WO2022149223A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2022149223A1
WO2022149223A1 PCT/JP2021/000238 JP2021000238W WO2022149223A1 WO 2022149223 A1 WO2022149223 A1 WO 2022149223A1 JP 2021000238 W JP2021000238 W JP 2021000238W WO 2022149223 A1 WO2022149223 A1 WO 2022149223A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
frequency hopping
transmission
pusch
Prior art date
Application number
PCT/JP2021/000238
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 岡村
翔平 吉岡
優元 ▲高▼橋
慎也 熊谷
真由子 岡野
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202180082454.6A priority Critical patent/CN116569628A/en
Priority to PCT/JP2021/000238 priority patent/WO2022149223A1/en
Publication of WO2022149223A1 publication Critical patent/WO2022149223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a terminal, a base station and a communication method in a wireless communication system.
  • 5G or NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • 5G or NR New Radio
  • 5G various radio techniques and network architectures have been studied in order to satisfy the requirement that the delay of the radio section be 1 ms or less while achieving a throughput of 10 Gbps or more (for example, Non-Patent Document 1).
  • Non-Patent Document 2 when a terminal autonomously selects a resource without using SR (Scheduling Request), repeated transmission is supported in order to improve reliability and delay performance (for example, Non-Patent Document 2). ..
  • the present invention has been made in view of the above points, and an object of the present invention is to improve reliability in the case of repeated transmission in a wireless communication system.
  • the control unit includes a transmission unit that repeatedly transmits a physical uplink shared channel to a base station, and a control unit that applies frequency hopping between a plurality of component carriers to the repeated transmission.
  • a transmission unit that repeatedly transmits a physical uplink shared channel to a base station
  • a control unit that applies frequency hopping between a plurality of component carriers to the repeated transmission.
  • Provides a terminal that determines the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
  • a technique for improving reliability in the case of repeated transmission is provided.
  • the existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
  • FIG. 1 is a diagram for explaining an example (1) of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
  • TTI Transmission Time Interval
  • the base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, and the like to the terminal 20.
  • Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink).
  • DL Downlink
  • UL Uplink
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services.
  • the terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
  • the terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • PUCCH-S Cell having PUCCH may be used.
  • FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is executed.
  • a base station 10A serving as an MN (MasterNode) and a base station 10B serving as an SN (SecondaryNode) are provided.
  • Base station 10A and base station 10B are each connected to the core network.
  • the terminal 20 can communicate with both the base station 10A and the base station 10B.
  • the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
  • the DC may be a communication method using two communication standards, and any communication standard may be combined.
  • the combination may be any of NR and 6G standard, LTE and 6G standard.
  • the DC may be a communication method using three or more communication standards, and may be called by another name different from the DC.
  • the processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these. ..
  • the resource for transmitting UL data is allocated by the network based on the SR (Scheduling Request) transmitted by the terminal 20 to the base station 10.
  • the network executes a resource setting (Configured grant) capable of transmitting UL data that does not require SR to the terminal 20.
  • a resource setting Configured grant
  • the terminal 20 autonomously selects a resource. That is, UE-centric transmission / reception is assumed.
  • NR release 15/16 supports PUSCH repetitive transmission in continuous slots or symbols and PUSCH frequency hopping in the CC to ensure reliability.
  • NR release 15/16 supports PUSCH repetitive transmission in continuous slots or symbols and PUSCH frequency hopping in the CC to ensure reliability.
  • more terminals 20 will autonomously select resources, and it is expected that the collision probability of UL data will increase.
  • different CCs may be selected between the terminals 20, and a wider spread frequency hopping, for example, frequency hopping between CCs may be applied.
  • FIG. 3 is a sequence diagram for explaining an example of a transmission operation according to the embodiment of the present invention.
  • the base station 10 sets the PUSCH repeat transmission to the terminal 20.
  • the terminal 20 may assume that a frequency hopping pattern is also set when PUSCH repeated transmission is set.
  • the PUSCH repeat transmission setting may include a frequency hopping pattern.
  • the frequency hopping pattern may be defined in advance in the specifications, or the frequency hopping pattern may be determined by settings other than PUSCH repeated transmission (for example, UL cell setting, UL-BWP setting, etc.).
  • the frequency hopping pattern may be set for each CC, or may be set in common among the CCs.
  • step S1 different PUSCH repeat transmission and / or frequency hopping patterns may be set for the SR-based PUSCH and the non-SR-based PUSCH, and a common PUSCH repeat transmission and / or frequency hopping pattern may be set. It may be set.
  • step S2 the base station 10 may send a notification to enable the frequency hopping of the PUSCH to the terminal 20.
  • the notification may be executed by signaling such as RRC (RadioResourceControl), MAC-CE (MediaAccessControl-ControlElement), DCI (DownlinkControlInformation) and the like. Note that step S2 does not have to be executed, and the terminal 20 may assume that frequency hopping is effective when a frequency hopping pattern is set, for example.
  • steps S1 and S2 may not be executed, and the terminal 20 may start execution from step S3. That is, the terminal 20 may autonomously start applying frequency hopping.
  • step S1 PUSCH repeat transmission not including the frequency hopping pattern may be set, and then step S3 may be executed.
  • the terminal 20 may transmit a notification for executing PUSCH repeated transmission to the base station 10.
  • the terminal 20 may notify the base station 10 which of the frequency hopping patterns specified in the specifications is to be used.
  • the terminal 20 may notify the number of times the PUSCH repeated transmission is performed, or may notify the number of times the PUSCH repeated transmission is performed.
  • the terminal 20 may notify the frequency hopping pattern in addition to the notification of executing the PUSCH repeated transmission, or notify the base station 10 of the number of times of the PUSCH repeated transmission and the like. You may.
  • the terminal 20 may transmit a notification for executing PUSCH repetitive transmission to the base station 10 via a dedicated channel (for example, a frequency hopping control channel (FHControlChannel)).
  • a dedicated channel for example, a frequency hopping control channel (FHControlChannel)
  • FHControlChannel frequency hopping control channel
  • step S4 the terminal 20 applies the set frequency hopping and repeatedly executes PUSCH.
  • the terminal 20 may assume frequency hopping between a plurality of CCs when repeatedly transmitting PUSCH. For example, when a notification for enabling frequency hopping of PUSCH is received in step S2, frequency hopping between a plurality of CCs may be assumed.
  • the terminal 20 may switch the number of CCs that execute PUSCH frequency hopping based on signaling such as RRC, MAC-CE, or DCI. Further, the terminal 20 may execute switching of the number of CCs for executing PUSCH frequency hopping in association with other signaling. For example, in SR-based PUSCH transmission, PUSCH frequency hopping may be executed within 1 CC, and in non-SR-based PUSCH transmission, PUSCH frequency hopping may be executed between N (> 1) CCs.
  • the base station 10 may notify the terminal 20 of the CC that performs PUSCH transmission by signaling such as RRC, MAC-CE, or DCI.
  • the terminal 20 may determine the CC that performs the PUSCH transmission.
  • the terminal 20 may determine all CCs that have received the PDSCH as CCs that perform PUSCH transmission, or may determine all enabled CCs as CCs that perform PUSCH transmission.
  • the terminal 20 may acquire CC candidates from the base station 10 by signaling such as RRC, MAC-CE or DCI.
  • the CC candidates may be notified to the terminal 20 together with their associated priorities, and the terminal 20 may decide to perform PUSCH transmission with U CCs having higher priorities among the CC candidates.
  • U may be notified from the base station 10 by signaling such as RRC, MAC-CE or DCI.
  • the terminal 20 may determine whether PUSCH frequency hopping is valid or invalid among a plurality of CCs based on the PUSCH type to be transmitted.
  • the type may correspond to RA (Random Access) type, SR type, or the like.
  • PUSCH type X1 is an SR-based PUSCH and PUSCH type X2 is a non-SR-based PUSCH
  • PUSCH type X1 disables frequency hopping between a plurality of CCs
  • PUSCH type X2 is a non-SR-based PUSCH. Frequency hopping may be enabled.
  • the terminal 20 may assume PUSCH frequency hopping for each PUCCH group (closed to the PUCCH group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the PUCCH group. Further, for example, the terminal 20 may assume PUSCH frequency hopping (closed to the PUCCH group) for each PUCCH group, or may assume PUSCH frequency hopping not closed to the PUCCH group. For example, when performing PUSCH frequency hopping that is not closed to the PUCCH group, if the CC or radio resource used for PUSCH transmission collides between the PUCCH groups, it is based on the priority (for example, the priority associated with the PUCCH group). Then, the PUSCH transmission having a lower priority may be dropped.
  • the priority for example, the priority associated with the PUCCH group
  • the terminal 20 may assume PUSCH frequency hopping for each TAG (Timing Advance Group) group (that is, closed to the TAG group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the TAG group.
  • TAG Transmission Advance Group
  • the terminal 20 may assume PUSCH frequency hopping for each cell group to which a plurality of CCs belong (that is, closed in the cell group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the cell group.
  • FIG. 4 is a diagram showing an example (1) of repeated transmission in the embodiment of the present invention.
  • the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs, it is assumed that PUSCH repeated transmission and / or frequency hopping in RB (Resource Block) units within 1 CC is set.
  • RB Resource Block
  • a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, an RB offset, or the like may be set as a setting for frequency hopping.
  • FIG. 4 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added.
  • FIG. 4 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
  • FIG. 5 is a diagram showing an example (2) of repeated transmission in the embodiment of the present invention.
  • the terminal 20 may assume that PUSCH repeated transmission and / or frequency hopping in CC units is set.
  • a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission
  • a start RB, a CC offset, or the like may be set as a setting for frequency hopping.
  • FIG. 5 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added.
  • FIG. 5 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
  • FIG. 6 is a diagram showing an example (3) of repeated transmission in the embodiment of the present invention.
  • the terminal 20 when assuming PUSCH frequency hopping transmission between a plurality of CCs, the terminal 20 performs RB unit PUSCH repeated transmission and / or frequency hopping within 1 CC, and CC unit PUSCH repeated transmission and /.
  • frequency hopping is set.
  • a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings
  • a start RB, RB offset, CC offset, and the like may be set as frequency hopping settings.
  • FIG. 6 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added.
  • FIG. 6 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
  • the above settings related to PUSCH repeated transmission and / or frequency hopping may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE, or DCI. Further, the terminal 20 may assume that only a part of the settings are updated by MAC-CE, DCI, or the like.
  • Switching between repeated transmission and frequency hopping shown in FIG. 4, repeated transmission and frequency hopping shown in FIG. 5, and repeated transmission and frequency hopping shown in FIG. 6 is performed by signaling such as RRC, MAC-CE, or DCI.
  • the base station 10 may notify the terminal 20. Further, the base station 10 may notify the terminal 20 of the switching to a communication method other than the above-mentioned repeated transmission and frequency hopping by signaling such as RRC, MAC-CE or DCI.
  • the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA (Carrier Aggregation), it may be assumed as options 1) -7) shown below.
  • Option 1 When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA (Carrier Aggregation), it is assumed that PUSCH repeated transmission and / or frequency hopping in RB units within 1 CC is set. You may. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, an RB offset, or the like may be set as a setting for frequency hopping.
  • a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission
  • a start RB, an RB offset, or the like may be set as a setting for frequency hopping.
  • Option 2 When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, it may be assumed that PUSCH repeated transmission and / or frequency hopping in CC units is set.
  • a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission
  • a start RB, a CC offset, or the like may be set as a setting for frequency hopping.
  • PUSCH frequency hopping transmission between a plurality of CCs in interband CA it may be assumed that PUSCH repeated transmission and / or frequency hopping for each band is set.
  • a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission
  • a start RB, a band offset, or the like may be set as a setting for frequency hopping.
  • a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, CC offset, and the like may be set as frequency hopping settings.
  • the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, the PUSCH repeated transmission and / or frequency hopping in RB units within 1 CC and the PUSCH repeated transmission and / or in band units It may be assumed that frequency hopping is set.
  • a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, band offset, and the like may be set as frequency hopping settings.
  • the terminal 20 When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, the terminal 20 performs PUSCH repeated transmission and / or frequency hopping in CC units and PUSCH repeated transmission and / or frequency hopping in band units. May be assumed to be set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, CC offset, band offset, and the like may be set as frequency hopping settings.
  • Option 7 When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, RB unit PUSCH repeated transmission and / or frequency hopping within 1 CC and CC unit PUSCH repeated transmission and / or It may be assumed that frequency hopping and band-based PUSCH repeat transmission and / or frequency hopping are set.
  • a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings
  • a start RB, RB offset, CC offset, band offset, and the like may be set as frequency hopping settings.
  • the switching of the above options 1) -7) may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE or DCI. Further, switching to a communication method other than the above options may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE or DCI.
  • frequency hopping is similarly applied not only to PUSCH repeated transmission but also to PDSCH repeated transmission.
  • frequency hopping may mean a function of using different frequency resources for each predetermined unit in a certain transmission.
  • the above-mentioned repeated transmission and frequency hopping may be applied to all channels or signals transmitted from the terminal 20 such as PUCCH, SRS, and RACH.
  • non-SR-based may be replaced with “Configured grant”, “Grant free”, or the like. Even if “frequency hopping” is replaced with “frequency multiplexing”, “FDM (Frequency division multiplexing)", “frequency bundling”, “frequency repetition”, etc. good. Further, “PUSCH” may be replaced with "UL data”, “user data” and the like.
  • the terminal 20 can improve the reliability by applying the extended frequency hopping when repeatedly transmitting.
  • the base station 10 and the terminal 20 include a function of executing the above-described embodiment. However, the base station 10 and the terminal 20 may each have only the proposed function of any one of the embodiments.
  • FIG. 7 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them out from the storage device as needed.
  • the control unit 140 controls the entire base station 10 including resource allocation and frequency hopping, for example.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • the transmitter 110 and the receiver 120 may be referred to as a transmitter and a receiver, respectively.
  • FIG. 8 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 8 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 controls the entire terminal 20 including frequency hopping.
  • the transmission unit 210 may include the function unit related to signal transmission in the control unit 240
  • the reception unit 220 may include the function unit related to signal reception in the control unit 240.
  • the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 8 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be mounted by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a transmission unit that repeatedly transmits a physical uplink shared channel to a base station and frequency hopping between a plurality of component carriers are applied to the repeated transmission.
  • the control unit includes a control unit, and the control unit is provided with a terminal that determines the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
  • the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
  • the plurality of component carriers may correspond to a group of physical uplink control channels, a timing advance group, or a cell group.
  • the terminal 20 can improve reliability by applying extended frequency hopping between the associated CCs when repeatedly transmitting.
  • the transmission unit may notify the base station that the repeated transmission is to be executed and autonomously start the repeated transmission.
  • the terminal 20 can improve reliability by applying extended frequency hopping between the associated CCs when repeatedly transmitting.
  • the control unit may further apply frequency hopping between a plurality of bands and frequency hopping within one component carrier to the repeated transmission.
  • the terminal 20 can improve reliability by applying extended frequency hopping between bands, between CCs, and within 1 CC when repeatedly transmitting.
  • a transmission unit that transmits information for determining a plurality of component carriers to a terminal and a physical uplink shared channel to which frequency hopping is applied between the plurality of component carriers are repeatedly transmitted. Is provided with a base station having a receiving unit that receives the above from the terminal.
  • the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
  • a transmission procedure for repeatedly transmitting a physical uplink shared channel to a base station, a control procedure for applying frequency hopping between a plurality of component carriers to the repeated transmission, and the above-mentioned A communication method is provided in which a terminal executes a procedure for determining a plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
  • the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these).
  • MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these.
  • the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by Remote Radio Head).
  • a base station subsystem eg, a small indoor base station (RRH:)
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the above-mentioned user terminal.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency region.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • the bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the terminal 20.
  • At least one of the configured BWPs may be active, and the terminal 20 does not have to assume that a predetermined signal / channel is transmitted or received outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • PUSCH is an example of a physical uplink shared channel.
  • PUCCH is an example of a physical uplink control channel.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal has a transmission unit for executing repeated transmissions of a physical uplink shared channel to a base station, and a control unit for applying frequency hopping among a plurality of component carriers to the repeated transmissions, the control unit determining the plurality of component carriers on the basis of signaling from the base station or the type of the physical uplink shared channel.

Description

端末、基地局及び通信方法Terminals, base stations and communication methods
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。 The present invention relates to a terminal, a base station and a communication method in a wireless communication system.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。 In 3GPP (3rd Generation Partnership Project), 5G or NR (New Radio) is used to realize further increase in system capacity, further increase in data transmission speed, and further reduction in delay in wireless sections. Studies on a so-called wireless communication method (hereinafter, the wireless communication method is referred to as "NR") are in progress. In 5G, various radio techniques and network architectures have been studied in order to satisfy the requirement that the delay of the radio section be 1 ms or less while achieving a throughput of 10 Gbps or more (for example, Non-Patent Document 1).
 また、例えば、NRでは、SR(Scheduling Request)を使用せずに端末が自律的にリソースを選択する場合、信頼性及び遅延性能向上のため、繰り返し送信がサポートされる(例えば非特許文献2)。 Further, for example, in NR, when a terminal autonomously selects a resource without using SR (Scheduling Request), repeated transmission is supported in order to improve reliability and delay performance (for example, Non-Patent Document 2). ..
 さらに、5Gの次世代の無線通信方式として6Gの検討が開始されており、5Gを超える無線品質の実現が期待されている。例えば、6Gでは、更なる大容量化、新たな周波数帯の使用、更なる低遅延化、更なる高信頼性、新たな領域(高空、海、宇宙)でのカバレッジの拡張等の実現に向けて検討が進められている(例えば非特許文献3)。 Furthermore, studies on 6G have begun as the next-generation wireless communication method for 5G, and it is expected that wireless quality exceeding 5G will be realized. For example, in 6G, toward the realization of further increase in capacity, use of new frequency bands, further reduction in delay, higher reliability, and expansion of coverage in new areas (high altitude, sea, space), etc. (For example, Non-Patent Document 3).
 繰り返し送信に関して、例えば、従来よりも多数の端末が自律的にリソースを選択する場合、上りリンクデータの衝突確率上昇が想定される。 Regarding repeated transmission, for example, when more terminals autonomously select resources than before, it is expected that the collision probability of uplink data will increase.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to improve reliability in the case of repeated transmission in a wireless communication system.
 開示の技術によれば、物理上りリンク共有チャネルの繰り返し送信を基地局に実行する送信部と、複数のコンポーネントキャリア間における周波数ホッピングを前記繰り返し送信に適用する制御部とを有し、前記制御部は、前記複数のコンポーネントキャリアを、前記基地局からのシグナリング又は前記物理上りリンク共有チャネルの種別に基づいて決定する端末が提供される。 According to the disclosed technique, the control unit includes a transmission unit that repeatedly transmits a physical uplink shared channel to a base station, and a control unit that applies frequency hopping between a plurality of component carriers to the repeated transmission. Provides a terminal that determines the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
 開示の技術によれば、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させる技術が提供される。 According to the disclosed technique, in a wireless communication system, a technique for improving reliability in the case of repeated transmission is provided.
本発明の実施の形態における無線通信システムの例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the wireless communication system in embodiment of this invention. 本発明の実施の形態における無線通信システムの例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the wireless communication system in embodiment of this invention. 本発明の実施の形態における送信動作の例を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the example of the transmission operation in Embodiment of this invention. 本発明の実施の形態における繰り返し送信の例(1)を示す図である。It is a figure which shows the example (1) of the repeated transmission in embodiment of this invention. 本発明の実施の形態における繰り返し送信の例(2)を示す図である。It is a figure which shows the example (2) of the repeated transmission in embodiment of this invention. 本発明の実施の形態における繰り返し送信の例(3)を示す図である。It is a figure which shows the example (3) of the repeated transmission in embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the terminal 20 in embodiment of this invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station 10 or the terminal 20 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。 The existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. The existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
 図1は、本発明の実施の形態における無線通信システムの例(1)を説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram for explaining an example (1) of a wireless communication system according to an embodiment of the present invention. The wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。 The base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, and the like to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Here, what is transmitted through a control channel such as PUCCH or PDCCH is called a control signal, and what is transmitted through a shared channel such as PUSCH or PDSCH is called data. Such a name is an example. Is.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services. The terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
 端末20は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used. Moreover, PUCCH-S Cell having PUCCH may be used.
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention. FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is executed. As shown in FIG. 2, a base station 10A serving as an MN (MasterNode) and a base station 10B serving as an SN (SecondaryNode) are provided. Base station 10A and base station 10B are each connected to the core network. The terminal 20 can communicate with both the base station 10A and the base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。 The cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group). Further, in the DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
 なお、DCは2つの通信規格を利用した通信方法であってもよく、どのような通信規格が組み合わされてもよい。例えば、当該組み合わせは、NRと6G規格、LTEと6G規格のいずれでもよい。また、DCは3以上の通信規格を利用した通信方法であってもよく、DCとは異なる他の名称で呼ばれてもよい。 Note that the DC may be a communication method using two communication standards, and any communication standard may be combined. For example, the combination may be any of NR and 6G standard, LTE and 6G standard. Further, the DC may be a communication method using three or more communication standards, and may be called by another name different from the DC.
 本実施の形態における処理動作は、図1に示されるシステム構成で実行されてもよいし、図2に示されるシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。 The processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these. ..
 NRリリース15/16では、ULデータを送信するリソースは、端末20が基地局10に送信するSR(Scheduling Request)に基づいて、ネットワークが割り当てる。あるいは、ネットワークはSRを必要としないULデータ送信が可能なリソース設定(Configured grant)を端末20に実行する。さらに、6Gにおいては、端末20が自律的にリソースを選択することも検討されている。すなわち、UEセントリックな送受信が想定される。 In NR release 15/16, the resource for transmitting UL data is allocated by the network based on the SR (Scheduling Request) transmitted by the terminal 20 to the base station 10. Alternatively, the network executes a resource setting (Configured grant) capable of transmitting UL data that does not require SR to the terminal 20. Further, in 6G, it is also considered that the terminal 20 autonomously selects a resource. That is, UE-centric transmission / reception is assumed.
 ここで、SRを使用しないスケジューリングメカニズムとして、NRリリース15/16では、信頼性担保のため、連続するスロット又はシンボルでのPUSCH繰り返し送信、CC内でのPUSCH周波数ホッピングがサポートされている。一方、今後の6Gでは、より多くの端末20が自律的にリソース選択を行う可能性があり、ULデータの衝突確率上昇が想定される。衝突確率を低減するためには、例えば、端末20間で異なるCCが選択されてもよいし、より広帯域な周波数ホッピング例えばCC間での周波数ホッピングが適用されてもよい。 Here, as a scheduling mechanism that does not use SR, NR release 15/16 supports PUSCH repetitive transmission in continuous slots or symbols and PUSCH frequency hopping in the CC to ensure reliability. On the other hand, in 6G in the future, there is a possibility that more terminals 20 will autonomously select resources, and it is expected that the collision probability of UL data will increase. In order to reduce the collision probability, for example, different CCs may be selected between the terminals 20, and a wider spread frequency hopping, for example, frequency hopping between CCs may be applied.
 以下、PUSCH繰り返し送信における周波数ホッピング(FH:Frequency Hopping)の拡張について説明する。 Hereinafter, the expansion of frequency hopping (FH: Frequency Hopping) in PUSCH repeated transmission will be described.
 図3は、本発明の実施の形態における送信動作の例を説明するためのシーケンス図である。ステップS1において、基地局10は、PUSCH繰り返し送信を端末20に設定する。端末20は、PUSCH繰り返し送信が設定された場合、周波数ホッピングパターンも設定されることを想定してもよい。例えば、PUSCH繰り返し送信の設定に、周波数ホッピングパターンが含まれてもよい。あるいは、周波数ホッピングパターンは予め仕様で規定されてもよいし、PUSCH繰り返し送信以外の設定(例えばULセル設定、UL-BWP設定等)によって周波数ホッピングパターンが決定されてもよい。また、ステップS1において、周波数ホッピングパターンは、CCごとに設定されてもよいし、CC間で共通に設定されてもよい。また、ステップS1において、SRベースのPUSCHと、非SRベースのPUSCHとで、異なるPUSCH繰り返し送信及び/又は周波数ホッピングパターンが設定されてもよいし、共通のPUSCH繰り返し送信及び/又は周波数ホッピングパターンが設定されてもよい。 FIG. 3 is a sequence diagram for explaining an example of a transmission operation according to the embodiment of the present invention. In step S1, the base station 10 sets the PUSCH repeat transmission to the terminal 20. The terminal 20 may assume that a frequency hopping pattern is also set when PUSCH repeated transmission is set. For example, the PUSCH repeat transmission setting may include a frequency hopping pattern. Alternatively, the frequency hopping pattern may be defined in advance in the specifications, or the frequency hopping pattern may be determined by settings other than PUSCH repeated transmission (for example, UL cell setting, UL-BWP setting, etc.). Further, in step S1, the frequency hopping pattern may be set for each CC, or may be set in common among the CCs. Further, in step S1, different PUSCH repeat transmission and / or frequency hopping patterns may be set for the SR-based PUSCH and the non-SR-based PUSCH, and a common PUSCH repeat transmission and / or frequency hopping pattern may be set. It may be set.
 ステップS2において、基地局10は、PUSCHの周波数ホッピングを有効にする通知を端末20に送信してもよい。当該通知は、例えば、RRC(Radio Resource Control)、MAC-CE(Media Access Control - Control Element)、DCI(Downlink Control Information)等のシグナリングによって実行されてもよい。なお、ステップS2は実行されなくてもよく、例えば、周波数ホッピングパターンが設定された場合に周波数ホッピングが有効であると端末20は想定してもよい。 In step S2, the base station 10 may send a notification to enable the frequency hopping of the PUSCH to the terminal 20. The notification may be executed by signaling such as RRC (RadioResourceControl), MAC-CE (MediaAccessControl-ControlElement), DCI (DownlinkControlInformation) and the like. Note that step S2 does not have to be executed, and the terminal 20 may assume that frequency hopping is effective when a frequency hopping pattern is set, for example.
 なお、ステップS1及びステップS2は実行されなくてもよく、ステップS3から端末20は実行を開始してもよい。すなわち、端末20は自律的に周波数ホッピングの適用を開始してもよい。あるいは、ステップS1において、周波数ホッピングパターンを含まないPUSCH繰り返し送信が設定され、続いて、ステップS3が実行されてもよい。 Note that steps S1 and S2 may not be executed, and the terminal 20 may start execution from step S3. That is, the terminal 20 may autonomously start applying frequency hopping. Alternatively, in step S1, PUSCH repeat transmission not including the frequency hopping pattern may be set, and then step S3 may be executed.
 ステップS3において、端末20は、PUSCH繰り返し送信を実行する通知を基地局10に送信してもよい。例えば、仕様で規定されている周波数ホッピングパターンのいずれを使用するかを端末20は基地局10に通知してもよい。また、端末20は、使用する周波数ホッピングパターンに加えて、何回目のPUSCH繰り返し送信であるかを通知してもよいし、PUSCH繰り返し送信の回数を通知してもよい。また、端末20は、予めPUSCH送信リソースを予約する場合、PUSCH繰り返し送信を実行する通知に加えて、周波数ホッピングパターンを通知してもよいし、PUSCH繰り返し送信の回数等を基地局10に通知してもよい。また、端末20は、PUSCH繰り返し送信を実行する通知を、専用チャネル(例えば、周波数ホッピング制御チャネル(FH Control Channel))を介して基地局10に送信してもよい。なお、ステップS1により周波数ホッピングパターンが端末20に通知された場合、ステップS3は実行されなくてもよい。 In step S3, the terminal 20 may transmit a notification for executing PUSCH repeated transmission to the base station 10. For example, the terminal 20 may notify the base station 10 which of the frequency hopping patterns specified in the specifications is to be used. Further, in addition to the frequency hopping pattern to be used, the terminal 20 may notify the number of times the PUSCH repeated transmission is performed, or may notify the number of times the PUSCH repeated transmission is performed. Further, when the terminal 20 reserves the PUSCH transmission resource in advance, the terminal 20 may notify the frequency hopping pattern in addition to the notification of executing the PUSCH repeated transmission, or notify the base station 10 of the number of times of the PUSCH repeated transmission and the like. You may. Further, the terminal 20 may transmit a notification for executing PUSCH repetitive transmission to the base station 10 via a dedicated channel (for example, a frequency hopping control channel (FHControlChannel)). When the frequency hopping pattern is notified to the terminal 20 by step S1, step S3 may not be executed.
 ステップS4において、端末20は、設定された周波数ホッピングを適用してPUSCH繰り返し送信を実行する。 In step S4, the terminal 20 applies the set frequency hopping and repeatedly executes PUSCH.
 ここで、端末20は、PUSCH繰り返し送信を実行するとき、複数のCC間における周波数ホッピングを想定してもよい。例えば、ステップS2においてPUSCHの周波数ホッピングを有効にする通知を受信した場合、複数のCC間における周波数ホッピングを想定してもよい。 Here, the terminal 20 may assume frequency hopping between a plurality of CCs when repeatedly transmitting PUSCH. For example, when a notification for enabling frequency hopping of PUSCH is received in step S2, frequency hopping between a plurality of CCs may be assumed.
 例えば、端末20は、PUSCH周波数ホッピングを実行するCC数の切り替えを、RRC、MAC-CE又はDCI等のシグナリングに基づいて実行してもよい。また、端末20は、PUSCH周波数ホッピングを実行するCC数の切り替えを、他のシグナリングと関連付けて実行してもよい。例えば、SRベースPUSCH送信では1CC内でPUSCH周波数ホッピングを実行し、非SRベースPUSCH送信ではN(>1)個のCC間でPUSCH周波数ホッピングを実行してもよい。 For example, the terminal 20 may switch the number of CCs that execute PUSCH frequency hopping based on signaling such as RRC, MAC-CE, or DCI. Further, the terminal 20 may execute switching of the number of CCs for executing PUSCH frequency hopping in association with other signaling. For example, in SR-based PUSCH transmission, PUSCH frequency hopping may be executed within 1 CC, and in non-SR-based PUSCH transmission, PUSCH frequency hopping may be executed between N (> 1) CCs.
 また、例えば、基地局10は、PUSCH送信を行うCCをRRC、MAC-CE又はDCI等のシグナリングで端末20に通知してもよい。あるいは、端末20は、PUSCH送信を行うCCを決定してもよい。例えば、端末20は、PDSCHを受信したCCすべてをPUSCH送信を行うCCと決定してもよいし、有効化されたCCすべてをPUSCH送信を行うCCと決定してもよい。また、端末20は、CC候補をRRC、MAC-CE又はDCI等のシグナリングにより基地局10から取得してもよい。CC候補は、それぞれ関連付けられる優先度と共に端末20に通知されてもよく、端末20は、当該CC候補のうち、優先度の高いU個のCCでPUSCH送信を行うと決定してもよい。Uは、RRC、MAC-CE又はDCI等のシグナリングにより基地局10から通知されてもよい。 Further, for example, the base station 10 may notify the terminal 20 of the CC that performs PUSCH transmission by signaling such as RRC, MAC-CE, or DCI. Alternatively, the terminal 20 may determine the CC that performs the PUSCH transmission. For example, the terminal 20 may determine all CCs that have received the PDSCH as CCs that perform PUSCH transmission, or may determine all enabled CCs as CCs that perform PUSCH transmission. Further, the terminal 20 may acquire CC candidates from the base station 10 by signaling such as RRC, MAC-CE or DCI. The CC candidates may be notified to the terminal 20 together with their associated priorities, and the terminal 20 may decide to perform PUSCH transmission with U CCs having higher priorities among the CC candidates. U may be notified from the base station 10 by signaling such as RRC, MAC-CE or DCI.
 また、端末20は、送信するPUSCHタイプに基づいて、複数のCC間でのPUSCH周波数ホッピングの有効又は無効を決定してもよい。例えば、タイプは、RA(Random Access)タイプ、SRタイプ等に対応してもよい。例えばPUSCHタイプX1をSRベースのPUSCHとし、PUSCHタイプX2を非SRベースのPUSCHとした場合、PUSCHタイプX1は複数のCC間での周波数ホッピングを無効とし、PUSCHタイプX2は複数のCC間での周波数ホッピングを有効としてもよい。 Further, the terminal 20 may determine whether PUSCH frequency hopping is valid or invalid among a plurality of CCs based on the PUSCH type to be transmitted. For example, the type may correspond to RA (Random Access) type, SR type, or the like. For example, when PUSCH type X1 is an SR-based PUSCH and PUSCH type X2 is a non-SR-based PUSCH, PUSCH type X1 disables frequency hopping between a plurality of CCs, and PUSCH type X2 is a non-SR-based PUSCH. Frequency hopping may be enabled.
 また、端末20は、PUCCHグループごとに(PUCCHグループに閉じた)、PUSCH周波数ホッピングを想定してもよい。すなわち、PUCCHグループに対応する複数のCC間における周波数ホッピングを端末20は想定してもよい。また、例えば、端末20は、PUCCHグループごとに(PUCCHグループに閉じた)PUSCH周波数ホッピングを想定してもよいし、PUCCHグループに閉じていないPUSCH周波数ホッピングを想定してもよい。例えば、PUCCHグループに閉じていないPUSCH周波数ホッピングを実行する場合、PUCCHグループ間でPUSCH送信に使用するCCあるいは無線リソースが衝突した場合は、優先順位(例えばPUCCHグループに関連付けられる優先順位)等に基づいて、優先順位の低いPUSCH送信をドロップしてもよい。 Further, the terminal 20 may assume PUSCH frequency hopping for each PUCCH group (closed to the PUCCH group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the PUCCH group. Further, for example, the terminal 20 may assume PUSCH frequency hopping (closed to the PUCCH group) for each PUCCH group, or may assume PUSCH frequency hopping not closed to the PUCCH group. For example, when performing PUSCH frequency hopping that is not closed to the PUCCH group, if the CC or radio resource used for PUSCH transmission collides between the PUCCH groups, it is based on the priority (for example, the priority associated with the PUCCH group). Then, the PUSCH transmission having a lower priority may be dropped.
 また、端末20は、TAG(Timing Advance Group)グループごとに(すなわちTAGグループに閉じた)PUSCH周波数ホッピングを想定してもよい。すなわち、TAGグループに対応する複数のCC間における周波数ホッピングを端末20は想定してもよい。 Further, the terminal 20 may assume PUSCH frequency hopping for each TAG (Timing Advance Group) group (that is, closed to the TAG group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the TAG group.
 また、端末20は、複数CCが属するセルグループごとに(すなわちセルグループに閉じた)PUSCH周波数ホッピングを想定してもよい。すなわち、セルグループに対応する複数のCC間における周波数ホッピングを端末20は想定してもよい。 Further, the terminal 20 may assume PUSCH frequency hopping for each cell group to which a plurality of CCs belong (that is, closed in the cell group). That is, the terminal 20 may assume frequency hopping between a plurality of CCs corresponding to the cell group.
 上述のようにPUSCH繰り返し送信に周波数ホッピングを適用することで、より広帯域な周波数領域のリソースを利用してスケジューリングの柔軟性が向上する。また、非SRベースのPUSCHの場合、他の端末20が使用するリソースと衝突する可能性を低減することができる。 By applying frequency hopping to PUSCH repeat transmission as described above, scheduling flexibility is improved by utilizing resources in a wider frequency domain. Further, in the case of non-SR-based PUSCH, the possibility of collision with resources used by other terminals 20 can be reduced.
 図4は、本発明の実施の形態における繰り返し送信の例(1)を示す図である。図4に示されるように、端末20は、複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB(Resource Block)単位のPUSCH繰り返し送信及び/又は周波数ホッピングが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット等が設定されてもよい。図4では、繰り返し1及び繰り返し4は開始時の周波数位置であり、繰り返し2及び繰り返し3は周波数ホッピングのオフセットを加えた周波数位置である例を示す。なお、図4ではスロット単位の繰り返し送信を示しているが、スロット内又はスロット間におけるシンボル単位の繰り返し送信であってもよい。 FIG. 4 is a diagram showing an example (1) of repeated transmission in the embodiment of the present invention. As shown in FIG. 4, when the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs, it is assumed that PUSCH repeated transmission and / or frequency hopping in RB (Resource Block) units within 1 CC is set. You may. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, an RB offset, or the like may be set as a setting for frequency hopping. FIG. 4 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added. Although FIG. 4 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
 図5は、本発明の実施の形態における繰り返し送信の例(2)を示す図である。図5に示されるように、端末20は、複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、CCオフセット等が設定されてもよい。図5では、繰り返し1及び繰り返し4は開始時の周波数位置であり、繰り返し2及び繰り返し3は周波数ホッピングのオフセットを加えた周波数位置である例を示す。なお、図5ではスロット単位の繰り返し送信を示しているが、スロット内又はスロット間におけるシンボル単位の繰り返し送信であってもよい。 FIG. 5 is a diagram showing an example (2) of repeated transmission in the embodiment of the present invention. As shown in FIG. 5, when assuming PUSCH frequency hopping transmission between a plurality of CCs, the terminal 20 may assume that PUSCH repeated transmission and / or frequency hopping in CC units is set. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, a CC offset, or the like may be set as a setting for frequency hopping. FIG. 5 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added. Although FIG. 5 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
 図6は、本発明の実施の形態における繰り返し送信の例(3)を示す図である。図6に示されるように、端末20は、複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングとが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット、CCオフセット等が設定されてもよい。図6では、繰り返し1及び繰り返し4は開始時の周波数位置であり、繰り返し2及び繰り返し3は周波数ホッピングのオフセットを加えた周波数位置である例を示す。なお、図6ではスロット単位の繰り返し送信を示しているが、スロット内又はスロット間におけるシンボル単位の繰り返し送信であってもよい。 FIG. 6 is a diagram showing an example (3) of repeated transmission in the embodiment of the present invention. As shown in FIG. 6, when assuming PUSCH frequency hopping transmission between a plurality of CCs, the terminal 20 performs RB unit PUSCH repeated transmission and / or frequency hopping within 1 CC, and CC unit PUSCH repeated transmission and /. Alternatively, it may be assumed that frequency hopping is set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, CC offset, and the like may be set as frequency hopping settings. FIG. 6 shows an example in which repetition 1 and repetition 4 are frequency positions at the start, and repetition 2 and repetition 3 are frequency positions to which an offset of frequency hopping is added. Although FIG. 6 shows repeated transmission in slot units, it may be repeated transmission in symbol units within or between slots.
 上記のPUSCH繰り返し送信及び/又は周波数ホッピングに係る設定は、RRC、MAC-CE又はDCI等のシグナリングにより基地局10から端末20に通知されてもよい。また、一部の設定のみが、MAC-CE又はDCI等で更新されることを端末20は想定してもよい。 The above settings related to PUSCH repeated transmission and / or frequency hopping may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE, or DCI. Further, the terminal 20 may assume that only a part of the settings are updated by MAC-CE, DCI, or the like.
 図4に示される繰り返し送信及び周波数ホッピングと、図5に示される繰り返し送信及び周波数ホッピングと、図6に示される繰り返し送信及び周波数ホッピングとの切り替えが、RRC、MAC-CE又はDCI等のシグナリングにより基地局10から端末20に通知されてもよい。また、上記の繰り返し送信及び周波数ホッピング以外の通信方式との切り替えがRRC、MAC-CE又はDCI等のシグナリングにより基地局10から端末20に通知されてもよい。 Switching between repeated transmission and frequency hopping shown in FIG. 4, repeated transmission and frequency hopping shown in FIG. 5, and repeated transmission and frequency hopping shown in FIG. 6 is performed by signaling such as RRC, MAC-CE, or DCI. The base station 10 may notify the terminal 20. Further, the base station 10 may notify the terminal 20 of the switching to a communication method other than the above-mentioned repeated transmission and frequency hopping by signaling such as RRC, MAC-CE or DCI.
 また、端末20は、バンド間CA(Carrier Aggregation)における複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、以下に示されるオプション1)-7)のように想定してもよい。 Further, when the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA (Carrier Aggregation), it may be assumed as options 1) -7) shown below.
オプション1)端末20は、バンド間CA(Carrier Aggregation)における複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB単位のPUSCH繰り返し送信及び/又は周波数ホッピングが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット等が設定されてもよい。 Option 1) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA (Carrier Aggregation), it is assumed that PUSCH repeated transmission and / or frequency hopping in RB units within 1 CC is set. You may. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, an RB offset, or the like may be set as a setting for frequency hopping.
オプション2)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、CCオフセット等が設定されてもよい。 Option 2) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, it may be assumed that PUSCH repeated transmission and / or frequency hopping in CC units is set. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, a CC offset, or the like may be set as a setting for frequency hopping.
オプション3)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、バンド単位のPUSCH繰り返し送信及び/又は周波数ホッピングが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、バンドオフセット等が設定されてもよい。 Option 3) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, it may be assumed that PUSCH repeated transmission and / or frequency hopping for each band is set. For example, a start symbol, a repeat length, or the like may be set as a setting for PUSCH repeat transmission, and a start RB, a band offset, or the like may be set as a setting for frequency hopping.
オプション4)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングとが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット、CCオフセット等が設定されてもよい。 Option 4) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, RB unit PUSCH repeated transmission and / or frequency hopping within 1 CC and CC unit PUSCH repeated transmission and / or It may be assumed that frequency hopping is set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, CC offset, and the like may be set as frequency hopping settings.
オプション5)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、バンド単位のPUSCH繰り返し送信及び/又は周波数ホッピングとが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット、バンドオフセット等が設定されてもよい。 Option 5) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, the PUSCH repeated transmission and / or frequency hopping in RB units within 1 CC and the PUSCH repeated transmission and / or in band units It may be assumed that frequency hopping is set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, band offset, and the like may be set as frequency hopping settings.
オプション6)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、バンド単位のPUSCH繰り返し送信及び/又は周波数ホッピングとが設定されると想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、CCオフセット、バンドオフセット等が設定されてもよい。 Option 6) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, the terminal 20 performs PUSCH repeated transmission and / or frequency hopping in CC units and PUSCH repeated transmission and / or frequency hopping in band units. May be assumed to be set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, CC offset, band offset, and the like may be set as frequency hopping settings.
オプション7)端末20は、バンド間CAにおける複数のCC間におけるPUSCH周波数ホッピング送信を想定するとき、1CC内におけるRB単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、CC単位のPUSCH繰り返し送信及び/又は周波数ホッピングと、バンド単位のPUSCH繰り返し送信及び/又は周波数ホッピングとが設定されるとを想定してもよい。例えば、PUSCH繰り返し送信の設定として、開始シンボル、繰り返し長等が設定され、周波数ホッピングの設定として、開始RB、RBオフセット、CCオフセット、バンドオフセット等が設定されてもよい。 Option 7) When the terminal 20 assumes PUSCH frequency hopping transmission between a plurality of CCs in interband CA, RB unit PUSCH repeated transmission and / or frequency hopping within 1 CC and CC unit PUSCH repeated transmission and / or It may be assumed that frequency hopping and band-based PUSCH repeat transmission and / or frequency hopping are set. For example, a start symbol, a repeat length, and the like may be set as PUSCH repeat transmission settings, and a start RB, RB offset, CC offset, band offset, and the like may be set as frequency hopping settings.
 上記オプション1)-7)の切り替えが、RRC、MAC-CE又はDCI等のシグナリングにより基地局10から端末20に通知されてもよい。また、上記のオプション以外の通信方式との切り替えがRRC、MAC-CE又はDCI等のシグナリングにより基地局10から端末20に通知されてもよい。 The switching of the above options 1) -7) may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE or DCI. Further, switching to a communication method other than the above options may be notified from the base station 10 to the terminal 20 by signaling such as RRC, MAC-CE or DCI.
 本発明の実施の形態においては、PUSCH繰り返し送信のみではなく、PDSCH繰り返し送信においても同様に周波数ホッピングが適用されると想定してもよい。なお、周波数ホッピングとは、ある送信において、所定の単位ごとに異なる周波数リソースを使用する機能を意味してもよい。例えば、PUCCH、SRS、RACH等の端末20から送信されるすべてのチャネル又は信号に、上述の繰り返し送信及び周波数ホッピングが適用されてもよい。 In the embodiment of the present invention, it may be assumed that frequency hopping is similarly applied not only to PUSCH repeated transmission but also to PDSCH repeated transmission. Note that frequency hopping may mean a function of using different frequency resources for each predetermined unit in a certain transmission. For example, the above-mentioned repeated transmission and frequency hopping may be applied to all channels or signals transmitted from the terminal 20 such as PUCCH, SRS, and RACH.
 本発明の実施の形態においては、連続するスロット又はシンボルにおける繰り返し送信のみではなく、非連続なスロット又はシンボルにおける繰り返し送信を想定してもよい。 In the embodiment of the present invention, not only repeated transmission in continuous slots or symbols but also repeated transmission in discontinuous slots or symbols may be assumed.
 なお、本発明の実施の形態において「非SRベース」とは、「設定グラント(Configured grant)」、「グラントフリー(Grant free)」等に置換されてもよい。また、「周波数ホッピング」は、「周波数多重(Frequency multiplexing)」、「FDM(Frequency division multiplexing)」、「周波数バンドリング(Frequency bundling)」、「周波数繰り返し(Frequency repetition)」等に置換されてもよい。また、「PUSCH」は、「ULデータ」、「ユーザデータ」等に置換されてもよい。 In the embodiment of the present invention, "non-SR-based" may be replaced with "Configured grant", "Grant free", or the like. Even if "frequency hopping" is replaced with "frequency multiplexing", "FDM (Frequency division multiplexing)", "frequency bundling", "frequency repetition", etc. good. Further, "PUSCH" may be replaced with "UL data", "user data" and the like.
 上述の実施例により、端末20は、繰り返し送信するとき、拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。 According to the above embodiment, the terminal 20 can improve the reliability by applying the extended frequency hopping when repeatedly transmitting.
 すなわち、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させることができる。 That is, in a wireless communication system, it is possible to improve the reliability in the case of repeated transmission.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実行する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 and the terminal 20 that execute the processes and operations described so far will be described. The base station 10 and the terminal 20 include a function of executing the above-described embodiment. However, the base station 10 and the terminal 20 may each have only the proposed function of any one of the embodiments.
 <基地局10>
 図7は、基地局10の機能構成の一例を示す図である。図7に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図7に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
<Base station 10>
FIG. 7 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. 7, the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed. The transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明した設定情報等を送信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the embodiment.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、周波数ホッピングを含む基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them out from the storage device as needed. The control unit 140 controls the entire base station 10 including resource allocation and frequency hopping, for example. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120. Further, the transmitter 110 and the receiver 120 may be referred to as a transmitter and a receiver, respectively.
 <端末20>
 図8は、端末20の機能構成の一例を示す図である。図8に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図8に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
<Terminal 20>
FIG. 8 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. 8, the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in FIG. 8 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed. The transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明した設定情報等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、周波数ホッピングを含む端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed. The setting unit 230 also stores preset setting information. The control unit 240 controls the entire terminal 20 including frequency hopping. The transmission unit 210 may include the function unit related to signal transmission in the control unit 240, and the reception unit 220 may include the function unit related to signal reception in the control unit 240. Further, the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図7及び図8)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram (FIGS. 7 and 8) used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図7に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図8に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station 10 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 8 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although it has been described that the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be mounted by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、物理上りリンク共有チャネルの繰り返し送信を基地局に実行する送信部と、複数のコンポーネントキャリア間における周波数ホッピングを前記繰り返し送信に適用する制御部とを有し、前記制御部は、前記複数のコンポーネントキャリアを、前記基地局からのシグナリング又は前記物理上りリンク共有チャネルの種別に基づいて決定する端末が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, a transmission unit that repeatedly transmits a physical uplink shared channel to a base station and frequency hopping between a plurality of component carriers are applied to the repeated transmission. The control unit includes a control unit, and the control unit is provided with a terminal that determines the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
 上記の構成により、端末20は、繰り返し送信するとき、拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。すなわち、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させることができる。 With the above configuration, the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
 前記複数のコンポーネントキャリアは、物理上りリンク制御チャネルのグループ、タイミングアドバンスグループ又はセルグループに対応してもよい。当該構成により、端末20は、繰り返し送信するとき、関連付けられるCC間において拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。 The plurality of component carriers may correspond to a group of physical uplink control channels, a timing advance group, or a cell group. With this configuration, the terminal 20 can improve reliability by applying extended frequency hopping between the associated CCs when repeatedly transmitting.
 前記送信部は、前記繰り返し送信を実行することを前記基地局に通知し、自律的に前記繰り返し送信を開始してもよい。当該構成により、端末20は、繰り返し送信するとき、関連付けられるCC間において拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。 The transmission unit may notify the base station that the repeated transmission is to be executed and autonomously start the repeated transmission. With this configuration, the terminal 20 can improve reliability by applying extended frequency hopping between the associated CCs when repeatedly transmitting.
 前記制御部は、複数のバンド間における周波数ホッピング及び1つのコンポーネントキャリア内における周波数ホッピングをさらに前記繰り返し送信に適用してもよい。当該構成により、端末20は、繰り返し送信するとき、バンド間、CC間及び1CC内において拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。 The control unit may further apply frequency hopping between a plurality of bands and frequency hopping within one component carrier to the repeated transmission. With this configuration, the terminal 20 can improve reliability by applying extended frequency hopping between bands, between CCs, and within 1 CC when repeatedly transmitting.
 また、本発明の実施の形態によれば、複数のコンポーネントキャリアを決定する情報を端末に送信する送信部と、前記複数のコンポーネントキャリア間における周波数ホッピングが適用される物理上りリンク共有チャネルの繰り返し送信を前記端末から受信する受信部とを有する基地局が提供される。 Further, according to an embodiment of the present invention, a transmission unit that transmits information for determining a plurality of component carriers to a terminal and a physical uplink shared channel to which frequency hopping is applied between the plurality of component carriers are repeatedly transmitted. Is provided with a base station having a receiving unit that receives the above from the terminal.
 上記の構成により、端末20は、繰り返し送信するとき、拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。すなわち、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させることができる。 With the above configuration, the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
 また、本発明の実施の形態によれば、物理上りリンク共有チャネルの繰り返し送信を基地局に実行する送信手順と、複数のコンポーネントキャリア間における周波数ホッピングを前記繰り返し送信に適用する制御手順と、前記複数のコンポーネントキャリアを、前記基地局からのシグナリング又は前記物理上りリンク共有チャネルの種別に基づいて決定する手順を端末が実行する通信方法が提供される。 Further, according to the embodiment of the present invention, a transmission procedure for repeatedly transmitting a physical uplink shared channel to a base station, a control procedure for applying frequency hopping between a plurality of component carriers to the repeated transmission, and the above-mentioned A communication method is provided in which a terminal executes a procedure for determining a plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
 上記の構成により、端末20は、繰り返し送信するとき、拡張された周波数ホッピングを適用することで、信頼性を向上させることができる。すなわち、無線通信システムにおいて、繰り返し送信する場合の信頼性を向上させることができる。 With the above configuration, the terminal 20 can improve reliability by applying extended frequency hopping when repeatedly transmitting. That is, in a wireless communication system, reliability in the case of repeated transmission can be improved.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed inventions are not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. May apply (as long as there is no conflict) to the matters described in. The boundary of the functional part or the processing part in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. Regarding the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of processing, the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station 10, various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 ( For example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these). In the above example, the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website. When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "wireless base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNodeB) gNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”,“ Terms such as "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the terminal 20 may have the functions of the base station 10 described above. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the above-mentioned user terminal.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency region. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. The subframe may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 The bandwidth part (BWP: Bandwidth Part) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the terminal 20.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 does not have to assume that a predetermined signal / channel is transmitted or received outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 なお、本開示において、PUSCHは、物理上りリンク共有チャネルの一例である。PUCCHは、物理上りリンク制御チャネルの一例である。 In this disclosure, PUSCH is an example of a physical uplink shared channel. PUCCH is an example of a physical uplink control channel.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (6)

  1.  物理上りリンク共有チャネルの繰り返し送信を基地局に実行する送信部と、
     複数のコンポーネントキャリア間における周波数ホッピングを前記繰り返し送信に適用する制御部とを有し、
     前記制御部は、前記複数のコンポーネントキャリアを、前記基地局からのシグナリング又は前記物理上りリンク共有チャネルの種別に基づいて決定する端末。
    A transmitter that repeatedly transmits a physical uplink shared channel to a base station,
    It has a control unit that applies frequency hopping between a plurality of component carriers to the repeated transmission.
    The control unit is a terminal that determines the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
  2.  前記複数のコンポーネントキャリアは、物理上りリンク制御チャネルのグループ、タイミングアドバンスグループ又はセルグループに対応する請求項1記載の端末。 The terminal according to claim 1, wherein the plurality of component carriers correspond to a group of physical uplink control channels, a timing advance group, or a cell group.
  3.  前記送信部は、前記繰り返し送信を実行することを前記基地局に通知し、自律的に前記繰り返し送信を開始する請求項1記載の端末。 The terminal according to claim 1, wherein the transmission unit notifies the base station that the repeated transmission is to be executed, and autonomously starts the repeated transmission.
  4.  前記制御部は、複数のバンド間における周波数ホッピング及び1つのコンポーネントキャリア内における周波数ホッピングをさらに前記繰り返し送信に適用する請求項1記載の端末。 The terminal according to claim 1, wherein the control unit further applies frequency hopping between a plurality of bands and frequency hopping within one component carrier to the repeated transmission.
  5.  複数のコンポーネントキャリアを決定する情報を端末に送信する送信部と、
     前記複数のコンポーネントキャリア間における周波数ホッピングが適用される物理上りリンク共有チャネルの繰り返し送信を前記端末から受信する受信部とを有する基地局。
    A transmitter that sends information that determines multiple component carriers to the terminal,
    A base station having a receiving unit that receives repeated transmissions of a physical uplink shared channel to which frequency hopping is applied between the plurality of component carriers from the terminal.
  6.  物理上りリンク共有チャネルの繰り返し送信を基地局に実行する送信手順と、
     複数のコンポーネントキャリア間における周波数ホッピングを前記繰り返し送信に適用する制御手順と、
     前記複数のコンポーネントキャリアを、前記基地局からのシグナリング又は前記物理上りリンク共有チャネルの種別に基づいて決定する手順を端末が実行する通信方法。
    A transmission procedure that executes repeated transmission of a physical uplink shared channel to a base station, and
    A control procedure for applying frequency hopping between multiple component carriers to the repeated transmission,
    A communication method in which a terminal executes a procedure for determining the plurality of component carriers based on signaling from the base station or the type of the physical uplink shared channel.
PCT/JP2021/000238 2021-01-06 2021-01-06 Terminal, base station, and communication method WO2022149223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180082454.6A CN116569628A (en) 2021-01-06 2021-01-06 Terminal, base station and communication method
PCT/JP2021/000238 WO2022149223A1 (en) 2021-01-06 2021-01-06 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000238 WO2022149223A1 (en) 2021-01-06 2021-01-06 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2022149223A1 true WO2022149223A1 (en) 2022-07-14

Family

ID=82358145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000238 WO2022149223A1 (en) 2021-01-06 2021-01-06 Terminal, base station, and communication method

Country Status (2)

Country Link
CN (1) CN116569628A (en)
WO (1) WO2022149223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055137A1 (en) * 2022-09-12 2024-03-21 Qualcomm Incorporated Sensing reference signal switching across carrier components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114694A1 (en) * 2014-01-30 2015-08-06 日本電気株式会社 Machine-to-machine (m2m) terminal, base station, method, and computer-readable medium
WO2016047628A1 (en) * 2014-09-26 2016-03-31 京セラ株式会社 Base station and mobile station
JP2020048110A (en) * 2018-09-20 2020-03-26 シャープ株式会社 Terminal device and base station device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114694A1 (en) * 2014-01-30 2015-08-06 日本電気株式会社 Machine-to-machine (m2m) terminal, base station, method, and computer-readable medium
WO2016047628A1 (en) * 2014-09-26 2016-03-31 京セラ株式会社 Base station and mobile station
JP2020048110A (en) * 2018-09-20 2020-03-26 シャープ株式会社 Terminal device and base station device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055137A1 (en) * 2022-09-12 2024-03-21 Qualcomm Incorporated Sensing reference signal switching across carrier components

Also Published As

Publication number Publication date
CN116569628A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020194760A1 (en) User device and base station device
JP7073529B2 (en) Terminals, base stations and communication methods
WO2021149110A1 (en) Terminal and communication method
WO2021140673A1 (en) Terminal and communication method
WO2021064888A1 (en) Terminal and communication method
WO2022149223A1 (en) Terminal, base station, and communication method
WO2022158175A1 (en) Terminal, base station, and communication method
WO2022149194A1 (en) Terminal, base station, and communication method
WO2022079868A1 (en) Terminal and base station
WO2022049733A1 (en) Terminal, base station, and communication method
US12016035B2 (en) User equipment and base station device
CN113383522B (en) User device and base station device
WO2021070396A1 (en) Terminal and communication method
WO2020217366A1 (en) User device
WO2020222282A1 (en) User equipment and base station device
JPWO2020170445A1 (en) User equipment and base station equipment
JPWO2020157986A1 (en) User equipment and base station equipment
WO2022044141A1 (en) Terminal, base station, and communication method
WO2022085205A1 (en) Terminal, wireless communication method, and base station
WO2022085169A1 (en) Terminal and communication method
WO2022118448A1 (en) Terminal and communication method
WO2022074729A1 (en) Communication device
WO2021214894A1 (en) Terminal and communication method
WO2022102632A1 (en) Terminal and communication method
WO2022029986A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082454.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP