WO2022007320A1 - 一种太阳能电池的制备方法及太阳能电池 - Google Patents

一种太阳能电池的制备方法及太阳能电池 Download PDF

Info

Publication number
WO2022007320A1
WO2022007320A1 PCT/CN2020/133119 CN2020133119W WO2022007320A1 WO 2022007320 A1 WO2022007320 A1 WO 2022007320A1 CN 2020133119 W CN2020133119 W CN 2020133119W WO 2022007320 A1 WO2022007320 A1 WO 2022007320A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
solar cell
doping
glass substrate
substrate
Prior art date
Application number
PCT/CN2020/133119
Other languages
English (en)
French (fr)
Inventor
袁陨来
王建波
朱琛
吕俊
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2022007320A1 publication Critical patent/WO2022007320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of solar cells, and in particular, to a method for preparing a solar cell and a solar cell.
  • the commonly used method to improve the front performance of the emitter and the surface passivated solar cell is the laser local heavy doping technology.
  • the existing laser local heavy doping technology uses laser pulses to bombard the impurity atoms on the surface of the silicon wafer, and uses the high energy density of the laser to dope the impurity atoms into the electroactive region of the silicon wafer to achieve local heavy doping on the front surface of the silicon wafer.
  • the most widely used dopant source is the phosphosilicate glass source. Since the high-energy laser directly acts on the surface of the silicon wafer, the high energy density of the laser can easily cause damage to the surface of the silicon wafer. These surface damages are typical of recombination centers, which will seriously affect the minority carrier lifetime of the battery, resulting in an increase in Auger recombination and a decrease in the battery efficiency.
  • the purpose of the present disclosure is to provide a method for preparing a solar cell, so as to reduce the damage to the surface of a silicon substrate caused by laser light, and to precisely control the doping process to improve the efficiency of the solar cell.
  • the present disclosure provides a method for preparing a solar cell.
  • the preparation method of the solar cell includes: providing a silicon base and a glass substrate; the surface of the glass substrate has a layer of doped material.
  • the glass substrate is covered above the silicon substrate, and the doping material layer is located on the side of the glass substrate facing the silicon substrate; the glass substrate is scanned by laser patterning; the doping elements contained in the doping material layer are patterned under the action of the laser. Doping on the silicon substrate.
  • the doping material layer is located on the side of the glass substrate facing the silicon substrate, when the glass substrate is scanned by laser patterning, most of the laser energy Absorbed by the glass substrate, the remaining small part of the energy is irradiated on the doped material layer and the silicon substrate. And when the glass substrate absorbs the laser energy, local heat can be generated.
  • the dopant material contained in the dopant material layer is gradually vaporized under the combined action of heat and a small portion of laser light irradiated thereon, so that the dopant material layer is adsorbed on the surface of the silicon substrate under the action of self-adsorption.
  • the doping elements contained in the doping material layer can be driven into the silicon substrate by patterning, so as to achieve the purpose of doping the silicon substrate and forming a selective emitter.
  • the laser energy irradiated on the silicon substrate is relatively low, the surface damage caused by the laser to the silicon substrate can be reduced when the glass substrate is scanned by laser patterning. Therefore, when the glass substrate is scanned by laser patterning, the reduction of The number of small pits formed on the surface of the silicon substrate due to damage, thereby reducing the surface recombination center of the silicon substrate. At this time, the incidence of Auger recombination on the surface of the silicon substrate is relatively low, which can reduce the forward bias diffusion current, thereby increasing the open circuit voltage and filling factor of the battery, and improving the battery efficiency.
  • the glass substrate is a poor conductor of heat, when the laser is patterned and scanned on the glass substrate, a large temperature gradient is generated between the patterned scanning area and the surrounding area, forming a local high temperature to achieve selective doping precise control.
  • one surface of the above-mentioned silicon substrate is a textured surface, and the glass substrate is located above the textured surface.
  • the silicon substrate Before the laser doping, the silicon substrate must be textured first, and the textured surface is formed on the surface to absorb more light and improve the utilization rate of light. At this time, the glass substrate with the layer of doped material is located above the textured surface of the silicon base.
  • the above-mentioned glass substrate may be annealed glass, and the glass may be one or more of tempered glass, quartz glass or organic glass.
  • tempered glass, quartz glass and plexiglass have high heat resistance. After high temperature annealing treatment, they can withstand long-term laser scanning, so that the glass substrate can be used repeatedly and save costs.
  • the material of the above-mentioned doped material layer is an N-type doped material or a P-type doped material.
  • the above-mentioned doped material layer covers the glass substrate.
  • the thickness of the above-mentioned doping material layer is 50 nm to 100 nm.
  • the above-mentioned silicon substrate is a P-type substrate
  • the material of the doping material layer is phosphosilicate glass
  • the doping concentration of phosphorus is 3 ⁇ 10 20 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3 .
  • the silicon substrate is an N-type substrate
  • the material of the doping material layer is borosilicate glass
  • the doping concentration of boron is 1 ⁇ 10 20 cm ⁇ 3 to 2 ⁇ 10 20 cm ⁇ 3 .
  • the above-mentioned doping material layer is a patterned doping material layer, and the pattern of the doping material layer is the same as that of the silicon substrate.
  • the above-mentioned laser is a nanosecond pulsed ultraviolet laser with a wavelength of 300 nm to 400 nm.
  • the laser with a wavelength of 300nm to 400nm is selected because the glass substrate has a high transmittance to the green and red bands, but can absorb part of the ultraviolet band.
  • the ultraviolet laser acts on the glass substrate, part of the energy is absorbed by the glass substrate, generating local heat, part of the energy penetrates the glass substrate to reach the doping material layer, and the remaining small part of the energy reaches the surface of the silicon substrate. Therefore, the peak energy of the laser will be mostly absorbed by the glass substrate and the doped material layer on the surface of the glass substrate, which is used to vaporize the doped material layer to avoid high-energy damage to the surface of the silicon substrate.
  • the number of the above-mentioned silicon substrates is multiple.
  • the glass substrate covers a plurality of silicon substrates. It can be a piece of glass covered with multiple silicon substrates, and multiple laser heads are used to do the doping at the same time, so as to increase the yield and realize mass production.
  • the present disclosure provides a solar cell, which is fabricated by applying the first aspect or any possible implementation manner of the first aspect.
  • the beneficial effects of the solar cell provided in the second aspect are the same as the beneficial effects of the first aspect or any possible implementation manner of the first aspect, which will not be repeated here.
  • FIGS. 1A to 1E are schematic diagrams of states at various stages of a method for fabricating a solar cell according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of mass production using a method for fabricating a solar cell according to an embodiment of the present disclosure.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first threshold and the second threshold are only used to distinguish different thresholds, and the sequence of the first threshold is not limited.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • words such as “exemplary” or “such as” are used to mean as an example, illustration or illustration. Any embodiment or design described in this disclosure as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c may represent: a, b, c, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of a, b and c Combination, where a, b, c can be single or multiple.
  • PERC laser local heavy doping technology
  • the traditional laser local heavy doping uses the phosphorus impurities in the phosphosilicate glass as the phosphorus source. Through high-energy laser scanning, the phosphorus impurities are driven into the silicon wafer and activated to achieve local heavy doping on the front side of the silicon wafer. Since the high-energy laser directly acts on the surface of the silicon wafer, it also causes certain damage to the surface of the silicon wafer while doping.
  • graphene, graphite, carbon fiber or C/C composite materials are expensive, and graphite and carbon fiber materials are relatively brittle. After local long-term exposure to high temperature (800 ⁇ 1100 ° C), it is very easy to crack, which cannot be applied to actual mass production. middle.
  • selective doping mainly relies on local high temperature treatment, and due to the strong thermal conductivity of graphite, it is difficult to generate a large temperature gradient between the laser heating area and the surrounding area. Precise control of selective doping is difficult to achieve by means of thermal conduction.
  • embodiments of the present disclosure provide a solar cell and a method for fabricating the same.
  • the method for preparing a solar cell provided by the embodiment of the present disclosure can use a glass substrate as a medium, and use laser patterning to irradiate a silicon substrate to realize doping of the silicon substrate, thereby reducing laser damage to the surface of the silicon substrate and reducing the number of recombination centers on the surface of the silicon substrate , improve the battery open circuit voltage and fill factor, and improve the battery efficiency.
  • a method for fabricating a solar cell according to an embodiment of the present disclosure can fabricate, including but not limited to, a PERC cell.
  • the fabrication method of the solar cell provided by the embodiments of the present disclosure will be described below with reference to the accompanying drawings.
  • FIGS. 1A to 1E are schematic diagrams of states at various stages of a method for fabricating a solar cell according to an embodiment of the present disclosure.
  • the preparation method of the solar cell provided by the embodiment of the present disclosure includes:
  • a silicon substrate 4 is provided.
  • the silicon substrate 4 may be a silicon substrate 4 having a PN junction.
  • the silicon substrate 4 includes opposing P-type and N-type layers.
  • the impurity elements contained in the P-type layer are group IIIA elements, including but not limited to one or more of boron, aluminum, gallium, indium, thallium, etc.
  • the impurity elements contained in the N-type layer are group VA elements, Including but not limited to one or more of P, As, Sb, etc.
  • one surface of the above-mentioned silicon substrate 4 is a textured surface.
  • the textured surface may be the light-facing surface of the silicon substrate 4 or the backlight surface of the silicon substrate 4 .
  • the textured surface may be formed before the PN junction of the silicon substrate 4 is formed, or may be formed after the PN junction of the silicon substrate 4 is formed.
  • an alkaline solution can be used to perform anisotropic etching on the surface of the P-type silicon substrate used as the smooth surface, so that the surface of the P-type silicon substrate is etched anisotropically.
  • a textured surface is formed on the surface; then N-type impurity doping is performed on the P-type silicon substrate by using a diffusion process or an ion implantation process to form a silicon substrate 4 with a PN junction.
  • the N-type impurities here are Group VA elements, including but not limited to one or more of P, As, Sb, and the like.
  • the alkali solution used can be one or more of sodium hydroxide, potassium hydroxide, etc., but is not limited thereto.
  • the diffusion method for the P-type silicon substrate may be phosphorus oxychloride liquid source diffusion, chain diffusion after spraying phosphoric acid aqueous solution, chain diffusion after screen printing phosphorus paste, and the like.
  • phosphorus oxychloride liquid source diffusion as an example, the silicon substrate 4 after the texturing treatment is loaded into a quartz boat and pushed into a diffusion furnace, oxygen is introduced, the temperature in the furnace is adjusted, and a small nitrogen gas is turned on for diffusion. Nitrogen is the carrier source. After the diffusion is completed, the small nitrogen and oxygen are turned off, the quartz boat is withdrawn to the furnace mouth, and after cooling, the diffused silicon substrate 4 can be taken out.
  • Phosphorus oxychloride liquid source diffusion is a commonly used diffusion method at present, and has the advantages of high production efficiency, uniform PN junction obtained, smoothness and good surface of the diffusion layer.
  • a P-type impurity is diffused on the N-type silicon substrate to form a silicon base 4 having a PN junction.
  • the P-type impurities are Group IIIA elements, including but not limited to one or more of boron, aluminum, gallium, indium, thallium, and the like.
  • the doping source can be determined according to the type of impurity element to be doped.
  • liquid source boron diffusion can be used for the diffusion method of N-type silicon substrate.
  • Commonly used liquid sources include trimethyl borate B(CH 3 O) 3 , tripropyl borate and boron tribromide BBr 3 , one or more of anhydrous trimethyl borate B(CH 3 O) 3 .
  • trimethyl borate can decompose diboron trioxide (B 2 O 3 ) at high temperature (above 500°C), and diboron trioxide can interact with silicon substrate at about 900°C. 4 react to generate boron atoms, which are deposited on the surface of the N-type silicon substrate.
  • the N-type silicon substrate after the texturing treatment is put into a quartz boat and pushed into a diffusion furnace, and dry oxygen is introduced first, then wet oxygen is introduced, and finally dry oxygen is introduced. After the diffusion is completed, the oxygen supply is stopped, the quartz boat is withdrawn to the furnace mouth, and the boron-diffused N-type silicon substrate is poured onto the copper block for quenching to obtain the silicon substrate 4 .
  • double-sided passivation can be performed on the silicon substrate 4 by PECVD, so that a first passivation layer is formed on the front side of the silicon substrate 4 , and a first passivation layer is formed on the reverse side of the silicon substrate 4 .
  • a second passivation layer is formed.
  • the material of the first passivation layer and the second passivation layer may be one or more of silicon oxide, silicon nitride, and aluminum oxide.
  • the first passivation layer and the second passivation layer may be a stacked structure of passivation layers of different materials, or may be a single-layer structure of the same material.
  • the first passivation layer may be a front-side passivation stack formed by a silicon dioxide film and a silicon nitride film
  • the second passivation layer may include an aluminum oxide film and a silicon nitride film Thin film formed backside passivation stack. Then, patterned laser grooving is performed on the first passivation layer and the second passivation layer, so that partial regions of the front and back surfaces of the silicon substrate 4 are exposed, and channels are prepared for the subsequent metallization process.
  • the metal recombination rate in order to reduce the metal recombination rate, it is necessary to heavily doped the front side local area of the silicon substrate 4 to make a selective emitter, and then metallize the front and back sides of the silicon substrate 4 to complete the fabrication of the solar cell. .
  • the metallization process a combination of a screen printing process and a sintering process can be selected.
  • the fabrication method of the solar cell provides the silicon substrate 4 as shown in FIG. 1A and also provides the glass substrate 2 .
  • the glass substrate 2 may be one or more of tempered glass, quartz glass or organic glass. Before use, the glass substrate 2 needs to be annealed at high temperature to release the stress of the glass substrate 2 and increase the toughness of the glass substrate 2 to prevent damage during laser irradiation, and the glass substrate 2 after high temperature annealing can be reused .
  • the glass substrate 2 is a poor thermal conductor, when the laser is patterned and scanned on the glass substrate 2, a large temperature gradient is generated between the patterned scanning area and the surrounding area, forming a local high temperature to achieve selective doping. Sophisticated precise control.
  • the surface of the glass substrate 2 has a dopant layer 3 .
  • the dopant material layer 3 may be deposited on the glass substrate 2 by atmospheric pressure chemical deposition (Atmospheric pressure CVD, abbreviated as APCVD), or by other methods, which are not limited thereto.
  • the glass substrate 2 is placed in the process chamber with one side up, and the pressure of the process chamber is set to a low pressure of 0.2torr to 1.0torr, and The temperature of the process chamber was set to 400°C to 550°C.
  • the chemical reaction proceeds in a low-pressure environment of ⁇ 1.0 torr, and further, phosphosilicate glass is formed on one surface of the glass substrate 2 .
  • the thickness of the doping material layer 3 is set according to actual needs, and may be between 50 nm and 100 nm.
  • the thickness of the doped material layer 3 can be specifically 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, or 100 nm.
  • the size of the doping material layer 3 may be the same as that of the glass substrate 2 and completely overlap, or it may not completely overlap, as long as the doping material layer 3 is completely It is sufficient to cover the surface of the silicon substrate 4 to be doped.
  • the doping material layer 3 when the size of the doping material layer 3 can be completely coincident with the size of the glass substrate 2 , the doping material layer 3 completely covers the glass substrate 2 , so that it can be applied in more scenarios. , suitable for different local patterning doping requirements.
  • the glass substrate 2 may completely cover the surface of the silicon substrate 4 to be doped, or multiple glass substrates 2 may be combined so that the surface of each silicon substrate 4 is completely covered with the glass substrate 2 .
  • the doping material layer 3 may be a pattern that overlaps with the doping pattern of the silicon substrate 4 .
  • the glass substrate 2 and the silicon substrate 4 need to be patterned alignment. Such a design can reduce the waste of doping materials and save costs.
  • the material of the doping material layer 3 is an N-type doping material or a P-type doping material.
  • the material of the dopant material layer 3 here may be an N-type dopant material, and the N-type dopant material may be an N-type dopant material including Group VA elements such as phosphorus element and arsenic element.
  • the material of the dopant material layer 3 may be Phosphorus silicon glass (PSG for short).
  • PSG Phosphorus silicon glass
  • the silicon substrate is a P-type substrate.
  • the glass substrate 2 is located above the surface of the P-type base. At this time, the concentration of phosphorus element in the doping material layer 3 is 3 ⁇ 10 20 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3 .
  • the N-type doping material may also be PH 3 , AsH 3 , oxides containing Group VA elements such as P and As, and the like.
  • the material of the doping material layer 3 may be a P-type doping material.
  • the P-type dopant material may be a P-type dopant material including Group IIIA elements such as boron element and aluminum element.
  • the material of the dopant material layer 3 may be boron silicon glass (Boron silicon glass, abbreviated as BSG).
  • BSG boron silicon glass
  • the doping material layer 3 is borosilicate glass
  • the silicon substrate is an N-type substrate.
  • the glass substrate 2 is located above the surface of the N-type substrate.
  • the concentration of the boron element in the doping material layer 3 is 3 ⁇ 10 20 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3 .
  • the P-type doping material may also be B 2 H 6 , boric acid, metaboric acid, tripropyl borate, boron tribromide, or oxides containing Group IIIA elements such as B and Ga.
  • the glass substrate 2 is covered above the silicon substrate 4 , and the doping material layer 3 is located on the side of the glass substrate 2 facing the silicon substrate 4 . At this time, the doping material layer 3 is located between the glass substrate 2 and the silicon substrate 4 .
  • the silicon substrate 4 here may be a silicon substrate 4 that has been textured. Of course, the silicon substrate 4 without texturing may also be used.
  • the glass substrate 2 is scanned by laser patterning.
  • the doping element contained in the doping material layer 3 is doped on the silicon substrate 4 in a patterned manner under the action of the laser.
  • the laser may be a nanosecond pulsed ultraviolet laser with a wavelength of 300 nm to 400 nm.
  • the laser wavelength is 300 nm, 320 nm, 350 nm, 370 nm, or 400 nm, or the like. Since the glass substrate 2 has a high transmittance to the green light and red light bands, but can absorb part of the light in the ultraviolet band, when the ultraviolet laser patterning acts on the glass substrate 2, part of the energy is absorbed by the glass substrate.
  • the glass substrate 2 can be annealed glass, so the glass substrate 2 will not be broken due to heat generated by absorbing laser energy. Another part of the laser energy penetrates the glass substrate 2 to reach the doped material layer 3 . Because there is generally a gap of 20 ⁇ m to 30 ⁇ m between the glass substrate 2 and the silicon substrate 4 , when the doping material layer 3 is partially irradiated by laser patterning, it will rapidly vaporize in the patterned scanning area, and a self-adsorption reaction will occur and be adsorbed directly below. 4 surface of the silicon substrate.
  • the heat of the glass substrate 2 will be conducted to the surface of the silicon substrate 4 directly under the glass substrate 2, and at the same time, the remaining small part of the laser light passing through the glass substrate 2 and the doping material layer 3 acts on the silicon substrate 4 surfaces, which generate heat.
  • the doping elements adsorbed to the surface of the silicon substrate 4 under the action of the above two kinds of heat are driven into the local doping region 5 of the silicon substrate 4 , thereby realizing the patterned doping of the silicon substrate 4 .
  • the peak energy of the laser is mostly absorbed by the glass substrate 2 and the doping material layer 3 on the surface of the glass substrate 2 , avoiding high-energy damage to the surface of the silicon substrate 4 by the laser.
  • the Auger recombination on the surface of the silicon substrate 4 is also reduced, so that the forward bias diffusion current is reduced, thereby increasing the open circuit voltage.
  • the fill factor is an important parameter reflecting the performance of solar cells, the cell efficiency will increase in the case of a decrease in Auger recombination, thereby increasing the fill factor. Therefore, the open circuit voltage and fill factor of the solar cell can be improved by the method of the embodiment of the present disclosure, and the efficiency of the solar cell can be improved.
  • the doping element is heavily doped in the local doping region of the silicon substrate 4 .
  • the heavily doped region 5 is formed. If the heavily doped region 5 formed by the silicon substrate 4 is located on the light-receiving surface of the silicon substrate 4, then the formed heavily doped region 5 is a selective emitter. If the heavily doped region 5 formed by the silicon substrate 4 is located on the backlight surface of the silicon substrate 4, then the formed heavily doped region 5 is a local field contact structure.
  • FIG. 2 is a schematic diagram of batch production of a method for fabricating a solar cell according to an embodiment of the disclosure.
  • the number of silicon substrates 4 is plural, and the glass substrate 2 covers the plurality of silicon substrates 4 .
  • the size of the glass substrate 2 may be larger than that of the silicon substrate 4 , or may be the same as the size of the silicon substrate 4 .
  • each glass substrate 2 can cover the multiple silicon substrates 4.
  • a plurality of laser heads 1 can be used for patterning and doping at the same time, so as to improve the yield and Productivity.
  • the following further supplementary description will be given to the preparation method of the solar cell in the embodiment of the present disclosure by taking an N-type silicon substrate with a resistivity of 0.5 as an example.
  • the selected glass substrate is annealed tempered glass.
  • the material of the selected doping material layer is borosilicate glass.
  • N-type silicon substrate with a resistivity of 0.3 ⁇ cm to 1.5 ⁇ cm is selected, preferably an N-type silicon substrate with a resistivity of 0.5 ⁇ cm for the experiment.
  • alkali texturing to form a pyramid texture sodium hydroxide is used as the alkali here
  • boron diffusion is performed on the N-type silicon substrate to form a p+ diffusion layer with a square resistance of 120 ⁇ /sq to 140 ⁇ /sq.
  • Ultrasonic cleaning is performed on the tempered glass, and a borosilicate glass layer with a boron source concentration of 3% is deposited on the ultrasonically cleaned tempered glass by APCVD.
  • the side of the tempered glass deposited with the borosilicate glass layer is placed on the surface of the silicon substrate, and a nanosecond laser with a wavelength of 355nm is used to scan according to the set grid pattern to form a heavily doped layer, and the square resistance of the heavily doped layer is controlled at 60 ⁇ /sq ⁇ 70 ⁇ /sq.
  • the tempered glass is removed, and the remaining process flow is performed on the silicon substrate.
  • Table 1 The parameters of the solar cells prepared by using the above-mentioned preparation method of solar cells are shown in Table 1.
  • the method for preparing a solar cell according to the embodiment of the present disclosure can improve the conversion efficiency of the solar cell, and can also achieve precise control of laser selective doping and mass production.
  • Embodiments of the present disclosure also provide a solar cell, which can be fabricated by using the method for fabricating the solar cell shown in FIGS. 1A to 1E .
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池的制备方法及太阳能电池,涉及太阳能电池技术领域,以解决激光直接作用在硅基底(4)表面造成硅基底(4)表面损伤的问题。所述太阳能电池的制备方法包括:提供硅基底(4)和玻璃基板(2);将所述玻璃基板(2)覆盖在所述硅基底(4)的上方,掺杂材料层(3)位于所述玻璃基板(2)朝向所述硅基底(4)的一侧;采用激光图案化扫描所述玻璃基板(2)。所述太阳能电池采用上述制备方法制作。所述太阳能电池的制备方法用于制作太阳能电池。

Description

一种太阳能电池的制备方法及太阳能电池
本申请要求在2020年07月08日提交中国专利局、申请号为202010651720.X、名称为“一种太阳能电池的制备方法及太阳能电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能电池技术领域,尤其涉及一种太阳能电池的制备方法及太阳能电池。
背景技术
目前,常用的提升发射极及被表面钝化的太阳能电池(Passivated emitter and rear cell,缩写为PERC)正面性能的方法是激光局部重掺杂技术。
现有激光局部重掺杂技术是通过激光脉冲轰击硅片表面的杂质原子,利用激光的高能量密度将杂质原子掺杂到硅片的电活性区域,以实现硅片正面局部重掺杂。目前掺杂源使用最为广泛的是磷硅玻璃源。由于高能激光直接作用于硅片表面,激光的高能量密度易对硅片表面造成损伤。这些表面损伤是典型的复合中心,会严重影响电池的少子寿命,造成俄歇复合的增加,使得电池效率降低。
概述
本公开的目的在于提供一种太阳能电池的制备方法,以减少激光对硅基底表面造成的损伤,并精确控制掺杂工艺,提升太阳能电池的效率。
第一方面,本公开提供一种太阳能电池的制备方法。该太阳能电池的制备方法包括:提供硅基底和玻璃基板;玻璃基板的表面具有掺杂材料层。
将玻璃基板覆盖在硅基底的上方,掺杂材料层位于玻璃基板朝向硅基底的一侧;采用激光图案化扫描玻璃基板;掺杂材料层所含有的掺杂元素在激光的作用下图案化地掺杂在硅基底上。
本公开将提供的太阳能电池的制备方法,由于玻璃基板覆盖在硅基底的 上方,掺杂材料层位于玻璃基板朝向硅基底的一侧,因此,利用激光图案化扫描玻璃基板时,大部分激光能量被玻璃基板吸收,剩余的小部分能量照射在掺杂材料层和硅基底上。且当玻璃基板吸收激光能量时,可以产生局部热量。此时,掺杂材料层所含有的掺杂材料在热量和照射在其上的小部分激光的共同作用下逐渐汽化,使得掺杂材料层在自吸附作用下吸附在硅基底表面上。在这种情况下,掺杂材料层所含有的掺杂元素可以被图案化驱入硅基底内,从而达到掺杂硅基底,形成选择性发射极的目的。
并且,由于照射在硅基底上的激光能量比较低,使得采用激光图案化扫描玻璃基板时,可以减小激光对硅基底的表面损伤,因此,采用激光图案化扫描所述玻璃基板时,可以降低硅基底表面因为损伤所形成的小坑洞数量,进而减少硅基底的表面复合中心。此时,硅基底表面的俄歇复合发生率比较低,可以减少正向偏置扩散电流,进而提高电池开路电压和填充因子,提高电池效率。
另外,由于玻璃基板是一种热的不良导体,因此,当激光图案化扫描在玻璃基板上时,图案化扫描区域与周边区域产生较大的温度梯度,形成局部高温,以实现选择性掺杂的精确控制。
在一种可能的实现方式中,上述硅基底的一个面为绒面,玻璃基板位于该绒面的上方。硅基底在激光掺杂前首先要进行制绒处理,表面形成绒面利用陷光原理吸收更多的光,提高对光的利用率。此时,具有掺杂材料层的玻璃基板位于该硅基底绒面的上方。
在一种可能的实现方式中,上述玻璃基板可以为经过退火的玻璃,该玻璃可以为钢化玻璃、石英玻璃或有机玻璃中的一种或多种。其中,钢化玻璃,石英玻璃和有机玻璃的耐热性都很高,在经过高温退火处理后,可以耐受长期的激光扫描,使得玻璃基板反复使用,节约成本。
在一种可能的实现方式中,上述掺杂材料层的材质为N型掺杂材料或P型掺杂材料。
在一种可能的实现方式中,上述掺杂材料层覆盖在玻璃基板上。
在一种可能的实现方式中,上述掺杂材料层的厚度为50nm~100nm。
在一种可能的实现方式中,上述硅基底为P型基底,掺杂材料层的材质 为磷硅玻璃,磷的掺杂浓度为3×10 20cm -3~5×10 20cm -3
在一种可能的实现方式中,上述硅基底为N型基底,掺杂材料层的材质为硼硅玻璃,硼的掺杂浓度为1×10 20cm -3~2×10 20cm -3
在一种可能的实现方式中,上述掺杂材料层为图案化的掺杂材料层,掺杂材料层的图案与所述硅基底的图案相同。
在一种可能的实现方式中,上述激光为波长300nm~400nm的纳秒脉冲紫外激光。选择波长为300nm~400nm的激光是因为玻璃基板对绿光与红光波段有较高的透过率,但是能吸收部分紫外波段的光。当紫外激光作用在玻璃基板上,一部分能量被玻璃基板吸收,产生局部热量,一部分能量穿透玻璃基板达到掺杂材料层,剩余的小部分能量达到硅基底表面。所以激光的峰值能量会被玻璃基板以及玻璃基板表面的掺杂材料层大部分吸收,用于将掺杂材料层汽化,避免对硅基底表面的高能损伤。
在一种可能的实现方式中,上述硅基底的数量为多个。该玻璃基板覆盖在多个硅基底的上方。可以是一块玻璃下面覆盖多个硅基底,采用多个激光头同时进行掺杂,以提升产量,实现批量生产。
第二方面,本公开提供一种太阳能电池,该太阳能电池应用上述第一方面或者第一方面的任一可能的实现方式制作。
第二方面提供的太阳能电池的有益效果与第一方面或第一方面任一可能的实现方式的有益效果相同,在此不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部 分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1A至图1E为本公开实施例提供的一种太阳能电池的制备方法在各个阶段的状态示意图;
图2为使用本公开实施例的一种太阳能电池的制备方法进行批量生产的示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了便于清楚描述本公开实施例的技术方案,在本公开的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一阈值和第二阈值仅仅是为了区分不同的阈值,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本公开中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本公开中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b的结合,a和c的结合,b和c的结合,或a、b 和c的结合,其中a,b,c可以是单个,也可以是多个。
近年来,太阳能电池技术发展迅猛,激光局部重掺杂技术已经成为提升发射极及被表面钝化的太阳能电池(Passivated emitter and rear cell,缩写为PERC)正面性能的基础工艺。传统的激光局部重掺杂是以磷硅玻璃中的磷杂质作为磷源,通过高能激光扫描的方式,将磷杂质驱入硅片体内并激活,实现硅片正面局部重掺杂。由于高能激光直接作用在硅片表面,在掺杂的同时,也对硅片表面造成了一定损伤。通过对激光掺杂之后硅片表面进行SEM分析,硅片表面金字塔的顶端出现了部分小坑洞。这些小坑洞成为了电池片正面的复合中心,造成了俄歇复合的增加,阻碍了太阳能电池片的电性能进一步提升。
现有技术采用石墨作为中间转移导热层,通过激光作用在石墨烯、石墨、碳纤维或者C/C复合材料的表面,通过以上材质吸收激光能量并把热量传导至硅片表面。但是该方法有以下几点问题:
第一,石墨烯、石墨、碳纤维或者C/C复合材料价格偏贵,而且石墨,碳纤维材质比较脆,局部长期受到高温(800~1100℃)之后,非常容易产生开裂,无法应用到实际批量生产中。
第二,选择性掺杂主要是靠局部高温处理,而由于石墨的导热性较强,激光加热区域与周边区域很难产生较大的温度梯度。通过热传导的方式很难形成选择性掺杂的精确控制。
为了克服上述问题,避免对硅基底表面的损伤,本公开实施例提供一种太阳能电池及其制备方法。本公开实施例提供的太阳能电池的制备方法可以以玻璃基板为介质,利用激光图案化照射硅基底,实现硅基底掺杂,从而降低激光对硅基底表面的损伤,减少硅基底表面复合中心的数量,提高电池开路电压和填充因子,提升电池效率。
本公开的实施例的一种太阳能电池的制备方法可以制作包括但不仅限于PERC电池。下面结合附图描述本公开实施例提供的太阳能电池的制备方法。
图1A~图1E为本公开实施例提供的一种太阳能电池的制备方法在各个阶段的状态示意图。本公开实施例提供的太阳能电池的制备方法包括:
如图1A所示,提供一硅基底4。该硅基底4可以为具有PN结的硅基底4。该硅基底4包括相对的P型层和N型层。P型层所含有的杂质元素为第IIIA族元素,包括但不限于硼、铝、镓、铟、铊等中的一种或多种,N型层所含有的杂质元素为第VA族元素,包括但不仅限于P、As、Sb等中的一种或多种。
如图1A所示,上述硅基底4的一个面为绒面。该绒面可以为硅基底4的向光面,也可以为硅基底4的背光面。该绒面可以在硅基底4所具有的PN结形成之前制作,也可以在硅基底4所具有的PN结形成之后制作。
例如,如图1A所示,以P型硅衬底制作PN结时,可以使用碱液对P型硅衬底用以作为向光面的表面进行各向异性腐蚀,使得P型硅衬底的表面形成绒面;接着采用扩散工艺或者离子注入工艺在P型硅衬底上进行N型杂质掺杂,形成具有PN结的硅基底4。这里的N型杂质为第VA族元素,包括但不仅限于P、As、Sb等中的一种或多种。例如:常见的POCl 3、PH 3、AsH 3、含P、As等第VA族元素的氧化物(如氧化硅)等。所使用的碱液可以为氢氧化钠,氢氧化钾等中的一种或多种,但不限于此。
如图1A所示,对于P型硅衬底的扩散方法可以为三氯氧磷液态源扩散,喷涂磷酸水溶液后链式扩散,丝网印刷磷浆料后链式扩散等。以三氯氧磷液态源扩散为例,将制绒处理后的硅基底4装入石英舟中推入扩散炉内,通入氧气并调整炉内温度,打开小氮气进行扩散,此处的小氮气为携源。待扩散结束后,关闭小氮气和氧气,将石英舟退出至炉口,降温后,取出扩散后的硅基底4即可。三氯氧磷液态源扩散为目前常用的扩散方法,具有生产效率高,得到的PN结均匀,平整和扩散层表面良好等优点。
又例如,如图1A所示,以N型硅衬底制作PN结时,在N型硅衬底上扩散P型杂质,形成具有PN结的硅基底4。这里的P型杂质为第IIIA族元素,包括但不限于硼、铝、镓、铟、铊等中的一种或多种。掺杂源可以根据所需掺杂的杂质元素的种类决定。
如图1A所示,对于N型硅衬底的扩散方法可以采用液态源硼扩散,常用的液态源有硼酸三甲酯B(CH 3O) 3、硼酸三丙酯、三溴化硼BBr 3、无水硼酸三甲酯B(CH 3O) 3中的一种或多种。以硼酸三甲酯液态源扩散为例,硼酸 三甲酯在高温(500℃以上)能够分解出三氧化二硼(B 2O 3),而三氧化二硼在900℃左右又能与硅基底4起反应,生成硼原子,并沉积在N型硅衬底表面。通入干氧气并调整扩散炉内温度,排除管道内的空气,同时加热水浴瓶。将制绒处理后的N型硅衬底装入石英舟中推入扩散炉内,先通入干氧,再通入湿氧,最后通入干氧。待扩散结束后,停止通入氧气,将石英舟退出至炉口,将经过硼扩散的N型硅衬底倒在铜块上淬火,制得硅基底4。
如图1A所示,对硅基底4进行扩散后,可以采用PECVD的方法在硅基底4上进行双面钝化,使得在硅基底4的正面形成第一钝化层,在硅基底4的反面形成第二钝化层。从材质来说,该第一钝化层和第二钝化层的材质可以为氧化硅、氮化硅、氧化铝中的一种或多种。从结构来说,该第一钝化层和第二钝化层可以为不同材质的钝化层的叠层结构,也可以为同一材质的单层结构。
如图1A所示,以PERC电池为例,第一钝化层可以为二氧化硅薄膜和氮化硅薄膜形成的正面钝化叠层,第二钝化层可以包括氧化铝薄膜和氮化硅薄膜形成的背面钝化叠层。接着在第一钝化层和第二钝化层进行图案化激光开槽,使得硅基底4的正面和反面的局部区域裸露,为后续金属化工艺准备通道。
如图1A所示,为了降低金属复合速率,需要对硅基底4的正面局部区域进行重掺杂制作选择性发射极,接着在对硅基底4的正面和反面进行金属化,完成太阳能电池的制作。至于金属化工艺,可以选择丝网印刷工艺等工艺与烧结工艺相结合的方式实现。当然,也可以在硅基底4的背面局部区域进行重掺杂制作局部场接触结构,再对硅基底4的正面和反面进行金属化。应理解,对于硅基底4的正面和/或背面的局部区域进行重掺杂,可以是在双面钝化工艺前,也可以在双面钝化工艺之后进行。
如图1B所示,为了对硅基底4进行重掺杂,本公开实施例的太阳能电池的制备方法在提供如图1A所示的硅基底4的同时,还提供玻璃基板2。玻璃基板2可以为钢化玻璃、石英玻璃或有机玻璃中的一种或多种。在使用前需要对玻璃基板2进行高温退火处理,释放玻璃基板2的应力,增加玻璃基板2的韧性,以防止在激光照射过程中发生破损,且经过高温退火处理后 的玻璃基板2可以重复使用。又由于玻璃基板2是一种热的不良导体,因此,当激光图案化扫描在玻璃基板2上时,图案化扫描区域与周边区域产生较大的温度梯度,形成局部高温,以实现选择性掺杂的精确控制。
如图1B所示,上述玻璃基板2的表面具有掺杂材料层3。掺杂材料层3可以是通过常压化学沉积法(Atmospheric pressure CVD,缩写为APCVD)沉积在该玻璃基板2上的,也可以是通过其他方式,并不仅限于此。
如图1B所示,以APCVD沉积磷硅玻璃为例,将玻璃基板2以一面朝上的方式放置于工艺腔内,并将工艺腔的压力设定为0.2torr~1.0torr的低压,并将工艺腔的温度设定为400℃~550℃。向工艺腔内硅烷(SiH 4)、磷烷(PH 3)、氧气(O 2)和氩气(Ar),硅烷(SiH 4)、磷烷(PH 3)在400℃~550℃,0.2torr~1.0torr的低压环境下进行化学反应,进而在玻璃基板2的一面形成磷硅玻璃。
如图1B所示,掺杂材料层3的厚度根据实际需要进行设置,可以为50nm~100nm之间。例如,该掺杂材料层3的厚度具体可以为50nm、60nm、70nm、80nm、90nm或100nm等。
如图1B所示,从掺杂材料层3的尺寸上来说,该掺杂材料层3的尺寸可以与玻璃基板2尺寸相同完全重合,也可以不完全重合,只要保证掺杂材料层3是完全覆盖在需要掺杂的硅基底4表面的就可以。
在一种示例中,如图1B所示,当掺杂材料层3的尺寸可以与玻璃基板2尺寸完全重合,掺杂材料层3完全覆盖在玻璃基板2上,以便于在更多场景下应用,适用于不同的局部图案化掺杂要求。此时,玻璃基板2可以是完全覆盖在待掺杂处理的硅基底4表面,也可以是多块玻璃基板2组合在一起使每一块硅基底4的表面都完全覆盖有玻璃基板2。
在另一种示例中,如图1C所示,掺杂材料层3可以是与硅基底4的掺杂图案相重叠的图案,在具体使用时,需要将玻璃基板2与硅基底4进行图案化的对准。这样的设计可以减少对掺杂材料的浪费,节约成本。
如图1B和图1C所示,从掺杂材料层3的材质上来说,该掺杂材料层3的材质为N型掺杂材料或P型掺杂材料。这里的掺杂材料层3的材质可以为N型掺杂材料,该N型掺杂材料可以为包括磷元素,砷元素等第VA族元素 的N型掺杂材料。例如:当N型掺杂材料为包括磷元素的N型掺杂材料时,该掺杂材料层3的材质可以为磷硅玻璃(Phosphorus silicon glass,缩写为PSG)。当掺杂材料层3为磷硅玻璃时,该硅基底为P型基底。该玻璃基板2位于该P型基底的表面上方。此时,磷元素在掺杂材料层3中的浓度为3×10 20cm -3~5×10 20cm -3。当然,该N型掺杂材料还可以为PH 3、AsH 3、含P、As等第VA族元素的氧化物等。
如图1B和图1C所示,掺杂材料层3的材质可以为P型掺杂材料。该P型掺杂材料可以为包括硼元素、铝元素等第IIIA族元素的P型掺杂材料。例如:当P型掺杂材料为包括硼元素的P型掺杂材料时,该掺杂材料层3的材质可以为硼硅玻璃(Boron silicon glass,缩写为BSG)。当掺杂材料层3为硼硅玻璃时,该硅基底为N型基底。该玻璃基板2位于该N型基底的表面上方。此时,硼元素在掺杂材料层3中的浓度为3×10 20cm -3~5×10 20cm -3。当然,该P型掺杂材料还可以为B 2H 6、硼酸、偏硼酸、硼酸三丙酯、三溴化硼或者含B、Ga等第IIIA族元素的氧化物等。
如图1D所示,将玻璃基板2覆盖在硅基底4的上方,掺杂材料层3位于玻璃基板2朝向硅基底4的一侧。此时掺杂材料层3位于该玻璃基板2和该硅基底4之间。这里的硅基底4可以是已经进行制绒的硅基底4。当然,也可以是没有制绒的硅基底4。
如图1D所示,将玻璃基板2覆盖在硅基底4的上方后,采用激光图案化扫描该玻璃基板2。掺杂材料层3所含有的掺杂元素在激光的作用下图案化地掺杂在硅基底4上。该激光可以为波长300nm~400nm的纳秒脉冲紫外激光。例如,激光波长为300nm、320nm、350nm、370nm或400nm等。由于玻璃基板2对绿光与红光波段有较高的透过率,但是能吸收部分紫外波段的光,因此,当紫外激光图案化的作用在玻璃基板2上时,其中一部分能量被玻璃基板2吸收,产生局部热量。该玻璃基板2可以是退火处理的玻璃,因此,玻璃基板2不会因为吸收激光能量产热而破裂。另一部分激光能量穿透玻璃基板2达到掺杂材料层3。因为玻璃基板2与硅基底4之间一般存在20μm~30μm的间隙,当掺杂材料层3受到部分激光图案化照射后,在图案化扫描区域会快速汽化,发生自吸附反应并吸附至正下方的硅基底4表面。 在激光的持续图案化扫描下,玻璃基板2的热量会传导至玻璃基板2正下方的硅基底4表面,同时,透过玻璃基板2和掺杂材料层3的剩余小部分激光作用在硅基底4表面,产生热量。在上述两种热量的作用下吸附至硅基底4表面的掺杂元素被驱入硅基底4的局部掺杂区域5,从而实现硅基底4的图案化掺杂。
如图1D所示,在整个激光掺杂过程中,激光的峰值能量被玻璃基板2以及玻璃基板2表面的掺杂材料层3大部分吸收,避免了激光对硅基底4表面的高能损伤。同时由于硅基底4表面损伤的减少,其表面俄歇复合也会随之减少,使得正向偏置扩散电流减少,从而使开路电压增加。又由于填充因子是反应太阳能电池性能的重要参数,在俄歇复合减少的情况下,电池效率会增加,从而使得填充因子增加。因此,通过本公开实施例的方法可以提升太阳能电池片的开路电压和填充因子,提升太阳能电池的效率。
如图1E所示,当激光器1图案化扫描玻璃基板2,掺杂元素在硅基底4的局部掺杂区域中重掺杂。待完成硅基底4的局部掺杂后,形成重掺杂区域5。如果硅基底4形成的重掺杂区域5位于硅基底4的受光面,那么所形成的重掺杂区域5为选择性发射极。如果硅基底4形成的重掺杂区域5位于硅基底4的背光面,那么所形成的重掺杂区域5为局部场接触结构。
图2为本公开实施例的一种太阳能电池的制备方法进行批量生产的示意图。如图2所示,硅基底4的数量为多个,玻璃基板2覆盖在多个硅基底4的上方。为了提升产量,玻璃基板2的尺寸可以是大于硅基底4的,也可以是与硅基底4大小一致的。当玻璃基板2的尺寸大于硅基底4时,每一个玻璃基板2可以覆盖在多个硅基底4的上方,此时,可以使用多个激光头1图案化的进行同时掺杂,以提高产量和生产效率。
下面以电阻率为0.5的N型硅基底为例对本公开实施例中的太阳能电池的制备方法进行进一步的补充说明。选用的玻璃基板为经过退火处理的钢化玻璃。选用的掺杂材料层的材质为硼硅玻璃。
选用电阻率为0.3Ω·cm~1.5Ω·cm的N型硅基底,优选的是电阻率为0.5Ω·cm的N型硅基底进行实验。经过碱制绒形成金字塔绒面(这里的碱使用的是氢氧化钠),对N型硅基底进行硼扩散,形成方阻为120Ω/sq~140 Ω/sq的p+扩散层。
对钢化玻璃进行超声清洗,在超声清洗后的钢化玻璃上采用APCVD的方式沉积一层硼源浓度为3%的硼硅玻璃层。将钢化玻璃沉积有硼硅玻璃层的一面放置在硅基底表面,采用355nm波长的纳秒激光按照设定的栅线图案进行扫描,形成重掺杂层,重掺杂层的方阻控制在60Ω/sq~70Ω/sq。掺杂结束后移开钢化玻璃,对硅基底进行剩余的工艺流程。使用上述太阳能电池的制备方法制得的太阳能电池的参数如表1所示。
表1太阳能电池的性能参数对比表
Figure PCTCN2020133119-appb-000001
由表1所知,使用本公开实施例的太阳能电池的制备方法制得的PERC电池的转换效率、短路电流、开路电压和填充因子都比使用常规激光掺杂方法制备的PERC电池数值高,其中,转换效率大约提升了0.2%abs。
综上可知,本公开的实施例的太阳能电池的制备方法在提升太阳能电池转换效率的同时还可以实现激光选择性掺杂的精确控制、实现量产。
本公开实施例还提供了一种太阳能电池,可以采用图1A至图1E所示的太阳能电池的制备方法制作而成。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以 理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种太阳能电池的制备方法,其特征在于,包括:
    提供硅基底和玻璃基板;所述玻璃基板的表面具有掺杂材料层;
    将所述玻璃基板覆盖在所述硅基底的上方,所述掺杂材料层位于所述玻璃基板朝向所述硅基底的一侧;
    采用激光图案化扫描所述玻璃基板;所述掺杂材料层所含有的掺杂元素在激光的作用下图案化地掺杂在所述硅基底上。
  2. 根据权利要求1所述的太阳能电池的制备方法,其特征在于,所述硅基底的一个面为绒面,所述玻璃基板位于所述绒面的上方。
  3. 根据权利要求1所述的太阳能电池的制备方法,其特征在于,所述玻璃基板可以为钢化玻璃、石英玻璃或有机玻璃中的一种或多种。
  4. 根据权利要求1所述的太阳能电池的制备方法,其特征在于,所述掺杂材料层的材质为N型掺杂材料或P型掺杂材料;和/或,
    所述掺杂材料层覆盖在所述玻璃基板上。
  5. 根据权利要求1所述的太阳能电池的制备方法,其特征在于,所述掺杂材料层的厚度为50nm~100nm。
  6. 根据权利要求1~5任一项所述的太阳能电池的制备方法,其特征在于,硅基底为P型基底,所述掺杂材料层的材质为磷硅玻璃,磷的掺杂浓度为3×10 20cm -3~5×10 20cm -3
  7. 根据权利要求1~5任一项所述的太阳能电池的制备方法,其特征在于,硅基底为N型基底,所述掺杂材料层的材质为硼硅玻璃,硼的掺杂浓度为1×10 20cm -3~2×10 20cm -3
  8. 根据权利要求1~5任一项所述的太阳能电池的制备方法,其特征在于,所述掺杂材料层为图案化的掺杂材料层;所述掺杂材料层的图案与所述硅基底的图案相同。
  9. 根据权利要求1~5任一项所述的太阳能电池的制备方法,其特征在于,所述激光为波长300nm~400nm的纳秒脉冲紫外激光;和/或,
    所述硅基底的数量为多个,所述玻璃基板覆盖在所述多个硅基底的上方。
  10. 一种太阳能电池,其特征在于,所述太阳能电池应用权利要求1~9 任一项所述的太阳能电池的制备方法制作。
PCT/CN2020/133119 2020-07-08 2020-12-01 一种太阳能电池的制备方法及太阳能电池 WO2022007320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010651720.X 2020-07-08
CN202010651720.XA CN111834491A (zh) 2020-07-08 2020-07-08 一种太阳能电池的制备方法及太阳能电池

Publications (1)

Publication Number Publication Date
WO2022007320A1 true WO2022007320A1 (zh) 2022-01-13

Family

ID=72901352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133119 WO2022007320A1 (zh) 2020-07-08 2020-12-01 一种太阳能电池的制备方法及太阳能电池

Country Status (2)

Country Link
CN (1) CN111834491A (zh)
WO (1) WO2022007320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834491A (zh) * 2020-07-08 2020-10-27 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制备方法及太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092664A1 (en) * 2010-05-24 2013-04-18 Purdue Research Foundation High speed laser crystallization of particles of photovoltaic solar cells
CN105655419A (zh) * 2016-03-22 2016-06-08 电子科技大学 一种制备黑硅材料的方法
CN108604540A (zh) * 2016-03-24 2018-09-28 国立大学法人九州大学 激光掺杂装置和半导体装置的制造方法
CN110004472A (zh) * 2013-01-31 2019-07-12 新南创新私人有限公司 在太阳能电池上形成接触结构的方法
CN209804689U (zh) * 2019-06-04 2019-12-17 盐城阿特斯协鑫阳光电力科技有限公司 轻掺杂基片、带有选择性发射极的基片以及太阳能电池
CN111834491A (zh) * 2020-07-08 2020-10-27 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制备方法及太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092664A1 (en) * 2010-05-24 2013-04-18 Purdue Research Foundation High speed laser crystallization of particles of photovoltaic solar cells
CN110004472A (zh) * 2013-01-31 2019-07-12 新南创新私人有限公司 在太阳能电池上形成接触结构的方法
CN105655419A (zh) * 2016-03-22 2016-06-08 电子科技大学 一种制备黑硅材料的方法
CN108604540A (zh) * 2016-03-24 2018-09-28 国立大学法人九州大学 激光掺杂装置和半导体装置的制造方法
CN209804689U (zh) * 2019-06-04 2019-12-17 盐城阿特斯协鑫阳光电力科技有限公司 轻掺杂基片、带有选择性发射极的基片以及太阳能电池
CN111834491A (zh) * 2020-07-08 2020-10-27 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制备方法及太阳能电池

Also Published As

Publication number Publication date
CN111834491A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN109888061B (zh) 一种碱抛光高效perc电池及其制备工艺
US8889462B2 (en) Photovoltaic solar cells
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
JP2020506529A (ja) 管型perc両面受光型太陽電池、その製造方法及びその専用装置
CN202601629U (zh) 晶体硅太阳能电池
KR20130129818A (ko) 실리콘 웨이퍼들 상에 n+pp+ 또는 p+nn+ 구조를 준비하는 방법
KR20130052627A (ko) 선택적 전면 필드를 구비한 후면 접합 태양전지
CN109802008B (zh) 一种高效低成本n型背结pert双面电池的制造方法
CN108172658B (zh) 一种n型异质结双面太阳能电池的制备方法
JP6282635B2 (ja) 太陽電池の製造方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
JP2008034543A (ja) 光電変換素子およびその製造方法
CN104300032A (zh) 一种单晶硅太阳能离子注入工艺
CN110112230A (zh) 一种mwt太阳能电池的制备方法
US8609451B2 (en) Insitu epitaxial deposition of front and back junctions in single crystal silicon solar cells
CN108538958B (zh) 一种n型ibc电池及其制备方法
WO2022007320A1 (zh) 一种太阳能电池的制备方法及太阳能电池
CN207967020U (zh) 一种n型异质结双面太阳能电池结构
KR101122054B1 (ko) 태양전지의 후면전극 형성방법
CN105957921A (zh) 一种利用印刷技术制备n型硅ibc太阳电池的方法
JP2014146766A (ja) 太陽電池の製造方法及び太陽電池
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
TW201222851A (en) Manufacturing method of bifacial solar cells
KR101383426B1 (ko) 양면수광형 태양전지의 제조방법
CN111755563B (zh) 一种p型单晶硅硼背场双面电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944689

Country of ref document: EP

Kind code of ref document: A1