34上可装有两个(或两个以上)喷油器35,以便让喷油器能把燃料均匀的喷在较长形的凹坑燃烧室48内。装有火花塞37的点火腔36靠向涡轮25侧布置(参看图4),可让火花塞先点燃靠近涡轮侧燃烧室48内的燃油空气混合气。实际中,由于点火腔36内储存着高温作功燃气,转过来的燃烧室48内的燃油空气混合气会被点火腔36内的高温作功燃气自然点火,火花塞37只是在燃气轮机启动时点火。中间壳体30上的各个第一出气口1、第二出气口2、第三出气口3、第四出气口4、第五出气口5和第六出气口6也设置在靠向涡轮25侧的位置(参看图5中第一出气口1的设置位置)。
在涡轮25的前侧设有喷口盘32,如图1和图7所示,在喷口盘32上也划分有与转子壳的后端盖39上的若干配气角度区40相同并对应的配气角度区40′,在转子壳后端盖39上的各若干配气角度区40所设的换气出口7、第一出气口1、第二出气口2、第三出气口3、第四出气口4、第五 出气口5及第六出气口6分别沿各自的输气管经变位排列后,再与喷口盘32上的各配气角度区40′内按以下顺序,依次与换气喷口7′、第五喷气口5′、第三喷气口3′、第一喷气口1′、第二喷气口2′、第四喷气口4′和第六喷气口6′的顺序排列相连(图7中只描绘了一个配气角度区40内的输气管连接),使转子壳28上的第一出气口1从压力最大开始、到压力逐渐变小的出气口排列顺序,经输气管的变位排列连接到喷口盘32上后,变成以第一出气口1为中间最大压力气口,再把相应的其余各气口按压力递减次序向第一出气口的左右两侧依次分别排列,并在第一喷气口1′顺转子的转向箭头66方向侧形成第二喷气口2′、第四喷气口4′和第六喷气口6′的双数喷气口,在第一喷气口1′的反向侧形成第三喷气口3′和第五喷气口5′的单数喷气口。虽然燃烧室中的作功燃气刚喷出第一出气口时压力较大,但经随后的各出气口逐级降压,并被喷口盘32的变位排列,压力较大的作功燃气在从第一出气口喷出一部分后,剩下的作功燃气会按压力递减次序从左右两侧其余的各气口再分别喷出去推动涡轮,不会出现作功燃气压力脉动变化太大的情况,因而不会造成脉动功率损失,也不会对涡轮造成损坏。
由于从第一出气口1喷出作功燃气温度最高,为缩短第一出气口1与相应第一喷气口1′之间第一输气管11的长度,第一喷气口1′在角度上也是与后端盖39上的第一出气口1相对准的。连接第五出气口5与第五喷气口5′的第五输气管15因要越过第一输气管11、第二输气管12、第三输气管13和第四输气管14,第五输气管的长度也最长的。第六出气口6与第六喷气口6′之间的第六输气管16的长度也相对较短。
实际中,为防止第一输气管11、第二输气管12、第三输气管13和第四输气管14……被高温燃气过份加热,可在这些输气管的内壁喷涂陶瓷隔热层,在点火腔36的内壁和燃烧室内壁,也应设置陶瓷隔热层。
对于转子与机轴之间的传动,如把转子41直接装在机轴23上让转子与压气机9和涡轮25等速转动,在燃气轮机运转时,从压气机9出来的压缩空气在从换气进口31进入、并能把转子燃烧室45内的作功后低压燃气全部挤出、经换气出口7向外快速换出,那这种把转子41直接装在机轴23上的结构便是最简单的布置结构。如果让转子与压气机和涡轮等速转动不能使转子燃烧室45内进行良好的换气,还可如图1所示,让转子41通过转子轴套42上的从动齿轮43经中间传动齿轮44和中间传动齿轮 64被机轴23上的驱动齿轮24变速驱动,实际中是增速或者减速带动转子41,还需要在燃气轮机运转中测试确定。
转子上的燃烧室除制成凹坑形以外,还可如图8所示,把转子41上的燃烧室制成筒形燃烧室49,并均布在转子的圆柱形体内,筒形燃烧室49具有处在转子前端面的前侧进气口52和处在转子后端面的后侧出气口53。在转子采用筒形燃烧室后,转子壳28上各配气角度区40内相应的换气进口31设置在与筒形燃烧室的前侧进气口52相对应的前端盖29上,转子壳上的各相应换气出口7(参看图9)、喷油腔34(参看图10)、点火腔36(参看图11)和若干依次顺序排列的第一出气口、第二出气口、第三出气口、第四出气口及第五出气口(未画)均设置在后端盖39上。前端盖29上的换气进口31与后端盖39上相对应的换气出口7是相互对齐的,换气进、出口的宽度也会基本等于或略大于转子41上两个相邻筒形燃烧室49所占的宽度。当筒形燃烧室49的尺寸较长时,如图10所示,在前端盖29上也设有与后端盖39相对齐的喷油腔34及所安装的喷油器35,以保证让燃油能被完全喷入燃烧室。
与图1中转子壳28上的各换气出口7通向涡轮前的喷口盘32不同,在图12中,从转子壳28上各换气出口7所接出的换气输气管17并不通向涡轮25前侧的喷口盘32,而是通向与第一级涡轮26和第二级涡轮27之间位置相对应的涡轮壳22上的相应通气口10,并且该通气口的位置处于涡轮壳22内气流压力最小的角度位置处。让换气输气管17这样布置,因第一级涡轮26后面的燃气压力已经相应降低,有助于让进入燃烧室内的压缩空气与作功后的低压燃气迅速换气。
参照普通燃气轮机的中间冷却循环,在转子增压式燃气轮机也进行中间冷却循环时,压气机壳20上的压缩空气出气口55可先通向中间冷却器,然后再分别经各压缩空气输气管与转子壳28上的各换气进口31相连通(未画)。让压气机流出的压缩空气经中间冷却器中间冷却后,因降低了燃气轮机的循环温度使涡轮所受到的热负荷相应减小,同时因低温燃烧也减少了NO氮氧化物的产生。
在把转子增压式燃气轮机作为飞机发动机时,如让这种燃气轮机进行中间冷却循环,如图13所示,在压气机9的前部设有被带动的外涵道壳59和风扇57,压气机壳20上的各压缩空气出口55分别与若干均布在外涵道58内各中间冷却器60的进气端相连,各中间冷却器的出气端再分别 与转子壳28上的各相应换气进口31相连通,中间冷却器60被制成流线型扁管结构,在中间冷却器的流线型扁管上设有相应数量的顺气流方向排列的散热片61。

Claims (10)

  1. 一种转子增压式燃气轮机,包括压气机(9)、通过机轴(23)相连接的涡轮(25),其特征在于:在压气机(9)与涡轮(25)之间设有转子(41),该转子装在由前端盖(29)、中间壳体(30)和后端盖(39)所构成的转子壳(28)内,在转子(41)上按圆周方向密集的排列有形状相同、间隔距离相等的若干个燃烧室(45),转子(41)直接装在机轴(23)上,或者通过转子轴套(42)上的从动齿轮(43)再经中间传动齿轮(44)和中间传动齿轮(64)被机轴(23)上的驱动齿轮(24)变速驱动,压气机(9)的压缩空气出气口(55)与转子壳(28)上的换气进口(31)连通,转子壳(28)上后侧的换气出口(7)通向涡轮,转子壳上的换气进口与换气出口处于同一角度位置上,换气进口(31)和换气出口(7)所占的角度较宽,基本等于或略大于转子(41)上两个相邻燃烧室(45)所占的宽度,在转子壳(28)上划分有均等的两个或两个以上的若干配气角度区(40),从转子壳(28)上每个配气角度区(40)的开始位置、到顺转子(41)旋转方向的末端位置处,并与转子上的燃烧室(45)位置相对应,依次设有处在同一角度内的换气进口(31)与换气出口(7)、装有喷油器(35)的喷油腔(34)、装有火花塞(37)的点火腔(36)和若干个依次顺序排列的第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……,在涡轮(25)的前侧设有喷口盘(32),在该喷口盘上也划分有与转子壳(28)上的若干配气角度区(40)相同并对应的配气角度区(40′),在转子壳(28)上各若干配气角度区(40)所设的换气出口(7)、第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……分别沿各自的输气管经变位排列后,再与喷口盘(32)上的各配气角度区(40′)内按以下顺序依次与换气喷口(7′)、第五喷气口(5′)、第三喷气口(3′)、第一喷气口(1′)、第二喷气口(2′)和第四喷气口(4′)……的顺序排列相连,使转子壳(28)上的第一出气口(1)从压力最大开始、到压力逐渐变小的出气口排列顺序,经输气管的变位排列连接到喷口盘(32)上后,变成以第一出气口(1)为中间最大压力气口,再把相应的其余各气口按压力递减次序向第一出气口的左右两侧依次分别排列。
  2. 根据权利要求1所述的转子增压式燃气轮机,其特征在于:转子(41) 上的燃烧室(45)被制成了凹坑燃烧室(48),并均布在转子的圆周面(54)上,转子(41)可制成圆柱形,或者被制成截圆锥形。
  3. 根据权利要求2所述的转子增压式燃气轮机,其特征在于:转子壳(28)上各若干配气角度区(40)内的换气进口(31)、换气出口(7)、喷油腔(34)、点火腔(36)和若干个依次顺序排列的第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……,都设置在前端盖(29)与后端盖(39)之间的中间壳体(30)上,装有火花塞(37)的点火腔(36)靠向涡轮(25)侧布置,中间壳体(30)上的各个第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……也设置在靠向涡轮(25)侧的位置。
  4. 根据权利要求3所述的转子增压式燃气轮机,其特征在于:当凹坑燃烧室(48)尺寸较长时,在相应的喷油腔(34)上可装有两个或两个以上的喷油器(35)。
  5. 根据权利要求1所述的转子增压式燃气轮机,其特征在于:转子(41)上的燃烧室(45)被制成了筒形燃烧室(49),并均布在转子的圆柱形体内,筒形燃烧室(49)具有处在转子前端面的前侧进气口(52)和处在转子后端面的后侧出气口(53)。
  6. 根据权利要求5所述的转子增压式燃气轮机,其特征在于:转子壳(28)上各配气角度区(40)内相应的换气进口(31)设置在与筒形燃烧室的前侧进气口(52)相对应的前端盖(29)上,转子壳(28)上的各相应换气出口(7)、喷油腔(34)、点火腔(36)和若干个依次顺序排列的第一出气口(1)、第二出气口(2)、第三出气口(3)、第四出气口(4)及第五出气口(5)……均设置在后端盖(39)上,前端盖(29)上的换气进口(31)与后端盖(39)上相对应的换气出口(7)是相互对齐的。
  7. 根据权利要求6所述的转子增压式燃气轮机,其特征在于:当筒形燃烧室(49)的尺寸较长时,在前端盖(29)上也设有与后端盖(39)相对齐的喷油腔(34)及所安装的喷油器(35)。
  8. 根据权利要求1所述的转子增压式燃气轮机,其特征在于:从转子壳(28)上各换气出口(7)所接出的换气输气管(17)并不通向涡轮(25)前侧的喷口盘(32),而是通向与第一级涡轮(26)和第二级涡轮(27)之间位置相对应的涡轮壳(22)上的相应通气口(10),并且该通气口的位置处于涡轮壳(22)内气流压力最小的角度位置处。
  9. 根据权利要求1所述的转子增压式燃气轮机,其特征在于:压气机壳(20)上的压缩空气出气口(55)经过中间冷却器(56)后,再分别经各压缩空气输气管(21)与转子壳(28)上的各换气进口(31)相连通。
  10. 根据权利要求1所述的转子增压式燃气轮机,其特征在于:在压气机(9)的前部设有被带动的风扇(57)和外涵道壳(59),压气机壳(20)上的各压缩空气出气口(55)分别与若干均布在外涵道(58)内各中间冷却器(60)的进气端相连,各中间冷却器的出气端再分别与转子壳(28)上的各相应换气进口(31)相连通,中间冷却器(60)被制成流线型扁管结构,在中间冷却器的流线型扁管上设有相应数量的顺气流方向排列的散热片(61)。
PCT/CN2021/000142 2020-07-07 2021-07-05 转子增压式燃气轮机 WO2022007373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010650212.X 2020-07-07
CN202010650212.XA CN113898470A (zh) 2020-07-07 2020-07-07 转子增压式燃气轮机

Publications (1)

Publication Number Publication Date
WO2022007373A1 true WO2022007373A1 (zh) 2022-01-13

Family

ID=79186931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000142 WO2022007373A1 (zh) 2020-07-07 2021-07-05 转子增压式燃气轮机

Country Status (2)

Country Link
CN (1) CN113898470A (zh)
WO (1) WO2022007373A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844551A1 (fr) * 2002-09-17 2004-03-19 Emile Weisman Moteur a explosions ne comportant qu'un seul train de pieces en mouvement
CN1831310A (zh) * 2005-03-07 2006-09-13 丰宗鑫 对动摆塞发动机
CN102251851A (zh) * 2011-06-15 2011-11-23 毛中义 一种涡轮转子发动机
CN202091036U (zh) * 2011-06-15 2011-12-28 毛中义 一种涡轮转子发动机
CN202991268U (zh) * 2012-12-24 2013-06-12 张威 涡轮转子喷气发动机
CN104204465A (zh) * 2012-03-24 2014-12-10 阿尔斯通技术有限公司 具有不均匀输入气体的燃气涡轮发电站
CN106050417A (zh) * 2016-08-12 2016-10-26 杨涛 一种旋转燃烧室的燃气涡轮发动机
CN111075564A (zh) * 2019-12-27 2020-04-28 孙金良 涡轮转子发动机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844551A1 (fr) * 2002-09-17 2004-03-19 Emile Weisman Moteur a explosions ne comportant qu'un seul train de pieces en mouvement
CN1831310A (zh) * 2005-03-07 2006-09-13 丰宗鑫 对动摆塞发动机
CN102251851A (zh) * 2011-06-15 2011-11-23 毛中义 一种涡轮转子发动机
CN202091036U (zh) * 2011-06-15 2011-12-28 毛中义 一种涡轮转子发动机
CN104204465A (zh) * 2012-03-24 2014-12-10 阿尔斯通技术有限公司 具有不均匀输入气体的燃气涡轮发电站
CN202991268U (zh) * 2012-12-24 2013-06-12 张威 涡轮转子喷气发动机
CN106050417A (zh) * 2016-08-12 2016-10-26 杨涛 一种旋转燃烧室的燃气涡轮发动机
CN111075564A (zh) * 2019-12-27 2020-04-28 孙金良 涡轮转子发动机

Also Published As

Publication number Publication date
CN113898470A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
US8132408B2 (en) Annular intercooler having curved fins
US7117839B2 (en) Multi-stage modular rotary internal combustion engine
WO2022036996A1 (zh) 转子增压燃气轮机
JP3725159B2 (ja) ガスタービン−二行程ピストン複合エンジン冷却の改良
WO2022073310A1 (zh) 转子增压型燃气轮机
ES2908341T3 (es) Disposición estructural en un turbocompresor de baja temperatura para un motor de combustión interna
WO2021088135A1 (zh) 具有泽仑圆形状的腔体、流体工作装置以及发动机
US10605084B2 (en) Internal combustion engine with rotor having offset peripheral surface
CN1167207A (zh) 逆置(主轴置)燃烧室式双轴燃气轮机
WO2022007373A1 (zh) 转子增压式燃气轮机
CN104775900A (zh) 复合循环发动机
US20070175214A1 (en) Turbocharger having divided housing with nozzle vanes
US20080104956A1 (en) Turbocharger having inclined volutes
EP3653857B1 (en) V-type 12-cylinder diesel engine
WO2019153497A1 (zh) 大功率v型16缸柴油机
WO2019153498A1 (zh) 大功率v型多缸柴油机系统
CN115306541A (zh) 独立配气缸内直燃圆周冲程内燃机和圆周冲程汽轮机
CN102383935B (zh) 涡轮增压气体压缩系统
RU2815216C1 (ru) Топливный коллектор газотурбинного двигателя
CN110529237A (zh) 一种多燃料内燃机
CN221169776U (zh) 一种气体混合器、废气再循环系统和发动机
CN220979703U (zh) 一种气体混合器、废气再循环系统和发动机
US20200056613A1 (en) External Lobe Rotary Compressor, Expander, or Engine
CN220979704U (zh) 一种气体混合器、废气再循环系统和发动机
CN216142814U (zh) 一种间歇式旋转发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837616

Country of ref document: EP

Kind code of ref document: A1