WO2022001611A1 - 目标小区确定方法、通信装置及存储介质 - Google Patents

目标小区确定方法、通信装置及存储介质 Download PDF

Info

Publication number
WO2022001611A1
WO2022001611A1 PCT/CN2021/099247 CN2021099247W WO2022001611A1 WO 2022001611 A1 WO2022001611 A1 WO 2022001611A1 CN 2021099247 W CN2021099247 W CN 2021099247W WO 2022001611 A1 WO2022001611 A1 WO 2022001611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
network device
load prediction
radio access
access network
Prior art date
Application number
PCT/CN2021/099247
Other languages
English (en)
French (fr)
Inventor
杨水根
晋英豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21831546.3A priority Critical patent/EP4161150A4/en
Publication of WO2022001611A1 publication Critical patent/WO2022001611A1/zh
Priority to US18/147,548 priority patent/US20230164657A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method for determining a target cell, a communication device, and a storage medium.
  • a continuous and uninterrupted communication service can be provided for the UE by changing the serving cell of a user equipment (UE) in a radio resource control (RRC) connected state.
  • RRC radio resource control
  • the signal quality of the serving cell received by the UE gradually deteriorates, and the signal quality of the target cell that the UE receives gradually becomes better.
  • the UE may be handed over to the target cell.
  • the UE may be handed over from the current serving cell to another cell in consideration of load balancing of different cells. For example, when the load of the serving cell currently accessed by the UE is too high, the UE may also be handed over to another target cell with a lower load.
  • the load information of the corresponding cells can be exchanged between adjacent base stations.
  • the source base station corresponding to the current cell accessed by the UE can select a target cell with lower load for the UE from other cells corresponding to the adjacent base station according to the load information of other cells corresponding to the adjacent base station, and then use the The UE switches to the target cell.
  • the source base station selects a target cell for the UE from other neighbor cells corresponding to the adjacent base station according to the load information exchanged with the adjacent base station, and switches the UE to the target cell
  • the load on the cell between the base stations The time when the information is exchanged is earlier than the time when the source base station performs the UE handover. Therefore, the load information of the neighbor cell cannot reflect the actual load state of the neighbor cell when the UE is handed over, which may cause the target cell selected by the source base station to be different. Inappropriate, for example, the actual load of the target cell may reach the upper limit when the UE is handed over, so that the UE cannot be successfully handed over to the target cell. It can be seen from this that the existing method of determining the target cell based on the load information exchanged with the adjacent base station is not accurate, and the handover success rate of the terminal is low.
  • the embodiments of the present application provide a target cell determination method, a communication device, and a storage medium, which can improve the handover success rate of a terminal.
  • an embodiment of the present application provides a method for determining a target cell, the method comprising: a first radio access network device receiving load prediction information of at least one first cell from a first network device, where the first cell is another wireless The cell controlled by the access network device; the load prediction information includes: the number of terminals accessing the first cell in the first time period, the establishment success rate of the protocol data unit PDU session in the first cell in the first time period, and the first time period in the first cell. At least one of the handover success rates of the first cell in the time period.
  • the first radio access network device determines a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the load prediction information can reflect the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the number of terminals in the first time period. At least one of the handover success rates of a cell. Therefore, when the first radio access network device needs to switch the serving cell for the terminal before the first time period, according to the load prediction information of the at least one first cell from the first network device, from the at least one first cell Determining the target cell to be handed over in a cell can make the determined target cell more suitable, thereby improving the handover success rate of the terminal, thereby ensuring the service quality of the terminal.
  • the first radio access network device may preferentially select the load prediction information with a higher priority according to the preconfigured priorities of different load prediction information , as the judgment basis when determining the target cell from the at least one first cell.
  • the first radio access network device may calculate the different load prediction information according to the preconfigured weight value of the different load prediction information or other weighting indicators The weighted average or sum of the results. Then, the first radio access network device may use the calculated weighted average value or the summation result as a judgment basis when determining the target cell from the at least one first cell.
  • the load prediction information further includes a confidence level of the load prediction information.
  • the first radio access network device may also consider the confidence of the load prediction information.
  • the first radio access network device may further select the first cell corresponding to the load prediction information with the highest confidence according to the confidence of the load prediction information as target cell, thereby further ensuring the handover success rate of the terminal.
  • the first network device is any one of a core network device, a second radio access network device, and a network control device.
  • the method before the first radio access network device receives load prediction information from at least one first cell of the first network device, the method further includes: the first radio access network device sends a A network device sends a load prediction request, and the load prediction request includes a first time period.
  • the first radio access network device may receive load prediction information of at least one first cell sent by the first network device according to the load prediction request.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the first radio access network device can request the first network device to obtain a specific cell in a cell controlled by other radio access network devices through the load prediction request.
  • the load prediction information of several specific cells can prevent the first network device from sending unnecessary load prediction information of cells to the first radio access network device, thereby saving signaling overhead.
  • the load prediction request further includes a load item, where the load item is used to indicate the load prediction information obtained by the request of the first radio access network device.
  • the load item may be used to indicate that the load prediction information requested by the first radio access network device is the number of terminals accessing the first cell in the first time period, and the establishment of the PDU session in the first cell in the first time period is successful. specific one or several of the handover success rate of the first cell in the first time period.
  • the first radio access network device receiving load prediction information from at least one first cell of the first network device may include: the first radio access network device receiving the first network device Load prediction information of at least one first cell that is actively sent.
  • the first network device may actively send the load prediction information of the at least one first cell to the first radio access network device according to a preset period.
  • an embodiment of the present application provides a communication device, and the device has a function of implementing the method described in the first aspect above.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions of the method described in the first aspect above, for example, a receiving unit, a determining unit, and the like.
  • the receiving unit may be configured to receive load prediction information from at least one first cell of the first network device, where the first cell is a cell controlled by other radio access network devices; the load prediction information includes: access during the first time period At least one of the number of terminals in the first cell, the establishment success rate of the protocol data unit PDU session in the first cell in the first time period, and the handover success rate of the first cell in the first time period.
  • the determining unit may be configured to determine the target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the determining unit may, according to the preconfigured priorities of different load prediction information, preferentially select the load prediction information with a higher priority, as the load prediction information with a higher priority from the at least one The judgment basis for determining the target cell in the first cell.
  • the determining unit may calculate the weighted average value or Summation results. Then, the first radio access network device may use the calculated weighted average value or the summation result as a judgment basis when determining the target cell from the at least one first cell.
  • the load prediction information further includes a confidence level of the load prediction information.
  • the first network device is any one of a core network device, a second radio access network device, and a network control device.
  • the communication apparatus may further include: a sending unit, configured to send a load prediction request to the first network device, where the load prediction request includes the first time period.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the load prediction request further includes a load item, and the load item is used to indicate the load prediction information obtained by the request of the sending unit.
  • the receiving unit may be specifically configured to receive load prediction information of at least one first cell actively sent by the first network device.
  • an embodiment of the present application further provides a communication apparatus, including: a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the apparatus to execute the first aspect or the first The method of any of possible designs of the aspect.
  • an embodiment of the present application further provides a communication device, including: a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the first aspect or any of the possible designs of the first aspect the method described.
  • the communication apparatuses described in the second to fourth aspects above may be applied to the first radio access network device.
  • an embodiment of the present application further provides a computer-readable storage medium, including: computer software instructions; when the computer software instructions are stored in the first wireless access network device or a chip built in the first wireless access network device When running in the medium, the first radio access network device is caused to execute the method described in the first aspect.
  • an embodiment of the present application further provides a method for determining a target cell, the method comprising: a first network device sending load prediction information of at least one first cell to a first radio access network device, so that the first radio access The network access device determines a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the first cell is a cell controlled by other radio access network equipment; the load prediction information includes: the number of terminals accessing the first cell in the first time period, the successful establishment of the protocol data unit PDU session in the first cell in the first time period at least one of a handover success rate and a handover success rate of the first cell in the first time period.
  • the load prediction information can reflect the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the number of terminals in the first time period. At least one of the handover success rates of a cell. Therefore, when the first radio access network device needs to switch the serving cell for the terminal before the first time period, according to the load prediction information of the at least one first cell from the first network device, from the at least one first cell Determining the target cell to be handed over in a cell can make the determined target cell more suitable, thereby improving the handover success rate of the terminal, thereby ensuring the service quality of the terminal.
  • the load prediction information further includes a confidence level of the load prediction information.
  • the first radio access network device may also consider the confidence of the load prediction information.
  • the first radio access network device may further select the first cell corresponding to the load prediction information with the highest confidence according to the confidence of the load prediction information as target cell, thereby further ensuring the handover success rate of the terminal.
  • the first network device is any one of a core network device, a second radio access network device, and a network control device.
  • the method before the first network device sends the load prediction information of the at least one first cell to the first radio access network device, the method further includes: the first network device receives information from the first radio access network device.
  • the load prediction request of the network access device, and the load prediction request includes the first time period.
  • the first network device may send load prediction information of at least one first cell to the first radio access network device according to the load prediction request.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the first radio access network device can request the first network device to obtain a specific cell in a cell controlled by other radio access network devices through the load prediction request.
  • the load prediction information of several specific cells can prevent the first network device from sending unnecessary load prediction information of cells to the first radio access network device, thereby saving signaling overhead.
  • the load prediction request further includes a load item, where the load item is used to indicate the load prediction information obtained by the request of the first radio access network device.
  • the first network device sending load prediction information of at least one first cell to the first radio access network device may include: the first network device actively sends the first radio access network device to the first radio access network device. Load prediction information of at least one first cell is sent.
  • the first network device may actively send the load prediction information of the at least one first cell to the first radio access network device according to a preset period.
  • an embodiment of the present application provides a communication device, where the device has a function of implementing the method described in the sixth aspect.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions of the method described in the sixth aspect, for example, a sending unit.
  • the sending unit may be configured to send the load prediction information of the at least one first cell to the first radio access network device, so that the first radio access network device, according to the load prediction information of the at least one first cell, from the at least one first cell A target cell is determined in a cell.
  • the first cell is a cell controlled by other radio access network equipment; the load prediction information includes: the number of terminals accessing the first cell in the first time period, the successful establishment of the protocol data unit PDU session in the first cell in the first time period at least one of a handover success rate and a handover success rate of the first cell in the first time period.
  • the apparatus further includes: a receiving unit, configured to receive a load prediction request from the first radio access network device, where the load prediction request includes the first time period.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the load prediction request further includes a load item, where the load item is used to indicate the load prediction information obtained by the request of the first radio access network device.
  • the sending unit may be specifically configured to actively send the load prediction information of the at least one first cell to the first radio access network device.
  • an embodiment of the present application further provides a communication device, comprising: a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the device to execute the sixth aspect or the sixth aspect The method of any of possible designs of the aspect.
  • an embodiment of the present application further provides a communication device, including: a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute any one of the sixth aspect or the possible designs of the sixth aspect the method described.
  • the communication apparatuses described in the seventh to ninth aspects above can be applied to the first network device.
  • embodiments of the present application further provide a computer-readable storage medium, comprising: computer software instructions; when the computer software instructions are executed in the first network device or a chip built in the first network device, the A network device performs the method according to the sixth aspect.
  • an embodiment of the present application further provides a method for determining a target cell, the method comprising: a first radio access network device receiving a cell identifier of at least one first cell from a second network device. The first radio access network device determines the target cell according to the cell identifier of the at least one first cell.
  • the second network device may be a core network device or a network control device.
  • the cell identifier of at least one first cell received by the first radio access network device can be obtained by the second network device according to the historical information of the terminal to obtain the predicted movement trajectory of the terminal, and according to the predicted movement trajectory of the terminal Sure.
  • the terminal has a higher handover success rate, which can ensure the service quality of the terminal.
  • an embodiment of the present application provides a communication device, where the device has a function of implementing the method described in the eleventh aspect.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions of the method described in the eleventh aspect above, for example, a receiving unit, a determining unit, and the like.
  • the receiving unit may be configured to receive a cell identifier of at least one first cell from the second network device.
  • the determining unit may be configured to determine the target cell according to the cell identity of the at least one first cell.
  • an embodiment of the present application further provides a communication device, including: a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the device to execute the computer instructions in the eleventh aspect. method described.
  • an embodiment of the present application further provides a communication device, including: a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the method described in the eleventh aspect.
  • the communication apparatuses described in the twelfth aspect to the fourteenth aspect above may be applied to the first radio access network device.
  • the embodiments of the present application further provide a computer-readable storage medium, including: computer software instructions; when the computer software instructions are stored in the first wireless access network device or built in the first wireless access network device When running in the chip, the first radio access network device is caused to execute the method described in the eleventh aspect.
  • an embodiment of the present application further provides a method for determining a target cell, the method includes: the second network device sends a cell identifier of at least one first cell to the first radio access network device, so that the first radio access The network access device determines the target cell according to the cell identifier of the at least one first cell.
  • the second network device may be a core network device or a network control device.
  • the method before the second network device sends the cell identifier of the at least one first cell to the first radio access network device, the method further includes: the second network device acquires historical information of the terminal. The second network device determines the cell identifier of the at least one first cell according to the historical information.
  • the second network device determining the cell identifier of the at least one first cell according to the historical information includes: the second network device generating the predicted movement trajectory of the terminal according to the historical information. The second network device determines a cell identifier of at least one first cell according to the predicted movement trajectory.
  • the cell identifier of at least one first cell sent by the second network device to the first radio access network device is obtained by the second network device according to the terminal's historical information Determined by the predicted movement trajectory.
  • the terminal has a higher handover success rate, which can ensure the service quality of the terminal.
  • an embodiment of the present application provides a communication device, where the device has a function of implementing the method described in the sixteenth aspect.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions of the method described in the sixteenth aspect above, for example, a sending unit.
  • the sending unit may be configured to send the cell identifier of the at least one first cell to the first radio access network device, so that the first radio access network device determines the target cell according to the cell identifier of the at least one first cell.
  • the apparatus further includes: an acquiring unit, configured to acquire historical information of the terminal.
  • a determining unit configured to determine a cell identity of at least one first cell according to the history information.
  • the determining unit may be specifically configured to generate a predicted movement trajectory of the terminal according to the historical information, and determine a cell identifier of at least one first cell according to the predicted movement trajectory.
  • an embodiment of the present application further provides a communication device, including: a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the device to execute the computer instructions in the sixteenth aspect. method described.
  • an embodiment of the present application further provides a communication device, including: a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the method described in the sixteenth aspect.
  • the communication apparatuses described in the seventeenth to nineteenth aspects above may be applied to the second network device.
  • embodiments of the present application further provide a computer-readable storage medium, comprising: computer software instructions; when the computer software instructions are executed in the second network device or a chip built in the second network device, the The second network device performs the method of the sixteenth aspect.
  • an embodiment of the present application further provides a method for determining a target cell.
  • the method includes: the first radio access network device receives terminal history information from the second network device.
  • the first radio access network device determines a cell identifier of at least one first cell according to the historical information.
  • the first radio access network device determines the target cell according to the cell identifier of the at least one first cell.
  • the second network device may be a core network device or a network control device.
  • the first radio access network device determines the cell identifier of at least one first cell according to historical information, including: the first radio access network device generates a predicted movement trajectory of the terminal according to the historical information . The first radio access network device determines a cell identifier of at least one first cell according to the predicted movement trajectory.
  • an embodiment of the present application provides a communication device, where the device has a function of implementing the method described in the twenty-first aspect.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions of the method described in the twenty-first aspect, for example, a receiving unit, a determining unit, and the like.
  • the receiving unit may be configured to receive terminal history information from the second network device.
  • the determining unit may be configured to determine a cell identifier of at least one first cell according to the historical information; the first cell is a cell controlled by other radio access network equipment.
  • the determining unit is further configured to determine the target cell according to the cell identifier of the at least one first cell.
  • the determining unit may be specifically configured to generate a predicted movement trajectory of the terminal according to the historical information, and determine a cell identifier of at least one first cell according to the predicted movement trajectory.
  • an embodiment of the present application further provides a communication apparatus, including: a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the apparatus to execute the twenty-first the method described in the aspect.
  • an embodiment of the present application further provides a communication device, including: a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the method described in the twenty-first aspect.
  • the communication apparatuses described in the twenty-second to twenty-fourth aspects above may be applied to the first radio access network device.
  • an embodiment of the present application further provides a computer-readable storage medium, including: computer software instructions; when the computer software instructions are stored in the first wireless access network device or built in the first wireless access network device When running in the chip, the first radio access network device is made to execute the method according to the twenty-first aspect.
  • an embodiment of the present application further provides a communication device, including: a transceiver unit and a processing unit.
  • the transceiver unit can be used to send and receive information, or to communicate with other network elements.
  • the processing unit may be used to process the data.
  • the apparatus may implement the method described in any one of the first aspect, the sixth aspect, the eleventh aspect, the sixteenth aspect, and the twenty-first aspect through the transceiver unit and the processing unit.
  • an embodiment of the present application further provides a computer program product, which can implement the first aspect, the sixth aspect, the eleventh aspect, the sixteenth aspect, and the twentieth aspect when the computer program product is executed.
  • an embodiment of the present application further provides a chip system, where the chip system is applied to a first wireless access network device; the chip system includes one or more interface circuits and one or more processors; the interface circuit and The processors are interconnected by wires; the processors receive and execute computer instructions from the memory of the electronic device through the interface circuit to implement the method of any one of the first aspect, the eleventh aspect, and the twenty-first aspect.
  • an embodiment of the present application further provides a chip system, where the chip system is applied to the first network device; the chip system includes one or more interface circuits and one or more processors; the interface circuit and the processor pass through The lines are interconnected; the processor receives and executes computer instructions from the memory of the electronic device through the interface circuit, so as to implement the method according to the sixth aspect.
  • an embodiment of the present application further provides a chip system, where the chip system is applied to a second network device; the chip system includes one or more interface circuits and one or more processors; the interface circuit and the processor pass through a circuit interconnection; the processor receives and executes computer instructions from the memory of the electronic device through the interface circuit to implement the method of the sixteenth aspect.
  • FIG. 1 shows a schematic diagram of the composition of a communication system provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the composition of a network device provided by an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a method for determining a target cell provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a communication architecture between a radio access network device and a core network device provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a communication architecture between different radio access network devices provided by an embodiment of the present application
  • FIG. 6 shows another schematic flowchart of the method for determining a target cell provided by an embodiment of the present application
  • FIG. 7 shows another schematic flowchart of the method for determining a target cell provided by an embodiment of the present application
  • FIG. 8 shows another schematic flowchart of the method for determining a target cell provided by an embodiment of the present application
  • FIG. 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 shows another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 shows another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 shows another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 shows another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 shows another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 shows another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • a continuous and uninterrupted communication service can be provided for the UE by changing the serving cell of a UE in an RRC connected state. For example, during the movement of the UE, the signal quality of the serving cell received by the UE gradually deteriorates, and the signal quality of the target cell that the UE receives gradually becomes better.
  • the signal quality of the target cell received by the UE is higher than a certain threshold of the signal quality of the serving cell, the UE may be handed over to the target cell.
  • the UE may be handed over from the current serving cell to another cell in consideration of load balancing of different cells. For example, when the load of the serving cell currently accessed by the UE is too high, the UE may also be handed over to another target cell with a lower load.
  • the base station corresponding to the serving cell currently accessed by the UE may be referred to as the source base station.
  • the source base station needs to make a target cell decision first, and select an appropriate target cell for the UE. Then, the UE is handed over to the target cell.
  • the load of the target cell selected by the source base station will affect the service quality of the UE. For example, when the load of the target cell is heavy, if the UE is handed over to the target cell, it may occur that the UE cannot access the target cell, resulting in interruption of the communication service of the UE.
  • the decision strategy of the target cell is usually adopted as follows: adjacent base stations can exchange load information of their corresponding cells.
  • the source base station can select a suitable target cell for the UE from other neighbor cells corresponding to the adjacent base station according to the load information of other neighbor cells corresponding to the adjacent base station. For example, a neighbor cell with a lower current load can be selected as the target cell.
  • the load information may include radio resource status (radio resource status), transport layer capacity indicator (transport layer capacity indicator), composite available capacity group (composite available capacity group), slice available capacity (slice available capacity), active state UE's Number of active UEs, RRC connections, etc.
  • the radio resource status may be the physical resource block (PRB) utilization of uplink/downlink traffic.
  • the transport layer capacity indication may be the available capacity provided by the transport network.
  • the composite available capacity group may be the overall available resource hierarchy for uplink/downlink, eg, 0 means no resource available, 100 means maximum available resource.
  • the available capacity of a slice may be the ratio of the available resources of each network slice in each cell to the total resources of the cell.
  • the number of UEs in the active state may be the average number of users or the maximum number of users whose applications are sending and receiving data in uplink, downlink, or uplink and downlink.
  • the RRC connection can be the number of RRC connections, and the available RRC connection capacity value, where the available RRC connection capacity value is used to indicate the remaining percentage of the number of RRC connections relative to the maximum number of RRC connections supported by the cell, for example, 0 means no available capacity, 100 is the maximum available capacity.
  • the source base station selects the target cell for the UE from other neighbor cells corresponding to the adjacent base station according to the load information of other neighbor cells corresponding to the adjacent base station based on the above-mentioned existing target cell decision strategy, and switches the UE to the target cell
  • the time when the base stations interact with the load information of the cell is earlier than the time when the source base station performs the UE handover. Therefore, the load information of the neighbor cell cannot reflect the actual load state of the neighbor cell when the UE is handed over.
  • the target cell selected by the source base station may not be suitable.
  • the actual load of the target cell may reach the upper limit when the UE is handed over, so that the UE cannot be successfully handed over to the target cell. It can be seen from this that the existing method of determining the target cell based on the load information exchanged with the adjacent base station is not accurate, and the handover success rate of the terminal is low.
  • an embodiment of the present application provides a method for determining a target cell.
  • the first network device may acquire load prediction information of at least one first cell in the first time period, and send it to the first radio access network device, where the first cell is a cell controlled by other radio access network devices.
  • the first radio access network device may receive load prediction information of at least one first cell from the first network device, and determine a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the load prediction information may include: the number of terminals accessing the first cell in the first time period, the establishment success rate of a protocol data unit (PDU) session in the first cell in the first time period, and the at least one of the handover success rates of the first cell in a period of time.
  • PDU protocol data unit
  • the load prediction information can reflect the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and At least one of the handover success rates of the first cell in the first time period, therefore, the first radio access network device, according to the load prediction information of the at least one first cell from the first network device, selects the first cell from the at least one first cell
  • the target cell is determined in the middle of the system, a more suitable target cell can be selected according to the load prediction information, so that when the terminal is handed over to the target cell, the handover success rate can be higher, thereby ensuring the service quality of the terminal.
  • the first radio access network device may switch the terminal within the above-mentioned first time period, or the first radio access network device may also switch the terminal before the first time period. No restrictions apply.
  • FIG. 1 shows a schematic diagram of the composition of a communication system provided by an embodiment of the present application.
  • the communication system of the embodiment of the present application may include: a terminal 110 , a first radio access network (RAN) device 120 , a second radio access network device 130 , and a core network device 140 .
  • RAN radio access network
  • the first radio access network device 120 and the second radio access network device 130 may also be referred to as next-generation radio access network devices.
  • the terminal 110 may communicate with the core network device 140 through the first radio access network device 120 or the second radio access network device 130 .
  • the first radio access network device 120 or the second radio access network device 130 may provide the terminal 110 with functional services such as radio resource management, quality of service management, data encryption, and compression.
  • the first radio access network device 120 and/or the second radio access network device 130 and the core network device 140 may communicate through a next generation (next generation, NG) interface, and different radio access network devices (including the aforementioned The first radio access network device 120 and the second radio access network device 130) can communicate through the Xn interface.
  • NG next generation
  • different radio access network devices including the aforementioned The first radio access network device 120 and the second radio access network device 130
  • the communication system may be a wideband code division multiple access (WCDMA) system, a long term evolution (long term evolution, LTE) system, an LTE frequency division duplex (frequency division duplex, FDD) system, Universal mobile telecommunication system (UMTS), fifth-generation (5G) communication system, and other wireless communications using orthogonal frequency division multiplexing (OFDM) technology system, etc., this application does not limit the specific type of the communication system.
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS Universal mobile telecommunication system
  • 5G fifth-generation
  • OFDM orthogonal frequency division multiplexing
  • the terminal 110 in the communication system may be a mobile phone (“cellular” phone), a mobile phone, a computer, a cordless phone, or a session initiation protocol (session initiation protocol, SIP) phone , wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing devices, satellite wireless devices, wireless modem cards, television set-top boxes (set top box, STB), customer premise equipment (CPE), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), in-vehicle devices (such as cars, bicycles, electric vehicles, airplanes, etc.) , ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), smart home equipment (for example, refrigerators, TVs, Air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self driving, wireless terminals in remote medical surgery,
  • cellular mobile phone
  • PDAs personal digital assistant
  • the first radio access network device 120 and/or the second radio access network device 130 may be a next generation node B (gNB), a next generation evolved node (next generation node B, ng-eNB), centralized unit (central unit, CU), distributed unit (distributed unit, DU), centralized unit-control plane (central unit-control plane, CU-CP), centralized unit-user plane (central unit- user plane, CU-UP), etc.
  • gNB next generation node B
  • a next generation evolved node node B
  • centralized unit central unit, CU
  • distributed unit distributed unit
  • DU distributed unit
  • centralized unit-control plane central unit-control plane, CU-CP
  • centralized unit-user plane central unit- user plane, CU-UP
  • the gNB may provide the terminal 110 with protocols and functions of the control plane and/or the user plane of the new radio (NR), and access to the 5G core network (5th generation core, 5GC).
  • the ng-eNB may provide the terminal 110 with protocols and functions of the control plane and/or the user plane of evolved universal terrestrial radio access (E-UTRA), and access to the 5GC.
  • the CU mainly includes the RRC layer of the gNB, the service data adaptation protocol (SDAP) layer and the packet data convergence protocol (PDCP) layer, or the RRC layer and the PDCP layer of the ng-eNB.
  • the DU mainly includes the radio link control (RLC) layer, medium access control (MAC) layer and physical layer of the gNB or ng-eNB.
  • CU-CP mainly includes the RRC layer in the gNB-CU or ng-eNB-CU, and the control plane in the PDCP layer.
  • CU-UP mainly includes SDAP layer in gNB-CU or ng-eNB-CU, and user plane in PDCP layer.
  • the core network device 140 may include session management function (session management function, SMF), access and mobility management function (access and mobility management function, AMF), network data analysis function (network data analytics function, NWDAF) ), user plane function (UPF), etc.
  • session management function session management function
  • AMF access and mobility management function
  • NWDAF network data analytics function
  • UPF user plane function
  • SMF is mainly responsible for session management (such as: session establishment, session modification and session release), UE IP address allocation and management, user plane function selection and control, non-access stratum (non-access stratum, NAS) messages Termination of the session management part, etc.
  • AMF is mainly responsible for functions such as access control, mobility management, attachment and detachment, and gateway selection.
  • NWDAF is mainly responsible for data collection, analysis and other functions.
  • UPF is mainly responsible for packet routing and forwarding functions.
  • the communication system may also include other devices, such as network control devices.
  • the network control device may be an operation management and maintenance (operation administration and maintenance, OAM) system, also called a network management system.
  • OAM operation administration and maintenance
  • the network control device may manage the aforementioned first radio access network device 120 , the second radio access network device 130 and the core network device 140 .
  • FIG. 2 shows a schematic diagram of the composition of a network device provided by an embodiment of the present application.
  • the network device may be any one of the first radio access network device 120, the second radio access network device 130, and the core network device 140 in the communication system shown in FIG. 1, or may also be the aforementioned device network control equipment.
  • the network device may include: at least one processor 21 , a memory 22 , a communication interface 23 , and a bus 24 .
  • each component of the network device will be specifically introduced with reference to FIG. 2 .
  • the processor 21 is the control center of the network device, and may be a processor or a general term for multiple processing elements.
  • the processor 21 may be a central processing unit (CPU), a specific integrated circuit (application specific integrated circuit, ASIC), or may also be configured to implement one or more embodiments of the present application.
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA), etc.
  • the processor 21 can execute various functions of the network device by running or executing software programs stored in the memory 22 and calling data stored in the memory 22 . For example, when the network device is the first radio access network device 120, the steps performed by the first radio access network device 120 in the target cell determination method provided in the embodiment of the present application may be performed.
  • the processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2 .
  • the network device may include multiple processors, such as the processor 21 and the processor 25 shown in FIG. 2 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 22 is used for storing software programs for executing the method steps performed by the network device in the solution of the present application, and the execution is controlled by the processor 21 .
  • the memory 22 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM storage
  • the memory 22 may exist independently, and is connected to the processor 21 through the bus 24 .
  • the memory 22 can also be integrated with the processor 21, which is not limited here.
  • the communication interface 23 using any device such as a transceiver, is used to communicate with other devices or communication networks, for example, when the network device is the first radio access network device 120, it can communicate with the core network device 140.
  • the communication interface 23 may be an Ethernet interface, a radio access network (RAN) interface, a wireless local area network (wireless local area networks, WLAN) interface, and the like.
  • the communication interface 23 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the bus 24 may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus, or the like.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • FIG. 3 shows a schematic flowchart of a method for determining a target cell provided by an embodiment of the present application.
  • the target cell determination method may include S301-S303.
  • the first radio access network device sends a load prediction request to the first network device.
  • the load prediction request may only be used as a trigger request.
  • the load prediction request may include a trigger indication, and when the first network device receives the load prediction request, the first network device may be triggered to send
  • the first radio access network device sends load prediction information of at least one first cell.
  • the first cell refers to a cell controlled by other radio access network equipment (eg, the second radio access network equipment shown in FIG. 1 ).
  • the load prediction request may further include: a cell identifier of at least one first cell.
  • the cell identifier included in the load prediction request may be a new wireless cell global identifier (NR cell global identifier, NR CGI), which may be used to uniquely identify a new wireless cell globally.
  • the cell identifier may also be a physical cell identifier (physical cell identifier, PCI).
  • the first radio access network device can request the first network device to obtain a specific cell in a cell controlled by other radio access network devices through the load prediction request.
  • the load prediction information of several specific cells can prevent the first network device from sending unnecessary load prediction information of cells to the first radio access network device, thereby saving signaling overhead.
  • the first radio access network device may request the first network device to obtain the Load prediction information of any one or more cells among cell 1, cell 2, cell 3 and cell 4. Instead of sending the load prediction information of cell 1, cell 2, cell 3 and cell 4 to the first radio access network device by the first network device, signaling overhead is effectively saved.
  • the first network device may be a core network device or a second radio access network device.
  • the core network device or the second radio access network device For the specific type of the core network device or the second radio access network device, reference may be made to the related description in the foregoing communication system shown in FIG. 1 .
  • the first radio access network device may send a load prediction request to the core network device through a control plane message, for example, an NG setup request (NG setup request) message, or a RAN configuration update (RAN configuration update) message. configuration update) message.
  • NG setup request an NG setup request
  • RAN configuration update RAN configuration update
  • configuration update a control plane protocol of the NG interface
  • NGAP next generation application protocol
  • the first radio access network device may send a load prediction request, for example, uplink PDU session information (uplink PDU session information), to the core network device through a PDU session user plane protocol.
  • the PDU session user plane protocol is a user plane protocol of the NG interface, and is used to provide non-guaranteed distribution of PDUs in the user plane of the PDU session between the access network device and the UPF.
  • the first radio access network device may send the load prediction request to the core network device through a high data analytics protocol annex (HDAPa).
  • HDAPa high data analytics protocol annex
  • FIG. 4 shows a schematic diagram of a communication architecture between a radio access network device and a core network device provided by an embodiment of the present application.
  • L1 represents the physical layer
  • L2 represents the data link layer
  • the internet protocol (IP) represents the network layer
  • the stream control transmission protocol (SCTP) represents the transport layer
  • NGAP and HDAPa represent the application layer .
  • Data transmission can be performed between the radio access network equipment and the core network equipment based on the HDAPa protocol.
  • the HDAPa protocol can support functions such as data segmentation, data sorting, and data security (eg, data integrity protection, data encryption, and data decryption) between radio access network equipment and core network equipment.
  • HDAPa may use services provided by NGAP, that is, HDAPa messages may be carried in NGAP messages.
  • the first radio access network device may send a load prediction request to the second radio access network device through a control plane message, for example, a request to retrieve UE context (retrieve UE context request) message, or Xn setup request (Xn setup request) message.
  • the above control plane message may be transmitted through the control plane protocol of the Xn interface, for example, through the Xn interface application protocol (xn application protocol, XNAP).
  • the first radio access network device may send a load prediction request, for example, downlink user data (downlink user data), to the second radio access network device through a new radio user plane protocol.
  • the new wireless user plane protocol is a user plane protocol of the Xn interface, which is used to provide non-guaranteed distribution of user plane PDUs between radio access network devices.
  • the first radio access network device may send the load prediction request to the second radio access network device through a high data analytics protocol type b (high data analytics protocol type b, HDAPb).
  • a high data analytics protocol type b high data analytics protocol type b, HDAPb
  • FIG. 5 shows a schematic diagram of a communication architecture between different radio access network devices provided by an embodiment of the present application.
  • L1 represents the physical layer
  • L2 represents the data link layer
  • the internet protocol (IP) represents the network layer
  • the stream control transmission protocol (SCTP) represents the transport layer
  • XNAP and HDAPb represent the application layer .
  • Data transmission may be performed between the first radio access network device and the second radio access network device based on the HDAPb protocol.
  • the HDAPb protocol may support functions such as data segmentation, data sorting, and data security (eg, data integrity protection, data encryption, and data decryption) between the first radio access network device and the second radio access network device.
  • HDAPb can use the services provided by XNAP, that is, HDAPb messages can be carried in XNAP messages.
  • the first network device may also be the foregoing network control device. Data transmission may also be performed between the network control device and the first radio access network device, which will not be repeated here.
  • the first network device may receive a load prediction request from the first radio access network device.
  • the load prediction request includes the first time period.
  • the first network device may predict and acquire load prediction information of cells controlled by other radio access network devices in the first time period according to the received load prediction request, and return the information to the first radio access network device.
  • S302 can be executed.
  • the first network device sends load prediction information of at least one first cell to the first radio access network device according to the load prediction request.
  • the first radio access network device receives load prediction information from at least one first cell of the first network device.
  • the load prediction information may include: the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the handover success of the first cell in the first time period at least one of the rates.
  • the number of terminals accessing the first cell during the first time period refers to the total number of terminals in the first cell predicted by the first network device during the first time period, which may include the number of terminals in the RRC connected (RRC connected) state and The number of terminals in the RRC inactive state.
  • the establishment success rate of the PDU session in the first cell in the first time period refers to the probability that the PDU session is successfully established in the first cell during the first time period predicted by the first network device.
  • the handover success rate of the first cell in the first time period refers to the total handover success rate that the terminal is handed over from other cells to the first cell during the first time period predicted by the first network device.
  • the step of predicting the load prediction information of the first cell by the first network device may be after receiving the load prediction request, or may also be before receiving the load prediction request, which is not limited herein.
  • the first time period may be determined by the first network device, or may also be indicated to the first network device by the first radio access network device through a load prediction request, which is not limited herein.
  • the first network device may actively predict the establishment success rate of the PDU session in the first cell in the first time period, the handover success rate of the first cell in the first time period, and the like.
  • the load prediction request sent by the first radio access network device to the first network device may further include time indication information, for example, it may be a specific time corresponding to the first time period, and the time indication information may indicate to the first network device.
  • the process of predicting the load prediction information by the first network device will be described below by taking the load prediction information as an example of the establishment success rate of the PDU session in the first cell in the first time period.
  • a trained neural network model may be preconfigured in the first network device, and the first network device may determine load prediction information corresponding to each cell above through the neural network model.
  • the neural network used to train the neural network model may be an AlexNet.
  • the first network device can obtain the historical data of the successful establishment of the PDU session in the first cell from the SMF, and input the historical data into the above-mentioned neural network model, and the neural network model can output the data of the PDU session in the first cell in the first time period.
  • the success rate is established as load prediction information corresponding to the first cell.
  • the first network device may also input the historical data of the number of terminals accessing the first cell or the historical data of the handover success rate of the first cell into the above-mentioned neural network model, so as to obtain the access to the first cell in the first time period.
  • the number of terminals in the cell, or the handover success rate of the first cell in the first time period, is used as load prediction information corresponding to the first cell, which is not repeated here.
  • the load prediction information corresponding to each first cell also includes the cell identifier of the first cell.
  • the cell ID may be the same as the cell ID included in the above load prediction request, which may be NR CGI or PCI.
  • the core network device may send the load prediction information to the first radio access network device in the following ways: 1) through an NG setup response (NG setup response) message or an AMF configuration update (AMF configuration update) configuration update) message and other control plane messages to send load prediction information.
  • the above-mentioned control plane message may be transmitted through the control plane protocol of the NG interface, for example, through NGAP.
  • the core network device may send the load prediction information to the first radio access network device through the HDAPa protocol.
  • the second radio access network device may send the load prediction information to the first radio access network device in the following ways: 1) Send the load prediction information through a control plane message, For example, Xn setup request (Xn setup request) message, or NG-RAN node configuration update (NG-RAN node configuration update) message.
  • the above control plane message can be transmitted through the control plane protocol of the Xn interface, for example, through XNAP.
  • the second radio access network device may send the load prediction information to the first radio access network device through the HDAPb protocol.
  • the network control device may also send load prediction information to the first radio access network device, which will not be described again.
  • the first radio access network device determines a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the first radio access network device receives load prediction information of two first cells, and the two first cells are cell 1 and cell 2 respectively. Then, the first radio access network device may determine the target cell from the cell 1 and the cell 2 according to the respective load prediction information of the cell 1 and the cell 2. For example, if the load prediction information corresponding to the cell 1 and the cell 2 is the handover success rate, the first radio access network device may select the cell 1 and the cell 2 with a higher handover success rate as the target cell.
  • the target cell may also be determined from the at least one first cell in combination with the location of the terminal and according to the load prediction information of the at least one first cell.
  • the location of the terminal may be the current physical location of the terminal, such as: global positioning system (global positioning system, GPS) coordinates, or the location of the terminal may also be reported by the terminal through the reference signal received power (reference signal of different first cells)
  • RSRP receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the first radio access network device can first select the handover success rate according to the handover success rate of different first cells to meet the conditions (for example: handover success rate). Then, the first cell with the highest RSRP may be selected as the target cell according to the multiple candidate first cells. Alternatively, the first radio access network device may first select multiple candidate first cells whose RSRPs are all greater than a certain threshold according to the RSRPs of different first cells; then, it may select the handover from the multiple candidate first cells The first cell with the highest success rate is used as the target cell.
  • the above-mentioned method of determining the target cell by combining RSRP and load prediction information is only an exemplary illustration, and in other embodiments of the present application, the load prediction information may also be combined with one of RSRQ, SINR, or the physical location of the terminal, etc.
  • One or more types are combined to jointly determine the target cell, which is not limited here.
  • the first radio access network device determines the target cell from at least one first cell according to the load prediction information of at least one first cell, the number of terminals accessing the first cell in the first time period, the number of terminals in the first cell
  • the beneficial effects of the three kinds of load prediction information, the establishment success rate of the PDU session in the first cell in the time period and the handover success rate of the first cell in the first time period will be described.
  • the first radio access network device may, according to the number of terminals accessing the first cell in the first time period, The cell with the least number of terminals accessing the first cell in the first time period is selected from the at least one first cell as the target cell, so that in the determined target cell, fewer terminals are competing for network resources with the handover terminal, and further The handover success rate can be improved, and the service quality of the terminal in the target cell can be guaranteed at the same time.
  • the target cell may limit the number of PDU sessions established.
  • the terminal may be restricted from establishing a PDU session in the target cell, resulting in a terminal handover failure.
  • the first radio access network device can The establishment success rate is to select the cell with the highest establishment success rate of the PDU session in the first cell in the first time period from the at least one first cell as the target cell, so that when the terminal is handed over to the determined target cell, the handover The success rate can be higher.
  • the handover success rate of the first cell can be known according to the number of successful handovers and the number of handover failures of all terminals handed over from other cells to the first cell.
  • the handover success rate of the first cell also significantly affects whether the terminal can be handed over successfully.
  • the first radio access network device may, according to the handover success rate of the first cell in the first time period, start from at least In a first cell, the cell with the highest handover success rate of the first cell in the first time period is selected as the target cell, so that when the terminal is handed over to the determined target cell, the handover success rate can be higher.
  • the load prediction information can reflect the number of terminals accessing the first cell in the first time period, the success rate of establishing a PDU session in the first cell in the first time period, and the At least one of the handover success rates of the first cell in the time period. Therefore, when the first radio access network device needs to perform handover of the terminal, the target cell to be handed over is determined from the at least one first cell according to the load prediction information of the at least one first cell from the first network device, so that the The determined target cell is more suitable, so that the handover success rate of the terminal can be improved, thereby ensuring the service quality of the terminal.
  • the load prediction information may simultaneously include the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the first cell in the first time period. two or three of the handover success rates.
  • the first radio access network device may comprehensively consider two or three kinds of information included in the load prediction information.
  • the priority of the load prediction information may also be configured in the first radio access network device.
  • the load prediction information received by the first radio access network device includes the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the first time period
  • the first radio access network device may determine the target cell according to the priority of the configured load prediction information.
  • the priority of the load prediction information may be: the priority of the handover success rate is higher than the priority of the PDU session establishment success rate, and the priority of the PDU session establishment success rate is higher than the number of terminals priority.
  • the first radio access network device may first select the first cell with the highest handover success rate in the first time period from the at least one first cell as the target cell. If there are at least two first cells with the same handover success rate in the first time period, the first radio access network device may select a PDU from at least two first cells with the same handover success rate in the first time period The one with the highest session establishment success rate is used as the target cell and so on.
  • the selection of the target cell may be further performed according to the number of terminals accessing the first cell in the first time period, which will not be repeated here.
  • priorities of load prediction information are only illustrative, and in other embodiments of the present design, the priorities of load prediction information may also be set in other manners, which are not limited in this application.
  • the first radio access network device may also be preset with a weight value or other weight index of the load prediction information.
  • the load prediction information simultaneously includes the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the handover success rate of the first cell in the first time period.
  • the first radio access network device can be based on the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the number of terminals in the first time period.
  • the handover success rate of a cell corresponds to the respective weight values of the three kinds of load prediction information, and the weighted average or the summation result of the three kinds of load prediction information is calculated. Then, the first radio access network device may determine the target cell according to the weighted average value or the summation result of the three kinds of load prediction information obtained by calculation.
  • the first network device may determine the load prediction information corresponding to the first cell by using the neural network model.
  • Confidence is an inherent property of neural network, which can be used to indicate the credibility of prediction information output by neural network. Therefore, when the neural network model outputs the load prediction information corresponding to the first cell, the confidence level corresponding to the load prediction information can also be output.
  • the load prediction information may further include a confidence level of the load prediction information.
  • the confidence level of the load prediction information may be used to indicate the confidence level of the load prediction information.
  • the confidence level can be expressed as a percentage, and the higher the confidence level value is, the higher the confidence level of the corresponding load prediction information is.
  • the confidence level of the load prediction information can be expressed as 60%, 70%, 85% and so on.
  • the confidence level can be expressed as high, medium and low.
  • the first radio access network device may also consider the confidence of the load prediction information.
  • the first radio access network device receives the load prediction information of cell 1 and cell 2 as an example.
  • the radio access network device may select the cell with the highest confidence level corresponding to the load prediction information from the cell 1 and the cell 2 as the target cell.
  • the load prediction request may further include a load item, where the load item is used to indicate the load prediction information obtained by the request of the first radio access network device.
  • the load item may be used to indicate that the first radio access network device requests to obtain one or several types of load prediction information.
  • the load item may instruct the first network device to send the number of terminals accessing the first cell in the first time period as the load prediction information of the first cell to the first radio access network device; or, it may instruct the first network device to send The first radio access network device sends the success rate of establishing the PDU session in the first cell in the first time period as the load prediction information of the first cell; or, the first network device may also be instructed to send the first radio access network device to the first cell.
  • Two or three of the number of terminals in the cell, the establishment success rate of the PDU session in the first cell in the first time period, and the handover success rate of the first cell in the first time period are used as the load prediction information of the first cell, This application is not limited here.
  • the target cell determination method shown in FIG. 3 may not include S301, that is, the step of sending the load prediction request to the first network device by the first radio access network device is not included.
  • the first network device can actively send the load prediction information of at least one first cell to the first radio access network device, so that the first radio access network device can, according to the load prediction information of at least one first cell, The target cell is determined from the at least one first cell.
  • FIG. 6 shows another schematic flowchart of a method for determining a target cell provided by an embodiment of the present application.
  • the target cell determination method may include S601-S602.
  • the first network device sends load prediction information of at least one first cell to the first radio access network device.
  • the first network device may actively send load prediction information of at least one first cell to the first radio access network device according to a certain preset period.
  • the preset period may be 5 minutes, 10 minutes, 30 minutes, 60 minutes, etc.
  • the size of the preset period is not limited in this application.
  • the load prediction information reference may be made to the foregoing embodiments, and details are not described herein again.
  • the first network device may also actively send the load prediction information of at least one cell to the first radio access network device when a certain preset trigger condition is reached.
  • the first network device may continuously or intermittently predict load prediction information corresponding to multiple first cells.
  • the load prediction information of a certain first cell changes compared with the load prediction information predicted last time
  • the first The network device may actively send the load prediction information of the first cell to the first radio access network device.
  • the preset trigger condition may refer to a change in the predicted load prediction information of the first cell.
  • the first radio access network device may receive load prediction information of at least one first cell sent by the first network device.
  • the first radio access network device determines a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the embodiments of the present application also provide a method for determining the target cell, which can also improve the handover success rate when the terminal is handed over.
  • the method can be applied to the application scenario in which the first radio access network device interacts with the core network device, or the first radio access network device interacts with the network control device in the communication system shown in FIG. 1 .
  • the core network device and the network control device are both referred to as second network devices below.
  • the second network device may determine the cell identifier of at least one cell according to the historical information of the terminal, and send the determined cell identifier of the at least one cell to the first radio access network device, so that the first radio access
  • the network access device may determine the target cell according to the cell identifier of the at least one first cell.
  • FIG. 7 shows another schematic flowchart of the method for determining a target cell provided by an embodiment of the present application.
  • the target cell determination method may include S701-S705.
  • the second network device acquires historical information of the terminal.
  • the second network device generates a predicted movement trajectory of the terminal according to the historical information.
  • a trained neural network model for example, an AlexNet
  • the second network device can input historical information of the terminal into the neural network model, and the neural network model can output the predicted movement trajectory of the terminal according to the historical information of the terminal.
  • the above historical information and predicted movement trajectory are described below by taking the second network device as the core network device as an example.
  • the first radio access network device may collect relevant information about the cell accessed by the terminal and report it to the core network device, which may be referred to as the terminal movement history here. report information.
  • the mobility history report information includes the mobility history information recently accessed by the terminal, and takes the cell as a unit, which can be 16 cells.
  • the movement history report information may be recorded by the terminal and sent to the first radio access network device.
  • the cells included in the mobility history report information may include cells visited by the terminal in the RRC idle (RRC idle) state, the RRC inactive state, and the RRC connected state.
  • the movement history report information may further include the stay time of the terminal in the cell, or the stay time of the terminal outside the NR range.
  • the movement history report information reported by the first radio access network device to the core network device is generally information about the cell visited by the terminal within 48 hours.
  • the core network device After the core network device receives the movement history report information reported by the first radio access network device, it may store the information.
  • the core network equipment can store the information of the terminal visiting the cell for more than 48 hours.
  • the information about the terminal visiting the cell for more than 48 hours stored in the core network device may be referred to as the terminal's historical residency information.
  • the acquisition of the history information of the terminal by the core network device may refer to that the core network device receives the movement history report information reported by the first radio access network device to the core network device.
  • the core network device may generate the predicted movement trajectory of the terminal according to the movement history report information.
  • the acquisition of the historical information of the terminal by the core network device may mean that the core network device can acquire the historical residency information of the terminal according to the movement history report information reported by the first radio access network device to the core network device multiple times.
  • the core network device may generate the predicted movement trajectory of the terminal according to the historical residency information.
  • the core network device receives the mobility history report information from the RAN UE NGAP ID1 at 00:00 on April 20, 2020, and the mobility history report information records the terminal from 00:00 on April 18, 2020 to April 2020.
  • Mobility history information accessed between 00:00 on March 20.
  • the core network device can determine that the terminal identified by SUPI is at 00:00 on April 18, 2020 to 00:00 on April 20, 2020 according to the corresponding relationship between the RAN UE NGAP ID1 and the subscription permanent identifier (SUPI). Mobility history information accessed between.
  • SUPI is the only permanent identification mark of users in the 5G network.
  • the core network device received the mobile history report information from the RAN UE NGAP ID2 at 00:00 on April 22, 2020, and the mobile history report information recorded the terminal from 00:00 on April 20, 2020 to April 22, 2020 Mobility history information accessed between 00:00 on the day. According to the correspondence between RAN UE NGAP ID2 and SUPI, the core network device can determine the mobility history information accessed by the terminal identified by SUPI between 00:00 on April 20, 2020 and 00:00 on April 22, 2020.
  • the core network equipment combines the mobility history information accessed by the terminal identified by SUPI between 00:00 on April 18, 2020 and 00:00 on April 20, 2020, and the mobility history information accessed from 00:00 on April 20, 2020 to Mobility history information accessed between April 22, 2020 00:00, it can be determined that the terminal identified by the SUPI accessed between April 18, 2020 00:00 to April 22, 2020 00:00.
  • the mobility history information within the range of more than 48 hours is obtained, so as to obtain the historical residency information of the terminal.
  • the SUPI may also be a subscription concealed identifier (SUCI), and the SUCI is a privacy protection identifier that includes a concealed SUPI.
  • SUCI subscription concealed identifier
  • the SUCI is a privacy protection identifier that includes a concealed SUPI.
  • the predicted movement trajectory of the terminal may include the following information: terminal identification, terminal location, and time.
  • the terminal identifier may be a radio access network user equipment next generation application protocol identification (RAN UE NGAP ID), which can be used to uniquely identify the NG interface in the NG-RAN node. UE association.
  • the terminal identifier can also be the AMF UE NGAP ID, which can be used to uniquely identify the UE association on the NG interface.
  • the terminal location can be used to indicate the location information that the terminal may move into.
  • the terminal location can be NR CGI, which can be used to uniquely identify a new wireless cell globally, or the terminal location can be PCI.
  • Time may be used to indicate time information related to the location of the terminal; for example, the time may be the start time when the terminal enters a specific terminal location.
  • the predicted movement trajectory of the terminal may further include a duration during which the terminal is located at the aforementioned terminal position.
  • the second network device determines a cell identifier of at least one first cell according to the predicted movement trajectory.
  • the second network device may determine the cell identifier of at least one first cell where the terminal may be located in the first time period according to the terminal location, terminal identifier, and time included in the predicted movement trajectory of the terminal generated in S702.
  • the cell identifier can be an NR CGI, which can be used to uniquely identify a new wireless cell globally.
  • the cell identity can also be a PCI.
  • the second network device sends the cell identifier of at least one first cell to the first radio access network device.
  • the second network device may send the determined cell identifier of the at least one first cell to the first radio access network device.
  • the second network device may actively send the cell identifier of at least one first cell to the first radio access network device according to a preset period, for example, the preset period may be 5 minutes, 10 minutes, 30 minutes, 60 minutes, etc.
  • the first radio access network device may send a request for predicting the movement trajectory to the second network device, and after receiving the request, the second network device may send the at least one first cell's information to the first radio access network device.
  • Cell ID which is not limited here.
  • the first radio access network device may receive the cell identity of the at least one first cell from the second network device.
  • the cell identifier of the at least one first cell may also carry corresponding time information, and the time information may be the time when the terminal may enter the first cell corresponding to the cell identifier. Alternatively, the time information may further include the possible duration of the terminal in the first cell corresponding to the cell identifier.
  • the first radio access network device determines the target cell according to the cell identifier of the at least one first cell.
  • the first radio access network device may determine the target cell from the first cells corresponding to the cell identifier of the at least one first cell.
  • the first radio access network device may determine cell 1 as the target cell.
  • the first cell corresponding to the determined cell identifier determined by the second network device according to the predicted movement trajectory is a cell controlled by other radio access network devices.
  • the first radio access network device when it receives the cell identifiers of multiple first cells, it can select from multiple first cells based on the interaction information of multiple first cells interacted with the adjacent second radio access network device.
  • the target cell is selected from the first cells; alternatively, the target cell can also be selected from the plurality of first cells according to the load prediction information based on the plurality of first cells as described in the foregoing embodiment.
  • the first radio access network device may follow the target cell determination method shown in FIG.
  • the target cell is determined from a plurality of first cells, and details are not repeated here.
  • the second network device may obtain the predicted movement trajectory of the terminal according to the historical information of the terminal, and recommend the first radio access network device to the first radio access network device according to the predicted movement trajectory of the terminal.
  • cell identifier so that the first radio access network device can determine the target cell according to the cell identifier of at least one first cell.
  • the handover success rate of the terminal is higher, so that the service quality of the terminal can be guaranteed.
  • the embodiments of the present application also provide a method for determining a target cell, which can also improve the handover success rate of the terminal.
  • the method can also be applied to the application scenarios in which the first radio access network device interacts with the core network device, or the first radio access network device interacts with the network control device in the communication system shown in FIG. 1 .
  • the difference from the aforementioned method for determining the target cell shown in FIG. 7 is that in this method, the first radio access network device can determine the cell identifier of at least one cell according to the historical information of the terminal, and determine the cell identifier of at least one cell according to the historical information of the terminal.
  • the cell ID of the target cell is determined.
  • the core network device and the network control device are also referred to as the second network device hereinafter.
  • FIG. 8 shows another schematic flowchart of the method for determining a target cell provided by an embodiment of the present application.
  • the target cell determination method may include S801-S804.
  • the second network device sends the history information of the terminal to the first radio access network device.
  • the history information of the terminal may be history residency information.
  • the historical residency information reference may be made to the above-mentioned embodiment shown in FIG. 7 , and details are not repeated here.
  • the core network device may actively send the history information of the terminal to the first radio access network device, for example, it may be sent periodically.
  • the core network device may also send the terminal history information to the first radio access network device in a query-response manner.
  • the first radio access network device may send a terminal history information query request to the core network device for Query the historical information of RAN UE NGAP ID3.
  • the core network device can obtain the historical residency information of the terminal identified by the SPUI corresponding to the RAN UE NGAP ID3 according to the corresponding relationship between the RAN UE NGAP ID3 and the SUPI, and send it to the first radio access network device .
  • the first radio access network device may receive terminal history information from the second network device.
  • the first radio access network device generates a predicted movement trajectory of the terminal according to the historical information.
  • the predicted movement trajectory is the same as the predicted movement trajectory described in the embodiment shown in FIG. 7 , and the difference is only that the predicted movement trajectory in this embodiment is generated by the first radio access network device, while the above-mentioned FIG. 7
  • the predicted movement trajectory described in the illustrated embodiment is generated by the second network device, and details are not described herein again.
  • the first radio access network device determines a cell identifier of at least one first cell according to the predicted movement trajectory.
  • the first radio access network device determines the target cell according to the cell identifier of at least one first cell.
  • the first radio access network device may, according to the determined cell identifier of the at least one first cell, select the cell identifier corresponding to the at least one first cell from the cell identifier of the at least one first cell.
  • a target cell is determined.
  • the first cell corresponding to the cell identifier determined by the first radio access network device according to the predicted movement trajectory is all cells controlled by other radio access network devices.
  • the first radio access network device may directly determine the first cell corresponding to the cell identifier. for the target area. If the first radio access network device only determines the cell identities of multiple first cells, the first radio access network device may interact with the multiple first cells interacted with the adjacent second radio access network device based on the information, and select the target cell from the multiple first cells; or, according to the load prediction information based on the multiple first cells described in the foregoing embodiment, the target cell can be selected from the multiple first cells. No longer.
  • the first radio access network device may not obtain historical information from the second network device, but directly generate the predicted movement trajectory of the terminal according to the movement history report information of the terminal in the current serving cell, And according to the predicted movement trajectory, the cell identifier of at least one first cell is determined, and the target cell is further determined based on the cell identifier of the at least one first cell.
  • the first wireless access network device generates a prediction of the terminal according to the historical information (historical residency information) of the terminal sent by the second network device to the terminal.
  • the movement trajectory is more accurate and can be more in line with the actual movement trajectory of the terminal.
  • the first radio access network device may also hand over the terminal to the target cell.
  • each network element for example, a first radio access network device, a first network device (a second radio access network device, a core network device, or a network control device), or a second network device (a core network device) device or network control device), in order to realize the above functions, it includes corresponding hardware structures and/or software modules for performing each function.
  • the embodiment of the present application may further provide a communication apparatus that can be applied to the first radio access network device.
  • FIG. 9 shows a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may include: a receiving unit 901, configured to receive load prediction information from at least one first cell of a first network device, where the first cell is a cell controlled by other radio access network devices; load The prediction information includes at least one of: the number of terminals accessing the first cell in the first time period, the establishment success rate of the PDU session in the first cell in the first time period, and the handover success rate of the first cell in the first time period A sort of.
  • the determining unit 902 is configured to determine a target cell from the at least one first cell according to the load prediction information of the at least one first cell.
  • the determining unit 902 may, according to the preconfigured priorities of different load prediction information, preferentially select the load prediction information with a higher priority as the load prediction information with a higher priority A judgment basis for determining a target cell in a first cell.
  • the load prediction information further includes a confidence level of the load prediction information.
  • the first network device is any one of a core network device, a second radio access network device, and a network control device.
  • FIG. 10 shows another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may further include: a sending unit 903, configured to send a load prediction request to the first network device, where the load prediction request includes the first time period.
  • the receiving unit 901 may be specifically configured to receive load prediction information of at least one first cell sent by the first network device according to the load prediction request.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the load prediction request further includes a load item, and the load item is used to indicate the load prediction information obtained by the request of the sending unit 903 .
  • the receiving unit 901 may be specifically configured to receive load prediction information of at least one first cell actively sent by the first network device.
  • the receiving unit 901 may be specifically configured to receive load prediction information of at least one first cell that is actively sent by the first network device according to a preset period.
  • an embodiment of the present application further provides a communication apparatus that can be applied to a first network device
  • FIG. 11 shows another schematic structural diagram of the communication apparatus provided by the embodiment of the present application.
  • the communication apparatus may include: a sending unit 1101, configured to send load prediction information of at least one first cell to the first radio access network device, so that the first radio access network device Load prediction information of a cell, the target cell is determined from at least one first cell; the first cell is a cell controlled by other radio access network equipment; the load prediction information includes: the number of terminals accessing the first cell in the first time period , at least one of the establishment success rate of the PDU session in the first cell in the first time period, and the handover success rate of the first cell in the first time period.
  • the apparatus further includes: a receiving unit 1102, configured to receive a load prediction request from the first radio access network device, where the load prediction request includes the first time period.
  • the sending unit 1101 may be specifically configured to send load prediction information of at least one first cell to the first radio access network device according to the load prediction request.
  • the load prediction request further includes: a cell identifier of at least one first cell.
  • the load prediction request further includes a load item, where the load item is used to indicate the load prediction information obtained by the request of the first radio access network device.
  • the sending unit 1101 may be specifically configured to actively send the load prediction information of at least one first cell to the first radio access network device.
  • the sending unit 1101 may actively send the load prediction information of the at least one first cell to the first radio access network device according to a preset period.
  • the embodiment of the present application may further provide a communication apparatus that can be applied to the first radio access network device.
  • FIG. 12 shows another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may include: a receiving unit 1201, configured to receive a cell identifier of at least one first cell from a second network device.
  • the determining unit 1202 is configured to determine the target cell according to the cell identifier of the at least one first cell.
  • the embodiment of the present application may further provide a communication apparatus that can be applied to the second network device.
  • FIG. 13 shows another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may include: a sending unit 1301, configured to send a cell identifier of at least one first cell to a first radio access network device, so that the first radio access network device can send the cell identifier of at least one first cell to the first radio access network device according to the at least one first The cell identity of the cell determines the target cell.
  • a sending unit 1301 configured to send a cell identifier of at least one first cell to a first radio access network device, so that the first radio access network device can send the cell identifier of at least one first cell to the first radio access network device according to the at least one first The cell identity of the cell determines the target cell.
  • the apparatus further includes: an acquiring unit 1302, configured to acquire historical information of the terminal.
  • the determining unit 1303 is configured to determine the cell identifier of at least one first cell according to the historical information.
  • the determining unit 1303 may be specifically configured to generate a predicted movement trajectory of the terminal according to the historical information, and determine a cell identifier of at least one first cell according to the predicted movement trajectory.
  • the embodiment of the present application may further provide a communication apparatus that can be applied to the first radio access network device.
  • FIG. 14 shows another schematic structural diagram of the communication apparatus provided by the embodiment of the present application.
  • the communication apparatus may include: a receiving unit 1401, configured to receive terminal history information from a second network device.
  • the determining unit 1402 is configured to determine the cell identifier of at least one first cell according to the historical information, and determine the target cell according to the cell identifier of the at least one first cell.
  • the determining unit 1402 may be specifically configured to generate a predicted movement trajectory of the terminal according to the historical information, and determine a cell identifier of at least one first cell according to the predicted movement trajectory.
  • an embodiment of the present application may further provide a communication apparatus applied to a second network device, and the apparatus may include a sending unit configured to send history information of the terminal to the second network device.
  • an embodiment of the present application further provides a communication apparatus, and the communication apparatus may be applied to any one of the above-mentioned first wireless access network device, first network device, and second network device.
  • FIG. 15 shows another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may include: a transceiver unit 1501 and a processing unit 1502 .
  • the transceiving unit 1501 may be used to send and receive information, or to communicate with other network elements.
  • the processing unit 1502 may be used to process data.
  • the method performed by the first radio access network device as described in the foregoing embodiments may be implemented by the transceiver unit 1501 and the processing unit 1502 .
  • the transceiver unit 1501 and the processing unit 1502 can be used to implement the above-mentioned embodiments. The method performed by the first network device described above.
  • the method performed by the second network device as described in the foregoing embodiments may be implemented by the transceiver unit 1501 and the processing unit 1502 .
  • the division of units in the above apparatus is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into one physical entity, or may be physically separated. And all the units in the device can be realized in the form of software calling through the processing element; also can all be realized in the form of hardware; some units can also be realized in the form of software calling through the processing element, and some units can be realized in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing.
  • All or part of these units can be integrated together, and can also be implemented independently.
  • the processing element described here may also be called a processor, which may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above apparatuses may be one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more DSPs, or, one or more FPGA, or a combination of at least two of these integrated circuit forms.
  • the processing element can be a general-purpose processor, such as a CPU or other processors that can invoke programs.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above unit for receiving is an interface circuit or input circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit or an input circuit used by the chip to receive signals from other chips or devices.
  • the means for transmitting is an interface circuit or output circuit of the device for transmitting signals to other devices.
  • the sending unit is an interface circuit or an output circuit used by the chip to send signals to other chips or devices.
  • an embodiment of the present application may further provide a communication apparatus, which may be applied to any one of the above-mentioned first wireless access network device, first network device, and second network device.
  • the communication apparatus may include: a processor and an interface circuit.
  • the processor may include one or more.
  • the processor is configured to communicate with other devices through the interface circuit, and execute each step performed by the first radio access network device in the above method.
  • the processor is configured to communicate with other devices through the interface circuit, and execute each step performed by the first network device in the above method.
  • the processor is configured to communicate with other devices through the interface circuit, and execute each step performed by the second network device in the above method.
  • the first radio access network device, or the first network device, or the second network device respectively implements the units of each corresponding step in the above method, which may be implemented in the form of a processing element scheduler.
  • an apparatus for a first radio access network device, or a first network device, or a second network device may include a processing element and a storage element, and the processing element invokes a program stored in the storage element to execute the above method embodiments.
  • the storage element may be a storage element on the same chip as the processing element, ie, an on-chip storage element.
  • the program for executing the method performed by the first radio access network device, or the first network device, or the second network device in the above method may be stored on a different chip from the processing element. components, that is, off-chip memory components.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element, so as to call and execute the corresponding first wireless access network device, or the first network device, or the second network in the above method embodiment. The method performed by the device.
  • an embodiment of the present application may further provide a communication apparatus, and the communication apparatus may include a processor configured to execute computer instructions stored in a memory, and when the computer instructions are executed, cause the apparatus to execute the above first wireless A method performed by an access network device, or a first network device, or a second network device.
  • the memory may be located within the communication device or external to the communication device.
  • the processor includes one or more.
  • the unit for the first radio access network device, or the first network device, or the second network device to implement each step in the above method may be configured as one or more processing elements, and these processing elements It can be set on the corresponding first radio access network device, or the first network device, or the second network device, and the processing element here can be an integrated circuit, such as: one or more ASICs, or, one or more DSPs , or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form chips.
  • the units of the first radio access network device, or the first network device, or the second network device that implement the steps in the above method may be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the corresponding method.
  • At least one processing element and a storage element may be integrated in the chip, and the corresponding method may be implemented in the form of a program stored in the storage element being invoked by the processing element; or, at least one integrated circuit may be integrated in the chip for implementing the corresponding method; or , can be combined with the above implementations, the functions of some units are realized in the form of calling programs by processing elements, and the functions of some units are realized in the form of integrated circuits.
  • the processing elements here are the same as those described above, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be one memory or a collective term for multiple storage elements.
  • an embodiment of the present application further provides a chip system, and the chip system can be applied to any one of the above-mentioned first wireless access network device, first network device, and second network device.
  • the chip system includes one or more interface circuits and one or more processors; the interface circuit and the processor are interconnected by lines; the processor receives and executes computer instructions from the memory of the electronic device through the interface circuit, so as to realize the corresponding methods in the above method embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the software product is stored in a program product, such as a computer-readable storage medium, and includes several instructions to cause a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all of the methods described in the various embodiments of the present application. or part of the steps.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • the embodiments of the present application may further provide a computer-readable storage medium, including: computer software instructions; when the computer software instructions run in the first radio access network device or a chip built in the first radio access network device At the time, the first radio access network device may be caused to execute the method performed by the first radio access network device as described in the foregoing embodiments.
  • the first network device is caused to execute the method performed by the first network device as described in the foregoing embodiments.
  • the second network device is caused to execute the method performed by the second network device as described in the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种目标小区确定方法、通信装置及存储介质,涉及通信领域。该方法中,第一无线接入网设备可以接收来自第一网络设备的至少一个第一小区的负载预测信息,并根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。其中,第一小区是其他无线接入网设备控制的小区。负载预测信息可以包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。通过该方法可以提高终端的切换成功率,进而保证终端的服务质量。

Description

目标小区确定方法、通信装置及存储介质
本申请要求于2020年06月29日提交国家知识产权局、申请号为202010605477.8、申请名称为“目标小区确定方法、通信装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种目标小区确定方法、通信装置及存储介质。
背景技术
移动通信系统中,可以通过改变一个处于无线资源控制(radio resource control,RRC)连接态的用户设备(user equipment,UE)的服务小区,为UE提供连续的、无中断的通信服务。例如,在UE的移动过程中,UE接收到的服务小区的信号质量逐渐变差,UE接收到的其逐渐靠近的目标小区的信号质量逐渐变好。当UE接收到的目标小区的信号质量高于服务小区的信号质量一定阈值时,可以将UE切换至目标小区。或者,也可以考虑到不同小区的负载均衡,将UE由当前的服务小区切换至其他小区。例如,当UE当前接入的服务小区的负载过高时,也可以将UE切换至其他负载较低的目标小区。
现有技术中,相邻基站之间可以交互各自对应的小区的负载信息。在进行UE切换时,UE接入的当前小区对应的源基站可以根据相邻基站对应的其他小区的负载信息,从相邻基站对应的其他小区中为UE选择负载较低的目标小区,然后将UE切换到该目标小区中。
但是,上述源基站根据与相邻基站所交互的负载信息,从相邻基站对应的其他邻居小区中为UE选择目标小区,并将UE切换至目标小区的方式中,基站之间对小区的负载信息进行交互的时刻要早于源基站进行UE切换的时刻,所以,邻居小区的负载信息并不能够反映进行UE切换时邻居小区的实际负载状态,从而会导致源基站所选取的目标小区可能并不合适,如:可能会由于目标小区的实际负载在进行UE切换的时刻时已达上限,而使得UE无法成功切换至目标小区。由此可知,现有基于与相邻基站所交互的负载信息确定目标小区的方式并不准确,终端的切换成功率较低。
发明内容
本申请实施例提供一种目标小区确定方法、通信装置及存储介质,可以提高终端的切换成功率。
第一方面,本申请实施例提供一种目标小区确定方法,该方法包括:第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息,第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
该目标小区确定方法中,负载预测信息能够反映出在第一时间段接入第一小区的终 端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。所以,当第一无线接入网设备需要在第一时间段或第一时间段之前为终端切换服务小区时,根据来自第一网络设备的至少一个第一小区的负载预测信息,从至少一个第一小区中确定待切换的目标小区,能够使得所确定的目标小区更加合适,从而可以提高终端的切换成功率,进而保证终端的服务质量。
在一种可能的设计中,当负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上时,第一无线接入网设备可以根据预配置的不同负载预测信息的优先级,优先选择优先级更高的负载预测信息,作为从至少一个第一小区中确定目标小区时的判断依据。
在另外一种可能的设计中,当负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上时,第一无线接入网设备可以根据预配置的不同负载预测信息的权重值或其他加权指标,计算不同负载预测信息的加权平均值或求和结果。然后,第一无线接入网设备可以将计算得到的加权平均值或求和结果,作为从至少一个第一小区中确定目标小区时的判断依据。
在一种可能的设计中,负载预测信息还包括负载预测信息的置信度。
本设计中,第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区时,还可以考虑到负载预测信息的置信度。当存在两个或两个以上的第一小区的负载预测信息相同时,第一无线接入网设备可以进一步根据负载预测信息的置信度,选择置信度最高的负载预测信息对应的第一小区为目标小区,从而进一步保证终端的切换成功率。
在一种可能的设计中,第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
在一种可能的设计中,在所述第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息之前,该方法还包括:第一无线接入网设备向第一网络设备发送负载预测请求,负载预测请求包括第一时间段。
相应地,第一无线接入网设备可以接收第一网络设备根据该负载预测请求所发送的至少一个第一小区的负载预测信息。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
本设计中,通过在负载预测请求中添加小区标识,可以使得第一无线接入网设备可以通过负载预测请求,针对性地向第一网络设备请求获取其他无线接入网设备控制的小区中某几个特定小区的负载预测信息,能够避免第一网络设备向第一无线接入网设备发送不必要的小区的负载预测信息,从而可以节省信令开销。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示第一无线接入网设备请求获得的负载预测信息。
例如,负载项可以用于指示第一无线接入网设备请求获得的负载预测信息为在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中具体的某一种或某几种。
在另外一种可能的设计中,所述第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息,可以包括:第一无线接入网设备接收第一网络设备主动 发送的至少一个第一小区的负载预测信息。
例如,第一网络设备可以按照预设周期向第一无线接入网设备主动发送至少一个第一小区的负载预测信息。
第二方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述第一方面所述方法的功能相对应的单元或模块,例如,接收单元、确定单元等。
其中,接收单元可以用于接收来自第一网络设备的至少一个第一小区的负载预测信息,第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。确定单元可以用于根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
在一种可能的设计中,当负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上时,确定单元可以根据预配置的不同负载预测信息的优先级,优先选择优先级更高的负载预测信息,作为从至少一个第一小区中确定目标小区时的判断依据。
在另外一种可能的设计中,当负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上时,确定单元可以根据预配置的不同负载预测信息的权重值或其他加权指标,计算不同负载预测信息的加权平均值或求和结果。然后,第一无线接入网设备可以将计算得到的加权平均值或求和结果,作为从至少一个第一小区中确定目标小区时的判断依据。
在一种可能的设计中,负载预测信息还包括所述负载预测信息的置信度。
在一种可能的设计中,第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
在一种可能的设计中,该通信装置还可以包括:发送单元,用于向第一网络设备发送负载预测请求,负载预测请求包括第一时间段。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示发送单元请求获得的负载预测信息。
在另外一种可能的设计中,接收单元具体可以用于接收第一网络设备主动发送的至少一个第一小区的负载预测信息。
第三方面,本申请实施例还提供一种通信装置,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行第一方面或第一方面的可能的设计中任一所述的方法。
第四方面,本申请实施例还提供一种通信装置,包括:处理器和接口电路,处理器用于通过接口电路与其它装置通信,并执行第一方面或第一方面的可能的设计中任一所述的方法。
以上第二方面至第四方面所述的通信装置,可以应用于第一无线接入网设备。
第五方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令; 当所述计算机软件指令在第一无线接入网设备或内置在第一无线接入网设备的芯片中运行时,使得第一无线接入网设备执行如第一方面所述的方法。
第六方面,本申请实施例还提供一种目标小区确定方法,该方法包括:第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。
该目标小区确定方法中,负载预测信息能够反映出在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。所以,当第一无线接入网设备需要在第一时间段或第一时间段之前为终端切换服务小区时,根据来自第一网络设备的至少一个第一小区的负载预测信息,从至少一个第一小区中确定待切换的目标小区,能够使得所确定的目标小区更加合适,从而可以提高终端的切换成功率,进而保证终端的服务质量。
在一种可能的设计中,负载预测信息还包括负载预测信息的置信度。
本设计中,第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区时,还可以考虑到负载预测信息的置信度。当存在两个或两个以上的第一小区的负载预测信息相同时,第一无线接入网设备可以进一步根据负载预测信息的置信度,选择置信度最高的负载预测信息对应的第一小区为目标小区,从而进一步保证终端的切换成功率。
在一种可能的设计中,第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
在一种可能的设计中,在所述第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息之前,该方法还包括:第一网络设备接收来自第一无线接入网设备的负载预测请求,负载预测请求包括第一时间段。
相应地,第一网络设备可以根据该负载预测请求,向第一无线接入网设备发送至少一个第一小区的负载预测信息。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
本设计中,通过在负载预测请求中添加小区标识,可以使得第一无线接入网设备可以通过负载预测请求,针对性地向第一网络设备请求获取其他无线接入网设备控制的小区中某几个特定小区的负载预测信息,能够避免第一网络设备向第一无线接入网设备发送不必要的小区的负载预测信息,从而可以节省信令开销。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示第一无线接入网设备请求获得的负载预测信息。
在另外一种可能的设计中,所述第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息,可以包括:第一网络设备主动向第一无线接入网设备发送至少一个第一小区的负载预测信息。
例如,第一网络设备可以按照预设周期主动向第一无线接入网设备主动发送至少一个第一小区的负载预测信息。
第七方面,本申请实施例提供一种通信装置,该装置具有实现上述第六方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件 包括一个或多个与上述第六方面所述方法的功能相对应的单元或模块,例如,发送单元。
其中,发送单元可以用于向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。
在一种可能的设计中,该装置还包括:接收单元,用于接收来自第一无线接入网设备的负载预测请求,负载预测请求包括所述第一时间段。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示第一无线接入网设备请求获得的负载预测信息。
在一种可能的设计中,发送单元具体可以用于主动向第一无线接入网设备发送至少一个第一小区的负载预测信息。
第八方面,本申请实施例还提供一种通信装置,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行第六方面或第六方面的可能的设计中任一所述的方法。
第九方面,本申请实施例还提供一种通信装置,包括:处理器和接口电路,处理器用于通过接口电路与其它装置通信,并执行第六方面或第六方面的可能的设计中任一所述的方法。
以上第七方面至第九方面所述的通信装置,可以应用于第一网络设备。
第十方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令;当所述计算机软件指令在第一网络设备或内置在第一网络设备的芯片中运行时,使得第一网络设备执行如第六方面所述的方法。
可以理解地,上述提供的第二方面至第十方面所能达到的有益效果,可参考第一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
第十一方面,本申请实施例还提供一种目标小区确定方法,该方法包括:第一无线接入网设备接收来自第二网络设备的至少一个第一小区的小区标识。第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
其中,第二网络设备可以是核心网设备或网络控制设备。
本设计中,第一无线接入网设备接收到的至少一个第一小区的小区标识,可以由第二网络设备根据终端的历史信息,获取终端的预测移动轨迹,并根据终端的预测移动轨迹所确定。第一无线接入网设备将终端切换至根据至少一个第一小区的小区标识所确定的目标小区时,终端的切换成功率更高,可以保证终端的服务质量。
第十二方面,本申请实施例提供一种通信装置,该装置具有实现上述第十一方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述第十一方面所述方法的功能相对应的单元或模块,例如,接收单元、确定单元等。
其中,接收单元可以用于接收来自第二网络设备的至少一个第一小区的小区标识。确定单元可以用于根据至少一个第一小区的小区标识确定目标小区。
第十三方面,本申请实施例还提供一种通信装置,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行第十一方面所述 的方法。
第十四方面,本申请实施例还提供一种通信装置,包括:处理器和接口电路,处理器用于通过接口电路与其它装置通信,并执行第十一方面所述的方法。
以上第十二方面至第十四方面所述的通信装置,可以应用于第一无线接入网设备。
第十五方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令;当所述计算机软件指令在第一无线接入网设备或内置在第一无线接入网设备的芯片中运行时,使得第一无线接入网设备执行如第十一方面所述的方法。
第十六方面,本申请实施例还提供一种目标小区确定方法,该方法包括:第二网络设备向第一无线接入网设备发送至少一个第一小区的小区标识,以使第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
其中,第二网络设备可以是核心网设备或网络控制设备。
在一种可能的设计中,在所述第二网络设备向第一无线接入网设备发送至少一个第一小区的小区标识之前,该方法还包括:第二网络设备获取终端的历史信息。第二网络设备根据历史信息,确定至少一个第一小区的小区标识。
在一种可能的设计中,所述第二网络设备根据历史信息,确定至少一个第一小区的小区标识,包括:第二网络设备根据历史信息,生成终端的预测移动轨迹。第二网络设备根据预测移动轨迹,确定至少一个第一小区的小区标识。
本设计中,第二网络设备向第一无线接入网设备发送的至少一个第一小区的小区标识,是由第二网络设备根据终端的历史信息,获取终端的预测移动轨迹,并根据终端的预测移动轨迹所确定。第一无线接入网设备将终端切换至根据至少一个第一小区的小区标识所确定的目标小区时,终端的切换成功率更高,可以保证终端的服务质量。
第十七方面,本申请实施例提供一种通信装置,该装置具有实现上述第十六方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述第十六方面所述方法的功能相对应的单元或模块,例如,发送单元。
其中,发送单元可以用于向第一无线接入网设备发送至少一个第一小区的小区标识,以使第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
在一种可能的设计中,该装置还包括:获取单元,用于获取终端的历史信息。确定单元,用于根据历史信息,确定至少一个第一小区的小区标识。
在一种可能的设计中,确定单元具体可以用于根据历史信息,生成终端的预测移动轨迹,并根据预测移动轨迹,确定至少一个第一小区的小区标识。
第十八方面,本申请实施例还提供一种通信装置,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行第十六方面所述的方法。
第十九方面,本申请实施例还提供一种通信装置,包括:处理器和接口电路,处理器用于通过接口电路与其它装置通信,并执行第十六方面所述的方法。
以上第十七方面至第十九方面所述的通信装置,可以应用于第二网络设备。
第二十方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令;当所述计算机软件指令在第二网络设备或内置在第二网络设备的芯片中运行时,使得第二网络设备执行如第十六方面所述的方法。
可以理解地,上述提供的第十二方面至第二十方面所能达到的有益效果,可参考第 十一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
第二十一方面,本申请实施例还提供一种目标小区确定方法,该方法包括:第一无线接入网设备接收来自第二网络设备的终端历史信息。第一无线接入网设备根据历史信息,确定至少一个第一小区的小区标识。第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
其中,第二网络设备可以是核心网设备或网络控制设备。
在一种可能的设计中,所述第一无线接入网设备根据历史信息,确定至少一个第一小区的小区标识,包括:第一无线接入网设备根据历史信息,生成终端的预测移动轨迹。第一无线接入网设备根据预测移动轨迹,确定至少一个第一小区的小区标识。
第二十二方面,本申请实施例提供一种通信装置,该装置具有实现上述第二十一方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述第二十一方面所述方法的功能相对应的单元或模块,例如,接收单元、确定单元等。
其中,接收单元可以用于接收来自第二网络设备的终端历史信息。确定单元可以用于根据历史信息,确定至少一个第一小区的小区标识;第一小区是其他无线接入网设备控制的小区。确定单元还用于根据至少一个第一小区的小区标识确定目标小区。
在一种可能的设计中,确定单元具体可以用于根据历史信息,生成终端的预测移动轨迹,并根据预测移动轨迹,确定至少一个第一小区的小区标识。
第二十三方面,本申请实施例还提供一种通信装置,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行第二十一方面所述的方法。
第二十四方面,本申请实施例还提供一种通信装置,包括:处理器和接口电路,处理器用于通过接口电路与其它装置通信,并执行第二十一方面所述的方法。
以上第二十二方面至第二十四方面所述的通信装置,可以应用于第一无线接入网设备。
第二十五方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令;当所述计算机软件指令在第一无线接入网设备或内置在第一无线接入网设备的芯片中运行时,使得第一无线接入网设备执行如第二十一方面所述的方法。
可以理解地,上述提供的第二十二方面至第二十五方面所能达到的有益效果,可参考第二十一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
第二十六方面,本申请实施例还提供一种通信装置,包括:收发单元和处理单元。收发单元可以用于收发信息,或者用于与其他网元通信。处理单元可以用于对数据进行处理。如:该装置可以通过收发单元和处理单元实现如第一方面、第六方面、第十一方面、第十六方面、以及第二十一方面中的任一方面所述的方法。
第二十七方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品被执行时可以实现如第一方面、第六方面、第十一方面、第十六方面、以及第二十一方面中的任一方面所述的方法。
第二十八方面,本申请实施例还提供一种芯片系统,该芯片系统应用于第一无线接入网设备;芯片系统包括一个或多个接口电路和一个或多个处理器;接口电路和处理器通过线路互联;处理器通过接口电路从电子设备的存储器接收并执行计算机指令,以实现如第一方面、第十一方面、以及第二十一方面中的任一方面所述的方法。
第二十九方面,本申请实施例还提供一种芯片系统,该芯片系统应用于第一网络设备;芯片系统包括一个或多个接口电路和一个或多个处理器;接口电路和处理器通过线路互联;处理器通过接口电路从电子设备的存储器接收并执行计算机指令,以实现如第六方面所述的方法。
第三十方面,本申请实施例还提供一种芯片系统,该芯片系统应用于第二网络设备;芯片系统包括一个或多个接口电路和一个或多个处理器;接口电路和处理器通过线路互联;处理器通过接口电路从电子设备的存储器接收并执行计算机指令,以实现如第十六方面所述的方法。
可以理解地,上述提供的第二十六方面至第三十方面所能达到的有益效果,可参考第一方面、第六方面、第十一方面、第十六方面、以及第二十一方面等所述的有益效果,此处不再赘述。
附图说明
图1示出了本申请实施例提供的一种通信系统的组成示意图;
图2示出了本申请实施例提供的一种网络设备的组成示意图;
图3示出了本申请实施例提供的目标小区确定方法的流程示意图;
图4示出了本申请实施例提供的无线接入网设备和核心网设备之间的通信架构示意图;
图5示出了本申请实施例提供的不同无线接入网设备之间的通信架构示意图;
图6示出了本申请实施例提供的目标小区确定方法的另一流程示意图;
图7示出了本申请实施例提供的目标小区确定方法的又一流程示意图;
图8示出了本申请实施例提供的目标小区确定方法的又一流程示意图;
图9示出了本申请实施例提供的通信装置的结构示意图;
图10示出了本申请实施例提供的通信装置的另一结构示意图;
图11示出了本申请实施例提供的通信装置的又一结构示意图;
图12示出了本申请实施例提供的通信装置的又一结构示意图;
图13示出了本申请实施例提供的通信装置的又一结构示意图;
图14示出了本申请实施例提供的通信装置的又一结构示意图;
图15示出了本申请实施例提供的通信装置的又一结构示意图。
具体实施方式
移动通信系统中,可以通过改变一个RRC连接态的UE的服务小区,为UE提供连续的、无中断的通信服务。例如,在UE的移动过程中,UE接收到的服务小区的信号质量逐渐变差,UE接收到的其逐渐靠近的目标小区的信号质量逐渐变好。当UE接收到的目标小区的信号质量高于服务小区的信号质量一定阈值时,可以将UE切换至目标小区。或者,也可以考虑到不同小区的负载均衡,将UE由当前的服务小区切换至其他小区。例如,当UE当前接入的服务小区的负载过高时,也可以将UE切换至其他负载较低的目标小区。
这里可以将UE当前接入的服务小区对应的基站称之为源基站。在进行UE切换时,源基站需要先进行目标小区判决,为UE选择合适的目标小区。然后,将UE切换到目标小区中。而源基站所选择的目标小区的负载会影响UE的服务质量。例如,当目标小区 的负载较大时,若将UE切换至目标小区,则可能会出现UE无法接入该目标小区,导致UE的通信服务中断。
现有技术中,考虑到目标小区的负载对UE的服务质量的影响,所采取的目标小区的判决策略通常为:相邻基站之间可以交互各自对应的小区的负载信息。在进行终端切换时,源基站可以根据相邻基站对应的其他邻居小区的负载信息,从相邻基站对应的其他邻居小区中为UE选择合适的目标小区。例如,可以选择当前负载较低的邻居小区作为目标小区。
其中,负载信息可以包括无线资源状态(radio resource status)、传输层容量指示(transport layer capacity indicator)、复合可用容量组(composite available capacity group)、切片可用容量(slice available capacity)、激活状态UE的数量(number of active UEs)、RRC连接(RRC connections)等。无线资源状态可以是上行/下行流量的物理资源块(physical resource block,PRB)利用率。传输层容量指示可以是传输网络提供的可用容量。复合可用容量组可以是上行/下行的整体可用资源层次,例如,0表示没有可用资源,100表示最大可用资源。切片可用容量可以是每个小区中每个网络切片的可用资源相对于该小区总资源的占比。激活状态UE的数量可以是在上行、下行或者上下行上有应用正在发送和接收数据的平均用户数或者最大用户数。RRC连接可以是RRC的连接数量,以及可用的RRC连接容量值,其中可用的RRC连接容量值用于指示RRC连接数量相对于小区所支持的最大RRC连接数量的剩余百分比,例如,0表示没有可用容量,100表示最大可用容量。
但是,源基站基于上述现有的目标小区的判决策略,根据相邻基站对应的其他邻居小区的负载信息,从相邻基站对应的其他邻居小区中为UE选择目标小区,并将UE切换至目标小区的方式中,基站之间对小区的负载信息进行交互的时刻要早于源基站进行UE切换的时刻,所以,邻居小区的负载信息并不能够反映UE切换时邻居小区的实际负载状态,从而会导致源基站所选取的目标小区可能并不合适,如:可能会由于目标小区的实际负载在进行UE切换的时刻时已达上限,而使得UE无法成功切换至目标小区。由此可知,现有基于与相邻基站所交互的负载信息确定目标小区的方式并不准确,终端的切换成功率较低。
基于此,本申请实施例提供一种目标小区确定方法。该方法中,第一网络设备可以获取至少一个第一小区在第一时间段的负载预测信息,并发送给第一无线接入网设备,第一小区是其他无线接入网设备控制的小区。第一无线接入网设备可以接收来自第一网络设备的至少一个第一小区的负载预测信息,并根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
其中,负载预测信息可以包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元(protocol data unit,PDU)会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。
本申请实施例提供的该目标小区确定方法中,负载预测信息能够反映出在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种,所以,第一无线接入网设备根据来自第一网络设备的至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区时,能够根据负载预测信息选择出更加合适的目标小区,从而在将终端切换至该目标小区时,切换成功率可以更高,进而可以保证终端的服务质量。
可选地,第一无线接入网设备可以在上述第一时间段内对终端进行切换,或者,第一无线接入网设备也可以在第一时间段之前对终端进行切换,本申请对此不作限制。
以下结合附图对本申请实施例提供的目标小区确定方法进行示例性说明。
需要说明的是,在本申请的描述中,“第一”、“第二”等字样仅仅是为了区分描述,并不用于对某个特征的特别限定。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。
图1示出了本申请实施例提供的一种通信系统的组成示意图。
如图1所示,本申请实施例的通信系统可以包括:终端110、第一无线接入网(radio access network,RAN)设备120、第二无线接入网设备130、以及核心网设备140。
其中,第一无线接入网设备120和第二无线接入网设备130也可以称之为下一代无线接入网设备。终端110可以通过第一无线接入网设备120或第二无线接入网设备130,与核心网设备140进行通信。第一无线接入网设备120或第二无线接入网设备130可以为终端110提供无线资源管理、服务质量管理、数据加密和压缩等功能服务。
第一无线接入网设备120和/或第二无线接入网设备130与核心网设备140之间可以通过下一代(next generation,NG)接口进行通信,不同的无线接入网设备(包括前述第一无线接入网设备120和第二无线接入网设备130)之间可以通过Xn接口进行通信。
可选地,该通信系统可以是宽带码分多址(wideband code division multiple access,WCDMA)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代移动通信技术(fifth-generation,5G)通信系统、以及其他应用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的无线通信系统等,本申请对该通信系统的具体类型不作限制。
可选地,该通信系统中的终端110,或者,也可以称之为UE,可以是移动电话(“蜂窝”电话)、手机、电脑,无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)以及用于在无线系统上进行通信的其它设备等,本申请对终端110的具体表现形式也不作限制。
一些实施例中,第一无线接入网设备120和/或第二无线接入网设备130可以是下一代节点(next generation node B,gNB)、下一代演进型节点(next generation evolved node B,ng-eNB)、集中单元(central unit,CU)、分布式单元(distributed unit,DU)、集 中单元-控制平面(central unit-control plane,CU-CP)、集中单元-用户平面(central unit-user plane,CU-UP)等。
其中,gNB可以为终端110提供新无线(new radio,NR)的控制面和/或用户面的协议和功能,并且接入到5G核心网(5th generation core,5GC)。ng-eNB可以为终端110提供演进的通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)的控制面和/或用户面的协议和功能,并且接入到5GC。CU主要包括了gNB的RRC层、业务数据适配协议(service data adaptation protocol,SDAP)层和分组数据汇聚协议(packet data convergence protocol,PDCP)层,或者ng-eNB的RRC层和PDCP层。DU主要包括了gNB或者ng-eNB的无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理层。CU-CP主要包括了gNB-CU或者ng-eNB-CU中的RRC层,以及PDCP层中的控制面。CU-UP主要包括了gNB-CU或者ng-eNB-CU中的SDAP层、以及PDCP层中的用户面。
一些实施例中,核心网设备140可以包括会话管理功能(session management function,SMF)、接入和移动性管理功能(access and mobility management function,AMF)、网络数据分析功能(network data analytics function,NWDAF)、用户面功能(user plane function,UPF)等。
其中,SMF主要负责会话管理(如:会话建立、会话修改和会话释放)、UE的IP地址分配和管理、用户面功能的选择和控制、非接入层(non-access stratum,NAS)消息中会话管理部分的终结等。AMF主要负责接入控制、移动性管理、附着与去附着以及网关选择等功能。NWDAF主要负责数据的收集、分析等功能。UPF主要负责报文路由和转发等功能。
需要说明的是,前述SMF、AMF、NWDAF、UPF等仅仅为对核心网设备140的示例性说明,本申请对此并不作限制。
可以理解的,前述图1所示的通信系统,仅仅是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。例如,该通信系统中还可以包括其他设备,如:网络控制设备。网络控制设备可以是操作管理维护(operation administration and maintenance,OAM)系统,也称之为网管系统。网络控制设备可以对前述第一无线接入网设备120、第二无线接入网设备130和核心网设备140进行管理。
另外,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2示出了本申请实施例提供的一种网络设备的组成示意图。该网络设备可以是前述图1所示的通信系统中的第一无线接入网设备120、第二无线接入网设备130、以及核心网设备140中的任意一种设备,或者也可以是前述网络控制设备。如图2所示,该网络设备可以包括:至少一个处理器21,存储器22、通信接口23、总线24。
下面结合图2对网络设备的各个构成部件进行具体的介绍。
处理器21是网络设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者还可以是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行网络设备的各种功能。例如,当网络设备为第一无线接入网设备120时,可以执行本申请实施例提供的目标小区确定方法中,第一无线接入网设备120所执行的步骤。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体的实现中,作为一种实施例,网络设备可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22用于存储执行本申请方案网络设备执行的方法步骤的软件程序,并由处理器21来控制执行。存储器22可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器22可以是独立存在,通过总线24与处理器21相连接。或者,存储器22也可以和处理器21集成在一起,在此不作限制。
通信接口23,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如:当网络设备为第一无线接入网设备120时,可以和核心网设备140进行通信。通信接口23可以是以太网接口,无线接入网(radio access network,RAN)接口,无线局域网(wireless local area networks,WLAN)接口等。通信接口23可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线24,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component interconnect,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3示出了本申请实施例提供的目标小区确定方法的流程示意图。如图3所示,该目标小区确定方法可以包括S301-S303。
S301、第一无线接入网设备向第一网络设备发送负载预测请求。
在一种可能的设计中,该负载预测请求可以仅仅作为触发请求,如:负载预测请求中可以包括一个触发指示,当第一网络设备接收到该负载预测请求时,可以触发第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息。第一小区是指其他无线接入网设备(如:图1中所示的第二无线接入网设备)控制的小区。
在另外一种可能的设计中,该负载预测请求还可以包括:至少一个第一小区的小区标识。
负载预测请求中包含的小区标识可以是新无线小区全球标识(NR cell global  identifier,NR CGI),可以用于全球唯一标识一个新无线小区。或者,小区标识还可以是物理小区标识(physical cell identifier,PCI)。
本设计中,通过在负载预测请求中添加小区标识,可以使得第一无线接入网设备可以通过负载预测请求,针对性地向第一网络设备请求获取其他无线接入网设备控制的小区中某几个特定小区的负载预测信息,能够避免第一网络设备向第一无线接入网设备发送不必要的小区的负载预测信息,从而可以节省信令开销。
例如,其他无线接入网设备控制的小区包括:小区1、小区2、小区3和小区4,则第一无线接入网设备可以通过含有小区标识的负载预测请求,向第一网络设备请求获取小区1、小区2、小区3和小区4中的任意一个或多个小区的负载预测信息。而不是由第一网络设备将小区1、小区2、小区3和小区4的负载预测信息均发送给第一无线接入网设备,从而有效节省了信令开销。
一些实施例中,第一网络设备可以是核心网设备或第二无线接入网设备。核心网设备或第二无线接入网设备的具体类型,可以参考关于前述图1所示的通信系统中的相关描述中所述。
当第一网络设备为核心网设备时,第一无线接入网设备可以通过控制面消息向核心网设备发送负载预测请求,例如,NG建立请求(NG setup request)消息,或者RAN配置更新(RAN configuration update)消息。上述控制面消息可以通过NG接口的控制面协议进行传输,例如,通过下一代应用协议(next generation application protocol,NGAP)进行传输等。
或者,第一无线接入网设备可以通过PDU会话用户面协议向核心网设备发送负载预测请求,例如,上行PDU会话信息(uplink PDU session information)。其中,PDU会话用户面协议是一种NG接口的用户面协议,用于为接入网设备和UPF之间的PDU会话用户面的PDU提供非保证的分发。
又或者,第一无线接入网设备可以通过高层数据分析协议附件(high data analytics protocol annex,HDAPa),将负载预测请求发送给核心网设备。例如,图4示出了本申请实施例提供的无线接入网设备和核心网设备之间的通信架构示意图。图4中,L1表示物理层,L2表示数据链路层,网络协议(internet protocol,IP)表示网络层,流控制传输协议(stream control transmission protocol,SCTP)表示传输层,NGAP以及HDAPa表示应用层。无线接入网设备和核心网设备之间可以基于HDAPa协议进行数据传输。例如,HDAPa协议可以支持无线接入网设备和核心网设备之间的数据分割、数据排序、以及数据安全(如:数据完整性保护、数据加密、数据解密)等功能。HDAPa可使用NGAP提供的服务,即,HDAPa消息可以承载在NGAP消息中。
当第一网络设备为第二无线接入网设备时,第一无线接入网设备可以通过控制面消息向第二无线接入网设备发送负载预测请求,例如,检索UE上下文请求(retrieve UE context request)消息、或者Xn建立请求(Xn setup request)消息。上述控制面消息可以通过Xn接口的控制面协议进行传输,例如,通过Xn接口应用协议(xn application protocol,XNAP)进行传输。
或者,第一无线接入网设备可以通过新无线用户面协议向第二无线接入网设备发送负载预测请求,例如,下行用户数据(downlink user data)。新无线用户面协议是一种Xn接口的用户面协议,用于为无线接入网设备之间的用户面PDU提供非保证的分发。
又或者,第一无线接入网设备可以通过b类型高层数据分析协议(high data analytics  protocol type b,HDAPb),将负载预测请求发送给第二无线接入网设备。例如,图5示出了本申请实施例提供的不同无线接入网设备之间的通信架构示意图。图5中,L1表示物理层,L2表示数据链路层,网络协议(internet protocol,IP)表示网络层,流控制传输协议(stream control transmission protocol,SCTP)表示传输层,XNAP以及HDAPb表示应用层。第一无线接入网设备和第二无线接入网设备之间可以基于HDAPb协议进行数据传输。例如,HDAPb协议可以支持第一无线接入网设备和第二无线接入网设备之间的数据分割、数据排序、以及数据安全(如:数据完整性保护、数据加密、数据解密)等功能。HDAPb可使用XNAP提供的服务,即,HDAPb消息可以承载在XNAP消息中。
另外一些实施例中,第一网络设备也可以是上述网络控制设备。网络控制设备与第一无线接入网设备之间也可以进行数据传输,在此不在赘述。
相应地,第一网络设备可以接收来自第一无线接入网设备的负载预测请求。其中,负载预测请求包括第一时间段。第一网络设备可以根据接收到的该负载预测请求,预测获取其他无线接入网设备控制的小区在第一时间段的负载预测信息,并返回给第一无线接入网设备。如:可以执行S302。
S302、第一网络设备根据负载预测请求,向第一无线接入网设备发送至少一个第一小区的负载预测信息。
相应地,第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息。
其中,负载预测信息可以包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。
在第一时间段接入第一小区的终端数量是指第一网络设备预测到的在第一时间段时第一小区中的终端总数量,可以包括RRC连接(RRC connected)状态的终端数量以及RRC非激活(RRC inactive)状态的终端数量。在第一时间段第一小区中PDU会话的建立成功率是指第一网络设备预测到的在第一时间段时,第一小区中成功建立PDU会话的概率。在第一时间段第一小区的切换成功率是指第一网络设备预测到的在第一时间段时,终端从其他小区切换到第一小区的总的切换成功率。
可选地,第一网络设备对第一小区的负载预测信息进行预测的步骤可以是在接收到负载预测请求之后,或者,也可以是在接收到负载预测请求之前,在此不作限制。另外,第一时间段可以由第一网络设备进行确定,或者,也可以由第一无线接入网设备通过负载预测请求向第一网络设备指示,在此亦不作限制。
例如,第一网络设备可以主动预测在第一时间段第一小区中PDU会话的建立成功率、在第一时间段第一小区的切换成功率等。或者,第一无线接入网设备发送给第一网络设备的负载预测请求中还可以包括时间指示信息,如:可以是第一时间段对应的具体时间,该时间指示信息可以指示第一网络设备预测在第一时间段第一小区中PDU会话的建立成功率、在第一时间段第一小区的切换成功率等。
下面以负载预测信息为在第一时间段第一小区中PDU会话的建立成功率为例,对第一网络设备预测负载预测信息的过程进行说明。
可选地,第一网络设备中可以预先配置有训练好的神经网络模型,第一网络设备可以通过该神经网络模型确定上述每个小区对应的负载预测信息。例如,用于训练该神经网络模型的神经网络可以是亚力克斯网络(AlexNet)。第一网络设备可以从SMF处获 取第一小区中成功建立PDU会话的历史数据,并将该历史数据输入上述神经网络模型,神经网络模型即可输出在第一时间段第一小区中PDU会话的建立成功率,作为第一小区对应的负载预测信息。
类似地,第一网络设备也可以将接入第一小区的终端数量的历史数据、或者第一小区的切换成功率的历史数据输入上述神经网络模型,从而得到在第一时间段接入第一小区的终端数量、或者在第一时间段第一小区的切换成功率,作为第一小区对应的负载预测信息,在此不在赘述。
当然,可以理解的,每个第一小区对应的负载预测信息,还包含有该第一小区的小区标识。例如,小区标识可以与上述负载预测请求中包含的小区标识相同,可以是NR CGI或PCI。当第一网络设备为核心网设备时,核心网设备可以通过以下方式向第一无线接入网设备发送负载预测信息:1)通过NG建立响应(NG setup response)消息、或者AMF配置更新(AMF configuration update)消息等控制面消息,发送负载预测信息。上述控制面消息可以通过NG接口的控制面协议进行传输,例如,通过NGAP进行传输等。2)通过PDU会话用户面协议向第一无线接入网设备发送负载预测信息,例如,下行PDU会话信息(downlink PDU session information)。3)可以参考上述图4所示,核心网设备可以通过HDAPa协议将负载预测信息发送给第一无线接入网设备。
当第一网络设备为第二无线接入网设备时,第二无线接入网设备可以通过以下方式向第一无线接入网设备发送负载预测信息:1)通过控制面消息发送负载预测信息,例如,Xn建立请求(Xn setup request)消息,或者NG-RAN节点配置更新(NG-RAN node configuration update)消息。上述控制面消息可以通过Xn接口的控制面协议进行传输,例如,通过XNAP进行传输。2)通过新无线用户面协议发送负载预测信息,例如,辅助信息数据(Assistance Information Data)。3)可以参考上述图5所示,第二无线接入网设备可以通过HDAPb协议将负载预测信息发送给第一无线接入网设备。
类似地,当第一网络设备为网络控制设备时,网络控制设备也可以向第一无线接入网设备发送负载预测信息,同样不再赘述。
S303、第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
举例说明:假设第一无线接入网设备接收到2个第一小区的负载预测信息,2个第一小区分别为小区1和小区2。则,第一无线接入网设备可以根据小区1和小区2各自的负载预测信息,从小区1和小区2中确定目标小区。例如,若小区1和小区2对应的负载预测信息均为切换成功率,则第一无线接入网设备可以从小区1和小区2中选择切换成功率较高的作为目标小区。
或者,一些实施例中,也可以结合终端的位置,并根据上述至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。其中,终端的位置可以是终端当前的物理位置,如:全球定位系统(global positioning system,GPS)坐标,或者,终端的位置也可以通过终端上报的不同第一小区的参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、以及信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一种或多种进行表示。
以终端的位置通过RSRP表示为例,假设负载预测信息为切换成功率,则第一无线接入网设备可以先根据不同第一小区的切换成功率,选择切换成功率满足条件(如:切 换成功率均高于某个阈值)的多个备选第一小区;然后,可以根据从多个备选第一小区中选择RSRP最高的第一小区作为目标小区。或者,第一无线接入网设备也可以先根据不同第一小区的RSRP,选择RSRP均大于某个阈值的多个备选第一小区;然后,可以从多个备选第一小区中选择切换成功率最高的第一小区作为目标小区。
需要说明的是,上述结合RSRP和负载预测信息确定目标小区的方式仅仅为示例性说明,本申请其他实施例中,也可以将负载预测信息与RSRQ、SINR、或者终端的物理位置等中的一种或多种进行结合,共同确定目标小区,在此不作限制。
下面分别对第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区时,在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率三种负载预测信息所具备的有益效果进行说明。
1)在将某个终端的服务小区切换至目标小区的过程中,当有其他非激活状态的终端也发起网络接入并建立PDU会话时,这些终端会和切换终端竞争网络资源,从而影响切换的成功率或者切换终端在目标小区的服务质量。而本申请实施例中,当负载预测信息包括在第一时间段接入第一小区的终端数量时,第一无线接入网设备可以根据在第一时间段接入第一小区的终端数量,从至少一个第一小区中选择在第一时间段接入第一小区的终端数量最少的小区作为目标小区,从而可以使得所确定的目标小区中,和切换终端竞争网络资源的终端更少,进而可以提高切换成功率,同时保证终端在目标小区的服务质量。
2)受网络运营策略等的影响,目标小区可能会限制PDU会话的建立数量。在将某个终端切换至目标小区时,目标小区可能虽然允许终端接入,但是会限制终端在目标小区建立PDU会话,从而导致终端切换失败。而本申请实施例中,当负载预测信息包括在第一时间段第一小区中PDU会话的建立成功率时,第一无线接入网设备可以根据在第一时间段第一小区中PDU会话的建立成功率,从至少一个第一小区中选择在第一时间段第一小区中PDU会话的建立成功率最高的小区作为目标小区,从而可以使得在将终端切换至所确定的目标小区时,切换成功率可以更高。
3)对于任意一个第一小区而言,根据所有从其他小区切换至该第一小区的终端切换成功的次数和切换失败的次数,可以得知该第一小区的切换成功率。第一无线接入网设备在将某个终端切换至该第一小区时,该第一小区的切换成功率也会显著影响到该终端是否能够切换成功。而本申请实施例中,当负载预测信息包括在第一时间段第一小区的切换成功率时,第一无线接入网设备可以根据在第一时间段第一小区的切换成功率,从至少一个第一小区中选择在第一时间段第一小区的切换成功率最高的小区作为目标小区,从而同样可以使得在将终端切换至所确定的目标小区时,切换成功率可以更高。
由此可知,本申请实施例中,负载预测信息能够反映出在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。所以,当第一无线接入网设备需要对终端进行切换时,根据来自第一网络设备的至少一个第一小区的负载预测信息,从至少一个第一小区中确定待切换的目标小区,能够使得所确定的目标小区更加合适,从而可以提高终端的切换成功率,进而保证终端的服务质量。
一些实施例中,负载预测信息可以同时包括在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成 功率中的两种或三种。第一无线接入网设备根据负载预测信息,确定目标小区时,可以综合考虑负载预测信息中所包括的两种或三种信息。
例如,在一种可能的设计中,第一无线接入网设备中还可以配置有负载预测信息的优先级。当第一无线接入网设备接收到的负载预测信息包括在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上(即三种)时,第一无线接入网设备可以根据配置的负载预测信息的优先级,对目标小区进行确定。
如:在本设计的一种实施方式中,负载预测信息的优先级可以为:切换成功率的优先级高于PDU会话建立成功率的优先级,PDU会话建立成功率的优先级高于终端数量的优先级。则第一无线接入网设备首先可以从至少一个第一小区中,选择在第一时间段切换成功率最高的第一小区作为目标小区。如果存在至少两个第一小区在第一时间段的切换成功率相同,则第一无线接入网设备可以从在第一时间段的切换成功率相同的至少两个第一小区中,选择PDU会话建立成功率最高的作为目标小区等。类似地,还可以进一步根据在第一时间段接入第一小区的终端数量进行目标小区的选择,在此不再赘述。
需要说明的是,上述负载预测信息的优先级仅仅为示例性说明,在本设计的其他实施方式中,负载预测信息的优先级也可以是其他设置方式,本申请在此不作限制。
又例如,在另外一种可能的设计中,第一无线接入网设备中也可以预设有负载预测信息的权重值或其他加权指标。以负载预测信息同时包括在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率三种为例:第一无线接入网设备可以根据在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率三种负载预测信息分别对应的权重值,计算三种负载预测信息的加权平均值或求和结果。然后,第一无线接入网设备可以根据计算得到的三种负载预测信息的加权平均值或求和结果,对目标小区进行确定。
如前述实施例中所述,第一网络设备可以通过神经网络模型确定第一小区对应的负载预测信息。而置信度是神经网络的固有属性,能够用于指示神经网络输出的预测信息的可信程度。因此,神经网络模型在输出第一小区对应的负载预测信息时,也可以输出该负载预测信息对应的置信度。
基于这样的理解,在一种可能的设计中,负载预测信息还可以包括负载预测信息的置信度。
负载预测信息的置信度可以用于指示该负载预测信息的可信程度。例如,置信度可以用百分比来表示,置信度的数值越高,表示对应负载预测信息的可信程度越高。如:负载预测信息的置信度可以表示为60%、70%、85%等。又例如,置信度可以用高、中、低来表示。
本设计中,第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区时,还可以考虑到负载预测信息的置信度。
同样以第一无线接入网设备接收到小区1和小区2的负载预测信息为例:若小区1和小区2对应的负载预测信息中均为切换成功率、且切换成功率相同,则第一无线接入网设备可以从小区1和小区2中选择对应负载预测信息的置信度最高的作为目标小区。
在一种可能的设计中,负载预测请求还可以包括负载项,负载项用于指示第一无线接入网设备请求获得的负载预测信息。
也即,负载项可以用于指示第一无线接入网设备请求获得具体某一种或几种类型的负载预测信息。例如,负载项可以指示第一网络设备向第一无线接入网设备发送在第一时间段接入第一小区的终端数量作为第一小区的负载预测信息;或者,可以指示第一网络设备向第一无线接入网设备发送在第一时间段第一小区中PDU会话的建立成功率作为第一小区的负载预测信息;又或者,也可以指示第一网络设备向第一无线接入网设备发送在第一时间段第一小区的切换成功率作为第一小区的负载预测信息;又或者,还可以指示第一网络设备向第一无线接入网设备发送在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或三种作为第一小区的负载预测信息,本申请在此均不作限制。
还有一些可能的设计中,前述图3所示的目标小区确定方法也可以不包括S301,即不包括第一无线接入网设备向第一网络设备发送负载预测请求的步骤。该设计中,第一网络设备可以主动向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使得第一无线接入网设备可以根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
例如,图6示出了本申请实施例提供的目标小区确定方法的另一流程示意图。如图6所示,本设计中,该目标小区确定方法可以包括S601-S602。
S601、第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息。
一种实施方式中,第一网络设备可以按照一定的预设周期,主动向第一无线接入网设备发送至少一个第一小区的负载预测信息。其中,预设周期可以是5分钟、10分钟、30分钟、60分钟等,本申请对预设周期的大小不作限制。另外,负载预测信息可以参考前述实施例中所述,在此不再赘述。
另外一种实施方式中,第一网络设备也可以在达到某个预设的触发条件时,主动向第一无线接入网设备发送至少一个小区的负载预测信息。例如,第一网络设备可以持续或间隔预测多个第一小区分别对应的负载预测信息,当某个第一小区的负载预测信息相较于上一次预测到的负载预测信息发生变化时,第一网络设备可以主动向第一无线接入网设备发送该第一小区的负载预测信息。也即,本实施方式中,所述的预设的触发条件可以是指预测到的第一小区的负载预测信息发生变化。
相应地,第一无线接入网设备可以接收第一网络设备发送的至少一个第一小区的负载预测信息。
S602、第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
本设计中,该目标小区确定方法所能达到的有益效果,也可参考前述图3所示的实施例中所述,在此亦不再赘述。
针对目前在将终端切换至目标小区时切换成功率较低的问题,本申请实施例还提供一种提供目标小区确定方法,也可以提高进行终端切换时的切换成功率。该方法可以应用于前述图1所示的通信系统中,第一无线接入网设备与核心网设备交互、或者第一无线接入网设备与网络控制设备交互的应用场景中。为便于对本实施例的方案进行说明,以下将核心网设备和网络控制设备均称为第二网络设备。
该方法中,第二网络设备可以根据终端的历史信息,确定至少一个小区的小区标识,并将所确定的至少一个小区的小区标识发送给第一无线接入网设备,以使得第一无线接入网设备可以根据至少一个第一小区的小区标识确定目标小区。
例如,图7示出了本申请实施例提供的目标小区确定方法的又一流程示意图。如图7所示,该目标小区确定方法可以包括S701-S705。
S701、第二网络设备获取终端的历史信息。
S702、第二网络设备根据历史信息,生成终端的预测移动轨迹。
与前述实施例中类似,第二网络设备(核心网设备或网络控制设备)中也可以预先配置一个训练好的神经网络模型,例如,亚力克斯网络(AlexNet)。第二网络设备可以将终端的历史信息输入该神经网络模型,该神经网络模型可以根据终端的历史信息输出终端的预测移动轨迹。
下面以第二网络设备为核心网设备为例对上述历史信息和预测移动轨迹进行说明。
当终端接入第一无线接入网设备对应的服务小区时,第一无线接入网设备可以将终端访问小区的相关信息采集,并上报给核心网设备,这里可以称之为终端的移动历史报告信息。移动历史报告信息包含了终端最近访问的移动性历史信息,以小区为单位,可以为16个小区。移动历史报告信息可以由终端记录,并发送给第一无线接入网设备。移动历史报告信息中所包含的小区可以包括终端在RRC空闲(RRC idle)态、RRC非激活态、和RRC连接态时所访问的小区。
可选地,移动历史报告信息还可以包含终端在小区中的停留时间、或者终端处于NR范围外的停留时间。
一般地,受限于终端的存储空间,第一无线接入网设备上报给核心网设备的移动历史报告信息一般为48小时内终端访问小区的信息。
核心网设备接收到第一无线接入网设备上报的移动历史报告信息后,可以进行存储。核心网设备可以存储大于48小时的终端访问小区的信息。本申请中可以将核心网设备中存储的大于48小时的终端访问小区的信息称为终端的历史驻留信息。
在S701中,一种实施方式中,核心网设备获取终端的历史信息可以是指核心网设备接收第一无线接入网设备上报给核心网设备的移动历史报告信息。相应地,S702中核心网设备可以根据移动历史报告信息,生成终端的预测移动轨迹。
另一种实施方式中,核心网设备获取终端的历史信息可以是指核心网设备可以根据第一无线接入网设备多次上报给核心网设备的移动历史报告信息,获取终端的历史驻留信息。相应地,S702中核心网设备可以根据历史驻留信息,生成终端的预测移动轨迹。
例如,核心网设备在2020年4月20日00:00接收到来自RAN UE NGAP ID1的移动历史报告信息,该移动历史报告信息记录了终端在2020年4月18日00:00~2020年4月20日00:00之间访问的移动性历史信息。核心网设备可以根据RAN UE NGAP ID1和用户永久标识(subscription permanent identifier,SUPI)的对应关系,确定SUPI所标识的终端在2020年4月18日00:00~2020年4月20日00:00之间访问的移动性历史信息。其中,SUPI是5G网络中用户的唯一永久身份标志。
核心网设备在2020年4月22日00:00接收到来自RAN UE NGAP ID2的移动历史报告信息,该移动历史报告信息记录了终端在2020年4月20日00:00~2020年4月22日00:00之间访问的移动性历史信息。核心网设备根据RAN UE NGAP ID2和SUPI的对应关系,可以确定SUPI所标识的终端在2020年4月20日00:00~2020年4月22日00:00之间访问的移动性历史信息。
核心网设备结合SUPI所标识的终端在2020年4月18日00:00~2020年4月20日00:00之间访问的移动性历史信息、以及在2020年4月20日00:00~2020年4月22日00:00之 间访问的移动性历史信息,即可确定该SUPI所标识的终端在2020年4月18日00:00~2020年4月22日00:00之间访问的大于48小时范围的移动性历史信息,从而得到该终端的历史驻留信息。
可选地,SUPI也可以是隐藏签约标识符(subscription concealed identifier,SUCI),SUCI是一个包含了隐藏SUPI的隐私保护标识。
终端的预测移动轨迹可以包括以下信息:终端标识、终端位置、以及时间。其中,终端标识可以是无线接入网用户设备下一代应用协议身份标识(radio access network user equipment next generation application protocol identification,RAN UE NGAP ID),可以用于唯一标识NG-RAN节点内的NG接口上的UE关联。或者,终端标识也可以是AMF UE NGAP ID,可以用于唯一标识NG接口上的UE关联。终端位置可以用于指示终端可能会移动进入的位置信息,例如,终端位置可以是NR CGI,可以用于全球唯一标识一个新无线小区,或者,终端位置可以是PCI。时间可以用于指示和终端位置相关的时间信息;例如,时间可以是终端进入特定终端位置时的开始时间。
可选地,终端的预测移动轨迹还可以包括终端位于前述终端位置的持续时间。
S703、第二网络设备根据预测移动轨迹,确定至少一个第一小区的小区标识。
例如,第二网络设备可以根据S702中生成的终端的预测移动轨迹中所包含的终端位置、终端标识、以及时间,确定终端在第一时间段可能所处的至少一个第一小区的小区标识。
其中,小区标识可以是NR CGI,可以用于全球唯一标识一个新无线小区。小区标识也可以是PCI。
S704、第二网络设备向第一无线接入网设备发送至少一个第一小区的小区标识。
第二网络设备在根据预测移动轨迹,确定至少一个第一小区的小区标识后,可以向第一无线接入网设备发送所确定的至少一个第一小区的小区标识。
例如,第二网络设备可以按照预设周期主动向第一无线接入网设备发送至少一个第一小区的小区标识,如:预设周期可以是5分钟、10分钟、30分钟、60分钟等。或者,也可以是由第一无线接入网设备向第二网络设备发送预测移动轨迹请求,第二网络设备接收到该请求后,可以向第一无线接入网设备发送至少一个第一小区的小区标识,在此不作限制。
相应地,第一无线接入网设备可以接收来自第二网络设备的至少一个第一小区的小区标识。
本申请实施例中,上述至少一个第一小区的小区标识还可以携带有对应的时间信息,时间信息可以是终端可能进入与该小区标识对应的第一小区的时间。或者,时间信息还可以包括终端可能在该小区标识对应的第一小区中的持续时间。
S705、第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
第一无线接入网设备接收到来自第二网络设备的至少一个第一小区的小区标识后,可以从至少一个第一小区的小区标识对应的第一小区中,确定目标小区。
例如,若第一无线接入网设备接收到来自核心网设备的小区标识为小区1的NR CGI,且小区1的NR CGI携带的时间信息为2020年4月20日10:00,则第一无线接入网设备可以将小区1确定为目标小区。
可选地,该目标小区确定方法中,第二网络设备根据预测移动轨迹,所确定的小区标识对应的第一小区,均为其他无线接入网设备控制的小区。
可选地,当第一无线接入网设备接收到多个第一小区的小区标识时,可以基于与相邻第二无线接入网设备所交互的多个第一小区的交互信息,从多个第一小区中选择目标小区;或者,也可以按照前述实施例中所述的基于多个第一小区的负载预测信息,从多个第一小区中选择目标小区。
例如,当第一无线接入网设备接收到多个第一小区的小区标识时,第一无线接入网设备可以按照前述图3所示的目标小区确定方法,根据多个第一小区的负载预测信息,从多个第一小区中确定目标小区,在此不再一一赘述。
由上所述,本申请实施例中,第二网络设备可以根据终端的历史信息,获取终端的预测移动轨迹,并根据终端的预测移动轨迹,向第一无线接入网设备推荐至少一个小区的小区标识,以使得第一无线接入网设备可以根据至少一个第一小区的小区标识确定目标小区。第一无线接入网设备将终端切换至根据至少一个第一小区的小区标识所确定的目标小区时,终端的切换成功率更高,从而可以保证终端的服务质量。
类似地,本申请实施例还提供一种提供目标小区确定方法,也可以提高终端的切换成功率。该方法同样可以应用于前述图1所示的通信系统中,第一无线接入网设备与核心网设备交互、或者第一无线接入网设备与网络控制设备交互的应用场景中。与前述图7所示的目标小区确定方法的不同之处在于,该方法中,第一无线接入网设备可以根据终端的历史信息,确定至少一个小区的小区标识,并根据至少一个第一小区的小区标识确定目标小区。为便于对本实施例的方案进行说明,以下同样将核心网设备和网络控制设备均称为第二网络设备。
例如,图8示出了本申请实施例提供的目标小区确定方法的又一流程示意图。如图8所示,该目标小区确定方法可以包括S801-S804。
S801、第二网络设备向第一无线接入网设备发送终端的历史信息。
本实施例中,终端的历史信息可以是历史驻留信息。历史驻留信息的相关解释可以参考前述图7所示的实施例中所述,在此不再赘述。
以第二网络设备为核心网设备为例:核心网设备可以主动向第一无线接入网设备发送终端的历史信息,例如,可以是周期性发送。或者,核心网设备也可以通过查询-响应的方式向第一无线接入网设备发送终端的历史信息,例如,第一无线接入网设备可以向核心网设备发送终端历史信息查询请求,用于查询RAN UE NGAP ID3的历史信息。核心网设备接收到该查询请求后,可以根据RAN UE NGAP ID3和SUPI的对应关系,获取RAN UE NGAP ID3对应的SPUI所标识的终端的历史驻留信息,并发送给第一无线接入网设备。
相应地,第一无线接入网设备可以接收来自第二网络设备的终端历史信息。
S802、第一无线接入网设备根据历史信息,生成终端的预测移动轨迹。
其中,预测移动轨迹与前述图7所示的实施例中所述的预测移动轨迹相同,其区别仅仅在于本实施例中的预测移动轨迹是由第一无线接入网设备生成,而前述图7所示的实施例中所述的预测移动轨迹是由第二网络设备生成,在此不再详细赘述。
S803、第一无线接入网设备根据预测移动轨迹,确定至少一个第一小区的小区标识。
S804、第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
第一无线接入网设备在根据预测移动轨迹,确定至少一个第一小区的小区标识后,可以根据所确定的至少一个第一小区的小区标识,从至少一个第一小区的小区标识对应的第一小区中,确定目标小区。
可选地,该目标小区确定方法,第一无线接入网设备根据预测移动轨迹,所确定的小区标识对应的第一小区,均为其他无线接入网设备控制的小区。
与前述图7所示的实施例类似,若第一无线接入网设备只确定出一个第一小区的小区标识,则第一无线接入网设备可以直接将该小区标识对应的第一小区确定为目标小区。若第一无线接入网设备只确定出多个第一小区的小区标识,则第一无线接入网设备可以基于与相邻第二无线接入网设备所交互的多个第一小区的交互信息,从多个第一小区中选择目标小区;或者,也可以按照前述实施例中所述的基于多个第一小区的负载预测信息,从多个第一小区中选择目标小区,在此亦不再赘述。
在一种可能的设计中,第一无线接入网设备也可以不从第二网络设备处获取历史信息,而是直接根据终端在当前服务小区的移动历史报告信息,生成终端的预测移动轨迹,并根据预测移动轨迹,确定至少一个第一小区的小区标识,以及进一步根据至少一个第一小区的小区标识确定目标小区。
相较于本设计而言,上述图8所示的实施例中,第一无线接入网设备根据第二网络设备向发送的终端的历史信息(历史驻留信息),所生成的终端的预测移动轨迹更加准确,能够更符合终端的实际移动轨迹。
可以理解的,本申请中,基于前述任一方法实施例所述,确定出目标小区后,第一无线接入网设备还可以将终端切换至该目标小区。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如,第一无线接入网设备,第一网络设备(第二无线接入网设备、核心网设备、或者网络控制设备),或者第二网络设备(核心网设备或网络控制设备),为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
如:本申请实施例还可以提供一种可以应用于第一无线接入网设备的通信装置。图9示出了本申请实施例提供的通信装置的结构示意图。
如图9所示,该通信装置可以包括:接收单元901,用于接收来自第一网络设备的至少一个第一小区的负载预测信息,第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。确定单元902,用于根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区。
在一种可能的设计中,当负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中协议数据单元PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的两种或两种以上时,确定单元902可以根据预配置的不同负载预测信息的优先级,优先选择优先级更高的负载预测信息,作为从至少一个第一小区中确定目标小区时的判断依据。
在一种可能的设计中,负载预测信息还包括所述负载预测信息的置信度。
在一种可能的设计中,第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
图10示出了本申请实施例提供的通信装置的另一结构示意图。
如图10所示,在一种可能的设计中,该通信装置还可以包括:发送单元903,用于向第一网络设备发送负载预测请求,负载预测请求包括第一时间段。
相应地,接收单元901具体可以用于接收第一网络设备根据该负载预测请求所发送的至少一个第一小区的负载预测信息。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示发送单元903请求获得的负载预测信息。
在另外一种可能的设计中,接收单元901具体可以用于接收第一网络设备主动发送的至少一个第一小区的负载预测信息。
例如,接收单元901具体可以用于接收第一网络设备按照预设周期主动发送的至少一个第一小区的负载预测信息。
对应的,本申请实施例还提供一种可以应用于第一网络设备的通信装置,图11示出了本申请实施例提供的通信装置的又一结构示意图。
如图11所示,该通信装置可以包括:发送单元1101,用于向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使第一无线接入网设备根据至少一个第一小区的负载预测信息,从至少一个第一小区中确定目标小区;第一小区是其他无线接入网设备控制的小区;负载预测信息包括:在第一时间段接入第一小区的终端数量、在第一时间段第一小区中PDU会话的建立成功率、以及在第一时间段第一小区的切换成功率中的至少一种。
请继续参考图11所示,该装置还包括:接收单元1102,用于接收来自第一无线接入网设备的负载预测请求,负载预测请求包括所述第一时间段。
相应地,发送单元1101具体可以用于根据该负载预测请求,向第一无线接入网设备发送至少一个第一小区的负载预测信息。
在一种可能的设计中,负载预测请求还包括:至少一个第一小区的小区标识。
在一种可能的设计中,负载预测请求还包括负载项,负载项用于指示第一无线接入网设备请求获得的负载预测信息。
在一种可能的设计中,发送单元1101具体可以用于主动向第一无线接入网设备发送至少一个第一小区的负载预测信息。
例如,发送单元1101可以按照预设周期主动向第一无线接入网设备发送至少一个第一小区的负载预测信息。
本申请实施例还可以提供一种可以应用于第一无线接入网设备的通信装置。图12示出了本申请实施例提供的通信装置的又一结构示意图。
如图12所示,该通信装置可以包括:接收单元1201,用于接收来自第二网络设备的至少一个第一小区的小区标识。确定单元1202,用于根据至少一个第一小区的小区标识确定目标小区。
对应的,本申请实施例还可以提供一种可以应用于第二网络设备的通信装置。图13示出了本申请实施例提供的通信装置的又一结构示意图。
如图13所示,该通信装置可以包括:发送单元1301,用于向第一无线接入网设备发送至少一个第一小区的小区标识,以使第一无线接入网设备根据至少一个第一小区的小区标识确定目标小区。
请继续参考图13所示,该装置还包括:获取单元1302,用于获取终端的历史信息。确定单元1303,用于根据历史信息,确定至少一个第一小区的小区标识。
在一种可能的设计中,确定单元1303具体可以用于根据历史信息,生成终端的预测移动轨迹,并根据预测移动轨迹,确定至少一个第一小区的小区标识。
本申请实施例还可以提供一种可以应用于第一无线接入网设备的通信装置。图14示 出了本申请实施例提供的通信装置的又一结构示意图。
如图14所示,该通信装置可以包括:接收单元1401,用于接收来自第二网络设备的终端历史信息。确定单元1402,用于根据历史信息,确定至少一个第一小区的小区标识,并根据至少一个第一小区的小区标识确定目标小区。
在一种可能的设计中,确定单元1402具体可以用于根据历史信息,生成终端的预测移动轨迹,并根据预测移动轨迹,确定至少一个第一小区的小区标识。
对应的,本申请实施例还可以提供一种应用于第二网络设备的通信装置,该装置可以包括发送单元,用于向第二网络设备发送终端的历史信息。
可选地,本申请实施例还提供一种通信装置,该通信装置可以应用于上述第一无线接入网设备、第一网络设备、以及第二网络设备中的任意一种。图15示出了本申请实施例提供的通信装置的又一结构示意图。
如图15所示,该通信装置可以包括:收发单元1501和处理单元1502。收发单元1501可以用于收发信息,或者用于与其他网元通信。处理单元1502可以用于对数据进行处理。
当该通信装置应用于第一无线接入网设备时,可以通过收发单元1501和处理单元1502实现如前述实施例所述的第一无线接入网设备执行的方法。
当该通信装置应用于第一网络设备(第二无线接入网设备、核心网设备、以及网络控制设备中的任意一种)时,可以通过收发单元1501和处理单元1502实现如前述实施例所述的第一网络设备执行的方法。
当该通信装置应用于第二网络设备时,可以通过收发单元1501和处理单元1502实现如前述实施例所述的第二网络设备执行的方法。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。
例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以称为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或这些集成电路形式中至少两种的组合。
再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如CPU或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路或者输入电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路或者输入电路。当通信装置包括用于发送的单元时,该用于发送的单元是一种该装置的接口电路或者输出电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口 电路或者输出电路。
例如,本申请实施例还可以提供一种通信装置,可以应用于上述第一无线接入网设备、第一网络设备、以及第二网络设备中的任意一种。该通信装置可以包括:处理器和接口电路。该处理器可以包括一个或多个。
当该通信装置应用于第一无线接入网设备时,处理器用于通过接口电路与其它装置通信,并执行以上方法中第一无线接入网设备所执行的各个步骤。
当该通信装置应用于第一网络设备时,处理器用于通过接口电路与其它装置通信,并执行以上方法中第一网络设备所执行的各个步骤。
当该通信装置应用于第二网络设备时,处理器用于通过接口电路与其它装置通信,并执行以上方法中第二网络设备所执行的各个步骤。
在一种实现中,第一无线接入网设备、或者第一网络设备、又或者第二网络设备分别实现以上方法中各个对应步骤的单元可以通过处理元件调度程序的形式实现。例如,用于第一无线接入网设备、或者第一网络设备、又或者第二网络设备的装置可以包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中对应第一无线接入网设备、或者第一网络设备、又或者第二网络设备执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中第一无线接入网设备、或者第一网络设备、又或者第二网络设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中对应第一无线接入网设备、或者第一网络设备、又或者第二网络设备执行的方法。
例如,本申请实施例还可以提供一种通信装置,该通信装置可以包括处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行以上第一无线接入网设备、或者第一网络设备、又或者第二网络设备所执行的方法。该存储器可以位于该通信装置之内,也可以位于该通信装置之外。且该处理器包括一个或多个。
在又一种实现中,第一无线接入网设备、或者第一网络设备、又或者第二网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件可以设置于对应第一无线接入网设备、或者第一网络设备、又或者第二网络设备上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
第一无线接入网设备、或者第一网络设备、又或者第二网络设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现对应的方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现对应的方法;或者,该芯片内可以集成至少一个集成电路,用于实现对应的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
例如,本申请实施例还提供一种芯片系统,该芯片系统可以应用于上述第一无线接入网设备、第一网络设备、以及第二网络设备中的任意一种。芯片系统包括一个或多个接口电路和一个或多个处理器;接口电路和处理器通过线路互联;处理器通过接口电路从电子设备的存储器接收并执行计算机指令,以实现以上方法实施例中对应第一无线接入网设备、或者第一网络设备、又或者第二网络设备所执行的方法。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,如:程序。该软件产品存储在一个程序产品,如计算机可读存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
例如,本申请实施例还可以提供一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在第一无线接入网设备,或者内置在第一无线接入网设备的芯片中运行时,可以使得第一无线接入网设备执行如前述实施例所述的第一无线接入网设备执行的方法。
或者,当计算机软件指令在第一网络设备或内置在所述第一网络设备的芯片中运行时,使得第一网络设备执行如前述实施例所述的第一网络设备执行的方法。
又或者,当计算机软件指令在第二网络设备或内置在所述第二网络设备的芯片中运行时,使得第二网络设备执行如前述实施例所述的第二网络设备执行的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种目标小区确定方法,其特征在于,所述方法包括:
    第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息,所述第一小区是其他无线接入网设备控制的小区;所述负载预测信息包括:在第一时间段接入所述第一小区的终端数量、在所述第一时间段所述第一小区中协议数据单元PDU会话的建立成功率、以及在所述第一时间段所述第一小区的切换成功率中的至少一种;
    所述第一无线接入网设备根据所述至少一个第一小区的负载预测信息,从所述至少一个第一小区中确定目标小区。
  2. 根据权利要求1所述的方法,其特征在于,所述负载预测信息还包括所述负载预测信息的置信度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,在所述第一无线接入网设备接收来自第一网络设备的至少一个第一小区的负载预测信息之前,所述方法还包括:
    所述第一无线接入网设备向所述第一网络设备发送负载预测请求,所述负载预测请求包括所述第一时间段。
  5. 根据权利要求4所述的方法,其特征在于,所述负载预测请求还包括:所述至少一个第一小区的小区标识。
  6. 根据权利要求4或5所述的方法,其特征在于,所述负载预测请求还包括负载项,所述负载项用于指示所述第一无线接入网设备请求获得的负载预测信息。
  7. 一种目标小区确定方法,其特征在于,所述方法包括:
    第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使所述第一无线接入网设备根据所述至少一个第一小区的负载预测信息,从所述至少一个第一小区中确定目标小区;所述第一小区是其他无线接入网设备控制的小区;所述负载预测信息包括:在第一时间段接入所述第一小区的终端数量、在所述第一时间段所述第一小区中协议数据单元PDU会话的建立成功率、以及在所述第一时间段所述第一小区的切换成功率中的至少一种。
  8. 根据权利要求7所述的方法,其特征在于,所述负载预测信息还包括所述负载预测信息的置信度。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,在所述第一网络设备向第一无线接入网设备发送至少一个第一小区的负载预测信息之前,所述方法还包括:
    所述第一网络设备接收来自所述第一无线接入网设备的负载预测请求,所述负载预测请求包括所述第一时间段。
  11. 根据权利要求10所述的方法,其特征在于,所述负载预测请求还包括:所述至少一个第一小区的小区标识。
  12. 根据权利要求10或11所述的方法,其特征在于,所述负载预测请求还包括负载项,所述负载项用于指示所述第一无线接入网设备请求获得的负载预测信息。
  13. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自第一网络设备的至少一个第一小区的负载预测信息,所述第一小区是其他无线接入网设备控制的小区;所述负载预测信息包括:在第一时间段接入所述第一小区的终端数量、在所述第一时间段所述第一小区中协议数据单元PDU会话的建立成功率、以及在所述第一时间段所述第一小区的切换成功率中的至少一种;
    确定单元,用于根据所述至少一个第一小区的负载预测信息,从所述至少一个第一小区中确定目标小区。
  14. 根据权利要求13所述的装置,其特征在于,所述负载预测信息还包括所述负载预测信息的置信度。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第一网络设备为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,还包括:
    发送单元,用于向所述第一网络设备发送负载预测请求,所述负载预测请求包括所述第一时间段。
  17. 根据权利要求16所述的装置,其特征在于,所述负载预测请求还包括:所述至少一个第一小区的小区标识。
  18. 根据权利要求16或17所述的装置,其特征在于,所述负载预测请求还包括负载项,所述负载项用于指示所述发送单元请求获得的负载预测信息。
  19. 一种通信装置,其特征在于,包括:
    发送单元,用于向第一无线接入网设备发送至少一个第一小区的负载预测信息,以使所述第一无线接入网设备根据所述至少一个第一小区的负载预测信息,从所述至少一个第一小区中确定目标小区;所述第一小区是其他无线接入网设备控制的小区;所述负载预测信息包括:在第一时间段接入所述第一小区的终端数量、在所述第一时间段所述第一小区中协议数据单元PDU会话的建立成功率、以及在所述第一时间段所述第一小区的切换成功率中的至少一种。
  20. 根据权利要求19所述的装置,其特征在于,所述负载预测信息还包括所述负载预测信息的置信度。
  21. 根据权利要求19或20所述的装置,其特征在于,所述装置应用于为核心网设备、第二无线接入网设备、以及网络控制设备中的任意一种。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收来自所述第一无线接入网设备的负载预测请求,所述负载预测请求包括所述第一时间段。
  23. 根据权利要求22所述的装置,其特征在于,所述负载预测请求还包括:所述至少一个第一小区的小区标识。
  24. 根据权利要求22或23所述的装置,其特征在于,所述负载预测请求还包括负载项,所述负载项用于指示所述第一无线接入网设备请求获得的负载预测信息。
  25. 一种通信装置,其特征在于,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行权利要求1-6任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器,用于执行存储器中存储的计算机指令,当所述计算机指令被执行时,使得所述装置执行权利要求7-12任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行权利要求1-6任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行权利要求7-12任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在第一无线接入网设备或内置在所述第一无线接入网设备的芯片中运行时,使得所述第一无线接入网设备执行权利要求1-6任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在第一网络设备或内置在所述第一网络设备的芯片中运行时,使得所述第一网络设备执行如权利要求7-12任一项所述的方法。
PCT/CN2021/099247 2020-06-29 2021-06-09 目标小区确定方法、通信装置及存储介质 WO2022001611A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21831546.3A EP4161150A4 (en) 2020-06-29 2021-06-09 METHOD AND DEVICE FOR DETERMINING TARGET CELLS AND STORAGE MEDIUM
US18/147,548 US20230164657A1 (en) 2020-06-29 2022-12-28 Target Cell Determining Method, Communication Apparatus, and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010605477.8A CN113938959A (zh) 2020-06-29 2020-06-29 目标小区确定方法、通信装置及存储介质
CN202010605477.8 2020-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,548 Continuation US20230164657A1 (en) 2020-06-29 2022-12-28 Target Cell Determining Method, Communication Apparatus, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2022001611A1 true WO2022001611A1 (zh) 2022-01-06

Family

ID=79272961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099247 WO2022001611A1 (zh) 2020-06-29 2021-06-09 目标小区确定方法、通信装置及存储介质

Country Status (4)

Country Link
US (1) US20230164657A1 (zh)
EP (1) EP4161150A4 (zh)
CN (1) CN113938959A (zh)
WO (1) WO2022001611A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727350B (zh) * 2022-04-21 2023-08-08 中国联合网络通信集团有限公司 终端切换方法、装置、设备及存储介质
CN114554551B (zh) * 2022-04-25 2022-09-02 广州世炬网络科技有限公司 基于prb利用率的基站负载均衡方法、装置及设备
WO2023226004A1 (en) * 2022-05-27 2023-11-30 Lenovo (Beijing) Limited Network device and method for prediction operation
WO2024026885A1 (zh) * 2022-08-05 2024-02-08 北京小米移动软件有限公司 一种路径切换的方法及装置
WO2024031262A1 (zh) * 2022-08-08 2024-02-15 北京小米移动软件有限公司 信息上报方法、信息接收方法、装置、用户侧设备、网络侧设备及存储介质
CN117240727B (zh) * 2023-11-10 2024-02-09 北京中电飞华通信有限公司 通信网络切换方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841858A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 负载信息交互方法、装置和系统
CN102547897A (zh) * 2012-01-16 2012-07-04 中国联合网络通信集团有限公司 小区切换方法和接入网设备
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system
US20150208280A1 (en) * 2012-07-27 2015-07-23 Telefonica, S.A. Method for implementing a cell load balancing mechanism in wireless networks
CN111083753A (zh) * 2019-11-08 2020-04-28 中兴通讯股份有限公司 一种切换方法、切换装置及网络系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010122839A1 (ja) * 2009-04-23 2012-10-25 日本電気株式会社 無線通信システム、基地局装置、無線通信端末、無線通信方法
US20130237233A1 (en) * 2012-03-08 2013-09-12 Qualcomm Incorporated Method and apparatus for offloading devices in femtocell coverage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841858A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 负载信息交互方法、装置和系统
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system
CN102547897A (zh) * 2012-01-16 2012-07-04 中国联合网络通信集团有限公司 小区切换方法和接入网设备
US20150208280A1 (en) * 2012-07-27 2015-07-23 Telefonica, S.A. Method for implementing a cell load balancing mechanism in wireless networks
CN111083753A (zh) * 2019-11-08 2020-04-28 中兴通讯股份有限公司 一种切换方法、切换装置及网络系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4161150A4

Also Published As

Publication number Publication date
US20230164657A1 (en) 2023-05-25
EP4161150A1 (en) 2023-04-05
EP4161150A4 (en) 2023-11-22
CN113938959A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2022001611A1 (zh) 目标小区确定方法、通信装置及存储介质
US11218931B2 (en) Systems and methods for assignment of multi-access edge computing resources based on network performance indicators
KR20190133031A (ko) 통신 방법 및 장치
BRPI1014273B1 (pt) métodos, dispositivos e sistemas de compartilhamento de carga
Gharsallah et al. SDN/NFV‐based handover management approach for ultradense 5G mobile networks
WO2022041285A1 (zh) 一种模型数据传输方法及通信装置
WO2021238774A1 (zh) 通信方法及装置
US20230070712A1 (en) Communication method, apparatus, and system
US20230422124A1 (en) Cell handover method and apparatus
WO2021023139A1 (zh) 一种切换的方法及装置
US20230189054A1 (en) Relay communication method, and communication apparatus
EP3852481A1 (en) Mode switching method and data stream distribution method and apparatus
CN104322133B (zh) 一种通讯方法、基站及无线接入点
US20240015593A1 (en) Traffic flow processing method, apparatus, and system
US20230362748A1 (en) Wireless communication method, communication apparatus, and communication system
KR20190018208A (ko) 단말과 무선 접속 네트워크 간 Inactive 상태에서 핵심 망의 혼잡으로 인한 RRC-inactive 단말 처리 방법 및 장치
WO2016070701A1 (zh) 无线资源分配方法、通信节点和存储介质
EP2039063B1 (en) User network and method for using multiple access systems to connect to remote communications network(s)
WO2021208813A1 (zh) 一种通信方法及通信装置
CN113473553B (zh) 通信方法及通信装置
US20240056926A1 (en) Communication method and apparatus for obtaining load information
WO2022016338A1 (zh) 一种通信方法及装置
WO2024093739A1 (zh) 一种通信方法及装置
WO2023124822A1 (zh) 一种通信协作方法及装置
WO2023272670A1 (zh) 一种网络连接的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021831546

Country of ref document: EP

Effective date: 20221227

NENP Non-entry into the national phase

Ref country code: DE