WO2022001650A1 - 干扰协同方法及相关设备 - Google Patents

干扰协同方法及相关设备 Download PDF

Info

Publication number
WO2022001650A1
WO2022001650A1 PCT/CN2021/100027 CN2021100027W WO2022001650A1 WO 2022001650 A1 WO2022001650 A1 WO 2022001650A1 CN 2021100027 W CN2021100027 W CN 2021100027W WO 2022001650 A1 WO2022001650 A1 WO 2022001650A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
user
interfered
interfered user
probability
Prior art date
Application number
PCT/CN2021/100027
Other languages
English (en)
French (fr)
Inventor
文敏
楼群芳
卢小甲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022001650A1 publication Critical patent/WO2022001650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an interference coordination method and related devices.
  • the cooperating cell adjusts the beamforming weights of related users in the cooperating cell according to the uplink channel information of the interfered user in the interfered cell to avoid interference.
  • the uplink channel information of the interfered user obtained by the cooperative cell from the interfered cell is historical
  • the actual scheduling state of the interfered user may be inconsistent with the state indicated by the history information.
  • the history information indicates that the first interfered user is being scheduled, but actually the first interfered user currently has no communication service.
  • the history information indicates that the second interfered user is not scheduled, but actually the second interfered user has been currently scheduled. In this way, the interference coordination effect of the coordinated cells will be poor.
  • the embodiments of the present application provide an interference coordination method and related equipment, so as to solve the problem of poor interference coordination effect caused by information transmission delay in the existing solution.
  • the embodiments of the present application relate to, for example, a first cell and a second cell, where the first cell and the second cell are networked based on an IP radio access network (IP radio access network, IPRAN).
  • IP radio access network IP radio access network
  • the first cell and the second cell are co-frequency cells, and the second cell causes co-frequency interference to the first cell.
  • the "cell” generally refers to a logical network area formed by an access network device and a terminal device capable of communicating with the access network device through a wireless channel.
  • the "cell” in the embodiments of this application refers to access network equipment.
  • an embodiment of the present application provides an interference coordination method, the method includes: a first cell sends a coordination request to a second cell, where the coordination request includes uplink channel information of at least one interfered user, the interfered The user is a user in the first cell that is interfered by the second cell; the first cell determines the state transition probability of each interfered user in the at least one interfered user at the first transmission time interval TTI, The state transition probability is used to indicate the probability that each interfered user in the at least one interfered user is scheduled, the first TTI is the TTI corresponding to the second TTI after the transmission delay is added, and the transmission delay is Refers to the time difference between the time when the second cell receives the transmission information of the first cell and the time when the first cell sends the transmission information; the first cell sends the state transition probability to the For the second cell, the state transition probability is used as a parameter for the second cell to perform interference coordination.
  • the "user” in the embodiments of the present application refers to an electronic device located within the wireless signal coverage of the access network device and capable of communicating with the corresponding access network device.
  • the user connected to the first cell can determine whether it is interfered by the second cell according to any downlink signal received by the user. At least one user interfered by the second cell may report the interfered information to the first cell. Afterwards, the first cell sends a coordination request to the second cell.
  • the coordination request includes uplink channel information of at least one interfered user, so that the second cell determines the channel that causes interference and performs interference coordination.
  • the first cell and the second cell are networked based on IPRAN. Therefore, information is transmitted between the first cell and the second cell through the IP network, so that there is a transmission delay between the first cell and the second cell.
  • the first cell transmits information to the second cell, and the time difference between the time when the second cell receives the transmission information and the time when the first cell sends the transmission information is the IP network transmission delay.
  • the first cell can determine the state transition probability of each interfered user at the first TTI according to the state of each interfered user in the at least one interfered user at the second transmission time interval (TTI), Further, the state transition probability is sent to the second cell.
  • TTI transmission time interval
  • the first TTI is the TTI corresponding to the second TTI after the transmission delay is added
  • the second TTI is the TTI at the moment when the first cell determines the state transition probability.
  • the state transition probability indicates the probability that the interfered user is scheduled at the first TTI, and the state transition probability is used as a parameter for the interference coordination of the second cell.
  • the interfered cell ie, the first cell
  • the cooperating cell ie, the second cell
  • the first cell determining the state transition probability of each interfered user in the at least one interfered user at the first TTI includes: the first cell acquiring the at least one interfered user the buffer status of each interfered user in the second TTI to obtain the first buffer status probability of each interfered user; the first cell is based on the buffer status of each interfered user
  • the first buffer state probability determines the buffer state transition probability of the corresponding interfered user in the first TTI, so as to obtain the second buffer state probability of each interfered user.
  • the second buffer state probability is used as the state transition probability.
  • the buffer is a storage space of a specified size reserved in the memory for temporarily storing data to be read and written.
  • the first cell may configure a buffer corresponding to the user according to the size of the data transmitted with the user.
  • the first cell may determine the scheduled state of the interfered user according to the state of the buffer corresponding to the interfered user. Specifically, the first cell may predefine the state of the buffer, and then obtain the buffer state of the interfered user's second TTI, obtain the first buffer state probability, and then calculate the time of the interfered user's first TTI according to the first buffer state probability.
  • the buffer state probability is obtained to obtain the second buffer state probability. In this way, the probability that each interfered user in the at least one interfered user is scheduled within the TTI corresponding to the increased transmission delay can be determined, so that the second cell can more accurately perform interference avoidance.
  • the method further includes: The first cell determines the scheduling state probability of each interfered user in the first TTI according to the second buffer state probability of each interfered user, so as to obtain the state transition probability.
  • the buffer state of the interfered user is associated with the scheduled state of the interfered user, and the first cell may determine the scheduling state transition probability of the interfered user according to the second buffer state probability of the interfered user. In this way, the probability that each interfered user in the at least one interfered user is scheduled within the TTI corresponding to the increased transmission delay can be determined, so that the second cell can more accurately perform interference avoidance.
  • an embodiment of the present application provides an interference coordination method, the method includes: a second cell receives a coordination request from a first cell, the coordination request includes uplink channel information of at least one interfered user, the The interfered user is a user in the first cell that is interfered by the second cell; the second cell receives each interfered user from the at least one interfered user from the first cell in the first cell.
  • the state transition probability during the transmission time interval TTI where the state transition probability is used to indicate the probability that each interfered user in the at least one interfered user is scheduled, and the first TTI is after the second TTI increases the transmission delay
  • the transmission delay refers to the time difference between the time when the second cell receives the transmission information of the first cell and the time when the first cell sends the transmission information
  • the second cell Determine the interference covariance matrix of the uplink channel corresponding to the at least one interfered user according to the state transition probability and the uplink channel information, where the uplink channel corresponding to the at least one interfered user refers to the at least one interfered user the corresponding uplink channel in the second cell
  • the second cell determines the signal transmission weight of each user in the second cell according to the interference covariance matrix of the interfered user.
  • the signal transmission weight of each user in the second cell is set for each TTI in the second cell.
  • the second cell can avoid downlink interference from the second cell to the first cell by adjusting the signal transmission weight of each user.
  • the second cell usually determines the user signal transmission weight based on the reciprocity of the uplink and downlink channels in the time division duplexing (TDD) system and based on the uplink channel information of the user.
  • TDD time division duplexing
  • the second cell can determine the time-frequency resource location of each interfered user's uplink channel and the uplink signal transmission period according to the uplink channel information of each interfered user from the first cell . Furthermore, the second cell may measure the uplink channel estimation value of each interfered user. After acquiring the state transition probability of the at least one interfered user, the second cell calculates the interference covariance matrix of the at least one interfered user according to the uplink channel estimation value and the state transition probability of the at least one interfered user. Furthermore, the second cell determines the signal transmission weight of each user according to the interference covariance matrix.
  • the cooperating cell ie, the second cell
  • the second cell determines the interference covariance matrix of the uplink channel corresponding to the at least one interfered user according to the state transition probability, including: when the state transition probability is the each When the second buffer state probability of the interfered user, the second cell determines the scheduling state of each interfered user in the first TTI according to the second buffer state probability of each interfered user probability; the second cell determines the interference covariance matrix according to the scheduling state probability of each interfered user in the first TTI.
  • the buffer state of the interfered user is associated with the scheduled state of the interfered user.
  • the second cell After receiving the second buffer state probability of the interfered user from the first cell, the second cell can determine the scheduling state transition probability of the interfered user according to the second buffer state probability of the interfered user, and further, according to the interfered user The scheduling state transition probabilities are calculated as the interference covariance matrix. In this way, the second cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • the second cell determines the interference covariance matrix of the uplink channel corresponding to the at least one interfered user according to the state transition probability, including: when the state transition probability is the each When the interfered user is in the scheduling state probability of the first TTI, the second cell determines the interference covariance matrix according to the scheduling state probability of each interfered user in the first TTI.
  • the second cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • the interference covariance matrix satisfy: where p refers to the total number of the at least one interfered user, ⁇ refers to the filter coefficient, refers to the scheduling state probability of the at least one interfered user, R p refers to the initial interference covariance matrix of the at least one interfered user, and R p satisfies: Wherein, H p refers to the channel estimation value of the uplink channel of the at least one interfered user in the second cell.
  • the interference covariance matrix satisfy: where p refers to the total number of the at least one interfered user, i refers to the i-th interfered user among the at least one interfered user, refers to the interference covariance matrix of the i-th interfered user, satisfy: where ⁇ is the filter coefficient, refers to the scheduling state probability of the ith interfered user, R p,i refers to the initial interference covariance matrix of the ith interfered user, Wherein, H p,i refers to the channel estimation value of the uplink channel of the i-th interfered user in the second cell.
  • the signal transmission weight V k of user k in the second cell satisfies: in, refers to the noise constant, R kk refers to the initial interference covariance matrix of the user k, R uu refers to the initial interference covariance matrix of the paired users of the user k, and I refers to the identity matrix.
  • an embodiment of the present application provides an access network device, where the access network device has a function of implementing the behavior of the first cell in the above method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the above access network device includes a processor and a transceiver, and the processor is configured to process the access network device to perform the corresponding function of the first cell in the above method.
  • the transceiver is used to implement communication between the above access network device and other access network devices.
  • the access network device may also include a memory, which is coupled to the processor and stores necessary program instructions and data for the access network device.
  • an embodiment of the present application provides an access network device, where the access network device has a function of implementing the behavior of the second cell in the above method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the above access network device includes a processor and a transceiver, and the processor is configured to process the access network device to perform the corresponding function of the second cell in the above method.
  • the transceiver is used to implement communication between the above access network device and other access network devices.
  • the access network device may also include a memory, which is coupled to the processor and stores necessary program instructions and data for the access network device.
  • an embodiment of the present application further provides a chip system, where the chip system is provided in the access network device in the third aspect, and includes at least one processor and an interface.
  • the interface is coupled to the processor for receiving and transmitting code instructions to the at least one processor.
  • the at least one processor executes the code instructions, and implements some or all of the steps of the interference coordination method performed by the first cell in the first aspect and various possible implementation manners of the first aspect.
  • an embodiment of the present application further provides a chip system, where the chip system is provided in the access network device in the fourth aspect, and includes at least one processor and an interface.
  • the interface is coupled to the processor for receiving and transmitting code instructions to the at least one processor.
  • the at least one processor executes the code instructions, and implements some or all of the steps of the interference coordination method performed by the second cell in the second aspect and various possible implementation manners of the second aspect.
  • an embodiment of the present application provides a computer storage medium, where instructions are stored in the computer storage medium, and when the instructions are run on a computer, the computer is made to execute the first aspect, the second aspect, and the first aspect.
  • the computer is made to execute the first aspect, the second aspect, and the first aspect.
  • embodiments of the present application provide a computer program product, which, when running on a computer, enables the computer to execute the first aspect, the second aspect, various possible implementations of the first aspect, and the third aspect. Part or all of the steps of the interference coordination method in various possible implementations of the second aspect.
  • the interfered cell determines the user interfered by the coordinated cell
  • the interfered user's information is transmitted according to the moment when the uplink channel information is sent.
  • the probability of being scheduled by the interfered user with the TTI after the transmission delay is determined, and then the probability of being scheduled by the interfered user with the TTI after the transmission delay is sent to the cooperating cell.
  • the interfered cell can send the possible scheduled state of the interfered user after the transmission delay to the cooperating cell, so that a relatively accurate scheduled state of the interfered user can be sent to the cooperative cell.
  • the cooperating cell determines the interference covariance matrix of the interfered user according to the probability of the interfered user being scheduled, and determines the transmission weights of the users in the cooperating cell according to the interference covariance matrix of the interfered user. In this way, the cooperating cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • FIG. 1 is a schematic structural diagram of a network architecture 10 provided by an embodiment of the present application.
  • FIG. 2 is a signaling interaction diagram of an interference coordination method 100 provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a network architecture 20 provided by an embodiment of the present application.
  • FIG. 4A is a signaling interaction diagram of an interference coordination method 200 provided by an embodiment of the present application.
  • FIG. 4B is a signaling interaction diagram of the interference coordination method 300 provided by the embodiment of the present application.
  • FIG. 5A is a schematic structural diagram of an access network device 50 provided by an embodiment of the present application.
  • FIG. 5B is a schematic structural diagram of a chip system 51 provided by an embodiment of the present application.
  • interference coordination technology which may also be referred to as “interference coordination”, which refers to reducing or avoiding interference between cells by coordinating the scheduling and allocation of resources.
  • FIG. 1 shows a network architecture 10.
  • the network architecture 10 includes a cell (cell) 11 and a cell 12.
  • the cell 11 and the cell 12 are networked based on an IP radio access network (IPRAN).
  • IPRAN IP radio access network
  • the coverage of cell 11 includes user 110
  • the coverage of cell 12 includes user 120 .
  • cell 11 and cell 12 are intra-frequency cells, that is, the frequency of communication between cell 11 and user 110 is the same as the frequency of communication between cell 12 and user 120.
  • Cell refers to a logical network area formed by access network equipment and terminal equipment that can communicate with the access network equipment through wireless channels, because the terminal equipment that can communicate with the access network equipment is usually located in the access network The wireless signal coverage of the device, so “cell” can also be expressed as the wireless signal coverage of the access network device.
  • the “cell” involved in the embodiments of this application refers to access network equipment.
  • the access network device involved in the embodiments of the present application may also be referred to as a base station, and the access network device is a device deployed in a wireless access network to provide users with wireless communication functions, including but not limited to: various forms
  • the macro base station micro base station (also known as small station), relay station, transmission reception point (TRP), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC) , node B (node B,
  • wireless access network equipment In systems using different wireless access technologies, the names of wireless access network devices with similar wireless communication functions may be different.
  • wireless access network equipment the above-mentioned apparatuses for providing wireless communication functions for users are collectively referred to as wireless access network equipment.
  • the "user” involved in the embodiments of the present application refers to an electronic device located within the wireless signal coverage of an access network device and capable of communicating with a corresponding access network device.
  • the electronic equipment may be referred to as user equipment (user equipment, UE) or mobile station (mobile station, MS) or the like.
  • the electronic device involved in the embodiments of this application is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); Deployed in the air (eg on airplanes, balloons, satellites, etc.).
  • the electronic equipment may include various types of mobile phones (mobile phones), tablet computers (Pad), computers with wireless transceiver functions, wireless data cards, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, terminal equipment for machine type communication (MTC), terminal equipment in industrial control, terminal equipment in self-driving, remote medical (remote medical) terminal equipment, terminal equipment in smart grid, terminal equipment in transportation safety, terminal equipment in smart city, smart home (home equipment with wireless communication function, such as refrigerators) , TV, washing machine or furniture, etc.), as well as wearable devices (such as smart watches, smart bracelets, pedometers, etc.) and so on.
  • VR virtual reality
  • AR augmented reality
  • MTC machine type communication
  • terminal equipment in industrial control terminal equipment in self-driving
  • remote medical (remote medical) terminal equipment terminal equipment in smart grid
  • terminal equipment in transportation safety terminal equipment in smart city, smart home (home equipment with wireless communication function, such as refrigerators) , TV, washing machine or furniture, etc
  • the "user” referred to in the embodiments of the present application may also be set as a device in a fixed position and having a wireless communication function similar to the aforementioned electronic device.
  • the names of electronic devices with similar wireless communication functions may be different, which is only for the convenience of description.
  • the above electronic devices with wireless communication functions are collectively referred to as "user".
  • the user 110 and the user 120 in the network architecture 10 are definitions at the logical function level.
  • the coverage of a cell may include at least one user equipment entity, which is not limited here.
  • Embodiments of the present application provide an interference coordination method and related equipment, wherein a first cell and a second cell are networked based on IPRAN, and the first cell is, for example, a cell interfered by the second cell.
  • the first cell determines the probability of the interfered user being scheduled within the time period after the transmission delay, and then sends the determined scheduling probability to the second cell. community.
  • the second cell calculates the transmission weights of the downlink signals of each user in the second cell according to the probability that the interfered user in the first cell is scheduled. In this way, the second cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • the embodiments of the present application may also be applicable to future-oriented interference coordination technology.
  • the business scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. With the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the interference coordination method 100 (hereinafter referred to as the method 100) provided by the embodiment of the present application involves a first cell and a second cell, the first cell and the second cell are networked through IPRAN, and the first cell is subject to the second cell's Co-channel interference.
  • the first cell is, for example, the cell 11 shown in FIG. 1
  • the second cell is, for example, the cell 12 shown in FIG. 1 .
  • the method 100 includes the following steps:
  • Step S101 the first cell sends a coordination request to the second cell.
  • the cooperation request includes uplink channel information of at least one interfered user.
  • the interfered user refers to the user equipment in the first cell that is interfered by the co-channel signal of the second cell.
  • the uplink channel information includes information indicating the time-frequency resource location of the uplink channel of the interfered user and information about the transmission period of the uplink signal, for example, including information such as the sounding reference signal (sounding reference signal, SRS) transmission period of the interfered user.
  • SRS sounding reference signal
  • a user within the signal coverage of the first cell may measure any downlink signal received by the user, and compare the strength of the received downlink signal. If any user detects that the downlink signal strength of the second cell is relatively high, the user may determine that the interference from the second cell is relatively high, and further, the user reports to the first cell a message that the user is interfered by the second cell. After that, the first cell sends a coordination request to the second cell, where the coordination request includes the uplink channel information of the user. There may also be multiple interfered users in the first cell, and accordingly, the coordination request may include uplink channel information of the multiple interfered users.
  • Step S102 the first cell determines the state transition probability of each interfered user in the first transmission time interval (transmission time interval, TTI) of the at least one interfered user.
  • the state transition probability is used to indicate the probability that the user is scheduled in the first TTI.
  • the first TTI is the corresponding TTI after the transmission delay is added to the second TTI.
  • the transmission delay refers to the time difference between the time when the second cell receives the transmission information of the first cell and the time when the first cell sends the transmission information.
  • the second TTI is the TTI at the moment when the first cell performs step S102.
  • the first cell can determine the probability of scheduling each interfered user in the at least one interfered user within the TTI corresponding to the increased transmission delay, so that the second cell can more accurately perform interference avoidance.
  • the first cell may periodically determine the state transition probability, and the period at which the first cell determines the state transition probability may be less than or equal to one TTI.
  • the state transition probability of the interfered user may be the buffer state transition probability of the corresponding user.
  • the first cell may acquire the buffer state of each interfered user in the second TTI among the at least one interfered user, so as to obtain the first buffer state probability of each interfered user. Furthermore, the first cell determines the buffer state transition probability of the corresponding interfered user in the first TTI according to the first buffer state probability of each interfered user, so as to obtain the second buffer state probability of each interfered user.
  • the second buffer state probability of each interfered user is the state transition probability described in this implementation. In this embodiment, after receiving the buffer state transition probability, the second cell may determine the scheduling state transition probability of the corresponding interfered user according to the buffer state transition probability of the interfered user.
  • the state transition probability of the interfered user may be the scheduling state transition probability of the corresponding user.
  • the first cell can determine the scheduling state of each interfered user in the first TTI according to the second buffer state probability of each interfered user probability.
  • the scheduling state probability of each interfered user is the state transition probability described in this implementation.
  • the aforementioned buffer may also be referred to as a cache, which is a storage space of a specified size reserved in the memory for temporarily storing data to be read and written.
  • the first cell may configure a buffer corresponding to the user according to the size of the data transmitted with the user.
  • the user's buffer state changes, that is, the buffer state is associated with the scheduling state. For example, there is no user's buffer in the first cell, or the user's buffer status is null, indicating that the first cell and the user have no data to interact with, and the scheduling status of the user is unscheduled.
  • the buffer status of the user is that data is stored, it means that the first cell is performing data interaction with the user, and the scheduling status of the user is being scheduled.
  • a user's buffer may be preset to four states, and the four buffer states and the user scheduling states corresponding to the four buffer states are shown in Table 1.
  • buffer status label buffer status description scheduling status s 0 no buffer not scheduled s 1 buffer is greater than 0 but empty not scheduled s 2
  • the amount of data in the buffer is greater than 0 and less than the preset threshold Scheduled s 3
  • the amount of data in the buffer is greater than the preset threshold Scheduled
  • Table 1 shows the four buffer states and the scheduling states corresponding to the four buffer states respectively.
  • each line represents a buffer state.
  • the buffer state indicated by the state s 0 is the state when there is no buffer of the corresponding user in the first cell.
  • the user scheduling state corresponding to the buffer state is not scheduled.
  • State buffer status s 1 indicates that the first cell in the corresponding user buffer, but state of the respective user's buffer is empty.
  • the user scheduling state corresponding to the buffer state is not scheduled.
  • the buffer state indicated by the state s 2 is a state when there is a buffer of a corresponding user in the first cell, and the amount of data in the buffer is greater than 0 and less than a preset threshold.
  • the user scheduling state corresponding to the buffer state is scheduled.
  • S 3 state buffer state is indicated in the first cell corresponding user buffer, and the data buffer is larger than a preset threshold state.
  • the user scheduling state corresponding to the buffer state is scheduled.
  • the preset threshold in Table 1 is the amount of data that can be transmitted between the first cell and the interfered user within the duration corresponding to the transmission delay. The longer the transmission delay is, the larger the preset threshold is; on the contrary, the shorter the transmission delay is, the smaller the preset threshold is.
  • the preset threshold is, for example, 5 megabytes (M).
  • the first cell determines the state of the interfered user in the first TTI according to the second TTI, and when the amount of data in the buffer is less than the preset threshold, the data in the buffer can be transmitted when entering the first TTI, then, During the second TTI, the first cell will stop scheduling the interfered user. When the amount of data in the buffer is greater than the preset threshold, and the data in the buffer is still not transmitted when entering the first TTI, the first cell is still in a scheduling state for the interfered user during the second TTI.
  • the user's buffer can also be preset to more or less several states, for example, the user's buffer can also be set to two states. For another example, the user's buffer can also be set to six states and so on. Not detailed here.
  • the first cell can customize the value of x.
  • the first cell may determine the sequence number of the TTI in the current cycle when step S102 is performed as the value of x. For example, in the first calculation cycle after sending the coordination request, the TTI when the first cell performs step S102 is the second TTI in this cycle, and the first cell may define x as 2.
  • n is associated with the transmission delay.
  • the transmission delay of the IP network is usually within a certain range.
  • n may be preset to be a fixed value based on the transmission delay, for example, n is preset to be 4.
  • the first cell may be based on an algorithm Determine the value of n, where ⁇ T refers to the transmission delay, and Ttti refers to the duration of the TTI. when is an integer, when is a decimal, n is adjacent and greater than the integer. For example, when hour, when , n takes 4.
  • the first cell may obtain buffer state change data of all users in the first cell within a certain period of time in advance, and then obtain the buffer state transition matrix T by training.
  • T satisfies:
  • p refers to the state transition probability. Taking p(s 0
  • the initial buffer state of user i in the current TTI is s 1
  • the buffer state at the end of the current TTI scheduling is s 2
  • the state transition probability statistics of user i is p(s 2
  • s 1 ) 100%, p (s 0
  • s 1 ) 0.
  • s 0 to s 3 are shown in Table 1 and will not be described in detail here.
  • a period of time may be any duration from 1 second (s) to 15s. In actual implementation, it can be flexibly set according to the number of users within the coverage of the first cell, the type of services supported by the first cell, the number of buffer states, etc., which is not limited here.
  • the first cell acquires the state probability ⁇ (x) of the interfered user at the end of the TTI scheduling indicated by x.
  • ⁇ (x) is also the first buffer state probability of the interfering user described in the above embodiment.
  • ⁇ (x) satisfies: ⁇ (t) ⁇ [0 0 0 100%] T ,[0 0 100% 0] T ,[0 100% 0 0] T ,[100% 0 0 0] T ⁇ .
  • ⁇ (x+n) is the second buffer state probability of the interfered user in this embodiment.
  • the first cell may convert the second buffer state probability into the scheduling state probability according to the corresponding relationship between the buffer state and the scheduling state shown in Table 1, so as to obtain the scheduling state probability of the interfered user
  • the buffer state s 0 and the buffer state s 1 correspond to the unscheduled state
  • the buffer state s 2 and the buffer state s 3 correspond to the scheduled state
  • the first cell may convert the second buffer state probability to s. Take the average of the probabilities of 0 and s 1 to obtain the probability that the interfered user is not scheduled, and average the probabilities of transitioning to s 2 and s 3 in the second buffer state probability to obtain that the interfered user is scheduled The probability.
  • Step S103 the first cell sends the state transition probability to the second cell.
  • the first cell sends the state transition probability to the second cell through the IP network.
  • the first cell sends the second buffer state probability of each interfered user to the second cell.
  • the second cell can convert the second buffer state probability of the interfered user into the scheduling state probability of the interfered user
  • the operation of converting the second buffer state probability into the scheduling state probability by the second cell may refer to the operation of the first cell, which will not be described in detail here.
  • the first cell sends the scheduling state probability of each interfered user to the second cell.
  • each time the first cell determines the state transition probability of an interfered user may be sent to the second cell.
  • the first cell may form a matrix of the state transition probabilities of all interfered users, and then send the matrix to the Second district. In this embodiment, one row of data in the matrix corresponds to one interfered user, or one column of data corresponds to one interfered user.
  • Step S104 the second cell determines the interference covariance matrix of the uplink channel corresponding to at least one interfered user according to the state transition probability and the uplink channel information.
  • the uplink channel corresponding to at least one interfered user refers to an uplink channel in the second cell corresponding to at least one interfered user.
  • each TTI in the second cell sets the signal transmission weights of the users in the second cell. Based on this, the second cell usually determines the beamforming weight corresponding to the user's downlink channel based on the reciprocity of the uplink and downlink channels in the time division duplexing (TDD) system and the user's uplink channel information (also referred to as the user's uplink channel information). "Signal emission weights").
  • the second cell may measure the uplink channel estimation value H k of user k according to the uplink channel information of user k, and the uplink channel of user l according to the pairing of user k. The information measures the uplink channel estimation value H l of user l. Afterwards, the second cell may calculate the interference covariance matrix R kk of user k and the interference covariance matrix R uu of user l.
  • the second cell may also measure the uplink channel of the at least one interfered user in the second cell according to the uplink channel information of the at least one interfered user estimated value H p , and further, the second cell calculates the initial interference covariance matrix R p of the at least one interfered user according to the uplink channel estimated value H p of the at least one interfered user, and R p satisfies: p refers to the total number of at least one interfered user.
  • the implementation process of the second cell measuring the uplink channel estimation value H k and the uplink channel estimation value H l , and calculating the interference covariance matrix R k k and the interference covariance matrix R uu is the same as the above steps S101 to S1013.
  • the implementation process is not limited by the execution order.
  • the implementation process of the second cell measuring the uplink channel estimation value H k and calculating the initial interference covariance matrix R p and the implementation process of the above steps S102 and S1013 are not limited by the execution order.
  • H p and R p in the above embodiments are obtained by taking at least one interfered user as a whole.
  • the second cell may also separately calculate the initial interference covariance matrix R p,i of each interfered user.
  • the second cell may acquire the uplink channel estimation value H p,i of the ith interfered user among the at least one interfered user, and then the second cell obtains the ith interfered user's estimated value H p,i according to H p,i .
  • the initial interference covariance matrix R p,i , R p,i satisfies
  • the above-mentioned initial interference covariance matrix R p is determined by the second cell according to the scheduling state of the interfered user before the transmission delay.
  • the second cell determines the initial interference covariance based on the state transition probability of the at least one interfered user.
  • the matrix is further calculated to obtain the interference covariance matrix of at least one interfered user.
  • the interference covariance matrix of the at least one interfered user acquired by the second cell is associated with the scheduling state of the at least one interfered user after the transmission delay, so that the problem of poor interference coordination performance caused by the transmission delay can be avoided, Can more accurately avoid interference.
  • the interference covariance matrix of at least one interfered user satisfy: where ⁇ is the filter coefficient, refers to the scheduling state probability of the at least one interfered user.
  • the second cell calculates the initial interference covariance matrix R of the at least one interfered user according to the uplink channel estimation value of each interfered user. p . Furthermore, after the second cell determines the scheduling state probability of the first interfered user, it follows the algorithm based on R p and the scheduling state probability of the first interfered user. Calculate to get the first calculation result.
  • the second cell determines the scheduling state probability of the second interfered user, it follows the algorithm based on the first calculation result and the scheduling state probability of the second interfered user. Calculate and get the second result. And so on, the second cell is calculated each time on the basis of the result of R p after the previous operation. After calculation based on the last interfered user among the at least one interfered user, the obtained result is the interference covariance matrix of the at least one interfered user
  • the interference covariance matrix of at least one interfered user satisfy: where i refers to the i-th disturbed user among the at least one disturbed user, is the interference covariance matrix of the i-th interfered user. satisfy: in, is the scheduling state probability of the i-th interfered user.
  • the second cell may separately measure the uplink channel estimation value of each interfered user, and separately calculate the initial interference covariance matrix of each interfered user. Furthermore, each time the second cell receives the state transition probability of an interfered user, the interference covariance matrix of the interfered user is calculated corresponding to the state transition probability of the interfered user and the initial interference covariance matrix. After determining the interference covariance matrices of all interfered users, weight the interference covariance matrices of all interfered users to obtain the interference covariance matrix of the at least one interfered user
  • the above two determine the interference covariance matrix
  • the implementation manner of the present invention is only a schematic description, and does not constitute a limitation to the embodiments of the present application.
  • the second cell may use other algorithms to determine the interference covariance matrix Not detailed here.
  • Step S105 the second cell determines the signal transmission weight of each user in the second cell according to the interference covariance matrix of the interfered user.
  • the signal transmission weight V k of user k in the second cell satisfies: in, refers to the noise constant, R kk refers to the initial interference covariance matrix of user k, R uu refers to the initial interference covariance matrix of the paired users of the user k, and I refers to the identity matrix.
  • user k transmits a data stream
  • the second cell may determine the first column of eigenvectors in the foregoing V k as the signal transmission weight of user k.
  • user k transmits q data streams, where q is an integer greater than or equal to 2, and the second cell may determine the first q columns of feature vectors in V k as the signal transmission weight of user k, where q The column feature vectors correspond one-to-one with the q data streams.
  • the interfered cell determines the user interfered by the cooperative cell (the above-mentioned second cell)
  • the interfered user is based on the time when the uplink channel information is sent.
  • the scheduling state the probability of being scheduled by the interfered user with the TTI after the transmission delay is determined, and further, the probability of being scheduled by the interfered user with the TTI after the transmission delay is sent to the cooperating cell.
  • the interfered cell can send the possible scheduled state of the interfered user after the transmission delay to the cooperating cell, so that a relatively accurate scheduled state of the interfered user can be sent to the cooperative cell.
  • the cooperating cell determines the interference covariance matrix of the interfered user according to the probability of the interfered user being scheduled, and determines the transmission weights of the users in the cooperating cell according to the interference covariance matrix of the interfered user. In this way, the cooperating cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • a cell is implemented as a base station, for example, and a user is implemented as a UE, for example.
  • FIG. 3 shows a network architecture 20, the network architecture 20 includes a base station 21 and a base station 22, and the base station 21 and the base station 22 are networked through IPRAN.
  • the signal coverage of the base station 21 includes UE211 , UE212 and UE213
  • the signal coverage of the base station 22 includes UE221 , UE222 and UE223 .
  • there is co-channel interference between the base station 21 and the base station 22 for example, the UE211 and the UE212 are subjected to downlink interference from the base station 22 .
  • the UE211 and the UE212 may report to the base station 21 a message that the base station 22 is interfered with.
  • the UE 213 may not report the interfered message to the base station 21 .
  • UE222 and UE223 are, for example, paired UEs of UE221 in base station 22 .
  • the base station 22 determines the signal transmission weights of the UE221, the UE222 and the UE223 once per TTI.
  • the network architecture 20 shown in FIG. 3 is only a schematic illustration, and does not constitute a limitation on the network architecture 20 .
  • the network architecture 20 may further include more or less base stations, UEs, and the like.
  • the base station in the network architecture 20 may also be implemented as other access network equipment, and the UE may also be implemented as other terminal equipment, which is not limited here.
  • FIG. 4A illustrates a signaling interaction diagram of the interference coordination method 200 .
  • the interference coordination method 200 (hereinafter referred to as the method 200) includes the following steps:
  • Step S201 the base station 21 sends a coordination request to the base station 22, where the coordination request includes the uplink channel information of the UE211 and the uplink channel information of the UE212.
  • the base station 21 sends a coordination request to the base station 22 after receiving the messages reported by the UE 211 and the UE 212 that are interfered by the base station 22 .
  • Step S202 the base station 22 detects the uplink channel estimation value H 211 of the UE211 within the signal coverage of the base station 22 according to the uplink channel information of the UE211, and detects the uplink channel estimation value H 211 of the UE212 within the signal coverage of the base station 22 according to the uplink channel information of the UE212 212 .
  • Step S203 the base station 22 calculates the initial interference covariance matrix of the UE211 and the UE212.
  • the initial interference covariance matrix R 2 of UE211 and UE212 satisfies:
  • the base station 22 may still UE221, UE222 and uplink channel information UE223 respectively detecting UE221, UE222 and the uplink channel estimation value UE223 to obtain uplink channel UE2 21 estimates an uplink channel values H 221, UE222 estimate The value H 222 is the uplink channel estimation value H 223 of the UE 223 .
  • the base station 22 may determine the interference covariance matrix of the UE 221 and the interference covariance matrix R uu of UE222 and UE223,
  • Step S204 the base station 21 determines the scheduling state probability of the UE211 and the UE212 at the time (t+4*Ttti) at time t.
  • the transmission delay from the base station 21 to the base station 22 is, for example, a duration of 4 TTIs.
  • the buffer of the UE is pre-divided into four states, and the four states are shown in Table 1, which will not be repeated here.
  • T is as described in the above-mentioned embodiments, and will not be described in detail here.
  • Step S205 the base station 21 sends the scheduling state probability of the UE211 and the UE212 at the time (t+4*Ttti) to the base station 22 .
  • the base station 21 sends the scheduling state probability of the UE211 and the UE212 at the time (t+4*Ttti) to the base station 22 through the IP network.
  • step S204 and step S205 may be performed simultaneously with step S202 and step S203. In some other embodiments, step S204 and step S205 are performed before step S202 and step S203, which is not limited in this embodiment of the present application.
  • Step S206 the base station 22 calculates the interference covariance matrix of UE211 and UE212 according to the initial interference covariance matrix of UE211 and UE212 and the scheduling state probability of UE211 and UE212 at (t+4*Ttti) time.
  • the base station 22 first receives the scheduling state probability of the UE 211 Receiving the scheduling state probability of UE212 Based on this, the base station 22 receives the scheduling state probability of the UE 211 After that, perform the calculation got the answer Furthermore, upon receiving the scheduling state probability of UE 212 After that, perform the calculation Obtain the interference covariance matrix of UE211 and UE212
  • Step S207 the base station 22 calculates the signal transmission weights of the signal transmission weights of the UE221, the UE222 and the UE223.
  • the signal transmission weight V 221 of the UE221, V 221 satisfies: Wherein, the meanings of ⁇ and I are as described in the foregoing embodiments, and are not repeated here.
  • base station 22 when transmitting a data stream UE221, base station 22 may be the above-described V 221 of the first column feature vector is determined as the transmit weights UE221 signal. If UE221 transmitting data streams q, q is an integer greater than or equal to 2, the second cell may be the above-described column q V k eigenvectors to transmit the weight value is determined before UE221 signal, wherein, in column q and q eigenvectors data flow one-to-one.
  • the algorithm used by the base station 22 to calculate the signal transmission weights of the UE222 and the UE223 is similar to the algorithm used by the base station 22 to calculate the signal transmission weights of the UE221, and will not be described in detail here.
  • FIG. 4B illustrates a signaling interaction diagram of the interference coordination method 300 .
  • the interference coordination method 300 (hereinafter referred to as the method 300) includes the following steps:
  • Step S301 the base station 21 sends a coordination request to the base station 22, where the coordination request includes the uplink channel information of the UE211 and the uplink channel information of the UE212.
  • Step S302 the base station 22 detects the uplink channel estimation value H 211 of the UE211 within the signal coverage of the base station 22 according to the uplink channel information of the UE211, and detects the uplink channel estimation value H 211 of the UE212 within the signal coverage of the base station 22 according to the uplink channel information of the UE212 212 .
  • step S301 and step S302 For the implementation process of step S301 and step S302, reference may be made to the implementation process of step S201 and step S202 in the method 200, and details are not described here.
  • Step S303 the base station 22 calculates the initial interference covariance matrix of the UE211 and the initial interference covariance matrix of the UE212, respectively.
  • the initial interference covariance matrix R 211 of the UE 211 satisfies:
  • the initial interference covariance matrix R 212 of the UE 212 satisfies:
  • Step S304 the base station 21 determines the scheduling state probability of the UE211 and the UE212 at the time (t+4*Ttti) at time t.
  • Step S305 the base station 21 sends the scheduling state probability of the UE211 and the UE212 at the time (t+4*Ttti) to the base station 22 .
  • steps S304 and S305 For the implementation process of steps S304 and S305, reference may be made to the implementation process of steps S204 and S205 in the method 200, and details are not described here.
  • Step S306 the base station 22 calculates the interference covariance matrix of UE211 and UE212 according to the initial interference covariance matrix of UE211 and UE212 and the scheduling state probability of UE211 and UE212 at (t+4*Ttti) time.
  • the base station 22 may calculate the interference covariance matrix of the UE 211 and the interference covariance matrix of the UE 212 respectively.
  • the interference covariance matrix of UE211 satisfy:
  • Interference covariance matrix of UE211 satisfy:
  • the base station 22 passes the algorithm Obtain the interference covariance matrix of UE211 and UE212
  • Step S307 the base station 22 calculates the signal transmission weights of the signal transmission weights of the UE221, the UE222 and the UE223.
  • step S307 For the implementation process of step S307, reference may be made to the implementation process of step S207 in the method 200, and details are not described here.
  • each algorithm involved in the interference coordination method may be other feasible algorithms, which are not limited here.
  • the interfered cell determines the user interfered by the cooperative cell (the above-mentioned second cell)
  • the interfered user is based on the time when the uplink channel information is sent.
  • the scheduling state the probability of being scheduled by the interfered user with the TTI after the transmission delay is determined, and further, the probability of being scheduled by the interfered user with the TTI after the transmission delay is sent to the cooperating cell.
  • the interfered cell can send the possible scheduled state of the interfered user after the transmission delay to the cooperating cell, so that a relatively accurate scheduled state of the interfered user can be sent to the cooperative cell.
  • the cooperating cell determines the interference covariance matrix of the interfered user according to the probability of the interfered user being scheduled, and determines the transmission weights of the users in the cooperating cell according to the interference covariance matrix of the interfered user. In this way, the cooperating cell can perform interference coordination according to the possible scheduled state after the transmission delay of the interfered user, so as to accurately perform interference avoidance and optimize the performance of interference coordination.
  • the solutions of the interference coordination methods provided by the embodiments of the present application are respectively introduced from the perspectives of each device itself and from the perspective of interaction between the various devices.
  • the first cell and the second cell, the user and the first cell, etc. include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
  • the above-mentioned first cell may implement the above-mentioned corresponding functions in the form of functional modules.
  • the apparatus applied to the first cell may include, for example, a processing module and a transceiver module.
  • the apparatus can be used to perform the interference coordination method performed by the first cell in any of the embodiments illustrated by method 100 , and the interference coordination method performed by the base station 21 in any of the embodiments illustrated by method 200 and method 300 .
  • the transceiver module may be configured to send a coordination request to the second cell, where the coordination request includes uplink channel information of at least one interfered user, where the interfered user is interfered by the second cell in the first cell user.
  • the processing module may be configured to determine a state transition probability of each interfered user in the at least one interfered user at the first TTI, where the state transition probability is used to indicate each interfered user in the at least one interfered user
  • the probability of being scheduled the first TTI is the TTI corresponding to the second TTI after the transmission delay is added, and the transmission delay refers to the moment when the second cell receives the transmission information of the first cell, which is different from the time when the second cell receives the transmission information of the first cell. The time difference between the times when the first cell sends the transmission information.
  • the transceiver module may also be configured to send the state transition probability to the second cell, where the state transition probability is used as a parameter for the second cell to perform interference coordination.
  • the above-mentioned second cell may also implement the above-mentioned corresponding functions in the form of functional modules.
  • the apparatus applied to the second cell may include, for example, a processing module and a transceiver module.
  • the apparatus can be used to perform the interference coordination method performed by the second cell in any embodiment illustrated by method 100 , and the interference coordination method performed by the base station 22 in any embodiment illustrated by method 200 and method 300 .
  • the transceiver module may be configured to receive a coordination request from the first cell, where the coordination request includes uplink channel information of at least one interfered user, and the interfered user is the interfered user of the second cell in the first cell. disturbing users.
  • the transceiver module may be further configured to receive a state transition probability of each interfered user in the at least one interfered user from the first cell at the first TTI, where the state transition probability is used to indicate the at least one interfered user The probability that each interfered user in the interfered user is scheduled, the first TTI is the TTI corresponding to the second TTI after the transmission delay is added, and the transmission delay means that the second cell receives the first TTI The time difference between the time when the cell transmits the information and the time when the first cell transmits the transmission information.
  • the processing module may be configured to determine the interference covariance matrix of the uplink channel corresponding to the at least one interfered user according to the state transition probability and the uplink channel information, and the uplink channel corresponding to the at least one interfered user refers to the The uplink channel in the second cell corresponding to at least one interfered user.
  • the processing module may be further configured to determine the signal transmission weight of each user in the second cell according to the interference covariance matrix of the interfered user.
  • the transceiver module of the apparatus applied to the first cell may be implemented by a transceiver, and the processing module of the apparatus applied to the first cell may be implemented by a processor.
  • the transceiver module applied to the apparatus in the second cell may be implemented by a transceiver, and the processing module applied to the apparatus in the second cell may be implemented by a processor.
  • the embodiments of the present application respectively provide an access network device.
  • the access network device 50 provided in this embodiment of the present application includes a processor 501 and a transceiver 502 .
  • the transceiver 502 may be used to perform the communication between the first cell and the second cell in any of the embodiments illustrated in the foregoing method 100 to method 300. Send and receive information and data.
  • the processor 501 may be configured to perform operations of the first cell in any of the embodiments illustrated in the foregoing method 100 to method 300, except for information and data transceiving.
  • the transceiver 502 when the access network device 50 is applied to the second cell, the transceiver 502 may be configured to execute the relationship between the second cell and the first cell in any of the embodiments illustrated in the foregoing method 100 to method 300 Send and receive information and data.
  • the processor 501 may be configured to perform the operations of the second cell except for information and data transceiving in any of the embodiments illustrated in the foregoing method 100 to method 300 .
  • an embodiment of the present application provides a chip system 51 , and the chip system 51 may include at least one processor 511 and an interface 512 , and the interface 512 is coupled to the processor 511 .
  • the interface 512 is used for receiving code instructions and transmitting the code instructions to the processor 511 .
  • the processor 511 may execute the code instructions to implement the functions of each access network device in this embodiment of the present application.
  • the chip system 51 may include one chip, or may include a chip module composed of multiple chips. This embodiment of the present application does not limit this.
  • the embodiments of the present application further provide a computer storage medium, wherein the computer storage medium set in any device can store a program, and when the program is executed, the method including the method can be implemented. 100 to some or all of the steps in the various embodiments of the interference coordination method provided by the method 300 .
  • the storage medium in any device may be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), and the like.
  • One or more of the above modules or units may be implemented in software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor may include, but is not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU), or artificial intelligence Processors and other types of computing devices that run software, each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be built in a SoC (system on chip) or an application specific integrated circuit (ASIC), or can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the internal processing of the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (Programmable Logic Device) , or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD Programmable Logic Device
  • a logic circuit that implements dedicated logic operations.
  • the hardware can be CPU, microprocessor, DSP, MCU, artificial intelligence processor, ASIC, SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device Any one or any combination, which may or may not run the necessary software to perform the above method flow.
  • the above modules or units When the above modules or units are implemented using software, they can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the size of the sequence number of each process does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not be Implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信技术领域,公开了一种干扰协同方法及相关设备。所述干扰协同方法包括:第一小区确定被干扰用户在第一TTI时的状态转移概率,以及将状态转移概率发送到第二小区。其中,状态转移概率指示被干扰用户被调度的概率,第一TTI是第二TTI增加传输时延之后对应的TTI。之后,第二小区根据状态转移概率确定被干扰用户对应的上行信道的干扰协方差矩阵,进而,根据被干扰用户的干扰协方差矩阵确定第二小区中每个用户的信号发射权值。可见,采用本申请实施例的技术方案,第二小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。

Description

干扰协同方法及相关设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种干扰协同方法及相关设备。
背景技术
无线通信领域中,相邻小区之间通常存在干扰,进而,影响各小区中用户的通信性能。基于此,目前相关技术人员提出了多种干扰协同方案,以降低相邻小区之间的干扰。
一些干扰协同方案是,协同小区根据被干扰小区中被干扰用户的上行信道信息,调整协同小区内相关用户的波束赋型权值,以规避干扰。
然而,若被干扰小区和协同小区通过网际互连协议(internet protocol,IP)网络通信,IP网络通信通常有时延,那么,协同小区从被干扰小区获取的被干扰用户的上行信道信息则是历史信息,而被干扰用户实际的调度状态可能与历史信息指示的状态不一致,例如,历史信息指示第一被干扰用户正在被调度,实际该第一被干扰用户当前没有通信业务。再如,历史信息指示第二被干扰用户未被调度,实际该第二被干扰用户当前已经被调度。这样将会导致协同小区的干扰协同效果不佳。
发明内容
本申请实施例提供了一种干扰协同方法及相关设备,以解决现有方案由于信息传输时延导致干扰协同效果不佳的问题。
本申请实施例例如涉及第一小区和第二小区,第一小区和第二小区基于IP无线接入网(IP radio access network,IPRAN)组网。第一小区和第二小区是同频小区,且第二小区对第一小区产生同频干扰。其中,“小区”通常指接入网设备以及能够与该接入网设备通过无线信道进行通信的终端设备形成的逻辑网络区域。本申请实施例所述的“小区”是指接入网设备。
第一方面,本申请实施例提供了一种干扰协同方法,该方法包括:第一小区向第二小区发送协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的用户;所述第一小区确定所述至少一个被干扰用户中每个被干扰用户在第一传输时间间隔TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差;所述第一小区将所述状态转移概率发送到所述第二小区,所述状态转移概率用作所述第二小区执行干扰协同的参数。
其中,本申请实施例所述的“用户”是指位于接入网设备的无线信号覆盖范围内,且能够与相应接入网设备通信的电子设备。第一小区连接的用户可以根据该用户接收到的任意下行信号,确定是否被第二小区干扰。被第二小区干扰的至少一个用户可以向第一小区上报被干扰的信息。之后,第一小区向第二小区发送协同请求。协同请求中包含至少一个 被干扰用户的上行信道信息,以使第二小区确定产生干扰的信道,以及进行干扰协同。
第一小区和第二小区基于IPRAN组网,所以,第一小区和第二小区之间通过IP网络传输信息,使得第一小区与第二小区之间存在传输延时。示例性的,第一小区向第二小区传输信息,第二小区接收到该传输信息的时刻与第一小区发送该传输信息的时刻的时间差即为IP网络传输延时。基于此,第一小区可以根据至少一个被干扰用户中每个被干扰用户第二传输时间间隔(transmission time interval,TTI)时状态,确定每个被干扰用户在第一TTI时的状态转移概率,进而,将状态转移概率发送到第二小区。第一TTI是第二TTI增加传输时延之后对应的TTI,第二TTI是第一小区确定状态转移概率的时刻所在的TTI。状态转移概率指示被干扰用户在第一TTI被调度的概率,且状态转移概率用作第二小区干扰协同的参数。可见,采用本实现方式,被干扰小区(即第一小区)将传输时延之后的TTI被干扰用户被调度的概率发送到协同小区(即第二小区),从而能够将被干扰用户较为准确的被调度状态发送到协同小区。
在一种可能的设计中,所述第一小区确定所述至少一个被干扰用户中每个被干扰用户在第一TTI时的状态转移概率,包括:所述第一小区获取所述至少一个被干扰用户中每个被干扰用户在所述第二TTI的缓冲区状态,以得到所述每个被干扰用户的第一缓冲区状态概率;所述第一小区根据所述每个被干扰用户的第一缓冲区状态概率确定相应被干扰用户在所述第一TTI的缓冲区状态转移概率,以得到所述每个被干扰用户的第二缓冲区状态概率,将所述每个被干扰用户的第二缓冲区状态概率作为所述状态转移概率。
其中,缓冲区(buffer)是内存中预留的指定大小的存储空间,用于临时存储即将读写的数据。第一小区在调度某一用户之前,可以根据与该用户传输的数据的大小,对应该用户配置buffer。进而,第一小区可以根据被干扰用户对应的buffer的状态,确定被干扰用户的被调度状态。具体的,第一小区可以预先定义buffer的状态,进而,获取被干扰用户第二TTI的buffer状态,得到第一buffer状态概率,然后,根据第一buffer状态概率计算被干扰用户第一TTI时的buffer状态概率,得到第二buffer状态概率。这样,能够确定增加传输时延后对应的TTI内,该至少一个被干扰用户中每个被干扰用户被调度的概率,以使第二小区能够更加准确的进行干扰规避。
在一种可能的设计中,所述第一小区根据所述每个被干扰用户的第一缓冲区状态概率确定相应被干扰用户在所述第一TTI的缓冲区状态转移概率之后,还包括:所述第一小区根据所述每个被干扰用户的第二缓冲区状态概率,确定所述每个被干扰用户在所述第一TTI的调度状态概率,以得到所述状态转移概率。其中,被干扰用户的buffer状态与被干扰用户的被调度状态关联,第一小区可以根据被干扰用户的第二buffer状态概率确定被干扰用户的调度状态转移概率。这样,能够确定增加传输时延后对应的TTI内,该至少一个被干扰用户中每个被干扰用户被调度的概率,以使第二小区能够更加准确的进行干扰规避。
在一种可能的设计中,所述至少一个被干扰用户中任一被干扰用户的第二缓冲区状态概率π(x+n)满足:π(x+n)=T n·π(x),其中,π(x)是指被干扰用户的第一缓冲区状态概率,x是指所述第二TTI的顺序号,x+n是指所述第一TTI相对于所述第二TTI的顺序号,n是指所述传输时延对应的TTI的数量,T是指m*m的缓冲区状态转移矩阵,m是指缓冲区状态的数量。
第二方面,本申请实施例提供了一种干扰协同方法,该方法包括:第二小区接收来自于第一小区的协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的用户;所述第二小区接收来自于所述第一小区的所述至少一个被干扰用户中每个被干扰用户在第一传输时间间隔TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差;所述第二小区根据所述状态转移概率和所述上行信道信息确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,所述至少一个被干扰用户对应的上行信道是指所述至少一个被干扰用户对应的所述第二小区中的上行信道;所述第二小区根据所述被干扰用户的干扰协方差矩阵确定所述第二小区中每个用户的信号发射权值。
其中,第二小区每个TTI均设置第二小区中每个用户的信号发射权值。基于此,本申请实施例中,第二小区可以通过调整每个用户的信号发射权值,规避第二小区对第一小区的下行干扰。具体的,第二小区通常根据时分双工(time division duplexing,TDD)系统中上下行信道的互易性,基于用户的上行信道信息,确定用户信号发射权值。
第二小区在确定用户信号发射权值的过程中,可以根据来自于第一小区的每个被干扰用户的上行信道信息,确定每个被干扰用户上行信道的时频资源位置以及上行信号传输周期。进而,第二小区可以测量每个被干扰用户的上行信道估计值。在获取至少一个被干扰用户的状态转移概率之后,第二小区根据至少一个被干扰用户的上行信道估计值和状态转移概率计算至少一个被干扰用户的干扰协方差矩阵。进而,第二小区根据干扰协方差矩阵确定每个用户的信号发射权值。
采用本实现方式,协同小区(即第二小区)能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
在一种可能的设计中,所述第二小区根据所述状态转移概率确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,包括:当所述状态转移概率是所述每个被干扰用户的第二缓冲区状态概率时,所述第二小区根据所述每个被干扰用户的第二缓冲区状态概率,确定所述每个被干扰用户在所述第一TTI的调度状态概率;所述第二小区根据所述每个被干扰用户在所述第一TTI的调度状态概率确定所述干扰协方差矩阵。被干扰用户的buffer状态与被干扰用户的被调度状态关联。当接收到来自于第一小区的被干扰用户的第二buffer状态概率之后,第二小区可以根据被干扰用户的第二buffer状态概率确定被干扰用户的调度状态转移概率,进而,根据被干扰用户的调度状态转移概率计算干扰协方差矩阵。这样,第二小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
在一种可能的设计中,所述第二小区根据所述状态转移概率确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,包括:当所述状态转移概率是所述每个被干扰用户在所述第一TTI的调度状态概率时,所述第二小区根据所述每个被干扰用户在所述第一TTI的调度状态概率确定所述干扰协方差矩阵。采用本实现方式,第二小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
在一种可能的设计中,所述干扰协方差矩阵
Figure PCTCN2021100027-appb-000001
满足:
Figure PCTCN2021100027-appb-000002
Figure PCTCN2021100027-appb-000003
其中,p是指所述至少一个被干扰用户的总数量,α是指滤波系数,
Figure PCTCN2021100027-appb-000004
是指所述至少一个被干扰用户的调度状态概率,R p是指所述至少一个被干扰用户的初始干扰协方差矩阵,R p满足:
Figure PCTCN2021100027-appb-000005
其中,H p是指所述至少一个被干扰用户的在所述第二小区的上行信道的信道估计值。
在一种可能的设计中,所述干扰协方差矩阵
Figure PCTCN2021100027-appb-000006
满足:
Figure PCTCN2021100027-appb-000007
其中,p是指所述至少一个被干扰用户的总数量,i是指所述至少一个被干扰用户中的第i个被干扰用户,
Figure PCTCN2021100027-appb-000008
是指所述第i个被干扰用户的干扰协方差矩阵,
Figure PCTCN2021100027-appb-000009
满足:
Figure PCTCN2021100027-appb-000010
Figure PCTCN2021100027-appb-000011
其中,α是指滤波系数,
Figure PCTCN2021100027-appb-000012
是指所述第i个被干扰用户的调度状态概率,R p,i是指所述第i个被干扰用户的初始干扰协方差矩阵,
Figure PCTCN2021100027-appb-000013
其中,H p,i是指所述第i个被干扰用户在所述第二小区的上行信道的信道估计值。
在一种可能的设计中,所述第二小区中用户k的信号发射权值V k满足:
Figure PCTCN2021100027-appb-000014
Figure PCTCN2021100027-appb-000015
其中,
Figure PCTCN2021100027-appb-000016
是指噪声常数,R kk是指所述用户k的初始干扰协方差矩阵,R uu是指所述用户k的配对用户的初始干扰协方差矩阵,I是指单位阵。
第三方面,本申请实施例提供了一种接入网设备,该接入网设备具有实现上述方法中第一小区行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述接入网设备的结构中包括处理器和收发器,所述处理器被配置为处理接入网设备执行上述方法中第一小区相应的功能。所述收发器用于实现上述接入网设备与其他接入网设备之间的通信。所述接入网设备还可以包括存储器,所述存储器用于与处理器耦合,其保存该接入网设备必要的程序指令和数据。
第四方面,本申请实施例提供了一种接入网设备,该接入网设备具有实现上述方法中第二小区行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述接入网设备的结构中包括处理器和收发器,所述处理器被配置为处理接入网设备执行上述方法中第二小区相应的功能。所述收发器用于实现上述接入网设备与其他接入网设备之间的通信。所述接入网设备还可以包括存储器,所述存储器用于与处理器耦合,其保存该接入网设备必要的程序指令和数据。
第五方面,本申请实施例还提供了一种芯片系统,该芯片系统设置于第三方面中的接入网设备,包括至少一个处理器和接口。所述接口与所述处理器耦合,用于接收代码指令,并将代码指令传输到所述至少一个处理器。所述至少一个处理器运行所述代码指令,并实现第一方面及第一方面各种可能的实现方式中第一小区执行的干扰协同方法部分或全部步骤。
第六方面,本申请实施例还提供了一种芯片系统,该芯片系统设置于第四方面中的接入网设备,包括至少一个处理器和接口。所述接口与所述处理器耦合,用于接收代码指令,并将代码指令传输到所述至少一个处理器。所述至少一个处理器运行所述代码指令,并实现第二方面及第二方面各种可能的实现方式中第二小区执行的干扰协同方法部分或全部步骤。
第七方面,本申请实施例提供了一种计算机存储介质,该计算机存储介质中存储有指 令,当所述指令在计算机上运行时,使得计算机执行第一方面、第二方面、第一方面的各种可能的实现方式、及第二方面的各种可能的实现方式中的干扰协同方法部分或全部步骤。
第八方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品在计算机上运行时,使得计算机执行第一方面、第二方面、第一方面的各种可能的实现方式、及第二方面的各种可能的实现方式中的干扰协同方法部分或全部步骤。
为解决现有方案干扰协同效果不佳的问题,本申请实施例涉及的干扰协同方法及相关设备,被干扰小区在确定被协同小区干扰的用户之后,根据发送上行信道信息的时刻被干扰用户的被调度状态,确定传输时延之后的TTI被干扰用户被调度的概率,进而,将传输时延之后的TTI被干扰用户被调度的概率发送到协同小区。这样,被干扰小区能够将被干扰用户在传输时延之后可能的被调度状态发送到协同小区,从而能够将被干扰用户较为准确的被调度状态发送到协同小区。进而,协同小区根据被干扰用户被调度的概率确定被干扰用户的干扰协方差矩阵,以及根据被干扰用户的干扰协方差矩阵确定协同小区内用户的发射权值。这样,协同小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
附图说明
图1是本申请实施例提供的网络架构10的结构示意图;
图2是本申请实施例提供的干扰协同方法100的信令交互图;
图3是本申请实施例提供的网络架构20的结构示意图;
图4A是本申请实施例提供的干扰协同方法200的信令交互图;
图4B是本申请实施例提供的干扰协同方法300的信令交互图;
图5A是本申请实施例提供的接入网设备50的结构示意图;
图5B是本申请实施例提供的芯片系统51的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚地描述。
本申请实施例以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请实施例的限制。如在本申请实施例的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,尽管在以下实施例中可能采用术语第一、第二等来描述某一类对象,但所述对象不应限于这些术语。这些术语仅用来将该类对象的具体对象进行区分。例如,以下实施例中可能采用术语第一、第二等来描述小区,但小区不应限于这些术语。这些术语仅用来将不同小区进行区分。以下实施例中可能采用术语第一、第二等来描述的其他类对象同理,此处不再赘述。
以下对本申请实施例的实施场景进行示例性说明。
本申请实施例涉及干扰协同技术,干扰协同也可以称为“干扰协调”,是指小区间通过协调资源的调度和分配,降低或者规避小区间的干扰。
图1示出了一种网络架构10,网络架构10包括小区(cell)11和小区12,小区11与小区12基于IP无线接入网(IP radio access network,IPRAN)组网。小区11的覆盖范围内包括用户110,小区12的覆盖范围内包括用户120。其中,小区11和小区12是 同频小区,即小区11和用户110之间通信的频率,与小区12和用户120之间通信的频率相同。小区11与小区12之间存在同频干扰,例如,小区11向用户110发送的下行信号受到小区12下行信号的干扰。
“小区”是指接入网设备以及能够与该接入网设备通过无线信道进行通信的终端设备形成的逻辑网络区域,由于能够与该接入网设备进行通信的终端设备通常位于该接入网设备的无线信号覆盖范围内,所以,“小区”也可以表达为该接入网设备的无线信号覆盖范围。本申请实施例涉及的“小区”是指接入网设备。本申请实施例涉及的接入网设备还可以被称为基站,该接入网设备是一种部署在无线接入网中用以为用户提供无线通信功能的装置,包括但不限于:各种形式的宏基站,微基站(也称为小站),中继站,发送接收点(transmission reception point,TRP),演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、以及处理通信数据的基带单元(baseband unit,BBU)等。在采用不同的无线接入技术的系统中,具备相类似无线通信功能的无线接入网设备的名称可能会有所不同。仅为方便描述,本申请实施例所有实施例中,上述为用户提供无线通信功能的装置统称为无线接入网设备。
本申请实施例涉及的“用户”是指位于接入网设备的无线信号覆盖范围内,且能够与相应接入网设备通信的电子设备。该电子设备可以被称为用户设备(user equipment,UE)或者移动台(mobile station,MS)等。本申请实施例中所涉及到的电子设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述电子设备可以包括各种类型的手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、无线数据卡、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、机器类型通信(machine type communication,MTC)的终端设备,工业控制(industrial control)中的终端设备、无人驾驶(self-driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、运输安全(transportation safety)中的终端设备、智慧城市(smart city)中的终端设备、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等),以及可穿戴设备(如智能手表,智能手环,计步器等)等等。本申请实施例所称的“用户”,还可以被设置成固定位置,具有和前述电子设备相类似无线通信功能的设备。在采用不同的无线接入技术的系统中,具备相类似无线通信功能的电子设备的名称可能会有所不同,仅为描述方便,本申请实施例中,上述具有无线通信功能的电子设备统称为“用户”。
可以理解的是,网络架构10中的用户110和用户120是逻辑功能层面的定义,在实际实现中,小区的覆盖范围内可以包含至少一个用户设备实体,此处不限制。
本申请实施例提供了一种干扰协同方法及相关设备,其中,第一小区和第二小区基于IPRAN组网,第一小区例如是被第二小区干扰的小区。第一小区在确定第一小区中被第二小区干扰的用户之后,确定被干扰用户在传输时延之后的时间段内被调度的概率,进而,将所确定的被调度的概率发送到第二小区。之后,第二小区根据第一小区中被干扰用户被调度的概率,计算第二小区中各用户下行信号的发射权值。这样,第二小区能够根据被干 扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
可以理解的是,本申请实施例还可以适用于面向未来的干扰协同技术。本申请实施例描述的业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着干扰协同技术的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供了干扰协同方法的一种实施例。参见图2,本申请实施例提供的干扰协同方法100(以下简称方法100)涉及第一小区和第二小区,第一小区和第二小区通过IPRAN组网,且第一小区受到第二小区的同频干扰。第一小区例如如图1示意的小区11,第二小区例如如图1示意的小区12。方法100包括如下步骤:
步骤S101,第一小区向第二小区发送协同请求。
其中,协同请求中包括至少一个被干扰用户的上行信道信息。被干扰用户是指第一小区中受到第二小区同频信号干扰的用户设备。示例性的,上行信道信息包括指示被干扰用户上行信道的时频资源位置的信息以及上行信号传输周期的信息,例如包括被干扰用户的探测参考信号(sounding reference signal,SRS)发送周期等信息。
示例性的,第一小区信号覆盖范围内的用户可以测量该用户接收到的任意下行信号,以及比对所接收的下行信号的强度。若任一用户检测到第二小区的下行信号强度较大,该用户可以确定受到第二小区的干扰较大,进而,该用户向第一小区上报受到第二小区干扰的消息。之后,第一小区向第二小区发送协同请求,协同请求包含该用户的上行信道信息。第一小区也可能有多个受到干扰的用户,相应地,协同请求中可以包括多个受到干扰的用户的上行信道信息。
步骤S102,第一小区确定至少一个被干扰用户中每个被干扰用户在第一传输时间间隔(transmission time interval,TTI)的状态转移概率。
其中,状态转移概率用于指示用户在第一TTI被调度的概率。第一TTI是第二TTI增加传输时延之后对应的TTI。传输时延是指第二小区接收到第一小区的传输信息的时刻,与第一小区发送该传输信息的时刻的时间差。第二TTI是第一小区执行步骤S102的时刻所在的TTI。
需要指出的是,被干扰用户被调度的过程中,第一小区和该被干扰用户之间才会有数据传输,进而,对应该被干扰用户才有干扰协同的需求。若被干扰用户未被调度,第一小区和该被干扰用户之间没有数据传输,对应该被干扰用户没有干扰协同的需求。基于此,第一小区可以确定增加传输时延后对应的TTI内,该至少一个被干扰用户中每个被干扰用户被调度的概率,以使第二小区能够更加准确的进行干扰规避。一些实施例中,第一小区可以周期性确定状态转移概率,第一小区确定状态转移概率的周期可以小于或者等于一个TTI。
一些实施例中,被干扰用户的状态转移概率可以是相应用户的缓冲区状态转移概率。本实施例中,第一小区可以获取至少一个被干扰用户中每个被干扰用户在第二TTI的缓冲区状态,以得到每个被干扰用户的第一缓冲区状态概率。进而,第一小区根据每个被干扰用户的第一缓冲区状态概率确定相应被干扰用户在第一TTI的缓冲区状态转移概率,以得到每个被干扰用户的第二缓冲区状态概率。每个被干扰用户的第二缓冲区状态概率即为本 实施所述的状态转移概率。本实施例中,第二小区接收到缓冲区状态转移概率之后,可以根据被干扰用户的缓冲区状态转移概率确定相应被干扰用户的调度状态转移概率。
另一些实施例中,被干扰用户的状态转移概率可以是相应用户的调度状态转移概率。本实施例中,第一小区得到每个被干扰用户的第二缓冲区状态概率之后,可以根据每个被干扰用户的第二缓冲区状态概率确定每个被干扰用户在第一TTI的调度状态概率。每个被干扰用户的调度状态概率即为本实施所述的状态转移概率。
其中,上述缓冲区(buffer)也可以称为缓存,是内存中预留的指定大小的存储空间,用于临时存储即将读写的数据。第一小区在调度某一用户之前,可以根据与该用户传输的数据的大小,对应该用户配置buffer。随着用户被调度的程度,该用户的buffer状态有所变化,即buffer状态与调度状态相关联。例如,第一小区中没有用户的buffer,或者用户的buffer状态为空(null),说明第一小区与该用户没有需要交互的数据,该用户的调度状态是未被调度。再如,用户的buffer状态是存储有数据,说明第一小区与该用户正在进行数据交互,该用户的调度状态是正在被调度。
进一步的,一些实施例中,用户的buffer可以被预设为四种状态,该四种buffer状态以及该四种buffer状态对应的用户调度状态,如表1所示。
表1
buffer状态标号 buffer状态描述 调度状态
s 0 没有buffer 未被调度
s 1 buffer大于0但是为空 未被调度
s 2 Buffer中的数据量大于0且小于预设阈值 被调度
s 3 Buffer中的数据量大于预设阈值 被调度
表1示意了四种buffer状态,以及该四种buffer状态分别对应的调度状态。其中,每一行表示一种buffer状态。例如,状态s 0指示的buffer状态是第一小区中没有相应用户的buffer时的状态。该buffer状态对应的用户调度状态是未被调度。状态s 1指示的buffer状态是第一小区中有相应用户的buffer,但是相应用户的buffer为空时的状态。该buffer状态对应的用户调度状态是未被调度。状态s 2指示的buffer状态是第一小区中有相应用户的buffer,且buffer中的数据量大于0且小于预设阈值时的状态。该buffer状态对应的用户调度状态是被调度。状态s 3指示的buffer状态是第一小区中有相应用户的buffer,且buffer中的数据量大于预设阈值时的状态。该buffer状态对应的用户调度状态是被调度。
需要指出的是,表1中的预设阈值是传输时延对应的时长内,第一小区与被干扰用户之间能够传输的数据量。传输时延越长,预设阈值越大,反之,传输时延越短,预设阈值越小。预设阈值例如是5兆(M)字节。示例性的,第一小区根据第二TTI确定第一TTI时被干扰用户的状态,当buffer内的数据量小于预设阈值时,进入第一TTI时buffer内的数据即可完成传输,那么,在第二TTI过程中第一小区将停止对该被干扰用户的调度。当buffer内的数据量大于预设阈值时,进入第一TTI时buffer内的数据依然未完成传输,那么,在第二TTI过程中第一小区对该被干扰用户仍处于调度状态。
可以理解的是,表1仅是示意性描述,不构成对本申请实施例的限制。另一些实施例中,用户的buffer也可以被预设为更多或者更少的几种状态,例如,用户的buffer还可 以被设置为两种状态。再如,用户的buffer还可以被设置为六种状态等。此处不详述。
进一步的,一种可能的实现方式中,上述至少一个被干扰用户中任一被干扰用户的第二缓冲区状态概率π(x+n)满足:π(x+n)=T n·π(x),其中,π(x)是指被干扰用户的第一缓冲区状态概率,x是指第二TTI的顺序号,x+n是指第一TTI相对于第二TTI的顺序号,n是指传输时延对应的TTI的数量,T是指m*m的缓冲区状态转移矩阵,m是指缓冲区状态的数量。
需要指出的是,上述x和x+n仅是为了表达每个计算周期中第一TTI与第二TTI的相对顺序,基于此,一些实施例中,第一小区可以自定义x的值。另一些实施例中,第一小区可以将执行步骤S102时的TTI在本周期中的顺序号,确定为x的值。例如,在发送协同请求之后的第一个计算周期中,第一小区执行步骤S102时的TTI是本周期的第2个TTI,第一小区可以将x定义为2。
另外,上述n的值与传输时延相关联。一些实施例中,IP网络的传输时延通常处于一定范围内,本实施例中,可以基于传输时延预设n为固定值,例如预设n为4。另一些实施例中,第一小区可以根据算法
Figure PCTCN2021100027-appb-000017
确定n的值,其中,ΔT是指传输时延,Ttti是指TTI的时长。当
Figure PCTCN2021100027-appb-000018
是整数时,
Figure PCTCN2021100027-appb-000019
Figure PCTCN2021100027-appb-000020
是小数时,n是
Figure PCTCN2021100027-appb-000021
相邻且大于
Figure PCTCN2021100027-appb-000022
的整数。例如,当
Figure PCTCN2021100027-appb-000023
时,
Figure PCTCN2021100027-appb-000024
Figure PCTCN2021100027-appb-000025
时,n取4。
示例性的,结合表1示意的四种buffer状态,第一小区可以预先获取第一小区内的所有用户一定时间段内的buffer状态变化数据,然后,训练得到上述缓冲区状态转移矩阵T。示例性的,T满足:
Figure PCTCN2021100027-appb-000026
其中,p是指状态转移概率,以p(s 0|s 1)为例,p(s 0|s 1)是指用户的buffer状态由s 1转换为s 0的概率。例如,用户i在当前TTI的初始buffer状态为s 1,在当前TTI调度末尾的buffer状态为s 2,那么,用户i的状态转移概率统计为p(s 2|s 1)=100%,p(s 0|s 1)=0。s 0至s 3如表1所示,此处不详述。
其中,上述“一段时间”可以是1秒(s)至15s中的任意时长。在实际实现中,可以根据第一小区覆盖范围内的用户数量、第一小区支持的业务类型、buffer状态数量等灵活设置,此处不限制。
进一步的,以下以一个被干扰用户为例对确定状态转移概率的过程进行说明。
第一小区获取该被干扰用户在x指示的TTI调度末尾的状态概率π(x)。π(x)也即上述实施例所述的该干扰用户的第一缓冲区状态概率。其中,π(x)满足:π(t)∈{[0 0 0 100%] T,[0 0 100% 0] T,[0 100% 0 0] T,[100% 0 0 0] T}。之后,第一小区通过π(x+n)=T n·π(x)确定该被干扰用户在x+n指示的TTI时的buffer状态转移概率π(x+n)。π(x+n)是本实施例中该被干扰用户的第二缓冲区状态概率。
之后,可选的,第一小区可以根据表1示意的buffer状态与调度状态的对应关系,将第二缓冲区状态概率转换为调度状态概率,以得到该被干扰用户的调度状态概率
Figure PCTCN2021100027-appb-000027
Figure PCTCN2021100027-appb-000028
示例性的,buffer状态s 0和buffer状态s 1对应未被调度状态,buffer状态s 2和buffer状态s 3对应被调度状态,进而,第一小区可以对第二缓冲区状态概率中转换为s 0和s 1的概 率取平均,以得到该被干扰用户不被调度的概率,以及对第二缓冲区状态概率中转换为s 2和s 3的概率取平均,以得到该被干扰用户被调度的概率。
以上仅是以一个被干扰用户为例,对确定状态转移概率的实施过程的描述。第一小区确定其他被干扰用户的状态转移概率的实施方式,与上述描述相似,此处不再详述。
步骤S103,第一小区将状态转移概率发送到第二小区。
本申请实施例中,第一小区通过IP网络将状态转移概率发送到第二小区。
结合步骤S102所述的状态转移概率,一些实施例中,第一小区向第二小区发送每个被干扰用户的第二缓冲区状态概率。本实施例中,第二小区接收被干扰用户的第二缓冲区状态概率之后,可以将被干扰用户的第二缓冲区状态概率转换为该被干扰用户的调度状态概率
Figure PCTCN2021100027-appb-000029
第二小区将第二缓冲区状态概率转换为调度状态概率的操作,可以参考第一小区的操作,此处不详述。另一些实施例中,第一小区向第二小区发送每个被干扰用户的调度状态概率。
进一步的,一些实施例中,第一小区每确定一个被干扰用户的状态转移概率,即可将所确定的状态转移概率发送到第二小区。另一些实施例中,第一小区可以在确定了该至少一个被干扰用户中所有被干扰用户的状态转移概率之后,将所有被干扰用户的状态转移概率形成一个矩阵,然后,将该矩阵发送到第二小区。本实施例中,该矩阵中的一行数据对应一个被干扰用户,或者一列数据对应一个被干扰用户。
步骤S104,第二小区根据状态转移概率和上行信道信息确定至少一个被干扰用户对应的上行信道的干扰协方差矩阵。
其中,至少一个被干扰用户对应的上行信道是指至少一个被干扰用户对应的第二小区中的上行信道。
需要指出的是,第二小区每个TTI均设置第二小区中用户的信号发射权值。基于此,第二小区通常根据时分双工(time division duplexing,TDD)系统中上下行信道的互易性,基于用户的上行信道信息,确定用户下行信道对应的波束赋形权值(也称为“信号发射权值”)。
示例性的,以第二小区覆盖范围内的用户k为例,第二小区可以根据用户k的上行信道信息测量用户k的上行信道估计值H k,以及根据用户k的配对用户l的上行信道信息测量用户l的上行信道估计值H l。之后,第二小区可以计算用户k的干扰协方差矩阵R kk和用户l的干扰协方差矩阵R uu。R kk满足:
Figure PCTCN2021100027-appb-000030
R uu满足:
Figure PCTCN2021100027-appb-000031
在接收到来自于第一小区的至少一个被干扰用户的上行信道信息之后,第二小区还可以根据该至少一个被干扰用户的上行信道信息测量该至少一个被干扰用户在第二小区的上行信道估计值H p,进而,第二小区根据该至少一个被干扰用户的上行信道估计值H p计算该至少一个被干扰用户的初始干扰协方差矩阵R p,R p满足:
Figure PCTCN2021100027-appb-000032
p是指至少一个被干扰用户的总数量。
需要指出的是,第二小区测量上行信道估计值H k和上行信道估计值H l,以及计算得到干扰协方差矩阵R kk和干扰协方差矩阵R uu的实施过程,与上述步骤S101至步骤S1013的实施过程,不受执行顺序的限制。第二小区测量上行信道估计值H k以及计算得到初始干扰协方差矩阵R p的实施过程,与上述步骤S102和步骤S1013的实施过程,不受执行顺序的限制。
此外,上述实施例中的H p和R p是将至少一个被干扰用户作为整体得到的。另一些实施 例中,第二小区也可以分别计算每个被干扰用户的初始干扰协方差矩阵R p,i。示例性的,第二小区可以获取至少一个被干扰用户中第i个被干扰用户的上行信道估计值H p,i,之后,第二小区根据H p,i得到该第i个被干扰用户的初始干扰协方差矩阵R p,i,R p,i满足
Figure PCTCN2021100027-appb-000033
可以理解的是,上述初始干扰协方差矩阵R p是第二小区根据传输时延之前被干扰用户的调度状态确定的。为了更加准确的规避对被干扰用户的干扰,本申请实施例中,在接收到至少一个被干扰用户的状态转移概率之后,第二小区基于至少一个被干扰用户的状态转移概率对初始干扰协方差矩阵进一步计算,得到至少一个被干扰用户的干扰协方差矩阵
Figure PCTCN2021100027-appb-000034
这样,第二小区所获取的至少一个被干扰用户的干扰协方差矩阵,与传输时延之后至少一个被干扰用户的调度状态关联,从而能够规避传输时延产生的干扰协同性能不佳的问题,能够更加准确的规避干扰。
一些实施例中,至少一个被干扰用户的干扰协方差矩阵
Figure PCTCN2021100027-appb-000035
满足:
Figure PCTCN2021100027-appb-000036
Figure PCTCN2021100027-appb-000037
其中,α是指滤波系数,
Figure PCTCN2021100027-appb-000038
是指所述至少一个被干扰用户的调度状态概率。示例性的,本实施例中,第二小区测量每个被干扰用户的上行信道估计值之后,根据每个被干扰用户的上行信道估计值计算该至少一个被干扰用户的初始干扰协方差矩阵R p。进而,第二小区确定第一个被干扰用户的调度状态概率之后,基于R p和第一个被干扰用户的调度状态概率按照算法
Figure PCTCN2021100027-appb-000039
计算,得到第一个计算结果。进一步的,第二小区确定第二个被干扰用户的调度状态概率之后,基于第一个计算结果和第二个被干扰用户的调度状态概率按照算法
Figure PCTCN2021100027-appb-000040
Figure PCTCN2021100027-appb-000041
计算,得到第二个结果。依此类推,第二小区每次在上一次运算之后的R p结果的基础上计算。在基于该至少一个被干扰用户中最后一个被干扰用户计算之后,得到的结果即为所述至少一个被干扰用户的干扰协方差矩阵
Figure PCTCN2021100027-appb-000042
另一些实施例中,至少一个被干扰用户的干扰协方差矩阵
Figure PCTCN2021100027-appb-000043
满足:
Figure PCTCN2021100027-appb-000044
其中,i是指至少一个被干扰用户中的第i个被干扰用户,
Figure PCTCN2021100027-appb-000045
是指所述第i个被干扰用户的干扰协方差矩阵。
Figure PCTCN2021100027-appb-000046
满足:
Figure PCTCN2021100027-appb-000047
其中,
Figure PCTCN2021100027-appb-000048
是指所述第i个被干扰用户的调度状态概率。示例性的,本实施例中,第二小区可以分别测量每个被干扰用户的上行信道估计值,以及分别计算每个被干扰用户的初始干扰协方差矩阵。进而,第二小区每接收到一个被干扰用户的状态转移概率,则对应该被干扰用户的状态转移概率和初始干扰协方差矩阵,计算该被干扰用户的干扰协方差矩阵。在确定全部被干扰用户的干扰协方差矩阵之后,将全部被干扰用户的干扰协方差矩阵加权,得到所述至少一个被干扰用户的干扰协方差矩阵
Figure PCTCN2021100027-appb-000049
需要指出的是,上述算法中的滤波系数α可以根据至少一个被干扰用户的业务类型特征等进行配置。例如,若至少一个被干扰用户传输的较大的数据包较多,例如较大数据包占全部数据包的比例大于50%,滤波系数α可以被设置为较大的值,例如α=0.1。若至少一个被干扰用户传输的较小的数据包较多,例如较小数据包占全部数据包的比例大于60%,滤波系数α可以被设置为较小的值,例如α=0.01。
可以理解的是,以上两种确定干扰协方差矩阵
Figure PCTCN2021100027-appb-000050
的实现方式,仅是示意性描述,不构成对本申请实施例的限制。其他一些实施例中,第二小区可以采用其他算法确定干扰协方差矩阵
Figure PCTCN2021100027-appb-000051
此处不详述。
步骤S105,第二小区根据被干扰用户的干扰协方差矩阵确定第二小区中每个用户的信 号发射权值。
其中,第二小区中用户k的信号发射权值V k满足:
Figure PCTCN2021100027-appb-000052
Figure PCTCN2021100027-appb-000053
其中,
Figure PCTCN2021100027-appb-000054
是指噪声常数,R kk是指用户k的初始干扰协方差矩阵,R uu是指所述用户k的配对用户的初始干扰协方差矩阵,I是指单位阵。
进一步的,一些实施例中,用户k发射一个数据流,第二小区可以将上述V k中的第一列特征向量确定为用户k的信号发射权值。另一些实施例中,用户k发射q个数据流,q是大于或者等于2的整数,第二小区可以将上述V k中前q列特征向量确定为用户k的信号发射权值,其中,q列特征向量与q个数据流一一对应。
可以理解的是,第二小区中其他用户的权值计算过程,与用户k的V k计算过程相似,此处不再赘述。
综上,本申请实施例涉及的干扰协同方法,被干扰小区(上述第一小区)在确定被协同小区(上述第二小区)干扰的用户之后,根据发送上行信道信息的时刻被干扰用户的被调度状态,确定传输时延之后的TTI被干扰用户被调度的概率,进而,将传输时延之后的TTI被干扰用户被调度的概率发送到协同小区。这样,被干扰小区能够将被干扰用户在传输时延之后可能的被调度状态发送到协同小区,从而能够将被干扰用户较为准确的被调度状态发送到协同小区。进而,协同小区根据被干扰用户被调度的概率确定被干扰用户的干扰协方差矩阵,以及根据被干扰用户的干扰协方差矩阵确定协同小区内用户的发射权值。这样,协同小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
以下结合实例对本方案进行示例性描述。
以下实施例中,小区例如实现为基站,用户例如实现为UE。
图3示出了一种网络架构20,网络架构20包括基站21和基站22,基站21和基站22之间通过IPRAN组网。基站21的信号覆盖范围内包括UE211、UE212和UE213,基站22的信号覆盖范围内包括UE221、UE222和UE223。其中,基站21与基站22之间存在同频干扰,例如,UE211和UE212受到基站22的下行干扰。相应的,UE211和UE212可以向基站21上报受到基站22干扰的消息。UE213则可以不向基站21上报受到干扰的消息。UE222和UE223例如是UE221在基站22内的配对UE。基站22每个TTI确定一次UE221、UE222和UE223的信号发射权值。
可以理解的是,图3示意的网络架构20,只是示意性说明,并不构成对网络架构20的限定。在另一些实施例中,网络架构20还可以包括更多或者更少的基站和UE等。其他一些实施例中,网络架构20中基站也可以实现为其他接入网设备,UE也可以实现为其他终端设备,此处不限制。
结合图3,图4A示意了干扰协同方法200的信令交互图。干扰协同方法200(以下简称方法200)包括如下步骤:
步骤S201,基站21向基站22发送协同请求,该协同请求包括UE211的上行信道信息和UE212的上行信道信息。
其中,基站21在接收到UE211和UE212上报的受到基站22干扰的消息之后,向基站22发送协同请求。
步骤S202,基站22根据UE211的上行信道信息检测UE211在基站22信号覆盖范围内的上行信道估计值H 211,以及根据UE212的上行信道信息检测UE212在基站22信号覆盖范围内的上行信道估计值H 212
步骤S203,基站22计算UE211和UE212的初始干扰协方差矩阵。
其中,UE211和UE212的初始干扰协方差矩阵R 2满足:
Figure PCTCN2021100027-appb-000055
此外,本实施例中,基站22还可以根据UE221、UE222和UE223的上行信道信息,分别检测UE221、UE222和UE223的上行信道估计值,得到UE221的上行信道估计值H 221,UE222的上行信道估计值H 222,UE223的上行信道估计值H 223。之后,本实施例中,基站22可以确定UE221的干扰协方差矩阵
Figure PCTCN2021100027-appb-000056
以及UE222和UE223的干扰协方差矩阵R uu
Figure PCTCN2021100027-appb-000057
步骤S204,基站21在t时刻确定UE211和UE212在(t+4*Ttti)时刻的调度状态概率。
本实施例中,基站21到基站22的传输时延例如是4个TTI的时长。UE的buffer例如被预先划分为4种状态,该4种状态如表1所示,此处不赘述。
进而,基站21可以获取UE211在t时刻所在TTI调度末尾的buffer状态概率π'(t)。之后,基站21按照算法π'(t+4*Ttti)=T 4·π'(t)确定UE211在(t+4*Ttti)时刻的buffer状态概率。进而,基站21根据表1示意的buffer与调度状态的对应关系,根据π'(t+4*Ttti)确定UE211在(t+4*Ttti)时刻的调度状态概率
Figure PCTCN2021100027-appb-000058
同理,基站21可以获取UE212在t时刻所在TTI调度末尾的buffer状态概率π”(t)。之后,基站21按照算法π”(t+4*Ttti)=T 4·π”(t)确定UE212在(t+4*Ttti)时刻的buffer状态概率。进而,基站21根据表1示意的buffer与调度状态的对应关系,根据π”(t+4*Ttti)确定UE212在(t+4*Ttti)时刻的调度状态概率
Figure PCTCN2021100027-appb-000059
T如上述实施例所述,此处不详述。
步骤S205,基站21将UE211和UE212在(t+4*Ttti)时刻的调度状态概率发送到基站22。
其中,基站21通过IP网络向基站22发送UE211和UE212在(t+4*Ttti)时刻的调度状态概率。
需要指出的是,另一些实施例中,步骤S204和步骤S205可以与步骤S202和步骤S203同时执行。其他一些实施例中,步骤S204和步骤S205在步骤S202和步骤S203之前执行,本申请实施例对此不限制。
步骤S206,基站22根据UE211和UE212的初始干扰协方差矩阵以及UE211和UE212在(t+4*Ttti)时刻的调度状态概率,计算UE211和UE212的干扰协方差矩阵。
示例性的,基站22例如先接收到UE211的调度状态概率
Figure PCTCN2021100027-appb-000060
再接收到UE212的调度状态概率
Figure PCTCN2021100027-appb-000061
基于此,基站22接收到UE211的调度状态概率
Figure PCTCN2021100027-appb-000062
之后,执行计算
Figure PCTCN2021100027-appb-000063
Figure PCTCN2021100027-appb-000064
得到结果
Figure PCTCN2021100027-appb-000065
进而,在接收到UE212的调度状态概率
Figure PCTCN2021100027-appb-000066
之后,执行计算
Figure PCTCN2021100027-appb-000067
得到UE211和UE212的干扰协方差矩阵
Figure PCTCN2021100027-appb-000068
其中,α的值和含义如上述实施例所述,此处不赘述。
步骤S207,基站22计算UE221、UE222和UE223的信号发射权值的信号发射权值。
UE221的信号发射权值V 221,V 221满足:
Figure PCTCN2021100027-appb-000069
其中,σ和I的含义如上述实施例所述,此处不赘述。
需要指出的是,若UE221发射一个数据流,基站22可以将上述V 221中的第一列特征向量确定为UE221的信号发射权值。若UE221发射q个数据流,q是大于或者等于2的整数,第二小区可以将上述V k中前q列特征向量确定为UE221的信号发射权值,其中,q列特征向量与q个数据流一一对应。
本实施例中,基站22计算UE222和UE223的信号发射权值的算法,与基站22计算UE221的信号发射权值的算法相似,此处不详述。
方法200仅是对本申请实施例实现过程的一种示例性描述,另一些实施例中,本申请实施例还可以实现为其他方式。图4B示意了干扰协同方法300的信令交互图。干扰协同方法300(以下简称方法300)包括如下步骤:
步骤S301,基站21向基站22发送协同请求,该协同请求包括UE211的上行信道信息和UE212的上行信道信息。
步骤S302,基站22根据UE211的上行信道信息检测UE211在基站22信号覆盖范围内的上行信道估计值H 211,以及根据UE212的上行信道信息检测UE212在基站22信号覆盖范围内的上行信道估计值H 212
步骤S301与步骤S302的实施过程,可参见方法200中步骤S201与步骤S202的实施过程,此处不赘述。
步骤S303,基站22分别计算UE211的初始干扰协方差矩阵和UE212的初始干扰协方差矩阵。
本实施例中,UE211的初始干扰协方差矩阵R 211满足:
Figure PCTCN2021100027-appb-000070
UE212的初始干扰协方差矩阵R 212满足:
Figure PCTCN2021100027-appb-000071
步骤S304,基站21在t时刻确定UE211和UE212在(t+4*Ttti)时刻的调度状态概率。
步骤S305,基站21将UE211和UE212在(t+4*Ttti)时刻的调度状态概率发送到基站22。
步骤S304与步骤S305的实施过程,可参见方法200中步骤S204与步骤S205的实施过程,此处不赘述。
步骤S306,基站22根据UE211和UE212的初始干扰协方差矩阵以及UE211和UE212在(t+4*Ttti)时刻的调度状态概率,计算UE211和UE212的干扰协方差矩阵。
本实施例中,基站22可以分别计算UE211的干扰协方差矩阵和UE212的干扰协方差矩阵。其中,UE211的干扰协方差矩阵
Figure PCTCN2021100027-appb-000072
满足:
Figure PCTCN2021100027-appb-000073
Figure PCTCN2021100027-appb-000074
UE211的干扰协方差矩阵
Figure PCTCN2021100027-appb-000075
满足:
Figure PCTCN2021100027-appb-000076
Figure PCTCN2021100027-appb-000077
之后,基站22通过算法
Figure PCTCN2021100027-appb-000078
得到UE211和UE212的干扰协方差矩阵
Figure PCTCN2021100027-appb-000079
步骤S307,基站22计算UE221、UE222和UE223的信号发射权值的信号发射权值。
步骤S307的实施过程,可参见方法200中步骤S207的实施过程,此处不赘述。
可以理解的是,图4A和图4B示意的干扰协同方法,只是示意性说明,并不构成对本 申请实施例干扰协同方法的限定。在另一些实施例中,干扰协同方法中涉及的各算法可以是其他可行的算法,此处不限制。
综上,本申请实施例涉及的干扰协同方法,被干扰小区(上述第一小区)在确定被协同小区(上述第二小区)干扰的用户之后,根据发送上行信道信息的时刻被干扰用户的被调度状态,确定传输时延之后的TTI被干扰用户被调度的概率,进而,将传输时延之后的TTI被干扰用户被调度的概率发送到协同小区。这样,被干扰小区能够将被干扰用户在传输时延之后可能的被调度状态发送到协同小区,从而能够将被干扰用户较为准确的被调度状态发送到协同小区。进而,协同小区根据被干扰用户被调度的概率确定被干扰用户的干扰协方差矩阵,以及根据被干扰用户的干扰协方差矩阵确定协同小区内用户的发射权值。这样,协同小区能够根据被干扰用户传输时延之后可能的被调度状态进行干扰协同,从而能够准确的进行干扰规避,优化干扰协同的性能。
上述本申请实施例提供的实施例中,分别从各个设备本身、以及从各个设备之间交互的角度对本申请实施例提供的干扰协同方法的各方案进行了介绍。例如,第一小区与第二小区,用户与第一小区等,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
例如,上述第一小区可以通过功能模块的形式来实现上述相应的功能。应用于所述第一小区的装置例如可以包括处理模块和收发模块。在一个实施例中,该装置可用于执行方法100示意的任意实施例中第一小区执行的干扰协同方法,以及方法200和方法300示意的任意实施例中基站21执行的干扰协同方法。
例如:收发模块可以用于向第二小区发送协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的用户。处理模块可以用于确定所述至少一个被干扰用户中每个被干扰用户在第一TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差。收发模块还可以用于将所述状态转移概率发送到所述第二小区,所述状态转移概率用作所述第二小区执行干扰协同的参数。
具体内容可以参考方法100示意的任意实施例中第一小区相关的描述,以及方法200和方法300示意的任意实施例中基站21相关的描述,此处不再赘述。
同理,上述第二小区也可以通过功能模块的形式来实现上述相应的功能。应用于第二小区的装置例如可以包括处理模块和收发模块。该装置可用于执行方法100示意的任意实施例中第二小区执行的干扰协同方法,以及方法200和方法300示意的任意实施例中基站22执行的干扰协同方法。
例如,收发模块可以用于接收来自于第一小区的协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的 用户。收发模块还可以用于接收来自于所述第一小区的所述至少一个被干扰用户中每个被干扰用户在第一TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差。处理模块可以用于根据所述状态转移概率和所述上行信道信息确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,所述至少一个被干扰用户对应的上行信道是指所述至少一个被干扰用户对应的所述第二小区中的上行信道。处理模块还可以用于根据所述被干扰用户的干扰协方差矩阵确定所述第二小区中每个用户的信号发射权值。
具体内容可以参考方法100示意的任意实施例中第二小区相关的描述,以及方法200和方法300示意的任意实施例中基站22相关的描述,此处不再赘述。
应理解,以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,应用于第一小区的装置的收发模块可以由收发器实现,应用于第一小区的装置的处理模块可以由处理器实现。应用于第二小区的装置的收发模块可以由收发器实现,应用于第二小区的装置的处理模块可以由处理器实现。基于此,对应第一小区和第二小区,本申请实施例分别提供了一种接入网设备。如图5A所示,本申请实施例提供的接入网设备50包括处理器501和收发器502。
一些实施例中,当接入网设备50应用于第一小区的场景下,所述收发器502可以用于执行上述方法100至方法300示意的任意实施例中第一小区与第二小区之间信息及数据的收发。所述处理器501可以用于执行上述方法100至方法300示意的任意实施例中第一小区除信息和数据收发之外的操作。
另一些实施例中,当接入网设备50应用于第二小区的场景下,所述收发器502可以用于执行上述方法100至方法300示意的任意实施例中第二小区与第一小区之间信息及数据的收发。所述处理器501可以用于执行上述方法100至方法300示意的任意实施例中第二小区除信息和数据收发之外的操作。
以上实施例从独立功能实体的角度对本申请实施例的第一小区和第二小区进行了描述。对应第一小区和第二小区,本申请实施例还分别提供一种芯片系统。应用于每个小区的芯片系统,将相应小区各独立运行的功能实体集成在一起。实际实现时,芯片系统可以设置于相应小区的接入网设备中。如图5B所示,本申请实施例提供了一种芯片系统51,芯片系统51可以包括至少一个处理器511和接口512,接口512与处理器511耦合。其中,接口512用于接收代码指令,并将代码指令传输到处理器511。处理器511可以运行所述代码指令,以实现各接入网设备在本申请实施例中的功能。
芯片系统51可以包括一个芯片,也可以包括多个芯片组成的芯片模组。本申请实施例对此不作限定。
具体实现中,对应第一小区和第二小区,本申请实施例还分别提供一种计算机存储介质,其中,设置在任意设备中计算机存储介质可存储有程序,该程序执行时,可实施包括方法100至方法300提供的干扰协同方法的各实施例中的部分或全部步骤。任意设备中的存储介质均可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以内置于SoC(片上系统)或专用集成电路(application specific integrated circuit,ASIC),也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
当以上模块或单元使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请实施例的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对实施例的实施过程构成任何限定。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (14)

  1. 一种干扰协同方法,其特征在于,所述方法包括:
    第一小区向第二小区发送协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的用户;
    所述第一小区确定所述至少一个被干扰用户中每个被干扰用户在第一传输时间间隔TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差;
    所述第一小区将所述状态转移概率发送到所述第二小区,所述状态转移概率用作所述第二小区执行干扰协同的参数。
  2. 如权利要求1所述的方法,其特征在于,所述第一小区确定所述至少一个被干扰用户中每个被干扰用户在第一TTI时的状态转移概率,包括:
    所述第一小区获取所述至少一个被干扰用户中每个被干扰用户在所述第二TTI的缓冲区状态,以得到所述每个被干扰用户的第一缓冲区状态概率;
    所述第一小区根据所述每个被干扰用户的第一缓冲区状态概率确定相应被干扰用户在所述第一TTI的缓冲区状态转移概率,以得到所述每个被干扰用户的第二缓冲区状态概率,将所述每个被干扰用户的第二缓冲区状态概率作为所述状态转移概率。
  3. 如权利要求2所述的方法,其特征在于,所述第一小区根据所述每个被干扰用户的第一缓冲区状态概率确定相应被干扰用户在所述第一TTI的缓冲区状态转移概率之后,还包括:
    所述第一小区根据所述每个被干扰用户的第二缓冲区状态概率,确定所述每个被干扰用户在所述第一TTI的调度状态概率,以得到所述状态转移概率。
  4. 如权利要求2或3所述的方法,其特征在于,所述至少一个被干扰用户中任一被干扰用户的第二缓冲区状态概率π(x+n)满足:π(x+n)=T n·π(x),其中,π(x)是指被干扰用户的第一缓冲区状态概率,x是指所述第二TTI的顺序号,x+n是指所述第一TTI相对于所述第二TTI的顺序号,n是指所述传输时延对应的TTI的数量,T是指m*m的缓冲区状态转移矩阵,m是指缓冲区状态的数量。
  5. 一种干扰协同方法,其特征在于,所述方法包括:
    第二小区接收来自于第一小区的协同请求,所述协同请求包括至少一个被干扰用户的上行信道信息,所述被干扰用户是所述第一小区中被所述第二小区干扰的用户;
    所述第二小区接收来自于所述第一小区的所述至少一个被干扰用户中每个被干扰用户在第一传输时间间隔TTI时的状态转移概率,所述状态转移概率用于指示所述至少一个被干扰用户中每个被干扰用户被调度的概率,所述第一TTI是第二TTI增加传输时延之后对应的TTI,所述传输时延是指所述第二小区接收到所述第一小区的传输信息的时刻,与所述第一小区发送所述传输信息的时刻的时间差;
    所述第二小区根据所述状态转移概率和所述上行信道信息确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,所述至少一个被干扰用户对应的上行信道是指所述至少一个被干扰用户对应的所述第二小区中的上行信道;
    所述第二小区根据所述被干扰用户的干扰协方差矩阵确定所述第二小区中每个用户的信号发射权值。
  6. 如权利要求5所述的方法,其特征在于,所述第二小区根据所述状态转移概率确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,包括:
    当所述状态转移概率是所述每个被干扰用户的第二缓冲区状态概率时,所述第二小区根据所述每个被干扰用户的第二缓冲区状态概率,确定所述每个被干扰用户在所述第一TTI的调度状态概率;
    所述第二小区根据所述每个被干扰用户在所述第一TTI的调度状态概率确定所述干扰协方差矩阵。
  7. 如权利要求5所述的方法,其特征在于,所述第二小区根据所述状态转移概率确定所述至少一个被干扰用户对应的上行信道的干扰协方差矩阵,包括:
    当所述状态转移概率是所述每个被干扰用户在所述第一TTI的调度状态概率时,所述第二小区根据所述每个被干扰用户在所述第一TTI的调度状态概率确定所述干扰协方差矩阵。
  8. 如权利要求6或7所述的方法,其特征在于,所述干扰协方差矩阵
    Figure PCTCN2021100027-appb-100001
    满足:
    Figure PCTCN2021100027-appb-100002
    Figure PCTCN2021100027-appb-100003
    其中,p是指所述至少一个被干扰用户的总数量,α是指滤波系数,
    Figure PCTCN2021100027-appb-100004
    是指所述至少一个被干扰用户的调度状态概率,R p是指所述至少一个被干扰用户的初始干扰协方差矩阵,R p满足:
    Figure PCTCN2021100027-appb-100005
    其中,H p是指所述至少一个被干扰用户的在所述第二小区的上行信道的信道估计值。
  9. 如权利要求6或7所述的方法,其特征在于,所述干扰协方差矩阵
    Figure PCTCN2021100027-appb-100006
    满足:
    Figure PCTCN2021100027-appb-100007
    Figure PCTCN2021100027-appb-100008
    其中,p是指所述至少一个被干扰用户的总数量,i是指所述至少一个被干扰用户中的第i个被干扰用户,
    Figure PCTCN2021100027-appb-100009
    是指所述第i个被干扰用户的干扰协方差矩阵,
    Figure PCTCN2021100027-appb-100010
    满足:
    Figure PCTCN2021100027-appb-100011
    其中,α是指滤波系数,
    Figure PCTCN2021100027-appb-100012
    是指所述第i个被干扰用户的调度状态概率,R p,i是指所述第i个被干扰用户的初始干扰协方差矩阵,
    Figure PCTCN2021100027-appb-100013
    其中,H p,i是指所述第i个被干扰用户在所述第二小区的上行信道的信道估计值。
  10. 如权利要求6或7所述的方法,其特征在于,所述第二小区中用户k的信号发射权值V k满足:
    Figure PCTCN2021100027-appb-100014
    其中,
    Figure PCTCN2021100027-appb-100015
    是指噪声常数,R kk是指所述用户k的初始干扰协方差矩阵,R uu是指所述用户k的配对用户的初始干扰协方差矩阵,I是指单位阵。
  11. 一种接入网设备,其特征在于,应用于第一小区,所述接入网设备包括处理器和存储器,其中,
    所述处理器与所述存储器耦合,所述存储器中存储程序代码,所述处理器调用并执行所述存储器中的所述程序代码,使得所述接入网设备执行如权利要求1-4任一项中所述第一小区执行的方法。
  12. 一种接入网设备,其特征在于,应用于第二小区,所述接入网设备包括处理器和存储器,其中,
    所述处理器与所述存储器耦合,所述存储器中存储程序代码,所述处理器调用并 执行所述存储器中的所述程序代码,使得所述接入网设备执行如权利要求5-10任一项中所述第二小区执行的方法。
  13. 一种芯片系统,其特征在于,所述芯片系统设置于权利要求11所述的接入网设备,包括至少一个处理器和接口;所述接口用于接收代码指令,并将所述代码指令传输到所述至少一个处理器;所述至少一个处理器运行所述代码指令,以执行权利要求1-4中所述接入网设备所执行的任一项方法。
  14. 一种芯片系统,其特征在于,所述芯片系统设置于权利要求12所述的接入网设备,包括至少一个处理器和接口;所述接口用于接收代码指令,并将所述代码指令传输到所述至少一个处理器;所述至少一个处理器运行所述代码指令,以执行权利要求5-10中所述接入网设备所执行的任一项方法。
PCT/CN2021/100027 2020-06-30 2021-06-15 干扰协同方法及相关设备 WO2022001650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010618194.7A CN113873570B (zh) 2020-06-30 2020-06-30 干扰协同方法及相关设备
CN202010618194.7 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022001650A1 true WO2022001650A1 (zh) 2022-01-06

Family

ID=78981722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100027 WO2022001650A1 (zh) 2020-06-30 2021-06-15 干扰协同方法及相关设备

Country Status (2)

Country Link
CN (1) CN113873570B (zh)
WO (1) WO2022001650A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575973A (zh) * 2014-09-26 2017-04-19 英特尔Ip公司 存在小区间干扰时的网络辅助参数估计
CN108093426A (zh) * 2016-11-21 2018-05-29 中国移动通信有限公司研究院 一种系统内干扰的检测方法及设备
CN109462862A (zh) * 2018-11-07 2019-03-12 西安电子科技大学 一种基于概率的可密性干扰规避方法
WO2019173398A1 (en) * 2018-03-08 2019-09-12 Qualcomm Incorporated Interference management for spectrum sharing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020548B2 (en) * 2012-06-04 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Other cell interference estimation
CN105830376B (zh) * 2014-11-24 2019-03-26 华为技术有限公司 一种自适应调制编码的方法及装置
EP3573385B1 (en) * 2017-03-09 2023-07-12 Huawei Technologies Co., Ltd. Wireless communication method, control device, node, and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575973A (zh) * 2014-09-26 2017-04-19 英特尔Ip公司 存在小区间干扰时的网络辅助参数估计
CN108093426A (zh) * 2016-11-21 2018-05-29 中国移动通信有限公司研究院 一种系统内干扰的检测方法及设备
WO2019173398A1 (en) * 2018-03-08 2019-09-12 Qualcomm Incorporated Interference management for spectrum sharing
CN109462862A (zh) * 2018-11-07 2019-03-12 西安电子科技大学 一种基于概率的可密性干扰规避方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Channel and interference measurement for CSI acquisition", 3GPP DRAFT; R1-1709932, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051299157 *

Also Published As

Publication number Publication date
CN113873570B (zh) 2023-11-03
CN113873570A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US20220116799A1 (en) Method and device for o-ran-based performance optimization and configuration
US10764901B2 (en) Resource allocation and scheduling for wireless networks with self-backhauled links
US9439064B2 (en) Methods for group management, scheduling, and rate selection for MU-MIMO using user location and other system parameters
EP4184956A1 (en) Location measurement data reporting method and device, terminal and storage medium
WO2018202137A1 (zh) 一种通信方法及装置
CN111989959A (zh) 一种信息发送、接收方法及装置
US11617100B2 (en) Systems and methods for Wi-Fi sensing
WO2021134731A1 (zh) 一种信道信息反馈方法及通信装置
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
WO2022001650A1 (zh) 干扰协同方法及相关设备
WO2020107155A1 (zh) 信道状态信息的获取方法、装置及计算机存储介质
WO2022206328A1 (zh) 一种通信协作方法及装置
WO2021190435A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020199815A1 (zh) 通信方法及装置
CN113228798A (zh) 装置、方法和计算机程序
WO2024022486A1 (zh) 通信方法及装置、存储介质、网络设备、终端设备
US20240085551A1 (en) Systems and methods for motion detection using sensing transmission clusters
US11835615B2 (en) Systems and methods for Wi-Fi sensing using uplink orthogonal frequency division multiple access (UL-OFDMA)
WO2021203869A1 (zh) 准共址关系管理方法及装置
WO2019096386A1 (en) Uplink interference reduction for wireless networks
WO2024027539A1 (zh) 支持Wi-Fi感知的通信方法和相关产品
WO2024012319A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20240127065A1 (en) Gan training method, machine learning system, and communication apparatus
WO2024007112A1 (zh) 通信方法和装置
WO2023223217A1 (en) Systems and methods for selecting and updating a set of sounding devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833573

Country of ref document: EP

Kind code of ref document: A1