WO2022004690A1 - 洋上風車の浮体 - Google Patents

洋上風車の浮体 Download PDF

Info

Publication number
WO2022004690A1
WO2022004690A1 PCT/JP2021/024449 JP2021024449W WO2022004690A1 WO 2022004690 A1 WO2022004690 A1 WO 2022004690A1 JP 2021024449 W JP2021024449 W JP 2021024449W WO 2022004690 A1 WO2022004690 A1 WO 2022004690A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam member
column
floating body
wind turbine
offshore wind
Prior art date
Application number
PCT/JP2021/024449
Other languages
English (en)
French (fr)
Inventor
真 太田
界 刈込
正夫 小松
伸 寺田
信玄 武田
宜行 真鍋
伸 中山
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to EP21833796.2A priority Critical patent/EP4155538A4/en
Priority to JP2022534016A priority patent/JPWO2022004690A1/ja
Priority to CN202180034025.1A priority patent/CN115551777A/zh
Priority to US18/012,721 priority patent/US20230257072A1/en
Priority to KR1020227036614A priority patent/KR20220155385A/ko
Publication of WO2022004690A1 publication Critical patent/WO2022004690A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/125Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/121Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising two hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • F03D13/256Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation on a floating support, i.e. floating wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2207/00Buoyancy or ballast means
    • B63B2207/02Variable ballast or buoyancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/932Mounting on supporting structures or systems on a structure floating on a liquid surface which is a catamaran-like structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present disclosure relates to a floating body of an offshore wind turbine.
  • This application claims priority based on Japanese Patent Application No. 2020-11307 filed with the Japan Patent Office on June 30, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 includes a floating body provided with three columns and two hollow lower hulls connecting the three columns, and the two lower hulls are connected by a beam member. It has been disclosed.
  • the beam member By connecting the two lower hulls, the beam member functions as a reinforcing member that reduces stress concentration on a predetermined portion of the floating body (the lower hull base where the two lower hulls are connected to each other).
  • the beam member when the beam member is provided on the floating body, the beam member is affected by the tidal current and the ocean current, and generates a drag force acting in the horizontal direction. It is desirable that the drag generated by this beam member be as small as possible from the viewpoint of reducing the tidal current load acting on the floating body.
  • the present disclosure has been made in view of the above-mentioned problems, and provides a floating body of an offshore wind turbine including a beam member which has a function as a reinforcing member and can suppress a drag generated by the influence of a tidal current or an ocean current.
  • the purpose is.
  • the floating body of the offshore wind turbine includes one first column, two second columns, and two connecting the first column and each of the second columns.
  • the lower hull and the beam member connecting between the two lower hulls are provided, and the beam member is provided within a height range between the upper surface and the lower surface of each of the lower hulls.
  • the floating body of the offshore wind turbine disclosed in the present disclosure it is possible to include a beam member capable of suppressing a drag generated by the influence of a tidal current or an ocean current while having a function as a reinforcing member.
  • FIG. 1 is a perspective view showing the configuration of an offshore wind turbine 100 according to an embodiment.
  • the offshore wind turbine 100 includes a wind power generation device 50 and a floating body 1 that supports the wind power generation device 50 offshore.
  • the wind power generator 50 includes a nacelle 52, a tower 54 that supports the nacelle 52 from below, and a rotor 56 that is rotatably attached to the nacelle 52.
  • the nacelle 52 is rotatably attached to the tower 54 via a yaw swivel bearing and orients the rotor 56 according to the wind direction.
  • the wind power generation device 50 is an upwind type wind turbine in which the turning control of the nacelle 52 is performed so that the rotor 56 is located on the windward side.
  • the wind turbine generator 50 is a downwind wind turbine in which the nacelle 52 is swiveled so that the rotor 56 is located on the leeward side.
  • the rotor 56 rotates in response to the wind, and the rotational energy of the rotor 56 is converted into electric power by a generator (not shown).
  • the floating body 1 includes one first column 2, two second columns 4, and two lower hulls 6 connecting the first column 2 and each second column 4. , A beam member 8 connecting between the two lower hulls 6 and the like.
  • Such a floating body 1 has a substantially A-shape in a plan view.
  • Each of the one first column 2 and the two second columns 4 forms each vertex of the virtual triangle in a plan view.
  • the first column 2 is located at the apex angle of the plane-viewing virtual isosceles triangle formed by one first column 2 and two second columns 4.
  • one first column 2 is equipped with a wind power generation device 50 and corresponds to a main column.
  • the two second columns 4 are not equipped with the wind power generation device 50 and correspond to sub-columns.
  • a mooring line 58 connected to an anchor fixed to the seabed is connected to each of the first column 2 and the second column 4.
  • the first lower hull 6A (6) is arranged along one of the two equal sides of a plan view virtual isosceles triangle
  • the second lower hull 6B (6) is a plan view virtual isosceles triangle. It is arranged along the other isosceles of the two isosceles triangles.
  • the apex angle of the planar view virtual isosceles triangle formed by one first column 2 and two second columns 4 is not particularly limited, but is set in an arbitrary angle range in consideration of the stability of the floating body 1. For example, it is set to 90 degrees.
  • FIG. 14 is an explanatory diagram for explaining the positions of one first column 2 and two second columns 4 according to the embodiment.
  • FIG. 14 shows the positions of the first column 2 and the two second columns 4 when the floating body 1 is viewed in a plan view.
  • one first column 2 and two second columns 4 each have the vertices of a virtual isosceles triangle in which the first column 2 corresponds to the apex angle ⁇ 1 in a plan view. Is forming.
  • This apex angle ⁇ 1 is 50 degrees or more and 70 degrees or less. More preferably, the apex angle ⁇ 1 is 55 degrees or more and 65 degrees or less.
  • FIG. 14 shows the positions of the first column 2 and the two second columns 4 when the floating body 1 is viewed in a plan view.
  • one first column 2 and two second columns 4 each have the vertices of a virtual isosceles triangle in which the first column 2 corresponds to the apex angle ⁇ 1 in a plan view. Is forming.
  • the apex angle ⁇ 1 is 60 degrees
  • the virtual isosceles triangle is an equilateral triangle.
  • each vertex of the virtual isosceles triangle is located at the center of the first column 2 or the second column 4 (this disclosure shows the cross section of the first column 2 exemplified in FIG. 14).
  • the shape is not limited to the shape and the shape of the cross section of the second column 4).
  • the direction from the beam member 8 toward the first column 2 located at the apex angle of the virtual isosceles right triangle in a plan view is defined as the front, and the opposite direction is defined as the rear.
  • the lower hull 6 has a cavity 10 formed inside, and is configured to be able to dive by injecting ballast water into the cavity 10. Then, at least in a state where ballast water is injected into the cavity 10, the lower hull 6 is completely submerged, and the upper surface thereof is located below the waterline.
  • the lower hull 6 has a rectangular shape on the outer peripheral edge of the lower hull 6 in a cross-sectional view orthogonal to the extending direction of the lower hull 6. As shown in FIGS. 12 and 13, the lower hull 6 may have the corner portion 15 of the lower hull 6 chamfered in a cross-sectional view orthogonal to the longitudinal direction of the lower hull 6. In the case of the lower hull 6 illustrated in FIG.
  • the corner portion 15 of the lower hull 6 is a portion connecting the upper surface 12 and the side surface 13 of the lower hull 6.
  • the corner portion 15 of the lower hull 6 is a portion connecting the upper surface 12 and the side surface 13 of the lower hull 6 and a portion connecting the lower surface 14 and the side surface 13 of the lower hull 6 ( In this case, the outer peripheral edge of the lower hull 6 has an octagonal shape).
  • the ratio of the width to the height of the lower hull 6 may be constant over the entire length of the lower hull 6 or may have a distribution that changes in the extending direction of the lower hull 6.
  • FIG. 2 is a side view of the beam member 8 according to the embodiment. As shown in FIG. 2, the beam member 8 is provided within the height range H between the upper surface 12 and the lower surface 14 of each lower hull 6.
  • the upper surface 16 of the beam member 8 is located at the height of the upper surface 12 of the lower hull 6. That is, the beam member 8 is arranged so that the upper surface 16 of the beam member 8 is flush with the upper surface 12 of the lower hull 6. For example, allow errors based on manufacturing tolerances.
  • the lower surface 18 of the beam member 8 is located above the lower surface 14 of the lower hull 6. In this way, by arranging the beam member 8 near the upper surface 12 of the lower hull 6 within the height range H, the position of the buoyancy center of the floating body 1 is raised, and the floating body 1 is floated on the ocean in a more stable state. Can be done.
  • the position of the beam member 8 within the height range H of the lower hull 6 is not limited to the example shown in FIG.
  • the lower surface 18 of the beam member 8 is located at the height of the lower surface 14 of the lower hull 6. That is, the beam member 8 is arranged so that the lower surface 18 of the beam member 8 is flush with the lower surface 14 of the lower hull 6. For example, allow errors based on manufacturing tolerances. According to the configuration of the beam member 8 illustrated in FIG. 3, the beam member 8 and the lower hull 6 can be arranged on the same plane when the floating body 1 is manufactured. Therefore, it is not necessary to adjust the height of the beam member 8 or the lower hull 6 with a support material such as a board, and the manufacturing cost of the floating body 1 can be reduced.
  • the lower surface 18 of the beam member 8 is located above the lower surface 14 of the lower hull 6, and the upper surface 16 of the beam member 8 is located below the upper surface 12 of the lower hull 6. To position. Then, the upper surface 16 of the beam member 8 is located on the opposite side of the lower surface 18 of the beam member 8 with the position of the intermediate height of the lower hull 6 (located between the upper surface 12 and the lower surface 14 of the lower hull 6).
  • the beam member 8 connects the two lower hulls 6. According to the configuration of the beam member 8 illustrated in FIG. 4, the force acting on the beam member 8 from the lower hull 6 is more balanced than when the beam member 8 is closer to the upper surface 12 or the lower surface 14 of the lower hull 6. Since the upper surface 16 and the lower surface 18 of the 8 are shared, the beam member 8 can be made compact.
  • the width A of the beam member 8 is larger than the height B of the beam member 8 in the cross section along the direction orthogonal to the extending direction of the beam member 8.
  • the ratio of the width A to the height B of the beam member 8 may be 1.1 or more and 2 or less, or 1.3 or more and 1.6 or less.
  • each of the lower surface 18 and the upper surface 16 of the beam member 8 is separated from the side surface 22 (front surface and rear surface, respectively) of the beam member 8.
  • the area can be increased to increase the vertical resistance of the beam member 8 from seawater. Therefore, the effect of reducing the sway of the floating body 1 by the beam member 8 can be further enhanced.
  • the ratio of the width to the height of the beam member 8 may be constant over the entire length of the beam member 8 or may have a distribution that changes in the extending direction of the beam member 8.
  • the ratio of the width to the height of the beam member 8 (> 1) is such that the entire beam member 8 except for the connecting portion 33 connected to each lower hull 6 has the total length of the beam member 8. It may be constant over.
  • the beam member 8 may be configured to be non-hollow, or a space may be formed inside.
  • the outer peripheral edge 20 of the beam member 8 has a rectangular shape.
  • the cross-sectional shape of the beam member 8 rectangular, as compared with the case of adopting a beam member having a cross section having an oval shape (circular shape, elliptical shape, oval shape, oval shape, etc.) on the outer peripheral edge.
  • the effect of reducing the sway of the floating body 1 can be further enhanced. If the outer peripheral edge 20 of the beam member 8 has an oval shape, the drag force received by the beam member 8 from the fluid (seawater) when the beam member 8 moves in the vertical direction is relatively small.
  • the drag force received by the beam member 8 from the seawater is increased by forming the outer peripheral edge 20 of the beam member 8 into a rectangular shape. Therefore, the effect of reducing the sway of the floating body 1 by the beam member 8 can be further enhanced.
  • the "rectangle" refers to a shape in which an angle formed by two adjacent sides is 90 degrees. Therefore, the shape of the outer peripheral edge 20 of the beam member 8 may be rectangular or square as shown in FIG.
  • the outer peripheral edge 20 of the beam member 8 is not limited to a rectangular shape.
  • the corner portion 34 of the beam member 8 is chamfered in a cross-sectional view orthogonal to the extending direction of the beam member 8.
  • the corner portion 34 of the beam member 8 is a portion connecting the upper surface 16 and the side surface 22 of the beam member 8, or a portion connecting the lower surface 18 and the side surface 22 of the beam member 8.
  • the corner portion 34 of the beam member 8 includes a first corner portion 34A (34) connecting the upper surface 16 of the beam member 8 and the front surface 22A, and the upper surface 16 and the rear surface 22B of the beam member 8.
  • the second corner portion 34B (34), and the like, are included.
  • Each of the first corner portion 34A and the second corner portion 34B is a flat surface on which unevenness is not formed, and constitutes a non-curved surface.
  • the outer peripheral edge 20 of the beam member 8 has an octagonal shape in a cross-sectional view orthogonal to the extending direction of the beam member 8.
  • the corner portion 34 of the beam member 8 has a first corner portion 34A (34) that connects the upper surface 16 of the beam member 8 and the front surface 22A, and a second corner portion 34 that connects the upper surface 16 and the rear surface 22B of the beam member 8.
  • Each of the first corner portion 34A, the second corner portion 34B, the third corner portion 34C, and the fourth corner portion 34D is a flat surface on which unevenness is not formed, and constitutes a non-curved surface.
  • FIG. 8 is a diagram for explaining the plate member 24 according to the embodiment.
  • the floating body 1 may further include a plate member 24 having a plate shape.
  • the plate member 24 is arranged so that a gap 25 is formed between the plate member 24 and the side surface 22 of the beam member 8 via the stay 23.
  • the plate member 24 has a first plate member 26 (24) arranged so that a first gap 27 (25) is formed between the plate member 24 and the front surface 22A (22) of the beam member 8. It includes a second plate member 28 (24) arranged so as to form a second gap 29 (25) with the rear surface 22B (22) of the beam member 8.
  • the first plate member 26 is arranged so as to project forward from the beam member 8.
  • the lower surface 30 of the first plate member 26 is located at the height of the lower surface 18 of the beam member 8.
  • the second plate member 28 is arranged so as to project rearward from the beam member 8.
  • the lower surface 32 of the second plate member 28 is located at the height of the lower surface 18 of the beam member 8.
  • the arrangement of the plate member 24 is not limited to the example shown in FIG. 9 to 11 are diagrams for explaining the plate member 24 according to the embodiment.
  • the corner portion 34 of the beam member 8 is chamfered in a cross-sectional view orthogonal to the extending direction of the beam member 8.
  • the plate member 24 may be arranged so as to form a gap 25 between the plate member 24 and the side surface 22 of the beam member 8 via the stay 23.
  • the plate member 24 may be arranged so as to project below the height of the lower surface 18 of the beam member 8.
  • the first plate member 26 may be arranged so that the rear surface 36 of the first plate member 26 and the front surface 22A of the beam member 8 are positioned at the same position in the front-rear direction.
  • the front surface 38 of the second plate member 28 and the rear surface 22B of the beam member 8 are at the same position in the front-rear direction.
  • the position of the connecting portion 33 to which the beam member 8 and each lower hull 6 is connected is not particularly limited, but as shown in FIG. 1, the connecting portion 33 is a side surface (beam) of each lower hull 6. It is located on the second column 4 (sub-column) side of the midpoint P in the longitudinal direction of the surface on the side to which the member 8 is connected).
  • the wind power generation device 50 is mounted on the first column 2 (main column)
  • the swing center of the offshore wind turbine 100 as a whole is relatively the first column in the plan view of the floating body 1. Located closer to 2.
  • the beam member is sufficiently separated from the swing center of the offshore wind turbine 100 as a whole. 8 can be arranged, and the effect of reducing the sway of the beam member 8 can be increased.
  • the wind power generation device 50 is mounted on the first column 2, but in other embodiments, the first column 2 is a sub-column on which the wind power generation device 50 is not mounted.
  • the second column 4 is the main column in which the wind power generation device 50 is mounted.
  • the connecting portion 33 between the beam member 8 and each lower hull 6 may be located on the first column 2 (sub-column) side of the midpoint P in the longitudinal direction of each lower hull 6.
  • the cross section orthogonal to the extending direction of the lower hull 6 has a polygonal shape.
  • the cross section of the lower hull 6 has a rectangular shape having a longitudinal shape in the horizontal direction.
  • the cross section of the lower hull 6 has a hexagonal shape.
  • the cross section of the lower hull 6 has an octagonal shape.
  • a plurality of flat plate-shaped panels are prepared, and the lower hull 6 is manufactured by connecting these panels to each other (for example, automatic welding). Can be done. Therefore, it is possible to facilitate the production of the lower hull 6 and reduce the cost.
  • FIG. 15 is a schematic plan view of the floating body 1 according to the embodiment.
  • the first column cross section 60 which is a cross section orthogonal to the extending direction of the first column 2
  • the first column cross section 60 has a hexagonal shape.
  • the second column cross section 76 which is a cross section orthogonal to the extending direction of the second column 4
  • the second column cross section 76 has a rectangular shape having a longitudinal shape in the extending direction of the lower hull 6.
  • the two lower hulls 6 each have two outer surfaces of the first column 2 corresponding to two non-adjacent sides 62 constituting the polygonal shape of the first column cross section 60. Connected to 63. That is, the connection points of the two lower hulls 6 to the first column 2 are two sides 62 of the polygonal shape of the first column cross section 60, which are not adjacent to each other.
  • the first column cross section 60 includes one side 66 located between the two sides 62.
  • the connection points of the two lower hulls 6 to the first column 2 are the parts where stress concentration is likely to occur. According to the embodiment illustrated in FIG.
  • one outer surface of the first column 2 corresponding to one side 66 is interposed between the two lower hulls 6, and the first column is interposed between the two lower hulls 6. It is possible to reduce the stress concentration at this connection point as compared with the case where the outer surface of 2 does not intervene.
  • the two lower hulls 6 each have an inner surface 68 to which both ends of the beam member 8 are connected and an outer surface 70 opposite to the inner surface 68, respectively.
  • the inner side surface 68 of the lower hull 6 is located inside the floating body 1 in a plan view.
  • the outer surface 70 of the lower hull 6 is located outside the floating body 1 in a plan view.
  • the outer surfaces 70 of the two lower hulls 6 extend on the extension lines of any two sides of the polygonal shape of the first column cross section 60, respectively. In the embodiment illustrated in FIG.
  • the outer surfaces 70 of the two lower hulls 6 are each on an extension of the side 72 connected to the side 62 so as to be located on the opposite side of the side 66 with the side 62 in between. It is postponed.
  • the lower hull 6 is connected to the first column 2 so that the outer surface 70 of the lower hull 6 is flat with respect to the outer surface corresponding to the side 72 of the first column cross section 60. .. Therefore, as compared with the case where the outer surface 70 of the lower hull 6 is not flat with respect to the outer surface corresponding to the side 72 of the first column cross section 60, the floating body 1 can be easily manufactured and the cost can be reduced.
  • the polygonal shape of the first column cross section 60 has one or more other sides 74 connecting the two sides 72 on the opposite side of the two lower hulls 6.
  • the side 74 is located on the side opposite to the lower hull 6 with the side 62 in the extending direction of the lower hull 6.
  • the polygonal shape of the first column cross section 60 has one side 74.
  • the first column cross section 60 has two lower hulls 6 as shown by dotted lines in FIG. 15 when there is no other one or more sides connecting the two sides 72 on the opposite side of the two lower hulls 6. It will have a shape that tapers toward the opposite side. Therefore, according to the embodiment illustrated in FIG. 15, the area of the first column cross section 60 is reduced as compared with the case where the first column cross section 60 is tapered toward the opposite side of the two lower hulls 6. , The cost of the floating body 1 can be reduced.
  • the length of the long side 78 of the second column cross section 76 is larger than the width dimension of the lower hull 6.
  • the width direction of the lower hull 6 is a direction orthogonal to the extending direction of the lower hull 6.
  • the distance between the first column 2 and the second column 4 is set to a certain value or more.
  • the lower hull 6 keeps the inner side surface 68 and the outer side surface 70 of the lower hull 6 flat with respect to each of the side surfaces corresponding to the two long sides 78 of the second column 4. , Can have a shape that extends long in the extending direction.
  • the stability of the floating body 1 is improved by increasing the distance between the first column 2 and the second column 4 to a certain value or more, and the inner surface 68 and the outer surface 70 of the lower hull 6 are each in the second column 4. By flattening each of the two side surfaces of the above, it is possible to facilitate the production of the floating body 1 and reduce the cost.
  • FIG. 16 is a diagram showing the arrangement of the first void space 80 and the second void space 82 according to the embodiment.
  • FIG. 17 is an enlarged view of the first void space 80 of FIG.
  • FIG. 18 is an enlarged view of the second void space 82 of FIG.
  • the lower hull 6 has both a first void space 80 and a second void space 82, but the present disclosure is not limited to this embodiment.
  • the lower hull 6 has either a first void space 80 or a second void space 82.
  • each lower hull 6 has a ballast space 84 capable of storing ballast water and a first void space 80 formed separately from the ballast space 84. Then, as shown in FIG. 17, the first void space 80 faces the first connection region R1 facing the connection portion 33 between the lower hull 6 and the beam member 8.
  • the first void space 80 is opposite to the beam member 8 in the ballast space 84 with the inner panel wall 88 constituting the inner side surface 68 of the lower hull 6 and the inner panel wall 88 interposed therebetween. It is formed by being surrounded by a first void wall 90 provided on the side. As described above, the first void space 80 is a space formed independently of the ballast space 84.
  • the first connection region R1 is a portion through which a virtual tip region in which the tip 93 of the beam member 8 is extended toward the inner panel wall 88 of the opposite surface 92 on the side opposite to the inner surface 68 of the inner panel wall 88 passes. ..
  • the first connection region R1 is a region where stress is likely to be concentrated, and it is desirable to inspect it regularly.
  • the first connection region R1 is formed in the ballast space 84, it is necessary to drain the ballast water for the inspection of the first connection region R1.
  • the first connection region R1 is formed in the first void space 80, it is not necessary to drain the ballast water when inspecting the first connection region R1. , The cost of inspection can be reduced.
  • the first connection region R1 faces the entire connection portion 33, but the present disclosure is not limited to this embodiment.
  • the beam member 8 may include a surface member 94 constituting the surface of the beam member 8, and the tip 93 of the beam member 8 may have a space inside in the extending direction view.
  • the tip 93 of the beam member 8 has a ring shape in the extending direction view.
  • the first void space 80 passes through a virtual tip region in which the tip of the surface member 94 of the beam member 8 of the opposite surface 92 of the inner panel wall 88 extends toward the inner panel wall 88. 3 Facing the connection area R3.
  • the third connection region R3, which is particularly susceptible to stress can be easily inspected.
  • a sensor for acquiring the state of the connection portion 33 is provided in the first void space 80.
  • the sensor is, for example, a strain gauge, which is wiredly connected to the transmission equipment provided in the tower 54, and transmits the information acquired by the sensor to the transmission equipment.
  • the transmission equipment transmits the information acquired from the sensor to the monitoring device located at a position away from the offshore wind turbine 100 by using a communication cable or a radio wave.
  • each lower hull 6 has a ballast space 84 and a second void space 82 formed separately from each of the ballast space 84 and the first void space 80. Then, as shown in FIG. 18, the second void space 82 faces the second connection region R2 facing the connection portion between the lower hull 6 and the first column 2.
  • the second void space 82 corresponds to the inner panel wall 88, the outer panel wall 98 constituting the outer surface 70 of the lower hull 6, and the side 62 in the ballast space 84. It is formed by being surrounded by an outer surface member 101 constituting the outer surface 63 of 2 and a second void wall 102 having a surface facing the outer surface 63. As described above, the second void space 82 is a space formed independently of the ballast space 84.
  • the second connection region R2 is the entire outer surface 63 of the first column 2 corresponding to the side 62.
  • the second connection region R2 is a region where stress is likely to be concentrated, and it is desirable to inspect it regularly.
  • the second connection region R2 is formed in the ballast space 84, it is necessary to drain the ballast water for the inspection of the second connection region R2.
  • the second connection region R2 is formed in the second void space 82, it is not necessary to drain the ballast water when inspecting the second connection region R2. , The cost of inspection can be reduced.
  • the second connection region R2 faces the entire outer surface 63 of the first column 2 corresponding to the side 62, but the present disclosure is not limited to this embodiment.
  • the second void space 82 is a corner (see FIG. 18, surrounded by a dotted line) formed by the inner panel wall 88 of the lower hull 6 and the outer surface 63 of the first column 2 corresponding to the sides 62. Part) facing. With such a configuration, it is possible to easily inspect the corners where stress is particularly likely to occur.
  • a sensor for acquiring the connection state between the first column 2 and the lower hull 6 is provided in the second void space 82.
  • the sensor is, for example, a strain gauge, which is wiredly connected to the transmission equipment provided in the tower 54, and transmits the information acquired by the sensor to the transmission equipment.
  • the transmission equipment transmits the information acquired from the sensor to the monitoring device located at a position away from the offshore wind turbine 100 by using a communication cable or a radio wave.
  • FIG. 19 and 20 are diagrams schematically showing the configuration of the beam member 8 according to the embodiment.
  • the beam member 8 exemplified in FIG. 19 further limits the configuration of the beam member 8 illustrated in FIG. That is, in the beam member 8 illustrated in FIG. 19, the lower surface 18 of the beam member 8 is located at the height of the lower surface 14 of the lower hull 6.
  • the beam member 8 exemplified in FIG. 20 further limits the configuration of the beam member 8 illustrated in FIG. 2. That is, in the beam member 8 illustrated in FIG. 20, the upper surface 16 of the beam member 8 is located at the height of the upper surface 12 of the lower hull 6.
  • the beam member 8 has a hollow structure having an internal space 104 through which water can pass.
  • the beam member 8 has a volume center P2 located below the floating center P1 of the floating body 1 excluding the beam member 8.
  • communication holes 106 for communicating the internal space 104 and the outside are formed on the upper surface 16 and the lower surface 18 of the beam member 8.
  • the configuration (for example, position and number) of the communication holes 106 is not limited to the form illustrated in FIG.
  • the internal space is formed.
  • the beam member 8 that has passed water through 104 has a smaller buoyancy than the beam member 8 that cannot pass water to the internal space 104, and raises the buoyancy P1 of the floating body 1.
  • the floating center P1 of the floating body 1 is increased, the position of the metacenter of the floating body 1 is increased, the distance between the metacenter of the floating body 1 and the center of gravity is increased, and the stability of the floating body 1 can be increased.
  • the beam member 8 has a hollow structure having a watertight internal space 104.
  • the beam member 8 has a volume center P2 located above the floating center P1 of the floating body 1 excluding the beam member 8.
  • the beam member 8 when the volume center P2 of the beam member 8 is located above the buoyancy P1 of the floating body 1 excluding the beam member 8, the beam member 8 has a watertight hollow structure.
  • the floating center P1 of the floating body 1 When the floating body 1 is floated on the water surface, the floating center P1 of the floating body 1 is raised.
  • the floating center P1 of the floating body 1 is increased, the position of the metacenter of the floating body 1 is increased, the distance between the metacenter of the floating body 1 and the center of gravity is increased, and the stability of the floating body 1 can be increased.
  • the floating body (1) of the offshore wind turbine (100) includes one first column (2), two second columns (4), the first column, and the first column, respectively.
  • the two lower hulls (6) connecting the two columns and the beam member (8) connecting the two lower hulls are provided, and the beam members are the upper surface (12) and the lower surface of each of the lower hulls. It is provided within the height range between (14) and.
  • the beam member since the beam member connects between the two lower hulls, the stress concentration on the first column to which the two lower hulls are connected is reduced, and the beam member functions as a reinforcing member. Can have. Further, since the beam member is provided within the height range between the upper surface and the lower surface of each lower hull, the beam member is provided with respect to the beam member as compared with the case where a part or all of the beam member is provided outside the height range. The influence of tidal currents and ocean currents can be reduced. Therefore, it is possible to provide a floating body of an offshore wind turbine including a beam member which has a function as a reinforcing member and can suppress a drag generated by the influence of a tidal current or an ocean current.
  • At least a part of the beam member has the width of the beam member as described above in a cross-sectional view orthogonal to the extending direction of the beam member. It is larger than the height of the beam member.
  • the resistance force received from the fluid (seawater) when the beam member moves in the vertical direction is increased. It will be enhanced. Therefore, the vertical movement of the beam member is suppressed, and the effect of reducing the sway of the floating body by the beam member can be enhanced.
  • the beam member in the configuration according to (1) or (2) above, is the outer peripheral edge of the beam member in a cross-sectional view orthogonal to the extending direction of the beam member. 20) has a rectangular shape.
  • the outer peripheral edge of the beam member rectangular, the resistance force received from the fluid (seawater) when the beam member moves in the vertical direction is increased. Therefore, the vertical movement of the beam member is suppressed, and the effect of reducing the sway of the floating body by the beam member can be enhanced.
  • the beam member is chamfered at a corner portion (34) of the beam member in a cross-sectional view orthogonal to the extending direction of the beam member. Has been done.
  • the upper surface (16) of the beam member is the height of the upper surface of the lower hull. Located in the beam.
  • the position of the center of buoyancy of the floating body can be raised so that the floating body can be floated on the ocean in a more stable state.
  • the lower surface (18) of the beam member is the height of the lower surface of the lower hull. Located in the beam.
  • the beam member and the lower hull can be arranged on the same plane when the floating body is manufactured. Therefore, it is not necessary to adjust the height of the beam member or the lower hull with a support material such as a board, and the manufacturing cost of the floating body can be reduced.
  • the lower surface of the beam member is located above the lower surface of the lower hull.
  • the upper surface of the beam member is located below the upper surface of the lower hull.
  • the difference between the force shared from the lower hull to the upper surface of the beam member and the force shared from the lower hull to the lower surface of the beam member is reduced to optimize the dimensions of the beam member. Can be transformed into.
  • one of the first column or the second column of the two is a wind power generator. It is a main column on which (50) is mounted, and the other of one said first column or two said said second columns is a sub-column on which a wind power generator is not mounted, and the beam member and each of the lower hulls.
  • the connection portion (32) of the lower hull is located closer to the sub-column side than the midpoint of each of the lower hulls in the longitudinal direction.
  • the swing center of the offshore wind turbine as a whole is located relatively closer to the main column in the plan view of the floating body. Therefore, as described above, by providing the connecting portion on the sub-column side from the midpoint of the lower hull, it is possible to arrange the beam member sufficiently away from the swing center of the offshore wind turbine as a whole, and the beam member can be arranged. It is possible to increase the effect of reducing the sway of the floating body due to the above.
  • a plate member (24) having a plate shape is further provided, and the plate member is the plate member. It is arranged so that a gap is formed between the beam member and the side surface (22) of the beam member.
  • the lower surface (30, 32) of the plate member is located at the height of the lower surface of the beam member.
  • the fluid (seawater) flowing through the gap is further disturbed by both the side surface and the lower surface of the beam member, and the formation of a vortex is promoted. Therefore, the shaking of the beam member can be further suppressed.
  • the lower hull in the configuration according to any one of (1) to (10) above, is the angle of the lower hull in a cross-sectional view orthogonal to the extending direction of the lower hull.
  • the part (15) is chamfered.
  • one of the first columns and two of the second columns are viewed in a plan view.
  • the first column forms each vertex of a virtual isosceles triangle corresponding to the apex angle ( ⁇ 1), and the apex angle is 50 degrees or more and 70 degrees or less.
  • the virtual isosceles triangle formed by each of the one first column and the two second columns becomes an equilateral triangle or a triangle close to an equilateral triangle. Therefore, it is possible to reduce the difference in stability due to the difference in the inclination direction of the floating body and to exert stable stability.
  • the cross section orthogonal to the extending direction of the first column and the extending direction of the second column has a polygonal shape.
  • a plurality of flat plate-shaped panels are prepared, and these panels are connected to each other (for example, automatic welding) to manufacture a first column, a second column, or a lower hull. be able to. Therefore, it is possible to facilitate the production of the first column, the second column, or the lower hull and reduce the cost.
  • the first column cross section (60) which is a cross section orthogonal to the extending direction of the first column, has a polygonal shape and has a polygonal shape.
  • the two lower hulls are each connected to the two outer surfaces of the first column corresponding to the two non-adjacent sides (62) constituting the polygonal shape.
  • At least one outer surface of the first column is interposed between the two lower hulls, as compared with the case where the outer surface of the first column is not interposed between the two lower hulls. Therefore, stress concentration can be reduced.
  • the first column cross section which is a cross section orthogonal to the extending direction of the first column, has a polygonal shape and has a polygonal shape.
  • the two lower hulls each include an inner surface (68) to which both ends of the beam member are connected and an outer surface (70) opposite to the inner surface.
  • the outer surfaces of the two lower hulls each extend on an extension of any two sides (72) of the polygonal shape.
  • the lower hull is connected to the first column so that the outer surface of the lower hull is flat with respect to the cross section of the first column. Compared with the case where the outer surface of the lower hull is not flat with respect to the cross section of the first column, it is possible to facilitate the production of the floating body and reduce the cost.
  • the polygonal shape has one or more other sides (74) connecting the two sides on the opposite side of the two lower hulls.
  • the first column cross section has a shape that tapers toward the opposite side of the two lower hulls if it does not have one or more other sides connecting the two sides on the opposite side of the two lower hulls. It will be. According to the configuration described in (16) above, the area of the first column cross section is reduced and the cost of the floating body is reduced as compared with the case where the first column cross section tapers toward the opposite side of the two lower hulls. Can be reduced.
  • the second column cross section (76) which is a cross section orthogonal to the extending direction of the second column, has a rectangular shape and has a rectangular shape.
  • the length of the long side of the second column cross section is larger than the dimension of the width of the lower hull.
  • the lower hull has a shape that extends long in the extending direction while keeping the side surface of the lower hull flat with respect to the side surface of the second column (the surface that becomes the long side in a plan view).
  • Each said lower hull Ballast space (84) that can store ballast water It has a first void space (80) which is formed separately from the ballast space and faces a region (R1) facing at least a part of a connection portion between the lower hull and the beam member.
  • the region facing the connection between the lower hull and the beam member is a region where stress is likely to concentrate, and it is desirable to inspect it regularly.
  • this first connection area is formed in the ballast space, it is necessary to drain the ballast water for inspection of the first connection area.
  • ballast water is used when inspecting this region. There is no need to drain the water, and the cost of inspection can be reduced.
  • Each said lower hull A ballast space that can store ballast water, It has a second void space (82) that is formed separately from the ballast space and faces a region (R2) facing at least a part of the connection portion between the lower hull and the first column.
  • the region facing the connection between the lower hull and the first column is a region where stress is likely to concentrate, and it is desirable to inspect it regularly.
  • this second connection area is formed in the ballast space, it is necessary to drain the ballast water for inspection of the second connection area.
  • the second void space faces a region facing at least a part of the connection portion between the lower hull and the first column, so that the ballast is used when inspecting this region. There is no need to drain water, and the cost of inspection can be reduced.
  • the beam member has a hollow structure having an internal space (104) through which water can pass, and has a volume center (P2) located below the buoyancy center (P1) of the floating body excluding the beam member.
  • the beam member has a hollow structure having a watertight internal space, and has a volume center located above the buoyancy center of the floating body excluding the beam member.
  • the floating body when the volume center of the beam member is located above the buoyancy center of the floating body excluding the beam member, the floating body is formed on the water surface by forming the beam member into a watertight hollow structure. Raises the floating center of the floating body when floating on.
  • the floating center of the floating body is increased, the position of the metacenter of the floating body is increased, the distance between the metacenter of the floating body and the center of gravity is increased, and the stability can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wind Motors (AREA)

Abstract

洋上風車の浮体は、1本の第1コラムと、2本の第2コラムと、第1コラムとそれぞれの第2コラムとを接続する2本のロワーハルと、2本のロワーハル間を接続する梁部材と、を備え、梁部材は、各々のロワーハルの上面と下面との間の高さ範囲内に設けられる。

Description

洋上風車の浮体
 本開示は、洋上風車の浮体に関する。
 本願は、2020年6月30日に日本国特許庁に出願された特願2020-113070号に基づき優先権を主張し、その内容をここに援用する。
 洋上風車は、風力発電装置と、該風力発電装置を洋上に支持する浮体と、を含む。このような浮体の一例として、特許文献1には、3つのコラムと、該3つのコラム間を接続する2つの中空状のロワーハルと、を備え、2つのロワーハルが梁部材によって接続される浮体が開示されている。
国際公開2013/084856号
 梁部材は、2本のロワーハル間を接続することで、浮体の所定部分(2本のロワーハルが互いに接続されるロワーハル基部)への応力集中を低減させる補強部材として機能する。しかし、浮体に梁部材を設けると、梁部材は潮流や海流の影響を受けて、水平方向に作用する抗力を発生させる。この梁部材で発生する抗力は、浮体に作用する潮流荷重軽減の観点において、なるべく小さいことが望ましい。
 本開示は、上述の課題に鑑みてなされたものであって、補強部材としての機能を有しつつ、潮流や海流の影響によって発生する抗力を抑制できる梁部材を含む洋上風車の浮体を提供することを目的とする。
 上記目的を達成するため、本開示に係る洋上風車の浮体は、1本の第1コラムと、2本の第2コラムと、前記第1コラムとそれぞれの前記第2コラムとを接続する2本のロワーハルと、前記2本のロワーハル間を接続する梁部材と、を備え、前記梁部材は、各々の前記ロワーハルの上面と下面との間の高さ範囲内に設けられる。
 本開示の洋上風車の浮体によれば、補強部材としての機能を有しつつ、潮流や海流の影響によって発生する抗力を抑制できる梁部材を含むことができる。
一実施形態に係る洋上風車の構成を示す斜視図である。 一実施形態に係る梁部材の側面図である。 一実施形態に係る梁部材の側面図である。 一実施形態に係る梁部材の側面図である。 一実施形態に係る梁部材の断面図である。 一実施形態に係る梁部材の断面図である。 一実施形態に係る梁部材の断面図である。 一実施形態に係る板部材を説明するための図である。 一実施形態に係る板部材を説明するための図である。 一実施形態に係る板部材を説明するための図である。 一実施形態に係る板部材を説明するための図である。 一実施形態に係るロワーハルの断面図である。 一実施形態に係るロワーハルの断面図である。 一実施形態に係る1本の第1コラム及び2本の第2コラムの位置を説明するための説明図である。 一実施形態に係る浮体の概略平面図である。 一実施形態に係る第1ボイド空間及び第2ボイド空間の配置を示す図である。 図16の第1ボイド空間を拡大した図である。 図16の第2ボイド空間を拡大した図である。 一実施形態に係る梁部材の構成を概略的に示す図である。 一実施形態に係る梁部材の構成を概略的に示す図である。
 以下、本開示の実施の形態による洋上風車の浮体について、図面に基づいて説明する。かかる実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
 (洋上風車の構成)
 図1は、一実施形態に係る洋上風車100の構成を示す斜視図である。図1に示すように、洋上風車100は、風力発電装置50と、該風力発電装置50を洋上に支持する浮体1と、を含む。
 風力発電装置50は、ナセル52と、ナセル52を下方から支持するタワー54と、ナセル52に対して回転可能に取り付けられたロータ56と、を備えている。ナセル52は、ヨー旋回座軸受を介してタワー54に旋回可能に取り付けられており、風向に応じてロータ56を配向する。図1に例示する形態では、風力発電装置50は、ロータ56が風上側に位置するようにナセル52の旋回制御が行われるアップウィンド式風車である。他の実施形態では、風力発電装置50は、ロータ56が風下側に位置するようにナセル52の旋回制御が行われるダウンウィンド式風車である。ロータ56は風を受けて回転し、ロータ56の回転エネルギーは不図示の発電機によって電力に変換されるようになっている。
 (浮体の構成)
 図1に示すように、浮体1は、1本の第1コラム2と、2本の第2コラム4と、第1コラム2とそれぞれの第2コラム4とを接続する2本のロワーハル6と、2本のロワーハル6間を接続する梁部材8と、を含む。このような浮体1は、平面視略A字状を有する。
 1本の第1コラム2及び2本の第2コラム4のそれぞれは、平面視において、仮想三角形の各頂点を形成している。第1コラム2は、1本の第1コラム2及び2本の第2コラム4が作る平面視仮想二等辺三角形の頂角に位置している。図1に例示する形態では、1本の第1コラム2は、風力発電装置50が搭載されており、メインコラムに相当する。他方で、2本の第2コラム4は、風力発電装置50が搭載されておらず、サブコラムに相当する。尚、1本の第1コラム2及び2本の第2コラム4のそれぞれには、海底に固定されたアンカーに連結された係留索58が接続されている。
 図1に示すように、第1ロワーハル6A(6)は、平面視仮想二等辺三角形の2つの等辺のうち一方の等辺に沿って配置され、第2ロワーハル6B(6)は、平面視仮想二等辺三角形の2つの等辺のうち他方の等辺に沿って配置されている。1本の第1コラム2及び2本の第2コラム4が作る平面視仮想二等辺三角形の頂角は、特に限定されないが、浮体1の安定性を考慮して任意の角度範囲で設定されており、例えば、90度に設定される。
 図14は、一実施形態に係る1本の第1コラム2及び2本の第2コラム4の位置を説明するための説明図である。図14には、浮体1を平面視した場合の、第1コラム2及び2本の第2コラム4のそれぞれの位置が示されている。図14に例示する形態では、1本の第1コラム2及び2本の第2コラム4のそれぞれは、平面視において、第1コラム2が頂角θ1に対応する仮想二等辺三角形の各頂点を形成している。この頂角θ1は50度以上70度以下である。さらに好ましくは、この頂角θ1は55度以上65度以下である。図14に例示する形態では、頂角θ1は60度であり、仮想二等辺三角形は正三角形となっている。尚、図14において、仮想二等辺三角形の各頂点のそれぞれは、第1コラム2又は第2コラム4の中心に位置している(本開示は、図14に例示する第1コラム2の断面の形状、及び第2コラム4の断面の形状に限定されない)。
 以下、梁部材8から平面視仮想二等辺三角形の頂角に位置する第1コラム2に向かう方向を前方とし、その反対方向を後方とする。
 ロワーハル6は、内部に空洞部10が形成されており、この空洞部10にバラスト水が注入されることにより潜水可能に構成されている。そして、少なくとも空洞部10にバラスト水が注入された状態において、ロワーハル6は完全に水没し、その上面は喫水線よりも下方に位置するようになっている。ロワーハル6は、ロワーハル6の延在方向に直交する断面視において、ロワーハル6の外周縁が矩形状を有している。尚、図12及び図13に示すように、ロワーハル6は、ロワーハル6の長手方向に直交する断面視において、ロワーハル6の角部15が面取りされていてもよい。図12に例示するロワーハル6の場合、ロワーハル6の角部15とは、ロワーハル6の上面12と側面13とを接続する部分である。図13に例示するロワーハル6の場合、ロワーハル6の角部15とは、ロワーハル6の上面12と側面13とを接続する部分、及びロワーハル6の下面14と側面13とを接続する部分である(この場合、ロワーハル6の外周縁は八角形状を有している)。また、ロワーハル6の高さに対する幅の比は、ロワーハル6の全長に亘って一定であってもよいし、ロワーハル6の延在方向において変化する分布を有してもよい。
 (梁部材の構成)
 図2は、一実施形態に係る梁部材8の側面図である。図2に示すように、梁部材8は、各々のロワーハル6の上面12と下面14との間の高さ範囲H内に設けられる。
 図2に例示する形態では、梁部材8は、梁部材8の上面16がロワーハル6の上面12の高さに位置している。即ち、梁部材8は、梁部材8の上面16がロワーハル6の上面12と面一となるように配置されている。例えば製造公差に基づく誤差を許容する。この梁部材8は、梁部材8の下面18がロワーハル6の下面14よりも上方に位置している。このように、上記高さ範囲H内においてロワーハル6の上面12寄りに梁部材8を配置することで、浮体1の浮力中心の位置を上げて、浮体1をより安定した状態で洋上に浮かべることができる。
 尚、ロワーハル6の高さ範囲H内における梁部材8の位置は、図2に示した例に限定されない。
 例えば、図3に示す別の一実施形態では、梁部材8は、梁部材8の下面18がロワーハル6の下面14の高さに位置する。即ち、梁部材8は、梁部材8の下面18がロワーハル6の下面14と面一となるように配置されている。例えば製造公差に基づく誤差を許容する。図3に例示した梁部材8の構成によれば、浮体1を製造する際に、梁部材8とロワーハル6とを同じ平面上に配置することができる。このため、梁部材8又はロワーハル6の高さを盤木のような支持材で調整しなくて済み、浮体1の製造コストを削減することができる。
 図4に示す別の一実施形態では、梁部材8は、梁部材8の下面18がロワーハル6の下面14より上方に位置し、且つ梁部材8の上面16がロワーハル6の上面12より下方に位置する。そして、梁部材8の上面16がロワーハル6の中間高さの位置(ロワーハル6の上面12と下面14との中間に位置する)を挟んで梁部材8の下面18とは反対側に位置するように、梁部材8は2本のロワーハル6間を接続している。図4に例示した梁部材8の構成によれば、ロワーハル6から梁部材8に作用する力を、梁部材8がロワーハル6の上面12又は下面14に寄っているときに比べてバランスよく梁部材8の上面16と下面18とに分担するので、梁部材8のコンパクト化を実現できる。
 図5~7は、一実施形態に係る梁部材8の断面図である。図5~7に示すように、梁部材8の延在方向の直交方向に沿った断面内において、梁部材8の幅Aは梁部材8の高さBよりも大きい。具体的には、梁部材8の高さBに対する幅Aの比は、1.1以上2以下であってもよく、1.3以上1.6以下であってもよい。
 このように、高さよりも幅の方が大きい断面形状の梁部材8を採用することで、梁部材8の下面18及び上面16のそれぞれを梁部材8の側面22(前面及び後面のそれぞれ)よりも面積を大きくし、梁部材8が海水から受ける上下方向の抗力を増加させることができる。このため、梁部材8による浮体1の動揺の低減効果をさらに高めることができる。
 尚、梁部材8の高さに対する幅の比は、梁部材8の全長に亘って一定であってもよいし、梁部材8の延在方向において変化する分布を有してもよい。例えば、図1に示すように、梁部材8の高さに対する幅の比(>1)は、各々のロワーハル6と接続される接続部33を除く梁部材8の全部が梁部材8の全長に亘って一定であってもよい。また、梁部材8は、非中空であるように構成されてもよいし、内部に空間が形成されてもよい。
 図5に例示する形態では、梁部材8は、該梁部材8の延在方向に直交する断面視において、梁部材8の外周縁20が矩形状を有する。梁部材8の断面形状を矩形状とすることで、外周縁がオーバル形状(円形状、楕円形状、卵形状、又は長円形状など)である断面を有する梁部材を採用する場合に比べて、浮体1の動揺の低減効果をさらに高めることができる。仮に、梁部材8の外周縁20がオーバル形状であると、梁部材8が上下方向に移動した際に、梁部材8が流体(海水)から受ける抗力は比較的小さい。これに対して、図5に例示した梁部材8の構成によれば、梁部材8の外周縁20を矩形状とすることで、梁部材8が海水から受ける抗力が増大する。このため、梁部材8による浮体1の動揺の低減効果をさらに高めることができる。尚、本明細書において、「矩形」とは、互いに隣接する2辺によって形成される角度が90度となる形状を差す。このため、梁部材8の外周縁20の形状は、図5に示すように長方形であってもよいし、正方形であってもよい。
 尚、梁部材8の外周縁20は矩形状に限定されない。別の実施形態では、図6及び図7に示すように、梁部材8は、該梁部材8の延在方向に直交する断面視において、梁部材8の角部34が面取りされている。本開示において、梁部材8の角部34とは、梁部材8の上面16と側面22とを接続する部分、又は梁部材8の下面18と側面22とを接続する部分である。
 図6に例示する形態では、梁部材8の角部34は、梁部材8の上面16と前面22Aとを接続する第1角部34A(34)と、梁部材8の上面16と後面22Bとを接続する第2角部34B(34)と、を含む。第1角部34A及び第2角部34Bのそれぞれは、凹凸が形成されない平坦な面であって、湾曲していない面を構成している。
 図7に例示する形態では、梁部材8の延在方向に直交する断面視において、梁部材8の外周縁20が八角形状を有する。言い換えると、梁部材8の角部34は、梁部材8の上面16と前面22Aとを接続する第1角部34A(34)と、梁部材8の上面16と後面22Bとを接続する第2角部34B(34)と、梁部材8の下面18と前面22Aとを接続する第3角部34C(34)と、梁部材8の下面18と後面22Bとを接続する第4角部34D(34)と、を含む。第1角部34A、第2角部34B、第3角部34C、及び第4角部34Dのそれぞれは、凹凸が形成されない平坦な面であって、湾曲していない面を構成している。
 図6及び図7に例示した構成によれば、梁部材8の角部34が面取りされていることで、潮流や海流などが梁部材8の前面22Aや後面22Bに衝突した際に、この潮流や海流などを梁部材8の上方や下方にスムーズに案内する。このため、潮流や海流の影響によって梁部材8に発生する抗力を低減することができる。
 図8は、一実施形態に係る板部材24を説明するための図である。浮体1は、板形状を有する板部材24をさらに備えてもよい。図8に示すように、この板部材24は、ステイ23を介して、板部材24と梁部材8の側面22との間に隙間25が形成されるように配置される。より具体的には、板部材24は、梁部材8の前面22A(22)との間に第1隙間27(25)が形成されるように配置される第1板部材26(24)と、梁部材8の後面22B(22)との間に第2隙間29(25)が形成されるように配置される第2板部材28(24)と、を含む。第1板部材26は、梁部材8から前方に張り出すように配置されている。この第1板部材26の下面30は、梁部材8の下面18の高さに位置している。第2板部材28は、梁部材8から後方に張り出すように配置されている。この第2板部材28の下面32は、梁部材8の下面18の高さに位置している。
 図8に例示した構成によれば、板部材24と梁部材8との間の隙間25を介して海水が流れる際、この海水の流れが乱れて渦が形成される。また、板部材24は、板部材24の下面が梁部材8の下面18の高さ位置しているため、隙間25を流れる海水を梁部材8の側面22及び下面18の両方によってさらに乱し、渦の形成が促進される。渦の形成は海水(波浪)の運動エネルギーを消費するため、板部材24の設置によって梁部材8が波浪から受け取る運動エネルギーは減少する。こうして、板部材24を設けるという簡単な構成で梁部材8の動揺を抑制できる。
 尚、板部材24の配置は、図8に示した例に限定されない。図9~11は、一実施形態に係る板部材24を説明するための図である。
 図9~11に示すように、梁部材8は、該梁部材8の延在方向に直交する断面視において、梁部材8の角部34が面取りされている。そして、板部材24は、ステイ23を介して、板部材24とこの梁部材8の側面22との間に隙間25が形成されるように配置されてもよい。図10に示すように、板部材24は、梁部材8の下面18の高さより下方に突出するように配置されてもよい。また、図11に示すように、第1板部材26は、前後方向において第1板部材26の後面36と梁部材8の前面22Aとが互いに同じ位置となるように配置されてもよい。このとき、第2板部材28は、前後方向において第2板部材28の前面38と梁部材8の後面22Bとが互いに同じ位置となっている。
 ところで、本開示において、梁部材8と各々のロワーハル6とが接続される接続部33の位置は特に限定されないが、図1に示すように、接続部33は、各々のロワーハル6の側面(梁部材8が接続される側の面)の長手方向の中点Pよりも第2コラム4(サブコラム)側に位置する。このような構成によれば、第1コラム2(メインコラム)には風力発電装置50が搭載されるため、洋上風車100全体としての揺動中心が浮体1の平面視において相対的に第1コラム2寄りに位置する。このため、上述のように、接続部33をロワーハル6の中点Pよりも第2コラム4(サブコラム)側に設けることで、洋上風車100全体としての揺動中心から十分に離して梁部材8を配置することが可能となり、梁部材8による動揺の低減効果を増大させることができる。
 尚、図1に例示する実施形態では、第1コラム2に風力発電装置50が搭載されていたが、他の実施形態では、第1コラム2は風力発電装置50が搭載されないサブコラムであり、第2コラム4は風力発電装置50が搭載されるメインコラムである。この場合において、梁部材8と各々のロワーハル6との接続部33は、各々のロワーハル6の長手方向の中点Pよりも第1コラム2(サブコラム)側に位置してもよい。
 (作用・効果)
 本開示の一実施形態に係る洋上風車100の浮体1の作用・効果について説明する。一実施形態によれば、梁部材8は、2本のロワーハル6間を接続するので、2本のロワーハル6が接続される第1コラム2への応力集中を低減し、補強部材としての機能を有することができる。また、梁部材8は、各々のロワーハル6の上面12と下面14との間の高さ範囲H内に設けられるので、梁部材8の一部又は全部が高さ範囲H外に設けられる場合と比較して、梁部材8に対する潮流や海流の影響を低減することができる。よって、補強部材としての機能を有しつつ、潮流や海流の影響によって発生する抗力を抑制できる梁部材8を含む、洋上風車100の浮体1を提供することができる。
 一実施形態では、図2~図4、図12、及び図13に示すように、ロワーハル6の延在方向に直交する断面は、多角形状を有する。図2~図4に例示する形態では、ロワーハル6の断面は、水平方向に長手形状を有する長方形状を有している。図12に例示する形態では、ロワーハル6の断面は6角形状を有している。図13に例示する形態では、ロワーハル6の断面は8角形状を有している。図2~図4、図12、図13に例示する形態によれば、複数の平板状のパネルを用意し、これらのパネルを互いに接続(例えば、自動溶接)させることでロワーハル6を製作することができる。よって、ロワーハル6の製作を容易化し、コスト削減を図ることができる。
 図15は、一実施形態に係る浮体1の概略平面図である。一実施形態では、図15に示すように、第1コラム2の延在方向に直交する断面である第1コラム断面60は、多角形状を有する。図15に例示する形態では、第1コラム断面60は、6角形状を有する。一実施形態では、図15に示すように、第2コラム4の延在方向に直交する断面である第2コラム断面76は、多角形状を有する。図15に例示する形態では、第2コラム断面76は、ロワーハル6の延在方向に長手形状を有する長方形状と有している。図15に例示する形態によれば、第1コラム2及び第2コラム4のそれぞれを複数の平板上のパネルで製作することができるので、第1コラム2及び第2コラム4のそれぞれの製作を容易化し、コスト削減を図ることができる。
 一実施形態では、図15に示すように、2本のロワーハル6は、それぞれ、第1コラム断面60の多角形状を構成する互いに隣接しない2つの辺62に対応する第1コラム2の2つの外面63に接続される。つまり、第1コラム2への2本のロワーハル6の接続箇所は、それぞれ、第1コラム断面60の多角形状のうち互いに隣接しない2つの辺62である。図15に例示する形態では、第1コラム断面60は、2つの辺62の間に位置する1つの辺66を含んでいる。第1コラム2への2本のロワーハル6の接続箇所は、応力集中が起きやすい部分である。図15に例示する形態によれば、2本のロワーハル6間には、1つの辺66に対応する第1コラム2の外面が1つ介在しており、2本のロワーハル6間に第1コラム2の外面が介在しない場合と比較して、この接続箇所への応力集中を低減させることができる。
 一実施形態では、図15に示すように、2本のロワーハル6は、それぞれ、梁部材8の両端がそれぞれ接続される内側面68と、内側面68とは反対側の外側面70と、を含む。ロワーハル6の内側面68は、平面視において浮体1の内側に位置する。ロワーハル6の外側面70は、平面視において浮体1の外側に位置する。そして、2本のロワーハル6の外側面70は、それぞれ、第1コラム断面60の多角形状の何れか2つの辺の延長線上にて延在する。図15に例示する形態では、2本のロワーハル6の外側面70は、それぞれ、辺62を挟んで辺66とは反対側に位置するように辺62に接続される辺72の延長線上にて延在している。図15に例示する形態によれば、ロワーハル6は、ロワーハル6の外側面70が第1コラム断面60の辺72に対応する外面に対して平坦であるように、第1コラム2に接続される。このため、ロワーハル6の外側面70が第1コラム断面60の辺72に対応する外面に対して平坦でない場合と比較して、浮体1の製作を容易化し、コストを削減することができる。
 一実施形態では、図15に示すように、第1コラム断面60の多角形状は、2本のロワーハル6とは反対側において2つの辺72を接続する他の1以上の辺74を有する。辺74は、ロワーハル6の延在方向において、辺62を挟んでロワーハル6とは反対側に位置する。図15に例示する形態では、第1コラム断面60の多角形状は、辺74を1つ有する。第1コラム断面60は、2本のロワーハル6とは反対側において2つの辺72を接続する他の1以上の辺を有さない場合、図15において点線で示すように、2本のロワーハル6とは反対側に向かうにつれて先細りとなる形状を有することになる。このため、図15に例示する形態によれば、第1コラム断面60が2本のロワーハル6とは反対側に向かうにつれて先細りとなる場合と比較して、第1コラム断面60の面積を小さくし、浮体1のコストを削減することができる。
 一実施形態では、図15に示すように、第2コラム断面76の長辺78の長さは、ロワーハル6の幅の寸法より大きい。ロワーハル6の幅方向は、ロワーハル6の延在方向と直交する方向である。浮体1の安定性を高める(浮体1が転倒しないようにする)ためには、第1コラム2と第2コラム4との間の距離を一定値以上にすることが望ましい。図15に例示する形態によれば、ロワーハル6は、ロワーハル6の内側面68及び外側面70のそれぞれを第2コラム4の2つの長辺78に対応する側面のそれぞれに対して平坦にしたまま、延在方向に長く延びる形状を有することができる。つまり、第1コラム2と第2コラム4との間の距離を一定値以上にすることによる浮体1の安定性の向上と、ロワーハル6の内側面68及び外側面70のそれぞれを第2コラム4の2つの側面のそれぞれに対して平坦にすることによる浮体1の製作を容易化し、コストを削減することができる。
 図16は、一実施形態に係る第1ボイド空間80及び第2ボイド空間82の配置を示す図である。図17は、図16の第1ボイド空間80を拡大した図である。図18は、図16の第2ボイド空間82を拡大した図である。図16に例示する形態では、ロワーハル6は第1ボイド空間80と第2ボイド空間82との両方を有しているが、本開示はこの形態に限定されない。別の実施形態では、ロワーハル6は第1ボイド空間80及び第2ボイド空間82のうち何れか一方を有する。
 一実施形態では、図16に示すように、各々のロワーハル6は、バラスト水を貯留可能なバラスト空間84と、バラスト空間84とは別に形成される第1ボイド空間80と、を有する。そして、図17に示すように、第1ボイド空間80は、ロワーハル6と梁部材8との接続部33に面する第1接続領域R1に面している。
 図17に例示する形態では、第1ボイド空間80は、バラスト空間84内において、ロワーハル6の内側面68を構成する内側パネル壁88と、この内側パネル壁88を挟んで梁部材8とは反対側に設けられる第1ボイド壁90とによって囲われることで形成されている。このように第1ボイド空間80は、バラスト空間84から独立して形成された空間である。第1接続領域R1は、内側パネル壁88の内側面68とは反対側の反対面92のうち梁部材8の先端93を内側パネル壁88側に延ばした仮想の先端領域が通過する部分である。
 第1接続領域R1は、応力が集中しやすい領域であり、定期的に検査されることが望ましい。この第1接続領域R1がバラスト空間84に形成されている場合、第1接続領域R1の検査のためにバラスト水を排水する必要がある。図16及び図17に例示する形態によれば、第1接続領域R1が第1ボイド空間80に形成されているので、この第1接続領域R1を検査する際にバラスト水を排水する必要がなく、検査にかかるコストを低減することができる。
 図17に例示する形態では、第1接続領域R1は接続部33の全部に面していたが、本開示はこの形態に限定されない。図17に例示するように、梁部材8が、梁部材8の表面を構成する表面部材94を含み、梁部材8の先端93は延在方向視において内部が空間になっている場合がある。例えば、梁部材8の先端93は延在方向視においてリング形状を有する。幾つかの実施形態では、第1ボイド空間80は、内側パネル壁88の反対面92のうち梁部材8の表面部材94の先端を内側パネル壁88側に延ばした仮想の先端領域が通過する第3接続領域R3に面している。このような構成によれば、応力が特にしやすい第3接続領域R3を容易に検査することができる。
 幾つかの実施形態では、第1ボイド空間80内には、接続部33の状態を取得するためのセンサが設けられている。センサは、例えば、ひずみゲージであり、タワー54内に設けられている送信設備と有線接続されており、センサが取得した情報を送信設備に送信する。送信設備は、センサから取得した情報を、通信ケーブル又は電波を用いて洋上風車100から離れた位置にある監視装置に送信する。
 一実施形態では、図16に示すように、各々のロワーハル6は、バラスト空間84と、バラスト空間84及び第1ボイド空間80のそれぞれとは別に形成される第2ボイド空間82と、を有する。そして、図18に示すように、第2ボイド空間82は、ロワーハル6と第1コラム2との接続部分に面する第2接続領域R2に面している。
 図18に例示する形態では、第2ボイド空間82は、バラスト空間84内において、内側パネル壁88と、ロワーハル6の外側面70を構成する外側パネル壁98と、辺62に対応する第1コラム2の外面63を構成する外面部材101と、この外面63に対向する面を有する第2ボイド壁102と、によって囲われることで形成されている。このように第2ボイド空間82は、バラスト空間84から独立して形成された空間である。第2接続領域R2は、辺62に対応する第1コラム2の外面63全体である。
 第2接続領域R2は、応力が集中しやすい領域であり、定期的に検査されることが望ましい。この第2接続領域R2がバラスト空間84に形成されている場合、第2接続領域R2の検査のためにバラスト水を排水する必要がある。図16及び図18に例示する形態によれば、第2接続領域R2が第2ボイド空間82に形成されているので、この第2接続領域R2を検査する際にバラスト水を排水する必要がなく、検査にかかるコストを低減することができる。
 図18に例示する形態では、第2接続領域R2は辺62に対応する第1コラム2の外面63全体に面していたが、本開示はこの形態に限定されない。幾つかの実施形態では、第2ボイド空間82は、ロワーハル6の内側パネル壁88と辺62に対応する第1コラム2の外面63とによって形成される角部(図18参照、点線で囲った部分)に面している。このような構成によれば、応力が特にしやすい角部を容易に検査することができる。
 幾つかの実施形態では、第2ボイド空間82内には、第1コラム2とロワーハル6との接続状態を取得するためのセンサが設けられている。センサは、例えば、ひずみゲージであり、タワー54内に設けられている送信設備と有線接続されており、センサが取得した情報を送信設備に送信する。送信設備は、センサから取得した情報を、通信ケーブル又は電波を用いて洋上風車100から離れた位置にある監視装置に送信する。
 図19及び図20は、一実施形態に係る梁部材8の構成を概略的に示す図である。図19に例示する梁部材8は、図3に例示した梁部材8の構成をさらに限定したものである。つまり、図19に例示する梁部材8は、梁部材8の下面18がロワーハル6の下面14の高さに位置する。図20に例示する梁部材8は、図2に例示した梁部材8の構成をさらに限定したものである。つまり、図20に例示する梁部材8は、梁部材8の上面16がロワーハル6の上面12の高さに位置している。
 一実施形態では、図19に例示するように、梁部材8は、通水可能な内部空間104を有する中空構造である。そして、この梁部材8は、梁部材8を除く浮体1の浮心P1より下方に位置する体積中心P2を有する。図19に例示する形態では、梁部材8の上面16と下面18には、内部空間104と外部とを連通する連通孔106が形成されている。尚、連通孔106の構成(例えば、位置や数)は、図19に例示する形態に限定されない。
 図19に例示する形態によれば、梁部材8の体積中心P2が梁部材8を除く浮体1の浮心P1より下方に位置する場合には、浮体1を水面に浮かべた際に、内部空間104に通水された梁部材8は、内部空間104への通水不可の梁部材8と比較して浮力が小さくなり、浮体1の浮心P1を高くする。浮体1の浮心P1を高くすると、浮体1のメタセンタの位置が高くなり、浮体1のメタセンタと重心との距離が大きくなり、浮体1の復原力を大きくすることができる。
 一実施形態では、図20に例示するように、梁部材8は、水密な内部空間104を有する中空構造である。そして、この梁部材8は、梁部材8を除く浮体1の浮心P1より上方に位置する体積中心P2を有する。
 図20に例示する形態によれば、梁部材8の体積中心P2が梁部材8を除く浮体1の浮心P1より上方に位置する場合には、梁部材8を水密な中空構造とすることで、浮体1を水面に浮かべた際に、浮体1の浮心P1を高くする。浮体1の浮心P1を高くすると、浮体1のメタセンタの位置が高くなり、浮体1のメタセンタと重心との距離が大きくなり、浮体1の復原力を大きくすることができる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)本開示に係る洋上風車(100)の浮体(1)は、1本の第1コラム(2)と、2本の第2コラム(4)と、前記第1コラムとそれぞれの前記第2コラムとを接続する2本のロワーハル(6)と、前記2本のロワーハル間を接続する梁部材(8)と、を備え、前記梁部材は、各々の前記ロワーハルの上面(12)と下面(14)との間の高さ範囲内に設けられる。
 上記(1)に記載の構成によれば、梁部材は、2本のロワーハル間を接続するので、2本のロワーハルが接続される第1コラムへの応力集中を低減し、補強部材としての機能を有することができる。また、梁部材は、各々のロワーハルの上面と下面との間の高さ範囲内に設けられるので、梁部材の一部又は全部が高さ範囲外に設けられる場合と比較して、梁部材に対する潮流や海流の影響を低減することができる。よって、補強部材としての機能を有しつつ、潮流や海流の影響によって発生する抗力を抑制できる梁部材を含む、洋上風車の浮体を提供することができる。
 (2)幾つかの実施形態では、上記(1)に記載の構成において、前記梁部材の少なくとも一部は、該梁部材の延在方向に直交する断面視において、前記梁部材の幅が前記梁部材の高さよりも大きい。
 上記(2)に記載の構成によれば、梁部材の少なくとも一部の上面及び下面の面積を大きくすることで、梁部材が上下方向に移動した際に、流体(海水)から受ける抵抗力を高めることになる。このため、梁部材の上下方向の移動が抑制され、梁部材による浮体の動揺の低減効果を高めるができる。
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の構成において、前記梁部材は、該梁部材の延在方向に直交する断面視において、前記梁部材の外周縁(20)が矩形状を有する。
 上記(3)に記載の構成によれば、梁部材の外周縁を矩形状とすることで、梁部材が上下方向に移動した際に、流体(海水)から受ける抵抗力を高めることになる。このため、梁部材の上下方向の移動が抑制され、梁部材による浮体の動揺の低減効果を高めることができる。
 (4)幾つかの実施形態では、上記(3)に記載の構成において、前記梁部材は、該梁部材の延在方向に直交する断面視において、前記梁部材の角部(34)が面取りされている。
 上記(4)に記載の構成によれば、潮流や海流などが梁部材の側面に衝突した際に、この潮流や海流などを梁部材の上方や下方にスムーズに案内する。このため、潮流や海流の影響によって梁部材に発生する抗力を低減することができる。
 (5)幾つかの実施形態では、上記(1)から(4)の何れか1つに記載の構成において、前記梁部材は、前記梁部材の上面(16)が前記ロワーハルの前記上面の高さに位置する。
 上記(5)に記載の構成によれば、浮体の浮力中心の位置を上げて、浮体をより安定した状態で洋上に浮かべることができる。
 (6)幾つかの実施形態では、上記(1)から(5)の何れか1つに記載の構成において、前記梁部材は、前記梁部材の下面(18)が前記ロワーハルの前記下面の高さに位置する。
 上記(6)に記載の構成によれば、浮体を製造する際に、梁部材とロワーハルとを同じ平面上に配置することができる。このため、梁部材又はロワーハルの高さを盤木のような支持材で調整しなくて済み、浮体の製造コストを削減することができる。
 (7)幾つかの実施形態では、上記(1)から(4)の何れか1つに記載の構成において、前記梁部材は、前記梁部材の下面が前記ロワーハルの前記下面より上方に位置し、且つ前記梁部材の上面が前記ロワーハルの前記上面より下方に位置する。
 上記(7)に記載の構成によれば、ロワーハルから梁部材の上面に分担される力と、ロワーハルから梁部材の下面に分担される力との差を小さくして、梁部材の寸法を最適化することができる。
 (8)幾つかの実施形態では、上記(1)から(7)の何れか1つに記載の構成において、1本の前記第1コラム又は2本の前記第2コラムの一方は風力発電装置(50)が搭載されるメインコラムであり、1本の前記第1コラム又は2本の前記第2コラムの他方は風力発電装置が搭載されないサブコラムであり、前記梁部材と各々の前記ロワーハルとの接続部(32)は、各々の前記ロワーハルの長手方向の中点よりも前記サブコラム側に位置する。
 上記(8)に記載の構成によれば、メインコラムには風力発電装置が搭載されるため、洋上風車全体としての揺動中心が浮体の平面視において相対的にメインコラム寄りに位置する。このため、上述のように、接続部をロワーハルの中点よりもサブコラム側に設けることで、洋上風車全体としての揺動中心から十分に離して梁部材を配置することが可能となり、梁部材による浮体の動揺の低減効果を増大させることができる。
 (9)幾つかの実施形態では、上記(1)から(8)の何れか1つに記載の構成において、板形状を有する板部材(24)をさらに備え、前記板部材は、前記板部材と前記梁部材の側面(22)との間に隙間が形成されるように配置される。
 上記(9)に記載の構成によれば、板部材と梁部材との間の隙間25を介して流体(海水)が流れる際、この海水の流れが乱れて渦が形成される。渦の形成は海水(波浪)の運動エネルギーを消費するため、板部材の設置によって梁部材が波浪から受け取る運動エネルギーは減少する。こうして、板部材を設けるという簡単な構成で梁部材の動揺を抑制できる。
 (10)幾つかの実施形態では、上記(9)に記載の構成において、前記板部材は、前記板部材の下面(30,32)が前記梁部材の下面の高さに位置する。
 上記(10)に記載の構成によれば、隙間を流れる流体(海水)を梁部材の側面及び下面の両方によってさらに乱し、渦の形成が促進される。このため、梁部材の動揺をさらに抑制できる。
 (11)幾つかの実施形態では、上記(1)から(10)の何れか1つに記載の構成において、前記ロワーハルは、該ロワーハルの延在方向に直交する断面視において、前記ロワーハルの角部(15)が面取りされている。
 上記(11)に記載の構成によれば、潮流や海流などがロワーハルの側面に衝突した際に、この潮流や海流などをロワーハルの上方や下方にスムーズに案内する。このため、潮流や海流の影響によってロワーハルに発生する抗力を低減することができる。
 (12)幾つかの実施形態では、上記(1)から(11)の何れか1つに記載の構成において、1本の前記第1コラム及び2本の前記第2コラムのそれぞれは、平面視において、前記第1コラムが頂角(θ1)に対応する仮想二等辺三角形の各頂点を形成し、前記頂角は、50度以上70度以下である。
 上記(12)に記載の構成によれば、1本の第1コラム及び2本の第2コラムのそれぞれによって形成される仮想二等辺三角形が、正三角形又は正三角形に近似した三角形になる。よって、浮体の傾斜方向の違いによる復原力の差を小さくし、安定した復原力を発揮させることができる。
 (13)幾つかの実施形態では、上記(1)から(12)の何れか1つに記載の構成において、前記第1コラムの延在方向に直交する断面、前記第2コラムの延在方向に直交する断面、及び、前記ロワーハルの延在方向に直交する断面のうちの少なくとも1つは、多角形状を有する。
 上記(13)に記載の構成によれば、複数の平板状のパネルを用意し、これらのパネルを互いに接続(例えば、自動溶接)させることで第1コラム、第2コラム、又はロワーハルを製作することができる。よって、第1コラム、第2コラム、又はロワーハルの製作を容易化し、コスト削減を図ることができる。
 (14)幾つかの実施形態では、上記(13)に記載の構成において、
 前記第1コラムの延在方向に直交する断面である第1コラム断面(60)は多角形状を有し、
 前記2本のロワーハルは、それぞれ、前記多角形状を構成する互いに隣接しない2つの辺(62)に対応する前記第1コラムの2つの外面に接続される。
 上記(14)に記載の構成によれば、2本のロワーハル間には第1コラムの外面が少なくとも1つ介在しており、2本のロワーハル間に第1コラムの外面が介在しない場合と比較して、応力集中を低減させることができる。
 (15)幾つかの実施形態では、上記(13)又は(14)に記載の構成において、
 前記第1コラムの延在方向に直交する断面である第1コラム断面は多角形状を有し、
 前記2本のロワーハルは、それぞれ、前記梁部材の両端がそれぞれ接続される内側面(68)と、前記内側面とは反対側の外側面(70)と、を含み、
 前記2本のロワーハルの前記外側面は、それぞれ、前記多角形状の何れか2つの辺(72)の延長線上にて延在する。
 上記(15)に記載の構成によれば、ロワーハルは、ロワーハルの外側面が第1コラム断面に対して平坦であるように、第1コラムに接続される。ロワーハルの外側面が第1コラム断面に対して平坦でない場合と比較して、浮体の製作を容易化し、コストを削減することができる。
 (16)幾つかの実施形態では、上記(15)に記載の構成において、
 前記多角形状は、前記2本のロワーハルとは反対側において前記2つの辺を接続する他の1以上の辺(74)を有する。
 第1コラム断面は、2本のロワーハルとは反対側において2つの辺を接続する他の1以上の辺を有さない場合、2本のロワーハルとは反対側に向かうにつれて先細りとなる形状を有することになる。上記(16)に記載の構成によれば、第1コラム断面が2本のロワーハルとは反対側に向かうにつれて先細りとなる場合と比較して、第1コラム断面の面積を小さくし、浮体のコストを削減することができる。
 (17)幾つかの実施形態では、上記(13)から(16)の何れか1つに記載の構成において、
 前記第2コラムの延在方向に直交する断面である第2コラム断面(76)は長方形状を有し、
 前記第2コラム断面の長辺の長さは、前記ロワーハルの幅の寸法より大きい。
 浮体の安定性を高める(浮体が転倒しないようにする)ためには、第1コラムと第2コラムとの間の距離を一定値以上にすることが望ましい。上記(17)に記載の構成によれば、ロワーハルは、ロワーハルの側面を第2コラムの側面(平面視において長辺となる面)に対して平坦にしたまま、延在方向に長く延びる形状を有することができる。つまり、第1コラムと第2コラムとの間の距離を一定値以上にすることによる浮体の安定性の向上と、ロワーハルの側面を第2コラムの側面に対して平坦にすることによる浮体の製作を容易化し、コストを削減することができる。
 (18)幾つかの実施形態では、上記(1)から(17)の何れか1つに記載の構成において、
 各々の前記ロワーハルは、
  バラスト水を貯留可能なバラスト空間(84)と、
  前記バラスト空間とは別に形成され、前記ロワーハルと前記梁部材との接続部の少なくとも一部に面する領域(R1)に面する第1ボイド空間(80)と、を有する。
 ロワーハルと梁部材との接続部に面する領域(第1接続領域)は、応力が集中しやすい領域であり、定期的に検査されることが望ましい。この第1接続領域がバラスト空間に形成されている場合、第1接続領域の検査のためにバラスト水を排水する必要がある。上記(18)に記載の構成によれば、第1ボイド空間は、ロワーハルと梁部材との接続部の少なくとも一部に面する領域に面しているので、この領域を検査する際にバラスト水を排水する必要がなく、検査にかかるコストを低減することができる。
 (19)幾つかの実施形態では、上記(1)から(18)の何れか1つに記載の構成において、
 各々の前記ロワーハルは、
  バラスト水を貯留可能なバラスト空間と、
  前記バラスト空間とは別に形成され、前記ロワーハルと前記第1コラムとの接続部の少なくとも一部に面する領域(R2)に面する第2ボイド空間(82)と、を有する。
 ロワーハルと第1コラムとの接続部に面する領域(第2接続領域)は、応力が集中しやすい領域であり、定期的に検査されることが望ましい。この第2接続領域がバラスト空間に形成されている場合、第2接続領域の検査のためにバラスト水を排水する必要がある。上記(19)に記載の構成によれば、第2ボイド空間は、ロワーハルと第1コラムとの接続部の少なくとも一部に面する領域に面しているので、この領域を検査する際にバラスト水を排水する必要がなく、検査にかかるコストを低減することができる。
 (20)幾つかの実施形態では、上記(1)から(19)の何れか1つに記載の構成において、
 前記梁部材は、通水可能な内部空間(104)を有する中空構造であり、前記梁部材を除く前記浮体の浮心(P1)より下方に位置する体積中心(P2)を有する。
 上記(20)に記載の構成によれば、梁部材の体積中心が梁部材を除く浮体の浮心より下方に位置する場合には、浮体を水面に浮かべた際に、梁部材の内部空間に通水され、梁部材の浮力が小さくなり、浮体の浮心を高くする。浮体の浮心を高くすると、浮体のメタセンタの位置が高くなり、浮体のメタセンタと重心との距離が大きくなり、復原力を大きくすることができる。
 (21)幾つかの実施形態では、上記(1)から(19)の何れか1つに記載の構成において、
 前記梁部材は、水密な内部空間を有する中空構造であり、前記梁部材を除く前記浮体の浮心より上方に位置する体積中心を有する。
 上記(21)に記載の構成によれば、梁部材の体積中心が梁部材を除く浮体の浮心より上方に位置する場合には、梁部材を水密な中空構造とすることで、浮体を水面に浮かべた際に、浮体の浮心を高くする。浮体の浮心を高くすると、浮体のメタセンタの位置が高くなり、浮体のメタセンタと重心との距離が大きくなり、復原力を大きくすることができる。
1   浮体
2   第1コラム
4   第2コラム
6   ロワーハル
8   梁部材
12  ロワーハルの上面
14  ロワーハルの下面
15  ロワーハルの角部
16  梁部材の上面
18  梁部材の下面
20  梁部材の外周縁
22  梁部材の側面
24  板部材
25  隙間
30  第1板部材の下面
32  第2板部材の下面
33  接続部
34  梁部材の角部
50  風力発電装置
52  ナセル
54  タワー
56  ロータ
58  係留索
68  ロワーハルの内側面
70  ロワーハルの外側面
80  第1ボイド空間
82  第2ボイド空間
84  バラスト空間
100 洋上風車
 
P1  浮心
P2  体積中心
R1  第1接続領域
R2  第2接続領域

Claims (21)

  1.  1本の第1コラムと、
     2本の第2コラムと、
     前記第1コラムとそれぞれの前記第2コラムとを接続する2本のロワーハルと、
     前記2本のロワーハル間を接続する梁部材と、を備え、
     前記梁部材は、各々の前記ロワーハルの上面と下面との間の高さ範囲内に設けられる、
    洋上風車の浮体。
  2.  前記梁部材の少なくとも一部は、該梁部材の延在方向に直交する断面視において、前記梁部材の幅が前記梁部材の高さよりも大きい、
     請求項1に記載の洋上風車の浮体。
  3.  前記梁部材は、該梁部材の延在方向に直交する断面視において、前記梁部材の外周縁が矩形状を有する、
     請求項1又は2に記載の洋上風車の浮体。
  4.  前記梁部材は、該梁部材の延在方向に直交する断面視において、前記梁部材の角部が面取りされている、
     請求項3に記載の洋上風車の浮体。
  5.  前記梁部材は、前記梁部材の上面が前記ロワーハルの前記上面の高さに位置する、
     請求項1から4の何れか一項に記載の洋上風車の浮体。
  6.  前記梁部材は、前記梁部材の下面が前記ロワーハルの前記下面の高さに位置する、
     請求項1から5の何れか一項に記載の洋上風車の浮体。
  7.  前記梁部材は、前記梁部材の下面が前記ロワーハルの前記下面より上方に位置し、且つ前記梁部材の上面が前記ロワーハルの前記上面より下方に位置する、
     請求項1から4の何れか一項に記載の洋上風車の浮体。
  8.  1本の前記第1コラム又は2本の前記第2コラムの一方は風力発電装置が搭載されるメインコラムであり、
     1本の前記第1コラム又は2本の前記第2コラムの他方は風力発電装置が搭載されないサブコラムであり、
     前記梁部材と各々の前記ロワーハルとの接続部は、各々の前記ロワーハルの長手方向の中点よりも前記サブコラム側に位置する、
     請求項1から7の何れか一項に記載の洋上風車の浮体。
  9.  板形状を有する板部材をさらに備え、
     前記板部材は、前記板部材と前記梁部材の側面との間に隙間が形成されるように配置される、
     請求項1から8の何れか一項に記載の洋上風車の浮体。
  10.  前記板部材は、前記板部材の下面が前記梁部材の下面の高さに位置する、
     請求項9に記載の洋上風車の浮体。
  11.  前記ロワーハルは、該ロワーハルの延在方向に直交する断面視において、前記ロワーハルの角部が面取りされている、
     請求項1から10の何れか一項に記載の洋上風車の浮体。
  12.  1本の前記第1コラム及び2本の前記第2コラムのそれぞれは、平面視において、前記第1コラムが頂角に対応する仮想二等辺三角形の各頂点を形成し、
     前記頂角は、50度以上70度以下である、
     請求項1から11の何れか一項に記載の洋上風車の浮体。
  13.  前記第1コラムの延在方向に直交する断面、前記第2コラムの延在方向に直交する断面、及び、前記ロワーハルの延在方向に直交する断面のうちの少なくとも1つは、多角形状を有する、
     請求項1から12の何れか一項に記載の洋上風車の浮体。
  14.  前記第1コラムの延在方向に直交する断面である第1コラム断面は多角形状を有し、
     前記2本のロワーハルは、それぞれ、前記多角形状を構成する互いに隣接しない2つの辺に対応する前記第1コラムの2つの外面に接続される、
     請求項13に記載の洋上風車の浮体。
  15.  前記第1コラムの延在方向に直交する断面である第1コラム断面は多角形状を有し、
     前記2本のロワーハルは、それぞれ、前記梁部材の両端がそれぞれ接続される内側面と、前記内側面とは反対側の外側面と、を含み、
     前記2本のロワーハルの前記外側面は、それぞれ、前記多角形状の何れか2つの辺の延長線上にて延在する、
     請求項13又は14に記載の洋上風車の浮体。
  16.  前記多角形状は、前記2本のロワーハルとは反対側において前記2つの辺を接続する他の1以上の辺を有する、
     請求項15に記載の洋上風車の浮体。
  17.  前記第2コラムの延在方向に直交する断面である第2コラム断面は長方形状を有し、
     前記第2コラム断面の長辺の長さは、前記ロワーハルの幅の寸法より大きい、
     請求項13から16の何れか一項に記載の洋上風車の浮体。
  18.  各々の前記ロワーハルは、
      バラスト水を貯留可能なバラスト空間と、
      前記バラスト空間とは別に形成され、前記ロワーハルと前記梁部材との接続部の少なくとも一部に面する領域に面する第1ボイド空間と、を有する、
     請求項1から17の何れか一項に記載の洋上風車の浮体。
  19.  各々の前記ロワーハルは、
      バラスト水を貯留可能なバラスト空間と、
      前記バラスト空間とは別に形成され、前記ロワーハルと前記第1コラムとの接続部の少なくとも一部に面する領域に面する第2ボイド空間と、を有する、
     請求項1から18の何れか一項に記載の洋上風車の浮体。
  20.  前記梁部材は、通水可能な内部空間を有する中空構造であり、前記梁部材を除く前記浮体の浮心より下方に位置する体積中心を有する、
     請求項1から19の何れか一項に記載の洋上風車の浮体。
  21.  前記梁部材は、水密な内部空間を有する中空構造であり、前記梁部材を除く前記浮体の浮心より上方に位置する体積中心を有する、
     請求項1から19の何れか一項に記載の洋上風車の浮体。
PCT/JP2021/024449 2020-06-30 2021-06-29 洋上風車の浮体 WO2022004690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21833796.2A EP4155538A4 (en) 2020-06-30 2021-06-29 FLOAT FOR OFFSHORE WIND TURBINE
JP2022534016A JPWO2022004690A1 (ja) 2020-06-30 2021-06-29
CN202180034025.1A CN115551777A (zh) 2020-06-30 2021-06-29 海上风车的浮体
US18/012,721 US20230257072A1 (en) 2020-06-30 2021-06-29 Floating body for offshore wind turbine
KR1020227036614A KR20220155385A (ko) 2020-06-30 2021-06-29 해상 풍차의 부체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020113070 2020-06-30
JP2020-113070 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004690A1 true WO2022004690A1 (ja) 2022-01-06

Family

ID=79316204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024449 WO2022004690A1 (ja) 2020-06-30 2021-06-29 洋上風車の浮体

Country Status (6)

Country Link
US (1) US20230257072A1 (ja)
EP (1) EP4155538A4 (ja)
JP (1) JPWO2022004690A1 (ja)
KR (1) KR20220155385A (ja)
CN (1) CN115551777A (ja)
WO (1) WO2022004690A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149616A1 (ko) * 2022-02-07 2023-08-10 한국해양과학기술원 구조강도 향상 및 중량절감형 부유식 해상풍력 구조물

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433859B2 (ja) * 2019-11-26 2024-02-20 三菱重工業株式会社 風力発電装置の支持構造及び風力発電装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019470A (ja) * 2002-06-12 2004-01-22 Mitsubishi Heavy Ind Ltd 浮体式大型風力発電装置
JP2011525223A (ja) * 2008-06-20 2011-09-15 テクニップ フランス 少なくとも1つの風力タービン又は水中発電機を搬送して沖合で設置するための構造、及び少なくとも1つの風力タービン又は水中発電機を搬送して沖合で設置するための方法
WO2013084633A1 (ja) * 2011-12-05 2013-06-13 三菱重工業株式会社 浮体式風力発電装置
WO2013084856A1 (ja) 2011-12-05 2013-06-13 三菱重工業株式会社 浮体式風力発電装置
JP2018519205A (ja) * 2015-06-19 2018-07-19 プリンシプル パワー,インコーポレイテッド 波荷重および風荷重の最適化された伝達を有する浮体式風力タービンプラットフォーム構造物
JP2020113070A (ja) 2019-01-11 2020-07-27 トヨタ自動車株式会社 道路環境判別装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229505A1 (en) * 2007-10-08 2009-09-17 Anthony Neil Williams Battered column semi-submersible offshore platform
KR101920019B1 (ko) 2012-01-18 2018-11-19 삼성전자 주식회사 휴대단말기의 통화 서비스 장치 및 방법
US9302747B2 (en) * 2013-04-10 2016-04-05 Technip France Floating offshore platform with pontoon-coupled extension plates for reduced heave motion
ES2644169B1 (es) * 2016-05-26 2018-09-11 Iberdrola Renovables Energía, S.A.U. Plataforma semisumergible para aerogeneradores marinos

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019470A (ja) * 2002-06-12 2004-01-22 Mitsubishi Heavy Ind Ltd 浮体式大型風力発電装置
JP2011525223A (ja) * 2008-06-20 2011-09-15 テクニップ フランス 少なくとも1つの風力タービン又は水中発電機を搬送して沖合で設置するための構造、及び少なくとも1つの風力タービン又は水中発電機を搬送して沖合で設置するための方法
WO2013084633A1 (ja) * 2011-12-05 2013-06-13 三菱重工業株式会社 浮体式風力発電装置
WO2013084856A1 (ja) 2011-12-05 2013-06-13 三菱重工業株式会社 浮体式風力発電装置
WO2013084878A1 (ja) * 2011-12-05 2013-06-13 三菱重工業株式会社 浮体式風車設備の部品搬送方法
JP2018519205A (ja) * 2015-06-19 2018-07-19 プリンシプル パワー,インコーポレイテッド 波荷重および風荷重の最適化された伝達を有する浮体式風力タービンプラットフォーム構造物
JP2020113070A (ja) 2019-01-11 2020-07-27 トヨタ自動車株式会社 道路環境判別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155538A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149616A1 (ko) * 2022-02-07 2023-08-10 한국해양과학기술원 구조강도 향상 및 중량절감형 부유식 해상풍력 구조물

Also Published As

Publication number Publication date
US20230257072A1 (en) 2023-08-17
KR20220155385A (ko) 2022-11-22
EP4155538A1 (en) 2023-03-29
CN115551777A (zh) 2022-12-30
JPWO2022004690A1 (ja) 2022-01-06
EP4155538A4 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2013084633A1 (ja) 浮体式風力発電装置
EP1366290B1 (en) Offshore floating wind power generation plant
WO2022004690A1 (ja) 洋上風車の浮体
EP3115600B1 (en) Flare-type tensile legs floating wind turbine base, offshore wind turbine and construction method
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
KR102552328B1 (ko) 복수의 전력 변환 장치를 가지는 부유식 풍력 발전 장치
WO2018122220A1 (en) Floating offshore platform
KR101647905B1 (ko) 부체식 풍력 발전 장치 및 그 부체식 풍력 발전 장치의 부설 방법
CN208416796U (zh) 一种四立柱带压载半潜式漂浮风机基础
KR101592131B1 (ko) 부체식 풍력 발전 장치
TW201610296A (zh) 用於離岸應用之多渦輪風力發電平臺
KR20140120154A (ko) 부유식 해상 풍력 발전기의 트러스형 하부 구조물
CN210526798U (zh) 多立柱漂浮式风力发电装置
US20230141253A1 (en) Floating wind turbine systems and methods
JP2004019470A (ja) 浮体式大型風力発電装置
KR102637606B1 (ko) 부유식 해양 구조물 및 이를 구비하는 부유식 해양 발전 장치
KR102554204B1 (ko) 부유식 해상풍력 구조물
KR102624042B1 (ko) 부유식 해양 구조물 및 이를 구비하는 부유식 해양 발전 장치
KR102567609B1 (ko) 구조강도 향상 및 중량절감형 부유식 해상풍력 구조물
KR102437639B1 (ko) 부력체 및 계류선의 배치를 통해 하중 저감을 가능하게 한 부유식 풍력발전장치
JP5758501B2 (ja) 浮体式風力発電装置
KR102588979B1 (ko) 부유식 해양 구조물 및 이를 구비하는 부유식 해양 발전 장치
EP4238863A1 (en) Floating offshore structure and floating offshore power generation apparatus having same
NO20210865A1 (en) Off-shore wind turbine support system, off-shore wind farm and method for controlling such wind farm
TW202244388A (zh) 用於接收離岸部署中之風力機塔之浮力結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036614

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022534016

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021833796

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE