WO2022002815A1 - Verfahren zur herstellung einer bipolarplatte, bipolarplatte sowie brennstoffzellenstapel - Google Patents

Verfahren zur herstellung einer bipolarplatte, bipolarplatte sowie brennstoffzellenstapel Download PDF

Info

Publication number
WO2022002815A1
WO2022002815A1 PCT/EP2021/067622 EP2021067622W WO2022002815A1 WO 2022002815 A1 WO2022002815 A1 WO 2022002815A1 EP 2021067622 W EP2021067622 W EP 2021067622W WO 2022002815 A1 WO2022002815 A1 WO 2022002815A1
Authority
WO
WIPO (PCT)
Prior art keywords
monopolar plates
bipolar plate
plates
plastic
fuel cell
Prior art date
Application number
PCT/EP2021/067622
Other languages
English (en)
French (fr)
Inventor
Matthias Musialek
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022002815A1 publication Critical patent/WO2022002815A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing a bipolar plate for a fuel cell stack according to the preamble of claim 1.
  • the invention relates to a bipolar plate preferably produced by the method according to the invention and a fuel cell stack which comprises at least one bipolar plate according to the invention between two fuel cells.
  • Bipolar plates are functionally relevant components in a fuel cell stack and represent a not insignificant cost factor in the production of a fuel cell or a fuel cell stack. To maintain the electrochemical reaction in a fuel cell or in a fuel cell stack, they must have good bulk conductivity and the contact transition resistances should be as low as possible. The latter are particularly dependent on the surface quality of the panels, the adjacent contact medium and the applied pressure. In addition, bipolar plates must be media-tight, corrosion-resistant and have good thermal conductivity in order to dissipate the heat generated during the electrochemical reaction. In addition, sufficient mechanical stability is required, since the bi-polar plates direct the contact pressure into the cell stack.
  • Bipolar plates based on plastic composites can be manufactured using injection molding or pressing.
  • the composites In order to ensure the required high electrical conductivity, the composites usually have a high degree of filling of electrically conductive particles, fibers, fabrics and / or nonwovens.
  • the high degree of filling leads to high viscosities, which make processing difficult.
  • injection molding for example, only relatively small and comparatively thick bipolar plates can be produced, since the flow path / length ratios of such highly filled materials do not allow any other geometries.
  • DE 102 43592 A1 shows, for example, a bipolar plate for PEM fuel cells which is made from a polymer blend filled with carbon fillers that increase conductivity. Production takes place by producing and shaping the filled polymer blend. The shaping can be done by injection molding or injection compression molding.
  • a bipolar plate for fuel cell stacks which has a fiber reinforcement structure, a plastic matrix and an additive in the plastic matrix to create electrical conductivity.
  • the plastic and the additive are mixed into a mixed material that is applied to the fiber reinforcement material on one or both sides and shaped into a molded part for the bipolar plate in a press mold.
  • bipolar plate To produce a bipolar plate, first two monopolar plates are produced and these are then joined. A gluing or welding process is usually used for joining. Suitable welding processes are ultrasonic welding and heating element welding. It is important that a low contact resistance is maintained.
  • the present invention is based on the object of producing bipolar plates optimize.
  • the joining of two monopolar plates for the manufacture of a bipolar plate should be optimized.
  • the monopolar plates are inductively welded directly or indirectly via at least one, preferably pin-shaped body arranged between the monopolar plates.
  • the properties of the monopolar plates which essentially correspond to the properties of the bipolar plate made from them, can be used to the full. These properties include, in particular, high electrical conductivity and high thermal conductivity.
  • the joining process can be carried out particularly efficiently in this way.
  • the monopolar plates are preferably locally heated with the aid of two electrodes and then pressed together. To warm it up, the electrodes are placed on the monopolar plates in the area of the contour to be welded, so that an electric current is introduced through the electrodes, which heats the area. Additional pressure creates a firm connection.
  • the electrodes can have any suitable shape or geometry so that any contours can be welded. For example, flat or pen-shaped electrodes can be used.
  • the two monopolar plates are not welded together directly, but indirectly via the at least one between the monopolar Plates arranged body, this is also heated if inductive welding and then pressed together over the two monopolar plates. In this way, a firm connection of the monopolar plates is created with the mediation of the body as a further joining partner.
  • This method has the advantage that a contact resistance in a plane perpendicular to the plate plane of the monopolar plates (“through-plane”) can be achieved via the other joining partner.
  • any shaped body can be used.
  • a plate-shaped body can be inserted between the monopolar plates. In this case, the pressure required for joining can be reduced.
  • the monopolar plates and the at least one body can be made of plastic and / or metal. If a plastic or plastic composite material is used, the electrical conductivity of the plastic is preferably at least 100 S / cm. This means that a highly conductive plastic is preferably used. This ensures that the bipolar plate produced from it has the required properties.
  • the monopolar plates and the at least one body do not necessarily have to be made of the same material. This means that, for example, a plastic composite material can be used for the monopolar plates and a plastic can be used for the at least one body. All other material combinations are also possible.
  • the materials and composites described at the beginning for bipolar plates are particularly suitable for the production of the monopolar plates.
  • the monopolar plates and / or the at least one body are preferably or will be manufactured in an injection molding process. This is especially true when using plastic or a plastic composite material. Injection molding of monopolar plates has proven itself.
  • the at least one body can also be manufactured in the same way, since injection molding allows a large variety of shapes.
  • the monopolar plates are preferably manufactured with a plate thickness of 50 ⁇ m to 1000 ⁇ m.
  • the plate thickness is the same as the wall thickness. This varies from the total height of a plate, if it is not, for example just, but - as usual - is shaped.
  • the specific panel thickness depends in particular on the choice of material and the manufacturing process.
  • electrodes are preferably used which are flat so that they can be placed flat against the plates on both sides and pressed against them. The current introduced through this heats the plates so that they are joined.
  • electrodes are used whose geometry is adapted to the respective joining contour.
  • the electrodes can thus be designed as desired.
  • the electrodes can have a rectangular geometry. If the monopolar plates are indirectly inductively welded via at least one intermediate body, the geometry of the electrode can be adapted to the shape of the body.
  • At least one pin-shaped body is used for indirect welding of the monopolar plates, which has a body made of highly conductive plastic and a metal ring firmly connected to the body.
  • the welding with the monopolar plates then takes place via the metal ring.
  • the strength of the welded connection can be further increased if the metal ring has a circumferential radial springing toothing.
  • the toothing can have any geometry. Furthermore, the toothing can be oriented both in the printing direction and against the printing direction or in both directions.
  • the bipolar plate for a fuel cell stack also proposed to solve the problem mentioned at the beginning comprises two monopolar plates which are directly inductively welded or indirectly via at least one, preferably pin-shaped body arranged between the monopolar plates.
  • the inductive welding makes efficient use of the material properties of the joining partners, so that the bipolar plate can be manufactured in an optimized process.
  • the proposed bipolar plate has preferably been produced by the method according to the invention described above.
  • the monopolar plates and the at least one body can in particular be made of plastic and / or metal. This means that the monopolar plates and the body can also be made from a composite material. The body does not have to be made of the same material as the monopolar plates.
  • the body can be a composite body which comprises, for example, a body made of plastic and a metal ring firmly connected to the body. With the help of such a body, a firm welded connection can be achieved.
  • the body can be manufactured in an injection molding process. If a plastic is used to produce the monopolar plates and / or the body, the electrical conductivity of the plastic is preferably at least 100 S / cm. This means that a highly conductive plastic is used. This contributes to rapid heating of the monopolar plates and / or the body when joining by means of inductive welding.
  • a fuel cell stack comprising at least one inventive bipolar plate is proposed.
  • the bipolar plate is arranged between two fuel cells or cell core stacks.
  • a cell core package can be formed, for example, from a membrane-electrode arrangement as a cell core and gas diffusion layers lying on both sides. The bipolar plate then rests against this on the outside.
  • two monopolar plates 1, 2 can be inductively welded directly to one another or indirectly via a body 3 which is arranged between the monopolar plates 1, 2. Such an arrangement is shown in the figure.
  • the body 3 has a body made of a plastic material, which is surrounded on the outer circumference by a metal ring 5.
  • a metal ring 5 of the body 3 is heated with the aid of two electrodes (not shown) and the monopolar plates 1, 2 resting on them. By pressing the two monopolar plates 1, 2 together, a firm connection is then established between the joining partners. With the help of inductive welding, not only a solid, but also a media-tight connection can be realized.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Bipolarplatte für einen Brennstoffzellenstapel, bei dem zwei Monopolarplatten (1, 2) gefertigt und gefügt werden. Erfindungsgemäß werden die Monopolarplatten (1, 2) unmittelbar oder mittelbar über mindestens einen zwischen den Monopolarplatten (1, 2) angeordneten, vorzugsweise stiftförmigen Körper (3) induktiv verschweißt. Die Erfindung betrifft ferner eine Bipolarplatte und einen Brennstoffzellenstapel.

Description

Beschreibung
Titel:
Verfahren zur Herstellung einer Bipolarplate, Bipolarplatte sowie Brennstoffzel lenstapel
Die Erfindung betrifft ein Verfahren zur Herstellung einer Bipolarplatte für einen Brennstoffzellenstapel gemäß dem Oberbegriff des Anspruchs 1. Darüber hinaus betrifft die Erfindung eine vorzugsweise nach dem erfindungsgemäßen Verfahren hergestellte Bipolarplatte sowie einen Brennstoffzellenstapel, der mindestens ei ne erfindungsgemäße Bipolarplatte zwischen zwei Brennstoffzellen umfasst.
Stand der Technik
Bipolarplatten sind funktionsrelevante Komponenten in einem Brennstoffzellen stapel und stellen einen nicht unwesentlichen Kostenfaktor bei der Fertigung ei ner Brennstoffzelle bzw. eines Brennstoffzellenstapels dar. Zur Aufrechterhaltung der elektrochemischen Reaktion in einer Brennstoffzelle bzw. in einem Brenn stoffzellenstapel müssen sie eine gute Bulkleitfähigkeit aufweisen und die Kon taktübergangswiderstände sollten so gering wie möglich sein. Letztere sind ins besondere von der Oberflächenqualität der Platten, dem angrenzenden Kon taktmedium und der applizierten Anpresskraft abhängig. Zudem müssen Bipolar platten mediendicht, korrosionsbeständig und gut wärmeleitend sein, um die während der elektrochemischen Reaktion entstehende Wärme abzuführen. Dar über hinaus ist eine ausreichende mechanische Stabilität erforderlich, da die Bi polarplatten den Anpressdruck in den Zellstapel leiten.
Neben dünnen, geprägten Metallfolien, die in der Regel einen Korrosionsschutz benötigen, kommen reine Graphitplatten als Bipolarplatten zum Einsatz. Diese weisen eine hohe chemische Resistenz sowie gute Kontaktübergangswiderstän de auf, sind allerdings aufwändig zu bearbeiten. Des Weiteren kommen Platten aus hochgefüllten, graphitbasierten thermoplastischen oder härtbaren Komposi- ten zum Einsatz, welche die guten Funktionseigenschaften von Graphit mit einer demgegenüber einfacheren und kostengünstigeren Formgebung kombinieren.
Bipolarplatten auf Basis von Kunststoffkompositen können mittels Spritzgießen oder Pressen hergestellt werden. Um die geforderte hohe elektrische Leitfähig keit zu gewährleisten, weisen die Komposite in der Regel einen hohen Füllgrad an elektrisch leitfähigen Partikeln, Fasern, Geweben und/oder Vliesen auf. Die hohen Füllgrade führen jedoch zu hohen Viskositäten, welche die Verarbeitung erschweren. Mittels Spitzgießen lassen sich beispielsweise nur relativ kleine und vergleichsweise dicke Bipolarplatten hersteilen, da die Fließweg-/Längen- Verhältnisse derart hochgefüllter Werkstoffe keine anderen Geometrien zulas sen.
Aus der DE 102 43592 Al geht beispielhaft eine Bipolarplatte für PEM- Brennstoffzellen hervor, die aus einem mit die Leitfähigkeit erhöhenden Kohlen stoff-Füllstoffen gefüllten Polymerblend hergestellt ist. Die Herstellung erfolgt durch Herstellen und Verformen des gefüllten Polymerblends. Die Formgebung kann dabei durch Spritzgießen oder Spritzprägen erfolgen.
Aus der WO 2003/094270 A2 ist zudem eine Bipolarplatte für Brennstoffzellen stapel bekannt, die eine Faserverstärkungsstruktur, eine Kunststoff- Matrix und einen Zusatz in der Kunststoff- Matrix zur Schaffung elektrischer Leitfähigkeit aufweist. Zur Herstellung der Bipolarplatte werden der Kunststoff und der Zusatz zu einem Mischmaterial gemischt, das ein- oder beidseitig auf das Faserverstär kungsmaterial aufgebracht und in einer Pressform zu einem Formteil für die Bipo larplatte geformt wird.
Zur Herstellung einer Bipolarplatten werden zunächst zwei Monopolarplatten hergestellt und diese anschließend gefügt. Üblicherweise wird zum Fügen ein Klebe- oder Schweißverfahren verwendet. Geeignete Schweißverfahren sind das Ultraschallschweißen und das Heizelementschweißen. Wichtig dabei ist, dass ein geringer Kontaktwiderstand erhalten bleibt.
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorlie genden Erfindung die Aufgabe zugrunde, die Herstellung von Bipolarplatten zu optimieren. Insbesondere soll das Fügen zweier Monopolarplatten zur Herstel lung einer Bipolarplatte optimiert werden.
Zur Lösung der Aufgabe werden das Verfahren mit den Merkmalen des An spruchs 1 sowie die Bipolarplatte mit den Merkmalen des Anspruchs 8 angege ben. Vorteilhafte Ausführungsformen sind den jeweiligen Unteransprüchen zu entnehmen. Ferner wird ein Brennstoffzellenstapel mit mindestens einer erfin dungsgemäßen Bipolarplatte vorgeschlagen.
Offenbarung der Erfindung
Bei dem vorgeschlagenen Verfahren zur Herstellung einer Bipolarplatte für einen Brennstoffzellenstapel werden zwei Monopolarplatten gefertigt und gefügt. Erfin dungsgemäß werden die Monopolarplatten unmittelbar induktiv verschweißt oder mittelbar über mindestens einen zwischen den Monopolarplatten angeordneten, vorzugsweise stiftförmigen Körper.
Beim induktiven Schweißen können die Eigenschaften der Monopolarplatten, die im Wesentlichen den eingangs erwähnten Eigenschaften der hieraus hergestell ten Bipolarplatte entsprechen, optimal ausgenutzt werden. Zu diesen Eigenschaf ten zählen insbesondere eine hohe elektrische Leitfähigkeit und eine hohe Wär meleitfähigkeit. Der Fügeprozess kann auf diese Weise besonders effizient aus geführt werden.
Beim induktiven Verschweißen werden vorzugsweise die Monopolarplatten mit Hilfe zweier Elektroden lokal erwärmt und dann zusammengedrückt. Zum Er wärmen werden die Elektroden im Bereich der zu verschweißenden Kontur an die Monopolarplatten angelegt, so dass über die Elektroden ein elektrischer Strom eingeleitet wird, der den Bereich erwärmt. Durch zusätzliches Drücken entsteht eine feste Verbindung. Die Elektroden können dabei jede geeignete Form bzw. Geometrie aufweisen, so dass beliebige Konturen verschweißbar sind. Beispielsweise können flache oder stiftförmige Elektroden verwendet wer den.
Sofern die beiden Monopolarplatten nicht unmittelbar miteinander verschweißt werden, sondern mittelbar über den mindestens einen zwischen den Monopolar- platten angeordneten Körper, wird dieser beim induktiven Verschweißen eben falls erwärmt und dann über die beiden Monopolarplatten zusammengedrückt. Auf diese Weise entsteht eine feste Verbindung der Monopolarplatten unter Ver mittlung des Körpers als weiteren Fügepartner. Dieses Verfahren besitzt den Vorteil, dass über den weiteren Fügepartner ein Kontaktwiderstand in einer Ebe ne senkrecht zur Plattenebene der Monopolarplatten („through-plane“) erzielbar ist. Anstelle eines stiftförmigen Körpers kann ein beliebig geformter Körper ver wendet werden. Beispielsweise kann ein plattenförmiger Körper zwischen die Monopolarplatten eingelegt werden. In diesem Fall kann der zum Fügen erforder liche Druck reduziert werden.
Die Monopolarplatten und der mindestens eine Körper können aus Kunststoff und/oder Metall gefertigt werden. Sofern ein Kunststoff oder Kunststoffkomposit- material verwendet wird, beträgt vorzugsweise die elektrische Leitfähigkeit des Kunststoffs mindestens 100 S/cm. Das heißt, dass bevorzugt ein hochleitfähiger Kunststoff verwendet wird. Dadurch ist sichergestellt, dass die hieraus hergestell te Bipolarplatte die geforderten Eigenschaften besitzt.
Die Monopolarplatten und der mindestens eine Körper müssen nicht zwingend aus dem gleichen Material hergestellt werden. Das heißt, dass beispielsweise für die Monopolarplatten ein Kunststoffkompositmaterial und für den mindestens ei nen Körper ein Kunststoff verwendet werden kann. Alle anderen Materialkombi nationen sind ebenfalls möglich. Für die Herstellung der Monopolarplatten kom men insbesondere die eingangs für Bipolarplatten beschriebenen Materialien und Komposite in Frage.
Bevorzugt werden bzw. wird die Monopolarplatten und/oder der mindestens eine Körper in einem Spritzgießverfahren gefertigt. Dies gilt insbesondere bei Ver wendung von Kunststoff oder einem Kunststoffkompositmaterial. Das Spritzgie ßen von Monopolarplatten hat sich bewährt. In gleicher Weise kann auch der mindestens eine Körper gefertigt werden, da Spritzgießen eine große Formen vielfalt zulässt.
Des Weiteren bevorzugt werden die Monopolarplatten in einer Plattenstärke von 50 pm bis 1000 pm gefertigt. Die Plattenstärke ist dabei gleich der Wandstärke. Diese variiert von der Gesamthöhe einer Platte, wenn diese beispielsweise nicht eben, sondern - wie üblich - geprägt ist. Die konkrete Plattenstärke hängt insbe sondere von der Materialwahl und dem Fertigungsverfahren ab.
Zum unmittelbaren Verschweißen der Monopolarplatten werden vorzugsweise Elektroden verwendet, die flach ausgestaltet sind, so dass sie beidseitig flächig an die Platten angelegt und angepresst werden können. Der hierüber eingeleitete Strom erwärmt die Platten, so dass diese gefügt werden.
Vorteilhafterweise werden Elektroden verwendet, deren Geometrie an die jewei lige Fügekontur angepasst ist. Die Elektroden können somit beliebig gestaltet sein. Beispielsweise können die Elektroden über eine rechteckige Geometrie ver fügen. Sofern die Monopolarplatten mittelbar über mindestens einen zwischen liegenden Körper induktiv verschweißt werden, kann die Geometrie der Elektro den an die Form des Körpers angepasst werden.
Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird zum mittelbaren Verschweißen der Monopolarplatten mindestens ein stift förmiger Körper verwendet, der einen Rumpf aus hochleitfähigem Kunststoff und einen mit dem Rumpf fest verbundenen Metallring aufweist. Die Verschweißung mit den Monopolarplatten erfolgt dann über den Metallring. Auf diese Weise wird eine feste Schweißverbindung erreicht. Die Festigkeit der Schweißverbindung kann weiter gesteigert werden, wenn der Metallring umlaufend eine radial vor springende Verzahnung aufweist. Die Verzahnung kann eine beliebige Geomet rie besitzen. Ferner kann die Verzahnung sowohl in Druckrichtung als auch ge gen die Druckrichtung oder in beide Richtungen orientiert sein.
Die ferner zur Lösung der eingangs genannten Aufgabe vorgeschlagene Bipolar platte für einen Brennstoffzellenstapel umfasst zwei Monopolarplatten, die unmit telbar induktiv verschweißt sind oder mittelbar über mindestens einen zwischen den Monopolarplatten angeordneten, vorzugsweise stiftförmigen Körper. Durch das induktive Schweißen werden die Materialeigenschaften der Fügepartner effi zient genutzt, so dass die Bipolarplatte in einem optimierten Verfahren herstellbar ist. Die vorgeschlagene Bipolarplatte ist vorzugsweise nach dem zuvor beschrie benen erfindungsgemäßen Verfahren hergestellt worden. Die Monopolarplatten und der mindestens eine Körper können insbesondere aus Kunststoff und/oder Metall hergestellt sein. Das heißt, dass die Monopolarplatten und der Körper auch aus einem Kompositmaterial gefertigt sein kann. Dabei muss der Körper nicht aus dem gleichen Material wie die Monopolarplatten be stehen. Ferner kann es sich bei dem Körper um einen Verbundkörper handeln, der beispielsweise einen Rumpf aus Kunststoff und einen mit dem Rumpf fest verbundenen Metallring umfasst. Mit Hilfe eines solchen Körpers kann eine feste Schweißverbindung erzielt werden. Zudem kann der Körper in einem Spritzgieß verfahren hergestellt werden. Sofern ein Kunststoff zur Herstellung der Monopo larplatten und/oder des Körpers verwendet wird, beträgt vorzugsweise die elekt rische Leitfähigkeit des Kunststoffs mindestens 100 S/cm. Das heißt, dass ein hochleitfähiger Kunststoff verwendet wird. Dieser trägt zu einer schnellen Erwär mung der Monopolarplatten und/oder des Körpers beim Fügen mittels induktiven Schweißens bei.
Darüber hinaus wird ein Brennstoffzellenstapel, umfassend mindestens eine er findungsgemäße Bipolarplatte vorgeschlagen. Die Bipolarplatte ist dabei zwi schen zwei Brennstoffzellen bzw. Zellkernpaketen angeordnet. Ein Zellkernpaket kann beispielsweise aus einer Membran-Elektroden-Anordnung als Zellkern und beidseits anliegenden Gasdiffusionsschichten gebildet sein. An dieser liegt dann außenseitig die Bipolarplatte an.
Die Erfindung wird nachfolgend anhand der beigefügten Zeichnung näher erläu tert. Diese zeigt einen schematischen Längsschnitt durch zwei Monopolarplatten mit zwischenliegenden Körper vor dem Fügen.
Ausführliche Beschreibung der Zeichnung
Zur Herstellung einer erfindungsgemäßen Bipolarplatte bzw. zur Durchführung des erfindungsgemäßen Verfahrens können zwei Monopolarplatten 1, 2 unmit telbar miteinander induktiv verschweißt werden oder mittelbar über einen Kör per 3, der zwischen die Monopolarplatten 1, 2 angeordnet wird. Eine solche An ordnung ist in der Figur dargestellt.
Der Körper 3 weist vorliegend einen Rumpf aus einem Kunststoff material auf, der außenumfangseitig von einem Metallring 5 umgeben ist. Beim induktiven Schweißen wird der Metallring 5 des Körpers 3 mit Hilfe zweier Elektroden (nicht dargestellte) sowie die hieran anliegenden Monopolarplatten 1, 2 erwärmt. Durch Zusammendrücken der beiden Monopolarplatten 1, 2 wird dann eine feste Ver bindung zwischen den Fügepartnern hergestellt. Mit Hilfe des induktiven Schwei- ßens kann nicht nur eine feste, sondern zugleich mediendichte Verbindung reali siert werden.

Claims

Ansprüche
1. Verfahren zur Herstellung einer Bipolarplatte für einen Brennstoffzellensta pel, bei dem zwei Monopolarplatten (1, 2) gefertigt und gefügt werden, dadurch gekennzeichnet, dass die Monopolarplatten (1, 2) unmittelbar oder mittelbar über mindestens einen zwischen den Monopolarplatten (1, 2) angeord neten, vorzugsweise stiftförmigen Körper (3) induktiv verschweißt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass beim induktiven Verschweißen die Monopolar platten (1, 2) mit Hilfe zweier Elektroden lokal erwärmt und dann zusammenge drückt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine zwischen den (1, 2) ange ordnete Körper (3) beim induktiven Verschweißen erwärmt und dann über die beiden Monopolarplatten (1, 2) zusammengedrückt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Monopolarplatten (1, 2) und der mindestens eine Körper (3) aus Kunststoff und/oder Metall gefertigt werden, wobei vorzugs weise ein Kunststoff verwendet wird, dessen elektrische Leitfähigkeit mindestens 100 S/cm beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Monopolarplatten (1, 2) und/oder der min destens eine Körper (3) in einem Spritzgießverfahren gefertigt werden bzw. wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Monopolarplatten (1, 2) in einer Plattenstär ke von 50 pm bis 1000 pm gefertigt werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein stiftförmiger Körper (3) verwen det wird, der einen Rumpf (4) aus hochleitfähigem Kunststoff und einen mit dem Rumpf (4) fest verbundenen Metallring (5) aufweist, wobei vorzugsweise der Me tallring (5) umlaufend eine radial vorspringende Verzahnung aufweist.
8. Bipolarplatte für einen Brennstoffzellenstapel, umfassend zwei Monopolar platten (1, 2), die unmittelbar oder mittelbar über mindestens einen zwischen den Monopolarplatten (1, 2) angeordneten, vorzugsweise stiftförmigen Körper (3) in duktiv verschweißt sind.
9. Bipolarplatte nach Anspruch 8, dadurch gekennzeichnet, dass die Monopolarplatten (1, 2) und der mindestens eine Körper (3) aus Kunststoff und/oder Metall gefertigt sind, wobei vorzugsweise die elektrische Leitfähigkeit des Kunststoffs mindestens 100 S/cm beträgt.
10. Brennstoffzellenstapel, umfassend mindestens eine Bipolarplatte nach
Anspruch 8 oder 9, wobei die Bipolarplatte zwischen zwei Brennstoffzellen oder zwei Zellkernpaketen angeordnet ist.
PCT/EP2021/067622 2020-07-03 2021-06-28 Verfahren zur herstellung einer bipolarplatte, bipolarplatte sowie brennstoffzellenstapel WO2022002815A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020208373.8 2020-07-03
DE102020208373.8A DE102020208373A1 (de) 2020-07-03 2020-07-03 Verfahren zur Herstellung einer Bipolarplatte, Bipolarplatte sowie Brennstoffzellenstapel

Publications (1)

Publication Number Publication Date
WO2022002815A1 true WO2022002815A1 (de) 2022-01-06

Family

ID=76920741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/067622 WO2022002815A1 (de) 2020-07-03 2021-06-28 Verfahren zur herstellung einer bipolarplatte, bipolarplatte sowie brennstoffzellenstapel

Country Status (2)

Country Link
DE (1) DE102020208373A1 (de)
WO (1) WO2022002815A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094270A2 (de) 2002-04-30 2003-11-13 Proton Motor Fuel Cell Gmbh Bipolarplatte für brennstoffzellenstapel und verfahren zu ihrer herstellung
DE10243592A1 (de) 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolarplatte für PEM-Brennstoffzellen
WO2009059443A1 (de) * 2007-11-07 2009-05-14 Almus Ag Bipolzelle für brennstoffzellenstapel
US20090197140A1 (en) * 2006-01-25 2009-08-06 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate
US20120021340A1 (en) * 2010-07-22 2012-01-26 Chung Yuan Christian University Fabrication method for enhancing the electrical conductivity of bipolar plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094270A2 (de) 2002-04-30 2003-11-13 Proton Motor Fuel Cell Gmbh Bipolarplatte für brennstoffzellenstapel und verfahren zu ihrer herstellung
DE10243592A1 (de) 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolarplatte für PEM-Brennstoffzellen
US20090197140A1 (en) * 2006-01-25 2009-08-06 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate
WO2009059443A1 (de) * 2007-11-07 2009-05-14 Almus Ag Bipolzelle für brennstoffzellenstapel
US20120021340A1 (en) * 2010-07-22 2012-01-26 Chung Yuan Christian University Fabrication method for enhancing the electrical conductivity of bipolar plates

Also Published As

Publication number Publication date
DE102020208373A1 (de) 2022-01-05

Similar Documents

Publication Publication Date Title
DE69923023T2 (de) Brennstoffzelle mit festen Polymerelektrolyten und Herstellungsverfahren dafür
DE112008002146B4 (de) Zelle für Brennstoffzelle, und Brennstoffzelle
DE102013108413B4 (de) Verfahren zum Herstellen eines Brennstoffzellenstapels sowie Brennstoffzellenstapel und Brennstoffzelle/Elektrolyseur
DE20308332U1 (de) Elektrochemisches Verdichtersystem
DE10151134A1 (de) Diffusionsschicht für eine Brennstoffzelle und ein Verfahren und Vorrichtung zur Herstellung derselben
DE3632651A1 (de) Zusammengesetztes kohlenstoffprodukt, das durch verbinden kohlenstoffhaltiger materialien mittels tetrafluorethylenharz hergestellt ist, sowie verfahren zu dessen herstellung
WO2014166757A1 (de) Wärmeübertragerbauteil
WO2003044886A2 (de) Brennstoffzellensystem
DE102018129962A1 (de) Verfahren zur herstellung eines brennstoffzellenseparators
EP3818194A1 (de) Verfahren zum erzeugen eines dichtelements an einer gasdiffusionslage einer elektrochemischen einheit und baugruppe aus einer gasdiffusionslage und einem dichtelement
WO2022002815A1 (de) Verfahren zur herstellung einer bipolarplatte, bipolarplatte sowie brennstoffzellenstapel
DE10317388B4 (de) Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE102019007902A1 (de) Batterie mit einer Mehrzahl von Batteriezellen und Verfahren zum Herstellen einer Batterie
WO2008119310A2 (de) Kontaktanordnung und verfahren zum fügen eines brennstoffzellenstapels aus zumindest einer kontaktanordnung
DE102012012749A1 (de) Verfahren zur Herstellung einer Bipolarplatte einer Brennstoffzelle und Bipolarplatte
WO2017102357A1 (de) Verfahren zur herstellung einer bipolarplatte für eine brennstoffzelle
DE102016224611B4 (de) Brennstoffzellenaufbau und Verfahren zu dessen Herstellung
WO2021001216A1 (de) Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte für eine brennstoffzelle sowie brennstoffzelle
DE102018006494A1 (de) Komponente für eine Bipolarplatte und Bipolarplatte
DE102021115292B3 (de) Kontaktvorrichtung, Verfahren zur Herstellung einer Kontaktvorrichtung, elektrochemische Zelle sowie elektrochemischer Zellenstapel
DE102008036318A1 (de) Verfahren zur Herstellung einer Bipolarzelle und Bipolarzelle für eine bipolare Batterie
WO2008145221A1 (de) Einzel-brennstoffzelle für einen brennstoffzellen-stapel
WO1999051383A1 (de) Verfahren zum verschweissen eines doppellagenbleches mit einem fügeblech
DE102018006496A1 (de) Verfahren zur Herstellung eines Bauteils
EP1195829A2 (de) Verfahren zur Herstellung einer Bipolarplatte für Brennstoffzellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21742047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21742047

Country of ref document: EP

Kind code of ref document: A1