WO2022003758A1 - Abnormality diagnosis device, power conversion device, and abnormality diagnosis method - Google Patents

Abnormality diagnosis device, power conversion device, and abnormality diagnosis method Download PDF

Info

Publication number
WO2022003758A1
WO2022003758A1 PCT/JP2020/025464 JP2020025464W WO2022003758A1 WO 2022003758 A1 WO2022003758 A1 WO 2022003758A1 JP 2020025464 W JP2020025464 W JP 2020025464W WO 2022003758 A1 WO2022003758 A1 WO 2022003758A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
noise
abnormality
unit
power
Prior art date
Application number
PCT/JP2020/025464
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 宮内
将仁 三好
健 開田
壮太 佐野
烈 菅原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/025464 priority Critical patent/WO2022003758A1/en
Priority to KR1020227043657A priority patent/KR20230010708A/en
Priority to DE112020007369.6T priority patent/DE112020007369T5/en
Priority to CN202080102292.3A priority patent/CN115885469A/en
Priority to JP2020560425A priority patent/JP6824494B1/en
Publication of WO2022003758A1 publication Critical patent/WO2022003758A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing phase or frequency of 2 mutually independent oscillations in demodulators)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/12Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into phase shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/15Indicating that frequency of pulses is either above or below a predetermined value or within or outside a predetermined range of values, by making use of non-linear or digital elements (indicating that pulse width is above or below a certain limit)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/185Electrical failure alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present application relates to an abnormality diagnosing device for diagnosing an abnormality in an electric motor, a power conversion device equipped with the abnormality diagnosing device to drive the electric motor, and a method for diagnosing an abnormality in the electric motor.
  • the frequency analysis is performed on the current flowing through the motor, and the abnormality is diagnosed from the frequency component appearing as a sideband wave of the power supply frequency component. Then, in the current flowing through the motor, the noise component is canceled by subtracting the waveforms of two periods having the same phase, and the pulsating component that appears when the rotor is abnormal is extracted to perform abnormality diagnosis. ..
  • the induction motor is driven by the PWM (pulse width modulation) control of the inverter, and the noise component generated in the vibration spectrum is removed and the noise component is removed.
  • the spectrum is inverse Fourier transformed, and the vibration acceleration waveform collected by the induction motor is obtained with the noise component removed.
  • the present application discloses a technique for solving the above-mentioned problems, and prevents an abnormality of a motor driven by pulse width modulation control of a power converter from the influence of noise including a low frequency region. It is an object of the present invention to provide an abnormality diagnosis device for reliable diagnosis. Another object of the present invention is to provide a power conversion device provided with such an abnormality diagnosis device, which can reliably diagnose an abnormality of an electric motor and drive the electric motor. Further, it is an object of the present invention to provide an abnormality diagnosis method for reliably diagnosing an abnormality of an electric motor driven by pulse width modulation control of a power converter by preventing the influence of noise including a low frequency region.
  • the abnormality diagnosis device disclosed in the present application diagnoses an abnormality of an electric motor driven by pulse width modulation control of a power conversion device.
  • the abnormality diagnosis device includes a detection unit that detects a current flowing through the motor, an analysis unit that frequency-analyzes the current detected by the detection unit, and outputs an analysis result.
  • a determination unit for determining an abnormality of the motor based on a spectral peak of at least one sideband wave component of the modulated wave obtained from the analysis result, and a frequency setting unit for presetting a noise frequency in the current are provided. .. Then, the determination unit estimates the presence or absence of noise interference in the spectrum peak of the sideband wave component based on the frequency of the sideband wave component and the set noise frequency, and determines the abnormality of the motor. ..
  • the power conversion device disclosed in the present application includes a power conversion unit that converts DC power into AC power and supplies power to the electric motor, and a control device that outputs and controls the power conversion unit by the pulse width modulation control.
  • the control device includes the abnormality diagnosis device and diagnoses an abnormality of the electric power.
  • the abnormality diagnosis method disclosed in the present application is a method for diagnosing an abnormality in an electric motor driven by pulse width modulation control of a power conversion device, and is a modulated wave having three frequencies used for the pulse width modulation control.
  • the maximum promise number of two or more frequencies including the modulated wave frequency is calculated, and the frequency that is an integral multiple of the maximum promise number is set as the noise frequency.
  • the third step the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
  • the abnormality diagnosis method disclosed in the present application is a method of diagnosing an abnormality of an electric motor driven by pulse width modulation control of a power conversion device, and the power is obtained from a modulated wave frequency used for the pulse width modulation control.
  • the first step of setting the frequency deviated by an integral multiple of the frequency of the AC power supply to which the converter is connected as the noise frequency the second step of detecting the current flowing through the electric motor and analyzing the frequency, and the second step of the second step.
  • the present invention includes a third step of determining an abnormality of the electric motor based on the spectral peak of the sideband wave component of the modulated wave obtained from the analysis result of the above. Then, in the third step, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
  • the abnormality diagnosis device disclosed in the present application it is possible to reliably diagnose an abnormality of an electric motor driven by pulse width modulation control of a power conversion device by preventing the influence of noise including a low frequency region. Obviously, it is possible to reliably diagnose an abnormality of an electric motor driven by pulse width modulation control of a power conversion device by preventing the influence of noise including a low frequency region. Obviously, it is possible to reliably diagnose an abnormality of an electric motor driven by pulse width modulation control of a power conversion device by preventing the influence of noise including a low frequency region. Become.
  • an abnormality of the motor driven by the pulse width modulation control of the power conversion device can be reliably diagnosed by preventing the influence of noise including a low frequency region. Will be possible.
  • the abnormality diagnosis method disclosed in the present application it is possible to reliably diagnose an abnormality of a motor driven by pulse width modulation control of a power converter by preventing the influence of noise including a low frequency region. It will be possible.
  • FIG. It is a figure which shows the structure of the power conversion apparatus and the abnormality diagnosis apparatus by Embodiment 1.
  • FIG. It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus by Embodiment 1.
  • FIG. It is a block diagram which shows the hardware structure of a part of the abnormality diagnosis apparatus by Embodiment 1.
  • FIG. It is a figure explaining the frequency spectrum waveform of the electric current in the abnormality diagnosis apparatus by Embodiment 1.
  • FIG. It is a waveform diagram explaining the pulse width modulation control of the power conversion apparatus by Embodiment 1.
  • FIG. It is a flowchart explaining the operation of the abnormality diagnosis apparatus by Embodiment 1.
  • FIG. It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus by Embodiment 2.
  • FIG. 9 is a frequency spectrum waveform of a current for explaining the noise frequency according to the fourth embodiment. It is a flowchart explaining the operation of the abnormality diagnosis apparatus according to Embodiment 4. It is a figure which shows the structure of the power conversion apparatus and the abnormality diagnosis apparatus according to Embodiment 5. It is a figure which shows the carrier wave by another example of Embodiment 5. It is a schematic diagram of the frequency spectrum waveform of the current for demonstrating the effect by Embodiment 6.
  • FIG. 1 is a diagram showing a configuration of a power conversion device and an abnormality diagnosis device according to the first embodiment.
  • the power conversion device 100 is connected between an AC power supply 1 composed of, for example, a commercial power source and an electric motor 2, and drives and controls the electric motor 2.
  • the power conversion device 100 includes a power conversion unit 10 and a control device 20 that outputs and controls the power conversion unit 10. Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30 diagnoses the abnormality of the electric motor 2 based on the current i.
  • the current sensor 3 may be built in the power conversion device 100 or may be externally attached, and the number and position thereof are not limited to those shown in the figure.
  • the power conversion unit 10 includes a converter unit 10A, an inverter unit 10B, and a smoothing capacitor 10C, which are connected via a DC bus.
  • the converter unit 10A converts the AC power from the AC power supply 1 into DC power and outputs it to the smoothing capacitor 10C
  • the inverter unit 10B converts the DC power of the smoothing capacitor 10C into AC power and supplies power to the electric motor 2. ..
  • the AC power supply 1, the electric motor 2, and the power conversion device 100 show a three-phase configuration, but the present invention is not limited to this.
  • the converter unit 10A is composed of a three-phase bridge circuit including six diodes Da, and the input / output lines of each phase are connected to the AC power supply 1.
  • the inverter unit 10B is composed of a three-phase bridge circuit including six switching elements Q in which diodes Db are connected in antiparallel to each other, and input / output lines of each phase are connected to the motor 2.
  • the switching element Q for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (metric-axis-semiconductor transistor) or the like is used.
  • the AC power from the AC power supply 1 is rectified by the converter unit 10A, converted into DC power, and output to the smoothing capacitor 10C.
  • the control device 20 generates a gate signal G to each switching element Q of the inverter unit 10B by pulse width modulation control (PWM control), and turns the switching element Q on and off to control the switching element Q from the power conversion unit 10 to the electric motor 2. Output the desired power.
  • PWM control pulse width modulation control
  • the power conversion device 100 drives the electric motor 2.
  • the configurations of the converter unit 10A and the inverter unit 10B are not limited to those shown in the figure.
  • the power conversion unit 10 is provided with a converter unit 10A and is connected to the AC power supply 1, but there is an inverter unit 10B that converts DC power into AC power and supplies power to the motor 2.
  • the converter unit 10A may be omitted.
  • the abnormality diagnosis device 30 has a modulated wave frequency f0 and a carrier frequency fc, which are frequencies of the modulated wave (fundamental wave), the carrier wave, and the clock signal (CLK) for sampling used by the control device 20 in the PWM control of the power conversion unit 10. ,
  • the sampling frequency fs is acquired. Then, the abnormality diagnosis device 30 performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
  • FIG. 2 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30.
  • the abnormality diagnosis device 30 includes a detection unit 31 for detecting the current i flowing in the motor 2, an analysis unit 32 for frequency analysis of the current i, and a noise frequency (noise frequency fn ⁇ ) in the current i.
  • a frequency setting unit 33 for presetting the above and a determination unit 34 for determining an abnormality of the electric motor 2 are provided.
  • the detection unit 31 acquires the output of the current sensor 3 and detects the current waveform in the current i of at least one phase flowing through the motor 2.
  • the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform.
  • the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple as the noise frequency fn ⁇ .
  • the determination unit 34 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 34a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fn ⁇ , and the sideband wave component presumed to have noise interference is excluded from the abnormality determination.
  • the processor 5 executes the control program input from the storage device 6.
  • the storage device 6 includes an auxiliary storage device and a volatile storage device.
  • a control program is input to the processor 5 from the auxiliary storage device via the volatile storage device.
  • the processor 5 outputs data such as calculation results to the volatile storage device of the storage device 6, and stores these data in the auxiliary storage device via the volatile storage device as needed.
  • the sideband wave component of the modulated wave which is a specific frequency component, increases in the current i.
  • the rotation frequency of the rotor is fr due to the dynamic eccentricity of the rotor or vibration caused by an abnormality
  • increases based on the frequency (f0 ⁇ fr).
  • k1 and k2 are positive integers, respectively.
  • the conductor bar of the cage rotor is damaged, the sideband wave component of the frequency ((1 ⁇ 2s) ⁇ f0) increases when the slip is s.
  • the sideband wave component deviated from the modulated wave frequency f0 increases by a characteristic frequency determined by the location of the scratch and the shape of the bearing.
  • the characteristic frequency is N ⁇ fr (1-dcos ⁇ / D) / 2 Will be.
  • N, d, D, and ⁇ are the number of balls, the diameter of the balls, the pitch diameter, and the contact angle in the bearing, respectively.
  • sideband wave or sideband wave component refers to the sideband wave of the modulated wave or the sideband wave component of the modulated wave.
  • FIG. 4 is a diagram illustrating a frequency spectrum waveform of the current i in the abnormality diagnosis device 30 when there is an abnormality in the electric motor 2.
  • a plurality of spectra 41 and 42 appear on both sides of the spectrum 40 having the modulated wave frequency f0.
  • the spectrum 41 of the sideband wave component of the modulated wave appears at a frequency (f0 ⁇ fr) deviated by the rotation frequency fr on both sides of the modulated wave frequency f0, and further, the noise component caused by the switching operation of the inverter unit 10B.
  • the spectrum 42 appears.
  • FIG. 5 is a waveform diagram illustrating PWM control of the power conversion device 100.
  • the modulated wave M is compared with the carrier wave Cr to generate a gate signal G.
  • the modulated wave M is sampled at the timing of the clock signal (CLK), the value of the modulated wave M is temporarily stored, and the value is compared with the carrier wave Cr.
  • the carrier frequency fc or the sampling frequency fs is not a multiple of the modulated wave frequency f0
  • the spectrum 42 of the noise component caused by the switching operation of the inverter unit 10B is displayed at the greatest common divisor of those values and an integral multiple thereof. Occurs.
  • the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple as the noise frequency fn ⁇ . .. When the greatest common divisor GCD is the modulated wave frequency f0, the noise frequency fn ⁇ is not set.
  • the abnormality diagnosis device 30 detects the current waveform of at least one phase of the current i of each phase current i flowing from the power conversion unit 10 of the power conversion device 100 to the electric motor 2 by the detection unit 31.
  • the detection unit 31 shall detect the current waveforms for three phases.
  • the current sensor 3 may detect each phase current i of the three phases, or may detect two phases and obtain the current of the remaining phases by calculation (step S1).
  • the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform (step S2).
  • the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs from the control device 20 of the power conversion device 100 (step S3). Then, the frequency setting unit 33 calculates the greatest common divisor GCD of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, and further calculates an integral multiple of the greatest common divisor GCD (step S4).
  • the noise frequency fn ⁇ is set within a range that does not exceed the measurable range.
  • the greatest common divisor GCD is a value lower than fc / 2.
  • the noise frequency fn ⁇ to be set includes a frequency in the frequency domain lower than fc / 2, and is generally set to include a frequency lower than (fc-4f0) (step S5).
  • the determination unit 34 estimates the presence or absence of noise interference at the spectral peak of the sideband wave component of the modulated wave based on the analysis result 32a derived in step S2 and the noise frequency fn ⁇ set in step S5. Specifically, it is determined whether the frequency of the sideband wave component (spectrum 41) of the modulated wave overlaps or is close to the noise frequency fn ⁇ , and it is estimated that there is noise interference. Since the sideband wave component (spectrum 41) of the modulated wave that increases due to the abnormal sign of the motor 2 is a specific frequency component as described above, the determination unit 34 monitors the specific frequency component and sets the frequency.
  • the set value is set to several Hz, for example, 2 Hz.
  • the difference is equal to or greater than the set value, the peak of the spectrum 41 is not affected by the noise component, and noise interference does not occur (step S6).
  • the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (step S7), and the motor 2 is based on the other sideband wave components.
  • the abnormality is determined and the determination result 34a is output.
  • the spectral peak of the sideband wave component exceeds a preset reference value, it is determined to be abnormal.
  • the reference value is set, for example, based on the spectral peak of the modulated wave frequency f0 (step S8).
  • the frequency setting unit 33 does not set the noise frequency fn ⁇ and proceeds to step S8. Then, the determination unit 34 determines the abnormality of the motor 2 based on the spectral peak of the sideband wave component.
  • the abnormality diagnosis device 30 sets the frequency (noise frequency fn ⁇ ) of the noise component in the current i flowing through the motor 2 in advance, and analyzes the current i by the frequency of the modulated wave. Abnormal diagnosis is performed for the lateral band component. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fn ⁇ , and the sideband wave component presumed to have noise interference is excluded. The anomaly is determined based on the spectral peaks of the remaining sideband components. Therefore, erroneous diagnosis due to the influence of noise including a low frequency region can be prevented, and abnormality diagnosis of the motor 2 can be performed with high reliability.
  • the noise frequency fn ⁇ is set to a frequency of the maximum promised GCD of the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs used for PWM control, and an integral multiple thereof, so that noise including a low frequency region is included.
  • the influence of the ingredients can be reliably prevented.
  • the sideband wave component is estimated to have noise interference, so that noise interference can be estimated with high reliability.
  • the noise frequency fn ⁇ is set within a range that does not exceed the measurable range, it may be set only in a frequency region lower than 1/2 of the carrier frequency fc.
  • the maximum promise number GCD calculated by the frequency setting unit 33 is the modulated wave frequency f0
  • the noise frequency fn ⁇ is not set, but the modulated wave frequency f0 and its integral multiple are set as the noise frequency fn ⁇ as it is.
  • the frequency component is not close to the side band component of the modulated wave.
  • the carrier wave Cr by the triangular wave is shown for the PWM control of the power conversion device 100, the carrier wave Cr is not limited to the triangular wave, and a sine wave may be used. Further, in order to improve the voltage utilization rate, a third harmonic may be superimposed on the modulated wave M. In that case, the value of the greatest common divisor GCD does not change, and the noise frequency fn ⁇ can be set in the same manner.
  • FIG. 7 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30A according to the second embodiment.
  • the abnormality diagnosis device 30A includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, and a determination unit 34, and further includes a notification unit 35, as in the first embodiment. If there is a sideband wave component presumed to have noise interference, the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (see step S7 in FIG. 6), and outputs a notification command 34b to the notification unit 35. do. Then, the notification unit 35 outputs a notification signal 35a that notifies the outside that there is noise interference. Other configurations and operations are the same as those in the first embodiment.
  • the sideband wave component may not be excluded from the target of abnormality diagnosis, and the notification signal 35a may only be output from the notification unit 35. In that case, the user is notified to call attention, and the user can consider the influence of the noise component on the determination result 34a from the abnormality diagnosis device 30A, and as a result, erroneous diagnosis can be prevented.
  • FIG. 8 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30B according to the third embodiment.
  • the abnormality diagnosis device 30B includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, a determination unit 36, a noise detection unit 37, and a storage unit, as in the first embodiment.
  • a unit 38 and a switch 39 are provided.
  • the configuration and operation other than the determination unit 36, the noise detection unit 37, the storage unit 38, and the switch 39 are the same as those in the first embodiment.
  • the detection unit 31 acquires the output of the current sensor 3 and detects the current waveform in the current i of at least one phase flowing through the motor 2.
  • the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform.
  • the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple within a range not exceeding the measurable range. Set as the noise frequency fn ⁇ .
  • the noise detection unit 37 detects the magnitude of noise at the noise frequency fn ⁇ of the current i, for example, the value of the spectral peak of the noise component from the analysis result 32a by the analysis unit 32 during the normal operation of the electric motor 2.
  • the detection result is stored in the storage unit 38.
  • the noise detection by the noise detection unit 37 is performed in advance during the normal operation of the motor 2 prior to the abnormality diagnosis of the motor 2.
  • the switch 39 selectively switches the output destination of the analysis result 32a of the analysis unit 32 to one of the noise detection unit 37 and the determination unit 36.
  • the determination unit 36 is selected when the abnormality of the motor 2 is diagnosed, and the noise detection unit 37 is selected when the noise is detected in advance during the normal operation of the motor 2.
  • the determination unit 36 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 36a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fn ⁇ . Specifically, as in the first embodiment, when the difference between the frequency of the sideband wave component of the modulated wave and the noise frequency fn ⁇ is less than the set value, the frequency of the sideband wave component and the noise frequency fn ⁇ overlap or are close to each other. It is presumed that there is noise interference.
  • the determination unit 36 extracts the magnitude of the noise of the noise frequency fn ⁇ , which is the noise interference source, from the storage unit 38. Then, with respect to the sideband wave component of the noise interference destination, the abnormality of the electric motor 2 is determined based on the spectral peak of the sideband wave component and the magnitude of the extracted noise. Specifically, for example, when the value obtained by subtracting the spectral peak value of the noise component from the spectral peak value of the sideband wave component exceeds a preset reference value, it is determined to be abnormal.
  • the reference value is set, for example, based on the spectral peak of the modulated wave frequency f0.
  • the abnormality diagnosis device 30B sets the frequency (noise frequency fn ⁇ ) of the noise component in the current i flowing through the motor 2 in advance, and analyzes the current i by the frequency of the modulated wave. Abnormal diagnosis is performed for the lateral band component. Further, prior to the abnormality diagnosis, the abnormality diagnosis device 30B detects the magnitude of noise at the noise frequency fn ⁇ of the current i from the analysis result 32a by the analysis unit 32 during the normal operation of the electric motor 2, and the detection result.
  • the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fn ⁇ , and the spectrum peak of the sideband wave component estimated to have noise interference is obtained. , Used for abnormality judgment in consideration of the magnitude of noise.
  • the sideband wave component presumed to have noise interference is also used for the abnormality diagnosis without removing it, the sideband wave component to be monitored for the abnormality diagnosis can be reliably monitored and the abnormality diagnosis of the motor 2 can be surely performed. ..
  • the noise detection by the noise detection unit 37 is obtained from the analysis result 32a of the current i during normal operation of the motor 2, but is obtained from the result of frequency analysis by detecting the output voltage to the motor 2. You can also do things. In that case, it is not particularly necessary to detect it during normal operation of the motor 2, and the magnitude of noise corresponding to normal operation at the noise frequency fn ⁇ of the current i can be calculated from the result of the frequency analysis of the detected voltage.
  • the calculation result can be used by the determination unit 36 without being stored in the storage unit 38, and the storage unit 38 may be omitted.
  • both the result of the frequency analysis of the detected voltage and the detection result of the noise obtained from the analysis result 32a of the current i during the normal operation of the electric motor 2 can be used by the determination unit 36, and the abnormality determination can be made. Accuracy is improved.
  • the notification unit 35 may be provided by applying the second embodiment to notify the user that there is an estimation of noise interference.
  • FIG. 9 is a diagram showing the configuration of the power conversion device 100 and the abnormality diagnosis device 30C according to the fourth embodiment.
  • the power conversion device 100 is configured in the same manner as in the first embodiment, and includes a power conversion unit 10 and a control device 20 that outputs and controls the power conversion unit 10. Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30 diagnoses the abnormality of the electric motor 2 based on the current i.
  • the power conversion unit 10 includes a converter unit 10A, an inverter unit 10B, and a smoothing capacitor 10C, which are connected via a DC bus.
  • the converter unit 10A cannot be omitted, and the AC power from the AC power supply 1 is converted into DC power and output to the smoothing capacitor 10C.
  • the inverter unit 10B converts the DC power of the smoothing capacitor 10C into AC power and supplies power to the motor 2.
  • the power conversion unit 10 indicates that the AC power supply 1, the electric motor 2, and the power conversion device 100 have a three-phase configuration, but the present invention is not limited to this.
  • the AC power from the AC power supply 1 is rectified by the converter unit 10A, converted into DC power, and output to the smoothing capacitor 10C.
  • the control device 20 generates a gate signal G to each switching element Q of the inverter unit 10B by PWM control, controls the switching element Q on and off, and outputs desired power from the power conversion unit 10 to the electric motor 2. .. In this way, the power conversion device 100 drives the electric motor 2.
  • the DC voltage of the smoothing capacitor 10C and the AC voltage output to the electric motor 2 slightly fluctuate at the frequency of the AC power supply 1 and a frequency that is an integral multiple of the frequency, and the sideband wave deviates from the modulated wave frequency f0 by that value.
  • a component (noise component) is generated in the current i.
  • the abnormality diagnosis device 30C acquires the frequency of the modulated wave (modulated wave frequency f0) used by the control device 20 in the PWM control of the power conversion unit 10 and the frequency of the AC power supply 1 (AC power supply frequency fac). Then, the abnormality diagnosis device 30C performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
  • FIG. 10 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30C.
  • the abnormality diagnosis device 30C includes a detection unit 31 for detecting the current i flowing in the motor 2, an analysis unit 32 for frequency analysis of the current i, and a noise frequency (noise frequency fn ⁇ ) in the current i.
  • the frequency setting unit 33A is provided in advance, and the determination unit 34 for determining an abnormality of the electric motor 2 is provided.
  • the detection unit 31 and the analysis unit 32 operate in the same manner as in the first embodiment.
  • the frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac, and calculates and sets the following frequencies as the noise frequency fn ⁇ .
  • m and n are positive integers, respectively.
  • the determination unit 34 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 34a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fn ⁇ , and the sideband wave component presumed to have noise interference is excluded from the abnormality determination.
  • FIG. 11 is a frequency spectrum waveform of the current i for explaining the noise frequency.
  • the modulated wave frequency f0 and the AC power supply frequency fac are 50 Hz and 60 Hz, respectively, the frequency is a multiple of the modulated wave frequency f0 (100 Hz, 150 Hz, 200 Hz), and the frequencies are 10 Hz and 70 Hz separately. , 110 Hz, 170 Hz, the spectrum of the noise component appears.
  • the abnormality diagnosis device 30C detects the current waveform of the current i for at least one phase among the phase currents i flowing from the power conversion unit 10 of the power conversion device 100 to the electric motor 2 as in the first embodiment. Detected by the unit 31 (step S1), the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform (step S2).
  • the frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac (step SS3). Then, as described above, the frequency setting unit 33A has the frequency setting unit 33A.
  • the determination unit 34 estimates the presence or absence of noise interference at the spectral peak of the sideband wave component of the modulated wave based on the analysis result 32a derived in step S2 and the noise frequency fn ⁇ set in step S5. Specifically, it is determined whether the frequency of the sideband wave component (spectrum 41) of the modulated wave overlaps or is close to the noise frequency fn ⁇ , and it is estimated that there is noise interference. In this case as well, as in the first embodiment, the determination unit 34 compares a specific frequency component (sideband wave component) that increases due to an abnormality sign with the noise frequency fn ⁇ , and makes a difference. If it is less than the set value, it is judged that they are duplicated or close to each other, and it is estimated that there is noise interference. Also in this case, the set value is set to several Hz, for example, 2 Hz (step S6).
  • the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (step S7), and the motor 2 is based on the other sideband wave components. Judge the abnormality of. At that time, if the spectral peak of the sideband wave component exceeds a preset reference value, it is determined to be abnormal.
  • the reference value is set, for example, based on the spectral peak of the modulated wave frequency f0 (step S8).
  • the abnormality diagnosis device 30C sets the frequency (noise frequency fn ⁇ ) of the noise component in the current i flowing through the motor 2 in advance, and the current i is frequency-analyzed to obtain the modulated wave. Abnormal diagnosis is performed for the lateral band component. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fn ⁇ , and the sideband wave component presumed to have noise interference is excluded. The anomaly is determined based on the spectral peaks of the remaining sideband components.
  • the noise component including the low frequency region in this case, the noise component caused by the modulated wave frequency f0 and the AC power frequency fac, and the abnormality diagnosis of the motor 2 can be performed with high reliability.
  • the sideband wave component is estimated to have noise interference, so that noise interference can be estimated with high reliability.
  • the noise frequency fn ⁇ is set within a range that does not exceed the measurable range, it may be set only in a frequency region lower than 1/2 of the carrier frequency fc.
  • the notification unit 35 may be provided by applying the above-described second embodiment to the fourth embodiment to notify the user that the presence or absence of noise interference has been estimated.
  • the third embodiment may be applied to the fourth embodiment.
  • a noise detection unit 37, a storage unit 38, and a switch 39 are provided to detect and store the magnitude of noise at the noise frequency fn ⁇ of the current i during normal operation of the motor 2 prior to the abnormality diagnosis. Keep it. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fn ⁇ , and the spectrum peak of the sideband wave component estimated to have noise interference is obtained. , Used for abnormality judgment in consideration of the magnitude of noise. As a result, the sideband wave component to be monitored for the abnormality diagnosis can be reliably monitored, and the abnormality diagnosis of the motor 2 can be reliably performed.
  • the noise detection by the noise detection unit 37 is obtained from the result of frequency analysis by detecting the line voltage output to the motor 2 or the DC voltage of the smoothing capacitor 10C. You can also. In that case, it is not particularly necessary to detect it during normal operation of the motor 2, and the magnitude of noise corresponding to normal operation at the noise frequency fn ⁇ of the current i can be calculated from the result of the frequency analysis of the detected voltage. The calculation result can be used without being stored in the storage unit 38, and the storage unit 38 may be omitted. Further, both the result of the frequency analysis of the detected voltage and the detection result of the noise obtained from the analysis result 32a of the current i during the normal operation of the motor 2 can be used, and the accuracy of the abnormality determination is improved. ..
  • the frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac to set the above-mentioned noise frequency fn ⁇ , which was shown in the first embodiment.
  • the noise frequency fn ⁇ may also be set.
  • the frequency setting unit 33A acquires the modulated wave frequency f0, the carrier wave frequency fc, the sampling frequency fs, and the AC power supply frequency fac, and calculates and sets the noise frequency fn ⁇ and the noise frequency fn ⁇ .
  • the influence of the noise component can be widely suppressed to prevent erroneous diagnosis, and the abnormality diagnosis of the motor 2 can be performed more reliably.
  • abnormality diagnosis devices 30 and 30A to 30C are shown to be outside the power conversion device 100, they may be inside the control device 20 of the power conversion device 100. , The same effect can be obtained, and the exchange of information necessary for setting the noise frequencies fn ⁇ and fn ⁇ becomes easy.
  • FIG. 13 is a diagram showing the configuration of the power conversion device 100A according to the fifth embodiment.
  • the power conversion device 100A includes a power conversion unit 10 configured in the same manner as in the first embodiment, and a control device 20A that outputs and controls the power conversion unit 10.
  • the control device 20A includes an inverter control unit 21 for controlling the output of the power conversion unit 10 and an abnormality diagnosis device 30D. Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30D diagnoses the abnormality of the electric motor 2 based on the current i.
  • the inverter control unit 21 In the control device 20A, the inverter control unit 21 generates a gate signal G to each switching element Q of the inverter unit 10B by PWM control, and controls the switching element Q on and off to control the switching element Q from the power conversion unit 10 to the electric motor 2. Output the desired power. As a result, the power conversion device 100A drives the electric motor 2.
  • the abnormality diagnosis device 30D has a modulated wave frequency f0, a carrier wave frequency fc, and a sampling frequency fs, which are frequencies of a modulated wave (fundamental wave), a carrier wave, and a clock signal (CLK) for sampling used by the inverter control unit 21 in PWM control. To get. Then, the abnormality diagnosis device 30D performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
  • the abnormality diagnosis device 30D includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, and a determination unit 34, as in the abnormality diagnosis device 30 shown in the first embodiment, and includes the detection unit 31, the analysis unit 32, and the abnormality diagnosis device 30.
  • the frequency setting unit 33 operates in the same manner as in the first embodiment.
  • the determination unit 34 estimates the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave based on the frequency of the sideband wave component and the noise frequency fn ⁇ . When there is no noise interference, the determination unit 34 makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component, as in the first embodiment. Then, when there is noise interference, the determination unit 34 interrupts the abnormality diagnosis and transmits the notification signal SS1 to the inverter control unit 21.
  • the inverter control unit 21 When the inverter control unit 21 receives the notification signal SS1 notifying the interruption of the abnormality diagnosis from the abnormality diagnosis device 30D, the inverter control unit 21 changes the carrier frequency fc and outputs the power conversion unit 10 by PWM control using the changed carrier frequency fc. It controls and drives the electric motor 2.
  • the carrier frequency fc can be easily changed without directly affecting the output of the power conversion unit 10.
  • each part operates again to continue the abnormality diagnosis. Since the noise frequency fn ⁇ changes when the carrier frequency fc is changed, the presence or absence of noise interference at the spectral peak of the sideband wave component also changes. As a result, the determination unit 34 can derive an estimation without noise interference, and makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component.
  • the determination unit 34 derives the estimation without noise interference by changing it once, but it is possible to change it multiple times.
  • the abnormality diagnosis device 30D in the control device 20A determines the sideband wave component based on the frequency of the sideband wave component and the noise frequency fn ⁇ at the time of abnormality diagnosis.
  • the presence or absence of noise interference at the spectrum peak is estimated, and if it is estimated that there is noise interference, the carrier frequency fc is changed.
  • the greatest common divisor GCD of the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs is changed, and the frequency itself of the noise component caused by the PWM control is changed. Therefore, it is possible to remove noise interference at the spectral peak of the sideband wave component, and it is possible to reliably perform an abnormality diagnosis. In this way, erroneous diagnosis due to the influence of the noise component can be prevented, and abnormality diagnosis of the electric motor 2 can be performed with high reliability.
  • the carrier frequency fc is changed, but at least one of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, which is used for the calculation of the greatest common divisor GCD. Just change one.
  • the carrier frequency fc when the carrier frequency fc is changed, the carrier frequency fc may be changed with time as shown in FIG.
  • the carrier wave Cr changes by alternately repeating two kinds of frequencies (1 / t1) and (1 / t2) with two kinds of different periods t1 and t2.
  • the change is not limited to each cycle, and may be changed over time to three or more kinds of frequencies. Further, the frequency may be changed continuously instead of discretely.
  • the carrier frequency fc or the sampling frequency fs changes with time as described above, the spectrum of the greatest common divisor GCD and its integral multiple frequency components is dispersed in a plurality of frequency ranges. As a result, the spectral peak of the noise component can be reduced, the noise interference at the spectral peak of the sideband wave component can be removed or suppressed, and the abnormality diagnosis can be performed with high reliability.
  • Embodiment 6 when it is estimated that there is noise interference at the spectral peak of the sideband wave component during the abnormality diagnosis by the abnormality diagnosis device 30D, at least one of the frequencies used for the calculation of the greatest common divisor GCD is used. Shown what to change.
  • the greatest common divisor GCD is further such that the greatest common divisor GCD matches the modulated wave frequency f0 or is 10 Hz or less, preferably several Hz or less. Change at least one of the frequencies used in the calculation of.
  • FIG. 15 is a schematic diagram of a frequency spectrum waveform of a current for explaining the effect of the sixth embodiment.
  • noise components are shown in two cases where the greatest common divisor GCD of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs is several Hz and the comparative example exceeding 10 Hz.
  • the spectra 42A and 42B of the noise component caused by the switching operation of the inverter unit 10B appear apart from the spectrum 40 of the modulated wave frequency f0.
  • the spectrum 42A is a case where the greatest common divisor GCD exceeds 10 Hz
  • the spectrum 42B is a case where the greatest common divisor GCD is several Hz.
  • the spectrum 42B has a larger number of appearances but a lower spectrum peak than the spectrum 42A.
  • the abnormality diagnosis device 30D when at least one of the frequencies used in the calculation of the greatest common divisor GCD is changed so that the greatest common divisor GCD matches the modulated wave frequency f0, the abnormality diagnosis device 30D is used. Since the noise component assumed by the above is removed, the abnormality diagnosis can be performed reliably and reliably.
  • Embodiment 7 the abnormality diagnosis device 30C shown in the fourth embodiment is applied to the abnormality diagnosis device 30D in the power conversion device 100A shown in the fifth embodiment.
  • the abnormality diagnosis device 30C is provided in the control device 20A of the power conversion device 100A.
  • the abnormality diagnosis device 30C includes a detection unit 31, an analysis unit 32, a frequency setting unit 33A, and a determination unit 34, as in the fourth embodiment, and the detection unit 31, analysis unit 32, and frequency setting unit 33A are described above. It operates in the same manner as in the fourth embodiment.
  • the determination unit 34 estimates the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave based on the frequency of the sideband wave component and the noise frequency fn ⁇ . When there is no noise interference, the determination unit 34 makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component, as in the fourth embodiment. Then, when there is noise interference, the determination unit 34 interrupts the abnormality diagnosis and transmits the notification signal SS1 to the inverter control unit 21.
  • the inverter control unit 21 When the inverter control unit 21 receives the notification signal SS1 notifying the interruption of the abnormality diagnosis from the abnormality diagnosis device 30C, the inverter control unit 21 changes the modulated wave frequency f0 and PWM-controls the power conversion unit 10 using the changed modulated wave frequency f0. The output is controlled by the above to drive the electric motor 2. In the abnormality diagnosis device 30C, each part operates again to continue the abnormality diagnosis. Since the noise frequency fn ⁇ changes when the modulated wave frequency f0 is changed, the presence or absence of noise interference at the spectral peak of the sideband wave component also changes. As a result, the determination unit 34 can derive an estimation without noise interference, and makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component.
  • the abnormality diagnosis device 30C in the control device 20A determines the sideband wave component based on the frequency of the sideband wave component and the noise frequency fn ⁇ at the time of abnormality diagnosis.
  • the presence or absence of noise interference at the spectrum peak is estimated, and if it is estimated that there is noise interference, the modulated wave frequency f0 is changed.
  • the frequency itself of the noise component caused by the fluctuation of the voltage (DC voltage of the smoothing capacitor 10C and the AC voltage output to the electric motor 2) according to the AC power supply frequency fac is changed. Therefore, it is possible to remove noise interference at the spectral peak of the sideband wave component, and it is possible to reliably perform an abnormality diagnosis. In this way, erroneous diagnosis due to the influence of the noise component can be prevented, and abnormality diagnosis of the electric motor 2 can be performed with high reliability.
  • the frequency related to the noise frequency is changed.
  • the assumed noise interference is removed or suppressed from the beginning for power conversion.
  • the device 100A can also be operated.
  • the modulation wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs are determined so that the difference between the frequency of the sideband wave component to be monitored and the assumed noise frequency becomes equal to or more than the set value, and the power conversion device 100A is used. drive.
  • the power conversion device 100A is operated by determining the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs so as to reduce the greatest common divisor GCD to several Hz.

Abstract

An abnormality diagnosis device (30) detects current flowing through an electric motor (2) driven by pulse width modulation control of a power conversion device (100) to analyze the frequency of the current and has a determination unit (34) that determines an abnormality of the electric motor (2) on the basis of a spectrum peak of at least one side band component of a modulated wave, which is obtained from the result of the frequency analysis. The abnormality diagnosis device (30) is provided with a frequency setting unit (33) for presetting a noise frequency (fnα) within the current. The determination unit (34) determines the abnormality by estimating the presence or absence of noise interference at the spectrum peak of the side band component on the basis of the frequency of the side band component and the set noise frequency (fnα).

Description

異常診断装置、電力変換装置および異常診断方法Abnormality diagnosis device, power conversion device and abnormality diagnosis method
 本願は、電動機の異常を診断する異常診断装置、該異常診断装置を備えて電動機を駆動する電力変換装置、および電動機の異常診断方法に関するものである。 The present application relates to an abnormality diagnosing device for diagnosing an abnormality in an electric motor, a power conversion device equipped with the abnormality diagnosing device to drive the electric motor, and a method for diagnosing an abnormality in the electric motor.
 電動機の異常を運転中に診断するため、例えば、特許文献1記載の従来の手法では、電動機に流れる電流について周波数解析を行い、電源周波数成分の側帯波として現れる周波数成分から異常を診断する。そして、電動機に流れる電流において、同一位相となっている2つの周期の波形同士を減算する事でノイズ成分を相殺して、回転子の異常の際に現れる脈動成分を抽出して異常診断を行う。 In order to diagnose the abnormality of the motor during operation, for example, in the conventional method described in Patent Document 1, the frequency analysis is performed on the current flowing through the motor, and the abnormality is diagnosed from the frequency component appearing as a sideband wave of the power supply frequency component. Then, in the current flowing through the motor, the noise component is canceled by subtracting the waveforms of two periods having the same phase, and the pulsating component that appears when the rotor is abnormal is extracted to perform abnormality diagnosis. ..
 また、特許文献2記載の従来の手法では、インバータのPWM(パルス幅変調)制御により誘導電動機を駆動する場合であり、振動のスペクトルに発生しているノイズ成分を除去し、ノイズ成分を除去したスペクトルを逆フーリエ変換し、誘導電動機で採取された振動加速度波形をノイズ成分が除去された形で求める。 Further, in the conventional method described in Patent Document 2, the induction motor is driven by the PWM (pulse width modulation) control of the inverter, and the noise component generated in the vibration spectrum is removed and the noise component is removed. The spectrum is inverse Fourier transformed, and the vibration acceleration waveform collected by the induction motor is obtained with the noise component removed.
特開2003-274691号公報Japanese Patent Application Laid-Open No. 2003-274691 特開2016-116251号公報Japanese Unexamined Patent Publication No. 2016-116251
 特許文献1記載の従来の異常診断では、電動機に流れる電流において、周期毎に同一位相で同じ大きさのノイズ成分のみ相殺できる。しかしながら、電動機の駆動条件あるいは異常の状態によりノイズ成分は様々で、低減できないノイズ成分が残存し、異常診断の為の周波数成分を信頼性良く抽出するのは困難であった。 In the conventional abnormality diagnosis described in Patent Document 1, only noise components having the same phase and the same magnitude can be canceled out in the current flowing through the motor for each cycle. However, the noise component varies depending on the driving condition of the motor or the abnormal state, and the noise component that cannot be reduced remains, and it is difficult to reliably extract the frequency component for the abnormality diagnosis.
 特許文献2記載の従来の異常診断では、搬送波周波数に起因する加速度成分であるノイズ信号を回避するもので、それ以外のノイズ成分、特に低周波数領域のノイズ成分が残存し、信頼性良く異常診断するのは困難であった。 In the conventional abnormality diagnosis described in Patent Document 2, the noise signal which is an acceleration component caused by the carrier frequency is avoided, and other noise components, particularly the noise component in the low frequency region, remain, and the abnormality diagnosis is reliable. It was difficult to do.
 本願は、上記のような課題を解決するための技術を開示するものであり、電力変換装置のパルス幅変調制御により駆動される電動機の異常を、低周波数領域を含むノイズの影響を防止して信頼性良く診断する異常診断装置を提供することを目的とする。
 また、このような異常診断装置を備えて、電動機の異常を信頼性良く診断して電動機を駆動する電力変換装置を提供する事を目的とする。
 さらに、電力変換装置のパルス幅変調制御により駆動される電動機の異常を、低周波数領域を含むノイズの影響を防止して信頼性良く診断する異常診断方法を提供する事を目的とする。
The present application discloses a technique for solving the above-mentioned problems, and prevents an abnormality of a motor driven by pulse width modulation control of a power converter from the influence of noise including a low frequency region. It is an object of the present invention to provide an abnormality diagnosis device for reliable diagnosis.
Another object of the present invention is to provide a power conversion device provided with such an abnormality diagnosis device, which can reliably diagnose an abnormality of an electric motor and drive the electric motor.
Further, it is an object of the present invention to provide an abnormality diagnosis method for reliably diagnosing an abnormality of an electric motor driven by pulse width modulation control of a power converter by preventing the influence of noise including a low frequency region.
 本願に開示される異常診断装置は、電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する。該異常診断装置は、前記電動機に流れる電流を検出する検出部と、前記検出部にて検出された前記電流を周波数解析して解析結果を出力する解析部と、
前記解析結果から得られる、変調波の少なくとも1つの側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する判定部と、前記電流内のノイズ周波数を予め設定する周波数設定部と、を備える。そして、前記判定部は、前記側帯波成分の周波数と、設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定し、前記電動機の異常を判定する。
The abnormality diagnosis device disclosed in the present application diagnoses an abnormality of an electric motor driven by pulse width modulation control of a power conversion device. The abnormality diagnosis device includes a detection unit that detects a current flowing through the motor, an analysis unit that frequency-analyzes the current detected by the detection unit, and outputs an analysis result.
A determination unit for determining an abnormality of the motor based on a spectral peak of at least one sideband wave component of the modulated wave obtained from the analysis result, and a frequency setting unit for presetting a noise frequency in the current are provided. .. Then, the determination unit estimates the presence or absence of noise interference in the spectrum peak of the sideband wave component based on the frequency of the sideband wave component and the set noise frequency, and determines the abnormality of the motor. ..
 また、本願に開示される電力変換装置は、直流電力を交流電力に変換して前記電動機に電力供給する電力変換部と、前記電力変換部を前記パルス幅変調制御により出力制御する制御装置とを備え、前記制御装置は、前記異常診断装置を備えて、前記電動機の異常を診断する。 Further, the power conversion device disclosed in the present application includes a power conversion unit that converts DC power into AC power and supplies power to the electric motor, and a control device that outputs and controls the power conversion unit by the pulse width modulation control. The control device includes the abnormality diagnosis device and diagnoses an abnormality of the electric power.
 また、本願に開示される異常診断方法は、電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する方法であって、前記パルス幅変調制御に用いられる3つの周波数である変調波周波数、搬送波周波数、および前記変調波をサンプリングするサンプリング周波数の内、前記変調波周波数を含む2以上の周波数の最大公約数を演算し、該最大公約数の整数倍である周波数をノイズ周波数として設定する第1ステップと、前記電動機に流れる電流を検出して周波数解析する第2ステップと、前記第2ステップでの解析結果から得られる変調波の側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する第3ステップとを備える。そして、前記第3ステップにおいて、前記側帯波成分の周波数と、前記第1ステップにて設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定する。 Further, the abnormality diagnosis method disclosed in the present application is a method for diagnosing an abnormality in an electric motor driven by pulse width modulation control of a power conversion device, and is a modulated wave having three frequencies used for the pulse width modulation control. Of the frequency, carrier frequency, and sampling frequency for sampling the modulated wave, the maximum promise number of two or more frequencies including the modulated wave frequency is calculated, and the frequency that is an integral multiple of the maximum promise number is set as the noise frequency. The first step, the second step of detecting the current flowing through the electric motor and frequency analysis, and the abnormality of the electric motor based on the spectral peak of the sideband wave component of the modulated wave obtained from the analysis result in the second step. It is provided with a third step of determining. Then, in the third step, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
 また、本願に開示される異常診断方法は、電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する方法であって、前記パルス幅変調制御に用いられる変調波周波数から、前記電力変換装置が接続される交流電源の周波数の整数倍だけずれた周波数をノイズ周波数として設定する第1ステップと、前記電動機に流れる電流を検出して周波数解析する第2ステップと、前記第2ステップでの解析結果から得られる変調波の側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する第3ステップとを備える。そして、前記第3ステップにおいて、前記側帯波成分の周波数と、前記第1ステップにて設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定する。 Further, the abnormality diagnosis method disclosed in the present application is a method of diagnosing an abnormality of an electric motor driven by pulse width modulation control of a power conversion device, and the power is obtained from a modulated wave frequency used for the pulse width modulation control. In the first step of setting the frequency deviated by an integral multiple of the frequency of the AC power supply to which the converter is connected as the noise frequency, the second step of detecting the current flowing through the electric motor and analyzing the frequency, and the second step of the second step. The present invention includes a third step of determining an abnormality of the electric motor based on the spectral peak of the sideband wave component of the modulated wave obtained from the analysis result of the above. Then, in the third step, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
 本願に開示される異常診断装置によれば、電力変換装置のパルス幅変調制御により駆動される電動機の異常を、低周波数領域を含むノイズの影響を防止して信頼性良く診断する事が可能になる。 According to the abnormality diagnosis device disclosed in the present application, it is possible to reliably diagnose an abnormality of an electric motor driven by pulse width modulation control of a power conversion device by preventing the influence of noise including a low frequency region. Become.
 また、本願に開示される電力変換装置によれば、該電力変換装置のパルス幅変調制御により駆動される電動機の異常を、低周波数領域を含むノイズの影響を防止して信頼性良く診断する事が可能になる。 Further, according to the power conversion device disclosed in the present application, an abnormality of the motor driven by the pulse width modulation control of the power conversion device can be reliably diagnosed by preventing the influence of noise including a low frequency region. Will be possible.
 また、本願に開示される異常診断方法によれば、電力変換装置のパルス幅変調制御により駆動される電動機の異常を、低周波数領域を含むノイズの影響を防止して信頼性良く診断する事が可能になる。 Further, according to the abnormality diagnosis method disclosed in the present application, it is possible to reliably diagnose an abnormality of a motor driven by pulse width modulation control of a power converter by preventing the influence of noise including a low frequency region. It will be possible.
実施の形態1による電力変換装置および異常診断装置の構成を示す図である。It is a figure which shows the structure of the power conversion apparatus and the abnormality diagnosis apparatus by Embodiment 1. FIG. 実施の形態1による異常診断装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus by Embodiment 1. FIG. 実施の形態1による異常診断装置の一部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware structure of a part of the abnormality diagnosis apparatus by Embodiment 1. FIG. 実施の形態1による異常診断装置における電流の周波数スペクトル波形を説明する図である。It is a figure explaining the frequency spectrum waveform of the electric current in the abnormality diagnosis apparatus by Embodiment 1. FIG. 実施の形態1による電力変換装置のパルス幅変調制御を説明する波形図である。It is a waveform diagram explaining the pulse width modulation control of the power conversion apparatus by Embodiment 1. FIG. 実施の形態1による異常診断装置の動作を説明するフローチャートである。It is a flowchart explaining the operation of the abnormality diagnosis apparatus by Embodiment 1. FIG. 実施の形態2による異常診断装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus by Embodiment 2. FIG. 実施の形態3による異常診断装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus by Embodiment 3. FIG. 実施の形態4による電力変換装置および異常診断装置の構成を示す図である。It is a figure which shows the structure of the power conversion apparatus and the abnormality diagnosis apparatus by Embodiment 4. FIG. 実施の形態4による異常診断装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the abnormality diagnosis apparatus according to Embodiment 4. 実施の形態4によるノイズ周波数を説明するための電流の周波数スペクトル波形である。9 is a frequency spectrum waveform of a current for explaining the noise frequency according to the fourth embodiment. 実施の形態4による異常診断装置の動作を説明するフローチャートである。It is a flowchart explaining the operation of the abnormality diagnosis apparatus according to Embodiment 4. 実施の形態5による電力変換装置および異常診断装置の構成を示す図である。It is a figure which shows the structure of the power conversion apparatus and the abnormality diagnosis apparatus according to Embodiment 5. 実施の形態5の別例による搬送波を示す図である。It is a figure which shows the carrier wave by another example of Embodiment 5. 実施の形態6による効果を説明するための電流の周波数スペクトル波形の概略図である。It is a schematic diagram of the frequency spectrum waveform of the current for demonstrating the effect by Embodiment 6.
実施の形態1.
 図1は実施の形態1による電力変換装置および異常診断装置の構成を示す図である。
 図1に示すように、電力変換装置100は、例えば商用電源から成る交流電源1と電動機2との間に接続されて、電動機2を駆動制御する。電力変換装置100は、電力変換部10と、電力変換部10を出力制御する制御装置20とを備える。
 また、電力変換部10から電動機2に流れる電流iは、電流センサ3により検出され、異常診断装置30は、電流iに基づいて電動機2の異常を診断する。なお、電流センサ3は、電力変換装置100に内蔵されるものでも、また外付けでも良く、数および位置についても図示したものに限るものではない。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a power conversion device and an abnormality diagnosis device according to the first embodiment.
As shown in FIG. 1, the power conversion device 100 is connected between an AC power supply 1 composed of, for example, a commercial power source and an electric motor 2, and drives and controls the electric motor 2. The power conversion device 100 includes a power conversion unit 10 and a control device 20 that outputs and controls the power conversion unit 10.
Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30 diagnoses the abnormality of the electric motor 2 based on the current i. The current sensor 3 may be built in the power conversion device 100 or may be externally attached, and the number and position thereof are not limited to those shown in the figure.
 電力変換部10は、コンバータ部10Aとインバータ部10Bと平滑コンデンサ10Cとを備え、これらは直流母線を介して接続される。コンバータ部10Aは、交流電源1からの交流電力を直流電力に変換して平滑コンデンサ10Cに出力し、インバータ部10Bは、平滑コンデンサ10Cの直流電力を交流電力に変換して電動機2に電力供給する。
 この場合、交流電源1、電動機2および電力変換装置100は、三相構成のものを示すが、これに限るものではない。
The power conversion unit 10 includes a converter unit 10A, an inverter unit 10B, and a smoothing capacitor 10C, which are connected via a DC bus. The converter unit 10A converts the AC power from the AC power supply 1 into DC power and outputs it to the smoothing capacitor 10C, and the inverter unit 10B converts the DC power of the smoothing capacitor 10C into AC power and supplies power to the electric motor 2. ..
In this case, the AC power supply 1, the electric motor 2, and the power conversion device 100 show a three-phase configuration, but the present invention is not limited to this.
 コンバータ部10Aは、6個のダイオードDaを備えた三相ブリッジ回路にて構成され、各相の入出力線が交流電源1に接続される。インバータ部10Bは、それぞれダイオードDbが逆並列接続された6個のスイッチング素子Qを備えた三相ブリッジ回路にて構成され、各相の入出力線が電動機2に接続される。スイッチング素子Qは、例えば、IGBT(Insulated Gate Bipolar Transistor)あるいはMOSFET(metal-oxide-semiconductor field effect transistor)などを用いる。 The converter unit 10A is composed of a three-phase bridge circuit including six diodes Da, and the input / output lines of each phase are connected to the AC power supply 1. The inverter unit 10B is composed of a three-phase bridge circuit including six switching elements Q in which diodes Db are connected in antiparallel to each other, and input / output lines of each phase are connected to the motor 2. As the switching element Q, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (metric-axis-semiconductor transistor) or the like is used.
 交流電源1からの交流電力は、コンバータ部10Aにより整流されて直流電力に変換され平滑コンデンサ10Cに出力される。制御装置20は、パルス幅変調制御(PWM制御)によりインバータ部10Bの各スイッチング素子Qへのゲート信号Gを生成して、スイッチング素子Qをオンオフ制御することで、電力変換部10から電動機2に所望の電力を出力する。これにより、電力変換装置100は電動機2を駆動する。
 なお、コンバータ部10Aおよびインバータ部10Bの構成は、図示したものに限らない。また、この場合、電力変換部10は、コンバータ部10Aを備えて交流電源1に接続されるものを示したが、直流電力を交流電力に変換して電動機2に電力供給するインバータ部10Bがあれば良く、コンバータ部10Aは無くても良い。
The AC power from the AC power supply 1 is rectified by the converter unit 10A, converted into DC power, and output to the smoothing capacitor 10C. The control device 20 generates a gate signal G to each switching element Q of the inverter unit 10B by pulse width modulation control (PWM control), and turns the switching element Q on and off to control the switching element Q from the power conversion unit 10 to the electric motor 2. Output the desired power. As a result, the power conversion device 100 drives the electric motor 2.
The configurations of the converter unit 10A and the inverter unit 10B are not limited to those shown in the figure. Further, in this case, the power conversion unit 10 is provided with a converter unit 10A and is connected to the AC power supply 1, but there is an inverter unit 10B that converts DC power into AC power and supplies power to the motor 2. The converter unit 10A may be omitted.
 異常診断装置30は、制御装置20が電力変換部10のPWM制御で用いる変調波(基本波)、搬送波、サンプリングのためのクロック信号(CLK)の各周波数である変調波周波数f0、搬送波周波数fc、サンプリング周波数fsを取得する。そして異常診断装置30は、電力変換部10から電動機2に流れる電流iについて、周波数解析を行い、電動機2の異常を診断する。 The abnormality diagnosis device 30 has a modulated wave frequency f0 and a carrier frequency fc, which are frequencies of the modulated wave (fundamental wave), the carrier wave, and the clock signal (CLK) for sampling used by the control device 20 in the PWM control of the power conversion unit 10. , The sampling frequency fs is acquired. Then, the abnormality diagnosis device 30 performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
 図2は、異常診断装置30の概略構成を示すブロック図である。図2に示すように、異常診断装置30は、電動機2に流れる電流iを検出する検出部31と、電流iを周波数解析する解析部32と、電流i内のノイズの周波数(ノイズ周波数fnα)を予め設定する周波数設定部33と、電動機2の異常を判定する判定部34とを備える。
 検出部31は、電流センサ3の出力を取得し、電動機2に流れる少なくとも1相の電流iにおける電流波形を検出する。解析部32は、検出された電流iに基づいて周波数解析を行い、周波数スペクトル波形を含む解析結果32aを導出する。周波数設定部33は、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsを取得し、それらの最大公約数GCDを演算し、最大公約数GCDおよびその整数倍をノイズ周波数fnαとして設定する。
FIG. 2 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30. As shown in FIG. 2, the abnormality diagnosis device 30 includes a detection unit 31 for detecting the current i flowing in the motor 2, an analysis unit 32 for frequency analysis of the current i, and a noise frequency (noise frequency fnα) in the current i. A frequency setting unit 33 for presetting the above and a determination unit 34 for determining an abnormality of the electric motor 2 are provided.
The detection unit 31 acquires the output of the current sensor 3 and detects the current waveform in the current i of at least one phase flowing through the motor 2. The analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform. The frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple as the noise frequency fnα.
 判定部34は、解析部32による解析結果32aから、変調波の側帯波成分のスペクトルピークを取得し、スペクトルピークに基づいて電動機2の異常を判定して判定結果34aを出力する。その際、ノイズ周波数fnαに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定して、ノイズ干渉有りと推定される側帯波成分は異常判定から除外する。 The determination unit 34 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 34a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fnα, and the sideband wave component presumed to have noise interference is excluded from the abnormality determination.
 なお、異常診断装置30を構成するハードウェアには、周波数解析に用いられる公知の専用装置と、例えば図3に示すプロセッサ5および記憶装置6とを組み合わせて用いることが出来る。
 プロセッサ5は記憶装置6から入力された制御プログラムを実行する。記憶装置6は補助記憶装置と揮発性記憶装置とを備える。プロセッサ5には補助記憶装置から揮発性記憶装置を介して制御プログラムが入力される。プロセッサ5は、演算結果等のデータを記憶装置6の揮発性記憶装置に出力し、これらのデータを、必要に応じて揮発性記憶装置を介して補助記憶装置に保存する。
As the hardware constituting the abnormality diagnosis device 30, a known dedicated device used for frequency analysis and, for example, the processor 5 and the storage device 6 shown in FIG. 3 can be used in combination.
The processor 5 executes the control program input from the storage device 6. The storage device 6 includes an auxiliary storage device and a volatile storage device. A control program is input to the processor 5 from the auxiliary storage device via the volatile storage device. The processor 5 outputs data such as calculation results to the volatile storage device of the storage device 6, and stores these data in the auxiliary storage device via the volatile storage device as needed.
 電動機2に異常の兆候があると、電流iに、特定の周波数成分である変調波の側帯波成分が増加する。例えば、回転子の動的偏心あるいは異常に伴う振動によって、回転子の回転周波数をfrとすると、周波数(f0±fr)を基本として、|k1・f0±k2・fr|の側帯波成分が増加する。ここで、k1、k2はそれぞれ正の整数である。
 また、かご形回転子の導体バーに損傷があると、すべりをsとしたとき、周波数((1±2s)・f0)の側帯波成分が増加する。
When there is a sign of abnormality in the motor 2, the sideband wave component of the modulated wave, which is a specific frequency component, increases in the current i. For example, assuming that the rotation frequency of the rotor is fr due to the dynamic eccentricity of the rotor or vibration caused by an abnormality, the sideband wave component of | k1 · f0 ± k2 · fr | increases based on the frequency (f0 ± fr). do. Here, k1 and k2 are positive integers, respectively.
Further, if the conductor bar of the cage rotor is damaged, the sideband wave component of the frequency ((1 ± 2s) · f0) increases when the slip is s.
 また、軸受けに傷がある場合、傷の場所と軸受けの形状によって決まる特徴的な周波数だけ変調波周波数f0からずれた側帯波成分が増加する。例えば、軸受けの外輪に傷がある場合の特徴的な周波数は、
N・fr(1-dcosθ/D)/2
となる。但し、N、d、D、θは、それぞれ軸受け内における、玉の数、玉の径、ピッチ径、接触角である。
 なお、以後、単に側帯波あるいは側帯波成分と記載する場合は、変調波の側帯波あるいは変調波の側帯波成分を指す。
Further, when the bearing has a scratch, the sideband wave component deviated from the modulated wave frequency f0 increases by a characteristic frequency determined by the location of the scratch and the shape of the bearing. For example, if the outer ring of the bearing is scratched, the characteristic frequency is
N · fr (1-dcosθ / D) / 2
Will be. However, N, d, D, and θ are the number of balls, the diameter of the balls, the pitch diameter, and the contact angle in the bearing, respectively.
Hereinafter, when the term “sideband wave or sideband wave component” is simply used, it refers to the sideband wave of the modulated wave or the sideband wave component of the modulated wave.
 図4は、電動機2に異常がある場合の、異常診断装置30における電流iの周波数スペクトル波形を説明する図である。
 図4に示すように、変調波周波数f0のスペクトル40の両側に複数のスペクトル41、42が出現する。この場合、変調波周波数f0の両側に回転周波数fr分ずれた周波数(f0±fr)において、変調波の側帯波成分のスペクトル41が出現し、さらにインバータ部10Bのスイッチング動作に起因するノイズ成分のスペクトル42が出現する。
FIG. 4 is a diagram illustrating a frequency spectrum waveform of the current i in the abnormality diagnosis device 30 when there is an abnormality in the electric motor 2.
As shown in FIG. 4, a plurality of spectra 41 and 42 appear on both sides of the spectrum 40 having the modulated wave frequency f0. In this case, the spectrum 41 of the sideband wave component of the modulated wave appears at a frequency (f0 ± fr) deviated by the rotation frequency fr on both sides of the modulated wave frequency f0, and further, the noise component caused by the switching operation of the inverter unit 10B. The spectrum 42 appears.
 図4では、側帯波成分のスペクトル41とノイズ成分のスペクトル42とは、近接も重複もせず、異常兆候を示す側帯波成分のスペクトル41を、ノイズ成分のスペクトル42とは識別して検出できる。また、条件が変わると、異常兆候を示す側帯波成分のスペクトル41にノイズ成分のスペクトル42が近づいて、スペクトルピークにおけるノイズ干渉を起こす事がある(図示省略)。
 なお、この場合、上記周波数|k1・f0±k2・fr|における、k1=k2=1、の場合のスペクトル41のみ図示したが、スペクトルピークの小さいものを含めると、通常、k1=k2=1、以外の組み合わせによるスペクトル41も出現する。
In FIG. 4, the spectrum 41 of the sideband wave component and the spectrum 42 of the noise component do not overlap with each other, and the spectrum 41 of the sideband wave component showing an abnormal sign can be detected separately from the spectrum 42 of the noise component. Further, when the conditions are changed, the spectrum 42 of the noise component may approach the spectrum 41 of the sideband wave component showing an abnormal sign, causing noise interference at the spectrum peak (not shown).
In this case, only the spectrum 41 in the case of k1 = k2 = 1 at the frequency | k1 · f0 ± k2 · fr | is shown, but if the spectrum peak is included, it is usually k1 = k2 = 1. The spectrum 41 by the combination other than the above also appears.
 図5は、電力変換装置100のPWM制御を説明する波形図である。
 図5に示すように、PWM制御では、変調波Mを搬送波Crと比較してゲート信号Gを生成する。その際、クロック信号(CLK)のタイミングにて変調波Mをサンプリングして変調波Mの値を一時記憶し、搬送波Crと比較する。
 搬送波周波数fcまたはサンプリング周波数fsが、変調波周波数f0の倍数ではない場合、それらの値の最大公約数とその整数倍の周波数にて、インバータ部10Bのスイッチング動作に起因するノイズ成分のスペクトル42が生じる。
FIG. 5 is a waveform diagram illustrating PWM control of the power conversion device 100.
As shown in FIG. 5, in PWM control, the modulated wave M is compared with the carrier wave Cr to generate a gate signal G. At that time, the modulated wave M is sampled at the timing of the clock signal (CLK), the value of the modulated wave M is temporarily stored, and the value is compared with the carrier wave Cr.
When the carrier frequency fc or the sampling frequency fs is not a multiple of the modulated wave frequency f0, the spectrum 42 of the noise component caused by the switching operation of the inverter unit 10B is displayed at the greatest common divisor of those values and an integral multiple thereof. Occurs.
 従って、搬送波周波数fcまたはサンプリング周波数fsと、変調波周波数f0との2つの周波数、あるいは3つ全ての周波数の最大公約数を計算することにより、どの周波数でノイズが発生し得るかを事前に把握することができる。
 この場合、周波数設定部33は、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsを取得し、それらの最大公約数GCDを演算し、最大公約数GCDおよびその整数倍をノイズ周波数fnαとして設定する。なお、最大公約数GCDが変調波周波数f0である場合は、ノイズ周波数fnαを設定しない。
Therefore, by calculating the maximum promises of the two frequencies of the carrier frequency fc or the sampling frequency fs and the modulated wave frequency f0, or all three frequencies, it is possible to grasp in advance at which frequency noise can occur. can do.
In this case, the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple as the noise frequency fnα. .. When the greatest common divisor GCD is the modulated wave frequency f0, the noise frequency fnα is not set.
 次に、異常診断装置30の動作を図6に示すフローチャートに基づいて説明する。
 まず、異常診断装置30は、電力変換装置100の電力変換部10から電動機2に流れる各相電流iの内、少なくとも1相分の電流iの電流波形を検出部31により検出する。この場合、検出部31は三相分の電流波形を検出するものとする。電流センサ3で三相の各相電流iを検出しても良いし、2相分を検出して、残りの相の電流を演算により求めても良い(ステップS1)。
 次に、解析部32は、検出された電流iに基づいて周波数解析を行い、周波数スペクトル波形を含む解析結果32aを導出する(ステップS2)。
Next, the operation of the abnormality diagnosis device 30 will be described with reference to the flowchart shown in FIG.
First, the abnormality diagnosis device 30 detects the current waveform of at least one phase of the current i of each phase current i flowing from the power conversion unit 10 of the power conversion device 100 to the electric motor 2 by the detection unit 31. In this case, the detection unit 31 shall detect the current waveforms for three phases. The current sensor 3 may detect each phase current i of the three phases, or may detect two phases and obtain the current of the remaining phases by calculation (step S1).
Next, the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform (step S2).
 一方、周波数設定部33は、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsを、電力変換装置100の制御装置20から取得する(ステップS3)。そして、周波数設定部33は、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsの最大公約数GCDを演算し、さらに最大公約数GCDの整数倍を計算する(ステップS4)。 On the other hand, the frequency setting unit 33 acquires the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs from the control device 20 of the power conversion device 100 (step S3). Then, the frequency setting unit 33 calculates the greatest common divisor GCD of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, and further calculates an integral multiple of the greatest common divisor GCD (step S4).
 最大公約数GCDが変調波周波数f0でない場合に、計算された最大公約数GCDおよびその整数倍をノイズ周波数fnαとして設定する。なお、ノイズ周波数fnαは、測定可能域を超えない範囲で設定される。
 最大公約数GCDはfc/2より低い値である。また、電力変換装置100の通常の制御条件においては、最大公約数GCDは(fc-4f0)より低い値となる。このため、設定されるノイズ周波数fnαは、fc/2より低い周波数領域の周波数を含み、一般的には、(fc-4f0)より低い周波数も含んで設定される(ステップS5)。
When the greatest common divisor GCD is not the modulated wave frequency f0, the calculated greatest common divisor GCD and its integral multiples are set as the noise frequency fnα. The noise frequency fnα is set within a range that does not exceed the measurable range.
The greatest common divisor GCD is a value lower than fc / 2. Further, under the normal control conditions of the power converter 100, the greatest common divisor GCD is a value lower than (fc-4f0). Therefore, the noise frequency fnα to be set includes a frequency in the frequency domain lower than fc / 2, and is generally set to include a frequency lower than (fc-4f0) (step S5).
 判定部34は、ステップS2にて導出された解析結果32aと、ステップS5にて設定されたノイズ周波数fnαとに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定する。具体的には、変調波の側帯波成分(スペクトル41)の周波数が、ノイズ周波数fnαと重複あるいは近接しているかを判定して、ノイズ干渉有りと推定する。
 電動機2の異常兆候で増加する変調波の側帯波成分(スペクトル41)は、上述したように特定の周波数成分であるため、判定部34は、該特定の周波数成分を監視対象として、その周波数とノイズ周波数fnαとを比較し、差分が設定値未満のとき、重複あるいは近接していると判定する。設定値は、数Hz、例えば2Hzに設定される。上記差分が設定値以上の時、スペクトル41のピークはノイズ成分に影響されず、ノイズ干渉は発生しない(ステップS6)。
The determination unit 34 estimates the presence or absence of noise interference at the spectral peak of the sideband wave component of the modulated wave based on the analysis result 32a derived in step S2 and the noise frequency fnα set in step S5. Specifically, it is determined whether the frequency of the sideband wave component (spectrum 41) of the modulated wave overlaps or is close to the noise frequency fnα, and it is estimated that there is noise interference.
Since the sideband wave component (spectrum 41) of the modulated wave that increases due to the abnormal sign of the motor 2 is a specific frequency component as described above, the determination unit 34 monitors the specific frequency component and sets the frequency. It is compared with the noise frequency fnα, and when the difference is less than the set value, it is determined that they are duplicated or close to each other. The set value is set to several Hz, for example, 2 Hz. When the difference is equal to or greater than the set value, the peak of the spectrum 41 is not affected by the noise component, and noise interference does not occur (step S6).
 判定部34は、ステップS6において、ノイズ干渉有りと推定される側帯波成分がある場合、当該側帯波成分を異常診断の対象から除外し(ステップS7)、その他の側帯波成分に基づいて電動機2の異常を判定して判定結果34aを出力する。その際、側帯波成分のスペクトルピークが予め設定された基準値を超えると異常と判定する。基準値は、例えば、変調波周波数f0のスペクトルピークに基づいて設定される(ステップS8)。 If there is a sideband wave component presumed to have noise interference in step S6, the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (step S7), and the motor 2 is based on the other sideband wave components. The abnormality is determined and the determination result 34a is output. At that time, if the spectral peak of the sideband wave component exceeds a preset reference value, it is determined to be abnormal. The reference value is set, for example, based on the spectral peak of the modulated wave frequency f0 (step S8).
 なお、ステップS5にて、最大公約数GCDが変調波周波数f0である場合は、周波数設定部33は、ノイズ周波数fnαを設定せず、ステップS8に移行する。そして、判定部34は、側帯波成分のスペクトルピークに基づいて電動機2の異常を判定する。 If the greatest common divisor GCD is the modulated wave frequency f0 in step S5, the frequency setting unit 33 does not set the noise frequency fnα and proceeds to step S8. Then, the determination unit 34 determines the abnormality of the motor 2 based on the spectral peak of the sideband wave component.
 以上のように、この実施の形態による異常診断装置30は、電動機2に流れる電流i内のノイズ成分の周波数(ノイズ周波数fnα)を予め設定し、電流iを周波数解析して得た変調波の側帯波成分について異常診断を行う。そして、異常診断の際、側帯波成分の周波数とノイズ周波数fnαとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定される側帯波成分は除外し、残りの側帯波成分のスペクトルピークに基づいて異常を判定する。
 このため、低周波数領域を含むノイズの影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。
As described above, the abnormality diagnosis device 30 according to this embodiment sets the frequency (noise frequency fnα) of the noise component in the current i flowing through the motor 2 in advance, and analyzes the current i by the frequency of the modulated wave. Abnormal diagnosis is performed for the lateral band component. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fnα, and the sideband wave component presumed to have noise interference is excluded. The anomaly is determined based on the spectral peaks of the remaining sideband components.
Therefore, erroneous diagnosis due to the influence of noise including a low frequency region can be prevented, and abnormality diagnosis of the motor 2 can be performed with high reliability.
 また、ノイズ周波数fnαは、PWM制御に用いられる変調波周波数f0、搬送波周波数fc、およびサンプリング周波数fsの最大公約数GCDと、その整数倍との周波数が設定されるため、低周波数領域を含むノイズ成分の影響を確実に防止できる。
 また、側帯波成分の周波数と設定されたノイズ周波数fnαとの差分が設定値未満で近接する場合、その側帯波成分をノイズ干渉有りと推定するため、信頼性良くノイズ干渉を推定できる。
Further, the noise frequency fnα is set to a frequency of the maximum promised GCD of the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs used for PWM control, and an integral multiple thereof, so that noise including a low frequency region is included. The influence of the ingredients can be reliably prevented.
Further, when the difference between the frequency of the sideband wave component and the set noise frequency fnα is less than the set value and is close to each other, the sideband wave component is estimated to have noise interference, so that noise interference can be estimated with high reliability.
 なお、ノイズ周波数fnαは、測定可能域を超えない範囲で設定されるとしたが、搬送波周波数fcの1/2より低い周波数領域のみで設定しても良い。 Although the noise frequency fnα is set within a range that does not exceed the measurable range, it may be set only in a frequency region lower than 1/2 of the carrier frequency fc.
 また、周波数設定部33で演算される最大公約数GCDが変調波周波数f0である場合、ノイズ周波数fnαを設定しないものとしたが、そのまま変調波周波数f0およびその整数倍をノイズ周波数fnαとして設定しても、変調波の側帯波成分と近接する周波数成分では無いため、問題無い。 Further, when the maximum promise number GCD calculated by the frequency setting unit 33 is the modulated wave frequency f0, the noise frequency fnα is not set, but the modulated wave frequency f0 and its integral multiple are set as the noise frequency fnα as it is. However, there is no problem because the frequency component is not close to the side band component of the modulated wave.
 さらに、電力変換装置100のPWM制御について、三角波による搬送波Crを図示したが、搬送波Crは三角波に限らず、正弦波を用いる場合でも良い。
 また、電圧利用率を向上させるために、変調波Mに三次高調波を重畳させても良く、その場合、最大公約数GCDの値に変化が無く、同様にノイズ周波数fnαが設定できる。
Further, although the carrier wave Cr by the triangular wave is shown for the PWM control of the power conversion device 100, the carrier wave Cr is not limited to the triangular wave, and a sine wave may be used.
Further, in order to improve the voltage utilization rate, a third harmonic may be superimposed on the modulated wave M. In that case, the value of the greatest common divisor GCD does not change, and the noise frequency fnα can be set in the same manner.
実施の形態2.
 図7は、実施の形態2による異常診断装置30Aの概略構成を示すブロック図である。
 図7に示すように、異常診断装置30Aは、上記実施の形態1と同様に、検出部31と解析部32と周波数設定部33と判定部34とを備え、さらに、報知部35を備える。
 判定部34は、ノイズ干渉有りと推定される側帯波成分がある場合、当該側帯波成分を異常診断の対象から除外する(図6のステップS7参照)と共に、報知部35に報知指令34bを出力する。そして、報知部35は、ノイズ干渉有りを外部に知らせる報知信号35aを出力する。その他の構成および動作は、上記実施の形態1と同様である。
Embodiment 2.
FIG. 7 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30A according to the second embodiment.
As shown in FIG. 7, the abnormality diagnosis device 30A includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, and a determination unit 34, and further includes a notification unit 35, as in the first embodiment.
If there is a sideband wave component presumed to have noise interference, the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (see step S7 in FIG. 6), and outputs a notification command 34b to the notification unit 35. do. Then, the notification unit 35 outputs a notification signal 35a that notifies the outside that there is noise interference. Other configurations and operations are the same as those in the first embodiment.
 この実施の形態では、上記実施の形態1と同様に、低周波数領域を含むノイズ成分の影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。また、診断の際に、ノイズ干渉有りの推定があったことをユーザに報知するため、利便性が向上する。 In this embodiment, as in the first embodiment, erroneous diagnosis due to the influence of noise components including a low frequency region can be prevented, and abnormality diagnosis of the motor 2 can be performed with high reliability. Further, at the time of diagnosis, the user is notified that there is an estimation that there is noise interference, so that the convenience is improved.
 なお、ノイズ干渉有りと推定される側帯波成分があっても、当該側帯波成分を異常診断の対象から除外せず、報知部35から報知信号35aを出力させるのみとしても良い。その場合、ユーザに知らせて注意喚起を促し、異常診断装置30Aからの判定結果34aをユーザがノイズ成分の影響を考慮することができ、結果的に誤診断を防止できる。 Even if there is a sideband wave component presumed to have noise interference, the sideband wave component may not be excluded from the target of abnormality diagnosis, and the notification signal 35a may only be output from the notification unit 35. In that case, the user is notified to call attention, and the user can consider the influence of the noise component on the determination result 34a from the abnormality diagnosis device 30A, and as a result, erroneous diagnosis can be prevented.
実施の形態3.
 図8は、実施の形態3による異常診断装置30Bの概略構成を示すブロック図である。
 図8に示すように、異常診断装置30Bは、上記実施の形態1と同様に、検出部31と解析部32と周波数設定部33とを備え、さらに、判定部36とノイズ検出部37と記憶部38と切替器39とを備える。判定部36、ノイズ検出部37、記憶部38および切替器39以外の構成および動作は、上記実施の形態1と同様である。
Embodiment 3.
FIG. 8 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30B according to the third embodiment.
As shown in FIG. 8, the abnormality diagnosis device 30B includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, a determination unit 36, a noise detection unit 37, and a storage unit, as in the first embodiment. A unit 38 and a switch 39 are provided. The configuration and operation other than the determination unit 36, the noise detection unit 37, the storage unit 38, and the switch 39 are the same as those in the first embodiment.
 上記実施の形態1と同様に、検出部31は、電流センサ3の出力を取得し、電動機2に流れる少なくとも1相の電流iにおける電流波形を検出する。解析部32は、検出された電流iに基づいて周波数解析を行い、周波数スペクトル波形を含む解析結果32aを導出する。周波数設定部33は、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsを取得し、それらの最大公約数GCDを演算し、最大公約数GCDおよびその整数倍を、測定可能域を超えない範囲でノイズ周波数fnαとして設定する。 Similar to the first embodiment, the detection unit 31 acquires the output of the current sensor 3 and detects the current waveform in the current i of at least one phase flowing through the motor 2. The analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform. The frequency setting unit 33 acquires the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, calculates the greatest common divisor GCD thereof, and sets the greatest common divisor GCD and its integral multiple within a range not exceeding the measurable range. Set as the noise frequency fnα.
 そして、ノイズ検出部37は、電動機2の正常運転時において、解析部32による解析結果32aから、電流iのノイズ周波数fnαでのノイズの大きさ、例えばノイズ成分のスペクトルピークの値を検出し、その検出結果は記憶部38に記憶される。ノイズ検出部37でのノイズの検出は、電動機2の異常診断に先立って、予め、電動機2の正常運転時に行われる。
 切替器39は、解析部32の解析結果32aの出力先を、ノイズ検出部37と判定部36との一方に選択的に切り替える。電動機2の異常診断時には判定部36が選択され、予め電動機2の正常運転時に行われるノイズの検出時には、ノイズ検出部37が選択される。
Then, the noise detection unit 37 detects the magnitude of noise at the noise frequency fnα of the current i, for example, the value of the spectral peak of the noise component from the analysis result 32a by the analysis unit 32 during the normal operation of the electric motor 2. The detection result is stored in the storage unit 38. The noise detection by the noise detection unit 37 is performed in advance during the normal operation of the motor 2 prior to the abnormality diagnosis of the motor 2.
The switch 39 selectively switches the output destination of the analysis result 32a of the analysis unit 32 to one of the noise detection unit 37 and the determination unit 36. The determination unit 36 is selected when the abnormality of the motor 2 is diagnosed, and the noise detection unit 37 is selected when the noise is detected in advance during the normal operation of the motor 2.
 判定部36は、解析部32による解析結果32aから、変調波の側帯波成分のスペクトルピークを取得し、スペクトルピークに基づいて電動機2の異常を判定して判定結果36aを出力する。その際、ノイズ周波数fnαに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定する。具体的には、上記実施の形態1と同様に、変調波の側帯波成分の周波数とノイズ周波数fnαとの差分が設定値未満の時、側帯波成分の周波数とノイズ周波数fnαとが重複あるいは近接していると判定して、ノイズ干渉有りと推定する。 The determination unit 36 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 36a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fnα. Specifically, as in the first embodiment, when the difference between the frequency of the sideband wave component of the modulated wave and the noise frequency fnα is less than the set value, the frequency of the sideband wave component and the noise frequency fnα overlap or are close to each other. It is presumed that there is noise interference.
 続いて、判定部36は、ノイズ干渉元であるノイズ周波数fnαのノイズの大きさを記憶部38内から抽出する。そして、ノイズ干渉先の側帯波成分について、該側帯波成分のスペクトルピークと、抽出されたノイズの大きさとに基づいて、電動機2の異常を判定する。具体的には、例えば、側帯波成分のスペクトルピークの値から、ノイズ成分のスペクトルピーク値を差し引いた値が、予め設定された基準値を超えると異常と判定する。基準値は、例えば、変調波周波数f0のスペクトルピークに基づいて設定される。 Subsequently, the determination unit 36 extracts the magnitude of the noise of the noise frequency fnα, which is the noise interference source, from the storage unit 38. Then, with respect to the sideband wave component of the noise interference destination, the abnormality of the electric motor 2 is determined based on the spectral peak of the sideband wave component and the magnitude of the extracted noise. Specifically, for example, when the value obtained by subtracting the spectral peak value of the noise component from the spectral peak value of the sideband wave component exceeds a preset reference value, it is determined to be abnormal. The reference value is set, for example, based on the spectral peak of the modulated wave frequency f0.
 以上のように、この実施の形態による異常診断装置30Bは、電動機2に流れる電流i内のノイズ成分の周波数(ノイズ周波数fnα)を予め設定し、電流iを周波数解析して得た変調波の側帯波成分について異常診断を行う。また、異常診断装置30Bは、異常診断に先立って、電動機2の正常運転時において、解析部32による解析結果32aから、電流iのノイズ周波数fnαでのノイズの大きさを検出し、その検出結果を記憶しておく。そして、異常診断の際、側帯波成分の周波数とノイズ周波数fnαとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定される側帯波成分のスペクトルピークを、ノイズの大きさを考慮して異常判定に用いる。 As described above, the abnormality diagnosis device 30B according to this embodiment sets the frequency (noise frequency fnα) of the noise component in the current i flowing through the motor 2 in advance, and analyzes the current i by the frequency of the modulated wave. Abnormal diagnosis is performed for the lateral band component. Further, prior to the abnormality diagnosis, the abnormality diagnosis device 30B detects the magnitude of noise at the noise frequency fnα of the current i from the analysis result 32a by the analysis unit 32 during the normal operation of the electric motor 2, and the detection result. Remember. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fnα, and the spectrum peak of the sideband wave component estimated to have noise interference is obtained. , Used for abnormality judgment in consideration of the magnitude of noise.
 このため、上記実施の形態1と同様に、低周波数領域を含むノイズ成分の影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。また、ノイズ干渉有りと推定される側帯波成分についても除去することなく異常診断に用いるため、異常診断のための監視対象の側帯波成分を確実に監視して電動機2の異常診断を確実に行える。 Therefore, as in the first embodiment, erroneous diagnosis due to the influence of the noise component including the low frequency region can be prevented, and abnormality diagnosis of the motor 2 can be performed with high reliability. Further, since the sideband wave component presumed to have noise interference is also used for the abnormality diagnosis without removing it, the sideband wave component to be monitored for the abnormality diagnosis can be reliably monitored and the abnormality diagnosis of the motor 2 can be surely performed. ..
 なお、ノイズ検出部37でのノイズの検出は、電動機2の正常運転時における、電流iの解析結果32aから得るものとしたが、電動機2への出力電圧を検出して周波数解析した結果から得る事もできる。その場合、特に電動機2の正常運転時に検出する必要は無く、検出された電圧の周波数解析の結果から、電流iのノイズ周波数fnαにおける正常運転時に相当するノイズの大きさを演算できる。そして、演算結果は、記憶部38に記憶せず判定部36で用いる事ができ、記憶部38を省略しても良い。
 また、検出された電圧の周波数解析の結果と、電動機2の正常運転時における、電流iの解析結果32aから得たノイズの検出結果との双方を判定部36が用いることもでき、異常判定の精度が向上する。
The noise detection by the noise detection unit 37 is obtained from the analysis result 32a of the current i during normal operation of the motor 2, but is obtained from the result of frequency analysis by detecting the output voltage to the motor 2. You can also do things. In that case, it is not particularly necessary to detect it during normal operation of the motor 2, and the magnitude of noise corresponding to normal operation at the noise frequency fnα of the current i can be calculated from the result of the frequency analysis of the detected voltage. The calculation result can be used by the determination unit 36 without being stored in the storage unit 38, and the storage unit 38 may be omitted.
Further, both the result of the frequency analysis of the detected voltage and the detection result of the noise obtained from the analysis result 32a of the current i during the normal operation of the electric motor 2 can be used by the determination unit 36, and the abnormality determination can be made. Accuracy is improved.
 さらに、この実施の形態3においても、上記実施の形態2を適用して報知部35を設け、ノイズ干渉有りの推定があったことをユーザに報知しても良い。 Further, also in the third embodiment, the notification unit 35 may be provided by applying the second embodiment to notify the user that there is an estimation of noise interference.
実施の形態4.
 図9は実施の形態4による電力変換装置100および異常診断装置30Cの構成を示す図である。
 図9に示すように、電力変換装置100は、上記実施の形態1と同様に構成されて、電力変換部10と、電力変換部10を出力制御する制御装置20とを備える。また、電力変換部10から電動機2に流れる電流iは、電流センサ3により検出され、異常診断装置30は、電流iに基づいて電動機2の異常を診断する。
Embodiment 4.
FIG. 9 is a diagram showing the configuration of the power conversion device 100 and the abnormality diagnosis device 30C according to the fourth embodiment.
As shown in FIG. 9, the power conversion device 100 is configured in the same manner as in the first embodiment, and includes a power conversion unit 10 and a control device 20 that outputs and controls the power conversion unit 10. Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30 diagnoses the abnormality of the electric motor 2 based on the current i.
 電力変換部10は、コンバータ部10Aとインバータ部10Bと平滑コンデンサ10Cとを備え、これらは直流母線を介して接続される。この実施の形態では、コンバータ部10Aは省略できず、交流電源1からの交流電力を直流電力に変換して平滑コンデンサ10Cに出力する。インバータ部10Bは、平滑コンデンサ10Cの直流電力を交流電力に変換して電動機2に電力供給する。
 この場合も、電力変換部10は、交流電源1、電動機2および電力変換装置100は、三相構成のものを示すが、これに限るものではない。
The power conversion unit 10 includes a converter unit 10A, an inverter unit 10B, and a smoothing capacitor 10C, which are connected via a DC bus. In this embodiment, the converter unit 10A cannot be omitted, and the AC power from the AC power supply 1 is converted into DC power and output to the smoothing capacitor 10C. The inverter unit 10B converts the DC power of the smoothing capacitor 10C into AC power and supplies power to the motor 2.
Also in this case, the power conversion unit 10 indicates that the AC power supply 1, the electric motor 2, and the power conversion device 100 have a three-phase configuration, but the present invention is not limited to this.
 交流電源1からの交流電力は、コンバータ部10Aにより整流されて直流電力に変換され平滑コンデンサ10Cに出力される。制御装置20は、PWM制御によりインバータ部10Bの各スイッチング素子Qへのゲート信号Gを生成して、スイッチング素子Qをオンオフ制御することで、電力変換部10から電動機2に所望の電力を出力する。
 このように、電力変換装置100は電動機2を駆動する。そして、平滑コンデンサ10Cの直流電圧と、電動機2に出力される交流電圧とは、交流電源1の周波数とその整数倍の周波数でわずかに変動し、その値だけ変調波周波数f0からずれた側帯波成分(ノイズ成分)が電流iに発生する。
The AC power from the AC power supply 1 is rectified by the converter unit 10A, converted into DC power, and output to the smoothing capacitor 10C. The control device 20 generates a gate signal G to each switching element Q of the inverter unit 10B by PWM control, controls the switching element Q on and off, and outputs desired power from the power conversion unit 10 to the electric motor 2. ..
In this way, the power conversion device 100 drives the electric motor 2. The DC voltage of the smoothing capacitor 10C and the AC voltage output to the electric motor 2 slightly fluctuate at the frequency of the AC power supply 1 and a frequency that is an integral multiple of the frequency, and the sideband wave deviates from the modulated wave frequency f0 by that value. A component (noise component) is generated in the current i.
 異常診断装置30Cは、制御装置20が電力変換部10のPWM制御で用いる変調波の周波数(変調波周波数f0)と、交流電源1の周波数(交流電源周波数fac)を取得する。そして異常診断装置30Cは、電力変換部10から電動機2に流れる電流iについて、周波数解析を行い、電動機2の異常を診断する。 The abnormality diagnosis device 30C acquires the frequency of the modulated wave (modulated wave frequency f0) used by the control device 20 in the PWM control of the power conversion unit 10 and the frequency of the AC power supply 1 (AC power supply frequency fac). Then, the abnormality diagnosis device 30C performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
 図10は、異常診断装置30Cの概略構成を示すブロック図である。図10に示すように、異常診断装置30Cは、電動機2に流れる電流iを検出する検出部31と、電流iを周波数解析する解析部32と、電流i内のノイズの周波数(ノイズ周波数fnβ)を予め設定する周波数設定部33Aと、電動機2の異常を判定する判定部34とを備える。
 検出部31および解析部32は、上記実施の形態1と同様の構成で同様に動作する。
FIG. 10 is a block diagram showing a schematic configuration of the abnormality diagnosis device 30C. As shown in FIG. 10, the abnormality diagnosis device 30C includes a detection unit 31 for detecting the current i flowing in the motor 2, an analysis unit 32 for frequency analysis of the current i, and a noise frequency (noise frequency fnβ) in the current i. The frequency setting unit 33A is provided in advance, and the determination unit 34 for determining an abnormality of the electric motor 2 is provided.
The detection unit 31 and the analysis unit 32 operate in the same manner as in the first embodiment.
 周波数設定部33Aは、変調波周波数f0および交流電源周波数facを取得し、ノイズ周波数fnβとして、以下の周波数を演算して設定する。但し、m、nはそれぞれ正の整数である。
 |m・fac±n・f0|
 即ち、ノイズ周波数fnβは、変調波周波数f0の整数倍から、交流電源周波数facの整数倍だけずれた値の絶対値となる。
The frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac, and calculates and sets the following frequencies as the noise frequency fnβ. However, m and n are positive integers, respectively.
| m ・ fac ± n ・ f0 |
That is, the noise frequency fnβ is an absolute value deviated from an integral multiple of the modulated wave frequency f0 by an integral multiple of the AC power frequency fac.
 判定部34は、解析部32による解析結果32aから、変調波の側帯波成分のスペクトルピークを取得し、スペクトルピークに基づいて電動機2の異常を判定して判定結果34aを出力する。その際、ノイズ周波数fnβに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定して、ノイズ干渉有りと推定される側帯波成分は異常判定から除外する。 The determination unit 34 acquires the spectrum peak of the sideband wave component of the modulated wave from the analysis result 32a by the analysis unit 32, determines the abnormality of the motor 2 based on the spectrum peak, and outputs the determination result 34a. At that time, the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave is estimated based on the noise frequency fnβ, and the sideband wave component presumed to have noise interference is excluded from the abnormality determination.
 図11は、ノイズ周波数を説明するための電流iの周波数スペクトル波形である。
 図11に示すように、変調波周波数f0および交流電源周波数facがそれぞれ50Hz、60Hzの場合、変調波周波数f0の復数倍(100Hz、150Hz、200Hz)の周波数と、それと別に、周波数10Hz、70Hz、110Hz、170Hzにおいて、ノイズ成分のスペクトルが出現している。変調波周波数f0の復数倍以外のノイズ成分の周波数を、それぞれ変調波周波数f0(50Hz)および交流電源周波数fac(60Hz)で表すと、
10Hz=fac-f0
70Hz=2・fac-f0
110Hz=fac+f0
170Hz=2・fac+f0
となり、上述したノイズ周波数fnβの演算式を満たすものとなる。
FIG. 11 is a frequency spectrum waveform of the current i for explaining the noise frequency.
As shown in FIG. 11, when the modulated wave frequency f0 and the AC power supply frequency fac are 50 Hz and 60 Hz, respectively, the frequency is a multiple of the modulated wave frequency f0 (100 Hz, 150 Hz, 200 Hz), and the frequencies are 10 Hz and 70 Hz separately. , 110 Hz, 170 Hz, the spectrum of the noise component appears. When the frequencies of noise components other than the multiple times of the modulated wave frequency f0 are expressed by the modulated wave frequency f0 (50 Hz) and the AC power supply frequency fac (60 Hz), respectively,
10Hz = fac-f0
70Hz = 2 ・ fac-f0
110Hz = fac + f0
170Hz = 2 ・ fac + f0
Therefore, the above-mentioned calculation formula of the noise frequency fnβ is satisfied.
 次に、異常診断装置30Cの動作を図12に示すフローチャートに基づいて説明する。
 まず、異常診断装置30Cは、上記実施の形態1と同様に、電力変換装置100の電力変換部10から電動機2に流れる各相電流iの内、少なくとも1相分の電流iの電流波形を検出部31により検出し(ステップS1)、解析部32は、検出された電流iに基づいて周波数解析を行い、周波数スペクトル波形を含む解析結果32aを導出する(ステップS2)。
Next, the operation of the abnormality diagnosis device 30C will be described with reference to the flowchart shown in FIG.
First, the abnormality diagnosis device 30C detects the current waveform of the current i for at least one phase among the phase currents i flowing from the power conversion unit 10 of the power conversion device 100 to the electric motor 2 as in the first embodiment. Detected by the unit 31 (step S1), the analysis unit 32 performs frequency analysis based on the detected current i, and derives the analysis result 32a including the frequency spectrum waveform (step S2).
 一方、周波数設定部33Aは、変調波周波数f0および交流電源周波数facを取得する(ステップSS3)。
 そして、周波数設定部33Aは、上述したように、
 |m・fac±n・f0|
を演算し(ステップSS4)、ノイズ周波数fnβとして設定する。なお、ノイズ周波数fnβは、m=n=1の場合を含み、測定可能域を超えない範囲で設定される。
 m=n=1の場合、即ち、(fac±f0)はfc/2より低い値である。また、電力変換装置100の通常の制御条件においては、(fac±f0)は(fc-4f0)より低い値となる。このため、設定されるノイズ周波数fnβは、fc/2より低い周波数領域の周波数を含み、一般的には、(fc-4f0)より低い周波数も含んで設定される(ステップS5)。
On the other hand, the frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac (step SS3).
Then, as described above, the frequency setting unit 33A has the frequency setting unit 33A.
| m ・ fac ± n ・ f0 |
Is calculated (step SS4) and set as the noise frequency fnβ. The noise frequency fnβ includes the case of m = n = 1 and is set within a range not exceeding the measurable range.
When m = n = 1, that is, (fac ± f0) is a value lower than fc / 2. Further, under the normal control conditions of the power conversion device 100, (fac ± f0) is a lower value than (fc-4f0). Therefore, the noise frequency fnβ to be set includes a frequency in the frequency domain lower than fc / 2, and is generally set to include a frequency lower than (fc-4f0) (step S5).
 判定部34は、ステップS2にて導出された解析結果32aと、ステップS5にて設定されたノイズ周波数fnβとに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定する。具体的には、変調波の側帯波成分(スペクトル41)の周波数が、ノイズ周波数fnβと重複あるいは近接しているかを判定して、ノイズ干渉有りと推定する。この場合も、上記実施の形態1と同様に、判定部34は、異常兆候で増加する特定の周波数成分(側帯波成分)を監視対象として、その周波数とノイズ周波数fnβとを比較し、差分が設定値未満のとき、重複あるいは近接していると判定し、ノイズ干渉有りと推定する。この場合も、設定値は、数Hz、例えば2Hzに設定される(ステップS6)。 The determination unit 34 estimates the presence or absence of noise interference at the spectral peak of the sideband wave component of the modulated wave based on the analysis result 32a derived in step S2 and the noise frequency fnβ set in step S5. Specifically, it is determined whether the frequency of the sideband wave component (spectrum 41) of the modulated wave overlaps or is close to the noise frequency fnβ, and it is estimated that there is noise interference. In this case as well, as in the first embodiment, the determination unit 34 compares a specific frequency component (sideband wave component) that increases due to an abnormality sign with the noise frequency fnβ, and makes a difference. If it is less than the set value, it is judged that they are duplicated or close to each other, and it is estimated that there is noise interference. Also in this case, the set value is set to several Hz, for example, 2 Hz (step S6).
 判定部34は、ステップS6において、ノイズ干渉有りと推定される側帯波成分がある場合、当該側帯波成分を異常診断の対象から除外し(ステップS7)、その他の側帯波成分に基づいて電動機2の異常を判定する。その際、側帯波成分のスペクトルピークが予め設定された基準値を超えると異常と判定する。基準値は、例えば、変調波周波数f0のスペクトルピークに基づいて設定される(ステップS8)。 If there is a sideband wave component presumed to have noise interference in step S6, the determination unit 34 excludes the sideband wave component from the target of abnormality diagnosis (step S7), and the motor 2 is based on the other sideband wave components. Judge the abnormality of. At that time, if the spectral peak of the sideband wave component exceeds a preset reference value, it is determined to be abnormal. The reference value is set, for example, based on the spectral peak of the modulated wave frequency f0 (step S8).
 以上のように、この実施の形態による異常診断装置30Cは、電動機2に流れる電流i内のノイズ成分の周波数(ノイズ周波数fnβ)を予め設定し、電流iを周波数解析して得た変調波の側帯波成分について異常診断を行う。そして、異常診断の際、側帯波成分の周波数とノイズ周波数fnβとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定される側帯波成分は除外し、残りの側帯波成分のスペクトルピークに基づいて異常を判定する。
 このため、低周波数領域を含むノイズ成分、この場合、変調波周波数f0および交流電源周波数facに起因するノイズ成分の影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。
As described above, the abnormality diagnosis device 30C according to this embodiment sets the frequency (noise frequency fnβ) of the noise component in the current i flowing through the motor 2 in advance, and the current i is frequency-analyzed to obtain the modulated wave. Abnormal diagnosis is performed for the lateral band component. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fnβ, and the sideband wave component presumed to have noise interference is excluded. The anomaly is determined based on the spectral peaks of the remaining sideband components.
Therefore, it is possible to prevent erroneous diagnosis due to the influence of the noise component including the low frequency region, in this case, the noise component caused by the modulated wave frequency f0 and the AC power frequency fac, and the abnormality diagnosis of the motor 2 can be performed with high reliability.
 また、側帯波成分の周波数と設定されたノイズ周波数fnβとの差分が設定値未満で近接する場合、その側帯波成分をノイズ干渉有りと推定するため、信頼性良くノイズ干渉を推定できる。 Further, when the difference between the frequency of the sideband wave component and the set noise frequency fnβ is less than the set value and is close to each other, the sideband wave component is estimated to have noise interference, so that noise interference can be estimated with high reliability.
 なお、ノイズ周波数fnβは、測定可能域を超えない範囲で設定されるとしたが、搬送波周波数fcの1/2より低い周波数領域のみで設定しても良い。 Although the noise frequency fnβ is set within a range that does not exceed the measurable range, it may be set only in a frequency region lower than 1/2 of the carrier frequency fc.
 また、この実施の形態4に、上記実施の形態2を適用して報知部35を設け、ノイズ干渉有りの推定があったことをユーザに報知しても良い。 Further, the notification unit 35 may be provided by applying the above-described second embodiment to the fourth embodiment to notify the user that the presence or absence of noise interference has been estimated.
 さらに、この実施の形態4に、上記実施の形態3を適用しても良い。その場合、ノイズ検出部37、記憶部38および切替器39を設け、異常診断に先立って、電動機2の正常運転時において、電流iのノイズ周波数fnβでのノイズの大きさを検出し、記憶しておく。そして、異常診断の際、側帯波成分の周波数とノイズ周波数fnβとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定される側帯波成分のスペクトルピークを、ノイズの大きさを考慮して異常判定に用いる。
 これにより、異常診断のための監視対象の側帯波成分を確実に監視して電動機2の異常診断を確実に行える。
Further, the third embodiment may be applied to the fourth embodiment. In that case, a noise detection unit 37, a storage unit 38, and a switch 39 are provided to detect and store the magnitude of noise at the noise frequency fnβ of the current i during normal operation of the motor 2 prior to the abnormality diagnosis. Keep it. Then, at the time of abnormality diagnosis, the presence or absence of noise interference in the spectrum peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency fnβ, and the spectrum peak of the sideband wave component estimated to have noise interference is obtained. , Used for abnormality judgment in consideration of the magnitude of noise.
As a result, the sideband wave component to be monitored for the abnormality diagnosis can be reliably monitored, and the abnormality diagnosis of the motor 2 can be reliably performed.
 また、上記実施の形態3を適用する場合、ノイズ検出部37でのノイズの検出は、電動機2へ出力される線間電圧あるいは平滑コンデンサ10Cの直流電圧を検出し、周波数解析した結果から得る事もできる。その場合、特に電動機2の正常運転時に検出する必要は無く、検出された電圧の周波数解析の結果から、電流iのノイズ周波数fnβにおける正常運転時に相当するノイズの大きさを演算できる。そして、演算結果は、記憶部38に記憶せず用いる事ができ、記憶部38を省略しても良い。
 また、検出された電圧の周波数解析の結果と、電動機2の正常運転時における、電流iの解析結果32aから得たノイズの検出結果との双方を用いることもでき、異常判定の精度が向上する。
Further, when the above embodiment 3 is applied, the noise detection by the noise detection unit 37 is obtained from the result of frequency analysis by detecting the line voltage output to the motor 2 or the DC voltage of the smoothing capacitor 10C. You can also. In that case, it is not particularly necessary to detect it during normal operation of the motor 2, and the magnitude of noise corresponding to normal operation at the noise frequency fnβ of the current i can be calculated from the result of the frequency analysis of the detected voltage. The calculation result can be used without being stored in the storage unit 38, and the storage unit 38 may be omitted.
Further, both the result of the frequency analysis of the detected voltage and the detection result of the noise obtained from the analysis result 32a of the current i during the normal operation of the motor 2 can be used, and the accuracy of the abnormality determination is improved. ..
 また、上記実施の形態4では、周波数設定部33Aは、変調波周波数f0および交流電源周波数facを取得して、上述したノイズ周波数fnβを設定するものとしたが、上記実施の形態1で示したノイズ周波数fnαを併せて設定しても良い。その場合、周波数設定部33Aは、変調波周波数f0、搬送波周波数fc、サンプリング周波数fsおよび交流電源周波数facを取得して、ノイズ周波数fnαおよびノイズ周波数fnβを演算して設定する。これにより、ノイズ成分の影響を広く抑制して誤診断を防止でき、電動機2の異常診断をさらに信頼性良く行える。 Further, in the fourth embodiment, the frequency setting unit 33A acquires the modulated wave frequency f0 and the AC power supply frequency fac to set the above-mentioned noise frequency fnβ, which was shown in the first embodiment. The noise frequency fnα may also be set. In that case, the frequency setting unit 33A acquires the modulated wave frequency f0, the carrier wave frequency fc, the sampling frequency fs, and the AC power supply frequency fac, and calculates and sets the noise frequency fnα and the noise frequency fnβ. As a result, the influence of the noise component can be widely suppressed to prevent erroneous diagnosis, and the abnormality diagnosis of the motor 2 can be performed more reliably.
 さらにまた、上記各実施の形態1~4による異常診断装置30、30A~30Cは、電力変換装置100の外部にあるものを示したが、電力変換装置100の制御装置20内にあっても良く、同様の効果が得られると共に、ノイズ周波数fnα、fnβの設定に必要な情報の授受が簡便になる。 Furthermore, although the abnormality diagnosis devices 30 and 30A to 30C according to the above embodiments 1 to 4 are shown to be outside the power conversion device 100, they may be inside the control device 20 of the power conversion device 100. , The same effect can be obtained, and the exchange of information necessary for setting the noise frequencies fnα and fnβ becomes easy.
実施の形態5.
 図13は実施の形態5による電力変換装置100Aの構成を示す図である。
 図13に示すように、電力変換装置100Aは、上記実施の形態1と同様に構成される電力変換部10と、電力変換部10を出力制御する制御装置20Aとを備える。制御装置20Aは、電力変換部10を出力制御するためのインバータ制御部21と異常診断装置30Dとを備える。
 また、電力変換部10から電動機2に流れる電流iは、電流センサ3により検出され、異常診断装置30Dは、電流iに基づいて電動機2の異常を診断する。
Embodiment 5.
FIG. 13 is a diagram showing the configuration of the power conversion device 100A according to the fifth embodiment.
As shown in FIG. 13, the power conversion device 100A includes a power conversion unit 10 configured in the same manner as in the first embodiment, and a control device 20A that outputs and controls the power conversion unit 10. The control device 20A includes an inverter control unit 21 for controlling the output of the power conversion unit 10 and an abnormality diagnosis device 30D.
Further, the current i flowing from the power conversion unit 10 to the electric motor 2 is detected by the current sensor 3, and the abnormality diagnosis device 30D diagnoses the abnormality of the electric motor 2 based on the current i.
 制御装置20Aでは、インバータ制御部21が、PWM制御によりインバータ部10Bの各スイッチング素子Qへのゲート信号Gを生成して、スイッチング素子Qをオンオフ制御することで、電力変換部10から電動機2に所望の電力を出力する。これにより、電力変換装置100Aは電動機2を駆動する。 In the control device 20A, the inverter control unit 21 generates a gate signal G to each switching element Q of the inverter unit 10B by PWM control, and controls the switching element Q on and off to control the switching element Q from the power conversion unit 10 to the electric motor 2. Output the desired power. As a result, the power conversion device 100A drives the electric motor 2.
 異常診断装置30Dは、インバータ制御部21がPWM制御で用いる変調波(基本波)、搬送波、サンプリングのためのクロック信号(CLK)の各周波数である変調波周波数f0、搬送波周波数fc、サンプリング周波数fsを取得する。そして異常診断装置30Dは、電力変換部10から電動機2に流れる電流iについて、周波数解析を行い、電動機2の異常を診断する。 The abnormality diagnosis device 30D has a modulated wave frequency f0, a carrier wave frequency fc, and a sampling frequency fs, which are frequencies of a modulated wave (fundamental wave), a carrier wave, and a clock signal (CLK) for sampling used by the inverter control unit 21 in PWM control. To get. Then, the abnormality diagnosis device 30D performs frequency analysis on the current i flowing from the power conversion unit 10 to the electric motor 2, and diagnoses the abnormality of the electric motor 2.
 異常診断装置30Dは、上記実施の形態1で示した異常診断装置30と同様に、検出部31と解析部32と周波数設定部33と判定部34とを備え、検出部31、解析部32および周波数設定部33は、上記実施の形態1と同様に動作する。判定部34は、上記実施の形態1と同様に、側帯波成分の周波数とノイズ周波数fnαとに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定する。
 ノイズ干渉無しの場合、判定部34は、上記実施の形態1と同様に、側帯波成分のスペクトルピークに基づいて電動機2の異常診断を行う。そして、ノイズ干渉有りの場合、判定部34は、異常診断を中断し、報知信号SS1をインバータ制御部21に送信する。
The abnormality diagnosis device 30D includes a detection unit 31, an analysis unit 32, a frequency setting unit 33, and a determination unit 34, as in the abnormality diagnosis device 30 shown in the first embodiment, and includes the detection unit 31, the analysis unit 32, and the abnormality diagnosis device 30. The frequency setting unit 33 operates in the same manner as in the first embodiment. Similar to the first embodiment, the determination unit 34 estimates the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave based on the frequency of the sideband wave component and the noise frequency fnα.
When there is no noise interference, the determination unit 34 makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component, as in the first embodiment. Then, when there is noise interference, the determination unit 34 interrupts the abnormality diagnosis and transmits the notification signal SS1 to the inverter control unit 21.
 インバータ制御部21は、異常診断装置30Dから異常診断の中断を知らせる報知信号SS1を受信すると、搬送波周波数fcを変更して、変更後の搬送波周波数fcを用いて電力変換部10をPWM制御により出力制御して電動機2を駆動する。搬送波周波数fcは、電力変換部10の出力に直接影響せず容易に変更できる。
 異常診断装置30Dでは、各部が再度、動作して、異常診断を継続する。搬送波周波数fcが変更されるとノイズ周波数fnαが変化するため、側帯波成分のスペクトルピークにおけるノイズ干渉の有無も変化する。これにより、判定部34において、ノイズ干渉無しの推定を導く事ができ、側帯波成分のスペクトルピークに基づいて電動機2の異常診断を行う。
When the inverter control unit 21 receives the notification signal SS1 notifying the interruption of the abnormality diagnosis from the abnormality diagnosis device 30D, the inverter control unit 21 changes the carrier frequency fc and outputs the power conversion unit 10 by PWM control using the changed carrier frequency fc. It controls and drives the electric motor 2. The carrier frequency fc can be easily changed without directly affecting the output of the power conversion unit 10.
In the abnormality diagnosis device 30D, each part operates again to continue the abnormality diagnosis. Since the noise frequency fnα changes when the carrier frequency fc is changed, the presence or absence of noise interference at the spectral peak of the sideband wave component also changes. As a result, the determination unit 34 can derive an estimation without noise interference, and makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component.
 搬送波周波数fcの変更については、一度の変更により、判定部34においてノイズ干渉無しの推定を導くのが望ましいが、複数回の変更も可能である。 Regarding the change of the carrier frequency fc, it is desirable that the determination unit 34 derives the estimation without noise interference by changing it once, but it is possible to change it multiple times.
 以上のように、この実施の形態による電力変換装置100Aは、制御装置20A内の異常診断装置30Dが、異常診断の際、側帯波成分の周波数とノイズ周波数fnαとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定されると、搬送波周波数fcを変更する。これにより、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsの最大公約数GCDを変化させ、PWM制御に起因するノイズ成分の周波数自体を変化させる。このため、側帯波成分のスペクトルピークにおけるノイズ干渉を除去することができ、異常診断を確実に行う事ができる。このように、ノイズ成分の影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。 As described above, in the power conversion device 100A according to this embodiment, the abnormality diagnosis device 30D in the control device 20A determines the sideband wave component based on the frequency of the sideband wave component and the noise frequency fnα at the time of abnormality diagnosis. The presence or absence of noise interference at the spectrum peak is estimated, and if it is estimated that there is noise interference, the carrier frequency fc is changed. As a result, the greatest common divisor GCD of the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs is changed, and the frequency itself of the noise component caused by the PWM control is changed. Therefore, it is possible to remove noise interference at the spectral peak of the sideband wave component, and it is possible to reliably perform an abnormality diagnosis. In this way, erroneous diagnosis due to the influence of the noise component can be prevented, and abnormality diagnosis of the electric motor 2 can be performed with high reliability.
 なお、上記実施の形態5では、搬送波周波数fcを変更するものを示したが、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsの内、最大公約数GCDの演算に用いる周波数の内、少なくとも1つを変更すれば良い。 In the fifth embodiment, the carrier frequency fc is changed, but at least one of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs, which is used for the calculation of the greatest common divisor GCD. Just change one.
 また、搬送波周波数fcを変更する際、図14に示すように、搬送波周波数fcを時間変化させても良い。この場合、搬送波Crは、2種の異なる周期t1、t2による2種の周波数(1/t1)、(1/t2)を交互に繰り返して変化する。1周期毎の変化に限らず、また、3種以上の周波数に時間変化させても良い。さらに、離散的では無く連続的に周波数を変化させても良い。
 搬送波周波数fcあるいはサンプリング周波数fsが上記のように時間変化すると、最大公約数GCDおよびその整数倍の周波数成分のスペクトルを複数の周波数域に分散される。これによりノイズ成分のスペクトルピークを低減でき、側帯波成分のスペクトルピークにおけるノイズ干渉を除去あるいは抑制することができ、異常診断を信頼性良く行う事ができる。
Further, when the carrier frequency fc is changed, the carrier frequency fc may be changed with time as shown in FIG. In this case, the carrier wave Cr changes by alternately repeating two kinds of frequencies (1 / t1) and (1 / t2) with two kinds of different periods t1 and t2. The change is not limited to each cycle, and may be changed over time to three or more kinds of frequencies. Further, the frequency may be changed continuously instead of discretely.
When the carrier frequency fc or the sampling frequency fs changes with time as described above, the spectrum of the greatest common divisor GCD and its integral multiple frequency components is dispersed in a plurality of frequency ranges. As a result, the spectral peak of the noise component can be reduced, the noise interference at the spectral peak of the sideband wave component can be removed or suppressed, and the abnormality diagnosis can be performed with high reliability.
実施の形態6.
 上記実施の形態5では、異常診断装置30Dによる異常診断の際に、側帯波成分のスペクトルピークにおいてノイズ干渉有りと推定されると、最大公約数GCDの演算に用いる周波数の内、少なくとも1つを変更するものを示した。
 この実施の形態では、上記実施の形態5の場合に、さらに、最大公約数GCDが、変調波周波数f0に一致するか、あるいは10Hz以下、望ましくは数Hz以下となるように、最大公約数GCDの演算に用いる周波数の内、少なくとも1つを変更する。
Embodiment 6.
In the fifth embodiment, when it is estimated that there is noise interference at the spectral peak of the sideband wave component during the abnormality diagnosis by the abnormality diagnosis device 30D, at least one of the frequencies used for the calculation of the greatest common divisor GCD is used. Shown what to change.
In this embodiment, in the case of the fifth embodiment, the greatest common divisor GCD is further such that the greatest common divisor GCD matches the modulated wave frequency f0 or is 10 Hz or less, preferably several Hz or less. Change at least one of the frequencies used in the calculation of.
 図15は、実施の形態6による効果を説明するための電流の周波数スペクトル波形の概略図である。図15では、変調波周波数f0、搬送波周波数fcおよびサンプリング周波数fsの最大公約数GCDが、数Hzの場合と、10Hzを超える比較例の場合との2種の場合のノイズ成分を図示した。 FIG. 15 is a schematic diagram of a frequency spectrum waveform of a current for explaining the effect of the sixth embodiment. In FIG. 15, noise components are shown in two cases where the greatest common divisor GCD of the modulated wave frequency f0, the carrier frequency fc, and the sampling frequency fs is several Hz and the comparative example exceeding 10 Hz.
 図15に示すように、変調波周波数f0のスペクトル40と別に、インバータ部10Bのスイッチング動作に起因するノイズ成分のスペクトル42A、42Bが出現している。スペクトル42Aは、最大公約数GCDが10Hzを超える比較例の場合であり、スペクトル42Bは、最大公約数GCDが数Hzの場合である。スペクトル42Bは、スペクトル42Aに比して、出現数は多いがスペクトルピークは低い。
 このように、最大公約数GCDを数Hzに小さくすることで、ノイズ成分のスペクトルの出現数は増大するが、スペクトルを複数の周波数域に分散できてスペクトルピークを低減できる。これにより、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉を除去あるいは抑制することができ、異常診断を信頼性良く行う事ができる。
As shown in FIG. 15, apart from the spectrum 40 of the modulated wave frequency f0, the spectra 42A and 42B of the noise component caused by the switching operation of the inverter unit 10B appear. The spectrum 42A is a case where the greatest common divisor GCD exceeds 10 Hz, and the spectrum 42B is a case where the greatest common divisor GCD is several Hz. The spectrum 42B has a larger number of appearances but a lower spectrum peak than the spectrum 42A.
By reducing the greatest common divisor GCD to several Hz in this way, the number of appearances of the spectrum of the noise component increases, but the spectrum can be dispersed over a plurality of frequency ranges and the spectrum peak can be reduced. As a result, noise interference at the spectral peak of the sideband wave component of the modulated wave can be removed or suppressed, and abnormality diagnosis can be performed with high reliability.
 なお、上記実施の形態6において、最大公約数GCDが、変調波周波数f0に一致するように、最大公約数GCDの演算に用いる周波数の内、少なくとも1つを変更する場合は、異常診断装置30Dが想定するノイズ成分が除去されるため、異常診断を確実に信頼性良く行う事ができる。 In the sixth embodiment, when at least one of the frequencies used in the calculation of the greatest common divisor GCD is changed so that the greatest common divisor GCD matches the modulated wave frequency f0, the abnormality diagnosis device 30D is used. Since the noise component assumed by the above is removed, the abnormality diagnosis can be performed reliably and reliably.
実施の形態7.
 この実施の形態では、上記実施の形態5で示した電力変換装置100A内の異常診断装置30Dに、上記実施の形態4で示した異常診断装置30Cを適用するものを示す。この場合、異常診断装置30Cは、電力変換装置100Aの制御装置20A内に設けられる。
 異常診断装置30Cは、上記実施の形態4と同様に、検出部31と解析部32と周波数設定部33Aと判定部34とを備え、検出部31、解析部32および周波数設定部33Aは、上記実施の形態4と同様に動作する。
Embodiment 7.
In this embodiment, the abnormality diagnosis device 30C shown in the fourth embodiment is applied to the abnormality diagnosis device 30D in the power conversion device 100A shown in the fifth embodiment. In this case, the abnormality diagnosis device 30C is provided in the control device 20A of the power conversion device 100A.
The abnormality diagnosis device 30C includes a detection unit 31, an analysis unit 32, a frequency setting unit 33A, and a determination unit 34, as in the fourth embodiment, and the detection unit 31, analysis unit 32, and frequency setting unit 33A are described above. It operates in the same manner as in the fourth embodiment.
 判定部34は、上記実施の形態4と同様に、側帯波成分の周波数とノイズ周波数fnβとに基づいて、変調波の側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定する。
 ノイズ干渉無しの場合、判定部34は、上記実施の形態4と同様に、側帯波成分のスペクトルピークに基づいて電動機2の異常診断を行う。そして、ノイズ干渉有りの場合、判定部34は、異常診断を中断し、報知信号SS1をインバータ制御部21に送信する。
Similar to the fourth embodiment, the determination unit 34 estimates the presence or absence of noise interference in the spectral peak of the sideband wave component of the modulated wave based on the frequency of the sideband wave component and the noise frequency fnβ.
When there is no noise interference, the determination unit 34 makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component, as in the fourth embodiment. Then, when there is noise interference, the determination unit 34 interrupts the abnormality diagnosis and transmits the notification signal SS1 to the inverter control unit 21.
 インバータ制御部21は、異常診断装置30Cから異常診断の中断を知らせる報知信号SS1を受信すると、変調波周波数f0を変更して、変更後の変調波周波数f0を用いて電力変換部10をPWM制御により出力制御して電動機2を駆動する。
 異常診断装置30Cでは、各部が再度、動作して、異常診断を継続する。変調波周波数f0が変更されるとノイズ周波数fnβが変化するため、側帯波成分のスペクトルピークにおけるノイズ干渉の有無も変化する。これにより、判定部34において、ノイズ干渉無しの推定を導く事ができ、側帯波成分のスペクトルピークに基づいて電動機2の異常診断を行う。
When the inverter control unit 21 receives the notification signal SS1 notifying the interruption of the abnormality diagnosis from the abnormality diagnosis device 30C, the inverter control unit 21 changes the modulated wave frequency f0 and PWM-controls the power conversion unit 10 using the changed modulated wave frequency f0. The output is controlled by the above to drive the electric motor 2.
In the abnormality diagnosis device 30C, each part operates again to continue the abnormality diagnosis. Since the noise frequency fnβ changes when the modulated wave frequency f0 is changed, the presence or absence of noise interference at the spectral peak of the sideband wave component also changes. As a result, the determination unit 34 can derive an estimation without noise interference, and makes an abnormality diagnosis of the motor 2 based on the spectral peak of the sideband wave component.
 以上のように、この実施の形態による電力変換装置100Aは、制御装置20A内の異常診断装置30Cが、異常診断の際、側帯波成分の周波数とノイズ周波数fnβとに基づいて、側帯波成分のスペクトルピークにおけるノイズ干渉の有無を推定し、ノイズ干渉有りと推定されると、変調波周波数f0を変更する。
 これにより、交流電源周波数facに応じた電圧(平滑コンデンサ10Cの直流電圧および電動機2に出力される交流電圧)の変動に起因するノイズ成分の周波数自体を変化させる。このため、側帯波成分のスペクトルピークにおけるノイズ干渉を除去することができ、異常診断を確実に行う事ができる。このように、ノイズ成分の影響による誤診断を防止でき、電動機2の異常診断を信頼性良く行える。
As described above, in the power conversion device 100A according to this embodiment, the abnormality diagnosis device 30C in the control device 20A determines the sideband wave component based on the frequency of the sideband wave component and the noise frequency fnβ at the time of abnormality diagnosis. The presence or absence of noise interference at the spectrum peak is estimated, and if it is estimated that there is noise interference, the modulated wave frequency f0 is changed.
As a result, the frequency itself of the noise component caused by the fluctuation of the voltage (DC voltage of the smoothing capacitor 10C and the AC voltage output to the electric motor 2) according to the AC power supply frequency fac is changed. Therefore, it is possible to remove noise interference at the spectral peak of the sideband wave component, and it is possible to reliably perform an abnormality diagnosis. In this way, erroneous diagnosis due to the influence of the noise component can be prevented, and abnormality diagnosis of the electric motor 2 can be performed with high reliability.
 なお、上記実施の形態5~7では、ノイズ干渉有りと推定される場合に、ノイズ周波数に関わる周波数を変更するものを示したが、想定されるノイズ干渉を最初から除去あるいは抑制して電力変換装置100Aを運転することもできる。
 この場合、監視対象の側帯波成分の周波数と、想定されるノイズ周波数との差分が設定値以上になるように変調波周波数f0、搬送波周波数fc、サンプリング周波数fsを決定して電力変換装置100Aを運転する。あるいは、最大公約数GCDを数Hzに小さくするように変調波周波数f0、搬送波周波数fc、サンプリング周波数fsを決定して電力変換装置100Aを運転する。
In the above embodiments 5 to 7, when it is estimated that there is noise interference, the frequency related to the noise frequency is changed. However, the assumed noise interference is removed or suppressed from the beginning for power conversion. The device 100A can also be operated.
In this case, the modulation wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs are determined so that the difference between the frequency of the sideband wave component to be monitored and the assumed noise frequency becomes equal to or more than the set value, and the power conversion device 100A is used. drive. Alternatively, the power conversion device 100A is operated by determining the modulated wave frequency f0, the carrier wave frequency fc, and the sampling frequency fs so as to reduce the greatest common divisor GCD to several Hz.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 交流電源、2 電動機、10 電力変換部、10A コンバータ部、10B インバータ部、10C 平滑コンデンサ、20,20A 制御装置、30,30A~30D 異常診断装置、31 検出部、32 解析部、32a 解析結果、33,33A 周波数設定部、34 判定部、35 報知部、36 判定部、37 ノイズ検出部、38 記憶部、100,100A 電力変換装置、f0 変調波周波数、fac 交流電源周波数、fc 搬送波周波数、fs サンプリング周波数、fnα,fnβ ノイズ周波数、M 変調波。 1 AC power supply, 2 electric motor, 10 power conversion unit, 10A converter unit, 10B inverter unit, 10C smoothing capacitor, 20, 20A control device, 30, 30A to 30D abnormality diagnosis device, 31 detection unit, 32 analysis unit, 32a analysis result , 33, 33A frequency setting unit, 34 judgment unit, 35 notification unit, 36 judgment unit, 37 noise detection unit, 38 storage unit, 100, 100A power converter, f0 modulated wave frequency, fac AC power supply frequency, fc carrier frequency, fs sampling frequency, fnα, fnβ noise frequency, M modulated wave.

Claims (17)

  1. 電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する異常診断装置において、
    前記電動機に流れる電流を検出する検出部と、
    前記検出部にて検出された前記電流を周波数解析して解析結果を出力する解析部と、
    前記解析結果から得られる、変調波の少なくとも1つの側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する判定部と、
    前記電流内のノイズ周波数を予め設定する周波数設定部と、を備え、
    前記判定部は、前記側帯波成分の周波数と、設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定し、前記電動機の異常を判定する、
    異常診断装置。
    In an abnormality diagnostic device that diagnoses an abnormality in an electric motor driven by pulse width modulation control of a power converter.
    A detector that detects the current flowing through the motor,
    An analysis unit that frequency-analyzes the current detected by the detection unit and outputs an analysis result,
    A determination unit for determining an abnormality of the motor based on a spectral peak of at least one sideband component of the modulated wave obtained from the analysis result, and a determination unit.
    A frequency setting unit for presetting the noise frequency in the current is provided.
    The determination unit estimates the presence or absence of noise interference in the spectrum peak of the sideband wave component based on the frequency of the sideband wave component and the set noise frequency, and determines the abnormality of the motor.
    Abnormality diagnostic device.
  2. 前記周波数設定部が設定する前記ノイズ周波数は、搬送波周波数の1/2より低い周波数を含む、
    請求項1に記載の異常診断装置。
    The noise frequency set by the frequency setting unit includes a frequency lower than 1/2 of the carrier frequency.
    The abnormality diagnostic device according to claim 1.
  3. 前記周波数設定部は、前記パルス幅変調制御に用いられる3つの周波数である変調波周波数、搬送波周波数、および前記変調波をサンプリングするサンプリング周波数の内、前記変調波周波数を含む2以上の周波数の最大公約数を演算し、該最大公約数およびその整数倍を前記ノイズ周波数として設定する、
    請求項1または請求項2に記載の異常診断装置。
    The frequency setting unit is the maximum of two or more frequencies including the modulated wave frequency among the three frequencies used for the pulse width modulation control, the modulated wave frequency, the carrier frequency, and the sampling frequency for sampling the modulated wave. The promise number is calculated, and the maximum promise number and its integral multiple are set as the noise frequency.
    The abnormality diagnostic device according to claim 1 or 2.
  4. 前記周波数設定部は、前記パルス幅変調制御に用いられる変調波周波数の整数倍から、前記電力変換装置が接続される交流電源の周波数の整数倍だけずれた値の絶対値を前記ノイズ周波数として設定する、
    請求項1または請求項2に記載の異常診断装置。
    The frequency setting unit sets an absolute value of a value deviated by an integral multiple of the frequency of the AC power supply to which the power conversion device is connected from an integral multiple of the modulation wave frequency used for the pulse width modulation control as the noise frequency. do,
    The abnormality diagnostic device according to claim 1 or 2.
  5. 前記判定部は、前記側帯波成分の周波数と前記ノイズ周波数との差分が設定値未満で近接する場合、当該側帯波成分に対して、前記ノイズ干渉有りと推定する、
    請求項1から請求項4のいずれか1項に記載の異常診断装置。
    When the difference between the frequency of the sideband wave component and the noise frequency is less than the set value and is close to each other, the determination unit estimates that there is noise interference with the sideband wave component.
    The abnormality diagnosis device according to any one of claims 1 to 4.
  6. 前記判定部は、前記ノイズ干渉有りと推定された側帯波成分を除いて、前記電動機の異常を判定する、
    請求項5に記載の異常診断装置。
    The determination unit determines an abnormality in the motor, excluding the sideband wave component presumed to have noise interference.
    The abnormality diagnostic device according to claim 5.
  7. 前記電動機の正常運転時において前記電流の前記ノイズ周波数でのノイズの大きさを検出するノイズ検出部と、該ノイズ検出部による検出結果を記憶する記憶部とを備え、
    前記判定部は、前記ノイズ干渉有りと推定された側帯波成分について、該側帯波成分の前記スペクトルピークと、前記記憶部内の前記検出結果とに基づいて前記電動機の異常を判定する、
    請求項5に記載の異常診断装置。
    A noise detection unit for detecting the magnitude of noise at the noise frequency of the current during normal operation of the motor and a storage unit for storing the detection result by the noise detection unit are provided.
    The determination unit determines the abnormality of the motor based on the spectral peak of the sideband wave component estimated to have noise interference and the detection result in the storage unit.
    The abnormality diagnostic device according to claim 5.
  8. 前記ノイズ干渉の有無を外部に報知する報知部を備えた、
    請求項1から請求項7のいずれか1項に記載の異常診断装置。
    A notification unit for notifying the presence or absence of the noise interference to the outside is provided.
    The abnormality diagnosis device according to any one of claims 1 to 7.
  9. 直流電力を交流電力に変換して前記電動機に電力供給する電力変換部と、
    前記電力変換部を前記パルス幅変調制御により出力制御する制御装置とを備え、
    前記制御装置は、請求項1から請求項8のいずれか1項に記載の異常診断装置を備えて、前記電動機の異常を診断する、
    電力変換装置。
    A power conversion unit that converts DC power into AC power and supplies power to the motor,
    A control device for controlling the output of the power conversion unit by the pulse width modulation control is provided.
    The control device includes the abnormality diagnosis device according to any one of claims 1 to 8, and diagnoses an abnormality of the electric motor.
    Power converter.
  10. 直流電力を交流電力に変換して前記電動機に電力供給する電力変換部と、
    前記電力変換部を前記パルス幅変調制御により出力制御する制御装置とを備え、
    前記制御装置は、請求項3に記載の異常診断装置を備えて前記電動機の異常を診断し、
    前記制御装置は、前記側帯波成分の周波数と前記ノイズ周波数との差分が設定値未満で近接する場合、前記最大公約数の演算に用いた前記2以上の周波数の内、少なくとも1つを変更して前記パルス幅変調制御を行い、
    前記異常診断装置は、変更された周波数に基づいて、前記電動機の異常を診断する、
    電力変換装置。
    A power conversion unit that converts DC power into AC power and supplies power to the motor,
    A control device for controlling the output of the power conversion unit by the pulse width modulation control is provided.
    The control device includes the abnormality diagnosis device according to claim 3, and diagnoses the abnormality of the motor.
    When the difference between the frequency of the sideband component and the noise frequency is less than the set value, the control device changes at least one of the two or more frequencies used in the calculation of the greatest common divisor. The pulse width modulation control is performed.
    The abnormality diagnosing device diagnoses an abnormality of the electric motor based on the changed frequency.
    Power converter.
  11. 前記周波数の変更は、該周波数を時間変化させるものである、
    請求項10に記載の電力変換装置。
    The change of the frequency is to change the frequency with time.
    The power conversion device according to claim 10.
  12. 前記制御装置は、前記側帯波成分の周波数と前記ノイズ周波数との差分が設定値未満で近接する場合、前記最大公約数が、前記変調波周波数に一致するか、あるいは10Hz以下となるように、前記2以上の周波数の内、少なくとも1つを変更する、
    請求項10に記載の電力変換装置。
    When the difference between the frequency of the sideband component and the noise frequency is less than the set value, the control device causes the greatest common divisor to match the modulated wave frequency or to be 10 Hz or less. Change at least one of the two or more frequencies.
    The power conversion device according to claim 10.
  13. 前記周波数の変更は、該周波数として前記搬送波周波数を変更するものである、
    請求項10から請求項12のいずれか1項に記載の電力変換装置。
    The change of the frequency is to change the carrier frequency as the frequency.
    The power conversion device according to any one of claims 10 to 12.
  14. 交流電源からの交流電力を直流電力に変換するコンバータ部と、平滑コンデンサと、該平滑コンデンサの直流電力を交流電力に変換して前記電動機に電力供給するインバータ部とを備えた電力変換部と、
    前記電力変換部を前記パルス幅変調制御により出力制御する制御装置とを備え、
    前記制御装置は、請求項4に記載の異常診断装置を備えて前記電動機の異常を診断する、
    電力変換装置。
    A power conversion unit including a converter unit that converts AC power from an AC power source into DC power, a smoothing capacitor, and an inverter unit that converts the DC power of the smoothing capacitor into AC power and supplies power to the electric motor.
    A control device for controlling the output of the power conversion unit by the pulse width modulation control is provided.
    The control device includes the abnormality diagnosis device according to claim 4, and diagnoses an abnormality in the motor.
    Power converter.
  15. 前記制御装置は、前記側帯波成分の周波数と前記ノイズ周波数との差分が設定値未満で近接する場合、前記変調波周波数を変更して前記パルス幅変調制御を行い、
    前記異常診断装置は、変更された変調波周波数に基づいて、前記電動機の異常を診断する、
    請求項14に記載の電力変換装置。
    When the difference between the frequency of the sideband wave component and the noise frequency is less than the set value, the control device changes the modulated wave frequency to perform the pulse width modulation control.
    The abnormality diagnosing device diagnoses an abnormality of the motor based on the changed modulated wave frequency.
    The power conversion device according to claim 14.
  16. 電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する異常診断方法において、
    前記パルス幅変調制御に用いられる3つの周波数である変調波周波数、搬送波周波数、および変調波をサンプリングするサンプリング周波数の内、前記変調波周波数を含む2以上の周波数の最大公約数を演算し、該最大公約数の整数倍である周波数をノイズ周波数として設定する第1ステップと、
    前記電動機に流れる電流を検出して周波数解析する第2ステップと、
    前記第2ステップでの解析結果から得られる変調波の側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する第3ステップとを備え、
    前記第3ステップにおいて、前記側帯波成分の周波数と、前記第1ステップにて設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定する、
    異常診断方法。
    In the abnormality diagnosis method for diagnosing the abnormality of the motor driven by the pulse width modulation control of the power converter.
    Among the three frequencies used for the pulse width modulation control, the modulated wave frequency, the carrier frequency, and the sampling frequency for sampling the modulated wave, the maximum promise number of two or more frequencies including the modulated wave frequency is calculated, and the result is calculated. The first step of setting a frequency that is an integral multiple of the maximum commitment as the noise frequency,
    The second step of detecting the current flowing through the motor and analyzing the frequency,
    A third step of determining an abnormality of the motor based on the spectral peak of the sideband wave component of the modulated wave obtained from the analysis result in the second step is provided.
    In the third step, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
    Abnormal diagnosis method.
  17. 電力変換装置のパルス幅変調制御により駆動される電動機の異常を診断する異常診断方法において、
    前記パルス幅変調制御に用いられる変調波周波数から、前記電力変換装置が接続される交流電源の周波数の整数倍だけずれた周波数をノイズ周波数として設定する第1ステップと、
    前記電動機に流れる電流を検出して周波数解析する第2ステップと、
    前記第2ステップでの解析結果から得られる変調波の側帯波成分のスペクトルピークに基づいて前記電動機の異常を判定する第3ステップとを備え、
    前記第3ステップにおいて、前記側帯波成分の周波数と、前記第1ステップにて設定された前記ノイズ周波数とに基づいて、前記側帯波成分の前記スペクトルピークにおけるノイズ干渉の有無を推定する、
    異常診断方法。
                    
    In the abnormality diagnosis method for diagnosing the abnormality of the motor driven by the pulse width modulation control of the power converter.
    The first step of setting the frequency deviated by an integral multiple of the frequency of the AC power supply to which the power conversion device is connected from the modulated wave frequency used for the pulse width modulation control as the noise frequency.
    The second step of detecting the current flowing through the motor and analyzing the frequency,
    A third step of determining an abnormality of the motor based on the spectral peak of the sideband wave component of the modulated wave obtained from the analysis result in the second step is provided.
    In the third step, the presence or absence of noise interference in the spectral peak of the sideband wave component is estimated based on the frequency of the sideband wave component and the noise frequency set in the first step.
    Abnormal diagnosis method.
PCT/JP2020/025464 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device, and abnormality diagnosis method WO2022003758A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/025464 WO2022003758A1 (en) 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device, and abnormality diagnosis method
KR1020227043657A KR20230010708A (en) 2020-06-29 2020-06-29 Fault diagnosis device, power conversion device, and fault diagnosis method
DE112020007369.6T DE112020007369T5 (en) 2020-06-29 2020-06-29 ABNORMALITY DIAGNOSTIC DEVICE, POWER CONVERSION DEVICE AND ABNORMALITY DIAGNOSTIC METHOD
CN202080102292.3A CN115885469A (en) 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device, and abnormality diagnosis method
JP2020560425A JP6824494B1 (en) 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device and abnormality diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025464 WO2022003758A1 (en) 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device, and abnormality diagnosis method

Publications (1)

Publication Number Publication Date
WO2022003758A1 true WO2022003758A1 (en) 2022-01-06

Family

ID=74226003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025464 WO2022003758A1 (en) 2020-06-29 2020-06-29 Abnormality diagnosis device, power conversion device, and abnormality diagnosis method

Country Status (5)

Country Link
JP (1) JP6824494B1 (en)
KR (1) KR20230010708A (en)
CN (1) CN115885469A (en)
DE (1) DE112020007369T5 (en)
WO (1) WO2022003758A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022136827A (en) * 2021-03-08 2022-09-21 オムロン株式会社 Device and method for detecting abnormality
JP2022136826A (en) * 2021-03-08 2022-09-21 オムロン株式会社 Device and method for detecting abnormality
WO2022224391A1 (en) * 2021-04-22 2022-10-27 三菱電機株式会社 Abnormality diagnosis device and abnormality diagnosis method
WO2023095247A1 (en) * 2021-11-25 2023-06-01 三菱電機株式会社 Diagnosis device and diagnosis method for electric motor
WO2023210441A1 (en) * 2022-04-26 2023-11-02 三菱電機株式会社 Abnormality diagnosis device, abnormality diagnosis system, abnormality diagnosis method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
JP2016116251A (en) * 2014-12-10 2016-06-23 旭化成エンジニアリング株式会社 Inverter noise removal method and diagnostic method of facility including inverter
WO2019082277A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Anomaly assessment device, anomaly assessment method, and anomaly assessment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062939B2 (en) 2002-03-14 2008-03-19 Jfeスチール株式会社 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
JP2016116251A (en) * 2014-12-10 2016-06-23 旭化成エンジニアリング株式会社 Inverter noise removal method and diagnostic method of facility including inverter
WO2019082277A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Anomaly assessment device, anomaly assessment method, and anomaly assessment system

Also Published As

Publication number Publication date
DE112020007369T5 (en) 2023-05-04
KR20230010708A (en) 2023-01-19
CN115885469A (en) 2023-03-31
JPWO2022003758A1 (en) 2022-01-06
JP6824494B1 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2022003758A1 (en) Abnormality diagnosis device, power conversion device, and abnormality diagnosis method
Potamianos et al. Open-circuit fault diagnosis for matrix converter drives and remedial operation using carrier-based modulation methods
JP5069306B2 (en) Control device for rotating electrical machine
JPWO2006112033A1 (en) AC motor controller
US11218107B2 (en) Control device for power converter
JP5834217B2 (en) DC power supply device and application system
WO2014064981A1 (en) Open phase detection method and power conversion device
CN111656669B (en) Control device
JP6211377B2 (en) PWM converter control device and dead time compensation method thereof, PWM inverter control device and dead time compensation method thereof
JP5521291B2 (en) Control device and control method for power conversion device
US20190028052A1 (en) Evaluation apparatus for evaluating inverter circuit for electric motor and evaluation method therefor
JP6420405B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
EP3133732A1 (en) Power conversion device and power conversion method
JP5660222B2 (en) Elevator control device
JP7295519B2 (en) Degradation estimating device and degradation estimating program for power converter
US11777429B2 (en) Control device and failure determination method
EP2618479A2 (en) Apparatus for controlling interior permanent magnet synchronous motor
WO2021111856A1 (en) Power conversion device, diagonosis device, and diagnosis method
KR20140090470A (en) Apparatus for driving motor
JP3173376B2 (en) Apparatus for determining the capacitance of a capacitor of a three-level power converter
WO2021005873A1 (en) Power conversion device, pressure feed device, power conversion method, program, diagnosis device, and diagnosis method
JP2019205243A (en) Inverter device
Im et al. Diagnosis and fault-tolerant control of 3-phase AC-DC PWM converter system
JP4349068B2 (en) Matrix converter system
JP2020043672A (en) Inverter controller

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560425

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043657

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20942828

Country of ref document: EP

Kind code of ref document: A1