WO2022007057A1 - 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法 - Google Patents

一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法 Download PDF

Info

Publication number
WO2022007057A1
WO2022007057A1 PCT/CN2020/105566 CN2020105566W WO2022007057A1 WO 2022007057 A1 WO2022007057 A1 WO 2022007057A1 CN 2020105566 W CN2020105566 W CN 2020105566W WO 2022007057 A1 WO2022007057 A1 WO 2022007057A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
funnel
mold
bottom plate
cavity
Prior art date
Application number
PCT/CN2020/105566
Other languages
English (en)
French (fr)
Inventor
李晨浩
曾基灵
孙欢
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007057A1 publication Critical patent/WO2022007057A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to the technical field of near-net-shape processing of magnets, in particular to a powder distribution device, a powder distribution method, and a manufacturing method of NdFeB-based sheet magnets.
  • the method of preparing magnets is to obtain magnetic steel sheets with a thickness of about 1mm through orientation forming-cold isostatic pressing-sintering-mechanical cutting.
  • the method of using the mold to fill the powder to form, under the condition of strict oxygen control has prepared the preparation method of the magnetic steel with the thickness of 6mm. Machining the magnets reduces cutting losses and reduces magnet fabrication costs.
  • the friction between the powder and the cavity and the agglomeration of the powder make it difficult for the powder to form. Evenly distributed in each cavity of the mold. The voids caused by the agglomeration of powder in the cavity make the powder distribution in different positions in the cavity inconsistent.
  • the purpose of the present invention is to provide a powder distributing device that reduces powder agglomeration and can distribute powder evenly.
  • the present invention provides a powder distribution device for accurately filling powder into multiple thin mold cavities at the same time, including a powder distribution device and a mold used in cooperation with the powder distribution device;
  • the bottom plate is connected to and forms a side wall of the containing cavity, a powder sweeping plate for sweeping powder in the containing cavity, and at least two funnels docked with the bottom plate away from the side of the containing cavity, the funnels include a funnel inlet communicated with the receiving cavity on one side of the bottom plate, an openable and closable powder cloth valve arranged at the funnel inlet, and a funnel outlet corresponding to the funnel inlet;
  • the bottom plate is provided with uniform Through holes distributed and penetrated thereon, the through holes are arranged corresponding to the inlets of the funnels, and each of the powder cloth valves completely covers the through holes corresponding to the inlets of each of the powder distribution funnels when the powder distribution valve is closed.
  • each of the weighing devices is in contact with the outlet of the funnel and can move freely; the mold is arranged on the weighing device away from the cloth powder
  • the mold includes a mold body with a receiving space and a partition plate received in the receiving space, the partition divides the receiving space into at least two mold cavities, and the mold cavities correspond to the A die cavity opening corresponding to the weighing device is opened on one side of the powder distributor.
  • each of the funnel inlets corresponds to the same number of the through holes on the bottom plate, and each of the through holes has the same diameter.
  • the volume ratio of the funnel to the cavity volume is 3:2.
  • a mesh screen is provided at the outlet of the funnel.
  • the powder distributing device further includes a vibration device for driving the funnel to vibrate at a high frequency.
  • the thickness of the mold cavity along the direction perpendicular to the bottom plate is 0.1mm-100mm.
  • the thickness of the separator along the direction parallel to the bottom plate is 0.1mm-20mm.
  • the powder distribution device further includes a controller, the weighing device is provided with a weighing sensor electrically connected to the controller, and the powder distribution valve is an electric control device that is electrically connected to the controller. valve, and the weighing device is an electronically controlled balance pallet that is electrically connected to the controller; when the controller learns through the weighing sensor that the weight value obtained by the weighing device reaches a preset value, the The controller controls the cloth powder valve to automatically close, and controls the weighing device to automatically move away and no longer close the funnel outlet.
  • the powder distributing device further comprises an air hammer device connected to the funnel and knocking the funnel and blowing air from the inlet of the funnel.
  • the accuracy of the weighing device is not less than 0.01g.
  • the present invention provides a powder distribution method based on the above device, the method comprising the following steps:
  • Powder pouring process keep the powder cloth valve closed, and pour the powder into the receiving cavity of the powder dispenser;
  • Powder sweeping process keep the weighing device abutting the outlet of the funnel, open the powder cloth valve, and use the powder sweeping plate to sweep the powder in the receiving cavity into the funnel, and the weighing device weighs and Feedback the weight value, when the weight value of a weighing device reaches the preset value, close the corresponding powder distribution valve;
  • Powder distribution process remove a weighing device so that the powder in the funnel corresponding to a weighing device slides into the corresponding mold cavity.
  • it also includes a process of setting a preset weight value for the weighing device.
  • the funnel is vibrated, so that the powder in the funnel slides into the corresponding mold cavity smoothly.
  • the powder distribution funnel is knocked with an air hammer device or air is blown from the inlet of the funnel to the outlet of the funnel, so that the powder in the funnel slides smoothly into the powder distribution funnel.
  • the funnel corresponds to the cavity.
  • the median particle size of the powder in the powder pouring process is 1 ⁇ m ⁇ 8 ⁇ m, and the bulk density of the powder is 0.5 g/cm 3 -3.5 g/cm 3 .
  • the powder distribution method also includes:
  • the punching head and the mold cavity of the powder-filled mold are used for mold-clamping and docking, so as to prepare for orientation pressing.
  • the present invention provides a method for manufacturing an NdFeB-based sheet magnet, the manufacturing method comprising:
  • the strip is put into a hydrogen explosion furnace, hydrogen is introduced, and rare earth and hydrogen are used to react, so that the strip is broken into coarse particles of 300-800 microns;
  • the coarse particles are pulverized into fine powder with an air jet pulverizing device, and the median particle size of the fine powder is 1 ⁇ m to 8 ⁇ m;
  • the powder is subjected to powder cloth by the above-mentioned powder cloth method, so that the powder is filled into the mold cavity to prepare for orientation pressing;
  • the molded body is sintered to obtain the NdFeB-based sheet magnet.
  • the beneficial effects of the invention are as follows: the setting of the bottom hole of the powder distributor and the setting of the powder sweeping plate can reduce powder agglomeration; the setting of the weighing device can accurately control the weight value of the powder filled into each mold cavity, ensuring that each mold The filling amount of powder in the cavity is consistent, and the weight of powder in each cavity is precisely controlled.
  • FIG. 1 is a schematic structural diagram of the powder distributing device of the present invention.
  • FIG. 2 is a schematic top view of the bottom plate of the powder distributing device of the present invention.
  • 3A is a schematic diagram of the powder pouring process of the powder distributing device of the present invention.
  • 3B is a schematic diagram of a powder sweeping process of the powder distributing device of the present invention.
  • 3C is a schematic diagram of the powder distribution process of the powder distribution device of the present invention.
  • FIG. 4 is a schematic diagram of the orientation direction of the magnet in the preparation of the magnet according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the position of the magnet performance verification prepared in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of electrical connection of a controller according to an embodiment of the present invention.
  • the present invention provides a powder distributing device, as shown in FIGS. 1-3 , the powder distributing device includes a powder distributing device 1 and a mold 2 , and the mold 2 is used in cooperation with the powder distributing device 1 .
  • the powder distributor includes a bottom plate 11 , a side wall 12 , a powder sweeping plate 15 , at least two funnels 13 connected to the side of the bottom plate 11 away from the receiving cavity 16 , and a weighing device 14 .
  • the side wall 12 is connected with the bottom plate 11 and forms a receiving cavity 16 therewith.
  • the powder sweeping plate 15 is used to sweep powder in the receiving cavity 16.
  • the bottom plate 11 is provided with through holes 111 (shown in FIG. 3) that are evenly distributed and penetrate through it.
  • the weighing device 14 is arranged at the funnel outlet 132 and corresponds to the funnel 13 one-to-one.
  • each of the weighing devices 14 is placed at the funnel outlet 132 and is disposed opposite to the funnel outlet one by one, and each of the weighing devices 14 abuts against the funnel outlet 132 and is free Move, the weighing device 14 is in contact with the funnel outlet 132, which can be used to seal the powder flowing into the funnel 13 from the receiving cavity 16 through the through hole 111. If the weighing device 14 is removed, a certain mass in the funnel 13 can be weighed. The powder is poured into the cavity 23.
  • the powder distributing device further includes a powder pouring shovel 17 , and the powder pouring shovel 17 is used for pouring the powder to be distributed into the receiving cavity 16 .
  • the funnel 13 includes a funnel inlet 131 , a funnel outlet 132 and a powder cloth valve 133 .
  • the funnel inlet 131 is connected to the side of the bottom plate 11 and the receiving cavity 16 through the through hole 111, the funnel outlet 132 is correspondingly communicated with the funnel inlet 131, and the powder cloth valve 133 is provided at each of the funnel inlets 131 and the funnel.
  • the cloth powder valve 133 can be opened and closed between the corresponding through holes 111 of 13; when each cloth powder valve 133 is closed, it can completely cover the through hole 111 corresponding to each of the cloth powder funnel inlets 131, which can block the flow through.
  • each of the funnel inlets 131 corresponds to the same number of the through holes 111 on the bottom plate 11 , and each of the through holes 111 has the same diameter.
  • a mesh screen (not shown) is provided at the outlet 132 of the funnel.
  • the accuracy of the weighing device 14 is not less than 0.01 g.
  • the volume ratio of the funnel 13 to the cavity 23 is greater than 1:1.
  • the accumulation of powder weighing errors caused by needing to weigh the powder in the funnel 13 several times to fill the mold cavity 23 can be avoided.
  • the diameter of the through hole 111 is 40 ⁇ m
  • the volume ratio of the funnel 13 to the cavity 23 is 3:2
  • the mesh screen diameter is 40 meshes
  • the weighing device 14 is placed at the outlet 132 of the funnel.
  • a one-to-one corresponding openable balance support plate with the funnel 13 the precision of the balance support plate is 0.01g.
  • the mold 2 is disposed on the side of the weighing device 14 away from the powder distributor; the mold 2 includes a mold body 21 , a partition plate 22 , a mold cavity 23 and a mold cavity opening 231 .
  • the mold body 21 has an accommodating space 212, and the partition plate 22 is accommodated in the accommodating space 212.
  • the partition plate 22 divides the accommodating space 212 into at least two mold cavities 23.
  • the mold cavity 23 is provided with a weighing and weighing device corresponding to one side of the powder dispenser.
  • the cavity opening 231 corresponding to the device 14 In this embodiment, during the powder distribution process, the weighing device 14 can be used to weigh the powder in the funnel 13 when the balance support plate is in contact with the funnel outlet 132 . As shown in FIG.
  • the number of mold cavities 23 is 2-200.
  • the thickness of the mold cavity 23 along the direction perpendicular to the bottom plate 11 is 0.1 mm-100 mm. Effectively control the thickness of the magnet after forming.
  • the thickness of the partition plate 22 along the direction parallel to the bottom plate 11 is 0.1 mm-20 mm. Prevent excessive accumulation of magnetic powder on the cross section of the separator.
  • the mold 2 includes eight mold cavities 23 of the same size; the thickness of the mold cavities 23 along the direction perpendicular to the bottom plate 11 is 4 mm, which is used for preparing thin magnets below 3 mm.
  • the length of the mold cavity 23 and the widths are 30mm and 25mm, respectively; the thickness of the partition plate 22 along the direction parallel to the bottom plate 11 is 5mm.
  • the powder distribution device further includes a vibration device (not shown in the figure) for driving the funnel 13 to vibrate at a high frequency.
  • the powder distribution device further includes a controller
  • the weighing device 14 is provided with a weighing sensor that is electrically connected to the controller
  • the powder distribution valve 133 is an electrical device that is electrically connected to the controller.
  • control valve the weighing device 14 is a balance pallet electrically connected to the controller; when the controller learns through the weighing sensor that the weight value obtained by the weighing device 14 reaches the preset value, the The controller controls the powder distribution valve 133 to automatically close, and controls the balance pallet to automatically move away and no longer close the funnel outlet 132, so that the powder in the funnel 13 that has been weighed to a set weight value flows into the mold cavity.
  • the powder-distributing device further includes an air hammer device connected to the funnel 13 and knocking the funnel 13 and blowing air from the funnel inlet 131 .
  • the present invention provides a powder distribution method based on the above-mentioned powder distribution device, and the powder distribution method comprises the following steps:
  • Powder pouring process keep the powder cloth valve 133 closed, and pour the powder into the receiving cavity 16 of the powder dispenser, as shown in FIG. 3A ;
  • Powder sweeping process keep the weighing device 14 in contact with the funnel outlet 132 , open the powder cloth valve 133 , and use the powder sweeping plate 15 to sweep the powder in the receiving cavity 16 into the funnel 13 .
  • the weighing device 14 weighs and feeds back the weight value.
  • the weight value of a certain weighing device 14 reaches the preset value, the corresponding powder cloth valve 133 is closed, as shown in FIG. 3B ;
  • Powder distribution process remove a certain weighing device 14 so that the powder in the funnel 13 corresponding to a certain weighing device 14 slides into the corresponding mold cavity 23 , as shown in FIG. 3C .
  • Powder agglomeration is a key factor that hinders the uniform molding of the magnet.
  • the powder sweeping plate 15 is provided, which can quickly move the powder agglomerate to sweep the powder evenly. And the through hole 111 rubs to break up the agglomerated powder.
  • the distance between the powder sweeping plate 15 and the bottom plate 11 is less than or equal to 5mm, and more preferably, the distance between the powder sweeping plate 15 and the bottom plate 11 is less than or equal to 2mm.
  • the powder sweeping plate 15 is used to sweep powder in the receiving cavity 16 in the direction indicated by the arrow in FIG. 3B , and can reciprocate along the receiving cavity 16 of the powder distributor.
  • the powder frequency can be set according to the specific process.
  • the frequency of the reciprocating motion of the powder sweeping plate 15 in the receiving cavity 16 is 10 Hz to 200 Hz.
  • the height of the powder-sweeping plate 15 is 2 mm, and the powder-sweeping frequency is 100 Hz.
  • the powder distribution method further includes a process of setting a preset weight value for the weighing device 14 .
  • the preset weight value is 9.44g.
  • the funnel 13 is vibrated, so that the powder in the funnel 13 slides into the corresponding mold cavity 23 smoothly.
  • the powder distribution funnel 13 is knocked with an air hammer device or air is blown from the funnel inlet 131 to the funnel outlet 132, so that the powder in the funnel 13 slides into the funnel 13 smoothly. in the cavity 23 corresponding to the funnel 13 .
  • the median particle size of the powder is 1 ⁇ m ⁇ 8 ⁇ m, and the bulk density of the powder is 0.5 g/cm 3 ⁇ 3.5 g/cm 3 .
  • the median particle size of the powder in the pouring process was 5 ⁇ m, and the bulk density of the powder was 3.11 g/cm 3 .
  • the powder distribution method further includes a mold clamping process. After the powder distribution process, a mold clamping process is performed. After the powder distribution process, the punching head is used for mold clamping and butt joint with the cavity 23 of the mold 2 filled with powder. For orientation pressing.
  • the present invention also provides a method for manufacturing an NdFeB-based sheet magnet, which includes the following steps:
  • the strip is put into a hydrogen explosion furnace, hydrogen is introduced, and rare earth and hydrogen are used to react, so that the strip is broken into coarse particles of 300-800 microns;
  • N 2 , Ar, etc. are specifically selected, and the coarse particles are pulverized into fine powder by an air jet pulverizing device, and the median particle size of the fine powder is 1 ⁇ m ⁇ 8 ⁇ m;
  • Orientation molding process under the protection of inert gas, specifically select N 2 , Ar, etc., apply magnetic field orientation to the powder filled in the mold cavity 23, and die-cast into a molded body;
  • N 2 , Ar, etc. are specifically selected, and the molded body is sintered to obtain the NdFeB-based sheet magnet.
  • N 2 , Ar, etc. are specifically selected, and the molded body is sintered to obtain the NdFeB-based sheet magnet.
  • the temperature was first heated to 300 °C, held for 2 hours, and the adsorbed gas was discharged; then the temperature was raised to 550 °C, held for 2 hours, and the hydrogen was discharged; then the temperature was raised to 1020-1100 °C, held for 2 hours,
  • the NdFeB-based sheet magnet is obtained by ensuring the sintering shrinkage of the molded body.
  • the thickness of the strip is 0.15mm-0.45mm.
  • the strength of the magnetic field of the orientation and molding is 1.2T-9T.
  • the following process is further included: removing the magnetic field applied to the molded body, and applying a magnetic field with a strength of 0.05T-0.2T opposite to the direction of the magnetic field to the molded body.
  • the punching head that is clamped with the mold 2 can be pressed up and down to float and clamp the mold with the cavity 23 at a molding pressure of 2t to 80t.
  • the inert gas is specifically N 2
  • the thickness of the strip in the quick-setting process is 0.3 mm
  • the forming pressure of the punching head is 40 t
  • the strength of the magnetic field for the orientation pressing is 4 T
  • the orientation direction is as shown by the arrow in FIG. 4 . direction
  • the strength of the magnetic field opposite to the orientation pressing magnetic field applied to the formed body is 0.1T, so as to ensure that there is no magnetic powder burr on the surface of the formed magnet.
  • NdFeB-based sheet magnets According to the eight mold cavities of Example 1, eight NdFeB-based sheet magnets can be prepared, the eight NdFeB-based sheet magnets are numbered ah, and the performance parameters of the thickness, weight and magnet density (g/cm 3 ) of the eight magnets as shown in the table below.
  • the powder distribution device and the powder distribution method provided by the present invention can efficiently fill the multi-mould cavity with powder accurately and uniformly, thereby obtaining a magnet with uniform weight, magnet density and magnet thickness.
  • the beneficial effects of the invention are as follows: the setting of the bottom hole of the powder distributor and the setting of the powder sweeping plate can reduce powder agglomeration; the setting of the weighing device can accurately control the weight value of the powder filled into each mold cavity, ensuring that each mold The filling amount of powder in the cavity is consistent, and the weight of each cavity powder is precisely controlled, so that the batch of magnets can be uniformly filled with cloth powder and the near-net shape of magnets below 3mm can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明提供了一种布粉装置,包括布粉器和与布粉器配合使用的模具;布粉器包括底板、与底板相连并与之形成收容腔的侧壁、扫粉板、与底板背离所述收容腔一侧对接的至少两个漏斗以及设置于各漏斗入口与漏斗对应的通孔之间可开合的布粉阀门;底板上设有均匀分布且贯穿其上的通孔,布粉器还包括与漏斗一一对应的称量装置;模具包括具有收容空间的模具本体以及将收容空间分隔为至少两个模腔的隔板;布粉方法包括称粉、倒粉、布粉、合模工序。本发明的布粉装置可以减少粉末团聚;称量装置的设置可使填充到各模腔中的粉末的重量值得到精确控制,保证各模腔内粉末的填充量一致从而实现磁体的批量均匀填充布粉。

Description

一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法 技术领域
本发明涉及磁体的近净成型加工技术领域,特别涉及一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法。
背景技术
随着人们对产品性能和体验需求的提升,声学元器件正朝着体积小、高能量密度、更复杂的结构发展。近净成型就成为高性能烧结钕铁硼(NdFeB)磁体制备的一个重要方向,现阶段制备磁体的方法通过取向成型-冷等静压-烧结-机械切割来获得1mm左右厚度的磁钢片。
技术问题
现有技术中,虽然已有取消冷等静压,利用模具填充粉末成型的方式,在严格控氧的条件下制备出了6mm厚度的磁钢的制备方法,在保证性能的同时,也为后续加工磁体减少了切削损失,降低了磁体制备成本。但是对于尺寸更小的薄磁体的近净成型而言,由于腔体宽度较小、粉末与腔体的相对接触摩擦面积大,则粉末与模腔的摩擦力以及粉末的团聚造成粉体很难均匀分布在模具的各个模腔中。模腔内粉末的团聚造成的空隙使得模穴中各个位置粉末分布不一致,压完后磁体不同位置的内应力不同引起毛坯和生坯尺寸不均一,性能也不稳定,很难实现批量化生产。而且对于更薄更小且总布粉量只有几克的磁体来说,想要达到同模的各模腔之间的布粉的质量误差低至1%,依然面临着巨大的挑战。
因此,有必要提供一种布粉装置及布粉方法解决上述难题。
技术解决方案
本发明的目的在于提供一种减少粉末团聚、能均匀布粉的布粉装置。
第一方面,本发明提供了一种同时向多薄模腔精准填充粉末的布粉装置,包括布粉器和与所述布粉器配合使用的模具;所述布粉器包括底板、与所述底板相连并与之形成收容腔的侧壁、用于在所述收容腔内扫粉的扫粉板、与所述底板背离所述收容腔一侧对接的至少两个漏斗,所述漏斗包括对接所述底板一侧与所述收容腔相通的漏斗入口、设置于所述漏斗入口处的可开合的布粉阀门以及与所述漏斗入口对应相通的漏斗出口;所述底板上设有均匀分布且贯穿其上的通孔,所述通孔与所述漏斗入口对应设置,每一所述布粉阀门闭合时完全覆盖每一所述布粉漏斗入口对应的通孔,所述布粉器还包括与所述漏斗出口一一相对设置的称量装置,每一所述称量装置与所述漏斗出口抵接且可自由移动;所述模具设于所述称量装置背离所述布粉器一侧;所述模具包括具有收容空间的模具本体以及收容于所述收容空间内的隔板,所述隔板将所述收容空间分隔为至少两个模腔,所述模腔对应所述布粉器一侧开设有与所述称量装置对应的模腔口。
更优地,每一所述漏斗入口对应所述底板上相同数量的所述通孔,且每一所述通孔的孔径相同。
更优地,所述漏斗体积与所述模腔体积比为3:2。
更优地,所述漏斗出口处设有网筛。
更优地,所述布粉装置还包括用于驱动所述漏斗高频振动的振动装置。
更优地,所述模腔沿垂直于所述底板的方向的厚度为0.1mm-100mm。
更优地,所述隔板沿平行于所述底板的方向的厚度为0.1mm-20mm。
更优地,所述布粉装置还包括控制器,所述称量装置上设有与所述控制器电连接的称量传感器,所述布粉阀门为与所述控制器电连接的电控阀门,所述称量装置为与所述控制器电气连接的电控天平托板;所述控制器通过所述称量传感器获知所述称量装置获得的重量值达到预设值时,所述控制器控制所述布粉阀门自动关闭,和控制称量装置自动移开不再封闭所述漏斗出口。
更优地,所述布粉装置还包括与所述漏斗连接并对所述漏斗进行敲击以及自所述漏斗入口处鼓气的气锤装置。
更优地,所述称量装置的精度不低于0.01g。
第二方面,本发明提供了一种基于上述装置的布粉方法,所述方法包括如下工序:
(1)倒粉工序:保持布粉阀门关闭,将粉末倒入所述布粉器的所述收容腔中;
(2)扫粉工序:保持称量装置抵接所述漏斗出口,打开布粉阀门,使用扫粉板将所述收容腔中的粉末扫入所述漏斗中,所述称量装置称重并反馈重量值,当某称量装置的重量值达到预设值时,关闭对应的布粉阀门;
(3)布粉工序:撤去某称量装置使处于对应某称量装置的漏斗中的粉末滑入对应的模腔中。
更优地,还包括为称量装置设定预设的重量值的工序。
更优地,在所述布粉工序中,振动所述漏斗,以致使漏斗中的粉末顺利滑入对应的模腔中。
更优地,在所述布粉工序中,利用气锤装置对布粉漏斗进行敲击或自所述漏斗入口向所述漏斗出口方向鼓气,以致使漏斗中的粉末顺利滑入与所述漏斗对应的模腔中。
更优地,所述倒粉工序中粉末的中值粒径为1μm~8μm,粉末的松装密度为0.5g/cm 3-3.5g/cm 3
更优地,所述布粉方法还包括:
合模工序,在所述布粉工序之后,利用冲压头和盛有粉末的模具的模腔合模对接,以备取向压型。
第三方面,本发明提供了一种NdFeB系薄片磁体的制造方法,所述制造方法包括:
速凝工序,将一定质量的NdFeB系的合金放进真空速凝炉中制成一定厚度的甩带;
    氢爆工序,将所述甩带放入氢爆炉中,通入氢气,利用稀土和氢气反应,使得所述甩带破碎成300-800微米的粗颗粒;
气流磨工序,把所述粗颗粒用气流粉碎设备粉碎成细粉,所述细粉的中值粒径为1μm~8μm;
布粉及合膜工序,将所述粉末经过如上述布粉方法进行布粉,使所述粉末填充进所述模腔内,以备取向压型;
取向压型工序,对填充到所述模腔内的所述粉末施加磁场取向,并压铸成成型体;
烧结工序,将所述成型体进行烧结得到所述NdFeB系薄片磁体。
有益效果
本发明的有益效果在于:布粉器的底板开孔以及扫粉板的设置可以减少粉末团聚;称量装置的设置可使填充到各模腔中的粉末的重量值得到精确控制,保证各模腔内粉末的填充量一致,精确的控制每个模腔内粉末的重量。
附图说明
图1为本发明的布粉装置结构示意图。
图2为本发明布粉装置的底板的俯视示意图。
图3A为本发明的布粉装置的倒粉工序示意图。
图3B为本发明的布粉装置的扫粉工序示意图。
图3C为本发明的布粉装置的布粉工序示意图。
图4为本发明实施例磁体制备中磁体取向方向示意图。
图5为本发明实施例制得的磁体性能验证位置示意图。
图6为本发明实施例的控制器的电气连接示意图。
本发明的最佳实施方式
下面结合附图和实施方式对本发明作进一步说明。
实施例1
本发明提供了一种布粉装置,如图1-3所示,该布粉装置包括布粉器1和模具2,模具2与布粉器1配合使用。
布粉器包括底板11、侧壁12、扫粉板15、与所述底板11背离所述收容腔16一侧对接的至少两个漏斗13、称量装置14。侧壁12与底板11相连并与之形成收容腔16,扫粉板15用于在收容腔16内扫粉,底板11上设有均匀分布且贯穿其上的通孔111(图3所示),称量装置14设于漏斗出口132处且与所述漏斗13一一对应。具体地,每一所述称量装置14置于所述漏斗出口132处且与所述漏斗出口一一相对设置,每一所述称量装置14与所述漏斗出口132处抵接且可自由移动,称量装置14与漏斗出口132抵接可用于封住自所述收容腔16经通孔111流入漏斗13内的粉末,撤去称量装置14则可将漏斗13内称量好的一定质量的粉末倒入模腔23中。
优选地,布粉器还包括倒粉铲17,倒粉铲17用于将待布粉的粉末倒入收容腔16内。
具体地,漏斗13包括漏斗入口131、漏斗出口132以及布粉阀门133。漏斗入口131对接所述底板11一侧与收容腔16之间通过通孔111相通,漏斗出口132与所述漏斗入口131对应相通,布粉阀门133设置于各所述漏斗入口131与所述漏斗13对应的通孔111之间且所述布粉阀门133可开合;每一所述布粉阀门133闭合时可完全覆盖每一所述布粉漏斗入口131对应的通孔111,可阻挡通孔111和与所述通孔111对应的漏斗入口131之间不相通进而阻止收容腔16中的粉末经所述通孔111流入漏斗13内。所述布粉阀门133打开时,收容腔16中的粉末可经所述通孔111流入漏斗13内。
优选地,每一所述漏斗入口131对应所述底板11上相同数量的所述通孔111,且每一所述通孔111的孔径相同。
优选地,所述漏斗出口132处设有网筛(未图示)。
优选地,所述称量装置14的精度不低于0.01g。
优选地,所述漏斗13体积与所述模腔23体积比大于1:1。可避免需多次称量漏斗13内的粉末才能填满模腔23造成的粉末称量误差的累计。
本实施例中,通孔111的孔径为40μm,漏斗13体积与所述模腔23体积比为3:2,网筛孔径为40目,称量装置14具体为置于所述漏斗出口132处并与所述漏斗13一一对应的可开合的天平托板,该天平托板的精度为0.01g。
模具2设于称量装置14背离布粉器一侧;模具2包括模具本体21、隔板22、模腔23以及模腔口231。模具本体21具有收容空间212,隔板22收容于所述收容空间212内,隔板22将收容空间212分隔为至少两个模腔23,模腔23对应布粉器一侧开设有与称量装置14对应的模腔口231。本实施例中,在布粉的过程中,天平托板与漏斗出口132抵接则称量装置14可用于称量漏斗13内粉末重量。如图3B所示,当某个称量装置14的重量值达到预设值时,则关闭对应的布粉阀门133。如图3C所示,模具2布粉结束后移除布粉器后可用于合模工序。
优选地,模腔23数量为2-200个。
优选地,所述模腔23沿垂直于所述底板11的方向的厚度为0.1mm-100mm。有效控制成型后磁体的厚度。
优选地,所述隔板22沿平行于所述底板11的方向的厚度为0.1mm-20mm。防止磁粉过多的堆积在隔板的横断面上。
本实施例中,模具2包括八个尺寸相同的模腔23;所述模腔23沿垂直于所述底板11的方向的厚度为4mm,用于制备3mm以下的薄磁体,模腔23的长度和宽度分别为30mm和25mm;隔板22沿平行于所述底板11的方向的厚度为5mm。
具体地,布粉装置还包括用于驱动所述漏斗13高频振动的振动装置(图中未示出)。
具体地,如图6所示,布粉装置还包括控制器,称量装置14上设有与控制器电连接的称量传感器,所述布粉阀门133为与所述控制器电连接的电控阀门,所述称量装置14为与所述控制器电气连接的天平托板;所述控制器通过所述称量传感器获知所述称量装置14获得的重量值达到预设值时,所述控制器控制所述布粉阀门133自动关闭,和控制天平托板自动移开不再封闭所述漏斗出口132使得漏斗13内已经称量到设定重量值的粉末流入模腔中。
优选地,所述布粉装置还包括与所述漏斗13连接并对所述漏斗13进行敲击以及自所述漏斗入口131处鼓气的气锤装置。
本发明提供了一种基于上述布粉装置的布粉方法,所述布粉方法包括如下步骤:
(1)倒粉工序:保持布粉阀门133关闭,将粉末倒入所述布粉器的所述收容腔16中,如图3A所示;
(2)扫粉工序:保持称量装置14抵接所述漏斗出口132,打开布粉阀门133,使用扫粉板15将所述收容腔16中的粉末扫入所述漏斗13中,所述称量装置14称重并反馈重量值,当某称量装置14的重量值达到预设值时,关闭对应的布粉阀门133,如图3B所示;
(3)布粉工序:撤去某称量装置14使处于对应某称量装置14的漏斗13中的粉末滑入对应的模腔23中,如图3C所示。
粉末团聚是阻碍磁体均匀成型的关键因素,本发明中,设置扫粉板15,可以快速拨动粉末的粉团进行均匀扫粉,同时,扫粉板15拨动粉团使粉团与底板11以及通孔111摩擦,可以将团聚的粉团打散,本申请中扫粉板15与底板11之间的距离小于或等于5mm,更优的,扫粉板15与底板11之间的距离小于或等于2mm。具体地,扫粉板15用于在收容腔16内沿图3B中的箭头所示方向扫粉,可沿着布粉器的收容腔16做往复运动,扫粉板15的扫粉高度、扫粉频率可以根据具体工艺设定。优选地,扫粉板15在所述收容腔16内往复运动的频率为10Hz~200Hz。
本实施例中,扫粉板15的高度为为2mm,扫粉频率为100Hz。
优选地,所述布粉方法还包括为称量装置14设定预设的重量值的工序。本实施例中,预设的重量值为9.44g。
优选地,在所述布粉工序中,振动漏斗13,以致使漏斗13中的粉末顺利滑入对应的模腔23中。
优选地,在所述布粉工序中,利用气锤装置对布粉漏斗13进行敲击或自所述漏斗入口131向所述漏斗出口132方向鼓气,以致使漏斗13中的粉末顺利滑入与所述漏斗13对应的模腔23中。
优选地,所述倒粉工序中粉末的中值粒径为1μm~8μm,粉末的松装密度为0.5g/cm 3~3.5g/cm 3
本实施例中,倒粉工序中粉末的中值粒径为5μm,粉末的松装密度为3.11g/cm 3
优选地,所述布粉方法还包括合模工序,在布粉工序之后,合模工序,在所述布粉工序之后,利用冲压头和盛有粉末的模具2的模腔23合模对接,以备取向压型。
本发明还提供了一种NdFeB系薄片磁体的制造方法,所述制造方法包括以下工序:
速凝工序,将一定质量的NdFeB系的合金放进真空速凝炉中制成一定厚度的甩带;
    氢爆工序,将所述甩带放入氢爆炉中,通入氢气,利用稀土和氢气反应,使得所述甩带破碎成300-800微米的粗颗粒;
气流磨工序,在惰性气体保护下,具体选用N 2,Ar等,把所述粗颗粒用气流粉碎设备粉碎成细粉,所述细粉的中值粒径为1μm~8μm;
布粉及合膜工序,在惰性气体保护下,具体选用N 2,Ar等,将所述粉末经上述的布粉方法进行布粉,使所述粉末填充进所述模腔23内,以备取向压型;
取向压型工序,在惰性气体保护下,具体选用N 2,Ar等,对填充到所述模腔23内的所述粉末施加磁场取向,并压铸成成型体;
烧结工序,在惰性气体保护下,具体选用N 2,Ar等,将所述成型体进行烧结得到所述NdFeB系薄片磁体。具体地,以5-10℃/min的升温速度,先升温至300℃,保温2h,排出吸附气体;再升温至550℃,保温2h,排出氢气;再升温至1020-1100℃,保温2h,保证成型体烧结收缩得到所述NdFeB系薄片磁体。
优选地,速凝工序中,所述甩带的厚度为0.15mm-0.45mm。
优选地,取向压型工序中,所述取向压型的磁场的强度为1.2T-9T。
优选地,烧结工序之前还包括以下工序:撤去施加在所述成型体上的所述磁场,对所述成型体施加与所述磁场的方向反向的强度为0.05T-0.2T的磁场。
优选地,与所述模具2合模的冲压头可以上下浮动压制,以2t~80t的成型压力与模腔23合模。
本实施例中,惰性气体具体选用N 2,速凝工序中的甩带厚度为0.3mm,冲压头成型压力为40t,取向压型的磁场的强度为4T,取向方向如图4所示的箭头方向;对所述成型体施加的与所述取向压型磁场反向的强度为0.1T,以保证成型的磁体表面没有磁粉毛刺。
根据实施例1的八个模腔可制得八个NdFeB系薄片磁体,对该八个NdFeB系薄片磁体编号a-h,这八个磁体的厚度、重量和磁体密度(g/cm 3)的性能参数如下表所示。
Figure dest_path_image002aaaaa
从表中数据可得,八个模腔内粉末布粉后所得磁体的质量和密度接近,磁体质量接近,磁体密度误差在0.1g/cm 3以内,每个模腔内所得的磁体取如图5所示的六个位置的厚度值接近。综上所示,本发明所提供的布粉装置及其布粉方法能够高效地给多模腔同时精准且均匀的填充粉末,进而可得到重量、磁体密度和磁体厚度均一的磁体。
本发明的有益效果在于:布粉器的底板开孔以及扫粉板的设置可以减少粉末团聚;称量装置的设置可使填充到各模腔中的粉末的重量值得到精确控制,保证各模腔内粉末的填充量一致,精确的控制每个模穴粉的重量,从而实现磁体的批量均匀填充布粉并实现3mm以下的磁体制备的近净成型。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (17)

  1. 一种用于制备NdFeB系薄片磁体的布粉装置,其特征在于,包括布粉器和与所述布粉器配合使用的模具;
    所述布粉器包括底板、与所述底板相连并与之形成收容腔的侧壁、用于在所述收容腔内扫粉的扫粉板、与所述底板背离所述收容腔一侧对接的至少两个漏斗,所述漏斗包括对接所述底板一侧与所述收容腔相通的漏斗入口、设置于所述漏斗入口处的可开合的布粉阀门以及与所述漏斗入口对应相通的漏斗出口;所述底板上设有均匀分布且贯穿其上的通孔,所述通孔与所述漏斗入口对应设置,每一所述布粉阀门闭合时完全覆盖每一所述布粉漏斗入口对应的通孔,
    所述布粉器还包括与所述漏斗出口一一相对设置的称量装置,每一所述称量装置与所述漏斗出口抵接且可自由移动;
    所述模具设于所述称量装置背离所述布粉器一侧;所述模具包括具有收容空间的模具本体以及收容于所述收容空间内的隔板,所述隔板将所述收容空间分隔为至少两个模腔,所述模腔对应所述布粉器一侧开设有与所述称量装置对应的模腔口。
  2. 根据权利要求1所述的布粉装置,其特征在于,每一所述漏斗入口对应所述底板上相同数量的所述通孔,且每一所述通孔的孔径相同。
  3. 根据权利要求1所述的布粉装置,其特征在于,所述漏斗体积与所述模腔体积比为3:2。
  4. 根据权利要求1所述的布粉装置,其特征在于,所述漏斗出口处设有网筛。
  5. 据权利要求1所述的布粉装置,其特征在于,所述布粉装置还包括用于驱动所述漏斗高频振动的振动装置。
  6. 根据权利要求1所述的布粉装置,其特征在于,所述模腔沿垂直于所述底板的方向的厚度为0.1mm-100mm。
  7. 根据权利要求1所述的布粉装置,其特征在于,所述隔板沿平行于所述底板的方向的厚度为0.1mm-20mm。
  8. 根据权利要求1所述的布粉装置,其特征在于,所述布粉装置还包括控制器,所述称量装置上设有与所述控制器电连接的称量传感器,所述布粉阀门为与所述控制器电连接的电控阀门,所述称量装置为与所述控制器电气连接的电控天平托板;所述控制器通过所述称量传感器获知所述称量装置获得的重量值达到预设值时,所述控制器控制所述布粉阀门自动关闭,和控制称量装置自动移开不再封闭所述漏斗出口。
  9. 根据权利要求1所述的布粉装置,其特征在于,所述布粉装置还包括与所述漏斗连接并对所述漏斗进行敲击以及自所述漏斗入口处鼓气的气锤装置。
  10. 根据权利要求1所述的布粉装置,其特征在于,所述称量装置的精度不低于0.01g。
  11. 一种基于权利要求1-10任一项所述布粉装置的布粉方法,其特征在于,所述布粉方法包括以下工序:
    倒粉工序:保持布粉阀门关闭,将粉末倒入所述布粉器的所述收容腔中;
    扫粉工序:保持称量装置抵接所述漏斗出口,打开布粉阀门,使用扫粉板将所述收容腔中的粉末扫入所述漏斗中,所述称量装置称重并反馈重量值,当某称量装置的重量值达到预设值时,关闭对应的布粉阀门;
    布粉工序:撤去某称量装置使处于对应某称量装置的漏斗中的粉末滑入对应的模腔中。
  12. 根据权利要求11所述的布粉方法,其特征在于,还包括为称量装置设定预设的重量值的工序。
  13. 根据权利要求11所述的布粉方法,其特征在于,在所述布粉工序中,振动所述漏斗,以致使漏斗中的粉末顺利滑入对应的模腔中。
  14. 根据权利要求11所述的布粉方法,其特征在于,在所述布粉工序中,利用气锤装置对布粉漏斗进行敲击或自所述漏斗入口向所述漏斗出口方向鼓气,以致使漏斗中的粉末顺利滑入与所述漏斗对应的模腔中。
  15. 根据权利要求11所述的布粉方法,其特征在于,所述倒粉工序中粉末的中值粒径为1μm~8μm,粉末的松装密度为0.5g/cm 3-3.5g/cm 3
  16. 根据权利要求11所述的布粉方法,其特征在于,所述布粉方法还包括:
    合模工序,在所述布粉工序之后,利用冲压头和盛有粉末的模具的模腔合模对接,以备取向压型。
  17. 一种NdFeB系薄片磁体的制造方法,其特征在于,所述制造方法包括:
    速凝工序,将一定质量的NdFeB系的合金放进真空速凝炉中制成一定厚度的甩带;
        氢爆工序,将所述甩带放入氢爆炉中,通入氢气,利用稀土和氢气反应,使得所述甩带破碎成300-800微米的粗颗粒;
    气流磨工序,把所述粗颗粒用气流粉碎设备粉碎成细粉,所述细粉的中值粒径为1μm~8μm;
    布粉及合膜工序,将所述粉末经过如权利要求11-16任一项所述的布粉方法进行布粉,使所述粉末填充进所述模腔内,以备取向压型;
    取向压型工序,对填充到所述模腔内的所述粉末施加磁场取向,并压铸成成型体;
    烧结工序,将所述成型体进行烧结得到所述NdFeB系薄片磁体。
PCT/CN2020/105566 2020-07-10 2020-07-29 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法 WO2022007057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010664221.4 2020-07-10
CN202010664221.4A CN111968814A (zh) 2020-09-25 2020-09-25 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法

Publications (1)

Publication Number Publication Date
WO2022007057A1 true WO2022007057A1 (zh) 2022-01-13

Family

ID=73361231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105566 WO2022007057A1 (zh) 2020-07-10 2020-07-29 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法

Country Status (2)

Country Link
CN (1) CN111968814A (zh)
WO (1) WO2022007057A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114589195A (zh) * 2022-04-01 2022-06-07 贵州师范大学 一种用于城市垃圾中塑料的降解处理设备及其处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906001A (zh) * 2004-01-08 2007-01-31 萨克米伊莫拉机械合作社合作公司 用于预布置形成瓷砖或板的粉末的方法和设备
CN105788842A (zh) * 2016-05-13 2016-07-20 内蒙古科元胜力金山稀土科技有限公司 一种钕铁硼磁体自动压型系统及其成型方法
CN107433714A (zh) * 2016-05-25 2017-12-05 罗天珍 粉末3d打印专用融合微梳铺粉法及铺粉装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656416B2 (en) * 2000-09-12 2003-12-02 Sumitomo Special Metals Co., Ltd. Powder feeding apparatus, pressing apparatus using the same, powder feeding method and sintered magnet manufacturing method
US6626737B1 (en) * 2002-04-12 2003-09-30 Ullens De Schooten Pascal Machine to produce and propel sublimable solid particles
CN102893348B (zh) * 2010-05-10 2016-04-27 因太金属株式会社 NdFeB类烧结磁体制造装置
CN206857041U (zh) * 2017-05-29 2018-01-09 温州海蓝工业设计有限公司 一种食品自动化包装装置
CN207809834U (zh) * 2017-12-29 2018-09-04 四川道泉老坛酸菜股份有限公司 一种定量装包装置
CN208194153U (zh) * 2018-04-02 2018-12-07 中化重庆涪陵化工有限公司 石灰粉定量乳液配制装置
CN110182391A (zh) * 2019-05-31 2019-08-30 南京钢诺智能装备有限公司 一种称重式大米包装机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906001A (zh) * 2004-01-08 2007-01-31 萨克米伊莫拉机械合作社合作公司 用于预布置形成瓷砖或板的粉末的方法和设备
CN105788842A (zh) * 2016-05-13 2016-07-20 内蒙古科元胜力金山稀土科技有限公司 一种钕铁硼磁体自动压型系统及其成型方法
CN107433714A (zh) * 2016-05-25 2017-12-05 罗天珍 粉末3d打印专用融合微梳铺粉法及铺粉装置

Also Published As

Publication number Publication date
CN111968814A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN102233428B (zh) 大块烧结钕铁硼永磁材料的制备方法
WO2016047593A1 (ja) 希土類焼結磁石の製造方法及び当該製法にて使用される製造装置
KR101601583B1 (ko) 희토류 영구 자석, 희토류 영구 자석의 제조 방법 및 희토류 영구 자석의 제조 장치
WO2022007057A1 (zh) 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法
KR101587395B1 (ko) 분말 충전 장치
KR101735144B1 (ko) NdFeB계 소결자석 제조장치
CN111370192B (zh) 一种烧结钕铁硼永磁体控氧制备方法及筛分装置
CN110093588A (zh) 一种细晶粒铝钪合金靶材及其制备方法和应用
JP5411957B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
CN105161278A (zh) 一种大块烧结钕铁硼永磁体的制备方法
CN102672102B (zh) 平面薄壁铸件的制备方法
CN103985535A (zh) 一种对RTB系磁体进行Dy扩散的方法、磁体和扩散源
JP2938946B2 (ja) 粉状物充填真空室を使用する反重力式注型方法
WO2022006838A1 (zh) 一种布粉装置及其布粉方法、 NdFeB 系烧结磁体的制造方法
CN111799082A (zh) 一种布粉装置及其布粉方法、NdFeB系烧结磁体的制造方法
US3968829A (en) Molding apparatus with shielding mold member
JPH0957770A (ja) 金型構造
CN116652182B (zh) 一种提高稀土永磁材料磁性能一致性的烧结料盒及方法
CN221581168U (zh) 一种球形氮化铝颗粒分选设备
CN116884756A (zh) 薄型异形磁钢的制备方法
CN111605044B (zh) 3d盖板的制备方法
CN216523115U (zh) 一种烧结模具
JPH06340937A (ja) 成形方法および装置
RU2623565C2 (ru) Способ изготовления изделий из кермета на основе карбида титана
JP2013191610A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944020

Country of ref document: EP

Kind code of ref document: A1