WO2022006921A1 - 一种水下捷联式重力测量数据处理方法 - Google Patents

一种水下捷联式重力测量数据处理方法 Download PDF

Info

Publication number
WO2022006921A1
WO2022006921A1 PCT/CN2020/101760 CN2020101760W WO2022006921A1 WO 2022006921 A1 WO2022006921 A1 WO 2022006921A1 CN 2020101760 W CN2020101760 W CN 2020101760W WO 2022006921 A1 WO2022006921 A1 WO 2022006921A1
Authority
WO
WIPO (PCT)
Prior art keywords
strapdown
gravity
underwater
correction
processing method
Prior art date
Application number
PCT/CN2020/101760
Other languages
English (en)
French (fr)
Inventor
蔡体菁
吴黎明
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022006921A1 publication Critical patent/WO2022006921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/02Details
    • G01V7/06Analysis or interpretation of gravimetric records
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope

Definitions

  • the invention relates to an underwater strapdown type gravity measurement data processing method, which belongs to the field of gravity measurement.
  • Underwater gravity measurement is of great significance to national economic development and national defense construction. Accurate underwater positioning information is required for long-term and large-scale mobile gravimetric measurement underwater.
  • laser gyro single-axis rotation strapdown inertial navigation system can provide high-precision underwater positioning information for a long time relying on external information.
  • the present invention provides an underwater strapdown type gravity measurement data
  • the processing method can meet the requirements of strapdown gravity measurement for long time underwater, high precision and low cost.
  • the purpose of the present invention is to meet the requirements of the strapdown type gravity measurement for long time underwater, high precision and low cost.
  • the technical solution adopted in the present invention is: according to the speed of the log, using extended Kalman filtering to estimate the position error of the laser gyro single-axis rotation strapdown inertial navigation system, then compensating the position error, and then Use low-pass filter to get the accurate position; take the new accurate position and the speed of the log and the water depth of the depth gauge as the appearance measurement of the strapdown gravimeter, apply the strapdown navigation algorithm and the extended Kalman filter to obtain the local geographic coordinates The specific force value of the accelerometer under the system; after the correction of gravity, the positive and negative comprehensive Kalman filter is used to obtain the local gravity abnormal value.
  • the various corrections for gravity in the present invention are Etfers correction, normal gravity field correction, space position correction, horizontal acceleration correction, and zero-drift correction of the gravimeter.
  • the low-pass filter described in the present invention is a positive and negative Hanning window FIR low-pass filter.
  • the invention provides an underwater strapdown type gravity measurement data processing method, which can meet the requirements of underwater strapdown type gravity measurement with long time, high precision and low cost.
  • FIG. 1 is a flow chart of a method for processing underwater strapdown gravity measurement data according to the present invention.
  • the measurement point position of the underwater strapdown gravimeter is determined by the laser Gyro single-axis rotation strapdown inertial navigation system / log combination system is provided.
  • X k is the system state vector
  • ⁇ k+1/k is the state transition matrix
  • ⁇ k+1 is the noise transition matrix of the system
  • W K is the noise matrix
  • ⁇ V E , ⁇ V N are the easting and northing speeds and errors
  • ⁇ L ⁇ are the longitude and latitude errors
  • ⁇ G x , ⁇ G y and ⁇ G z are the zero drift of the gyroscope X, Y and Z axes, respectively
  • ⁇ A x , ⁇ A y are the accelerometer X and Y axes
  • the zero offset, ⁇ E and ⁇ N are the log's easting and northing current errors
  • the W noise matrix consists of the white noise of the gyroscope and accelerometer:
  • f 6,8 c21
  • f 6,9 c22
  • f 6,10 c23
  • c ij is the attitude matrix element
  • U is the angular rate of the earth's rotation
  • n E , n N , n h are respectively in the northeast sky direction Accelerometer ratio.
  • Z k+1 is the observation vector
  • H k+1 is the observation matrix
  • V k+1 is the observation noise matrix
  • V E and V N are the easting and northing velocities obtained by the laser gyro single-axis rotation strapdown inertial navigation system, respectively, V E, L and V N, L are the easting and northing velocities output by the log, and the observation matrix H
  • the position error of the single-axis rotation strapdown inertial navigation system of the laser gyro is estimated, and the position error is compensated. Then use the positive and negative Hanning window FIR low-pass filter to eliminate oscillation and obtain accurate position.
  • the strapdown navigation algorithm is used to calculate the position, velocity and attitude angle of the strapdown gravimeter;
  • the speed information provided by the log and the water depth information provided by the depth gauge are used as the observations of the underwater strapdown gravimeter, and the extended Kalman filter is applied to calculate the attitude angle of the strapdown gravimeter and the local geographic coordinate system. Compare.
  • the extended Kalman filter state equation of the strapdown gravimeter/log/depth gauge combined system has the same form as equation (1), but the state vector is
  • ⁇ V UP is the sky velocity error
  • ⁇ h is the depth error
  • ⁇ A z is the zero offset of the Z axis of the accelerometer
  • VE ,I and VN ,I are the easting and northing velocities calculated by the strapdown gravimeter , respectively
  • VE,L and VN ,L are the easting and northing velocities output by the log
  • L I , ⁇ I and h I are the longitude, latitude and depth calculated by the strapdown gravimeter, respectively
  • L LG and ⁇ LG are the longitude and latitude given by the combined system
  • h D is the depth output by the depth gauge.
  • Various gravity corrections are made to the vertical specific force in the local geographic coordinate system, such as Utefoth correction, normal gravity field correction, spatial position correction, horizontal acceleration correction, and zero drift correction of the gravimeter.
  • the vertical specific force after gravity correction is used to obtain the local gravity anomaly by using the forward and reverse integrated Kalman filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Navigation (AREA)

Abstract

一种水下捷联式重力测量数据处理方法,包括对激光陀螺单轴旋转捷联惯性导航系统的位置进行误差估计与补偿,再经低通滤波器,得到准确的位置;以新的准确位置和计程仪的速度和深度计的水深作为捷联式重力仪的外观测量,应用扩展卡尔曼滤波,计算出当地地理坐标系下的加速度计比力值;经重力各项改正后,用正反综合卡尔曼滤波,得到当地重力异常值。水下捷联式重力测量数据处理方法能够满足水下长时间、高精度、低成本的测量需求。

Description

一种水下捷联式重力测量数据处理方法 技术领域
本发明涉及一种水下捷联式重力测量数据处理方法,属于重力测量领域。
背景技术
水下重力测量对国民经济发展和国防建设具有重要意义。进行水下长时间大范围移动式重力测量需要准确的水下定位信息。随着科学技术的发展,激光陀螺单轴旋转捷联惯性导航系统依靠外界信息能够长时间地提供高精度的水下定位信息。针对由激光陀螺单轴旋转捷联惯性导航系统、计程仪、深度计、捷联式重力仪组成的水下捷联式重力测量系统,本发明提供了一种水下捷联式重力测量数据处理方法,它能够满足水下长时间、高精度、低成本的捷联式重力测量需求。
发明内容
本发明的目的是为了满足水下长时间、高精度、低成本的捷联式重力测量需求。
为了达到上述目的,本发明采用的技术方案是:根据计程仪的速度,使用扩展卡尔曼滤波,估计出激光陀螺单轴旋转捷联惯性导航系统的位置误差,然后对位置误差进行补偿,再用低通滤波器得到准确位置;以新的准确位置和计程仪的速度和深度计的水深作为捷联式重力仪的外观测量,应用捷联导航算法和扩展卡尔曼滤波,得到当地地 理坐标系下的加速度计比力值;经重力各项改正后,用正反综合卡尔曼滤波,获得当地重力异常值。
对本发明所述的重力各项改正是厄特弗斯改正、正常重力场改正、空间位置改正、水平加速度改正,重力仪零漂改正。
对本发明所述的低通滤波器是正反的汉宁窗FIR低通滤波器。
有益效果:
本发明提供的一种水下捷联式重力测量数据处理方法,能够满足水下长时间、高精度、低成本的捷联式重力测量需求。
附图说明
图1是本发明一种水下捷联式重力测量数据处理方法的流程图。
具体实施方式
下面结合具体实施例对本发明作进一步地说明。
对于由激光陀螺单轴旋转捷联惯性导航系统、计程仪、深度计、捷联式重力仪组成的水下捷联式重力测量系统,水下捷联式重力仪的测量点位置是由激光陀螺单轴旋转捷联惯性导航系统/计程仪组合系统提供。
组合系统的扩展卡尔曼滤波状态方程为
Figure PCTCN2020101760-appb-000001
其中,X k是系统状态向量,Φ k+1/k是状态转移矩阵,Γ k+1是系统的噪声转换矩阵,W K是噪声矩阵。状态向量为
Figure PCTCN2020101760-appb-000002
其中,δV E,δV N为东向和北向速度和误差,δL、δλ为经度和纬度误差,
Figure PCTCN2020101760-appb-000003
分别为捷联惯导数学平台的3个误差角,δG x,δG y和δG z分别为陀螺仪X,Y,Z轴的零位漂移,δA x,δA y为加速度计X和Y轴的零位偏置,ν E和ν N为计程仪的东向和北向海流误差,W噪声矩阵由陀螺仪和加速度计的白噪声组成:
W=[w gx,w gy,w gz,w ax,w ay] T     (3)
状态转移矩阵:
Φ k+1/k≈E n+F k·Δt      (4)
其中,E n是单位矩阵,F k是组合系统误差方程矩阵,F=[f i,j],i,j=1,···14,f i,j非零项为:f 1,7=n N;f 1,11=c11;f 1,12=c12;f 1,13=c13;f 2,7=-f 1,6=n h;f 2,7=-n E;f 2,11=c21;f 2,12=c22;f 2,13=c23;
Figure PCTCN2020101760-appb-000004
f 5,7=-f 7,5=-ω N,
Figure PCTCN2020101760-appb-000005
f 5,8=c11;f 5,9=c12;f 5,10=c13。
Figure PCTCN2020101760-appb-000006
f 6,7=-f 7,6=ω E,f 6,3=-UsinL;f 6,8=c21;f 6,9=c22;f 6,10=c23;
Figure PCTCN2020101760-appb-000007
f 7,8=c31,f 7,9=c32,f 7,10=c33;c ij为姿态矩阵元素,U为地球旋转角速率,n E,n N,n h分别为东北天方向上的加速度计比力。
组合系统的扩展卡尔曼滤波观测方程为
Z k+1=H k+1X k+1+V k+1       (5)
其中Z k+1是观测向量,H k+1是观测矩阵,V k+1是观测噪声矩阵,具体 如下:
Figure PCTCN2020101760-appb-000008
其中V E和V N分别是激光陀螺单轴旋转捷联惯性导航系统得到的东向和北向速度,V E,L和V N,L是计程仪输出的东向和北向速度,观测矩阵H k+1=[h i,j]i=1,2,j=1,···14中的非零项为:h 1,1=1,h 1,7=-V N,h 1,13=-1,h 2,2=1,h 2,7=V E,h 2,14=-1。
通过上述扩展卡尔曼滤波,估计出激光陀螺单轴旋转捷联惯性导航系统的位置误差,对位置误差进行补偿。再利用正反的汉宁窗FIR低通滤波器,消除振荡,获得准确位置。
根据水下捷联式重力仪陀螺仪输出的角速度和加速度计输出的比力,经捷联导航算法计算,得到捷联式重力仪的位置、速度和姿态角;把上述组合系统提供的位置信息、计程仪提供的速度信息和深度计提供的水深信息作为水下捷联式重力仪的观测量,应用扩展卡尔曼滤波,计算出捷联式重力仪的姿态角和当地地理坐标系上的比力。
捷联式重力仪/计程仪/深度计组合系统的扩展卡尔曼滤波状态方程与方程(1)形式相同,但状态向量为
Figure PCTCN2020101760-appb-000009
其中,δV UP为天向速度误差,δh为深度误差,δA z为加速度计Z轴的零位偏置,其它物理量解释同上。W噪声矩阵为
W=[w gx,w gy,w gz,w ax,w ay,w az] T        (8)
F=[f i,j],i,j=1,···17,f i,j非零项为:f 1,9=n N;f 1,13=c11;f 1,14=c12;f 1,15=c13;f 2,7=-f 1,8=n h;f 3,8=-f 2,9=n E;f 2,13=c21;f 2,14=c22;f 2,15=c23;f 3,13=c31;f 3,14=c32;f 3,15=c33;
Figure PCTCN2020101760-appb-000010
Figure PCTCN2020101760-appb-000011
f 7,9=-f 9,7=-ω N,
Figure PCTCN2020101760-appb-000012
Figure PCTCN2020101760-appb-000013
f 8,4=-UsinL;f 8,10=c21;f 8,11=c22;f 8,12=c23;
Figure PCTCN2020101760-appb-000014
f 9,10=c31,f 9,11=c32,f 9,12=c33;f 7,10=c11;f 7,11=c12;f 7,12=c13。
物理量解释同上。
捷联式重力仪/计程仪/深度计组合系统的扩展卡尔曼滤波观测方程与方程(5)形式相同,但观测向量为
Figure PCTCN2020101760-appb-000015
其中,V E,I和V N,I分别是捷联重力仪计算得到的东向和北向速度,V E,L和V N,L是计程仪输出的东向和北向速度,L I,λ I和h I分别是捷联式重力仪计算得到的经度、纬度和深度,L LG和λ LG是组合系统给出的经度和纬度,h D是深度计输出的深度。
观测矩阵H k+1=[h i,j]i=1,···5,j=1,···17中的非零项为:h 1,1=h 2,2=1,h 1,9=-V N h 1,16=-1,h 2,9=V E,h 2,17=-1,h 3,4=h 4,5=h 5,6=1。
对此当地地理坐标系中的垂向比力进行各项重力改正,如厄特弗斯改正、正常重力场改正、空间位置改正、水平加速度改正,重力仪零漂改正。
经重力改正后的垂向比力,用正反综合卡尔曼滤波,得到当地重力异常。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术,应当指出:对于本技术领域的普通技术人员来说,在不 脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (3)

  1. 一种水下捷联式重力测量数据处理方法,其特征在于,具体步骤为:根据计程仪的速度,使用扩展卡尔曼滤波,估计出激光陀螺单轴旋转捷联惯性导航系统的位置误差,对位置误差进行补偿,再用低通滤波器得到准确位置;以新的准确位置和计程仪的速度和深度计的水深作为捷联式重力仪的外观测量,应用扩展卡尔曼滤波,计算出当地地理坐标系下的加速度计比力值;经重力各项改正后,用正反综合卡尔曼滤波,得到当地重力异常值。
  2. 根据权利要求1所述的一种水下捷联式重力测量数据处理方法,其特征在于,所述的重力各项改正是厄特弗斯改正、正常重力场改正、空间位置改正、水平加速度改正,重力仪零漂改正。
  3. 根据权利要求1所述的一种水下捷联式重力测量数据处理方法,其特征在于,所述的低通滤波器是正反的汉宁窗FIR低通滤波器。
PCT/CN2020/101760 2020-07-04 2020-07-14 一种水下捷联式重力测量数据处理方法 WO2022006921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010632799.1A CN111722295B (zh) 2020-07-04 2020-07-04 一种水下捷联式重力测量数据处理方法
CN202010632799.1 2020-07-04

Publications (1)

Publication Number Publication Date
WO2022006921A1 true WO2022006921A1 (zh) 2022-01-13

Family

ID=72571533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101760 WO2022006921A1 (zh) 2020-07-04 2020-07-14 一种水下捷联式重力测量数据处理方法

Country Status (2)

Country Link
CN (1) CN111722295B (zh)
WO (1) WO2022006921A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415634B (zh) * 2020-10-27 2021-12-07 青岛海洋地质研究所 基于卫星重力异常信息的动态重力仪零位漂移补偿方法
CN112762927B (zh) * 2020-12-18 2021-09-10 中国人民解放军战略支援部队信息工程大学 水下动态重力数据采集半实物仿真方法及系统
CN115371650B (zh) * 2022-08-23 2023-06-02 天津大学 一种六自由度激光标靶测量系统及其动态性能提升方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769742A (zh) * 2010-01-19 2010-07-07 东南大学 海洋惯性重力组合导航装置
CN103389097A (zh) * 2013-08-02 2013-11-13 哈尔滨工程大学 一种基于阻尼捷联惯性导航重力异常滤波匹配的方法
US20160327394A1 (en) * 2015-05-05 2016-11-10 King Fahd University Of Petroleum And Minerals Method and apparatus for estimation of center of gravity using accelerometers
CN106405670A (zh) * 2016-10-10 2017-02-15 北京航天控制仪器研究所 一种适用于捷联式海洋重力仪的重力异常数据处理方法
CN109141436A (zh) * 2018-09-30 2019-01-04 东南大学 改进的无迹卡尔曼滤波算法在水下组合导航中的应用方法
US20190204123A1 (en) * 2018-01-03 2019-07-04 General Electric Company Systems and methods associated with unmanned aerial vehicle targeting accuracy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769742A (zh) * 2010-01-19 2010-07-07 东南大学 海洋惯性重力组合导航装置
CN103389097A (zh) * 2013-08-02 2013-11-13 哈尔滨工程大学 一种基于阻尼捷联惯性导航重力异常滤波匹配的方法
US20160327394A1 (en) * 2015-05-05 2016-11-10 King Fahd University Of Petroleum And Minerals Method and apparatus for estimation of center of gravity using accelerometers
CN106405670A (zh) * 2016-10-10 2017-02-15 北京航天控制仪器研究所 一种适用于捷联式海洋重力仪的重力异常数据处理方法
US20190204123A1 (en) * 2018-01-03 2019-07-04 General Electric Company Systems and methods associated with unmanned aerial vehicle targeting accuracy
CN109141436A (zh) * 2018-09-30 2019-01-04 东南大学 改进的无迹卡尔曼滤波算法在水下组合导航中的应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU YANHUA, CAI TIJING, LU ZHEN: "The Simulation Research on SINS/Log/Gravity Passive Integrated Navigation System", JOURNAL OF PROJECTILES, ROCKETS, MISSILES AND GUIDANCE, vol. 31, no. 4, 31 August 2011 (2011-08-31), pages 5 - 7, XP009533331, ISSN: 1673-9728 *

Also Published As

Publication number Publication date
CN111722295B (zh) 2021-04-23
CN111722295A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN109813311B (zh) 一种无人机编队协同导航方法
WO2022006921A1 (zh) 一种水下捷联式重力测量数据处理方法
CN110031882B (zh) 一种基于sins/dvl组合导航系统的外量测信息补偿方法
WO2020220729A1 (zh) 基于角加速度计/陀螺/加速度计的惯性导航解算方法
CN112629538B (zh) 基于融合互补滤波和卡尔曼滤波的舰船水平姿态测量方法
CN108051866B (zh) 基于捷联惯性/gps组合辅助水平角运动隔离的重力测量方法
CN109596018B (zh) 基于磁测滚转角速率信息的旋转弹飞行姿态高精度估计方法
CN106405670B (zh) 一种适用于捷联式海洋重力仪的重力异常数据处理方法
CN104698485B (zh) 基于bd、gps及mems的组合导航系统及导航方法
CN109459044A (zh) 一种gnss双天线辅助的车载mems惯导组合导航方法
CN201955092U (zh) 一种基于地磁辅助的平台式惯性导航装置
CN101696883A (zh) 光纤陀螺捷联惯性导航系统阻尼方法
CN111102993A (zh) 一种旋转调制型捷联惯导系统晃动基座初始对准方法
CN109425339A (zh) 一种基于惯性技术的考虑杆臂效应的舰船升沉误差补偿方法
CN107677292B (zh) 基于重力场模型的垂线偏差补偿方法
CN104776847B (zh) 一种适用于水下导航系统单点估计陀螺漂移的方法
CN112432642A (zh) 一种重力灯塔与惯性导航融合定位方法及系统
WO2022222939A1 (zh) 一种采用多重低通滤波单元的捷联惯导升沉测量方法
WO2021253487A1 (zh) 水下导航与重力测量一体化系统
CN114111771A (zh) 一种双轴稳定平台的动态姿态测量方法
CN113108781B (zh) 一种应用于无人船行进间的改进粗对准方法
CN105606093B (zh) 基于重力实时补偿的惯性导航方法及装置
CN110221331A (zh) 基于状态变换的惯性/卫星组合导航动态滤波方法
CN111060140B (zh) 一种地球椭球模型下的极区惯性导航误差获得方法
CN111141285B (zh) 一种航空重力测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944525

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20944525

Country of ref document: EP

Kind code of ref document: A1