WO2023226004A1 - Network device and method for prediction operation - Google Patents

Network device and method for prediction operation Download PDF

Info

Publication number
WO2023226004A1
WO2023226004A1 PCT/CN2022/095605 CN2022095605W WO2023226004A1 WO 2023226004 A1 WO2023226004 A1 WO 2023226004A1 CN 2022095605 W CN2022095605 W CN 2022095605W WO 2023226004 A1 WO2023226004 A1 WO 2023226004A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
network device
prediction
transceiver
measurement
Prior art date
Application number
PCT/CN2022/095605
Other languages
French (fr)
Inventor
Congchi ZHANG
Mingzeng Dai
Le Yan
Xiaoying Xu
Haiyan Luo
Yibin ZHUO
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/095605 priority Critical patent/WO2023226004A1/en
Publication of WO2023226004A1 publication Critical patent/WO2023226004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • Embodiments of the present application generally relate to wireless communication technology, especially to a network device and a method for prediction operation.
  • a network device can conduct predictions based on input received from neighbour network device (s) according to artificial intelligence model (e.g., machine learning model) , or provide prediction results to the neighbour network device (s) upon requests.
  • artificial intelligence model e.g., machine learning model
  • the network device includes: a processor and a transceiver coupled to the processor.
  • the processor is configured to: transmit, via the transceiver, a first message of requesting prediction to another network device; and receive, via the transceiver, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the first message.
  • the network device includes: a processor and a transceiver coupled to the processor.
  • the processor is configured to: receive, via the transceiver, a first message of requesting prediction from another network device; and transmit, via the transceiver, a prediction information and at least one correctness information related to the prediction information to the another network device after receiving the first message.
  • Some embodiments of the present application provide a method.
  • the method includes: receiving, via a network device, a message of requesting prediction from another network device; and transmitting, via the network device, a prediction information and at least one correctness information related to the prediction information to the another network device after receiving the message.
  • Some embodiments of the present application provide a method.
  • the method includes: transmitting, via a network device, a message of requesting prediction to another network device; and receiving, via the network device, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the message.
  • FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present application.
  • FIG. 2 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 3 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 4 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 5 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 6A is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 6B is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 7 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • FIG. 8 illustrates a flow chart of a method for wireless communications in accordance with some embodiments of the present application.
  • FIG. 9 illustrates a block diagram of a network device in accordance with some embodiments of the present application.
  • Embodiments of the present application may be provided in a network architecture that adopts various service scenarios, for example but is not limited to, 3GPP 3G, long-term evolution (LTE) , LTE-Advanced (LTE-A) , 3GPP 4G, 3GPP 5G NR (new radio) , etc. It is contemplated that along with the 3GPP and related communication technology development, the terminologies recited in the present application may change, which should not affect the principle of the present application.
  • LTE long-term evolution
  • LTE-A LTE-Advanced
  • 3GPP 4G 3GPP 4G
  • 3GPP 5G NR new radio
  • a wireless communication system 100 may include a user equipment (UE) 101, network devices 102A, 102B and a core network (CN) 103. Although a specific number of the UE 101, the network devices 102A, 102B and the CN 103 are depicted in FIG. 1, it is contemplated that any number of the UEs 101, the network devices 102A, 102B and the CNs 103 may be included in the wireless communication system 100.
  • UE user equipment
  • CN core network
  • the CN 103 may include a core Access and Mobility management Function (AMF) entity.
  • the BS 102 which may communicate with the CN 103, may operate or work under the control of the AMF entity.
  • the CN 103 may further include a User Plane Function (UPF) entity, which communicatively coupled with the AMF entity.
  • UPF User Plane Function
  • the network devices 102A, 102B may be distributed over a geographic region.
  • any of the network devices 102A, 102B may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, a central unit (CU) of a base station (BS) , a distributed unit (DU) of a BS, a master node (MN) of dual connectivity, a secondary node (SN) of dual connectivity, a CU-control plane (CP) device of a CU of a BS, a CU-user plane (UP) device of a CU of a BS, or described using other terminology used in the art.
  • a CU-control plane (CP) device of a CU of a BS a CU-user plane (UP) device of a CU of a BS,
  • the network devices 102A, 102B are generally part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding network device (s) .
  • the network devices 102A, 102B may communicate with each other via some interfaces such as Xn interface between two BSs, F1 interface between a CU and a DU or E1 interface between a CU-CP and a CU-UP.
  • the UE 101 may include, for example, but is not limited to, computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , Internet of Thing (IoT) devices, or the like.
  • computing devices such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , Internet of Thing (IoT) devices, or the like.
  • computing devices such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g
  • the UE 101 may include, for example, but is not limited to, a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, a wireless sensor, a monitoring device, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE 101 may include, for example, but is not limited to, wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art. The UE 101 may communicate directly with the network devices 102A, 102B via uplink (UL) communication signals.
  • UL uplink
  • the wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a Time Division Multiple Access (TDMA) -based network, a Code Division Multiple Access (CDMA) -based network, an Orthogonal Frequency Division Multiple Access (OFDMA) -based network, a Long Term Evolution (LTE) network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • LTE Long Term Evolution
  • 3GPP-based network 3GPP-based network
  • 3GPP 5G 3GPP 5G network
  • satellite communications network a high altitude platform network, and/or other communications networks.
  • the wireless communication system 100 is compatible with the 5G New Radio (NR) of the 3GPP protocol or the 5G NR-light (or reduced capability NR UEs) of the 3GPP protocol, wherein the network devices 102A, 102B transmit data using an OFDM modulation scheme on the downlink (DL) and the UE 101 transmits data on the UL using a single-carrier frequency division multiple access (SC-FDMA) or OFDM scheme.
  • NR 5G New Radio
  • 5G NR-light or reduced capability NR UEs
  • SC-FDMA single-carrier frequency division multiple access
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
  • the UE 101 and the network devices 102A, 102B may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present application, the UE 101 and the network devices 102A, 102B may communicate over licensed spectrums, whereas in other embodiments, the UE 101 and the network devices 102A, 102B may communicate over unlicensed spectrums. The present application is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol. In yet some embodiments of present application, the network devices 102A, 102B 102 may communicate with the UE 101 using the 3GPP 5G protocols.
  • the network device 102A transmits a message of requesting prediction to the network device 102B. Based on receiving the message, the network device 102B determines a prediction information according to a machine learning model, and transmits the prediction information and at least one correctness information related to the prediction information to the network device 102A. Then, the network device 102A receives the prediction information and the at least one correctness information from the network 102B.
  • the prediction information includes a prediction result
  • the at least one correctness information related to the prediction information includes: (1) a measurement corresponding to the prediction result; (2) a prediction accuracy of a previous prediction result; or (3) the combination of (1) and (2) .
  • the prediction information and the measurement are comparable.
  • the measurement is an actual measurement, which is measured at a specific time point, corresponding to the prediction information.
  • the prediction information is generated for predicting the measurement at the specific time point.
  • the prediction information and the measurement include: (1) radio resource status (e.g., physical resource block (PRB) in a cell) ; (2) number of active UE in a cell; (3) radio resource control (RRC) connections in a cell; (4) energy efficiency (e.g., measured in bps or joule per Hz) in a cell; (5) energy state (e.g., low, medium or high) in a cell; (6) data traffic (e.g., amount of UL/DL data in a certain time) for a UE; (7) delay for a UE; or (8) any possible combination of (1) to (7) .
  • radio resource status e.g., physical resource block (PRB) in a cell
  • RRC radio resource control
  • the data traffic (e.g., amount of UL/DL data in a certain time) for a UE is measured or quantified as: (1) data volume measured in bits or bytes; (2) UE traffic load state (e.g., low, medium or high) ; (3) UE traffic profile representing a certain UE traffic characteristic (e.g., ultra-reliable and low latency communications (URLLC) traffic or extended reality (XR) traffic etc. ) ; (4) data arrival (e.g., at a certain data radio bearer (DRB) ) ; (5) inactivity/activity (e.g., of a certain DRB) ; or (5) any possible combination of (1) to (5) .
  • UE traffic load state e.g., low, medium or high
  • UE traffic profile representing a certain UE traffic characteristic (e.g., ultra-reliable and low latency communications (URLLC) traffic or extended reality (XR) traffic etc. )
  • URLLC ultra-reliable and low latency communications
  • XR extended
  • the data traffic (e.g., amount of UL/DL data in a certain time) for a UE includes UL and/or DL traffic. In some embodiments, the data traffic is determined per UE, per DRB or per QoS flow.
  • a format of the prediction information includes: (1) a value representing an actual measurement; or (2) a range (e.g., a range between a minimum value and a maximum value, that represents the possible range of the actual measurement result) .
  • a format of the prediction accuracy include: (1) an error value representing the possible difference between the prediction result and actual measurement; (2) a percentage value representing possibility of an actual measurement lies in a range of X and Y while X is a prediction result minus an error value and Y is the prediction result pluses the error value; (3) a percentage value representing possibility of an actual measurement lies in a range of X and Y, while X is a minimum predicted value and Y is a maximum predicted value; (4) a percentage value representing a possibility that the prediction information is considered as true; (5) a percentage value representing possible difference between the prediction information and an actual measurement; or (6) any possible combination of (1) to (5) .
  • FIG. 2 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M11 of requesting one time prediction to the network device 102B.
  • the message M11 includes an indicator indicating to the network device 102B: (1) at least one UE identification (ID) (e.g., E1 application protocol (E1AP) UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) whether the network device 102B provides a measurement in the same procedure; (4) a timer for the network device 102B to transmit a prediction information before the timer expires; (5) a timestamp of generating the prediction information; or (6) any possible combination of (1) to (5) .
  • ID e.g., E1 application protocol (E1AP) UE ID, F1AP UE ID, XnAP UE ID
  • E1AP E1 application protocol
  • the indicator of the message M11 at least indicates to the network device 102B to provide the prediction accuracy.
  • the network device 102B transmits a message M12 to the network device 102A for responding the message M11, and then transmits a message M13 including the prediction information and the prediction accuracy to the network device 102A.
  • the indicator of the message M11 at least indicates to the network device 102B to provide the measurement.
  • the network device 102B transmits the message M12 to the network device 102A for responding the message M11, and then transmits the message M13 including the prediction information to the network device 102A. Next, the network device 102B transmits a message M14 including the measurement to the network device 102A.
  • the prediction information when the indicator of the message M11 indicates to the network device 102B to provide the prediction accuracy only, the prediction information is transmitted with the prediction accuracy in the message M13 and the message M14 is unnecessary.
  • the indicator of the message M11 indicates to the network device 102B to provide the measurement only, the prediction information is transmitted without the prediction accuracy in the message M13 and the measurement is transmitted in the message M14.
  • the indicator of the message M11 indicates to the network device 102B to provide both the prediction accuracy and the measurement, the prediction information is transmitted without the prediction accuracy in the message M13 and the measurement is transmitted in the message M14.
  • the message M13 including the prediction information and the message M14 including the measurement belong to the same procedure.
  • the message M11 and/or the message M12 include (s) an ID, which is used for identifying the same procedure. Therefore, when the message M13 and the message M14 include the same ID, the message M13 and the message M14 are considered in the same procedure.
  • the network device 102B terminates the procedure initiated by the message M11 after transmitting the message M14.
  • the network device 102A terminates the procedure initiated by the message M11 after receiving the message M14.
  • the message M13 and the message M14 are the same type of message.
  • the message M13 and M14 are Xn interface messages, E1 interface messages or F1 interface messages.
  • the message M13 and M14 are: (1) data usage report over E1 interface; (2) multi-radio dual connectivity (MR-DC) data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary radio access technology (RAT) data usage report over Xn interface; or (9) resource status update over Xn interface.
  • MR-DC multi-radio dual connectivity
  • RAT secondary radio access technology
  • the indicator of the message M11 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires.
  • the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
  • the message M12 is optional.
  • the network device 102B after receiving the message M11, the network device 102B transmits the message M13 including the prediction information without transmitting the message M12.
  • the procedure initiated by the message M11 and/or the message M12 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M11 and/or the message M12 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the message M11 when the procedure initiated by the message M11 and/or the message M12 is the resource status request procedure, the message M11 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information.
  • the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information for PRB
  • the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information for number of active UEs etc.
  • FIG. 3 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M21 of requesting one time prediction to the network device 102B.
  • the message M21 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit a prediction information before the timer expires; (4) an ID associated with the prediction information; (5) a timestamp of generating the prediction information; or (6) any possible combination of (1) to (5) .
  • E1AP UE ID e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID
  • a timer for the network device 102B to transmit a prediction information before the timer expires
  • the indicator of the message M21 at least indicates to the network device 102B to provide the prediction accuracy.
  • the network device 102B transmits a message M22 to the network device 102A for responding the message M21, and then transmits a message M23 including the prediction information and the prediction accuracy to the network device 102A.
  • the network device 102B transmits the message M22 to the network device 102A for responding the message M21, and transmits the message M23 including the prediction information to the network device 102A. Then, the network device 102A and 102B terminate the procedure initiated by the message M21 and/or M22.
  • the network device 102A initiates another procedure by transmitting a message M24 of requesting the measurement to the network device 102B.
  • the message M24 includes the ID of the message M21 for associating the procedure of transmitting the measurement with the procedure of transmitting the prediction information.
  • the network device 102B transmits a message M25 to the network device 102A for responding the message M24, and transmits a message M26 including the measurement to the network device 102A.
  • the message M23 and the message M26 are the same type of message.
  • the message M23 and M26 are Xn interface messages, E1 interface messages or F1 interface messages.
  • the message M23 and M26 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface.
  • the message M23 and the message M26 includes the at least one UE ID of the message M21 or the message M24.
  • the indicator of the message M21 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires.
  • the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
  • the message M22 is optional.
  • the network device 102B transmits the message M23 including the prediction information without transmitting the message M22.
  • the message M25 is optional.
  • the network device 102B transmits the message M26 including the measurement without transmitting the message M25.
  • the procedure initiated by the message M21 and/or the message M22 and the procedure initiated by the message M24 and/or the message M25 are respectively a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M21 and/or the message M22 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the procedure initiated by the message M24 and/or the message M25 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the message M21 when the procedure initiated by the message M21 and/or the message M22 is the resource status request procedure, the message M21 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information.
  • the procedure initiated by the message M24 and/or the message M25 is the resource status request procedure, the message M24 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of measurement.
  • the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for PRB
  • the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for number of active UEs etc.
  • FIG. 4 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M31 of requesting periodical prediction to the network device 102B.
  • the message M31 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit the prediction information before the timer expires; (4) periodicity of transmitting a prediction information; (5) periodicity of transmitting a measurement; (6) information of generating the prediction information; or (7) any possible combination of (1) to (6) .
  • the information of generating the prediction information includes: (1) a value M and a value N which are natural numbers; and (2) a timestamp of generating the first prediction information.
  • the indicator of the message M31 at least indicates to the network device 102B the periodicity of transmitting the measurement.
  • the network device 102B transmits a message M32 to the network device 102A for responding the message M31, and then transmits a plurality of messages M33 including the prediction information and the measurement to the network device 102A.
  • the measurement of (M+N) th message M33 corresponds to the prediction information of Nth message M33.
  • the prediction information of Nth message M33 is generated for predicting the measurement of (M+N) th message M33.
  • the indicator of the message M31 at least indicates to the network device 102B to provide the prediction accuracy.
  • the network device 102B transmits the message M32 to the network device 102A for responding the message M31, and then transmits the messages M33 including the prediction information and the prediction accuracy to the network device 102A.
  • the prediction accuracy of (X+1) th message M33 reflects the accuracy of the prediction information of Xth message M33.
  • the indicator of the message M31 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires.
  • the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
  • the message M32 is optional.
  • the network device 102B after receiving the message M31, the network device 102B transmits the messages M33 including the prediction information without transmitting the message M32.
  • the procedure initiated by the message M31 and/or the message M32 is a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M31 and/or M32 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the message M31 when the procedure initiated by the message M31 and/or the message M32 is the resource status request procedure, the message M31 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information.
  • the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information for PRB
  • the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information for number of active UEs etc.
  • the messages M33 are the same type of message.
  • the messages M33 are Xn interface messages, E1 interface messages or F1 interface messages.
  • the messages M33 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface.
  • the messages M33 includes the at least one UE ID of the message M31.
  • FIG. 5 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M41 of requesting periodical prediction to the network device 102B.
  • the message M41 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit the prediction information before the timer expires; (4) periodicity of transmitting a prediction information; (5) periodicity of transmitting a measurement; (6) information of generating the prediction information; (7) an ID associated with the prediction information; or (8) any possible combination of (1) to (7) .
  • the information of generating the prediction information includes a timestamp of generating the first prediction information.
  • the indicator of the message M41 at least indicates to the network device 102B the periodicity of transmitting the measurement.
  • the network device 102B transmits a message M42 to the network device 102A for responding the message M41, and transmits a plurality of messages M43 to the network device 102A while each message M43 includes the prediction information. Then, the network device 102A and 102B terminate the procedure initiated by the message M41 and/or the message M42.
  • the network device 102A initiates another procedure by transmitting a message M44 of requesting the measurement to the network device 102B.
  • the message M44 includes the ID of the message M41 for associating the procedure of transmitting the measurement with the procedure of transmitting the prediction information.
  • the network device 102B transmits a message M45 to the network device 102A for responding the message M44, and transmits a plurality of messages M46 to the network device 102A while each message M46 includes the measurement corresponding to the prediction information.
  • the measurement of Xth message M46 corresponds to the prediction information of Xth message M43.
  • the prediction information of Xth message M46 is generated for predicting the measurement of Xth message M46.
  • the indicator of the message M41 at least indicates to the network device 102B to provide the prediction accuracy.
  • the network device 102B transmits the message M42 to the network device 102A for responding the message M41, and then transmits the messages M43 to the network device 102A while each message M43 includes the prediction information and the prediction accuracy.
  • the prediction accuracy of (X+1) th message M43 reflects the accuracy of the prediction information of Xth message M43.
  • the indicator of the message M41 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires.
  • the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
  • the message M42 is optional. In detail, after receiving the message M41, the network device 102B transmits the messages M43 including the prediction information without transmitting the message M42. In some embodiments, the message M45 is optional. In detail, after receiving the message M44, the network device 102B transmits the messages M46 including the measurement without transmitting the message M45.
  • the procedure initiated by the message M41 and/or the message M42 and the procedure initiated by the message M44 and/or the message M45 are respectively a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M41 and/or M42 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the procedure initiated by the message M44 and/or M45 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the message M41 when the procedure initiated by the message M41 and/or the message M42 is the resource status request procedure, the message M41 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information.
  • the procedure initiated by the message M44 and/or the message M45 is the resource status request procedure, the message M44 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of measurement.
  • the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for PRB
  • the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for number of active UEs etc.
  • the messages M43 are the same type of message.
  • the messages M43 are Xn interface messages, E1 interface messages or F1 interface messages.
  • the messages M43 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface.
  • the messages M43 includes the at least one UE ID of the message M41.
  • the messages M46 are the same type of message.
  • the messages M46 are Xn interface messages, E1 interface messages or F1 interface messages.
  • the messages M46 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface.
  • the messages M46 includes the at least one UE ID of the message M44.
  • FIG. 6A is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M51 of requesting periodical prediction to the network device 102B.
  • the message M51 includes an indicator indicating to the network device 102B a periodicity of determining and transmitting a prediction accuracy report.
  • a format of the periodicity is: (1) a time value T for the network device 102B to determine and transmit the prediction accuracy report every T period; or (2) an interval value N for the network device 102B to determine and transmit the prediction accuracy report every N times prediction.
  • the network device 102B transmits a message M52 to the network device 102A for responding the message M51, and then transmits a plurality of messages M53 including the prediction information to the network device 102A.
  • the network device 102B analyses the prediction information and generates the prediction accuracy report.
  • the network device 102B transmits a message M54 including the prediction accuracy report to the network device 102A.
  • FIG. 6B is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • the network device 102A transmits a message M61 of requesting periodical prediction to the network device 102B.
  • the message M61 includes an indicator indicating to the network device 102B a periodicity of determining a prediction accuracy report.
  • a format of the periodicity is: (1) a time value T for the network device 102B to determine the prediction accuracy report every T period; or (2) an interval value N for the network device 102B to determine the prediction accuracy report every N times prediction.
  • the network device 102B transmits a message M62 to the network device 102A for responding the message M61, and transmits a plurality of messages M63 including the prediction information to the network device 102A. Then, the network device 102A and the network device 102B terminate the procedure initiated by the message M61 and/or the message M62. The network device 102B analyses the prediction information within the periodicity and generates the prediction accuracy report.
  • the network device 102A initiates another procedure by transmitting a message M64 of requesting the prediction accuracy report to the network device 102B.
  • the message M64 includes the ID of the message M61 for associating the procedure of transmitting the prediction accuracy report with the procedure of transmitting the prediction information.
  • the network device 102B transmits a message M65 including the prediction accuracy report to the network device 102A for responding the message M44.
  • the indicator of the message M51 or the message M61 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires.
  • the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
  • the message M52 is optional. In detail, after receiving the message M51, the network device 102B transmits the messages M53 including the prediction information without transmitting the message M52. In some embodiments, the message M62 is optional. In detail, after receiving the message M61, the network device 102B transmits the messages M63 including the prediction information without transmitting the message M62.
  • the procedure initiated by the message M51 and/or the message M52 is a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M51 and/or M52 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the procedure initiated by the message M61 and/or the message M62 is a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M61 and/or M62 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • the procedure initiated by the message M64 and/or the message M65 is a new class 1 procedure that requires response from the peer network device.
  • the procedure initiated by the message M64 and/or M65 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
  • FIG. 7 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
  • a connection e.g., Xn interface, E1 interface or F1 interface
  • the network device 102A transmits a setup request to the network device 102B and the network device 102B transmits a setup request response to the network device 102A.
  • the network device 102A and the network device 102B exchange at least one prediction configuration 110 via the setup request and the setup request response.
  • the at least one prediction configuration 110 includes: (1) configuration of providing the prediction information; (2) configuration of providing a prediction accuracy of the correctness information; (3) configuration of a time condition; or (4) any possible combination of (1) to (3) .
  • the configuration of providing the prediction information corresponds to an ability of providing prediction information.
  • the configuration of providing a prediction accuracy of the correctness information corresponds to an ability of providing the prediction accuracy.
  • the configuration of the time condition includes: (1) minimum time for performing a prediction; and (2) maximum time for performing a prediction.
  • FIG. 8 illustrates a flow chart of a method for wireless communications in accordance with some embodiments of the present application.
  • method 800 is performed by a first network device and a second network device in some embodiments of the present application.
  • operation S801 is executed to transmit, via the first network device, a message of requesting prediction to the second network device.
  • Operation S802 is executed to receive, via the second network device, the message of requesting prediction from the first network device.
  • Operation S803 is execute to transmit, via the second network device, a prediction information and at least one correctness information related to the prediction information to the first network device after receiving the message.
  • Operation S804 is execute to receive, via the first network device, the prediction information and the at least one correctness information related to the prediction information from the second network device.
  • FIG. 9 illustrates an example block diagram of a network device 91 according to an embodiment of the present disclosure.
  • the network device 91 may include at least one non-transitory computer-readable medium (not illustrated in FIG. 9) , a transceiver 911 and a processor 913 electrically coupled to the non-transitory computer-readable medium (not illustrated in FIG. 9) and the transceiver 911.
  • the network device 91 may be a BS, an MN of dual connectivity, an SN in of dual connectivity, a CU of a BS, a DU of BS, a CU-CP of a CU, or a CU-UP of a CU.
  • the transceiver 911 may be separated into to circuitry, such as a receiving circuitry and a transmitting circuitry.
  • the network device 91 may further include an input device, a memory, and/or other components.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the user equipment as described above.
  • the computer-executable instructions when executed, cause the processor 913 interacting with the transceiver 911, so as to perform the operations with respect to the network device depicted in the figures.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes” , “including” , or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by "a” , “an” , or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” and the like, as used herein, are defined as “including” .
  • the terms “comprises, “ “comprising, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
  • the term “another” is defined as at least a second or more.
  • the terms “including, “ “having, “ and the like, as used herein, are defined as “comprising. "

Abstract

The present application relates to a network device and method for prediction operation. The network device transmits a first message of requesting prediction to another network device. Then, the network device receives a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the first message.

Description

NETWORK DEVICE AND METHOD FOR PREDICTION OPERATION TECHNICAL FIELD
Embodiments of the present application generally relate to wireless communication technology, especially to a network device and a method for prediction operation.
BACKGROUND
In conventional network, a network device can conduct predictions based on input received from neighbour network device (s) according to artificial intelligence model (e.g., machine learning model) , or provide prediction results to the neighbour network device (s) upon requests. However, specific details of the procedure have not been discussed yet and there are still some issues that need to be solved.
SUMMARY
Some embodiments of the present application provide a network device. The network device includes: a processor and a transceiver coupled to the processor. The processor is configured to: transmit, via the transceiver, a first message of requesting prediction to another network device; and receive, via the transceiver, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the first message.
Some embodiments of the present application provide a network device. The network device includes: a processor and a transceiver coupled to the processor. The processor is configured to: receive, via the transceiver, a first message of requesting prediction from another network device; and transmit, via the transceiver, a prediction information and at least one correctness information related to the prediction information to the another network device after receiving the first message.
Some embodiments of the present application provide a method. The method includes: receiving, via a network device, a message of requesting prediction from another network device; and transmitting, via the network device, a prediction information and at least one correctness information related to the prediction information to the another network device after receiving the message.
Some embodiments of the present application provide a method. The method includes: transmitting, via a network device, a message of requesting prediction to another network device; and receiving, via the network device, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the message.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the application can be obtained, a description of the application is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only example embodiments of the application and are not therefore to be considered limiting of its scope.
FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present application.
FIG. 2 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 3 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 4 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 5 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 6A is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 6B is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 7 is a schematic diagram of message transmission in accordance with some embodiments of the present application.
FIG. 8 illustrates a flow chart of a method for wireless communications in accordance with some embodiments of the present application.
FIG. 9 illustrates a block diagram of a network device in accordance with some embodiments of the present application.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of preferred embodiments of the present application and is not intended to represent the only form in which the present application may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present application.
Reference will now be made in detail to some embodiments of the present application, examples of which are illustrated in the accompanying drawings. Embodiments of the present application may be provided in a network architecture that adopts various service scenarios, for example but is not limited to, 3GPP 3G, long-term evolution (LTE) , LTE-Advanced (LTE-A) , 3GPP 4G, 3GPP 5G NR (new radio) , etc. It is contemplated that along with the 3GPP and related communication technology development, the terminologies recited in the present application may change, which should not affect the principle of the present application.
Referring to FIG. 1, a wireless communication system 100 may include a user equipment (UE) 101,  network devices  102A, 102B and a core network (CN) 103. Although a specific number of the UE 101, the  network devices  102A, 102B and the CN 103 are depicted in FIG. 1, it is contemplated that any number of the UEs 101, the  network devices  102A, 102B and the CNs 103 may be included in the wireless communication system 100.
The CN 103 may include a core Access and Mobility management Function (AMF) entity. The BS 102, which may communicate with the CN 103, may operate or work under the control of the AMF entity. The CN 103 may further include a User Plane Function (UPF) entity, which communicatively coupled with the AMF entity.
The  network devices  102A, 102B may be distributed over a geographic region. In certain embodiments of the present application, any of the  network devices  102A, 102B may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, a central unit (CU) of a base station (BS) , a distributed unit (DU) of a BS, a master node (MN) of dual connectivity, a secondary node (SN) of dual connectivity, a CU-control plane (CP) device of a CU of a BS, a CU-user plane (UP) device of a CU of a BS, or described using other terminology used in the art. The  network devices  102A, 102B are generally part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding network device (s) . In some embodiments of the present application, the  network devices  102A, 102B may communicate with each other via some interfaces such as Xn interface between two BSs, F1 interface between a CU and a DU or E1 interface between a CU-CP and a CU-UP.
The UE 101 may include, for example, but is not limited to, computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , Internet of Thing (IoT) devices, or the like.
According to some embodiments of the present application, the UE 101 may include, for example, but is not limited to, a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, a wireless sensor, a monitoring device, or any other device that is capable of sending and receiving communication signals on a wireless network.
In some embodiments of the present application, the UE 101 may include, for example, but is not limited to, wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art. The UE 101 may communicate directly with the  network devices  102A, 102B via uplink (UL) communication signals.
The wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a Time Division Multiple Access (TDMA) -based network, a Code Division Multiple Access (CDMA) -based network, an Orthogonal Frequency Division Multiple Access (OFDMA) -based network, a Long Term Evolution (LTE) network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
In some embodiments of the present application, the wireless communication system 100 is compatible with the 5G New Radio (NR) of the 3GPP protocol or the 5G NR-light (or reduced capability NR UEs) of the 3GPP protocol, wherein the  network devices  102A, 102B transmit data using an OFDM modulation scheme on the downlink (DL) and the UE 101 transmits data on the UL using a single-carrier frequency division multiple access (SC-FDMA) or OFDM scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
In some embodiments of the present application, the UE 101 and the  network devices  102A, 102B may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present application, the UE 101 and the  network devices  102A, 102B may communicate over licensed spectrums, whereas in other embodiments, the UE 101 and the  network devices  102A, 102B may communicate over unlicensed spectrums. The present application is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol. In yet some embodiments of present application, the  network devices  102A, 102B 102 may communicate with the UE 101 using the 3GPP 5G protocols.
In some embodiments, the network device 102A transmits a message of requesting prediction to the network device 102B. Based on receiving the message, the network device 102B determines a prediction information according to a machine learning model, and transmits the prediction information and at least one correctness information related to the prediction information to the network device 102A. Then, the network device 102A receives the prediction information and the at least one correctness information from the network 102B.
In some embodiments, the prediction information includes a prediction result, and the at least one correctness information related to the prediction information includes: (1) a measurement corresponding to the prediction result; (2) a prediction accuracy of a previous prediction result; or (3) the combination of (1) and (2) . In some embodiments, the prediction information and the measurement are comparable. In particular, the measurement is an actual measurement, which is measured at a specific time point, corresponding to the prediction information. In other words, the prediction information is generated for predicting the measurement at the specific time point.
In some embodiments, the prediction information and the measurement include: (1) radio resource status (e.g., physical resource block (PRB) in a cell) ; (2) number of active UE in a cell; (3) radio resource control (RRC) connections in a cell; (4) energy efficiency (e.g., measured in bps or joule per Hz) in a cell; (5) energy state  (e.g., low, medium or high) in a cell; (6) data traffic (e.g., amount of UL/DL data in a certain time) for a UE; (7) delay for a UE; or (8) any possible combination of (1) to (7) .
In some embodiments, the data traffic (e.g., amount of UL/DL data in a certain time) for a UE is measured or quantified as: (1) data volume measured in bits or bytes; (2) UE traffic load state (e.g., low, medium or high) ; (3) UE traffic profile representing a certain UE traffic characteristic (e.g., ultra-reliable and low latency communications (URLLC) traffic or extended reality (XR) traffic etc. ) ; (4) data arrival (e.g., at a certain data radio bearer (DRB) ) ; (5) inactivity/activity (e.g., of a certain DRB) ; or (5) any possible combination of (1) to (5) .
In some embodiments, the data traffic (e.g., amount of UL/DL data in a certain time) for a UE includes UL and/or DL traffic. In some embodiments, the data traffic is determined per UE, per DRB or per QoS flow.
In some embodiments, a format of the prediction information includes: (1) a value representing an actual measurement; or (2) a range (e.g., a range between a minimum value and a maximum value, that represents the possible range of the actual measurement result) .
In some embodiments, a format of the prediction accuracy include: (1) an error value representing the possible difference between the prediction result and actual measurement; (2) a percentage value representing possibility of an actual measurement lies in a range of X and Y while X is a prediction result minus an error value and Y is the prediction result pluses the error value; (3) a percentage value representing possibility of an actual measurement lies in a range of X and Y, while X is a minimum predicted value and Y is a maximum predicted value; (4) a percentage value representing a possibility that the prediction information is considered as true; (5) a percentage value representing possible difference between the prediction information and an actual measurement; or (6) any possible combination of (1) to (5) .
FIG. 2 is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M11 of requesting one time prediction to the network device 102B.  The message M11 includes an indicator indicating to the network device 102B: (1) at least one UE identification (ID) (e.g., E1 application protocol (E1AP) UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) whether the network device 102B provides a measurement in the same procedure; (4) a timer for the network device 102B to transmit a prediction information before the timer expires; (5) a timestamp of generating the prediction information; or (6) any possible combination of (1) to (5) .
In some embodiments, the indicator of the message M11 at least indicates to the network device 102B to provide the prediction accuracy. The network device 102B transmits a message M12 to the network device 102A for responding the message M11, and then transmits a message M13 including the prediction information and the prediction accuracy to the network device 102A.
In some embodiments, the indicator of the message M11 at least indicates to the network device 102B to provide the measurement. The network device 102B transmits the message M12 to the network device 102A for responding the message M11, and then transmits the message M13 including the prediction information to the network device 102A. Next, the network device 102B transmits a message M14 including the measurement to the network device 102A.
In some examples, when the indicator of the message M11 indicates to the network device 102B to provide the prediction accuracy only, the prediction information is transmitted with the prediction accuracy in the message M13 and the message M14 is unnecessary. When the indicator of the message M11 indicates to the network device 102B to provide the measurement only, the prediction information is transmitted without the prediction accuracy in the message M13 and the measurement is transmitted in the message M14. When the indicator of the message M11 indicates to the network device 102B to provide both the prediction accuracy and the measurement, the prediction information is transmitted without the prediction accuracy in the message M13 and the measurement is transmitted in the message M14.
In some embodiments, the message M13 including the prediction information and the message M14 including the measurement belong to the same procedure. In  detail, the message M11 and/or the message M12 include (s) an ID, which is used for identifying the same procedure. Therefore, when the message M13 and the message M14 include the same ID, the message M13 and the message M14 are considered in the same procedure.
In some embodiments, the network device 102B terminates the procedure initiated by the message M11 after transmitting the message M14. The network device 102A terminates the procedure initiated by the message M11 after receiving the message M14.
In some embodiments, the message M13 and the message M14 are the same type of message. For example, the message M13 and M14 are Xn interface messages, E1 interface messages or F1 interface messages. For another example, the message M13 and M14 are: (1) data usage report over E1 interface; (2) multi-radio dual connectivity (MR-DC) data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary radio access technology (RAT) data usage report over Xn interface; or (9) resource status update over Xn interface.
In some embodiments, the indicator of the message M11 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires. In detail, after transmitting the message M11, the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
In some embodiments, the message M12 is optional. In detail, after receiving the message M11, the network device 102B transmits the message M13 including the prediction information without transmitting the message M12.
In some embodiments, the procedure initiated by the message M11 and/or the message M12 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M11 and/or the  message M12 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In some embodiments, when the procedure initiated by the message M11 and/or the message M12 is the resource status request procedure, the message M11 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information. For example, the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information for PRB, the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information for number of active UEs etc.
FIG. 3 is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M21 of requesting one time prediction to the network device 102B. The message M21 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit a prediction information before the timer expires; (4) an ID associated with the prediction information; (5) a timestamp of generating the prediction information; or (6) any possible combination of (1) to (5) .
In some embodiments, the indicator of the message M21 at least indicates to the network device 102B to provide the prediction accuracy. The network device 102B transmits a message M22 to the network device 102A for responding the message M21, and then transmits a message M23 including the prediction information and the prediction accuracy to the network device 102A.
In some embodiments, the network device 102B transmits the message M22 to the network device 102A for responding the message M21, and transmits the message M23 including the prediction information to the network device 102A. Then, the  network device  102A and 102B terminate the procedure initiated by the message M21 and/or M22.
Next, the network device 102A initiates another procedure by transmitting a message M24 of requesting the measurement to the network device 102B. The message M24 includes the ID of the message M21 for associating the procedure of transmitting the measurement with the procedure of transmitting the prediction information. The network device 102B transmits a message M25 to the network device 102A for responding the message M24, and transmits a message M26 including the measurement to the network device 102A.
In some embodiments, the message M23 and the message M26 are the same type of message. For example, the message M23 and M26 are Xn interface messages, E1 interface messages or F1 interface messages. For another example, the message M23 and M26 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface. In some embodiments, the message M23 and the message M26 includes the at least one UE ID of the message M21 or the message M24.
In some embodiments, the indicator of the message M21 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires. In detail, after transmitting the message M21, the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
In some embodiments, the message M22 is optional. In detail, after receiving the message M21, the network device 102B transmits the message M23 including the prediction information without transmitting the message M22. In some embodiments, the message M25 is optional. In detail, after receiving the message M24, the network device 102B transmits the message M26 including the measurement without transmitting the message M25.
In embodiments, the procedure initiated by the message M21 and/or the message M22 and the procedure initiated by the message M24 and/or the message M25 are respectively a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M21 and/or the message M22 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS. The procedure initiated by the message M24 and/or the message M25 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In some embodiments, when the procedure initiated by the message M21 and/or the message M22 is the resource status request procedure, the message M21 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information. When the procedure initiated by the message M24 and/or the message M25 is the resource status request procedure, the message M24 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of measurement. For example, the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for PRB, the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for number of active UEs etc.
FIG. 4 is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M31 of requesting periodical prediction to the network device 102B. The message M31 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit the prediction information before the timer expires; (4) periodicity of transmitting a prediction information; (5) periodicity of transmitting a measurement; (6) information of generating the prediction information; or (7) any possible combination of (1) to (6) . In some embodiments, the information of  generating the prediction information includes: (1) a value M and a value N which are natural numbers; and (2) a timestamp of generating the first prediction information.
In some embodiments, the indicator of the message M31 at least indicates to the network device 102B the periodicity of transmitting the measurement. The network device 102B transmits a message M32 to the network device 102A for responding the message M31, and then transmits a plurality of messages M33 including the prediction information and the measurement to the network device 102A.
In some embodiments, the measurement of (M+N) th message M33 corresponds to the prediction information of Nth message M33. Specifically, the prediction information of Nth message M33 is generated for predicting the measurement of (M+N) th message M33.
In some embodiments, the indicator of the message M31 at least indicates to the network device 102B to provide the prediction accuracy. The network device 102B transmits the message M32 to the network device 102A for responding the message M31, and then transmits the messages M33 including the prediction information and the prediction accuracy to the network device 102A. In some embodiments, the prediction accuracy of (X+1) th message M33 reflects the accuracy of the prediction information of Xth message M33.
In some embodiments, the indicator of the message M31 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires. In detail, after transmitting the message M31, the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
In some embodiments, the message M32 is optional. In detail, after receiving the message M31, the network device 102B transmits the messages M33 including the prediction information without transmitting the message M32.
In embodiments, the procedure initiated by the message M31 and/or the message M32 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M31 and/or M32 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In some embodiments, when the procedure initiated by the message M31 and/or the message M32 is the resource status request procedure, the message M31 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information. For example, the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information for PRB, the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information for number of active UEs etc.
In some embodiments, the messages M33 are the same type of message. For example, the messages M33 are Xn interface messages, E1 interface messages or F1 interface messages. For another example, the messages M33 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface. In some embodiments, the messages M33 includes the at least one UE ID of the message M31.
FIG. 5 is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M41 of requesting periodical prediction to the network device 102B. The message M41 includes an indicator indicating to the network device 102B: (1) at least one UE ID (e.g., E1AP UE ID, F1AP UE ID, XnAP UE ID) ; (2) whether the network device 102B provides a prediction accuracy; (3) a timer for the network device 102B to transmit the prediction information before the timer expires; (4) periodicity of transmitting a prediction information; (5) periodicity of transmitting a  measurement; (6) information of generating the prediction information; (7) an ID associated with the prediction information; or (8) any possible combination of (1) to (7) . In some embodiments, the information of generating the prediction information includes a timestamp of generating the first prediction information.
In some embodiments, the indicator of the message M41 at least indicates to the network device 102B the periodicity of transmitting the measurement. The network device 102B transmits a message M42 to the network device 102A for responding the message M41, and transmits a plurality of messages M43 to the network device 102A while each message M43 includes the prediction information. Then, the  network device  102A and 102B terminate the procedure initiated by the message M41 and/or the message M42.
Next, the network device 102A initiates another procedure by transmitting a message M44 of requesting the measurement to the network device 102B. The message M44 includes the ID of the message M41 for associating the procedure of transmitting the measurement with the procedure of transmitting the prediction information. The network device 102B transmits a message M45 to the network device 102A for responding the message M44, and transmits a plurality of messages M46 to the network device 102A while each message M46 includes the measurement corresponding to the prediction information.
In some embodiments, the measurement of Xth message M46 corresponds to the prediction information of Xth message M43. In other words, the prediction information of Xth message M46 is generated for predicting the measurement of Xth message M46.
In some embodiments, the indicator of the message M41 at least indicates to the network device 102B to provide the prediction accuracy. The network device 102B transmits the message M42 to the network device 102A for responding the message M41, and then transmits the messages M43 to the network device 102A while each message M43 includes the prediction information and the prediction accuracy. In some embodiments, the prediction accuracy of (X+1) th message M43 reflects the accuracy of the prediction information of Xth message M43.
In some embodiments, the indicator of the message M41 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires. In detail, after transmitting the message M41, the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
In some embodiments, the message M42 is optional. In detail, after receiving the message M41, the network device 102B transmits the messages M43 including the prediction information without transmitting the message M42. In some embodiments, the message M45 is optional. In detail, after receiving the message M44, the network device 102B transmits the messages M46 including the measurement without transmitting the message M45.
In embodiments, the procedure initiated by the message M41 and/or the message M42 and the procedure initiated by the message M44 and/or the message M45 are respectively a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M41 and/or M42 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS. The procedure initiated by the message M44 and/or M45 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In some embodiments, when the procedure initiated by the message M41 and/or the message M42 is the resource status request procedure, the message M41 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of prediction information. When the procedure initiated by the message M44 and/or the message M45 is the resource status request procedure, the message M44 is a resource status request message, and the indicator is a specific position in report characteristics bitmap for requesting a specific type of measurement. For example, the number 'N' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for  PRB, the number 'M' bit in the report characteristics bitmap is used as requesting a prediction information/measurement for number of active UEs etc.
In some embodiments, the messages M43 are the same type of message. For example, the messages M43 are Xn interface messages, E1 interface messages or F1 interface messages. For another example, the messages M43 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface. In some embodiments, the messages M43 includes the at least one UE ID of the message M41.
In some embodiments, the messages M46 are the same type of message. For example, the messages M46 are Xn interface messages, E1 interface messages or F1 interface messages. For another example, the messages M46 are: (1) data usage report over E1 interface; (2) MR-DC data usage report over E1 interface; (3) bearer context inactivity notification over E1 interface; (4) DL data notification over E1 interface; (5) UL data notification over E1 interface; (6) UE inactivity notification over F1 interface; (7) resource status update over F1 interface; (8) secondary RAT data usage report over Xn interface; or (9) resource status update over Xn interface. In some embodiments, the messages M46 includes the at least one UE ID of the message M44.
FIG. 6A is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M51 of requesting periodical prediction to the network device 102B. The message M51 includes an indicator indicating to the network device 102B a periodicity of determining and transmitting a prediction accuracy report. A format of the periodicity is: (1) a time value T for the network device 102B to determine and transmit the prediction accuracy report every T period; or (2) an interval value N for the network device 102B to determine and transmit the prediction accuracy report every N times prediction.
In some embodiments, the network device 102B transmits a message M52 to the network device 102A for responding the message M51, and then transmits a plurality of messages M53 including the prediction information to the network device 102A. The network device 102B analyses the prediction information and generates the prediction accuracy report. Next, after the periodicity, the network device 102B transmits a message M54 including the prediction accuracy report to the network device 102A.
FIG. 6B is a schematic diagram of message transmission in accordance with some embodiments of the present application. In particular, the network device 102A transmits a message M61 of requesting periodical prediction to the network device 102B. The message M61 includes an indicator indicating to the network device 102B a periodicity of determining a prediction accuracy report. A format of the periodicity is: (1) a time value T for the network device 102B to determine the prediction accuracy report every T period; or (2) an interval value N for the network device 102B to determine the prediction accuracy report every N times prediction.
In some embodiments, the network device 102B transmits a message M62 to the network device 102A for responding the message M61, and transmits a plurality of messages M63 including the prediction information to the network device 102A. Then, the network device 102A and the network device 102B terminate the procedure initiated by the message M61 and/or the message M62. The network device 102B analyses the prediction information within the periodicity and generates the prediction accuracy report.
Next, the network device 102A initiates another procedure by transmitting a message M64 of requesting the prediction accuracy report to the network device 102B. The message M64 includes the ID of the message M61 for associating the procedure of transmitting the prediction accuracy report with the procedure of transmitting the prediction information. The network device 102B transmits a message M65 including the prediction accuracy report to the network device 102A for responding the message M44.
In some embodiments, the indicator of the message M51 or the message M61 at least indicates to the network device 102B the timer for transmitting the prediction information before the timer expires. In detail, after transmitting the message M51 or the message M61, the network device 102A starts the timer. If the network device 102A does not receive any prediction information from the network device 102B before the timer expires, the network device 102A considers the procedure of requesting the prediction information fails.
In some embodiments, the message M52 is optional. In detail, after receiving the message M51, the network device 102B transmits the messages M53 including the prediction information without transmitting the message M52. In some embodiments, the message M62 is optional. In detail, after receiving the message M61, the network device 102B transmits the messages M63 including the prediction information without transmitting the message M62.
In embodiments, the procedure initiated by the message M51 and/or the message M52 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M51 and/or M52 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In embodiments, the procedure initiated by the message M61 and/or the message M62 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M61 and/or M62 is: (1) a resource status request procedure over Xn interface between two BSs; (2) or a resource status request procedure over F1 interface between CU and DU of the same BS.
In embodiments, the procedure initiated by the message M64 and/or the message M65 is a new class 1 procedure that requires response from the peer network device. In some embodiments, the procedure initiated by the message M64 and/or M65 is: (1) a resource status request procedure over Xn interface between two BSs; (2)  or a resource status request procedure over F1 interface between CU and DU of the same BS.
FIG. 7 is a schematic diagram of message transmission in accordance with some embodiments of the present application. In some embodiments, when a connection (e.g., Xn interface, E1 interface or F1 interface) is established between the network device 102A and the network device 102B, the network device 102A transmits a setup request to the network device 102B and the network device 102B transmits a setup request response to the network device 102A. The network device 102A and the network device 102B exchange at least one prediction configuration 110 via the setup request and the setup request response.
The at least one prediction configuration 110 includes: (1) configuration of providing the prediction information; (2) configuration of providing a prediction accuracy of the correctness information; (3) configuration of a time condition; or (4) any possible combination of (1) to (3) .
In some embodiments, the configuration of providing the prediction information corresponds to an ability of providing prediction information. The configuration of providing a prediction accuracy of the correctness information corresponds to an ability of providing the prediction accuracy. The configuration of the time condition includes: (1) minimum time for performing a prediction; and (2) maximum time for performing a prediction.
FIG. 8 illustrates a flow chart of a method for wireless communications in accordance with some embodiments of the present application. Referring to FIG. 8, method 800 is performed by a first network device and a second network device in some embodiments of the present application.
In some embodiments, operation S801 is executed to transmit, via the first network device, a message of requesting prediction to the second network device. Operation S802 is executed to receive, via the second network device, the message of requesting prediction from the first network device. Operation S803 is execute to transmit, via the second network device, a prediction information and at least one  correctness information related to the prediction information to the first network device after receiving the message. Operation S804 is execute to receive, via the first network device, the prediction information and the at least one correctness information related to the prediction information from the second network device.
FIG. 9 illustrates an example block diagram of a network device 91 according to an embodiment of the present disclosure.
As shown in FIG. 9, the network device 91 may include at least one non-transitory computer-readable medium (not illustrated in FIG. 9) , a transceiver 911 and a processor 913 electrically coupled to the non-transitory computer-readable medium (not illustrated in FIG. 9) and the transceiver 911. The network device 91 may be a BS, an MN of dual connectivity, an SN in of dual connectivity, a CU of a BS, a DU of BS, a CU-CP of a CU, or a CU-UP of a CU.
Although in this figure, elements such as processor 913 and transceiver 911 are described in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. In some embodiments of the present disclosure, the transceiver 911 may be separated into to circuitry, such as a receiving circuitry and a transmitting circuitry. In certain embodiments of the present disclosure, the network device 91 may further include an input device, a memory, and/or other components.
In some embodiments of the present disclosure, the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the user equipment as described above. For example, the computer-executable instructions, when executed, cause the processor 913 interacting with the transceiver 911, so as to perform the operations with respect to the network device depicted in the figures.
Those having ordinary skill in the art would understand that the operations of a method described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk,  a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
While this disclosure has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. For example, various components of the embodiments may be interchanged, added, or substituted in the other embodiments. Also, all of the elements of each figure are not necessary for operation of the disclosed embodiments. For example, one of ordinary skill in the art of the disclosed embodiments would be enabled to make and use the teachings of the disclosure by simply employing the elements of the independent claims. Accordingly, embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure.
In this document, the terms "includes" , "including" , or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a" , "an" , or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The term "having" and the like, as used herein, are defined as "including" .
In this document, the terms "comprises, " "comprising, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.  Also, the term "another" is defined as at least a second or more. The terms "including, " "having, " and the like, as used herein, are defined as "comprising. "

Claims (15)

  1. A network device, comprising:
    a processor; and
    a transceiver coupled to the processor;
    wherein the processor is configured to:
    transmit, via the transceiver, a first message of requesting prediction to another network device; and
    receive, via the transceiver, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the first message.
  2. The network device of claim 1, wherein the first message includes an indicator for requesting a measurement, the at least one correctness information includes the measurement, and the processor is configured to:
    receive, via the transceiver, a second message including the prediction information from the another network device; and
    receive, via the transceiver, a third message including the measurement from the another network device.
  3. The network device of claim 2, wherein the processor is configured to:
    terminate a procedure initiated by the first message after receiving the third message.
  4. The network device of claim 1, wherein the first message includes an identification, the at least one correctness information includes a measurement, and the processor is configured to:
    receive, via the transceiver, a second message including the prediction information from the another network device;
    transmit, via the transceiver, a third message of requesting the measurement to the another network device, wherein the third message includes the identification; and
    receive, via the transceiver, a fourth message including the measurement from the another network device after transmitting the third message.
  5. The network device of claim 1, wherein the first message includes an indicator for requesting a prediction accuracy, the at least one correctness information includes the prediction accuracy, and the processor is configured to:
    receive, via the transceiver, a second message including the prediction information and the prediction accuracy.
  6. The network device of claim 4, wherein the first message includes an identification, the at least one correctness information includes a measurement, and the processor is configured to:
    transmit, via the transceiver, a third message of requesting the measurement to the another network device, wherein the third message includes the identification; and
    receive, via the transceiver, a fourth message including the measurement from the another network device after transmitting the third message.
  7. The network device of claim 1, wherein the processor is configured to:
    start a timer after transmitting the first message, wherein the timer is configured to receive the prediction information before being expired.
  8. The network device of claim 1, wherein the first message includes an indicator for requesting a measurement, the at least one correctness information includes the measurement, and the processor is configured to:
    periodically receive, via the transceiver, a second message including the prediction information and the measurement from the another network device, wherein the measurement of (M+N) th second message corresponding to the prediction information of Nth second message while M and N are natural numbers and transmitted with the first message.
  9. The network device of claim 1, wherein the first message includes an identification, the at least one correctness information includes the measurement, and the processor is configured to:
    periodically receive, via the transceiver, a second message including the prediction information from the another network device;
    transmit, via the transceiver, a third message of requesting the measurement to the another network device, wherein the third message includes the identification; and
    periodically receive, via the transceiver, a fourth message including the measurement from the another network device.
  10. The network device of claim 1, wherein the first message includes an indicator for requesting a prediction accuracy, the at least one correctness information includes the prediction accuracy, and the processor is configured to:
    periodically receive, via the transceiver, a second message including the prediction information; and
    receive, via the transceiver, the prediction accuracy.
  11. The network device of claim 1, wherein the processor is further configured to:
    establish, via the transceiver, a connection with the another network device; and
    exchange, via the transceiver, at least one prediction configuration with the another network device.
  12. The network of claim 11, wherein the at least one prediction configuration includes:
    configuration of providing the prediction information;
    configuration of providing a prediction accuracy of the correctness information;
    configuration of a time condition; or
    a combination of any of the configurations.
  13. The network device of claim 1, wherein the at least one correctness information includes a prediction accuracy, and the prediction accuracy includes:
    a percentage value representing possibility of an actual measurement result lies in a range of X and Y, wherein
    X is a prediction result minus an error value and Y is the prediction result pluses the error value, or
    X is a minimum predicted value and Y is a maximum predicted value.
  14. A network device, comprising:
    a processor; and
    a transceiver coupled to the processor;
    wherein the processor is configured to:
    receive, via the transceiver, a first message of requesting prediction from another network device; and
    transmit, via the transceiver, a prediction information and at least one correctness information related to the prediction information to the another network device after receiving the first message.
  15. A method of a network device, comprising:
    transmitting, via the network device, a message of requesting prediction to another network device; and
    receiving, via the network device, a prediction information and at least one correctness information related to the prediction information from the another network device after transmitting the message.
PCT/CN2022/095605 2022-05-27 2022-05-27 Network device and method for prediction operation WO2023226004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095605 WO2023226004A1 (en) 2022-05-27 2022-05-27 Network device and method for prediction operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095605 WO2023226004A1 (en) 2022-05-27 2022-05-27 Network device and method for prediction operation

Publications (1)

Publication Number Publication Date
WO2023226004A1 true WO2023226004A1 (en) 2023-11-30

Family

ID=88918227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095605 WO2023226004A1 (en) 2022-05-27 2022-05-27 Network device and method for prediction operation

Country Status (1)

Country Link
WO (1) WO2023226004A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030115A1 (en) * 2018-08-10 2020-02-13 JRD Communication (Shenzhen) Ltd. Downlink transmission with two-stage feedback: early prediction-based feedback of physical downlink shared channel and hybrid automatic repeat request feedback
CN110996302A (en) * 2018-10-02 2020-04-10 大众汽车有限公司 Method and apparatus for predicting quality of service of communication link of communication device
CN112118587A (en) * 2019-06-19 2020-12-22 大唐移动通信设备有限公司 Cell management method and equipment
CN113938959A (en) * 2020-06-29 2022-01-14 华为技术有限公司 Target cell determination method, communication device, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030115A1 (en) * 2018-08-10 2020-02-13 JRD Communication (Shenzhen) Ltd. Downlink transmission with two-stage feedback: early prediction-based feedback of physical downlink shared channel and hybrid automatic repeat request feedback
CN110996302A (en) * 2018-10-02 2020-04-10 大众汽车有限公司 Method and apparatus for predicting quality of service of communication link of communication device
CN112118587A (en) * 2019-06-19 2020-12-22 大唐移动通信设备有限公司 Cell management method and equipment
CN113938959A (en) * 2020-06-29 2022-01-14 华为技术有限公司 Target cell determination method, communication device, and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Initial discussions on further enhancement for data collection", 3GPP TSG-RAN WG3 MEETING #110-E R3-206729, 23 October 2020 (2020-10-23), XP051946076 *

Similar Documents

Publication Publication Date Title
CN109155945B (en) Method and device for transmitting data
EP4102879A1 (en) Measurement method, apparatus and system
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
US20230034121A1 (en) Communication method and apparatus to optimze a measurment policy
WO2022057605A1 (en) Methods and terminal devices for enhanced discovery procedure
US20220417777A1 (en) Terminal Device, Network Device and Methods Therein
US20200128458A1 (en) Method and apparatus used to manage links
TWI684370B (en) Device and method of handling a measurement configuration and a reporting
US20230422135A1 (en) Method and apparatus for mobility robustness optimization
CN108810953B (en) Processing method for measurement report, network side equipment and user equipment
CN112399494B (en) Wireless communication method and communication device
WO2021114099A1 (en) Method and apparatus for data transmission
US20230090357A1 (en) Mobile communication system, terminal device, base station device, communication method, and computer program
WO2023226004A1 (en) Network device and method for prediction operation
WO2023122950A1 (en) Methods and apparatuses for mobility enhancements for uav
WO2019161563A1 (en) Handling of smtc information at user equipment
US11297566B2 (en) Information transmission method and apparatus
US20230319618A1 (en) Aerial user equipment and method for transmission of measurement report
WO2022082611A1 (en) Communication method and apparatus
WO2024007306A1 (en) Network device and method for prediction information exchange under dual connectivity mode
WO2021022426A1 (en) Methods, devices and computer readable media for simultaneous connectivity based handover
US20240032105A1 (en) Method and apparatus for performing random access
WO2023050349A1 (en) Methods and apparatuses for a mro mechanism
WO2023283931A1 (en) Method and apparatus for determining slot formats of uplink and downlink transmission
WO2024082458A1 (en) Network device and user equipment for network energy saving under dual connectivity mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943202

Country of ref document: EP

Kind code of ref document: A1