WO2022003789A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2022003789A1
WO2022003789A1 PCT/JP2020/025561 JP2020025561W WO2022003789A1 WO 2022003789 A1 WO2022003789 A1 WO 2022003789A1 JP 2020025561 W JP2020025561 W JP 2020025561W WO 2022003789 A1 WO2022003789 A1 WO 2022003789A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
communication device
access procedure
carrier sense
fbe
Prior art date
Application number
PCT/JP2020/025561
Other languages
French (fr)
Japanese (ja)
Inventor
尚哉 芝池
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/025561 priority Critical patent/WO2022003789A1/en
Priority to JP2022533288A priority patent/JPWO2022003789A1/ja
Publication of WO2022003789A1 publication Critical patent/WO2022003789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to a communication device that executes wireless communication, particularly a communication device that executes a process of executing carrier sense before starting transmission.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • FR1 410MHz-7.125GHz
  • FR2 24.25GHz-52.6GHz
  • Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz, exceeding 52.6 GHz.
  • 5G Evolution or 6G aims to support frequency bands above 71GHz.
  • LBT carrier sense
  • FBE Framework Based Equipment
  • carrier sense is executed until a carrier that does not interfere with other communication devices is found according to the demand.
  • FBE process carrier sense is executed at a predetermined timing in a fixed frame period. For example, FBE processing is applied when the absence of a method other than the communication method specified by 3GPP (for example, WiFi) is guaranteed.
  • 3GPP for example, WiFi
  • the following disclosure has been made in view of such a situation, and an object thereof is to provide a communication device capable of appropriately applying FBE processing in a second frequency band higher than the first frequency band. And.
  • One aspect of the present disclosure is a communication device comprising a control unit that executes a channel access procedure in an unlicensed frequency band including a first frequency band and a second frequency band higher than the first frequency band.
  • the unit permits the application of the first process of executing carrier sense at a predetermined timing in a fixed frame period when the first condition is satisfied in the channel access procedure of the first frequency band.
  • the gist of the channel access procedure in the second frequency band is to execute a second process of executing carrier sense at a predetermined timing in a fixed frame period when the second condition is satisfied.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the communication device 300.
  • FIG. 5 is a diagram for explaining a channel access procedure.
  • FIG. 6 is a sequence diagram showing an operation example.
  • FIG. 7 is a sequence diagram showing an operation example.
  • FIG. 8 is a diagram for explaining the channel access procedure according to the first modification.
  • FIG. 9 is a sequence diagram showing an operation example according to the modification example 3.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the communication device 300.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used, and dual connectivity (DC) that communicates with two or more transport blocks at the same time between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1 and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • an unlicensed frequency band Fu different from the frequency band is also used.
  • New Radio-Unlicensed (NR-U) which expands the available frequency band by using the spectrum of the unlicensed frequency band, can be executed.
  • the frequency band assigned for the wireless communication system 10 is a frequency band included in the frequency range of FR1 and FR2 mentioned above, and based on the license allocation by the government.
  • Unlicensed frequency band Fu is a frequency band that does not require a license allocation by the government and can be used without being limited to a specific telecommunications carrier.
  • a frequency band for wireless LAN (WLAN) (2.4 GHz or 5 GHz band, etc.) can be mentioned.
  • the gNB100 performs carrier sense before starting transmission and the channel is used by other nearby systems.
  • the Listen-Before-Talk (LBT) mechanism which enables transmission within a predetermined time length, is applied only when it can be confirmed that the notification has not been performed.
  • carrier sense is a technique for confirming whether or not the frequency carrier is used for other communications before emitting radio waves.
  • the band for LBT (LBT sub-band) in NR-U can be provided in the unlicensed frequency band Fu, and may be expressed as a band for confirming the presence or absence of use in the unlicensed frequency band Fu.
  • the LBT sub-band may be, for example, 20 MHz, half 10 MHz, or 1/4 5 MHz.
  • the unlicensed frequency band Fu includes a first frequency band (for example, 2.4 GHz band or 5.0 GHz band) and a second frequency band higher than the first frequency band (for example, 60 GHz band).
  • the first frequency band may be included in FR1.
  • the second frequency band may be included in FR2x.
  • the unlicensed frequency band Fu shown in FIG. 2 is only an example.
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: BandwidthPart), or the like.
  • the communication device 300 may be gNB100 or UE200. As shown in FIG. 4, the communication device 300 includes a communication unit 310 and a control unit 320.
  • the communication unit 310 communicates using the licensed frequency band.
  • Communication using the licensed frequency band includes communication using the channel specified by 3GPP.
  • Channels include control channels and data channels.
  • Control channels include DCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical. Includes Broadcast Channel (PBCH), etc.
  • DCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • Physical Includes Broadcast Channel (PBCH), etc.
  • Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • Communication unit 310 communicates using the unlicensed frequency band Fu.
  • the unlicensed frequency band Fu includes a first frequency band and a second frequency band higher than the first frequency band.
  • Communication using the unlicensed frequency band Fu may be used in combination with communication using the licensed frequency band. That is, carriers in the licensed frequency band and carriers in the unlicensed frequency band Fu may be bundled.
  • LAA Licensed-Assisted Access
  • the control unit 320 controls the communication device 300.
  • the control unit 320 executes the channel access procedure in the unlicensed frequency band Fu.
  • the channel access procedure includes a process of executing carrier sense (hereinafter, LBT; Listen Before Talk) before starting transmission.
  • LBT carrier sense
  • LBE Low-Breliable Based Equipment
  • FBE Flash Based Equipment
  • LBT carrier sense is executed until a carrier that does not interfere with other communication devices is found according to the demand.
  • FBE Frerame Based Equipment
  • the control unit 320 applies the first process of executing the carrier sense at a predetermined timing in a fixed frame period when the first condition is satisfied in the channel access procedure of the first frequency band. Tolerate.
  • the first process is an example of FBE process.
  • the first condition is that it is guaranteed that there is no other technology (for example, WiFi) different from the wireless communication system 10 in the first frequency band.
  • the control unit 320 may execute the LBE process instead of the FBE process even when the first condition is satisfied.
  • control unit 320 executes a second process of executing carrier sense at a predetermined timing in a fixed frame period when the second condition is satisfied in the channel access procedure of the second frequency band. ..
  • the second process is an example of the FBE process.
  • the second condition is different from the first condition.
  • the following conditions can be considered.
  • the second condition may be that it is predetermined to apply the FBE process as the channel access procedure of the second frequency band.
  • the second condition may be that a standard such as 3GPP stipulates that FBE processing is applied as a channel access procedure for the second frequency band. That is, as the channel access procedure of the second frequency band, the FBE processing may be applied without applying the LBE processing.
  • the second condition may be that it has been confirmed that there is no other technology (for example, WiFi) different from the wireless communication system 10 in the second frequency band.
  • the "confirmation" of the second condition is a concept different from the "guarantee" of the first condition, and may be a concept including a small influence of other technologies.
  • the second condition may be that it is notified that no other technique exists in the second frequency band. Such a notification may be executed by gNB100 or by a higher-level node of gNB100 (for example, OAM; Operation Administration and Maintenance).
  • the second condition may be set to apply the FBE process as the channel access procedure of the second frequency band.
  • the application of FBE processing may be set in SIM, may be set by MACCE, or may be set by RRC.
  • a fixed frame period (FFP; Fixed Frame Period) is defined.
  • FFP Fixed Frame Period
  • the possible values of FFP are 1ms, 2ms, 2.5ms, 4ms, 5ms, and 10ms.
  • the carrier sense is executed at a predetermined timing.
  • the predetermined timing includes at least the timing immediately before FFP.
  • the predetermined timing may include the timing immediately before the channel occupancy time (hereinafter, COT; Channel Occupancy Time).
  • Type2A, Type2B, and Type2C can be considered as the channel access procedure used in FBE processing.
  • Type 2A is a process in which the time interval (hereinafter referred to as gap) between another transmission and the target transmission is 25 ⁇ s.
  • Type 2B is a process in which the gap between another transmission and the target transmission is 16 ⁇ s.
  • Type 2C is a process in which the gap between another transmission and the target transmission is shorter than 16 ⁇ s.
  • Type 2A and Type 2B are processes that execute channel cess in gap.
  • Type2C is a process that does not execute channel sense in gap.
  • Type 2C is used for COT sharing between gNB100 and UE200 (for example, 3GPP TS37.213 V16.1.0 ⁇ 4.1.2 “Type2DLChannelaccessprocedure” and ⁇ 4.2.1.2 “Type2ULchannel”. access procedure ”).
  • LBT Idle means that the channel is not occupied by another communication device 300.
  • MCOT is the maximum value of channel occupancy time.
  • E shown in FIG. 5 shows a case where LBT Busy is confirmed by the carrier sense of Type 2A or Type 2B, and downlink (DL) and uplink (UL) transmission is executed.
  • LBT Busy means that the channel is occupied by another communication device 300.
  • the content of the second process which is the FBE process applied in the second frequency band (for example, 60 GHz band)
  • the content of the first process which is the FBE process applied in the first frequency band (for example, the 5 GHz band). It may be the same as the content.
  • the same FFP as the FFP used in the first process may be used. That is, the communication device 300 (control unit 320) may use the same FFP as the FFP of the first process in the second process.
  • NG-RAN20 executes the carrier sense of FBE processing (Type 2A or Type 2B) before DL transmission
  • UE200 executes the carrier sense of FBE processing (Type 2A or Type 2B) before UL transmission. I will explain the case to do.
  • step S10 NG-RAN20 executes carrier sense at a predetermined timing in FFP.
  • step S11 NG-RAN20 executes DL transmission when the result of carrier sense is LBT Idle.
  • the NG-RAN20 does not execute DL transmission when the result of carrier sense is LBT Busy.
  • step S12 UE200 executes carrier sense at a predetermined timing in FFP.
  • step S13 UE200 executes UL transmission when the result of carrier sense is LBT Idle.
  • the UE200 does not execute UL transmission when the result of carrier sense is LBT Busy.
  • FIG. 6 illustrates a case in which it is predetermined to apply FBE processing as a channel access procedure for the second frequency band.
  • the sequence shown in FIG. 6 may be applied to cases where it has been confirmed that no other technique exists in the second frequency band.
  • the sequence shown in FIG. 6 may be applied to the case where it is notified that no other technique exists in the second frequency band.
  • step S20 the NG-RAN20 transmits a setting to apply the FBE process as the channel access procedure of the second frequency band to the UE200.
  • FIG. 7 illustrates a case where FBE processing is applied.
  • the sequence shown in FIG. 7 may be applied to cases where LBE processing is applied.
  • the NG-RAN20 transmits to the UE200 a setting to apply the LBE process as the channel access procedure of the second frequency band.
  • carrier sense based on LBE processing may be performed.
  • the carrier sense based on the LBE processing may be referred to as Type 1 (for example, 3GPP TS37.213 V16.1.0 ⁇ 4.1.1 “Type1DLChannelaccessprocedure” and ⁇ 4.2.1.1 “Type1ULchannel”. access procedure ”).
  • the communication device 300 is the first condition to apply the FBE processing in the first frequency band in the second frequency band higher than the first frequency band in the unlicensed frequency band Fu.
  • the FBE process is executed when the second condition different from the above is satisfied. According to such a configuration, the FBE process can be appropriately applied in the second frequency band higher than the first frequency band.
  • the content of the second process which is the FBE process applied in the second frequency band (for example, 60 GHz band) is the first process, which is the FBE process applied in the first frequency band (for example, the 5 GHz band). It may be the same as the content of.
  • the content of the second process which is the FBE process applied in the second frequency band
  • the content of the second process is different from the content of the first process, which is the FBE process applied in the first frequency band.
  • an FFP shorter than the FFP used in the first process may be used.
  • the FFP of the second process applied in the second frequency band is the FFP of the first process applied in the first frequency band (FIG. 8). Shorter than the upper).
  • the possible values of FFP in the first process may be 1 ms, 2 ms, 2.5 ms, 4 ms, 5 ms, and 10 ms.
  • the possible values of FFP in the second process may be 0.5 ms, 1 ms, 1.25 ms, 2 ms, 2.5 ms, and 5 ms.
  • the communication device 300 (control unit 320) may use an FFP shorter than the FFP of the first process in the second process.
  • the FFP used in the second process may be predetermined.
  • a value obtained by scaling the FFP used in the first process by the scaling factor ⁇ may be used.
  • the scaling factor ⁇ may be a predetermined value, a value set in SIM, a value set by MAC CE or RRC, and a value associated with SCS. May be.
  • the communication device 300 executes carrier sense on a frequency (for example, LBT sub-band) basis in the first process applied in the first frequency band.
  • the communication device 300 may execute carrier sense on a beam basis in the second process applied in the second frequency band.
  • the second frequency band which is higher than the first frequency band, is narrower by using a massive antenna having a large number of antenna elements in order to cope with a wide bandwidth and a large propagation loss.
  • CCA Carrier Channel Assessment
  • the second condition includes the condition that the UE 200 that can configure the communication device 300 has the ability to execute the second process.
  • the UE 200 transmits an information element indicating whether or not it has the ability to execute the second process to the NG-RAN 20 (gNB100) as an information element included in the UE Capability.
  • step S30 the UE 200 transmits a Capability to the effect that it has the ability to execute the second process to the NG-RAN 20.
  • step S30 the UE 200 transmits a Capability to the effect that it has the ability to execute the second process to the NG-RAN 20.
  • step S30 since the same step numbers are assigned to the same processes as those in FIG. 6, the description of the same processes as in FIG. 6 will be omitted.
  • FIG. 9 illustrates a case where the UE 200 has the ability to execute the second process.
  • the sequence shown in FIG. 9 may be applied to cases where the UE 200 does not have the ability to perform a second process.
  • the UE 200 transmits a Capability to the NG-RAN 20 to the effect that it does not have the ability to execute the second process.
  • the notification or setting to apply the second processing FBE processing
  • the second frequency band is used. It is not necessary to perform communication using.
  • Change example 3 illustrates a case where the ability of UE200 to execute the second process is an optional feature.
  • the ability of UE200 to perform a second process may be a feature of the mandatory.
  • the process of S30 shown in FIG. 9 may be omitted.
  • the case where the FBE processing is applied in the channel access procedure of the second frequency band higher than the first frequency band has been mainly described.
  • the embodiments are not limited to this.
  • processing other than FBE processing may be applied in the channel access procedure for two frequency bands.
  • the process other than the FBE process may include an LBE process or may include an ATPC (Automatic Transmission Power Control).
  • the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 10, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)).
  • MIB System Information Block
  • SIB System Information Block
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether called software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 300 Communication device 310 Communication unit 320 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This communication device is provided with a control unit that executes a channel access procedure in an unlicensed frequency band including a first frequency band and a second frequency band higher than the first frequency band. When a first condition is satisfied in the channel access procedure for the first frequency band, the control unit allows application of a first process for executing carrier sense at a predetermined timing in a fixed frame period. When a second condition is satisfied in the channel access procedure for the second frequency band, the control unit executes a second process for executing carrier sense at a predetermined timing in a fixed frame period.

Description

通信装置Communication device
 本開示は、無線通信を実行する通信装置、特に、送信を開始する前にキャリアセンスを実行する処理を実行する通信装置に関する。 The present disclosure relates to a communication device that executes wireless communication, particularly a communication device that executes a process of executing carrier sense before starting transmission.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。 In 3GPP Release 15 and Release 16 (NR), the operation of multiple frequency ranges, specifically, the band including FR1 (410MHz-7.125GHz) and FR2 (24.25GHz-52.6GHz) is specified. ..
 また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯もサポートすることを目標としている。 Also, studies are underway on NR that supports up to 71 GHz, exceeding 52.6 GHz (Non-Patent Document 1). In addition, Beyond 5G, 5G Evolution or 6G (Release-18 or later) aims to support frequency bands above 71GHz.
 ところで、アンライセンス周波数帯では、送信を開始する前にキャリアセンスを実行する処理(以下、LBT;Listen Before Talk)が適用される。このようなLBTとしては、LBE(Load Based Equipment)処理及びFBE(Frame Based Equipment)処理が挙げられる。LBE処理では、需要に応じて、他の通信装置に干渉を与えないキャリアが見つかるまでキャリアセンスが実行される。FBE処理では、固定のフレーム周期において予め定められたタイミングでキャリアセンスが実行される。例えば、FBE処理は、3GPPで規定される通信方式以外の方式(例えば、WiFiなど)の不存在が保証される場合に適用される。 By the way, in the unlicensed frequency band, the process of executing carrier sense (hereinafter, LBT; Listen Before Talk) is applied before starting transmission. Examples of such LBT include LBE (Load Based Equipment) processing and FBE (Frame Based Equipment) processing. In the LBE process, carrier sense is executed until a carrier that does not interfere with other communication devices is found according to the demand. In the FBE process, carrier sense is executed at a predetermined timing in a fixed frame period. For example, FBE processing is applied when the absence of a method other than the communication method specified by 3GPP (for example, WiFi) is guaranteed.
 このような背景下において、52.6GHzを超えるような高周波数帯域などにおいては、FBE処理を適用する可能性について検討されていない。発明者等は、鋭意検討の結果、第1周波数帯域よりも高い第2周波数帯域(例えば、52.6GHzを超えるような高周波数帯域)においてFBE処理を適用する有用性を見出した。 Under such a background, the possibility of applying FBE processing in the high frequency band exceeding 52.6 GHz has not been examined. As a result of diligent studies, the inventors have found the usefulness of applying the FBE processing in the second frequency band higher than the first frequency band (for example, a high frequency band exceeding 52.6 GHz).
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、第1周波数帯域よりも高い第2周波数帯域においてFBE処理を適切に適用することを実現し得る通信装置の提供を目的とする。 Therefore, the following disclosure has been made in view of such a situation, and an object thereof is to provide a communication device capable of appropriately applying FBE processing in a second frequency band higher than the first frequency band. And.
 本開示の一態様は、通信装置であって、第1周波数帯域及び前記第1周波数帯域よりも高い第2周波数帯域を含むアンライセンス周波数帯においてチャネルアクセス手順を実行する制御部を備え、前記制御部は、前記第1周波数帯域の前記チャネルアクセス手順において、第1条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第1処理の適用を許容し、前記第2周波数帯域の前記チャネルアクセス手順において、第2条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第2処理を実行することを要旨とする。 One aspect of the present disclosure is a communication device comprising a control unit that executes a channel access procedure in an unlicensed frequency band including a first frequency band and a second frequency band higher than the first frequency band. The unit permits the application of the first process of executing carrier sense at a predetermined timing in a fixed frame period when the first condition is satisfied in the channel access procedure of the first frequency band. The gist of the channel access procedure in the second frequency band is to execute a second process of executing carrier sense at a predetermined timing in a fixed frame period when the second condition is satisfied.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、通信装置300の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the communication device 300. 図5は、チャネルアクセス手順を説明するための図である。FIG. 5 is a diagram for explaining a channel access procedure. 図6は、動作例を示すシーケンス図である。FIG. 6 is a sequence diagram showing an operation example. 図7は、動作例を示すシーケンス図である。FIG. 7 is a sequence diagram showing an operation example. 図8は、変更例1に係るチャネルアクセス手順を説明するための図である。FIG. 8 is a diagram for explaining the channel access procedure according to the first modification. 図9は、変更例3に係る動作例を示すシーケンス図である。FIG. 9 is a sequence diagram showing an operation example according to the modification example 3. 図10は、通信装置300のハードウェア構成の一例を示す図である。FIG. 10 is a diagram showing an example of the hardware configuration of the communication device 300.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G. The gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used, and dual connectivity (DC) that communicates with two or more transport blocks at the same time between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz is used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 has a higher frequency than FR1 and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
 無線通信システム10では、無線通信システム10用に割り当てられる周波数帯に加え、当該周波数帯と異なるアンライセンス周波数帯Fuも用いられる。具体的には、無線通信システム10では、アンライセンス(無免許)周波数帯のスペクトルを用いて利用可能な周波数帯を拡張するNew Radio-Unlicensed(NR-U)が実行可能である。 In the wireless communication system 10, in addition to the frequency band assigned for the wireless communication system 10, an unlicensed frequency band Fu different from the frequency band is also used. Specifically, in the wireless communication system 10, New Radio-Unlicensed (NR-U), which expands the available frequency band by using the spectrum of the unlicensed frequency band, can be executed.
 無線通信システム10用に割り当てられる周波数帯とは、上述したFR1及びFR2などに周波数レンジ内に含まれ、行政による免許割り当てに基づく周波数帯である。 The frequency band assigned for the wireless communication system 10 is a frequency band included in the frequency range of FR1 and FR2 mentioned above, and based on the license allocation by the government.
 アンライセンス周波数帯Fuとは、行政による免許割り当てが不要であり、特定の通信事業者に限定されずに使用可能な周波数帯である。例えば、無線LAN(WLAN)用の周波数帯(2.4GHzまたは5GHz帯など)が挙げられる。 Unlicensed frequency band Fu is a frequency band that does not require a license allocation by the government and can be used without being limited to a specific telecommunications carrier. For example, a frequency band for wireless LAN (WLAN) (2.4 GHz or 5 GHz band, etc.) can be mentioned.
 アンライセンス周波数帯Fuでは、特定の通信事業者に限らず無線局を設置することが可能であるが、近傍の無線局からの信号が互いに干渉して通信性能を大きく劣化させることは望ましくない。 In the unlicensed frequency band Fu, it is possible to install a radio station not limited to a specific telecommunications carrier, but it is not desirable that signals from nearby radio stations interfere with each other and significantly deteriorate communication performance.
 そのため、例えば日本では、アンライセンス周波数帯Fu(例えば、5GHz帯)を用いる無線システムへの要求条件として、送信を開始する前にgNB100がキャリアセンスを実行し、チャネルが近傍の他システムによって使用されていないことを確認できた場合にのみ、所定の時間長以内の送信を可能とするListen-Before-Talk(LBT)のメカニズムが適用される。なお、キャリアセンスとは、電波を発射する前に、その周波数キャリアが他の通信に使用されていないかを確認する技術である。 So, for example, in Japan, as a requirement for wireless systems using the unlicensed frequency band Fu (eg 5GHz band), the gNB100 performs carrier sense before starting transmission and the channel is used by other nearby systems. The Listen-Before-Talk (LBT) mechanism, which enables transmission within a predetermined time length, is applied only when it can be confirmed that the notification has not been performed. Note that carrier sense is a technique for confirming whether or not the frequency carrier is used for other communications before emitting radio waves.
 NR-UにおけるLBT用の帯域(LBT sub-band)は、アンライセンス周波数帯Fu内に設けることができ、アンライセンス周波数帯Fu内における利用有無の確認用帯域と表現されてもよい。LBT sub-bandは、例えば、20MHzであってもよいし、半分の10MHz、或いは1/4の5MHzなどであってもよい。 The band for LBT (LBT sub-band) in NR-U can be provided in the unlicensed frequency band Fu, and may be expressed as a band for confirming the presence or absence of use in the unlicensed frequency band Fu. The LBT sub-band may be, for example, 20 MHz, half 10 MHz, or 1/4 5 MHz.
 実施形態では、アンライセンス周波数帯Fuは、第1周波数帯(例えば、2.4GHz帯又は5.0GHz帯)と、第1周波数帯よりも高い第2周波数帯(例えば、60GHz帯)を含む。第1周波数帯は、FR1に含まれてもよい。第2周波数帯は、FR2xに含まれてもよい。なお、図2に示すアンライセンス周波数帯Fuは一例に過ぎない。 In the embodiment, the unlicensed frequency band Fu includes a first frequency band (for example, 2.4 GHz band or 5.0 GHz band) and a second frequency band higher than the first frequency band (for example, 60 GHz band). The first frequency band may be included in FR1. The second frequency band may be included in FR2x. The unlicensed frequency band Fu shown in FIG. 2 is only an example.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth Part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: BandwidthPart), or the like.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、通信装置300の機能ブロック構成について説明する。通信装置300は、gNB100であってもよく、UE200であってもよい。図4に示すように、通信装置300は、通信部310と、制御部320と、を有する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of the communication device 300 will be described. The communication device 300 may be gNB100 or UE200. As shown in FIG. 4, the communication device 300 includes a communication unit 310 and a control unit 320.
 通信部310は、ライセンス周波数帯を用いた通信を行う。ライセンス周波数帯を用いた通信は、3GPPで規定されるチャネルを用いた通信を含む。チャネルは、制御チャネル及びデータチャネルを含む。 The communication unit 310 communicates using the licensed frequency band. Communication using the licensed frequency band includes communication using the channel specified by 3GPP. Channels include control channels and data channels.
 制御チャネルは、DCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などを含む。 Control channels include DCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical. Includes Broadcast Channel (PBCH), etc.
 データチャネルは、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などを含む。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 通信部310は、アンライセンス周波数帯Fuを用いた通信を行う。上述したように、アンライセンス周波数帯Fuは、第1周波数帯と、第1周波数帯よりも高い第2周波数帯を含む。アンライセンス周波数帯Fuを用いた通信は、ライセンス周波数帯を用いた通信と併用されてもよい。すなわち、ライセンス周波数帯のキャリア及びアンライセンス周波数帯Fuのキャリアが束ねられてもよい。このような技術は、LAA(Licensed-Assisted Access)と呼称されてもよい。 Communication unit 310 communicates using the unlicensed frequency band Fu. As described above, the unlicensed frequency band Fu includes a first frequency band and a second frequency band higher than the first frequency band. Communication using the unlicensed frequency band Fu may be used in combination with communication using the licensed frequency band. That is, carriers in the licensed frequency band and carriers in the unlicensed frequency band Fu may be bundled. Such a technique may be referred to as LAA (Licensed-Assisted Access).
 制御部320は、通信装置300を制御する。実施形態では、制御部320は、アンライセンス周波数帯Fuにおいてチャネルアクセス手順を実行する。チャネルアクセス手順は、送信を開始する前にキャリアセンスを実行する処理(以下、LBT;Listen Before Talk)を含む。LBTとしては、LBE(Load Based Equipment)処理及びFBE(Frame Based Equipment)処理が挙げられる。LBE処理では、需要に応じて、他の通信装置に干渉を与えないキャリアが見つかるまでキャリアセンスが実行される。FBE処理では、固定のフレーム周期において予め定められたタイミングでキャリアセンスが実行される。 The control unit 320 controls the communication device 300. In the embodiment, the control unit 320 executes the channel access procedure in the unlicensed frequency band Fu. The channel access procedure includes a process of executing carrier sense (hereinafter, LBT; Listen Before Talk) before starting transmission. Examples of LBT include LBE (Load Based Equipment) processing and FBE (Frame Based Equipment) processing. In the LBE process, carrier sense is executed until a carrier that does not interfere with other communication devices is found according to the demand. In the FBE process, carrier sense is executed at a predetermined timing in a fixed frame period.
 ここで、制御部320は、第1周波数帯域の前記チャネルアクセス手順において、第1条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第1処理の適用を許容する。第1処理は、FBE処理の一例である。第1条件は、第1周波数帯において無線通信システム10とは異なる他の技術(例えば、WiFi)が存在しないことが保証されていることである。制御部320は、第1条件が満たされている場合であっても、FBE処理ではなくLBE処理を実行してもよい。 Here, the control unit 320 applies the first process of executing the carrier sense at a predetermined timing in a fixed frame period when the first condition is satisfied in the channel access procedure of the first frequency band. Tolerate. The first process is an example of FBE process. The first condition is that it is guaranteed that there is no other technology (for example, WiFi) different from the wireless communication system 10 in the first frequency band. The control unit 320 may execute the LBE process instead of the FBE process even when the first condition is satisfied.
 一方で、制御部320は、第2周波数帯域の前記チャネルアクセス手順において、第2条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第2処理を実行する。第2処理は、FBE処理の一例である。第2条件は第1条件と異なる。例えば、第2条件としては、以下に示す条件が考えられる。 On the other hand, the control unit 320 executes a second process of executing carrier sense at a predetermined timing in a fixed frame period when the second condition is satisfied in the channel access procedure of the second frequency band. .. The second process is an example of the FBE process. The second condition is different from the first condition. For example, as the second condition, the following conditions can be considered.
 第1に、第2条件は、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが予め定められていることであってもよい。例えば、第2条件は、3GPPなどの規格において第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが規定されていることであってもよい。すなわち、第2周波数帯のチャネルアクセス手順としては、LBE処理が適用されずにFBE処理が適用されてもよい。 First, the second condition may be that it is predetermined to apply the FBE process as the channel access procedure of the second frequency band. For example, the second condition may be that a standard such as 3GPP stipulates that FBE processing is applied as a channel access procedure for the second frequency band. That is, as the channel access procedure of the second frequency band, the FBE processing may be applied without applying the LBE processing.
 第2に、第2条件は、第2周波数帯において無線通信システム10とは異なる他の技術(例えば、WiFi)が存在しないことが確認されていることであってもよい。ここで、第2条件の「確認」は、第1条件の「保証」と異なる概念であり、他の技術の影響が小さいことを含む概念であってもよい。第2条件は、第2周波数帯において他の技術が存在しないことが通知されていることであってもよい。このような通知は、gNB100によって実行されてもよく、gNB100の上位ノード(例えば、OAM;Operation Administration and Maintenance)によって実行されてもよい。 Secondly, the second condition may be that it has been confirmed that there is no other technology (for example, WiFi) different from the wireless communication system 10 in the second frequency band. Here, the "confirmation" of the second condition is a concept different from the "guarantee" of the first condition, and may be a concept including a small influence of other technologies. The second condition may be that it is notified that no other technique exists in the second frequency band. Such a notification may be executed by gNB100 or by a higher-level node of gNB100 (for example, OAM; Operation Administration and Maintenance).
 第3に、第2条件は、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが設定されることであってもよい。FBE処理の適用は、SIMに設定されてもよく、MAC CEによって設定されてもよく、RRCによって設定されてもよい。 Thirdly, the second condition may be set to apply the FBE process as the channel access procedure of the second frequency band. The application of FBE processing may be set in SIM, may be set by MACCE, or may be set by RRC.
 (3)チャネルアクセス手順
 次に、チャネルアクセス手順について説明する。ここでは、上述したFBE処理について説明する。
(3) Channel access procedure Next, the channel access procedure will be described. Here, the above-mentioned FBE processing will be described.
 図5に示すように、FBE処理では、固定のフレーム周期(FFP;Fixed Frame Period)が定められている。例えば、FFPの取り得る値は、1ms、2ms、2.5ms、4ms、5ms、10msである。FBE処理では、予め定められたタイミングでキャリアセンスが実行される。予め定められたタイミングは、少なくともFFPの直前のタイミングを含む。予め定められたタイミングは、チャネル占有時間(以下、COT;Channel Occupancy Time)の直前のタイミングを含んでもよい。 As shown in FIG. 5, in FBE processing, a fixed frame period (FFP; Fixed Frame Period) is defined. For example, the possible values of FFP are 1ms, 2ms, 2.5ms, 4ms, 5ms, and 10ms. In the FBE process, the carrier sense is executed at a predetermined timing. The predetermined timing includes at least the timing immediately before FFP. The predetermined timing may include the timing immediately before the channel occupancy time (hereinafter, COT; Channel Occupancy Time).
 FBE処理で用いるチャネルアクセス手順としては、Type 2A、Type 2B、Type 2Cが考えられる。Type 2Aは、他の送信と対象送信との間の時間間隔(以下、gap)が25μsである処理である。Type 2Bは、他の送信と対象送信との間のgapが16μsである処理である。Type 2Cは、他の送信と対象送信との間のgapが16μsよりも短い処理である。Type 2A及びType 2Bは、gapにおいてチャネルセスを実行する処理である。Type 2Cは、gapにおいてチャネルセンスを実行しない処理である。例えば、Type 2Cは、gNB100とUE200とによるCOTの共有で用いられる(例えば、3GPP TS37.213 V16.1.0の§4.1.2 “Type 2 DL Channel access procedure”及び§4.2.1.2 “Type 2 UL channel access procedure”)。 Type2A, Type2B, and Type2C can be considered as the channel access procedure used in FBE processing. Type 2A is a process in which the time interval (hereinafter referred to as gap) between another transmission and the target transmission is 25 μs. Type 2B is a process in which the gap between another transmission and the target transmission is 16 μs. Type 2C is a process in which the gap between another transmission and the target transmission is shorter than 16 μs. Type 2A and Type 2B are processes that execute channel cess in gap. Type2C is a process that does not execute channel sense in gap. For example, Type 2C is used for COT sharing between gNB100 and UE200 (for example, 3GPP TS37.213 V16.1.0 §4.1.2 “Type2DLChannelaccessprocedure” and §4.2.1.2 “Type2ULchannel”. access procedure ”).
 例えば、図5に示す“A”では、Type 2A又はType 2BのキャリアセンスによってLBT Idleが確認され、ダウンリンク(DL)の送信が実行されるケースが示されている。図5に示す“B”では、Type 2CのキャリアセンスによってLBT Idleが確認され、アップリンク(UL)の送信が実行されるケースが示されている。図5に示す“C”及び“D”は、Type 2A又はType 2BのキャリアセンスによってLBT Idleが確認され、ダウンリンク(DL)及びアップリンク(UL)の送信が実行されるケースが示されている。LBT Idleは、他の通信装置300によってチャネルが占有されていないことを意味する。MCOTは、チャネル占有時間の最大値である。 For example, "A" shown in FIG. 5 shows a case where the LBT Idle is confirmed by the carrier sense of Type 2A or Type 2B and the downlink (DL) is transmitted. In "B" shown in FIG. 5, the case where the LBT Idle is confirmed by the carrier sense of Type 2C and the uplink (UL) is transmitted is shown. “C” and “D” shown in FIG. 5 indicate a case where LBT Idle is confirmed by the carrier sense of Type 2A or Type 2B, and downlink (DL) and uplink (UL) transmission is executed. There is. LBT Idle means that the channel is not occupied by another communication device 300. MCOT is the maximum value of channel occupancy time.
 図5に示す“E”では、Type 2A又はType 2BのキャリアセンスによってLBT Busyが確認され、ダウンリンク(DL)及びアップリンク(UL)の送信が実行されるケースが示されている。なお、LBT Busyは、他の通信装置300によってチャネルが占有されていることを意味する。 “E” shown in FIG. 5 shows a case where LBT Busy is confirmed by the carrier sense of Type 2A or Type 2B, and downlink (DL) and uplink (UL) transmission is executed. Note that LBT Busy means that the channel is occupied by another communication device 300.
 図5に示す“F”では、Type 2A又はType 2BのキャリアセンスによってLBT Idleが確認され、ダウンリンク(DL)の送信が実行されるケースが示されている。図5に示す“G”では、COTの共有によってキャリアセンスが実行されることなく、アップリンク(UL)の送信が実行されるケースが示されている。 In "F" shown in FIG. 5, the case where the LBT Idle is confirmed by the carrier sense of Type 2A or Type 2B and the downlink (DL) is transmitted is shown. “G” shown in FIG. 5 shows a case where uplink (UL) transmission is executed without performing carrier sense by sharing COT.
 ここで、第2周波数帯(例えば、60GHz帯)で適用されるFBE処理である第2処理の内容は、第1周波数帯(例えば、5GHz帯)で適用されるFBE処理である第1処理の内容と同じであってもよい。例えば、第2処理において、第1処理で用いるFFPと同じFFPが用いられてもよい。すなわち、通信装置300(制御部320)は、第2処理において、第1処理のFFPと同じFFPを用いてもよい。 Here, the content of the second process, which is the FBE process applied in the second frequency band (for example, 60 GHz band), is the content of the first process, which is the FBE process applied in the first frequency band (for example, the 5 GHz band). It may be the same as the content. For example, in the second process, the same FFP as the FFP used in the first process may be used. That is, the communication device 300 (control unit 320) may use the same FFP as the FFP of the first process in the second process.
 (4)動作例
 以下において、第2周波数帯のチャネルアクセス手順の動作例について説明する。ここでは、DL送信前にNG-RAN20(gNB200)がFBE処理(Type 2A又はType 2B)のキャリアセンスを実行し、UL送信前にUE200がFBE処理(Type 2A又はType 2B)のキャリアセンスを実行するケースについて説明する。
(4) Operation example An operation example of the channel access procedure for the second frequency band will be described below. Here, NG-RAN20 (gNB200) executes the carrier sense of FBE processing (Type 2A or Type 2B) before DL transmission, and UE200 executes the carrier sense of FBE processing (Type 2A or Type 2B) before UL transmission. I will explain the case to do.
 第1に、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが予め定められているケースについて説明する。 First, a case where it is predetermined to apply FBE processing as a channel access procedure for the second frequency band will be described.
 図6に示すように、ステップS10において、NG-RAN20は、FFPにおいて予め定められたタイミングでキャリアセンスを実行する。 As shown in FIG. 6, in step S10, NG-RAN20 executes carrier sense at a predetermined timing in FFP.
 ステップS11において、NG-RAN20は、キャリアセンスの結果がLBT Idleである場合にDL送信を実行する。なお、NG-RAN20は、キャリアセンスの結果がLBT Busyである場合にDL送信を実行しない。 In step S11, NG-RAN20 executes DL transmission when the result of carrier sense is LBT Idle. The NG-RAN20 does not execute DL transmission when the result of carrier sense is LBT Busy.
 ステップS12において、UE200は、FFPにおいて予め定められたタイミングでキャリアセンスを実行する。 In step S12, UE200 executes carrier sense at a predetermined timing in FFP.
 ステップS13において、UE200は、キャリアセンスの結果がLBT Idleである場合にUL送信を実行する。なお、UE200は、キャリアセンスの結果がLBT Busyである場合にUL送信を実行しない。 In step S13, UE200 executes UL transmission when the result of carrier sense is LBT Idle. The UE200 does not execute UL transmission when the result of carrier sense is LBT Busy.
 図6では、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが予め定められているケースについて例示した。しかしながら、図6に示すシーケンスは、第2周波数帯において他の技術が存在しないことが確認されているケースに適用されてもよい。図6に示すシーケンスは、第2周波数帯において他の技術が存在しないことが通知されているケースに適用されてもよい。 FIG. 6 illustrates a case in which it is predetermined to apply FBE processing as a channel access procedure for the second frequency band. However, the sequence shown in FIG. 6 may be applied to cases where it has been confirmed that no other technique exists in the second frequency band. The sequence shown in FIG. 6 may be applied to the case where it is notified that no other technique exists in the second frequency band.
 第2に、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが設定されるケースについて説明する。図7では、図6と同様の処理について同様のステップ番号を付しているため、図6と同様の処理の説明については省略する。 Second, a case where it is set to apply FBE processing as a channel access procedure for the second frequency band will be described. In FIG. 7, since the same step numbers are assigned to the same processes as those in FIG. 6, the description of the same processes as in FIG. 6 will be omitted.
 図7に示すように、ステップS20において、NG-RAN20は、第2周波数帯のチャネルアクセス手順としてFBE処理を適用する旨の設定をUE200に送信する。 As shown in FIG. 7, in step S20, the NG-RAN20 transmits a setting to apply the FBE process as the channel access procedure of the second frequency band to the UE200.
 図7では、FBE処理が適用されるケースについて例示した。しかしながら、図7に示すシーケンスは、LBE処理が適用されるケースに適用されてもよい。このようなケースにおいては、ステップS20において、NG-RAN20は、第2周波数帯のチャネルアクセス手順としてLBE処理を適用する旨の設定をUE200に送信する。ステップS10及びステップS12では、LBE処理に基づいたキャリアセンスが実行されてもよい。LBE処理に基づいたキャリアセンスは、Type 1と称されてもよい(例えば、3GPP TS37.213 V16.1.0の§4.1.1 “Type 1 DL Channel access procedure”及び§4.2.1.1 “Type 1 UL channel access procedure”)。 FIG. 7 illustrates a case where FBE processing is applied. However, the sequence shown in FIG. 7 may be applied to cases where LBE processing is applied. In such a case, in step S20, the NG-RAN20 transmits to the UE200 a setting to apply the LBE process as the channel access procedure of the second frequency band. In steps S10 and S12, carrier sense based on LBE processing may be performed. The carrier sense based on the LBE processing may be referred to as Type 1 (for example, 3GPP TS37.213 V16.1.0 §4.1.1 “Type1DLChannelaccessprocedure” and §4.2.1.1 “Type1ULchannel”. access procedure ”).
 (5)作用及び効果
 実施形態では、第1周波数帯では、無線通信システム10とは異なる他の技術(例えば、IEEE802.11a/g/nなどに準拠するWiFi)が共存する蓋然性が高いのに対して、第2周波数帯では、無線通信システム10とは異なる他の技術(例えば、IEEE802.11ad/ayなどに準拠するWiFi)が共存する蓋然性が低い新たな知見に着目している。このような新たな知見に基づいて、通信装置300は、アンライセンス周波数帯Fuのうち、第1周波数帯よりも高い第2周波数帯においては、第1周波数帯でFBE処理を適用する第1条件とは異なる第2条件が満たされる場合にFBE処理を実行する。このような構成によれば、第1周波数帯域よりも高い第2周波数帯域においてFBE処理を適切に適用することができる。
(5) Actions and effects In the first frequency band, there is a high possibility that other technologies (for example, WiFi compliant with IEEE802.11a / g / n) different from the wireless communication system 10 will coexist. On the other hand, in the second frequency band, we are paying attention to new findings that are unlikely to coexist with other technologies (for example, WiFi compliant with IEEE802.11ad / ay) different from the wireless communication system 10. Based on such new knowledge, the communication device 300 is the first condition to apply the FBE processing in the first frequency band in the second frequency band higher than the first frequency band in the unlicensed frequency band Fu. The FBE process is executed when the second condition different from the above is satisfied. According to such a configuration, the FBE process can be appropriately applied in the second frequency band higher than the first frequency band.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 1]
Hereinafter, modification 1 of the embodiment will be described. The differences from the embodiments will be described below.
 実施形態では、第2周波数帯(例えば、60GHz帯)で適用されるFBE処理である第2処理の内容は、第1周波数帯(例えば、5GHz帯)で適用されるFBE処理である第1処理の内容と同じであってもよい。これに対して、変更例1では、第2周波数帯で適用されるFBE処理である第2処理の内容は、第1周波数帯で適用されるFBE処理である第1処理の内容と異なる。例えば、第2処理において、第1処理で用いるFFPよりも短いFFPが用いられてもよい。 In the embodiment, the content of the second process, which is the FBE process applied in the second frequency band (for example, 60 GHz band), is the first process, which is the FBE process applied in the first frequency band (for example, the 5 GHz band). It may be the same as the content of. On the other hand, in the first modification, the content of the second process, which is the FBE process applied in the second frequency band, is different from the content of the first process, which is the FBE process applied in the first frequency band. For example, in the second process, an FFP shorter than the FFP used in the first process may be used.
 具体的には、図8に示すように、第2周波数帯で適用される第2処理のFFP(図8の下段)は、第1周波数帯で適用される第1処理のFFP(図8の上段)よりも短い。例えば、第1処理のFFPの取り得る値は、1ms、2ms、2.5ms、4ms、5ms、10msであってもよい。これに対して、第2処理のFFPの取り得る値は、0.5ms、1ms、1.25ms、2ms、2.5ms、5msであってもよい。 Specifically, as shown in FIG. 8, the FFP of the second process applied in the second frequency band (lower part of FIG. 8) is the FFP of the first process applied in the first frequency band (FIG. 8). Shorter than the upper). For example, the possible values of FFP in the first process may be 1 ms, 2 ms, 2.5 ms, 4 ms, 5 ms, and 10 ms. On the other hand, the possible values of FFP in the second process may be 0.5 ms, 1 ms, 1.25 ms, 2 ms, 2.5 ms, and 5 ms.
 上述したように、通信装置300(制御部320)は、第2処理において、第1処理のFFPよりも短いFFPを用いてもよい。 As described above, the communication device 300 (control unit 320) may use an FFP shorter than the FFP of the first process in the second process.
 このようなケースにおいて、第2処理で用いるFFPは、予め定められていてもよい。或いは、第2処理で用いるFFPは、第1処理で用いるFFPがスケーリングファクタαによってスケーリングされた値が用いられてもよい。スケーリングファクタαは、予め定められた値であってもよく、SIMに設定された値であってもよく、MAC CE又はRRCによって設定された値であってもよく、SCSと対応付けられた値であってもよい。 In such a case, the FFP used in the second process may be predetermined. Alternatively, as the FFP used in the second process, a value obtained by scaling the FFP used in the first process by the scaling factor α may be used. The scaling factor α may be a predetermined value, a value set in SIM, a value set by MAC CE or RRC, and a value associated with SCS. May be.
 変更例1では、第2周波数帯のSCSが第1周波数帯のSCSよりも広い(大きい)ことに着目した。このような着目に基づいて、第2周波数帯で用いるFFPを第1周波数帯で用いるFFPよりも短くすることによって、早期のチャネルアクセスを実現することができる。 In change example 1, attention was paid to the fact that the SCS of the second frequency band is wider (larger) than the SCS of the first frequency band. Based on such attention, early channel access can be realized by making the FFP used in the second frequency band shorter than the FFP used in the first frequency band.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 2]
Hereinafter, modification 2 of the embodiment will be described. The differences from the embodiments will be described below.
 変更例2において、通信装置300は、第1周波数帯で適用される第1処理において、キャリアセンスを周波数(例えば、LBT sub-band)ベースで実行する。これに対して、通信装置300は、第2周波数帯で適用される第2処理において、キャリアセンスをビームベースで実行してもよい。 In the second modification, the communication device 300 executes carrier sense on a frequency (for example, LBT sub-band) basis in the first process applied in the first frequency band. On the other hand, the communication device 300 may execute carrier sense on a beam basis in the second process applied in the second frequency band.
 変更例2では、第1周波数帯よりも高い第2周波数帯では、広い帯域幅と大きな伝搬損失とに対応するため、多数のアンテナ素子を有する大規模(massive)なアンテナを用いて、より狭いビームを生成する必要があることに着目した。このような着目に基づいて、キャリアセンスをビームベースで実行することによって、実際の送信ビームに沿ったCCA(Clear Channel Assessment)を実現することができる。さらには、他の通信装置300に対する干渉を抑制することができ、多くの送信機会を得ることができる。 In modification 2, the second frequency band, which is higher than the first frequency band, is narrower by using a massive antenna having a large number of antenna elements in order to cope with a wide bandwidth and a large propagation loss. We focused on the need to generate a beam. By executing carrier sense on a beam basis based on such attention, CCA (Clear Channel Assessment) along with an actual transmission beam can be realized. Furthermore, interference with other communication devices 300 can be suppressed, and many transmission opportunities can be obtained.
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 3]
Hereinafter, modification 3 of the embodiment will be described. The differences from the embodiments will be described below.
 第2条件は、通信装置300を構成し得るUE200が第2処理を実行する能力を有するという条件を含む。このようなケースにおいて、UE200は、UE Capabilityに含まれる情報要素として、第2処理を実行する能力を有するか否かを示す情報要素をNG-RAN20(gNB100)に送信する。 The second condition includes the condition that the UE 200 that can configure the communication device 300 has the ability to execute the second process. In such a case, the UE 200 transmits an information element indicating whether or not it has the ability to execute the second process to the NG-RAN 20 (gNB100) as an information element included in the UE Capability.
 例えば、図9に示すように、ステップS30において、UE200は、第2処理を実行する能力を有する旨のCapabilityをNG-RAN20に送信する。図9では、図6と同様の処理について同様のステップ番号を付しているため、図6と同様の処理の説明については省略する。 For example, as shown in FIG. 9, in step S30, the UE 200 transmits a Capability to the effect that it has the ability to execute the second process to the NG-RAN 20. In FIG. 9, since the same step numbers are assigned to the same processes as those in FIG. 6, the description of the same processes as in FIG. 6 will be omitted.
 図9では、UE200が第2処理を実行する能力を有するケースについて例示した。しかしながら、図9に示すシーケンスは、UE200が第2処理を実行する能力を有していないケースに適用されてもよい。このようなケースにおいては、ステップS30において、UE200は、第2処理を実行する能力を有していない旨のCapabilityをNG-RAN20に送信する。第2周波数帯において第2処理(FBE処理)を適用する旨の通知又は設定が行われている場合において、UE200が第2処理を実行する能力を有していない場合には、第2周波数帯を用いた通信が行われなくてもよい。 FIG. 9 illustrates a case where the UE 200 has the ability to execute the second process. However, the sequence shown in FIG. 9 may be applied to cases where the UE 200 does not have the ability to perform a second process. In such a case, in step S30, the UE 200 transmits a Capability to the NG-RAN 20 to the effect that it does not have the ability to execute the second process. When the notification or setting to apply the second processing (FBE processing) is performed in the second frequency band, and the UE200 does not have the ability to execute the second processing, the second frequency band is used. It is not necessary to perform communication using.
 変更例3では、UE200が第2処理を実行する能力がオプショナルの特徴であるケースについて例示した。しかしながら、UE200が第2処理を実行する能力はマンダトリーの特徴であってもよい。このようなケースにおいて、図9に示すS30の処理は省略されてもよい。 Change example 3 illustrates a case where the ability of UE200 to execute the second process is an optional feature. However, the ability of UE200 to perform a second process may be a feature of the mandatory. In such a case, the process of S30 shown in FIG. 9 may be omitted.
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other embodiments]
Although the contents of the present invention have been described above according to the embodiments, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and can be modified and improved in various ways.
 実施形態では、第1周波数帯よりも高い第2周波数帯のチャネルアクセス手順においてFBE処理が適用されるケースについて主として説明した。しかしながら、実施形態はこれに限定されるものではない。例えば、第2周波数帯において他の技術が存在しないことが確認されていないケース、第2周波数帯において他の技術が存在しないことが通知されていないケース、第2周波数帯のチャネルアクセス手順としてFBE処理を適用することが設定されていないケースなどにおいて、2周波数帯のチャネルアクセス手順においてFBE処理以外の処理が適用されてもよい。FBE処理以外の処理は、LBE処理を含んでもよく、ATPC(Automatic Transmission Power Control)を含んでもよい。 In the embodiment, the case where the FBE processing is applied in the channel access procedure of the second frequency band higher than the first frequency band has been mainly described. However, the embodiments are not limited to this. For example, there are cases where it has not been confirmed that there is no other technology in the second frequency band, cases where it has not been notified that there is no other technology in the second frequency band, and FBE as a channel access procedure for the second frequency band. In cases where it is not set to apply processing, processing other than FBE processing may be applied in the channel access procedure for two frequency bands. The process other than the FBE process may include an LBE process or may include an ATPC (Automatic Transmission Power Control).
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述した通信装置300(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、当該装置のハードウェア構成の一例を示す図である。図10に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned communication device 300 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 10, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information may be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. The slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 300 通信装置
 310 通信部
 320 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
300 Communication device 310 Communication unit 320 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  第1周波数帯域及び前記第1周波数帯域よりも高い第2周波数帯域を含むアンライセンス周波数帯においてチャネルアクセス手順を実行する制御部を備え、
     前記制御部は、
      前記第1周波数帯域の前記チャネルアクセス手順において、第1条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第1処理の適用を許容し、
      前記第2周波数帯域の前記チャネルアクセス手順において、第2条件が満たされる場合に、固定のフレーム周期において予め定められたタイミングでキャリアセンスを実行する第2処理を実行する、通信装置。
    A control unit that executes a channel access procedure in an unlicensed frequency band including a first frequency band and a second frequency band higher than the first frequency band is provided.
    The control unit
    In the channel access procedure of the first frequency band, when the first condition is satisfied, the application of the first process of executing carrier sense at a predetermined timing in a fixed frame period is permitted.
    A communication device that executes a second process of executing carrier sense at a predetermined timing in a fixed frame period when the second condition is satisfied in the channel access procedure of the second frequency band.
  2.  前記制御部は、前記第2処理において、前記第1処理で用いる固定のフレーム周期と同じ固定のフレーム周期を用いる、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit uses the same fixed frame period as the fixed frame period used in the first process in the second process.
  3.  前記制御部は、前記第2処理において、前記第1処理で用いる固定のフレーム周期よりも短い固定のフレーム周期を用いる、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit uses a fixed frame period shorter than the fixed frame period used in the first process in the second process.
  4.  前記制御部は、前記第2処理において、前記キャリアセンスをビームベースで実行する、請求項1乃至請求項3のいずれか1項に記載の通信装置。 The communication device according to any one of claims 1 to 3, wherein the control unit executes the carrier sense on a beam basis in the second process.
  5.  前記第2条件は、前記通信装置を構成し得る端末が前記第2処理を実行する能力を有するという条件を含む、請求項1乃至請求項4のいずれか1項に記載の通信装置。 The communication device according to any one of claims 1 to 4, wherein the second condition includes a condition that a terminal capable of constituting the communication device has an ability to execute the second process.
PCT/JP2020/025561 2020-06-29 2020-06-29 Communication device WO2022003789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/025561 WO2022003789A1 (en) 2020-06-29 2020-06-29 Communication device
JP2022533288A JPWO2022003789A1 (en) 2020-06-29 2020-06-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025561 WO2022003789A1 (en) 2020-06-29 2020-06-29 Communication device

Publications (1)

Publication Number Publication Date
WO2022003789A1 true WO2022003789A1 (en) 2022-01-06

Family

ID=79317586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025561 WO2022003789A1 (en) 2020-06-29 2020-06-29 Communication device

Country Status (2)

Country Link
JP (1) JPWO2022003789A1 (en)
WO (1) WO2022003789A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349966A1 (en) * 2017-09-01 2019-11-14 Huawei Technologies Co., Ltd. Grant-Free Uplink Transmission in Unlicensed Spectrum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349966A1 (en) * 2017-09-01 2019-11-14 Huawei Technologies Co., Ltd. Grant-Free Uplink Transmission in Unlicensed Spectrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical layer procedures for shared spectrum channel access (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 37.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.1.0, 3 April 2020 (2020-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 25, XP051893817 *

Also Published As

Publication number Publication date
JPWO2022003789A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020261515A1 (en) Terminal and communication method
WO2022029965A1 (en) Wireless communication node
WO2022003785A1 (en) Wireless base station and terminal
WO2021064888A1 (en) Terminal and communication method
WO2022097755A1 (en) Terminal and wireless base station
JPWO2020115908A1 (en) Terminal and communication method
WO2022149223A1 (en) Terminal, base station, and communication method
JP7390407B2 (en) Terminal, base station and communication method
WO2022149194A1 (en) Terminal, base station, and communication method
WO2022079868A1 (en) Terminal and base station
WO2021161484A1 (en) Terminal and communication method
WO2021214920A1 (en) Terminal
WO2021029002A1 (en) Terminal
WO2022003789A1 (en) Communication device
WO2021019695A1 (en) Terminal
WO2021065016A1 (en) Terminal and communication method
WO2021070396A1 (en) Terminal and communication method
WO2022074729A1 (en) Communication device
WO2022029966A1 (en) Wireless communication node
WO2022044141A1 (en) Terminal, base station, and communication method
WO2022029968A1 (en) Wireless communication node
WO2022074842A1 (en) Terminal
WO2022003788A1 (en) Terminal
WO2021192064A1 (en) Terminal
WO2021199388A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943779

Country of ref document: EP

Kind code of ref document: A1