WO2022049733A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2022049733A1
WO2022049733A1 PCT/JP2020/033638 JP2020033638W WO2022049733A1 WO 2022049733 A1 WO2022049733 A1 WO 2022049733A1 JP 2020033638 W JP2020033638 W JP 2020033638W WO 2022049733 A1 WO2022049733 A1 WO 2022049733A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
slot
stage
terminal
Prior art date
Application number
PCT/JP2020/033638
Other languages
French (fr)
Japanese (ja)
Inventor
尚哉 芝池
浩樹 原田
聡 永田
シャン リ
ジン ワン
シン ワン
ギョウリン コウ
ヨンチン ティエン
ダンプ リウ
ヤンソン リウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022546824A priority Critical patent/JPWO2022049733A1/ja
Priority to PCT/JP2020/033638 priority patent/WO2022049733A1/en
Publication of WO2022049733A1 publication Critical patent/WO2022049733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a terminal, a base station and a communication method in a wireless communication system.
  • Non-Patent Document 1 In NR (New Radio) (also referred to as “5G”), which is the successor system to LTE (Long Term Evolution), the requirements are a large capacity system, high-speed data transmission speed, low delay, and simultaneous use of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
  • Non-Patent Document 2 For example, in the frequency band from 52.6 GHz to 71 GHz, applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, obstacles assumed in actual wireless communication, and the like are being studied.
  • the propagation loss becomes larger. Therefore, for example, it is necessary to reduce the loss by using a high-density beam (fine beam) using a multi-element antenna.
  • a high-density beam fine beam
  • the area that can be covered becomes narrower, so that the higher the beam density, the larger the number of candidate beams. Therefore, it is expected that unacceptable overhead and delay will occur when determining the beam to be used according to the reception status while sequentially switching the beams in the initial access (beam sweeping).
  • the present invention has been made in view of the above points, and the initial access can be efficiently executed in the wireless communication system.
  • a receiving unit that sequentially switches received beamforming to receive a first signal from a base station, and a control unit that determines the received beamforming to be applied based on the measurement result of the first signal.
  • the receiving unit applies the determined reception beamforming to receive a second signal from the base station, and the control unit uses the second signal for synchronization and cell.
  • a terminal for performing a search is provided.
  • the initial access can be efficiently executed in the wireless communication system.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or any other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or the number of resource blocks. May be good.
  • the base station 10 transmits a synchronization signal and system information to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information.
  • the synchronization signal and system information may be referred to as SSB (SS / PBCH block).
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation). Further, the terminal 20 may perform communication via a primary cell of the base station 10 by DC (Dual Connectivity) and a primary secondary cell group cell (PSCell: Primary SCG Cell) of another base station 10.
  • DC Dual Connectivity
  • PSCell Primary SCG Cell
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services. Further, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the propagation path quality based on the reception result of the reference signals.
  • M2M Machine-to-Machine
  • FIG. 2 is a diagram showing a configuration example (2) of the wireless communication system according to the embodiment of the present invention.
  • the millimeter wave band can support higher data rates than, for example, frequency bands below 6 GHz, while large propagation losses and cutoffs may occur.
  • the link capacitance can be increased by using a large antenna array.
  • a data rate of 100 Gbps per cell is realized for a wireless LAN router, a dongle, or the like by a millimeter wave to which 3D beamforming is applied using a multi-element antenna.
  • the millimeter wave is set to 10 GHz to 40 GHz, but other frequencies may be used.
  • FIG. 3 is a diagram showing an example of hybrid beamforming.
  • both digital beamforming and analog beamforming are applied.
  • the transmitting side digital beamforming is performed by the baseband precoder, and the transmitting side analog beamforming is performed by the phase shifter.
  • the receiving side analog beamforming is performed by the phase shifter, and the transmitting side analog beamforming is performed by the baseband combiner.
  • beamforming may be referred to as a beam, and beamforming and beam may not be distinguished.
  • TXRU transceivers
  • FIG. 4 is a sequence diagram for explaining an example of initial access.
  • initial access based on beam management as shown in FIG. 4 is performed.
  • the gNB 10 sequentially switches a plurality of spatial directions and transmits a synchronization signal and system information necessary for the UE 20 to access the network (Beam-Sweeping transmission).
  • the UE 20 detects the strongest beam direction by continuing reception until the beam direction of the transmitter is matched (Beam-Sweeping reception).
  • the UE 20 grasps the beam to be used by the gNB 10 (UE individual beam selection)
  • the UE 20 transmits the PRACH to the gNB 10.
  • the gNB 10 transmits the remaining system information necessary for setting the connection to the UE 20.
  • the system can switch to UE-specific coverage using a narrower beam (UE individual beamforming) using beam reconfiguration procedures.
  • step S1 the gNB 10 transmits a synchronization signal to the UE 20. Subsequently, the gNB 10 transmits the basic system information for all UEs to the UE 20 (S2). In steps S1 and S2, the Beam-Sweeping transmission, the Beam-Sweeping reception, and the UE individual beam selection may be executed. In step S3, the UE 20 transmits a random access channel to the gNB 10. Subsequently, the gNB 10 transmits a random access response and system information to the UE 20 (S4). In step S5, the gNB 10 transmits data and control channels to the UE 20. In step S5, the above UE individual beamforming may be applied.
  • the initial access of communication using millimeter waves exceeding 52.6 GHz increases the complexity of beam management.
  • Larger antenna arrays need to be used to compensate for large propagation losses.
  • a multi-element antenna array of more than 1000 a very dense and narrow beam and a very large number of candidate beams are expected.
  • FIG. 5 is a diagram showing an example of SSB.
  • the UE 20 executes a cell search procedure for beam management using SSB (SS / PBCH block) for Beam-Sweeping for the initial access in 5G-NR.
  • the SSB is a signal for performing beam management at idle.
  • the time domain is composed of 4 OFDM symbols and the frequency domain is composed of 20 PRBs.
  • the SSB is composed of a PSS and a synchronization signal including the SSS and a PBCH including at least a MIB (Master Information Block) message.
  • MIB Master Information Block
  • FIG. 6 is a diagram showing an example of an SS burst set.
  • the SS burst set consists of a plurality of SSBs that support Beam-Sweeping.
  • An SS burst set is a group of up to 64 consecutive L SSBs with different beam indexes. As shown in FIG. 6, one SS burst set is mapped to a slot in a 5 ms window (ie, half of the radio frame).
  • the period TB of the SS burst set is 5, 10, 20, 40, 80 or 160 ms, and the default value is 20 ms.
  • the conventional SSB is composed of consecutive 4 OFDM symbols. Since the duration of one beam pair corresponds to at least one SSB in the initial access, Beam-Sweeping is inefficient because it takes a lot of time for more than hundreds of candidate beams, especially when the carrier is in the high frequency band. .. Also, if the transmit and receive beam pairs are not optimized, there is a lot of redundant information, which consumes time and frequency resources.
  • the overhead is calculated by (4 x TS x L) / TB .
  • TS is the period of one OFDM symbol.
  • L is the number of SSBs included in the 1SS burst set.
  • TB is the period of the SS burst set.
  • the delay is calculated by TB x N SS burst set .
  • N SS burst set is the number of SS burst sets required for Beam-Sweeping.
  • the slot length is 0.125 ms
  • the overhead is 11.4%
  • the delay is 80 ms.
  • the slot length is 0.0625 ms
  • the overhead is 5.7%
  • the delay is 80 ms.
  • a beam management mechanism for initial access based on the conventional SSB (SS / PBCH block) base in 5G-NR Need to be strengthened.
  • BSB Beam Sweeping Block
  • eSSB enhanced SSB
  • the new procedure includes two stages of Beam-Sweeping that are executed alternately, and a plurality of modes can be set.
  • the gNB 10 transmits the BSB by Beam-Sweeping, and the UE 20 can acquire the optimum beam direction.
  • the eSSBsweep stage the gNB 10 transmits the eSSB by Beam-Sweeping, and the UE 20 executes synchronization and cell search in the reception beam direction determined in the stage 1.
  • stage 1 and stage 2 By repeating stage 1 and stage 2 several times, gNB10 and UE20 can obtain an optimum beam pair. The details of the mode will be described later.
  • the BSB for high-speed Beam-Sweeping is composed only of PSS or new SS, and the eSSB is mainly composed of MIB messages.
  • the gNB 10 alternately transmits BSBs and eSSBs to allow the UE 20 to identify the optimal beam pair and complete the initial access faster.
  • stage 1 and stage 2 are periodically repeated alternately.
  • stage 1 high-speed BSB sweep is executed.
  • the gNB 10 transmits a BSB with Beam-Sweeping.
  • the beam pair is sequentially switched between the gNB 10 and the UE 20, and the UE 20 identifies the optimum received beam in stage 1.
  • stage 2 high-speed eSSB sweep is executed.
  • gNB10 transmits eSSB by Beam-Sweeping.
  • the UE 20 performs synchronization and cell search in the optimum reception beam direction determined in stage 1.
  • FIG. 7 is a diagram for explaining an example of beam management in the embodiment of the present invention.
  • 1) shown in FIG. 7 is an example showing conventional beam management.
  • 2) shown in FIG. 7 is a first example of beam management according to the embodiment of the present invention, in which stages 1 and 2 are alternately repeated with a period of 20 ms.
  • 3) shown in FIG. 7 is a second example of beam management in the embodiment of the present invention, in which both stage 1 and stage 2 are executed within 5 ms and repeated with a period of 20 ms.
  • 1BSB is composed of 4 beams
  • 1 cycle (default 20 ms) is composed of 64BSB.
  • Nt number of SSBs
  • Nr number of received beams
  • SCS 120 KHz
  • the Beam-Sweeping process can be completed in 40 ms.
  • the Beam-Sweeping process can be completed in 20 ms.
  • FIG. 8 is a diagram showing a configuration example (1) of a signal for beam management stage 1 according to an embodiment of the present invention.
  • Two types may be specified as BSB.
  • the signal shown in FIG. 8 is referred to as BSB type 1.
  • consecutive M1 OFDM symbols include SS in the common frequency domain.
  • the direction of the beam may be different for each OFDM symbol.
  • the number of beams per BSB is referred to as M
  • the number M of BSB type 1 beams is M 1 .
  • FIG. 9 is a diagram showing a configuration example (2) of a signal for beam management stage 1 according to an embodiment of the present invention.
  • the signal shown in FIG. 9 is referred to as BSB type 2.
  • each of the consecutive M 1 OFDM symbols contains M 2 SS and CP (Cyclic Prefix) in the time domain.
  • the direction of the beam of each of the M 2 SSs may be different.
  • the number M of the beams of BSB type 2 is M 1 * M 2 .
  • BSB corresponds to BSB type 1 unless otherwise specified.
  • FIG. 10 is a diagram showing a configuration example (1) of a signal for beam management stage 2 according to the embodiment of the present invention.
  • the eSSB type 1 shown in FIG. 10 is composed of consecutive 4 OFDM symbols.
  • the eSSB type 1 has an SSB structure for compatibility with NR.
  • PSS is arranged in OFDM symbol # 0
  • PBCH is arranged in OFDM symbol # 1
  • SSS and PBCH are arranged in OFDM symbol # 2
  • PBCH is arranged in OFDM symbol # 3.
  • the PSS constituting the BSB is used only for Beam-Sweeping.
  • FIG. 11 is a diagram showing a configuration example (2) of a signal for beam management stage 2 according to the embodiment of the present invention.
  • the eSSB type 2 shown in FIG. 11 is composed of consecutive 3 OFDM symbols omitting PSS in order to execute Beam-Sweeping at high speed.
  • PBCH is arranged in OFDM symbol # 0
  • SSS and PBCH are arranged in OFDM symbol # 1
  • PBCH is arranged in OFDM symbol # 2.
  • the PCI Physical cell identifier
  • FIG. 12 is a diagram showing a configuration example (3) of a signal for beam management stage 2 according to the embodiment of the present invention.
  • the eSSB type 3 shown in FIG. 12 is composed of consecutive 2 OFDM symbols containing only PBCH in order to realize a minimum delay. As shown in FIG. 11, PBCH is arranged in OFDM symbol # 0, and PBCH is arranged in OFDM symbol # 1.
  • the SSs that make up the BSB are used to identify the PCI.
  • the resources in the frequency domain may be increased.
  • BSB type 1 and BSB type 2 By combining the above-mentioned BSB type 1 and BSB type 2 with eSSB type 1, eSSB type 2 and eSSB type 3, six types of signal formats can be defined.
  • FIG. 13 is a diagram for explaining an example of the beam management stage 1 in the embodiment of the present invention.
  • Stage 1 is a procedure for executing high-speed Beam-Sweeping, and realizes high-speed beam search.
  • a group of L1 BSBs that are continuous in less than 5 ms is defined as a BS burst set.
  • the gNB 10 sequentially switches the candidate transmission beams to transmit a plurality of BSBs.
  • the UE 20 sequentially switches the candidate received beams to identify the optimum received beam based on, for example, the RSRP value.
  • Stage 1 may have periodicity.
  • the periodic cycle may be determined by the UE 20 or may be predetermined.
  • the BSB index of the log 2 (N 2 L 2 ) bits may be modulated into the BSB by cyclic shift.
  • L 2 is the number of eSSBs included in one cycle of the burst set of eSSBs, and N 2 is the number of stages 2 executed. Further, the UE 20 may sequentially switch all received beams until it finds the optimum received beam.
  • the transmitted beam in stage 1 may be coarser than the transmitted beam in stage 2 in order to reduce the number of beam pairs.
  • each BSB of L 1 is transmitted from gNB 10 with four transmission beams.
  • the odd-numbered BSB and the even-numbered BSB may have different beams, and eight transmission beams may be used in the BS burst set.
  • the UE 20 may use all received beams.
  • FIG. 14 is a diagram for explaining an example of the beam management stage 2 in the embodiment of the present invention.
  • Stage 2 is a procedure for executing a high-speed eSSB sweep, in which synchronization and cell search are executed.
  • the gNB 10 sequentially switches the transmission beam to transmit the eSSB.
  • the UE 20 is fixed to the optimum received beam determined in stage 1 and completes synchronization and cell search.
  • a combination of BSB + eSSB type 1 (SSB similar to NR) can be assumed without losing generality.
  • N t N 2 L 2 so that synchronization and cell search are completed in N 2 consecutive SS burst sets.
  • each of the two L eSSBs sequentially switches the transmission beam and is transmitted from the gNB 10.
  • the UE 20 fixedly uses the optimum received beam determined in stage 1 to perform synchronization and cell search.
  • the UE 20 may report to the gNB 10 information indicating the best eSSB in the measurement result and specify the transmission beam to which the gNB 10 applies.
  • FIG. 15 is a diagram for explaining an example (1) of the beam management transmission mode 1 in the embodiment of the present invention.
  • Beam management in embodiments of the present invention has three transmission modes based on stage 1 and stage 2 periodicity to accommodate different scenarios and system requirements.
  • the transmission mode 1 will be described.
  • the feature of the transmission mode 1 is to minimize the average delay.
  • FIG. 15 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 1.
  • each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs. In the example shown in FIG. 15, the number of windows having a length of 5 ms is 1.
  • stage 1 four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 16 is a diagram for explaining an example (2) of the beam management transmission mode 1 in the embodiment of the present invention.
  • FIG. 16 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 2.
  • each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs.
  • the number of windows having a length of 5 ms is 1.
  • four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 17 is a diagram for explaining an example (3) of the beam management transmission mode 1 in the embodiment of the present invention.
  • FIG. 17 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 3.
  • each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs.
  • the number of windows having a length of 5 ms is 1.
  • four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 18 is a diagram for explaining an example (1) of the beam management transmission mode 2 in the embodiment of the present invention.
  • the transmission mode 2 will be described.
  • the feature of the transmission mode 2 is to more appropriately support the change of the number of beam pairs.
  • FIG. 18 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 1. As shown in FIG. 18, each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 19 is a diagram for explaining an example (2) of the beam management transmission mode 2 in the embodiment of the present invention.
  • FIG. 19 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 2.
  • each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated.
  • stage 1 four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 20 is a diagram for explaining an example (3) of the beam management transmission mode 2 in the embodiment of the present invention.
  • FIG. 20 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 3.
  • each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated.
  • stage 1 four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 21 is a diagram for explaining an example (1) of the beam management transmission mode 3 in the embodiment of the present invention.
  • the transmission mode 3 will be described.
  • the feature of the transmission mode 3 is an integrated frame structure.
  • FIG. 21 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 1.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 and stage 2 may be integrated and placed in
  • FIG. 22 is a diagram for explaining an example (2) of the beam management transmission mode 3 in the embodiment of the present invention.
  • FIG. 22 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 2.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 23 is a diagram for explaining an example (3) of the beam management transmission mode 3 in the embodiment of the present invention.
  • FIG. 23 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 3.
  • stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated.
  • stage 1 four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
  • FIG. 24 is a diagram for explaining an example (1) of mapping a signal for the beam management stage 1 in the embodiment of the present invention.
  • a method of mapping BSB to a physical resource will be described for each case where SCS and M 1 are different.
  • transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 2,8 ⁇ + 14n.
  • n ⁇ 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22 , 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37 ⁇ .
  • BSBs are arranged in all slots from slot 0 to slot 7.
  • the index of the symbol on which the BSB is placed is 2,3,4,5,8,9,10,11.
  • the transmission mode 1 is shown in FIG. 24, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 25 is a diagram for explaining an example (2) of signal mapping for the beam management stage 1 in the embodiment of the present invention.
  • SCS is 240 KHz
  • transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 4,8,16,20 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17 ⁇ .
  • transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 4,8,16,20 ⁇ + 28n.
  • n
  • BSBs are arranged in all slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11
  • the index of the symbol of the second slot is 2,3,4,5. , 6, 7, 8 and 9.
  • the transmission mode 1 is shown in FIG. 25, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 26 is a diagram for explaining an example (3) of signal mapping for the beam management stage 1 in the embodiment of the present invention.
  • the transmit resource for PDCCH or PUCCH is guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 4,16 ⁇ + 28n.
  • n ⁇ 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18 ⁇ .
  • BSBs are arranged in all slots from slot 0 to slot 7.
  • the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4,5. , 6, 7, 8 and 9.
  • the transmission mode 1 is shown in FIG. 26, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 27 is a diagram for explaining an example (4) of signal mapping for the beam management stage 1 in the embodiment of the present invention.
  • the transmit resource for PDCCH or PUCCH is guaranteed to be located every two slots.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 8,16,32,40 ⁇ + 56n.
  • n ⁇ 0,1,2,3,5,6,7,8 ⁇ .
  • BSBs are arranged in all slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the BSB is placed is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4, 5.
  • 6,7,8,9 the index of the symbol in the third slot is 4,5,6,7,8,9,10,11,12,13, and the index of the symbol in the fourth slot is 0. , 1, 2, 3, 4, 5.
  • the transmission mode 1 is shown in FIG. 27, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 28 is a diagram for explaining an example (5) of signal mapping for the beam management stage 1 in the embodiment of the present invention.
  • transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 2 ⁇ + 14n.
  • n ⁇ 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22 , 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37 ⁇ .
  • transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 2 ⁇ + 14n.
  • n ⁇ 0
  • BSBs are arranged in all slots from slot 0 to slot 7.
  • the index of the symbol on which the BSB is placed is 2,3,4,5,6,7,8,9,10,11.
  • the transmission mode 1 is shown in FIG. 28, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 29 is a diagram for explaining an example (6) of signal mapping for the beam management stage 1 in the embodiment of the present invention.
  • the transmit resource for PDCCH or PUCCH is guaranteed to be located every two slots.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 4,14 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17 ⁇ .
  • BSBs are arranged in all slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11,12,13, and the index of the symbol of the second slot is 0,1. , 2,3,4,5,6,7,8,9.
  • the transmission mode 1 is shown in FIG. 27, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 30 is a diagram for explaining an example (7) of signal mapping for beam management stage 1 in the embodiment of the present invention.
  • SCS single-frequency channel
  • 960 KHz the BSB frame structure as shown in FIG. 30 may be used.
  • transmission resources for PDCCH or PUCCH are guaranteed to be placed every two slots.
  • the index of the symbol at which the placement of the BSB is started is ⁇ 2,15 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17 ⁇ .
  • BSBs are arranged in all slots from slot 0 to slot 35.
  • the index of the symbol of the first slot in which the BSB is placed is 2,4,6,8,10,12
  • the index of the symbol of the second slot is 1,3,5,7,9,11. Is. That is, the time required for beam switching is secured for at least one symbol.
  • the transmission mode 1 is shown in FIG. 30, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 31 is a diagram for explaining an example (1) of mapping a signal for the beam management stage 2 in the embodiment of the present invention.
  • a method of mapping the eSSB to a physical resource will be described for each case where the SCS is different.
  • the index of the symbol at which the placement of the eSSB type 1 is started is ⁇ 4,8,16,20 ⁇ + 28n.
  • n ⁇ 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18 ⁇ .
  • the index of the symbol at which the placement of the eSSB type 1 is started is ⁇ 4,8,16,20 ⁇ + 28n.
  • n ⁇ 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18 ⁇ .
  • the eSSB type 1 in the first 10 slots in the 5 ms half frame, the eSSB type 1 is arranged in all the slots from slot 0 to slot 7.
  • the index of the symbol of the first slot in which the eSSB type 1 is arranged is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 6, 7, 8, 9.
  • the transmission mode 1 is shown in FIG. 31, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 32 is a diagram for explaining an example (2) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • the index of the symbol at which the placement of the eSSB type 1 is started is ⁇ 8,12,16,20,32,36,40,44 ⁇ + 56n.
  • n ⁇ 0,1,2,3,5,6,7,8 ⁇ .
  • the eSSB type 1 is arranged in all the slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the eSSB type 1 is arranged is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4. , 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the index of the symbol in the fourth slot. Is 0,1,2,3,4,5.
  • the transmission mode 1 is shown in FIG. 32, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 33 is a diagram for explaining an example (3) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • SCS high frequency band
  • 960 KHz the period required for beam switching cannot be ignored. Therefore, for example, when the SCS is 480 KHz, the eSSB type 1 frame structure as shown in FIG. 33 may be used.
  • the index of the symbol at which the placement of the eSSB type 1 is started is ⁇ 3,8,16,21 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17 ⁇ .
  • the eSSB type 1 in the first 40 slots in the 5 ms half frame, the eSSB type 1 is arranged in all the slots from slot 0 to slot 35.
  • the index of the symbol of the first slot in which the eSSB type 1 is arranged is 3,4,5,6,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 7, 8, 9, 10. That is, the time required for beam switching is secured for at least one symbol.
  • the transmission mode 1 is shown in FIG. 33, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 34 is a diagram for explaining an example (4) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • the index of the symbol at which the placement of eSSB type 2 is started is ⁇ 3,6,9,16,19,22 ⁇ + 28n.
  • n ⁇ 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18 ⁇ .
  • the eSSB type 2 is arranged in all the slots from slot 0 to slot 7.
  • the index of the symbol of the first slot in which the eSSB type 2 is arranged is 3,4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3. , 4, 5, 6, 7, 8, 9, 10.
  • the transmission mode 1 is shown in FIG. 34, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 35 is a diagram for explaining an example (5) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • the index of the symbol at which the placement of eSSB type 2 is started is ⁇ 6,9,12,15,18,21,32,35,38,41,44,47 ⁇ + 56n.
  • n ⁇ 0,1,2,3,5,6,7,8 ⁇ .
  • the eSSB type 2 is arranged in all the slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the eSSB type 2 is arranged is 6,7,8,9,10,11,12,13, and the index of the symbol of the second slot is 0,1,2.
  • 3, 4, 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the fourth slot.
  • the index of the symbol of is 0,1,2,3,4,5,6,7.
  • FIG. 36 is a diagram for explaining an example (6) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • SCS high frequency band
  • 960 KHz the eSSB type 2 frame structure as shown in FIG. 36 may be used.
  • the index of the symbol at which the placement of eSSB type 2 is started is ⁇ 2,6,10,15,19,23 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17 ⁇ .
  • the eSSB type 2 in the first 40 slots in the 5 ms half frame, the eSSB type 2 is arranged in all the slots from slot 0 to slot 35.
  • the index of the symbol of the first slot in which the eSSB type 2 is arranged is 2,3,4,6,7,8,10,11,12, and the index of the symbol of the second slot is 1,2. , 3, 5, 6, 7, 9, 10, 11. That is, the time required for beam switching is secured for at least one symbol.
  • FIG. 36 shows the transmission mode 1, the generality is not lost and the transmission mode can be applied to other transmission modes.
  • FIG. 37 is a diagram for explaining an example (7) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • the index of the symbol at which the placement of the eSSB type 3 is started is ⁇ 4,6,8,10,16,18,20,22 ⁇ + 28n.
  • n ⁇ 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18 ⁇ .
  • the eSSB type 3 is arranged in all the slots from slot 0 to slot 7.
  • the index of the symbol of the first slot in which the eSSB type 3 is arranged is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 6, 7, 8, 9.
  • the transmission mode 1 is shown in FIG. 37, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 38 is a diagram for explaining an example (8) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • the index of the symbol at which the placement of eSSB type 3 is started is ⁇ 8,10,12,14,16,18,20,22,32,34,36,38,40,42,44,46 ⁇ + 56n. ..
  • n ⁇ 0,1,2,3,5,6,7,8 ⁇ .
  • the eSSB type 3 is arranged in all the slots from slot 0 to slot 15.
  • the index of the symbol of the first slot in which the eSSB type 3 is arranged is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4. , 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the index of the symbol in the fourth slot. Is 0,1,2,3,4,5.
  • the transmission mode 1 is shown in FIG. 38, the generality is not lost and it can be applied to other transmission modes.
  • FIG. 39 is a diagram for explaining an example (9) of signal mapping for the beam management stage 2 in the embodiment of the present invention.
  • SCS high frequency band
  • 960 KHz 960 KHz
  • the eSSB type 3 frame structure as shown in FIG. 39 may be used.
  • the index of the symbol at which the placement of the eSSB type 3 is started is ⁇ 2,5,8,11,15,18,21,24 ⁇ + 28n.
  • n ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17 ⁇ .
  • the eSSB type 3 is arranged in all the slots from slot 0 to slot 35.
  • the index of the symbol of the first slot in which the eSSB type 3 is arranged is 2,3,5,6,8,9,11,12
  • the index of the symbol of the second slot is 1,2,4. , 5, 7, 8, 10, 11. That is, the time required for beam switching is secured for at least one symbol.
  • FIG. 39 shows the transmission mode 1, the generality is not lost and the transmission mode can be applied to other transmission modes.
  • the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping.
  • the initial access can be efficiently executed in the wireless communication system.
  • the base station 10 and the terminal 20 include a function for carrying out the above-described embodiment.
  • the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
  • FIG. 40 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 40 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals and the like to the terminal 20. Further, the receiving unit 120 receives a message between network nodes from another network node.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20.
  • the content of the setting information is, for example, information related to the initial access setting.
  • the control unit 140 controls the setting of the initial access as described in the embodiment. Further, the control unit 140 controls the transmission beamforming.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 41 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 41 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 may use PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) on another terminal 20 as D2D communication. Etc. are transmitted, and the receiving unit 220 receives PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information related to the initial access setting.
  • the control unit 240 controls the setting of the initial access as described in the embodiment. Further, the control unit 240 controls the received beamforming.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 42 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 40 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 41 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be mounted by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the receiving unit that sequentially switches the received beamforming to receive the first signal from the base station and the measurement result of the first signal are used. It has a control unit that determines the received beamforming to be applied, the receiving unit applies the determined receiving beamforming, receives a second signal from the base station, and the control unit receives the second signal from the base station.
  • a terminal is provided that performs synchronization and cell search using the second signal.
  • the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
  • the first signal may be composed of only a synchronization signal.
  • the terminal 20 can execute beam management that enables high-speed Beam-Sweeping.
  • the first signal may be subjected to different transmission beamforming for each symbol.
  • the terminal 20 can execute beam management that enables high-speed Beam-Sweeping.
  • the second signal may be configured only from PBCH (Physical broadcast channel).
  • PBCH Physical broadcast channel
  • a base station having a transmission unit, a reception unit that receives information indicating the measurement result of the second signal from the terminal, and a control unit that determines the transmission beamforming to be applied based on the information indicating the measurement result. Is provided.
  • the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
  • the received beamforming to be applied is applied based on the receiving procedure of sequentially switching the received beamforming to receive the first signal from the base station and the measurement result of the first signal.
  • the terminal executes the control procedure for determining the above, applies the determined received beamforming, receives the second signal from the base station, and executes synchronization and cell search using the second signal. Communication method is provided.
  • the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these).
  • MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these.
  • the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station device fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • GNB nodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”
  • Terms such as “cell group,” “carrier,” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by (Remote Radio Head).
  • the term "cell” or “sector” is a part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the above-mentioned user terminal.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Slots may be time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTI shorter than normal TTI may be referred to as shortened TTI, short TTI, partial TTI (partial or fractional TTI), shortened subframe, short subframe, minislot, subslot, slot and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • the bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the BSB in the present disclosure is an example of the first signal.
  • the eSSB is an example of a second signal.

Abstract

This terminal includes: a reception unit that receives a first signal from a base station by sequentially switching reception beamforming; and a control unit that determines the reception beamforming to be applied, on the basis of first signal measurement results. The reception unit applies the determined reception beamforming to receive a second signal from the base station. The control unit uses the second signal to execute synchronization and cell searching.

Description

端末、基地局及び通信方法Terminals, base stations and communication methods
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。 The present invention relates to a terminal, a base station and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 In NR (New Radio) (also referred to as "5G"), which is the successor system to LTE (Long Term Evolution), the requirements are a large capacity system, high-speed data transmission speed, low delay, and simultaneous use of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
 NRリリース17では、従来のリリース(例えば非特許文献2)よりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。 In NR release 17, it is considered to use a higher frequency band than the conventional release (for example, Non-Patent Document 2). For example, in the frequency band from 52.6 GHz to 71 GHz, applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, obstacles assumed in actual wireless communication, and the like are being studied.
 ミリ波帯のような従来よりも高い周波数帯を使用する通信では、伝搬損失がより大きくなる。そこで、例えば多素子アンテナを用いた高密度のビーム(fine beam)によって損失を軽減することが必要である。一方で、ビームの密度を高くする場合、カバーできる領域は狭くなるため、ビームの密度が高くなればなるほど候補となるビーム数は増大する。そのため、初期アクセスにおいて順次ビームを切り替えながら(beam sweeping)受信状況に応じて使用するビームを決定するとき、許容できないオーバヘッド及び遅延が発生することが想定される。 In communication using a higher frequency band such as the millimeter wave band, the propagation loss becomes larger. Therefore, for example, it is necessary to reduce the loss by using a high-density beam (fine beam) using a multi-element antenna. On the other hand, when the beam density is increased, the area that can be covered becomes narrower, so that the higher the beam density, the larger the number of candidate beams. Therefore, it is expected that unacceptable overhead and delay will occur when determining the beam to be used according to the reception status while sequentially switching the beams in the initial access (beam sweeping).
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 The present invention has been made in view of the above points, and the initial access can be efficiently executed in the wireless communication system.
 開示の技術によれば、受信ビームフォーミングを順次切り替えて第1の信号を基地局から受信する受信部と、前記第1の信号の測定結果に基づいて、適用する受信ビームフォーミングを決定する制御部とを有し、前記受信部は、前記決定された受信ビームフォーミングを適用して、第2の信号を前記基地局から受信し、前記制御部は、前記第2の信号を用いて同期及びセルサーチを実行する端末が提供される。 According to the disclosed technique, a receiving unit that sequentially switches received beamforming to receive a first signal from a base station, and a control unit that determines the received beamforming to be applied based on the measurement result of the first signal. The receiving unit applies the determined reception beamforming to receive a second signal from the base station, and the control unit uses the second signal for synchronization and cell. A terminal for performing a search is provided.
 開示の技術によれば、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 According to the disclosed technology, the initial access can be efficiently executed in the wireless communication system.
本発明の実施の形態における無線通信システムの構成例(1)を示す図である。It is a figure which shows the structural example (1) of the wireless communication system in embodiment of this invention. 本発明の実施の形態における無線通信システムの構成例(2)を示す図である。It is a figure which shows the configuration example (2) of the wireless communication system in embodiment of this invention. ハイブリッドビームフォーミングの例を示す図である。It is a figure which shows the example of the hybrid beamforming. 初期アクセスの例を説明するためのシーケンス図である。It is a sequence diagram for demonstrating an example of initial access. SSBの例を示す図である。It is a figure which shows the example of SSB. SSバーストセットの例を示す図である。It is a figure which shows the example of the SS burst set. 本発明の実施の形態におけるビームマネジメントの例を説明するための図である。It is a figure for demonstrating the example of the beam management in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号の構成例(1)を示す図である。It is a figure which shows the structural example (1) of the signal for beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号の構成例(2)を示す図である。It is a figure which shows the structural example (2) of the signal for beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(1)を示す図である。It is a figure which shows the structural example (1) of the signal for beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(2)を示す図である。It is a figure which shows the structural example (2) of the signal for beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(3)を示す図である。It is a figure which shows the structural example (3) of the signal for beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1の例を説明するための図である。It is a figure for demonstrating the example of the beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2の例を説明するための図である。It is a figure for demonstrating the example of the beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード1の例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the beam management transmission mode 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード1の例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the beam management transmission mode 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード1の例(3)を説明するための図である。It is a figure for demonstrating the example (3) of the beam management transmission mode 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード2の例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the beam management transmission mode 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード2の例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the beam management transmission mode 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード2の例(3)を説明するための図である。It is a figure for demonstrating the example (3) of the beam management transmission mode 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード3の例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the beam management transmission mode 3 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード3の例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the beam management transmission mode 3 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメント送信モード3の例(3)を説明するための図である。It is a figure for demonstrating the example (3) of the beam management transmission mode 3 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the signal mapping for a beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the signal mapping for a beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(3)を説明するための図である。It is a figure for demonstrating the example (3) of the signal mapping for beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(4)を説明するための図である。It is a figure for demonstrating the example (4) of the signal mapping for a beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(5)を説明するための図である。It is a figure for demonstrating the example (5) of the signal mapping for a beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(6)を説明するための図である。It is a figure for demonstrating the example (6) of the signal mapping for a beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(7)を説明するための図である。It is a figure for demonstrating the example (7) of the signal mapping for beam management stage 1 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the mapping of the signal for beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(3)を説明するための図である。It is a figure for demonstrating the example (3) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(4)を説明するための図である。It is a figure for demonstrating the example (4) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(5)を説明するための図である。It is a figure for demonstrating the example (5) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(6)を説明するための図である。It is a figure for demonstrating the example (6) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(7)を説明するための図である。It is a figure for demonstrating the example (7) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(8)を説明するための図である。It is a figure for demonstrating the example (8) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(9)を説明するための図である。It is a figure for demonstrating the example (9) of the signal mapping for a beam management stage 2 in embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the terminal 20 in embodiment of this invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station 10 or the terminal 20 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technology is appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, an existing LTE, but is not limited to the existing LTE. Further, the term "LTE" used in the present specification has a broad meaning including LTE-Advanced and LTE-Advanced and later methods (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 Further, in the embodiment of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical) used in the existing LTE. Random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), etc. are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Further, the above-mentioned terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or any other system (for example, Flexible Duplex, etc.). Method may be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
 図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention. The wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or the number of resource blocks. May be good. The base station 10 transmits a synchronization signal and system information to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. The synchronization signal and system information may be referred to as SSB (SS / PBCH block). As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation). Further, the terminal 20 may perform communication via a primary cell of the base station 10 by DC (Dual Connectivity) and a primary secondary cell group cell (PSCell: Primary SCG Cell) of another base station 10.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services. Further, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the propagation path quality based on the reception result of the reference signals.
 図2は、本発明の実施の形態における無線通信システムの構成例(2)を示す図である。ミリ波帯は、例えば6GHz以下の周波数帯よりも高いデータレートをサポートすることが可能である一方、大きな伝搬損失及び遮断が発生する場合がある。図3に示されるように、大きなアンテナアレイを使用することで、リンク容量を増加させることができる。図3に示される例では、多素子アンテナを用いて3Dビームフォーミングを適用したミリ波によって、無線LANルータ又はドングル等に対し、1セルあたり100Gbpsのデータレートを実現する。例としてミリ波は10GHzから40GHzとしているが、他の周波数であってもよい。 FIG. 2 is a diagram showing a configuration example (2) of the wireless communication system according to the embodiment of the present invention. The millimeter wave band can support higher data rates than, for example, frequency bands below 6 GHz, while large propagation losses and cutoffs may occur. As shown in FIG. 3, the link capacitance can be increased by using a large antenna array. In the example shown in FIG. 3, a data rate of 100 Gbps per cell is realized for a wireless LAN router, a dongle, or the like by a millimeter wave to which 3D beamforming is applied using a multi-element antenna. As an example, the millimeter wave is set to 10 GHz to 40 GHz, but other frequencies may be used.
 しかしながら、上記のようなビームフォーミングにおいては、電力は狭いビームに集中されるため、初期アクセス時にビーム方向を調整することが困難になり、端末20が移動時にはビームの切替が要求される。 However, in the above beamforming, since the electric power is concentrated on the narrow beam, it becomes difficult to adjust the beam direction at the time of initial access, and the beam switching is required when the terminal 20 moves.
 図3は、ハイブリッドビームフォーミングの例を示す図である。図3に示されるように、ハイブリッドビームフォーミングではデジタルビームフォーミングとアナログビームフォーミングの両方が適用される。図3に示される例では、送信側デジタルビームフォーミングはベースバンドプリコーダにより行われ、送信側アナログビームフォーミングは位相シフタによって行われる。また、図3に示される例では、受信側アナログビームフォーミングは位相シフタにより行われ、送信側アナログビームフォーミングはベースバンドコンバイナによって行われる。以下、ビームフォーミングを、ビームと表記してもよく、ビームフォーミングとビームは区別されなくてもよい。 FIG. 3 is a diagram showing an example of hybrid beamforming. As shown in FIG. 3, in hybrid beamforming, both digital beamforming and analog beamforming are applied. In the example shown in FIG. 3, the transmitting side digital beamforming is performed by the baseband precoder, and the transmitting side analog beamforming is performed by the phase shifter. Further, in the example shown in FIG. 3, the receiving side analog beamforming is performed by the phase shifter, and the transmitting side analog beamforming is performed by the baseband combiner. Hereinafter, beamforming may be referred to as a beam, and beamforming and beam may not be distinguished.
 複数のRFチェイン及び送受信機(TXRU)が使用されるため、複数のビームを同時に制御する必要がある。RFチェインの数の増加に伴い、ビームサーチの複雑さは、指数関数的に増加する。 Since multiple RF chains and transceivers (TXRU) are used, it is necessary to control multiple beams at the same time. As the number of RF chains increases, the complexity of the beam search increases exponentially.
 図4は、初期アクセスの例を説明するためのシーケンス図である。5G-NRでは、図4に示されるようなビームマネジメントに基づいた初期アクセスが実行される。gNB10は、同期信号及びUE20がネットワークにアクセスするために必要なシステム情報を、複数の空間的方向を順次切り替えて送信する(Beam-Sweeping送信)。UE20は、送信機のビーム方向に合致するまで受信を続けることにより(Beam-Sweeping受信)、最も強いビーム方向を検出する。UE20は、gNB10が使用すべきビームを把握する(UE個別ビーム選択)と、PRACHをgNB10に送信する。続いて、UE20及びgNB10が最適なビームで通信を確立すると、gNB10は接続の設定に必要な残りのシステム情報をUE20に送信する。システムは、ビーム再設定手順を用いてより狭いビームを使用して(UE個別ビームフォーミング)UE個別のカバレッジに切り替えることができる。 FIG. 4 is a sequence diagram for explaining an example of initial access. In 5G-NR, initial access based on beam management as shown in FIG. 4 is performed. The gNB 10 sequentially switches a plurality of spatial directions and transmits a synchronization signal and system information necessary for the UE 20 to access the network (Beam-Sweeping transmission). The UE 20 detects the strongest beam direction by continuing reception until the beam direction of the transmitter is matched (Beam-Sweeping reception). When the UE 20 grasps the beam to be used by the gNB 10 (UE individual beam selection), the UE 20 transmits the PRACH to the gNB 10. Subsequently, when the UE 20 and the gNB 10 establish communication with the optimum beam, the gNB 10 transmits the remaining system information necessary for setting the connection to the UE 20. The system can switch to UE-specific coverage using a narrower beam (UE individual beamforming) using beam reconfiguration procedures.
 ステップS1において、gNB10は、同期信号をUE20に送信する。続いて、gNB10は、全UE向け基本システム情報をUE20に送信する(S2)。ステップS1及びS2において、上記Beam-Sweeping送信、Beam-Sweeping受信及びUE個別ビーム選択が実行されてもよい。ステップS3において、UE20は、ランダムアクセスチャネルをgNB10に送信する。続いて、gNB10は、ランダムアクセスレスポンス及びシステム情報をUE20に送信する(S4)。ステップS5において、gNB10は、データ及び制御チャネルをUE20に送信する。ステップS5において、上記UE個別ビームフォーミングが適用されてもよい。 In step S1, the gNB 10 transmits a synchronization signal to the UE 20. Subsequently, the gNB 10 transmits the basic system information for all UEs to the UE 20 (S2). In steps S1 and S2, the Beam-Sweeping transmission, the Beam-Sweeping reception, and the UE individual beam selection may be executed. In step S3, the UE 20 transmits a random access channel to the gNB 10. Subsequently, the gNB 10 transmits a random access response and system information to the UE 20 (S4). In step S5, the gNB 10 transmits data and control channels to the UE 20. In step S5, the above UE individual beamforming may be applied.
 例えば、52.6GHzを超えるミリ波を使用する通信の初期アクセスでは、ビームマネジメントの複雑さが増大する。大きな伝搬損失を補償するため、より大きなアンテナアレイを使用する必要がある。例えば、1000を超える多素子のアンテナアレイが使用されることにより、非常に密度の高い細いビーム及び非常に多数の候補ビームの数が想定される。 For example, the initial access of communication using millimeter waves exceeding 52.6 GHz increases the complexity of beam management. Larger antenna arrays need to be used to compensate for large propagation losses. For example, by using a multi-element antenna array of more than 1000, a very dense and narrow beam and a very large number of candidate beams are expected.
 上記のようなミリ波帯の初期アクセスにおけるBeam-Sweepingは、許容できないオーバヘッド及び遅延をもたらし、従来の5G-NRにおけるビームマネジメントを適用することは困難である。したがって、上記のようなミリ波帯の初期アクセスにおいて、高効率かつ高速な初期アクセスを実現する方法が必要となる。 Beam-Sweeping in the millimeter-wave band initial access as described above results in unacceptable overhead and delay, making it difficult to apply beam management in conventional 5G-NR. Therefore, in the above-mentioned initial access in the millimeter wave band, a method for realizing high-efficiency and high-speed initial access is required.
 図5は、SSBの例を示す図である。5G-NRにおける初期アクセス向けに、Beam-SweepingにSSB(SS/PBCH block)を使用するビームマネジメントを行うセルサーチ手順をUE20は実行する。SSBは、アイドル時にビームマネジメントを行うための信号である。図5に示されるように、時間領域は4OFDMシンボルから構成され、周波数領域は20PRBから構成される。また、図5に示されるように、SSBは、PSS及びSSSを含む同期信号及び少なくともMIB(Master Information Block)メッセージを含むPBCHから構成される。 FIG. 5 is a diagram showing an example of SSB. The UE 20 executes a cell search procedure for beam management using SSB (SS / PBCH block) for Beam-Sweeping for the initial access in 5G-NR. The SSB is a signal for performing beam management at idle. As shown in FIG. 5, the time domain is composed of 4 OFDM symbols and the frequency domain is composed of 20 PRBs. Further, as shown in FIG. 5, the SSB is composed of a PSS and a synchronization signal including the SSS and a PBCH including at least a MIB (Master Information Block) message.
 図6は、SSバーストセットの例を示す図である。SSバーストセットは、Beam-Sweepingをサポートする複数のSSBから構成される。SSバーストセットは、互いに異なるビームインデックスを有する64までの連続するL個のSSBのグループである。図6に示されるように、1つのSSバーストセットは、5msのウィンドウ(すなわち無線フレームの半分)内のスロットにマッピングされる。SSバーストセットの周期Tは、5、10、20、40、80又は160msであり、デフォルト値は20msである。 FIG. 6 is a diagram showing an example of an SS burst set. The SS burst set consists of a plurality of SSBs that support Beam-Sweeping. An SS burst set is a group of up to 64 consecutive L SSBs with different beam indexes. As shown in FIG. 6, one SS burst set is mapped to a slot in a 5 ms window (ie, half of the radio frame). The period TB of the SS burst set is 5, 10, 20, 40, 80 or 160 ms, and the default value is 20 ms.
 上記のように従来のSSBは連続する4OFDMシンボルから構成される。初期アクセスにおいて一つのビームペアの期間は少なくとも一つのSSBに対応するため、Beam-Sweepingは、特にキャリアが高周波数帯のとき数百を超える候補ビームに対して多大な時間を要し非効率となる。また、送受信ビームペアが最適化されていない場合、冗長な情報が多く存在し、時間及び周波数リソースを消費する。 As mentioned above, the conventional SSB is composed of consecutive 4 OFDM symbols. Since the duration of one beam pair corresponds to at least one SSB in the initial access, Beam-Sweeping is inefficient because it takes a lot of time for more than hundreds of candidate beams, especially when the carrier is in the high frequency band. .. Also, if the transmit and receive beam pairs are not optimized, there is a lot of redundant information, which consumes time and frequency resources.
 オーバヘッドは、(4×T×L)/Tによって算出される。Tは、1OFDMシンボルの期間である。Lは、1SSバーストセットに含まれるSSBの数である。Tは、SSバーストセットの周期である。遅延は、T×NSS burst setで算出される。NSS burst setは、Beam-Sweepingに必要なSSバーストセットの数である。 The overhead is calculated by (4 x TS x L) / TB . TS is the period of one OFDM symbol. L is the number of SSBs included in the 1SS burst set. TB is the period of the SS burst set. The delay is calculated by TB x N SS burst set . N SS burst set is the number of SS burst sets required for Beam-Sweeping.
 表1は、1つのGSCN(Global Synchronization Channel Number)における64*4方向(L=64、T=20ms)のBeam-Sweepingを完了するためのオーバヘッド及び遅延を示す。 Table 1 shows the overhead and delay for completing Beam-Sweeping in 64 * 4 directions (L = 64, TB = 20 ms) in one GSCN (Global Synchronization Channel Number).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、SCSが120KHzの場合、スロット長は0.125msであり、オーバヘッドは11.4%、遅延は80msとなる。SCSが240KHzの場合、スロット長は0.0625msであり、オーバヘッドは5.7%、遅延は80msとなる。さらに、ビームの数が増加することを想定すると、Beam-Sweepingにおけるビームペアごとに必要な期間を短縮する必要がある。 As shown in Table 1, when the SCS is 120 KHz, the slot length is 0.125 ms, the overhead is 11.4%, and the delay is 80 ms. When the SCS is 240 KHz, the slot length is 0.0625 ms, the overhead is 5.7%, and the delay is 80 ms. Furthermore, assuming that the number of beams increases, it is necessary to shorten the period required for each beam pair in Beam-Sweeping.
 そこで、例えばミリ波帯のような従来よりも高周波数帯を使用する場合のビームマネジメントにおいて、5G-NRにおける従来のSSB(SS/PBCH block)ベースを基礎とする初期アクセスのためのビームマネジメントメカニズムを強化する必要がある。 Therefore, in beam management when using a higher frequency band than before, such as the millimeter wave band, a beam management mechanism for initial access based on the conventional SSB (SS / PBCH block) base in 5G-NR. Need to be strengthened.
 第1に、Beam-Sweepingのための新たな信号であるBSB(Beam Sweeping Block)を定義する。各BSBは、周波数領域又は時間領域における複数のSSから構成される。SSBよりもSSの期間は短いため、ビームペアリング処理に要する時間を短縮することができる。同時に、新たな信号であるeSSB(enhanced SSB)を定義する。eSSBは、複数のタイプがあり、BSBを補完し初期アクセスを完了するための信号である。タイプの詳細については後述する。 First, BSB (Beam Sweeping Block), which is a new signal for Beam-Sweeping, is defined. Each BSB is composed of a plurality of SSs in the frequency domain or the time domain. Since the SS period is shorter than that of the SSB, the time required for the beam pairing process can be shortened. At the same time, a new signal, eSSB (enhanced SSB), is defined. There are multiple types of eSSB, and it is a signal for complementing BSB and completing the initial access. Details of the types will be described later.
 さらに、セルサーチの手順を新たにデザインする。新たな手順は、交互に実行されるBeam-Sweepingの2ステージを含み、複数のモードが設定可能である。ステージ1である高速BSBsweepステージでは、gNB10はBeam-SweepingによりBSBを送信し、UE20は最適なビーム方向を取得することができる。続くステージ2であるeSSBsweepステージでは、gNB10はBeam-SweepingによりeSSBを送信し、UE20はステージ1で決定した受信ビーム方向で同期及びセルサーチを実行する。ステージ1及びステージ2を何度か繰り返すことでgNB10及びUE20は最適なビームペアを得ることができる。モードの詳細については後述する。 Furthermore, a new cell search procedure will be designed. The new procedure includes two stages of Beam-Sweeping that are executed alternately, and a plurality of modes can be set. In the high-speed BSB sweep stage, which is the stage 1, the gNB 10 transmits the BSB by Beam-Sweeping, and the UE 20 can acquire the optimum beam direction. In the subsequent stage 2, the eSSBsweep stage, the gNB 10 transmits the eSSB by Beam-Sweeping, and the UE 20 executes synchronization and cell search in the reception beam direction determined in the stage 1. By repeating stage 1 and stage 2 several times, gNB10 and UE20 can obtain an optimum beam pair. The details of the mode will be described later.
 上記の強化されたビームマネジメントによって、初期アクセスにおけるシグナリングのオーバヘッド及び遅延を低減することができる。 With the enhanced beam management described above, signaling overhead and delay in initial access can be reduced.
 強化されたデザインの基本的構成として、高速なBeam-SweepingのためのBSBは、PSS又は新たなSSのみから構成され、eSSBは主にMIBメッセージから構成される。gNB10は、BSBとeSSBを交互に送信して、UE20に最適なビームペアを識別させ初期アクセスをより早く完了させるようにする。 As a basic configuration of the enhanced design, the BSB for high-speed Beam-Sweeping is composed only of PSS or new SS, and the eSSB is mainly composed of MIB messages. The gNB 10 alternately transmits BSBs and eSSBs to allow the UE 20 to identify the optimal beam pair and complete the initial access faster.
 初期アクセス時の新たなビームマネジメントにおいて、ステージ1及びステージ2が周期的に交互に繰り返される。ステージ1では、高速なBSB sweepが実行される。gNB10はBeam-Sweepingを伴うBSBを送信する。gNB10及びUE20間でビームペアを順次切り替えて、UE20は最適な受信ビームをステージ1において識別する。 In the new beam management at the time of initial access, stage 1 and stage 2 are periodically repeated alternately. In stage 1, high-speed BSB sweep is executed. The gNB 10 transmits a BSB with Beam-Sweeping. The beam pair is sequentially switched between the gNB 10 and the UE 20, and the UE 20 identifies the optimum received beam in stage 1.
 ステージ2では、高速なeSSB sweepが実行される。gNB10はBeam-SweepingによるeSSBを送信する。UE20はステージ1で決定した最適な受信ビーム方向で同期及びセルサーチを実行する。 In stage 2, high-speed eSSB sweep is executed. gNB10 transmits eSSB by Beam-Sweeping. The UE 20 performs synchronization and cell search in the optimum reception beam direction determined in stage 1.
 図7は、本発明の実施の形態におけるビームマネジメントの例を説明するための図である。図7に示される1)は、従来のビームマネジメントを示す例である。図7に示される2)は、本発明の実施の形態におけるビームマネジメントの第1の例であり、ステージ1とステージ2が周期20msで交互に繰り返される。図7に示される3)は、本発明の実施の形態におけるビームマネジメントの第2の例であり、ステージ1及びステージ2双方が5ms以内に実行され、周期20msで繰り返される。 FIG. 7 is a diagram for explaining an example of beam management in the embodiment of the present invention. 1) shown in FIG. 7 is an example showing conventional beam management. 2) shown in FIG. 7 is a first example of beam management according to the embodiment of the present invention, in which stages 1 and 2 are alternately repeated with a period of 20 ms. 3) shown in FIG. 7 is a second example of beam management in the embodiment of the present invention, in which both stage 1 and stage 2 are executed within 5 ms and repeated with a period of 20 ms.
 ここで、1BSBは4ビームから構成され、1周期(デフォルト20ms)は64BSBから構成されるものとする。例えば、Nt(SSBの数)*Nr(受信ビーム数)=64*4、SCSが120KHzの場合、従来のビームマネジメントではBeam-Sweepingプロセスを完了するまでに80msを要する。一方、図7の2)に示される新たなビームマネジメントでは40msでBeam-Sweepingプロセスを完了することができる。また図7の3)に示される新たなビームマネジメントでは20msでBeam-Sweepingプロセスを完了することができる。 Here, 1BSB is composed of 4 beams, and 1 cycle (default 20 ms) is composed of 64BSB. For example, when Nt (number of SSBs) * Nr (number of received beams) = 64 * 4 and SCS is 120 KHz, it takes 80 ms to complete the Beam-Sweeping process in the conventional beam management. On the other hand, in the new beam management shown in 2) of FIG. 7, the Beam-Sweeping process can be completed in 40 ms. Further, in the new beam management shown in 3) of FIG. 7, the Beam-Sweeping process can be completed in 20 ms.
 図8は、本発明の実施の形態におけるビームマネジメントステージ1用信号の構成例(1)を示す図である。BSBとして二つのタイプが規定されてよい。図8に示される信号を、BSBタイプ1とする。図8に示されるように、連続するM個のOFDMシンボルは、共通する周波数領域にSSを含む。ビームの方向は、OFDMシンボルごとに異なってもよい。以下、BSBあたりのビーム数をMと表記し、BSBタイプ1のビームの数Mは、Mとなる。 FIG. 8 is a diagram showing a configuration example (1) of a signal for beam management stage 1 according to an embodiment of the present invention. Two types may be specified as BSB. The signal shown in FIG. 8 is referred to as BSB type 1. As shown in FIG. 8 , consecutive M1 OFDM symbols include SS in the common frequency domain. The direction of the beam may be different for each OFDM symbol. Hereinafter, the number of beams per BSB is referred to as M, and the number M of BSB type 1 beams is M 1 .
 図9は、本発明の実施の形態におけるビームマネジメントステージ1用信号の構成例(2)を示す図である。図9に示される信号を、BSBタイプ2とする。図9に示されるように、連続するM個のOFDMシンボルそれぞれは、時間領域においてM個のSS及びCP(Cyclic Prefix)を含む。図9に示されるように、M個のSSそれぞれのビームの方向は異なってもよい。BSBタイプ2のビームの数Mは、M*Mとなる。 FIG. 9 is a diagram showing a configuration example (2) of a signal for beam management stage 1 according to an embodiment of the present invention. The signal shown in FIG. 9 is referred to as BSB type 2. As shown in FIG. 9, each of the consecutive M 1 OFDM symbols contains M 2 SS and CP (Cyclic Prefix) in the time domain. As shown in FIG. 9, the direction of the beam of each of the M 2 SSs may be different. The number M of the beams of BSB type 2 is M 1 * M 2 .
 なお、以下の説明では、明記しない限り、BSBは、BSBタイプ1に対応するものとする。 In the following explanation, BSB corresponds to BSB type 1 unless otherwise specified.
 図10は、本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(1)を示す図である。図10に示されるeSSBタイプ1は、連続する4OFDMシンボルから構成される。eSSBタイプ1は、NRとの互換性のため、SSBの構造を有する。図10に示されるように、OFDMシンボル#0にはPSS、OFDMシンボル#1にはPBCH、OFDMシンボル#2にはSSS及びPBCH、OFDMシンボル#3にはPBCHが配置される。BSBを構成するPSSは、Beam-Sweepingのみに使用される。 FIG. 10 is a diagram showing a configuration example (1) of a signal for beam management stage 2 according to the embodiment of the present invention. The eSSB type 1 shown in FIG. 10 is composed of consecutive 4 OFDM symbols. The eSSB type 1 has an SSB structure for compatibility with NR. As shown in FIG. 10, PSS is arranged in OFDM symbol # 0, PBCH is arranged in OFDM symbol # 1, SSS and PBCH are arranged in OFDM symbol # 2, and PBCH is arranged in OFDM symbol # 3. The PSS constituting the BSB is used only for Beam-Sweeping.
 図11は、本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(2)を示す図である。図11に示されるeSSBタイプ2は、高速にBeam-Sweepingを実行するため、PSSを省いた連続する3OFDMシンボルから構成される。図11に示されるように、OFDMシンボル#0にはPBCH、OFDMシンボル#1にはSSS及びPBCH、OFDMシンボル#2にはPBCHが配置される。eSSBタイプ2に含まれるSSSと、BSBを構成するPSSとを使用して、PCI(Physical cell identifier)が識別される。 FIG. 11 is a diagram showing a configuration example (2) of a signal for beam management stage 2 according to the embodiment of the present invention. The eSSB type 2 shown in FIG. 11 is composed of consecutive 3 OFDM symbols omitting PSS in order to execute Beam-Sweeping at high speed. As shown in FIG. 11, PBCH is arranged in OFDM symbol # 0, SSS and PBCH are arranged in OFDM symbol # 1, and PBCH is arranged in OFDM symbol # 2. The PCI (Physical cell identifier) is identified by using the SSS included in the eSSB type 2 and the PSS constituting the BSB.
 図12は、本発明の実施の形態におけるビームマネジメントステージ2用信号の構成例(3)を示す図である。図12に示されるeSSBタイプ3は、極小の遅延を実現するため、PBCHのみを含む連続する2OFDMシンボルから構成される。図11に示されるように、OFDMシンボル#0にはPBCH、OFDMシンボル#1にはPBCHが配置される。BSBを構成するSSは、PCIの識別に使用される。eSSBタイプ3のPBCHにおいて、周波数領域のリソースが増加されてもよい。 FIG. 12 is a diagram showing a configuration example (3) of a signal for beam management stage 2 according to the embodiment of the present invention. The eSSB type 3 shown in FIG. 12 is composed of consecutive 2 OFDM symbols containing only PBCH in order to realize a minimum delay. As shown in FIG. 11, PBCH is arranged in OFDM symbol # 0, and PBCH is arranged in OFDM symbol # 1. The SSs that make up the BSB are used to identify the PCI. In the eSSB type 3 PBCH, the resources in the frequency domain may be increased.
 上述のBSBタイプ1及びBSBタイプ2と、eSSBタイプ1、eSSBタイプ2及びeSSBタイプ3とをそれぞれ組み合わせることで、6種類の信号フォーマットが定義可能である。 By combining the above-mentioned BSB type 1 and BSB type 2 with eSSB type 1, eSSB type 2 and eSSB type 3, six types of signal formats can be defined.
 図13は、本発明の実施の形態におけるビームマネジメントステージ1の例を説明するための図である。以下、上述したステージ1の詳細を説明する。ステージ1は、高速なBeam-Sweepingを実行する手順であり、高速なビーム検索を実現する。5ms未満で連続するL個のBSBのグループを、BSバーストセットと定義する。ステージ1において、gNB10は候補となる送信ビームを順次切り替えて複数のBSBを送信する。またステージ1において、UE20は候補となる受信ビームを順次切り替えて例えばRSRP値に基づいて最適な受信ビームを識別する。 FIG. 13 is a diagram for explaining an example of the beam management stage 1 in the embodiment of the present invention. Hereinafter, the details of the above-mentioned stage 1 will be described. Stage 1 is a procedure for executing high-speed Beam-Sweeping, and realizes high-speed beam search. A group of L1 BSBs that are continuous in less than 5 ms is defined as a BS burst set. In stage 1, the gNB 10 sequentially switches the candidate transmission beams to transmit a plurality of BSBs. Further, in stage 1, the UE 20 sequentially switches the candidate received beams to identify the optimum received beam based on, for example, the RSRP value.
 ステージ1は、周期性を有してもよい。当該周期性の周期は、UE20によって決定されてもよいし、予め規定されてもよい。例えば、log(N)ビットのBSBインデックスが、サイクリックシフトによりBSBに変調されてもよい。LはeSSBのバーストセットの1周期に含まれるeSSBの個数であり、Nは実行されるステージ2の回数である。さらに、UE20は、最適な受信ビームを発見するまで、すべての受信ビームを順次切り替えてもよい。 Stage 1 may have periodicity. The periodic cycle may be determined by the UE 20 or may be predetermined. For example, the BSB index of the log 2 (N 2 L 2 ) bits may be modulated into the BSB by cyclic shift. L 2 is the number of eSSBs included in one cycle of the burst set of eSSBs, and N 2 is the number of stages 2 executed. Further, the UE 20 may sequentially switch all received beams until it finds the optimum received beam.
 ステージ1では最適な受信ビームのみを決定するので、ステージ1における送信ビームはビームペアの数を減少させるため、ステージ2の送信ビームよりも粗であってもよい。 Since only the optimum received beam is determined in stage 1, the transmitted beam in stage 1 may be coarser than the transmitted beam in stage 2 in order to reduce the number of beam pairs.
 図13に示されるステージ1の例では、L個の各BSBは4つの送信ビームでgNB10から送信される。例えば、奇数番目BSBと、偶数番目のBSBとで異なるビームとし、BSバーストセットで8つの送信ビームが使用されてもよい。一方、UE20は、すべての受信ビームを使用してもよい。 In the example of stage 1 shown in FIG. 13, each BSB of L 1 is transmitted from gNB 10 with four transmission beams. For example, the odd-numbered BSB and the even-numbered BSB may have different beams, and eight transmission beams may be used in the BS burst set. On the other hand, the UE 20 may use all received beams.
 図14は、本発明の実施の形態におけるビームマネジメントステージ2の例を説明するための図である。以下、上述したステージ2の詳細を説明する。ステージ2は、高速なeSSB sweepを実行する手順であり、同期及びセルサーチが実行される。ステージ2においてgNB10は送信ビームを順次切り替えてeSSBを送信する。一方、ステージ2においてUE20は、ステージ1で決定した最適な受信ビームに固定して、同期及びセルサーチを完了する。一般性は失われずに、BSB+eSSBタイプ1(NRと同様のSSB)の組み合わせを想定することができる。ここで、N個の連続するSSバーストセット内で、同期及びセルサーチが完了するように、N=Nとする。 FIG. 14 is a diagram for explaining an example of the beam management stage 2 in the embodiment of the present invention. Hereinafter, the details of the above-mentioned stage 2 will be described. Stage 2 is a procedure for executing a high-speed eSSB sweep, in which synchronization and cell search are executed. In stage 2, the gNB 10 sequentially switches the transmission beam to transmit the eSSB. On the other hand, in stage 2, the UE 20 is fixed to the optimum received beam determined in stage 1 and completes synchronization and cell search. A combination of BSB + eSSB type 1 (SSB similar to NR) can be assumed without losing generality. Here, N t = N 2 L 2 so that synchronization and cell search are completed in N 2 consecutive SS burst sets.
 ステージ1で最適な受信ビームをUE20は識別できているため、ステージ2においてUE20は、最適な受信ビームのみを使用して受信を行うことができる。したがって、送信されるeSSBの必要な数は、N=Nを超えない。 Since the UE 20 can identify the optimum reception beam in the stage 1, the UE 20 can perform reception using only the optimum reception beam in the stage 2. Therefore, the required number of eSSBs transmitted does not exceed N t = N 2 L 2 .
 図14に示されるステージ2の例では、L個の各eSSBは、送信ビームを順次切り替えてgNB10から送信される。一方、UE20は、ステージ1で決定した最適な受信ビームを固定的に使用して、同期及びセルサーチを実行する。UE20は、測定結果が最良のeSSBを示す情報をgNB10に報告して、gNB10が適用する送信ビームを指定してもよい。 In the example of stage 2 shown in FIG. 14, each of the two L eSSBs sequentially switches the transmission beam and is transmitted from the gNB 10. On the other hand, the UE 20 fixedly uses the optimum received beam determined in stage 1 to perform synchronization and cell search. The UE 20 may report to the gNB 10 information indicating the best eSSB in the measurement result and specify the transmission beam to which the gNB 10 applies.
 図15は、本発明の実施の形態におけるビームマネジメント送信モード1の例(1)を説明するための図である。本発明の実施の形態におけるビームマネジメントは、異なるシナリオ及びシステム要求に対応するため、ステージ1及びステージ2の周期性に基づく3つの送信モードを有する。以下、送信モード1について説明する。送信モード1の特徴は、平均遅延を最小化することである。図15は送信モード1をBSB+eSSBタイプ1に適用した例である。図15に示されるように、各ステージは、ビームペアの最大数に関連付けられる固定数の5ms長のウィンドウを占有する。図15に示される例では、5ms長のウィンドウ数は1である。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 15 is a diagram for explaining an example (1) of the beam management transmission mode 1 in the embodiment of the present invention. Beam management in embodiments of the present invention has three transmission modes based on stage 1 and stage 2 periodicity to accommodate different scenarios and system requirements. Hereinafter, the transmission mode 1 will be described. The feature of the transmission mode 1 is to minimize the average delay. FIG. 15 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 1. As shown in FIG. 15, each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs. In the example shown in FIG. 15, the number of windows having a length of 5 ms is 1. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図16は、本発明の実施の形態におけるビームマネジメント送信モード1の例(2)を説明するための図である。図16は送信モード1をBSB+eSSBタイプ2に適用した例である。図16に示されるように、各ステージは、ビームペアの最大数に関連付けられる固定数の5ms長のウィンドウを占有する。図16に示される例では、5ms長のウィンドウ数は1である。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 16 is a diagram for explaining an example (2) of the beam management transmission mode 1 in the embodiment of the present invention. FIG. 16 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 2. As shown in FIG. 16, each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs. In the example shown in FIG. 16, the number of windows having a length of 5 ms is 1. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図17は、本発明の実施の形態におけるビームマネジメント送信モード1の例(3)を説明するための図である。図17は送信モード1をBSB+eSSBタイプ3に適用した例である。図17に示されるように、各ステージは、ビームペアの最大数に関連付けられる固定数の5ms長のウィンドウを占有する。図17に示される例では、5ms長のウィンドウ数は1である。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 17 is a diagram for explaining an example (3) of the beam management transmission mode 1 in the embodiment of the present invention. FIG. 17 is an example in which the transmission mode 1 is applied to the BSB + eSSB type 3. As shown in FIG. 17, each stage occupies a fixed number of 5 ms long windows associated with the maximum number of beam pairs. In the example shown in FIG. 17, the number of windows having a length of 5 ms is 1. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図18は、本発明の実施の形態におけるビームマネジメント送信モード2の例(1)を説明するための図である。以下、送信モード2について説明する。送信モード2の特徴は、ビームペア数の変更をより適切にサポートすることである。図18は送信モード2をBSB+eSSBタイプ1に適用した例である。図18に示されるように、各ステージは単一の5msハーフフレームを占有し、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 18 is a diagram for explaining an example (1) of the beam management transmission mode 2 in the embodiment of the present invention. Hereinafter, the transmission mode 2 will be described. The feature of the transmission mode 2 is to more appropriately support the change of the number of beam pairs. FIG. 18 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 1. As shown in FIG. 18, each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図19は、本発明の実施の形態におけるビームマネジメント送信モード2の例(2)を説明するための図である。図19は送信モード2をBSB+eSSBタイプ2に適用した例である。図19に示されるように、各ステージは単一の5msハーフフレームを占有し、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 19 is a diagram for explaining an example (2) of the beam management transmission mode 2 in the embodiment of the present invention. FIG. 19 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 2. As shown in FIG. 19, each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図20は、本発明の実施の形態におけるビームマネジメント送信モード2の例(3)を説明するための図である。図20は送信モード2をBSB+eSSBタイプ3に適用した例である。図20に示されるように、各ステージは単一の5msハーフフレームを占有し、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 20 is a diagram for explaining an example (3) of the beam management transmission mode 2 in the embodiment of the present invention. FIG. 20 is an example in which the transmission mode 2 is applied to the BSB + eSSB type 3. As shown in FIG. 20, each stage occupies a single 5ms half frame, and stages 1 and 2 may be repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図21は、本発明の実施の形態におけるビームマネジメント送信モード3の例(1)を説明するための図である。以下、送信モード3について説明する。送信モード3の特徴は、統合されたフレーム構造である。図21は送信モード3をBSB+eSSBタイプ1に適用した例である。図21に示されるように、ステージ1及びステージ2は統合されて単一の5msハーフフレーム内に配置され、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 21 is a diagram for explaining an example (1) of the beam management transmission mode 3 in the embodiment of the present invention. Hereinafter, the transmission mode 3 will be described. The feature of the transmission mode 3 is an integrated frame structure. FIG. 21 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 1. As shown in FIG. 21, stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図22は、本発明の実施の形態におけるビームマネジメント送信モード3の例(2)を説明するための図である。図22は送信モード3をBSB+eSSBタイプ2に適用した例である。図22に示されるように、ステージ1及びステージ2は統合されて単一の5msハーフフレーム内に配置され、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 22 is a diagram for explaining an example (2) of the beam management transmission mode 3 in the embodiment of the present invention. FIG. 22 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 2. As shown in FIG. 22, stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図23は、本発明の実施の形態におけるビームマネジメント送信モード3の例(3)を説明するための図である。図23は送信モード3をBSB+eSSBタイプ3に適用した例である。図23に示されるように、ステージ1及びステージ2は統合されて単一の5msハーフフレーム内に配置され、ステージ1及びステージ2が繰り返されてもよい。ステージ1ではL個のBSBごとに4つの送信ビームが使用され、ステージ2ではL個のeSSBごとに1つの送信ビームが使用される。 FIG. 23 is a diagram for explaining an example (3) of the beam management transmission mode 3 in the embodiment of the present invention. FIG. 23 is an example in which the transmission mode 3 is applied to the BSB + eSSB type 3. As shown in FIG. 23, stage 1 and stage 2 may be integrated and placed in a single 5 ms half frame, with stage 1 and stage 2 being repeated. In stage 1, four transmit beams are used for each L 1 BSB, and in stage 2, one transmit beam is used for every two L eSSBs.
 図24は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(1)を説明するための図である。以下、SCSとMが異なる場合のそれぞれについてBSBを物理リソースにマッピングする方法について説明する。図24は、SCSが120KHzの場合であって、M=4及びL=64であるBSBの例を示す。図24に示されるように、PDCCH又はPUCCHのための送信リソースは各スロットに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{2,8}+14nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37}とする。図24に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置されるシンボルのインデックスは2,3,4,5,8,9,10,11である。なお、図24では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 24 is a diagram for explaining an example (1) of mapping a signal for the beam management stage 1 in the embodiment of the present invention. Hereinafter, a method of mapping BSB to a physical resource will be described for each case where SCS and M 1 are different. FIG. 24 shows an example of BSB in which SCS is 120 KHz and M 1 = 4 and L 1 = 64. As shown in FIG. 24, transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot. The index of the symbol at which the placement of the BSB is started is {2,8} + 14n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22 , 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37}. As shown in FIG. 24, in the first 10 slots in a 5 ms half frame, BSBs are arranged in all slots from slot 0 to slot 7. In the slot, the index of the symbol on which the BSB is placed is 2,3,4,5,8,9,10,11. Although the transmission mode 1 is shown in FIG. 24, the generality is not lost and it can be applied to other transmission modes.
 図25は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(2)を説明するための図である。図25は、SCSが240KHzの場合であって、M=4及びL=64であるBSBの例を示す。図25に示されるように、PDCCH又はPUCCHのための送信リソースは各スロットに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{4,8,16,20}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17}とする。図25に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置される1スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,6,7,8,9である。なお、図25では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 25 is a diagram for explaining an example (2) of signal mapping for the beam management stage 1 in the embodiment of the present invention. FIG. 25 shows an example of BSB in which SCS is 240 KHz and M 1 = 4 and L 1 = 64. As shown in FIG. 25, transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot. The index of the symbol at which the placement of the BSB is started is {4,8,16,20} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17}. As shown in FIG. 25, in the first 20 slots in the first 1/4 frame of 2.5 ms, BSBs are arranged in all slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4,5. , 6, 7, 8 and 9. Although the transmission mode 1 is shown in FIG. 25, the generality is not lost and it can be applied to other transmission modes.
 図26は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(3)を説明するための図である。図26は、SCSが120KHzの場合であって、M=8及びL=32であるBSBの例を示す。図26に示されるように、PDCCH又はPUCCHのための送信リソースは各スロットに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{4,16}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}とする。図26に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置される1スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,6,7,8,9である。なお、図26では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 26 is a diagram for explaining an example (3) of signal mapping for the beam management stage 1 in the embodiment of the present invention. FIG. 26 shows an example of BSB in which SCS is 120 KHz and M 1 = 8 and L 1 = 32. As shown in FIG. 26, the transmit resource for PDCCH or PUCCH is guaranteed to be located in each slot. The index of the symbol at which the placement of the BSB is started is {4,16} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}. As shown in FIG. 26, in the first 10 slots in a 5 ms half frame, BSBs are arranged in all slots from slot 0 to slot 7. In the slot, the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4,5. , 6, 7, 8 and 9. Although the transmission mode 1 is shown in FIG. 26, the generality is not lost and it can be applied to other transmission modes.
 図27は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(4)を説明するための図である。図27は、SCSが240KHzの場合であって、M=8及びL=32であるBSBの例を示す。図27に示されるように、PDCCH又はPUCCHのための送信リソースは2スロットごとに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{8,16,32,40}+56nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8}とする。図27に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置される1スロット目のシンボルのインデックスは8,9,10,11,12,13であり、2スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7,8,9であり、3スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11,12,13であり、4スロット目のシンボルのインデックスは0,1,2,3,4,5である。なお、図27では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 27 is a diagram for explaining an example (4) of signal mapping for the beam management stage 1 in the embodiment of the present invention. FIG. 27 shows an example of BSB in which SCS is 240 KHz and M 1 = 8 and L 1 = 32. As shown in FIG. 27, the transmit resource for PDCCH or PUCCH is guaranteed to be located every two slots. The index of the symbol at which the placement of the BSB is started is {8,16,32,40} + 56n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8}. As shown in FIG. 27, in the first 20 slots in the first 1/4 frame of 2.5 ms, BSBs are arranged in all slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the BSB is placed is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4, 5. , 6,7,8,9, the index of the symbol in the third slot is 4,5,6,7,8,9,10,11,12,13, and the index of the symbol in the fourth slot is 0. , 1, 2, 3, 4, 5. Although the transmission mode 1 is shown in FIG. 27, the generality is not lost and it can be applied to other transmission modes.
 図28は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(5)を説明するための図である。図28は、SCSが120KHzの場合であって、M=10及びL=32であるBSBの例を示す。図28に示されるように、PDCCH又はPUCCHのための送信リソースは各スロットに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{2}+14nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37}とする。図28に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置されるシンボルのインデックスは2,3,4,5,6,7,8,9,10,11である。なお、図28では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 28 is a diagram for explaining an example (5) of signal mapping for the beam management stage 1 in the embodiment of the present invention. FIG. 28 shows an example of BSB in which SCS is 120 KHz and M 1 = 10 and L 1 = 32. As shown in FIG. 28, transmission resources for PDCCH or PUCCH are guaranteed to be located in each slot. The index of the symbol at which the placement of the BSB is started is {2} + 14n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22 , 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37}. As shown in FIG. 28, in the first 10 slots in a 5 ms half frame, BSBs are arranged in all slots from slot 0 to slot 7. In the slot, the index of the symbol on which the BSB is placed is 2,3,4,5,6,7,8,9,10,11. Although the transmission mode 1 is shown in FIG. 28, the generality is not lost and it can be applied to other transmission modes.
 図29は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(6)を説明するための図である。図29は、SCSが240KHzの場合であって、M=10及びL=32であるBSBの例を示す。図29に示されるように、PDCCH又はPUCCHのための送信リソースは2スロットごとに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{4,14}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17}とする。図29に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置される1スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11,12,13であり、2スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7,8,9である。なお、図27では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 29 is a diagram for explaining an example (6) of signal mapping for the beam management stage 1 in the embodiment of the present invention. FIG. 29 shows an example of BSB in which SCS is 240 KHz and M 1 = 10 and L 1 = 32. As shown in FIG. 29, the transmit resource for PDCCH or PUCCH is guaranteed to be located every two slots. The index of the symbol at which the placement of the BSB is started is {4,14} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17}. As shown in FIG. 29, in the first 20 slots in the first 1/4 frame of 2.5 ms, BSBs are arranged in all slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the BSB is placed is 4,5,6,7,8,9,10,11,12,13, and the index of the symbol of the second slot is 0,1. , 2,3,4,5,6,7,8,9. Although the transmission mode 1 is shown in FIG. 27, the generality is not lost and it can be applied to other transmission modes.
 図30は、本発明の実施の形態におけるビームマネジメントステージ1用信号のマッピングの例(7)を説明するための図である。高周波数帯で使用されるさらに大きなSCS、例えば、480KHz又は960KHzにおいては、ビーム切替に要する期間が無視できなくなることが想定される。そこで、例えばSCSが480KHzの場合、図30に示されるようなBSBのフレーム構造としてもよい。図30に示されるように、PDCCH又はPUCCHのための送信リソースは2スロットごとに配置されることが保証される。BSBの配置が開始されるシンボルのインデックスは、{2,15}+28nとする。FR2に含まれるキャリア周波数に対して、1.25msの区間ごとにn={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}とする。図30に示されるように、5msのハーフフレームにおける先頭の40スロットでは、スロット0からスロット35までのすべてのスロットにBSBは配置される。スロット内では、BSBが配置される1スロット目のシンボルのインデックスは2,4,6,8,10,12であり、2スロット目のシンボルのインデックスは1,3,5,7,9,11である。すなわち、ビーム切替に要する時間が少なくとも1シンボル分確保される。なお、図30では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 30 is a diagram for explaining an example (7) of signal mapping for beam management stage 1 in the embodiment of the present invention. For larger SCSs used in the high frequency band, such as 480 KHz or 960 KHz, it is assumed that the period required for beam switching cannot be ignored. Therefore, for example, when the SCS is 480 KHz, the BSB frame structure as shown in FIG. 30 may be used. As shown in FIG. 30, transmission resources for PDCCH or PUCCH are guaranteed to be placed every two slots. The index of the symbol at which the placement of the BSB is started is {2,15} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17}. As shown in FIG. 30, in the first 40 slots in a 5 ms half frame, BSBs are arranged in all slots from slot 0 to slot 35. In the slot, the index of the symbol of the first slot in which the BSB is placed is 2,4,6,8,10,12, and the index of the symbol of the second slot is 1,3,5,7,9,11. Is. That is, the time required for beam switching is secured for at least one symbol. Although the transmission mode 1 is shown in FIG. 30, the generality is not lost and it can be applied to other transmission modes.
 図31は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(1)を説明するための図である。以下、SCSが異なる場合のそれぞれについてeSSBを物理リソースにマッピングする方法について説明する。図31は、SCSが120KHzの場合であって、L=64であるeSSBタイプ1の例を示す。eSSBタイプ1の配置が開始されるシンボルのインデックスは、{4,8,16,20}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}とする。図31に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにeSSBタイプ1は配置される。スロット内では、eSSBタイプ1が配置される1スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,6,7,8,9である。なお、図31では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 31 is a diagram for explaining an example (1) of mapping a signal for the beam management stage 2 in the embodiment of the present invention. Hereinafter, a method of mapping the eSSB to a physical resource will be described for each case where the SCS is different. FIG. 31 shows an example of eSSB type 1 in which SCS is 120 KHz and L 2 = 64. The index of the symbol at which the placement of the eSSB type 1 is started is {4,8,16,20} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}. As shown in FIG. 31, in the first 10 slots in the 5 ms half frame, the eSSB type 1 is arranged in all the slots from slot 0 to slot 7. In the slot, the index of the symbol of the first slot in which the eSSB type 1 is arranged is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 6, 7, 8, 9. Although the transmission mode 1 is shown in FIG. 31, the generality is not lost and it can be applied to other transmission modes.
 図32は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(2)を説明するための図である。図32は、SCSが240KHzの場合であって、L=64であるeSSBタイプ1の例を示す。eSSBタイプ1の配置が開始されるシンボルのインデックスは、{8,12,16,20,32,36,40,44}+56nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8}とする。図32に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにeSSBタイプ1は配置される。スロット内では、eSSBタイプ1が配置される1スロット目のシンボルのインデックスは8,9,10,11,12,13であり、2スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7,8,9であり、3スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11,12,13であり、4スロット目のシンボルのインデックスは0,1,2,3,4,5である。なお、図32では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 32 is a diagram for explaining an example (2) of signal mapping for the beam management stage 2 in the embodiment of the present invention. FIG. 32 shows an example of eSSB type 1 in which SCS is 240 KHz and L 2 = 64. The index of the symbol at which the placement of the eSSB type 1 is started is {8,12,16,20,32,36,40,44} + 56n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8}. As shown in FIG. 32, in the first 20 slots in the first 1/4 frame of 2.5 ms, the eSSB type 1 is arranged in all the slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the eSSB type 1 is arranged is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4. , 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the index of the symbol in the fourth slot. Is 0,1,2,3,4,5. Although the transmission mode 1 is shown in FIG. 32, the generality is not lost and it can be applied to other transmission modes.
 図33は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(3)を説明するための図である。高周波数帯で使用されるさらに大きなSCS、例えば、480KHz又は960KHzにおいては、ビーム切替に要する期間が無視できなくなることが想定される。そこで、例えばSCSが480KHzの場合、図33に示されるようなeSSBタイプ1のフレーム構造としてもよい。eSSBタイプ1の配置が開始されるシンボルのインデックスは、{3,8,16,21}+28nとする。FR2に含まれるキャリア周波数に対して、1.25msの区間ごとにn={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}とする。図33に示されるように、5msのハーフフレームにおける先頭の40スロットでは、スロット0からスロット35までのすべてのスロットにeSSBタイプ1は配置される。スロット内では、eSSBタイプ1が配置される1スロット目のシンボルのインデックスは3,4,5,6,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,7,8,9,10である。すなわち、ビーム切替に要する時間が少なくとも1シンボル分確保される。なお、図33では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 33 is a diagram for explaining an example (3) of signal mapping for the beam management stage 2 in the embodiment of the present invention. For larger SCSs used in the high frequency band, such as 480 KHz or 960 KHz, it is assumed that the period required for beam switching cannot be ignored. Therefore, for example, when the SCS is 480 KHz, the eSSB type 1 frame structure as shown in FIG. 33 may be used. The index of the symbol at which the placement of the eSSB type 1 is started is {3,8,16,21} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17}. As shown in FIG. 33, in the first 40 slots in the 5 ms half frame, the eSSB type 1 is arranged in all the slots from slot 0 to slot 35. In the slot, the index of the symbol of the first slot in which the eSSB type 1 is arranged is 3,4,5,6,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 7, 8, 9, 10. That is, the time required for beam switching is secured for at least one symbol. Although the transmission mode 1 is shown in FIG. 33, the generality is not lost and it can be applied to other transmission modes.
 図34は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(4)を説明するための図である。図34は、SCSが120KHzの場合であって、L=64であるeSSBタイプ2の例を示す。eSSBタイプ2の配置が開始されるシンボルのインデックスは、{3,6,9,16,19,22}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}とする。図34に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにeSSBタイプ2は配置される。スロット内では、eSSBタイプ2が配置される1スロット目のシンボルのインデックスは3,4,5,6,7,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,6,7,8,9,10である。なお、図34では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 34 is a diagram for explaining an example (4) of signal mapping for the beam management stage 2 in the embodiment of the present invention. FIG. 34 shows an example of eSSB type 2 in which SCS is 120 KHz and L 2 = 64. The index of the symbol at which the placement of eSSB type 2 is started is {3,6,9,16,19,22} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}. As shown in FIG. 34, in the first 10 slots in the 5 ms half frame, the eSSB type 2 is arranged in all the slots from slot 0 to slot 7. In the slot, the index of the symbol of the first slot in which the eSSB type 2 is arranged is 3,4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3. , 4, 5, 6, 7, 8, 9, 10. Although the transmission mode 1 is shown in FIG. 34, the generality is not lost and it can be applied to other transmission modes.
 図35は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(5)を説明するための図である。図35は、SCSが240KHzの場合であって、L=64であるeSSBタイプ2の例を示す。eSSBタイプ2の配置が開始されるシンボルのインデックスは、{6,9,12,15,18,21,32,35,38,41,44,47}+56nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8}とする。図35に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにeSSBタイプ2は配置される。スロット内では、eSSBタイプ2が配置される1スロット目のシンボルのインデックスは6,7,8,9,10,11,12,13であり、2スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7,8,9であり、3スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11,12,13であり、4スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7である。なお、図35では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 35 is a diagram for explaining an example (5) of signal mapping for the beam management stage 2 in the embodiment of the present invention. FIG. 35 shows an example of eSSB type 2 in which SCS is 240 KHz and L 2 = 64. The index of the symbol at which the placement of eSSB type 2 is started is {6,9,12,15,18,21,32,35,38,41,44,47} + 56n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8}. As shown in FIG. 35, in the first 20 slots in the first 1/4 frame of 2.5 ms, the eSSB type 2 is arranged in all the slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the eSSB type 2 is arranged is 6,7,8,9,10,11,12,13, and the index of the symbol of the second slot is 0,1,2. , 3, 4, 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the fourth slot. The index of the symbol of is 0,1,2,3,4,5,6,7. Although the transmission mode 1 is shown in FIG. 35, the generality is not lost and it can be applied to other transmission modes.
 図36は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(6)を説明するための図である。高周波数帯で使用されるさらに大きなSCS、例えば、480KHz又は960KHzにおいては、ビーム切替に要する期間が無視できなくなることが想定される。そこで、例えばSCSが480KHzの場合、図36に示されるようなeSSBタイプ2のフレーム構造としてもよい。eSSBタイプ2の配置が開始されるシンボルのインデックスは、{2,6,10,15,19,23}+28nとする。FR2に含まれるキャリア周波数に対して、1.25msの区間ごとにn={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}とする。図36に示されるように、5msのハーフフレームにおける先頭の40スロットでは、スロット0からスロット35までのすべてのスロットにeSSBタイプ2は配置される。スロット内では、eSSBタイプ2が配置される1スロット目のシンボルのインデックスは2,3,4,6,7,8,10,11,12であり、2スロット目のシンボルのインデックスは1,2,3,5,6,7,9,10,11である。すなわち、ビーム切替に要する時間が少なくとも1シンボル分確保される。なお、図36は送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 36 is a diagram for explaining an example (6) of signal mapping for the beam management stage 2 in the embodiment of the present invention. For larger SCSs used in the high frequency band, such as 480 KHz or 960 KHz, it is assumed that the period required for beam switching cannot be ignored. Therefore, for example, when the SCS is 480 KHz, the eSSB type 2 frame structure as shown in FIG. 36 may be used. The index of the symbol at which the placement of eSSB type 2 is started is {2,6,10,15,19,23} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17}. As shown in FIG. 36, in the first 40 slots in the 5 ms half frame, the eSSB type 2 is arranged in all the slots from slot 0 to slot 35. In the slot, the index of the symbol of the first slot in which the eSSB type 2 is arranged is 2,3,4,6,7,8,10,11,12, and the index of the symbol of the second slot is 1,2. , 3, 5, 6, 7, 9, 10, 11. That is, the time required for beam switching is secured for at least one symbol. Although FIG. 36 shows the transmission mode 1, the generality is not lost and the transmission mode can be applied to other transmission modes.
 図37は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(7)を説明するための図である。図37は、SCSが120KHzの場合であって、L=64であるeSSBタイプ3の例を示す。eSSBタイプ3の配置が開始されるシンボルのインデックスは、{4,6,8,10,16,18,20,22}+28nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}とする。図34に示されるように、5msのハーフフレームにおける先頭の10スロットでは、スロット0からスロット7までのすべてのスロットにeSSBタイプ3は配置される。スロット内では、eSSBタイプ3が配置される1スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11であり、2スロット目のシンボルのインデックスは2,3,4,5,6,7,8,9である。なお、図37では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 37 is a diagram for explaining an example (7) of signal mapping for the beam management stage 2 in the embodiment of the present invention. FIG. 37 shows an example of eSSB type 3 in which SCS is 120 KHz and L 2 = 64. The index of the symbol at which the placement of the eSSB type 3 is started is {4,6,8,10,16,18,20,22} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18}. As shown in FIG. 34, in the first 10 slots in the 5 ms half frame, the eSSB type 3 is arranged in all the slots from slot 0 to slot 7. In the slot, the index of the symbol of the first slot in which the eSSB type 3 is arranged is 4,5,6,7,8,9,10,11, and the index of the symbol of the second slot is 2,3,4. , 5, 6, 7, 8, 9. Although the transmission mode 1 is shown in FIG. 37, the generality is not lost and it can be applied to other transmission modes.
 図38は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(8)を説明するための図である。図38は、SCSが240KHzの場合であって、L=64であるeSSBタイプ3の例を示す。eSSBタイプ3の配置が開始されるシンボルのインデックスは、{8,10,12,14,16,18,20,22,32,34,36,38,40,42,44,46}+56nとする。FR2に含まれるキャリア周波数に対して、n={0,1,2,3,5,6,7,8}とする。図38に示されるように、2.5msの先頭1/4フレームにおける先頭の20スロットでは、スロット0からスロット15までのすべてのスロットにeSSBタイプ3は配置される。スロット内では、eSSBタイプ3が配置される1スロット目のシンボルのインデックスは8,9,10,11,12,13であり、2スロット目のシンボルのインデックスは0,1,2,3,4,5,6,7,8,9であり、3スロット目のシンボルのインデックスは4,5,6,7,8,9,10,11,12,13であり、4スロット目のシンボルのインデックスは0,1,2,3,4,5である。なお、図38では送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 38 is a diagram for explaining an example (8) of signal mapping for the beam management stage 2 in the embodiment of the present invention. FIG. 38 shows an example of eSSB type 3 in which SCS is 240 KHz and L 2 = 64. The index of the symbol at which the placement of eSSB type 3 is started is {8,10,12,14,16,18,20,22,32,34,36,38,40,42,44,46} + 56n. .. For the carrier frequency included in FR2, n = {0,1,2,3,5,6,7,8}. As shown in FIG. 38, in the first 20 slots in the first 1/4 frame of 2.5 ms, the eSSB type 3 is arranged in all the slots from slot 0 to slot 15. In the slot, the index of the symbol of the first slot in which the eSSB type 3 is arranged is 8, 9, 10, 11, 12, 13, and the index of the symbol of the second slot is 0, 1, 2, 3, 4. , 5, 6, 7, 8, 9, and the index of the symbol in the third slot is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and the index of the symbol in the fourth slot. Is 0,1,2,3,4,5. Although the transmission mode 1 is shown in FIG. 38, the generality is not lost and it can be applied to other transmission modes.
 図39は、本発明の実施の形態におけるビームマネジメントステージ2用信号のマッピングの例(9)を説明するための図である。高周波数帯で使用されるさらに大きなSCS、例えば、480KHz又は960KHzにおいては、ビーム切替に要する期間が無視できなくなることが想定される。そこで、例えばSCSが480KHzの場合、図39に示されるようなeSSBタイプ3のフレーム構造としてもよい。eSSBタイプ3の配置が開始されるシンボルのインデックスは、{2,5,8,11,15,18,21,24}+28nとする。FR2に含まれるキャリア周波数に対して、1.25msの区間ごとにn={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}とする。図39に示されるように、5msのハーフフレームにおける先頭の40スロットでは、スロット0からスロット35までのすべてのスロットにeSSBタイプ3は配置される。スロット内では、eSSBタイプ3が配置される1スロット目のシンボルのインデックスは2,3,5,6,8,9,11,12であり、2スロット目のシンボルのインデックスは1,2,4,5,7,8,10,11である。すなわち、ビーム切替に要する時間が少なくとも1シンボル分確保される。なお、図39は送信モード1について示しているが、一般性は失われず、他の送信モードにも適用できる。 FIG. 39 is a diagram for explaining an example (9) of signal mapping for the beam management stage 2 in the embodiment of the present invention. For larger SCSs used in the high frequency band, such as 480 KHz or 960 KHz, it is assumed that the period required for beam switching cannot be ignored. Therefore, for example, when the SCS is 480 KHz, the eSSB type 3 frame structure as shown in FIG. 39 may be used. The index of the symbol at which the placement of the eSSB type 3 is started is {2,5,8,11,15,18,21,24} + 28n. For the carrier frequency included in FR2, n = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, every 1.25 ms interval. 15, 16, 17}. As shown in FIG. 39, in the first 40 slots in the 5 ms half frame, the eSSB type 3 is arranged in all the slots from slot 0 to slot 35. In the slot, the index of the symbol of the first slot in which the eSSB type 3 is arranged is 2,3,5,6,8,9,11,12, and the index of the symbol of the second slot is 1,2,4. , 5, 7, 8, 10, 11. That is, the time required for beam switching is secured for at least one symbol. Although FIG. 39 shows the transmission mode 1, the generality is not lost and the transmission mode can be applied to other transmission modes.
 上述の実施例により、基地局10及び端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することで、初期アクセスに係るオーバヘッド及び遅延を低減することができる。 According to the above embodiment, the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping.
 すなわち、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 That is, the initial access can be efficiently executed in the wireless communication system.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 and the terminal 20 that execute the processes and operations described so far will be described. The base station 10 and the terminal 20 include a function for carrying out the above-described embodiment. However, the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
 <基地局10>
 図40は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図40に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図40に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 10>
FIG. 40 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention. As shown in FIG. 40, the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 40 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals and the like to the terminal 20. Further, the receiving unit 120 receives a message between network nodes from another network node.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、初期アクセスの設定に係る情報等である。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20. The content of the setting information is, for example, information related to the initial access setting.
 制御部140は、実施例において説明したように、初期アクセスの設定に係る制御を行う。また、制御部140は、送信ビームフォーミングを制御する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 The control unit 140 controls the setting of the initial access as described in the embodiment. Further, the control unit 140 controls the transmission beamforming. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
 <端末20>
 図41は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図41に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図41に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 20>
FIG. 41 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention. As shown in FIG. 41, the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in FIG. 41 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 may use PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) on another terminal 20 as D2D communication. Etc. are transmitted, and the receiving unit 220 receives PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、初期アクセスの設定に係る情報等である。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220. The setting unit 230 also stores preset setting information. The content of the setting information is, for example, information related to the initial access setting.
 制御部240は、実施例において説明したように、初期アクセスの設定に係る制御を行う。また、制御部240は、受信ビームフォーミングを制御する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 The control unit 240 controls the setting of the initial access as described in the embodiment. Further, the control unit 240 controls the received beamforming. The function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図40及び図41)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram (FIGS. 40 and 41) used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図42は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 42 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図40に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図41に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station 10 shown in FIG. 40 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 41 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although it has been described that the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be mounted by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、受信ビームフォーミングを順次切り替えて第1の信号を基地局から受信する受信部と、前記第1の信号の測定結果に基づいて、適用する受信ビームフォーミングを決定する制御部とを有し、前記受信部は、前記決定された受信ビームフォーミングを適用して、第2の信号を前記基地局から受信し、前記制御部は、前記第2の信号を用いて同期及びセルサーチを実行する端末が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, the receiving unit that sequentially switches the received beamforming to receive the first signal from the base station and the measurement result of the first signal are used. It has a control unit that determines the received beamforming to be applied, the receiving unit applies the determined receiving beamforming, receives a second signal from the base station, and the control unit receives the second signal from the base station. A terminal is provided that performs synchronization and cell search using the second signal.
 上記の構成により、基地局10及び端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することで、初期アクセスに係るオーバヘッド及び遅延を低減することができる。すなわち、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 With the above configuration, the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
 前記第1の信号は、同期信号のみで構成されてもよい。当該構成により、端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することができる。 The first signal may be composed of only a synchronization signal. With this configuration, the terminal 20 can execute beam management that enables high-speed Beam-Sweeping.
 前記第1の信号は、シンボルごとに異なる送信ビームフォーミングが適用されてもよい。当該構成により、端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することができる。 The first signal may be subjected to different transmission beamforming for each symbol. With this configuration, the terminal 20 can execute beam management that enables high-speed Beam-Sweeping.
 前記第2の信号は、PBCH(Physical broadcast channel)からのみ構成されてもよい。当該構成により、端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することができる。 The second signal may be configured only from PBCH (Physical broadcast channel). With this configuration, the terminal 20 can execute beam management that enables high-speed Beam-Sweeping.
 また、本発明の実施の形態によれば、シンボルごとに異なる送信ビームフォーミングを適用して第1の信号を端末に送信し、送信ビームフォーミングを順次切り替えて第2の信号を前記端末に送信する送信部と、前記第2の信号の測定結果を示す情報を前記端末から受信する受信部と、前記測定結果を示す情報に基づいて、適用する送信ビームフォーミングを決定する制御部とを有する基地局が提供される。 Further, according to the embodiment of the present invention, different transmission beamforming is applied to each symbol to transmit the first signal to the terminal, and the transmission beamforming is sequentially switched to transmit the second signal to the terminal. A base station having a transmission unit, a reception unit that receives information indicating the measurement result of the second signal from the terminal, and a control unit that determines the transmission beamforming to be applied based on the information indicating the measurement result. Is provided.
 上記の構成により、基地局10及び端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することで、初期アクセスに係るオーバヘッド及び遅延を低減することができる。すなわち、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 With the above configuration, the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
 また、本発明の実施の形態によれば、受信ビームフォーミングを順次切り替えて第1の信号を基地局から受信する受信手順と、前記第1の信号の測定結果に基づいて、適用する受信ビームフォーミングを決定する制御手順とを端末が実行し、前記決定された受信ビームフォーミングを適用して、第2の信号を前記基地局から受信し、前記第2の信号を用いて同期及びセルサーチを実行する通信方法が提供される。 Further, according to the embodiment of the present invention, the received beamforming to be applied is applied based on the receiving procedure of sequentially switching the received beamforming to receive the first signal from the base station and the measurement result of the first signal. The terminal executes the control procedure for determining the above, applies the determined received beamforming, receives the second signal from the base station, and executes synchronization and cell search using the second signal. Communication method is provided.
 上記の構成により、基地局10及び端末20は、高速なBeam-Sweepingを可能とするビームマネジメントを実行することで、初期アクセスに係るオーバヘッド及び遅延を低減することができる。すなわち、無線通信システムにおいて、初期アクセスを効率良く実行することができる。 With the above configuration, the base station 10 and the terminal 20 can reduce the overhead and delay related to the initial access by executing the beam management that enables high-speed Beam-Sweeping. That is, in the wireless communication system, the initial access can be efficiently executed.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed inventions are not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. May apply (as long as there is no conflict) to the matters described in. The boundary of the functional part or the processing part in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. Regarding the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of processing, the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station 10, various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 ( For example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these). In the above example, the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be stored in a specific location (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website. When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "wireless base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB" (GNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”, Terms such as "cell group," "carrier," and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by (Remote Radio Head). The term "cell" or "sector" is a part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the terminal 20 may have the functions of the base station 10 described above. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the above-mentioned user terminal.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. The subframe may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Slots may be time units based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTI shorter than normal TTI may be referred to as shortened TTI, short TTI, partial TTI (partial or fractional TTI), shortened subframe, short subframe, minislot, subslot, slot and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (eg, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 The bandwidth part (BWP: Bandwidth Part) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 なお、本開示におけるBSBは、第1の信号の一例である。eSSBは、第2の信号の一例である。 The BSB in the present disclosure is an example of the first signal. The eSSB is an example of a second signal.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
10    基地局又はgNB
110   送信部
120   受信部
130   設定部
140   制御部
20    端末又はUE
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 base station or gNB
110 Transmitter 120 Receiver 130 Setting 140 Control 20 Terminal or UE
210 Transmitter 220 Receiver 230 Setting 240 Control 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (6)

  1.  受信ビームフォーミングを順次切り替えて第1の信号を基地局から受信する受信部と、
     前記第1の信号の測定結果に基づいて、適用する受信ビームフォーミングを決定する制御部とを有し、
     前記受信部は、前記決定された受信ビームフォーミングを適用して、第2の信号を前記基地局から受信し、
     前記制御部は、前記第2の信号を用いて同期及びセルサーチを実行する端末。
    A receiver that sequentially switches receive beamforming to receive the first signal from the base station,
    It has a control unit that determines the received beamforming to be applied based on the measurement result of the first signal.
    The receiver applies the determined receive beamforming to receive a second signal from the base station.
    The control unit is a terminal that executes synchronization and cell search using the second signal.
  2.  前記第1の信号は、同期信号のみで構成される請求項1記載の端末。 The terminal according to claim 1, wherein the first signal is composed only of a synchronization signal.
  3.  前記第1の信号は、シンボルごとに異なる送信ビームフォーミングが適用される請求項2記載の端末。 The terminal according to claim 2, wherein the first signal is to which transmission beamforming different for each symbol is applied.
  4.  前記第2の信号は、PBCH(Physical broadcast channel)からのみ構成される請求項2記載の端末。 The terminal according to claim 2, wherein the second signal is composed only of a PBCH (Physical broadcast channel).
  5.  シンボルごとに異なる送信ビームフォーミングを適用して第1の信号を端末に送信し、送信ビームフォーミングを順次切り替えて第2の信号を前記端末に送信する送信部と、
     前記第2の信号の測定結果を示す情報を前記端末から受信する受信部と、
     前記測定結果を示す情報に基づいて、適用する送信ビームフォーミングを決定する制御部とを有する基地局。
    A transmission unit that applies different transmission beamforming for each symbol to transmit the first signal to the terminal, and sequentially switches the transmission beamforming to transmit the second signal to the terminal.
    A receiving unit that receives information indicating the measurement result of the second signal from the terminal, and
    A base station having a control unit that determines the transmitted beamforming to be applied based on the information indicating the measurement result.
  6.  受信ビームフォーミングを順次切り替えて第1の信号を基地局から受信する受信手順と、
     前記第1の信号の測定結果に基づいて、適用する受信ビームフォーミングを決定する制御手順とを端末が実行し、
     前記決定された受信ビームフォーミングを適用して、第2の信号を前記基地局から受信し、
     前記第2の信号を用いて同期及びセルサーチを実行する通信方法。
    The reception procedure of sequentially switching the receive beamforming and receiving the first signal from the base station,
    The terminal executes a control procedure for determining the received beamforming to be applied based on the measurement result of the first signal.
    Applying the determined receive beamforming, a second signal is received from the base station.
    A communication method for executing synchronization and cell search using the second signal.
PCT/JP2020/033638 2020-09-04 2020-09-04 Terminal, base station, and communication method WO2022049733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022546824A JPWO2022049733A1 (en) 2020-09-04 2020-09-04
PCT/JP2020/033638 WO2022049733A1 (en) 2020-09-04 2020-09-04 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033638 WO2022049733A1 (en) 2020-09-04 2020-09-04 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2022049733A1 true WO2022049733A1 (en) 2022-03-10

Family

ID=80490804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033638 WO2022049733A1 (en) 2020-09-04 2020-09-04 Terminal, base station, and communication method

Country Status (2)

Country Link
JP (1) JPWO2022049733A1 (en)
WO (1) WO2022049733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150851A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Ssb structure for nr communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129319A1 (en) * 2017-01-06 2018-07-12 Convida Wireless, Llc Mechanisms for efficient access and transmission in nr
US10277349B1 (en) * 2018-04-30 2019-04-30 Nxp Usa, Inc. Method and apparatus for fast and robust cell search for 5G and millimeter-wave wireless communication systems
WO2019093025A1 (en) * 2017-11-10 2019-05-16 ソニー株式会社 Communication device, communication method, and program
WO2020075618A1 (en) * 2018-10-10 2020-04-16 株式会社Nttドコモ Terminal and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129319A1 (en) * 2017-01-06 2018-07-12 Convida Wireless, Llc Mechanisms for efficient access and transmission in nr
WO2019093025A1 (en) * 2017-11-10 2019-05-16 ソニー株式会社 Communication device, communication method, and program
US10277349B1 (en) * 2018-04-30 2019-04-30 Nxp Usa, Inc. Method and apparatus for fast and robust cell search for 5G and millimeter-wave wireless communication systems
WO2020075618A1 (en) * 2018-10-10 2020-04-16 株式会社Nttドコモ Terminal and radio communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150851A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Ssb structure for nr communications
US11751152B2 (en) * 2020-11-06 2023-09-05 Qualcomm Incorporated SSB structure for NR communications

Also Published As

Publication number Publication date
JPWO2022049733A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2021044603A1 (en) Terminal and communication method
JPWO2020090097A1 (en) User equipment and base station equipment
WO2020230201A1 (en) User device and base station device
JP7073529B2 (en) Terminals, base stations and communication methods
WO2021199415A1 (en) Terminal, and communication method
WO2021149246A1 (en) Terminal, base station, and communication method
WO2020235318A1 (en) User equipment and base station device
WO2021149110A1 (en) Terminal and communication method
WO2021140673A1 (en) Terminal and communication method
WO2021044602A1 (en) Terminal and communication method
WO2022049733A1 (en) Terminal, base station, and communication method
WO2022149223A1 (en) Terminal, base station, and communication method
WO2022149194A1 (en) Terminal, base station, and communication method
WO2020246185A1 (en) Terminal and base station
WO2022079868A1 (en) Terminal and base station
WO2022009288A1 (en) Terminal, base station, and communication method
JP7203199B2 (en) Terminal, base station and communication method
US20220167322A1 (en) User equipment and base station device
WO2021070396A1 (en) Terminal and communication method
WO2021049014A1 (en) Terminal and communication method
JPWO2020174947A1 (en) Terminal and communication method
JPWO2020170445A1 (en) User equipment and base station equipment
WO2021161476A1 (en) Terminal, and communication method
WO2022085094A1 (en) Terminal and communication method
WO2022079781A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952468

Country of ref document: EP

Kind code of ref document: A1