WO2022002147A1 - 动液面自动控制方法、设备及系统 - Google Patents

动液面自动控制方法、设备及系统 Download PDF

Info

Publication number
WO2022002147A1
WO2022002147A1 PCT/CN2021/103624 CN2021103624W WO2022002147A1 WO 2022002147 A1 WO2022002147 A1 WO 2022002147A1 CN 2021103624 W CN2021103624 W CN 2021103624W WO 2022002147 A1 WO2022002147 A1 WO 2022002147A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
dynamic liquid
speed
correction value
motor
Prior art date
Application number
PCT/CN2021/103624
Other languages
English (en)
French (fr)
Inventor
刘杰
邢韬
Original Assignee
浙江都美电气技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江都美电气技术股份有限公司 filed Critical 浙江都美电气技术股份有限公司
Publication of WO2022002147A1 publication Critical patent/WO2022002147A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells

Definitions

  • the invention relates to the field of dynamic liquid level control, in particular to a dynamic liquid level automatic control method, a dynamic liquid level automatic control device and a dynamic liquid level automatic control system.
  • the dynamic liquid level control of the existing oil wells and water wells relies on special logging devices such as ground sound waves or downhole pressure to measure the dynamic liquid level depth, and then according to the current dynamic liquid level depth and ideal depth, manual or centralized control system issues instructions to adjust The frequency or speed of action of the lifting equipment. Poor real-time control, poor reliability, and large investment.
  • the present invention aims to propose an automatic control method, equipment and system for the dynamic liquid level, which can directly perform real-time closed-loop control on the dynamic liquid level command and the dynamic liquid level depth by specially designing the dynamic liquid level digital controller, so as to achieve the control of the dynamic liquid level.
  • the liquid level is precisely controlled automatically.
  • an automatic control method for dynamic liquid level comprising:
  • the generating a speed correction value according to the obtained current value and/or the rate of change includes: if the current value is obtained, generating a first correction value according to the current value as the speed correction value; If the current value and the change rate are obtained, the sum of the first correction value and the second correction value is used as the speed correction value. the speed correction value.
  • the generating the first correction value according to the current value includes: acquiring a dynamic liquid level instruction;
  • the generating the second correction value according to the change rate includes: obtaining the second correction value based on the change rate and a second mapping coefficient; the second mapping coefficient is a preset value.
  • an automatic control device for dynamic liquid level is also provided, and the control device includes:
  • the at least one processor a memory connected to the at least one processor; wherein, the memory stores instructions that can be executed by the at least one processor, and the at least one processor is implemented by executing the instructions stored in the memory the aforementioned method.
  • a dynamic liquid level automatic control system is also provided, and the control system includes:
  • the aforementioned control device is used to generate and output a motor speed control command;
  • a dynamic liquid level digital controller is embedded in the control device, and is used to receive the dynamic liquid level command, the dynamic liquid level depth and the current speed command, Real-time closed-loop control is performed on the dynamic liquid level;
  • a dynamic liquid level depth acquisition device is used to convert the real-time dynamic liquid level depth into an electrical signal, which is transmitted to the dynamic liquid level digital controller in the control equipment; It is used to drive the pump to lift the well fluid to adjust the dynamic fluid level.
  • control system further includes: a speed digital controller, which is embedded in the control device and configured to receive the motor speed control instruction and the motor actual speed, and perform real-time monitoring on the motor. Closed-loop control; a motor speed sensing device for monitoring the speed of the motor in real time, and feeding back the actual speed of the motor to the speed digital controller.
  • a speed digital controller which is embedded in the control device and configured to receive the motor speed control instruction and the motor actual speed, and perform real-time monitoring on the motor. Closed-loop control
  • motor speed sensing device for monitoring the speed of the motor in real time, and feeding back the actual speed of the motor to the speed digital controller.
  • the motor includes an oil submersible permanent magnet synchronous motor and an asynchronous induction motor.
  • control device is integrated into the downhole drive.
  • control device is integrated in the ground drive.
  • a computer-readable storage medium where instructions are stored in the storage medium, when the storage medium runs on a computer, the computer executes the foregoing automatic control method for fluid level.
  • FIG. 1 is a schematic flowchart of an automatic control method for dynamic liquid level provided by an embodiment of the present invention
  • Fig. 2 is the calculation logic diagram of the dynamic liquid level automatic control method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a dynamic liquid level automatic control system provided by an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an automatic control method for dynamic liquid level provided by an embodiment of the present invention, as shown in FIG. 1 .
  • a dynamic liquid level automatic control method the method comprises: acquiring the current value and/or the rate of change of the dynamic liquid level; generating a speed correction value according to the acquired current value and/or the rate of change; using the speed correction value Correct the current motor speed control command to obtain the corrected motor speed control command.
  • the commonly used method at present is realized by a single-chip microcomputer-controlled acoustic wave transmitting and receiving device, and obtains real-time data of the dynamic liquid surface depth.
  • the oil well system uses these data to adjust the speed, but after these data are processed, there is a certain hysteresis.
  • the driver receives the dynamic liquid level command from the upper control device, the dynamic liquid level has changed.
  • the driver judges the dynamic liquid level command, and makes a certain correction according to the actual difference value, and the correction value is reflected in the speed control of the motor.
  • the rotational speed of the motor can also be corrected by obtaining the change value of the dynamic liquid level. According to the needs of the actual scene, the user can select one or both of them for correction calculation.
  • the acquiring the current value and/or the rate of change of the dynamic liquid surface depth includes: monitoring the dynamic liquid surface depth in real time; acquiring the dynamic liquid surface depth at the current moment, Obtain the current value of the dynamic liquid surface depth; and ⁇ or obtain the dynamic liquid surface depth at the current moment, and obtain the rate of change after performing differential processing.
  • This embodiment provides an acquisition method for the current value and the rate of change.
  • the current commonly used method is implemented by a single-chip microcomputer-controlled logging device or sensor, wherein the differential processing can be implemented in the driver.
  • the generating a speed correction value according to the obtained current value and/or the rate of change includes: if the current value is obtained, generating a first correction value according to the current value, as the speed correction value; if the rate of change is obtained, a second correction value is generated according to the rate of change as the speed correction value; if the current value and the rate of change are obtained, the first correction value and the The sum of the second correction values is used as the speed correction value.
  • Both the current value and the rate of change can be used to correct the motor speed. In actual scenarios, the user can select one or both of them for correction calculation. When the collection amount of the on-site sensor is only one of them, a corresponding correction value is generated according to the acquired collection parameters.
  • FIG. 2 is a calculation logic diagram of an automatic control method for dynamic liquid level provided by an embodiment of the present invention, as shown in FIG. 2 .
  • the computational logic diagram shows only the case where both parameters are selected. Among them, D_ref is the dynamic liquid level command, D_fb is the dynamic liquid level depth, ⁇ D is the dynamic liquid level deviation, Kp is the proportional gain, Ki is the differential gain, V_ref is the current speed command, and V' _ref is the corrected speed command output.
  • the dynamic liquid surface command D_ref is compared with the dynamic liquid surface depth D_fb to obtain the dynamic liquid surface deviation ⁇ D; then, the dynamic liquid surface deviation ⁇ D is multiplied by the proportional gain Kp; at the same time, the dynamic liquid surface depth D_fb is differentiated dt to obtain the dynamic liquid surface
  • the depth change rate is multiplied by the differential gain Ki; finally, the calculated value multiplied by the proportional gain Kp and the calculated value multiplied by the differential gain Ki are added to the current speed command V_ref to output the final corrected speed command V' _ref.
  • the theoretical algorithm formula of the dynamic liquid level digital controller is:
  • the corrected speed command V'_ref current speed command V_ref+(dynamic fluid level command D_ref- fluid level depth D_fb) ⁇ proportional gain Kp+ fluid level depth change rate ⁇ differential gain Ki.
  • a dynamic liquid level automatic control device includes: at least one processor; a memory, connected to the at least one processor; wherein, the memory Instructions that can be executed by the at least one processor are stored, and the at least one processor implements the aforementioned automatic liquid level control method by executing the instructions stored in the memory.
  • the processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (Application Specific Integrated Circuits, ASICs), off-the-shelf processors. Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may be an internal storage unit of the control device, such as a hard disk or a memory of the control device.
  • the memory can also be an external storage device of the control device, such as a plug-in hard disk equipped on the control device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card ( Flash Card), etc.
  • the memory may also include both an internal storage unit of the control device and an external storage device.
  • the memory is used to store the computer program and other programs and data required to control the device.
  • the memory may also be used to temporarily store data that has been output or is to be output.
  • FIG. 3 is a schematic structural diagram of a dynamic liquid level automatic control system provided by an embodiment of the present invention.
  • an automatic control system for dynamic liquid level is also provided.
  • the control system includes: the aforementioned control device for generating and inputting a motor speed control command;
  • the dynamic liquid level digital controller which is embedded in the control device, is used for receiving the dynamic liquid level command, the dynamic liquid level depth and the current speed command, and controls the dynamic liquid level real-time closed-loop control of the liquid level; dynamic liquid level depth acquisition device, which is used to convert the real-time dynamic liquid level depth into an electrical signal, and transmit it to the dynamic liquid level digital controller in the control equipment; motor, which is used to drive the pump to lift the well fluid Adjust the fluid level.
  • the single well dynamic liquid level automatic control system is shown in Figure 3. It consists of several parts such as driver, motor, pump, logging device or sensor.
  • the driver controls the motor speed according to the dynamic liquid level command
  • the motor drives the pump to lift the well fluid to adjust the dynamic liquid level depth
  • the logging device or sensor detects or calculates the dynamic liquid level depth value in real time and feeds it back to the driver, so that the driver can directly measure the dynamic liquid level.
  • the drives include but are not limited to servo drives and frequency converters
  • the motors include but are not limited to oil submersible permanent magnet synchronous motors and asynchronous induction motors.
  • the control system further includes: a speed digital controller, which is embedded in the control device and configured to receive the motor speed control instruction and the motor actual speed , and perform real-time closed-loop control on the motor; a motor speed sensing device is used to monitor the rotation speed of the motor in real time, and feed back the actual speed of the motor to the speed digital controller.
  • the driver is designed with embedded software function modules, namely dynamic liquid level digital controller and speed digital controller.
  • the dynamic liquid level digital controller calculates the output correction according to the dynamic liquid level command, the dynamic liquid level depth feedback data and the current speed command. Post-speed command; the speed digital controller outputs the driving signal to control the motor according to the revised speed command and the actual speed of the motor.
  • the dynamic liquid level digital controller realizes the outer closed-loop control of the dynamic liquid level, and the speed digital controller realizes the inner closed-loop control of the speed, so as to realize the real-time precise control of the dynamic liquid level through double closed loops.
  • the control device is integrated in the downhole driver.
  • the application scenario of this embodiment is the downhole driver scheme: the downhole driver is connected to the submersible motor and works in the same position downhole, the downhole driver can detect the well fluid pressure at the location, calculate the current dynamic liquid level depth, and compare it with the dynamic liquid level command , Through the dynamic liquid level digital controller in the control equipment to output the revised speed command, the speed digital controller in the control device controls the running speed of the submersible motor according to the revised speed command, and the submersible motor drives the pump to lift the well fluid to adjust the dynamic fluid surface, so as to carry out real-time closed-loop control of the dynamic liquid level.
  • the control device is integrated in the ground drive.
  • the application scenario of this embodiment is the ground driver scheme: the ground driver includes but is not limited to frequency converters, servo drivers, etc., drives the pumping unit to drive the motor or drives the submersible motor through the submersible cable, and simultaneously receives the real-time data detected by the logging device.
  • the embedded software function module is designed inside the ground driver.
  • the corrected speed command is calculated by the dynamic liquid level digital controller in the control equipment to control the speed in the equipment.
  • the digital controller receives the corrected speed command to control the running speed of the submersible motor, and the submersible motor drives the pump to lift the well fluid to achieve real-time closed-loop control of the dynamic fluid level.
  • the embodiments provided by the present invention provide an automatic control method, equipment and system for the dynamic liquid level.
  • the rate of change is introduced to control the motor speed, which avoids the lag between the dynamic liquid level command and the motor speed command, and improves the accuracy and closed-loop performance of the motor speed control.
  • the provided embodiments of the present invention are applied to automatic fluid level control in oil wells.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

Abstract

动液面自动控制方法、设备以及系统,动液面自动控制方法包括:获取动液面深度的当前值和\或变化率(S101);根据获取到的当前值和\或变化率生成速度修正值(S102);采用速度修正值修正当前的速度指令,得到修正后的速度指令,修正后的速度指令用于控制电机的转速。

Description

动液面自动控制方法、设备及系统 技术领域
本发明涉及动液面控制领域,特别涉及一种动液面自动控制方法、一种动液面自动控制设备以及一种动液面自动控制系统。
背景技术
现有油井和水井的动液面控制,是依靠地面声波或者井下压力等专门的测井装置,测量动液面深度,然后根据当前动液面深度和理想深度,人工或者集中控制系统发指令调节举升设备的动作频率或转速。控制实时性差,可靠性差,投入大。
现有的技术中已经存在根据动液面深度进行速度控制的方法,但是现有的动液面控制技术存在的问题和缺点如下:依赖于地面声波或者井压传输等专门的测井装置;人工或者集中控制系统发指令调节,自动化程度低;利用井下压力与液面深度对应关系间接地控制动液面;动液面控制的精确性、实时性和可靠性较差。
例如:申请号为200710011796.0的发明专利《自动测量油井动液面改变抽油机运行速度的闭环控制系统》中,其技术方案根据动液面误差并不能直接计算输出速度指令,而是还需要经过位置误差计算,且用于位置误差是根据转速传感器测量出的机械无极变速器的实际输出速度求出,而不是实时直接检测而得出位置误差;对于速度控制又没有通过针对速度的闭环控制来实现。综上所述,该发明虽然表面上看起来是实现了对动液面的自动控制,但并不能实现直接针对动液面的实时精确地闭环控制。
发明内容
有鉴于此,本发明旨在提出一种动液面自动控制方法、设备及系统,通过专门设计动液面数字控制器直接对动液面指令和动液面深度进行实时闭环控制,达到对动液面进行精确地自动控制目的。
在本发明的第一方面,提供了一种动液面自动控制方法,所述方法包括:
获取动液面深度的当前值和\或变化率;根据获取到的当前值和\或变化率生成速度修正值;采用所述速度修正值修正当前的电机转速控制指令,得到修正后的电机转速控制指令。
优选的,所述根据获取到的当前值和\或变化率生成速度修正值,包括:若获取到当前值,则根据所述当前值生成第一修正值,作为所述速度修正值;若获取到变化率,则根据所述变化率生成第二修正值,作为所述速度修正值;若获取到当前值和变化率,则以所述第一修正值与所述第二修正值之和作为所述速度修正值。
优选的,所述根据所述当前值生成第一修正值,包括:获取动液面指令;
计算所述动液面指令与所述当前值的差值;基于所述差值与第一映射系数,得到所述第一修正值;所述第一映射系数为预设值。
优选的,所述根据所述变化率生成第二修正值,包括:基于所述变化率与第二映射系数,得到所述第二修正值;所述第二映射系数为预设值。
在本发明的第二方面,还提供了一种动液面自动控制设备,所述控制设备包括:
至少一个处理器;存储器,与所述至少一个处理器连接;其中, 所述存储器存储有能被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令实现前述的方法。
在本发明的第三方面,还提供了一种动液面自动控制系统,所述控制系统包括:
前述的控制设备,用于生成并输出电机转速控制指令;动液面数字控制器嵌入在所述控制设备中,用于接收所述动液面指令、所述动液面深度和当前速度指令,并对所述动液面进行实时闭环控制;动液面深度采集装置,用于将实时动液面深度转化为电信号,传输至所述控制设备中的动液面数字控制器;电机,用于带动泵举升井液调节动液面。
优选的,所述控制系统还包括:速度数字控制器,所述速度数字控制器嵌入在所述控制设备中,用于接收所述电机转速控制指令和电机实际速度,并对所述电机进行实时闭环控制;电机速度传感装置,用于实时监测所述电机的转速,并把电机实际速度反馈给所述速度数字控制器。
优选的,所述电机包括潜油永磁同步电机和异步感应电机。
优选的,所述控制设备集成于井下驱动器中。
优选的,所述控制设备集成于地面驱动器中。
本发明第四方面,还提供一种计算机可读存储介质,所述存储介质中存储有指令,当其在计算机上运行时,使得计算机执行前述的动液面自动控制方法。
通过本发明提供的上述技术方案,具有以下有益效果:
1)精确度高;专门设计动液面数字控制器进行闭环控制,有效提高对动液面控制的精确度。
2)实时性能好;相比人工调节,实时性能大幅提升;相比远程 接收速度指令,实时性能也有明显提升。
3)可靠性高;实现自动控制,排除了人为错误和通信错误的可能性。
4)支持分布示应用;理论上,同时进行动液面控制的油气井数量可无限多,不会造成主控系统负担过重的情况,轻松实现分布式控制。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明一种实施方式提供的动液面自动控制方法的流程示意图;
图2是本发明一种实施方式提供的动液面自动控制方法的计算逻辑图;
图3是本发明一种实施方式提供的动液面自动控制系统的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解 的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1是本发明一种实施方式提供的动液面自动控制方法的流程示意图,如图1所示。一种动液面自动控制方法,所述方法包括:获取动液面深度的当前值和\或变化率;根据获取到的当前值和\或变化率生成速度修正值;采用所述速度修正值修正当前的电机转速控制指令,得到修正后的电机转速控制指令。
如此,实现了对直接针对动液面的实时精确地闭环控制。现有技术中已有根据油井动液面进行自动控制的技术,但是这些控制技术均没有考虑控制参量的实时性,因此影响其准确性。
具体的,获取动液面深度的当前值和\或变化率,目前常用的方式为单片微型计算机控制的声波发讯和接收装置来实现,得到动液面深度的实时数据。油井系统通过这些数据进行转速的调整,但是这些数据经过处理后,又具有一定的滞后性,当驱动器接收到上层控制装置传来的动液面指令时,动液面已经发生了变化,因此在驱动器中对动液面指令进行判断,根据实际的差值进行一定的修正,该修正值反映到电机的转速控制上。为了进一步反映动液面的变化情况,还可以通过获取动液面的变化值来对电机的转速进行修正。根据实际场景的需要,用户可以选择其中的一者或两者进行修正计算。
在本发明提供的一种实施方式中,所述获取所述动液面深度的当前值和\或变化率,包括:实时监测所述动液面的深度;获取当前时刻的动液面深度,得到所述动液面深度的当前值;和\或获取当前时刻的动液面深度,并进行差分处理后得到变化率。本实施方式提供了当前值和变化率的获取方式。目前常用的方式为单片微型计算机控制的测井装置或传感器来实现,其中差分处理可以在驱动器中实现。
在本发明提供的一种实施方式中,所述根据获取到的当前值和\或变化率生成速度修正值,包括:若获取到当前值,则根据所述当前值生成第一修正值,作为所述速度修正值;若获取到变化率,则根据所述变化率生成第二修正值,作为所述速度修正值;若获取到当前值和变化率,则以所述第一修正值与所述第二修正值之和作为所述速度修正值。当前值和变化率均能用于对电机转速进行修正,在实际场景中,用户可以选择其中的一者或两者进行修正计算。当现场传感器采集量仅为其中一者时,根据获取到的采集参数,生成对应的修正值。本实施方式中提供了灵活的参数选择方式和对应的计算方式,便于用户选择。
在本发明提供的一种实施方式中,所述根据所述当前值生成第一修正值,包括:获取动液面指令;计算所述动液面指令与所述当前值的差值;基于所述差值与第一映射系数,得到所述第一修正值;所述第一映射系数为预设值。即:(动液面指令D_ref-动液面深度D_fb)×比例增益Kp=第一修正值,其中比例增益Kp(即第一映射系数)从实验数据或经验数据中得出。
在本发明提供的一种实施方式中,所述根据所述变化率生成第二修正值,包括:基于所述变化率与第二映射系数,得到所述第二修正值;所述第二映射系数为预设值。即:动液面深度变化率×微分增益Ki=第二修正值,其中的微分增益Ki(即第二映射系数)从实验数据或经验数据中得出。
图2是本发明一种实施方式提供的动液面自动控制方法的计算逻辑图,如图2所示。该计算逻辑图仅展示了两种参数均被选择下的情况。其中,D_ref为动液面指令,D_fb为动液面深度,ΔD为动液面偏差,Kp为比例增益,Ki为微分增益,V_ref为当前速度指令,V' _ref为修正后的速度指令输出。首先,动液面指令D_ref与动液面深度D_fb进行比较获得动液面偏差ΔD;然后,动液面偏差ΔD乘以比例增益Kp;同时,对动液面深度D_fb进行差分dt获得动液面深度变化率,再乘以微分增益Ki;最后,将乘以比例增益Kp后的计算值和乘以微分增益Ki后的计算值与当前速度指令V_ref相加,输出最终修正后的速度指令V'_ref。动液面数字控制器理论算法公式为:
修正后的速度指令V'_ref=当前速度指令V_ref+(动液面指令D_ref-动液面深度D_fb)×比例增益Kp+动液面深度变化率×微分增益Ki。
在本发明提供的一种实施方式中,还提供了一种动液面自动控制设备,所述控制设备包括:至少一个处理器;存储器,与所述至少一个处理器连接;其中,所述存储器存储有能被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令实现前述的动液面自动控制方法。所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器可以是控制设备的内部存储单元,例如控制设备的硬盘或内存。所述存储器也可以是控制设备的外部存储设备,例如所述控制设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器还可以既包括控制设备的内部存储单元也包括外部存 储设备。所述存储器用于存储所述计算机程序以及控制设备所需的其他程序和数据。所述存储器还可以用于暂时地存储已经输出或者将要输出的数据。
图3是本发明一种实施方式提供的动液面自动控制系统的结构示意图。如图3所示,在本发明提供的一种实施方式中,还提供了一种动液面自动控制系统,所述控制系统包括:前述的控制设备,用于生成并输入电机转速控制指令;动液面数字控制器,所述动液面数字控制器嵌入在所述控制设备中,用于接收所述动液面指令、所述动液面深度和当前速度指令,并对所述动液面进行实时闭环控制;动液面深度采集装置,用于将实时动液面深度转化为电信号,传输至所述控制设备中的动液面数字控制器;电机,用于带动泵举升井液调节动液面。单井动液面自动控制系统如图3所示。由驱动器、电机、泵、测井装置或传感器等几大部分组成。驱动器根据动液面指令控制电机转速,电机带动泵举升井液调节动液面深度,测井装置或传感器等实时检测或计算动液面深度值反馈给驱动器,从而实现驱动器直接对动液面进行实时的闭环自动控制。所述驱动器包括但不限于伺服驱动器、变频器,所述电机包括但不限于潜油永磁同步电机和异步感应电机。
在本发明提供的一种实施方式中,所述控制系统还包括:速度数字控制器,所述速度数字控制器嵌入在所述控制设备中,用于接收所述电机转速控制指令和电机实际速度,并对所述电机进行实时闭环控制;电机速度传感装置,用于实时监测所述电机的转速,并把电机实际速度反馈给所述速度数字控制器。所述驱动器内部设计有嵌入式软件功能模块,即动液面数字控制器和速度数字控制器,动液面数字控制器根据动液面指令、动液面深度反馈数据和当前速度指令计算输出修正后速度指令;速度数字控制器根据修正后速度指令和电机实际速 度输出控制电机的驱动信号。动液面数字控制器实现对动液面的外闭环控制,速度数字控制器实现对速度的内闭环控制,从而通过双闭环实现对动液面的实时精确控制。
在本发明提供的一种实施方式中,所述控制设备集成于井下驱动器中。本实施方式应用的场景为井下驱动器方案:井下驱动器与潜油电机相连接,在井下相同位置工作,井下驱动器可检测所在位置井液压力,计算出当前动液面深度,与动液面指令比较,通过控制设备中的动液面数字控制器输出修正后速度指令,控制设备中的速度数字控制器根据修正后速度指令控制潜油电机的运行转速,潜油电机带动泵举升井液调节动液面,从而对动液面进行实时闭环控制。
在本发明提供的一种实施方式中,所述控制设备集成于地面驱动器中。本实施方式应用的场景为地面驱动器方案:地面驱动器包含但不仅限于变频器、伺服驱动器等,驱动抽油机拖动电机或通过潜油电缆驱动潜油电机,同时接收测井装置检测到的实时动液面数据,地面驱动器内部设计嵌入式软件功能模块,根据动液面指令和当前动液面数据,通过控制设备中的动液面数字控制器计算得到修正后速度指令,控制设备中的速度数字控制器接收修正后速度指令控制潜油电机的运行转速,潜油电机带动泵举升井液,达到动液面实时闭环控制。
本发明提供的实施方式针对现有油井中的动液面控制不及时准确的问题,提供了一种动液面自动控制方法、设备及系统,该方法通过在动液面实时值的基础上,引入变化率对电机转速进行控制,避免了动液面指令和电机转速指令的滞后性,提高了电机转速控制的精准性和闭环性。本发明的提供的实施方式应用于油井中的动液面自动控制。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系 统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种动液面自动控制方法,其特征在于,所述方法包括:
    获取动液面深度的当前值和\或变化率;
    根据获取到的当前值和\或变化率生成速度修正值;
    采用所述速度修正值修正当前的电机转速控制指令,得到修正后的电机转速控制指令。
  2. 根据权利要求1所述的方法,其特征在于,所述根据获取到的当前值和\或变化率生成速度修正值,包括:
    若获取到当前值,则根据所述当前值生成第一修正值,作为所述速度修正值;
    若获取到变化率,则根据所述变化率生成第二修正值,作为所述速度修正值;
    若获取到当前值和变化率,则根据所述当前值生成第一修正值,则根据所述变化率生成第二修正值,以所述第一修正值与所述第二修正值之和作为所述速度修正值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述当前值生成第一修正值,包括:
    获取动液面指令;
    计算所述动液面指令与所述当前值的差值;
    基于所述差值与第一映射系数,得到所述第一修正值;
    所述第一映射系数为预设值。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述变化率生成第二修正值,包括:
    基于所述变化率与第二映射系数,得到所述第二修正值;
    所述第二映射系数为预设值。
  5. 一种动液面自动控制设备,其特征在于,所述控制设备包括:
    至少一个处理器;
    存储器,与所述至少一个处理器连接;
    其中,所述存储器存储有能被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令实现权利要求1至4中任意一项权利要求所述的方法。
  6. 一种动液面自动控制系统,其特征在于,所述控制系统包括:
    权利要求5所述的控制设备,用于生成并输出电机转速控制指令;
    动液面数字控制器,所述动液面数字控制器嵌入在所述控制设备中,用于接收所述动液面指令、所述动液面深度和当前速度指令,并对所述动液面进行实时闭环控制;
    动液面深度采集装置,用于将实时动液面深度转化为电信号,传输至所述控制设备中的动液面数字控制器;
    电机,用于带动泵举升井液调节动液面。
  7. 根据权利要求6所述的动液面自动控制系统,其特征在于,所述控制系统还包括:
    速度数字控制器,所述速度数字控制器嵌入在所述控制设备中,用于接收所述电机转速控制指令和电机实际速度,并对所述电机进行实时闭环控制;
    电机速度传感装置,用于实时监测所述电机的转速,并把电机实际速度反馈给所述速度数字控制器。
  8. 根据权利要求6所述的动液面自动控制系统,其特征在于,所述电机为潜油永磁同步电机或异步感应电机。
  9. 根据权利要求6所述的动液面自动控制系统,其特征在于,所述控制设备集成于井下驱动器中。
  10. 根据权利要求6所述的动液面自动控制系统,其特征在于,所述控制设备集成于地面驱动器中。
PCT/CN2021/103624 2020-07-01 2021-06-30 动液面自动控制方法、设备及系统 WO2022002147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010632653.7 2020-07-01
CN202010632653.7A CN111749680A (zh) 2020-07-01 2020-07-01 动液面自动控制方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2022002147A1 true WO2022002147A1 (zh) 2022-01-06

Family

ID=72678957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103624 WO2022002147A1 (zh) 2020-07-01 2021-06-30 动液面自动控制方法、设备及系统

Country Status (2)

Country Link
CN (1) CN111749680A (zh)
WO (1) WO2022002147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117211969A (zh) * 2023-10-17 2023-12-12 江苏省无锡探矿机械总厂有限公司 液压钻机节能控制方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749680A (zh) * 2020-07-01 2020-10-09 浙江都美电气技术股份有限公司 动液面自动控制方法、设备及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399177A (zh) * 2002-09-06 2003-02-26 阎华� 单回路变频水泵直接液位水平控制系统
CN104747128A (zh) * 2013-12-31 2015-07-01 贵州航天凯山石油仪器有限公司 一种智能采油系统
US20160237814A1 (en) * 2013-10-11 2016-08-18 Halliburton Energy Services, Inc. Estimation of Formation Properties by Analyzing Response to Pressure Changes in a Wellbore
CN108086965A (zh) * 2017-12-30 2018-05-29 西安石油大学 基于动液面与套压的抽油控制系统及方法
CN109162675A (zh) * 2018-09-14 2019-01-08 天津大港油田石油工程研究院钻采技术开发有限公司 一种控压采油方法
CN111749680A (zh) * 2020-07-01 2020-10-09 浙江都美电气技术股份有限公司 动液面自动控制方法、设备及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668694B2 (en) * 2002-11-26 2010-02-23 Unico, Inc. Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore
CN1891975A (zh) * 2005-07-04 2007-01-10 许楠 可遥控和闭环控制的智能抽油机
CN103510917A (zh) * 2012-06-19 2014-01-15 中国石油天然气股份有限公司 一种基于在线式动液面监测的抽油机自动控制方法及系统
US20140262245A1 (en) * 2013-03-15 2014-09-18 Hytech Energy, Llc Fluid Level Determination Apparatus and Method of Determining a Fluid Level in a Hydrocarbon Well
CN103885367B (zh) * 2014-04-01 2016-04-06 东营东日电气有限公司 一种基于最佳冲次辨识的抽油机智能控制系统及方法
CN204113228U (zh) * 2014-06-11 2015-01-21 百米马(天津)有限公司 一种基于机械自动变速器的油井自动控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399177A (zh) * 2002-09-06 2003-02-26 阎华� 单回路变频水泵直接液位水平控制系统
US20160237814A1 (en) * 2013-10-11 2016-08-18 Halliburton Energy Services, Inc. Estimation of Formation Properties by Analyzing Response to Pressure Changes in a Wellbore
CN104747128A (zh) * 2013-12-31 2015-07-01 贵州航天凯山石油仪器有限公司 一种智能采油系统
CN108086965A (zh) * 2017-12-30 2018-05-29 西安石油大学 基于动液面与套压的抽油控制系统及方法
CN109162675A (zh) * 2018-09-14 2019-01-08 天津大港油田石油工程研究院钻采技术开发有限公司 一种控压采油方法
CN111749680A (zh) * 2020-07-01 2020-10-09 浙江都美电气技术股份有限公司 动液面自动控制方法、设备及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117211969A (zh) * 2023-10-17 2023-12-12 江苏省无锡探矿机械总厂有限公司 液压钻机节能控制方法及系统
CN117211969B (zh) * 2023-10-17 2024-03-29 江苏省无锡探矿机械总厂有限公司 液压钻机节能控制方法及系统

Also Published As

Publication number Publication date
CN111749680A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2022002147A1 (zh) 动液面自动控制方法、设备及系统
RU2681390C2 (ru) Адаптивное бессенсорное управление насосом с устройством самокалибровки для жидкостной насосной системы
US7349814B2 (en) Measurement method and arrangement
CN102931906B (zh) 异步电机转子磁链观测与转速辨识的方法
BR112013022026B1 (pt) sistema para processamento de um sinal de corrente sensoreado proveniente de um motor
US10317894B2 (en) No flow detection means for sensorless pumping control applications
CN109347391B (zh) 一种考虑系统噪声的朗道自适应转动惯量辨识方法
WO2012118649A1 (en) System for controlling a motor
US20140249682A1 (en) 3-D Sensorless Conversion Method and Apparatus for Pump Differential Pressure and Flow
BR112013021504B1 (pt) Método e sistema para controlar um motor elétrico
CN103684182A (zh) 一种永磁同步电机参数辨识方法
CN101977009B (zh) 高精度数控机床进给驱动用正弦波直线电机的控制方法
CN110739893A (zh) 一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法
CN101800505A (zh) 一种磁悬浮飞轮转速控制方法
CN103618486A (zh) 一种模糊控制的直流电机调速方法
CN104201962A (zh) 一种高速列车牵引感应电机参数辨识方法
US20140103841A1 (en) Controlling Method of Synchronous Motor
WO2022007680A1 (zh) 潜油/潜水系统的控制系统
CN103986375B (zh) 基于电枢电流检测与实现多电机同步性方法
CN103825520A (zh) 一种异步电机最优转差频率控制方法
CN106470006B (zh) 一种发电机调速系统振荡阻尼比极性判断方法及装置
JP6721177B2 (ja) 自動測定システム及び自動測定方法
CN103762925A (zh) 采用免疫算法的永磁同步电机的h∞转速估计方法
WO2015092462A1 (en) Method and system for controlling an electric motor
CN103684188A (zh) 一种运动控制系统的转动惯量辨识方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833003

Country of ref document: EP

Kind code of ref document: A1