WO2022001327A1 - 像素排布结构、显示面板及显示装置 - Google Patents

像素排布结构、显示面板及显示装置 Download PDF

Info

Publication number
WO2022001327A1
WO2022001327A1 PCT/CN2021/089606 CN2021089606W WO2022001327A1 WO 2022001327 A1 WO2022001327 A1 WO 2022001327A1 CN 2021089606 W CN2021089606 W CN 2021089606W WO 2022001327 A1 WO2022001327 A1 WO 2022001327A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
center
pixels
unit
Prior art date
Application number
PCT/CN2021/089606
Other languages
English (en)
French (fr)
Inventor
刘明星
王煜
马天
赵栋
邵静
邵阳
彭兆基
李俊峰
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010622095.6A external-priority patent/CN112436029B/zh
Priority claimed from CN202010622110.7A external-priority patent/CN112436031B/zh
Priority claimed from CN202010622109.4A external-priority patent/CN112436030B/zh
Priority to EP23152340.8A priority Critical patent/EP4210455A1/en
Priority to KR1020237000098A priority patent/KR20230010812A/ko
Priority to KR1020237002013A priority patent/KR20230017360A/ko
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to EP21833145.2A priority patent/EP4177954A4/en
Priority to EP23152335.8A priority patent/EP4203655A1/en
Priority to KR1020237002010A priority patent/KR20230017359A/ko
Priority to JP2022580483A priority patent/JP2023532055A/ja
Publication of WO2022001327A1 publication Critical patent/WO2022001327A1/zh
Priority to US17/980,839 priority patent/US20230071258A1/en
Priority to US17/982,250 priority patent/US20230065025A1/en
Priority to US17/982,253 priority patent/US20230058293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/04Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using circuits for interfacing with colour displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present application relates to the field of display technology, and in particular, to a pixel arrangement structure, a display panel and a display device.
  • the resolution of a display device can be improved by reducing the size of the sub-pixels and reducing the spacing between the sub-pixels.
  • the reduction of the size of the sub-pixels and the spacing between the sub-pixels also requires higher and higher precision of the manufacturing process, which leads to an increase in the difficulty and cost of the manufacturing process of the display device.
  • Sub-pixel rendering (Sup-Pixel Rendering, SPR) technology can take advantage of the difference in the resolution of different color sub-pixels by the human eye, change the conventional red, green, and blue sub-pixels to simply define the mode of a pixel, through different pixels. Some sub-pixels that are insensitive to resolution in certain positions are shared between them, and relatively few sub-pixels are used to simulate the performance of the same pixel resolution, thereby reducing the difficulty and cost of the manufacturing process.
  • a pixel arrangement structure comprising a plurality of first pixel units and a plurality of second pixel units, and the plurality of the first pixel units and the plurality of the second pixel units are in the first pixel unit. Alternately arranged in one direction and the second direction;
  • Each of the first pixel unit and the second pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel; the first sub-pixel is located in the third sub-pixel On one side of the line between the center of the third sub-pixel and the center of the fourth sub-pixel, the second sub-pixel is located on the other side of the line between the center of the third sub-pixel and the center of the fourth sub-pixel one side;
  • the second pixel unit After the second pixel unit is rotated by a predetermined angle, its sub-pixel arrangement is mirror-symmetrical with the sub-pixel arrangement of the first pixel unit;
  • the predetermined angle is greater than 0° and less than 360°.
  • a pixel arrangement structure including a first pixel unit; the first pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel; in In the first pixel unit, the respective centers of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel are used as vertices to form a co-edge triangle with non-overlapping areas; and taking the center of the first sub-pixel and the center of the second sub-pixel as the co-edge vertex of the co-edge triangle;
  • the second sub-pixel has a second long axis and a second short axis, and in the first pixel unit, the center line of the second sub-pixel along its long-axis direction does not pass through the third sub-pixel and/or the center of the fourth sub-pixel.
  • a pixel arrangement structure including a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel;
  • the center of the sub-pixel and the centers of the two second sub-pixels arranged in alignment are vertices connecting lines to form a virtual quadrilateral, and the virtual quadrilateral includes two equilateral sides arranged opposite, a short side and a long side that are oppositely arranged and connect the equilateral vertices.
  • the short side of the virtual quadrilateral is non-parallel to the long side of the virtual quadrilateral; a third sub-pixel or a fourth sub-pixel is arranged in the virtual quadrilateral, and the third sub-pixel and the fourth sub-pixel are arranged in the virtual quadrilateral
  • the sub-pixels emit the same color.
  • a display panel including the pixel arrangement structure described in the embodiments of the first to third aspects of the present application.
  • a display device including the display panel according to the embodiment of the fourth or fifth aspect of the present application.
  • 1 is a schematic diagram of a pixel arrangement
  • FIG. 2 is a schematic structural diagram of a display panel in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the arrangement of first pixel units in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the arrangement of second pixel units in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a pixel arrangement of a repeating unit in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the arrangement of a display matrix in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of a pixel arrangement structure in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a pixel arrangement structure according to an embodiment of the present application.
  • the OLED display panel is driven by current, and it is necessary to provide a pixel driving circuit connected to the OLED device, so as to provide a driving current for the OLED device so that the OLED device emits light.
  • An OLED device includes at least an anode, a cathode, and an organic light-emitting material between the anode and the cathode. Taking a top-emitting OLED display panel as an example, the organic light-emitting material cannot be patterned by a traditional etching process due to its poor stability. Instead, an evaporation process using a mask is used for patterning. The organic light-emitting material is placed in a vacuum environment, and the organic material is evaporated or sublimated by heating.
  • a mask plate is arranged between the cavity for evaporating the organic material and the array substrate to be evaporated, and the mask plate is provided with openings corresponding to the regions that need evaporation, and the regions that do not need evaporation have no openings.
  • the evaporated or sublimated organic material molecules are attached to the array substrate to be evaporated through the opening, thereby directly forming a patterned organic material layer.
  • the mask corresponding to the vapor deposition of each sub-pixel luminescent material layer is a fine metal mask (FMM, Fine Metal Mask) referred to as a fine mask.
  • the pixel arrangement of the related art makes the pixel density (PPI, pixel per inch, hereinafter referred to as the pixel density) of the organic light-emitting display panel impossible to obtain. further improvement.
  • the pixel rendering technology (SPR, Sub Pixel Rendering) is used to improve the resolution of the display panel.
  • the non-rendered pixel includes three sub-pixels, while the rendered pixel includes only 2 sub-pixels, so the number of pixels can be increased by 50% without changing the sub-pixels, thereby improving the resolution. Rate.
  • each pixel only includes 2 sub-pixels, and in order to realize full-color display, it needs to borrow the color that it cannot display from the adjacent sub-pixels.
  • the arrangement of the sub-pixels is expected to be more uniform, and the adjacent sub-pixels of the same color are designed to share a mask opening, thereby increasing the opening area of the mask. Reduce the difficulty of alignment.
  • a fingerprint identification device is set in the display area under the screen.
  • the fingerprint identification device includes a photosensitive device used for fingerprint image acquisition
  • the photosensitive device may include an optical sensor
  • the optical sensor may include a plurality of pixel points
  • the plurality of pixel points can respectively receive light signals reflected from different positions of the object, and use
  • the received optical signals are converted into electrical signals, thereby generating an image of the object. Therefore, the amount of incoming light and the contrast of the light signal received by the pixel point will affect the image quality of the generated object.
  • the light transmittance of the display panel also has certain requirements, which further increases the difficulty in designing the pixel arrangement structure.
  • the embodiments of the present application provide a pixel arrangement structure, a display panel and a display device, which can preferably improve the above problems.
  • FIG. 2 shows a schematic structural diagram of a display panel in an embodiment of the present application.
  • the display panel 100 in at least one embodiment of the present application includes a display area 10 and a non-display area 20 , and the display area 10 displays an image through a plurality of sub-pixels.
  • the display area 10 may be a rectangle, and the non-display area 20 is arranged around the display area 10.
  • the shapes and arrangements of the display area 10 and the non-display area 20 include but are not limited to the above examples.
  • the display area 10 when the display panel 100 is used for When a wearable device (such as a watch) is worn on the user, the display area 10 may have a circular shape; when the display substrate is used for display on a vehicle, the display area 10 and the non-display area 20 may be, for example, circular, polygonal or other shapes.
  • the display area 10 is provided with a plurality of sub-pixels emitting light of different colors, and the sub-pixel means the smallest unit for emitting light (eg, the smallest addressable unit of the display panel 100).
  • FIG. 3 shows a schematic diagram of the arrangement of the first pixel units in an embodiment of the present application
  • FIG. 4 shows a schematic diagram of the arrangement of the second pixel units in an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of a pixel arrangement of a repeating unit in an embodiment of the present application;
  • FIG. 6 shows a schematic diagram of an arrangement of a display matrix in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of a pixel arrangement structure in an embodiment of the present application.
  • a first aspect of the present application provides a pixel arrangement structure.
  • the pixel arrangement structure in at least one embodiment disclosed in the present application includes a plurality of first pixel units and a plurality of second pixel units.
  • the first pixel unit and the second pixel unit are adjacent to each other, and the plurality of first pixel units and the plurality of second pixel units are alternately arranged in the first direction and the second direction.
  • the first direction is the X direction in the figures
  • the second direction is the Y direction in the figures.
  • the first pixel units and the second pixel units are alternately arranged, and in the second direction, the first pixel units and the second pixel units are alternately arranged.
  • any two adjacent first pixel units are separated by one second pixel unit, and any two adjacent second pixel units are separated by one first pixel unit spaced out.
  • the included angle between the first direction and the row direction is 45°
  • the second direction is perpendicular to the first direction
  • the included angle with the column direction is 45°.
  • the first pixel unit and the second pixel unit each include a first sub-pixel 12, a second sub-pixel 14, a third sub-pixel 16a, and a fourth sub-pixel 16b.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may be one of a red sub-pixel, a blue sub-pixel and a green sub-pixel, respectively.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may also be sub-pixels that emit light of other colors than red, green and blue , for example, white or yellow, which is not limited here. It should be understood that light of different colors has different wavelengths.
  • Higher wavelengths mean higher energy of light.
  • Light with high energy easily causes the decay of organic light-emitting materials, making sub-pixels emitting photons with high energy easier to decay.
  • the wavelength of blue light is shorter than that of red light and green light. Therefore, the energy of blue light is higher, and the organic light-emitting material that emits blue light is more prone to decay, causing the light emitted from the pixel unit to be prone to reddish, resulting in the phenomenon of white light color shift.
  • the light emitted by each sub-pixel is repeatedly reflected and re-reflected between the anode and the cathode through the microcavity effect to perform amplification and constructive interference, the brightness of the light is increased, and the color shift is further amplified.
  • the light-emitting area of the blue sub-pixel is larger than the light-emitting area of the red sub-pixel and the green sub-pixel. In this way, it can be reduced to a certain extent due to the different decay rates of organic light-emitting materials emitting light of different colors. resulting in poor display.
  • the first sub-pixel 12 is a blue sub-pixel
  • the second sub-pixel 14 is a red sub-pixel
  • the third sub-pixel 16a and the fourth sub-pixel 16b is a green sub-pixel.
  • the light-emitting area of the first sub-pixel 12 is larger than that of the second sub-pixel 14, and the light-emitting area of the second sub-pixel 14 is larger than that of the third sub-pixel 16a or the fourth sub-pixel 16b.
  • the light-emitting area of the green sub-pixel may be equal to the light-emitting area of the red sub-pixel, but since the human eye is more sensitive to green light, in other embodiments, the light-emitting area of the green sub-pixel may be equal to that of the red sub-pixel. It may be smaller than the light-emitting area of the red sub-pixel, which is not limited here.
  • the first sub-pixel 12 is located on one side of the center line c between the center of the third sub-pixel 16a and the center of the fourth sub-pixel 16b
  • the second sub-pixel 14 is located on one side of the center line c.
  • the other side of the center line c between the center of the third sub-pixel 16a and the center of the fourth sub-pixel 16b.
  • the centers of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b are sequentially connected to form a virtual quadrilateral, and the centers of the second sub-pixel 14, the first sub-pixel 12 and the third sub-pixel 16a
  • the line connecting the centers forms a first triangle (not shown), and the lines connecting the centers of the second sub-pixel 14, the first sub-pixel 12 and the fourth sub-pixel 16b form a second triangle.
  • the first triangle and the second triangle take the center connecting line d between the center of the first subpixel and the center of the second subpixel as a common side, and the two triangles do not overlap each other.
  • the common-sided triangle is an acute-angled triangle, so that the sub-pixels of the pixel structure are arranged more uniformly, which is beneficial to improve the display effect.
  • each sub-pixel structure in the second pixel unit is mirror-symmetrical with each sub-pixel structure in the first pixel unit after being rotated by a predetermined angle. That is to say, the sub-pixels in the first pixel unit and the sub-pixels of the same color in the second pixel unit have the same shape and size (light-emitting area), and the sub-pixel structure after the second pixel unit is rotated clockwise or counterclockwise by a predetermined angle It is mirror-symmetrical to the structure of the corresponding sub-pixel in the first pixel unit.
  • the predetermined angle is greater than 0° and less than 360°.
  • the sub-pixel arrangement of the second pixel unit shown in FIG. 4 rotates 90° clockwise and is in the first direction with the first pixel shown in FIG. 3 .
  • the sub-pixels of the unit are arranged in mirror symmetry.
  • each sub-pixel is usually arranged along the row and column directions as evenly as possible with certain rules.
  • the fabric structure is prone to color casts, color fringing and visual graininess.
  • the sub-pixel arrangement structure of the second pixel unit is mirror-symmetrical with the sub-pixel arrangement structure of the first pixel unit after being rotated by a predetermined angle.
  • the third sub-pixel 16a and the fourth sub-pixel 16b can be set as sub-pixels of a color sensitive to human eyes, such as green sub-pixels, and each green sub-pixel can be surrounded by a red sub-pixel and a blue sub-pixel, Effectively improve the color cast.
  • each sub-pixel structure in the second pixel unit is rotated by a predetermined angle and is mirror-symmetrical with each sub-pixel structure in the first pixel unit, so that in the row direction Or in the column direction, sub-pixels emitting light of the same color are avoided to be arranged in a single column, which effectively improves the color fringing problem at the display edge.
  • the distance between sub-pixels of the same color in the same pixel unit can be appropriately increased, for example, the distance between the third sub-pixel 16a and the fourth sub-pixel 16b that are sensitive to human eyes is appropriately increased, and the The first sub-pixel 12 and the second sub-pixel 14 are set close to each other, which can not only avoid the display graininess caused by the human eye-sensitive sub-pixels being indistinguishable and being recognized as one during display, but also make the gap between adjacent pixel units as far as possible.
  • a light transmission reserved area Z (see FIG. 5 ) with a larger area can be formed, which is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the length of the center line c between them varies. It is easy to understand that the light-emitting areas of sub-pixels that emit light of different colors are generally different. For example, the light-emitting areas of blue sub-pixels are larger than the light-emitting areas of red sub-pixels and green sub-pixels.
  • the length of the center connection line d By designing the length of the center connection line d to be unequal to the length of the center connection line c, the distance between the second sub-pixel 14 and the first sub-pixel 12, and the third sub-pixel 16a and the fourth sub-pixel 16b can be guaranteed.
  • the spacing of the pixels satisfies the preset conditions, so that the sub-pixels are arranged as closely as possible, and the distribution uniformity of the sensitive color sub-pixels is improved, the visual resolution is improved, and the display quality is improved.
  • the length of the center line a between the center of the second sub-pixel 14 in the first pixel unit and the center of the third sub-pixel 16a is not equal to the length of the center of the second sub-pixel 14 in the first pixel unit and the center of the third sub-pixel 16a.
  • the length of the center connecting line between the center of the second sub-pixel 14 and the center of the third sub-pixel 16a in the second pixel unit is not equal to the distance between the center of the second sub-pixel 14 and the fourth sub-pixel 16b in the second pixel unit The length of the center line between the centers.
  • the second sub-pixel 14 is a red sub-pixel
  • the first sub-pixel 12 is a blue sub-pixel
  • the third sub-pixel 16a and the fourth sub-pixel 16b are green sub-pixels.
  • the red sub-pixels and different green sub-pixels in the same pixel unit have different lengths of the center connecting lines. In this way, the dislocation arrangement of the sub-pixels is aggravated.
  • the first pixel unit and the second pixel unit are repeatedly arranged to form a display matrix, it is further avoided that the sub-pixels of the same color are arranged in a single column, and the sub-pixels of the same row or column are weakened. The degree of bulge, thereby improving the color fringing problem at the display edge.
  • center of the sub-pixel may be the geometric center of the sub-pixel figure, or may be the center of the emission color of the sub-pixel, which is not limited herein.
  • the minimum distance between two adjacent sub-pixels is n, and along the first direction and the second direction, in the adjacent two pixel units, the minimum distance is n.
  • the minimum distance between the most adjacent sub-pixels of different colors is also n. Among them, 10um ⁇ n ⁇ 30um. In this way, on the one hand, the arrangement of the sub-pixels is made more uniform, which is beneficial to improve the display quality;
  • the minimum distance between the second sub-pixel R1 in the first pixel unit and the third sub-pixel G21 of the second pixel unit adjacently arranged along the second direction is p, n ⁇ p ⁇ 3n.
  • the minimum distance between the second sub-pixel R2 in the second pixel unit and the third sub-pixel G11 of the first pixel unit arranged adjacently along the first direction is q, where n ⁇ q ⁇ 3n.
  • the display panel provided in the embodiment of the present application may be an organic light-emitting display panel
  • the sub-pixels include at least an anode and a cathode, and a light-emitting layer located between the anode and the cathode
  • the driving circuit applies a voltage between the anode and the cathode. , which stimulates the migration of carriers and acts on the light-emitting layer, thereby emitting light.
  • the display panel may further include a pixel definition layer, the pixel definition layer defines a plurality of pixel openings, and the light-emitting layers of the sub-pixels are disposed in the pixel openings to avoid cross-color or interference between adjacent sub-pixels.
  • the area of the pixel opening is the light-emitting area of the sub-pixel.
  • the opening area of the mask plate is larger than that of the pixel opening to leave an evaporation margin.
  • the inner side of the sub-pixel is called the pixel side, that is, the boundary of the pixel opening of the Pixel Define Layer (PDL), and the outer side is called the virtual side of the sub-pixel.
  • the virtual edge refers to the boundary of the vapor deposition opening of the Mask (mask).
  • the distance between sub-pixels refers to the distance between the pixel sides of two sub-pixels.
  • each pixel edge of each sub-pixel and the corresponding virtual edge are parallel to each other, and the vertical distances of the virtual edge corresponding to each pixel edge are equal.
  • the final arrangement of the sub-pixels is more uniform and regular, which can effectively improve the fabrication precision and yield of the light-emitting layer of the sub-pixels, and reduce the risk of wrinkles when the mask is stretched.
  • the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel may be regular or irregular shapes with a long axis and a short axis, for example, an ellipse, a circle, a fan, and a dumbbell. , pear shape, quadrilateral, rectangle, quasi-rectangle, rounded rectangle, star, heart. As shown in FIG. 5 and FIG. 6 , as a preferred implementation manner, the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel may all be rectangular or quasi-rectangular.
  • the long axis direction (extending direction) of the first subpixel, the second subpixel, the third subpixel, and the fourth subpixel intersects the row direction and the column direction.
  • the sub-pixels can be closely arranged, and the sub-pixels of the same color are prevented from being independently formed in a row, which effectively improves the color fringing phenomenon.
  • the sub-pixels located at the odd-shaped edges of the display panel can better match the rounded corner design, that is, the inclination of the sub-pixels is tangent or coincident with the radian of the rounded corners, so as to realize a smooth transition of the edges of each sub-pixel at the rounded corners, and then Improve jaggedness at rounded corners.
  • the extension direction of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel is parallel to the first direction
  • the row direction and the column direction are perpendicular to each other
  • the first direction is parallel to the row direction or the column direction.
  • the included angle in the column direction is 30°-60°.
  • the included angle between the first direction and the row direction is 45°, which can further improve the overall display quality.
  • the force of the mask is usually transmitted in the row or column direction.
  • the tension force F of the mask is transmitted in the row direction, and the opening of the mask arranged obliquely with respect to the row or column direction corresponding to the sub-pixel can be subjected to the force.
  • the openings of the mask plate are arranged obliquely, and more openings can be arranged in the mask plate of the same length and width, which reduces the manufacturing cost of the mask.
  • the first sub-pixel may be square or quasi-square
  • the shape of the second sub-pixel is rectangular or quasi-rectangular
  • the shape of the third sub-pixel and the fourth sub-pixel is rectangular or quasi-rectangular.
  • quasi-rectangular or quasi-square means that, due to process limitations or for the convenience of mask fabrication, the shape of the sub-pixels may not be strictly rectangular or square, but roughly rectangular or square, for example, with rounded corners rounded or chamfered rectangle.
  • the rounded rectangle is a shape formed by rounding the top corners of the rectangle
  • the chamfered rectangle is a shape formed by cutting off one or more top corners of the rectangle.
  • the light-emitting areas of the third sub-pixel and the fourth sub-pixel are the same.
  • the third sub-pixel and the fourth sub-pixel can be set as sub-pixels of colors sensitive to human eyes, so that the resolution can be improved as much as possible, and the display can be made more uniform.
  • the light emitting areas of the second sub-pixel, the third sub-pixel and the fourth sub-pixel may also be the same. In this way, the overall arrangement of the sub-pixels is more compact and uniform, and the display effect is improved.
  • the first subpixel has a first long axis and a first short axis
  • the second subpixel has a second long axis and a second short axis
  • the third subpixel has a third long axis and a third short axis axis
  • the fourth sub-pixel has a fourth long axis and a fourth short axis. That is to say, each sub-pixel is a regular figure or irregular figure with a long axis and a short axis, such as the aforementioned rectangle or quasi-rectangle.
  • the third sub-pixel and the fourth sub-pixel are sub-pixels of the same color, for example, both are green sub-pixels, then the third long axis and the fourth long axis are parallel to each other and have the same length, and the third short axis and the fourth short axis are mutually They are parallel and have the same length, so that the light-emitting areas of the third sub-pixel and the fourth sub-pixel are equal.
  • the ratio of the lengths of the first major axis to the first minor axis is between 1.5 and 1; the ratio of the lengths of the second major axis to the second minor axis is between 5 and 1; the third major axis and The ratio of the length of the third minor axis is between 5 and 1.
  • the first sub-pixel is a square
  • the ratio of the second long axis to the second short axis is 1
  • the second sub-pixel, the third sub-pixel and the fourth sub-pixel are All are rectangles
  • the ratio of the long and short axes of the second sub-pixel, the third sub-pixel and the fourth sub-pixel is between 5:1.
  • the sub-pixels can be dislocated correspondingly, so as to reduce the color fringing phenomenon as much as possible.
  • a large-area light-transmitting reserved area can be formed between adjacent sub-pixels as much as possible, which is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the length of the long axis of the sub-pixel refers to the maximum dimension in the longitudinal extension direction of the light-emitting region of the sub-pixel
  • the length of the short axis of the sub-pixel refers to the length of the light-emitting region of the sub-pixel in the direction opposite to the longitudinal extension direction of the light-emitting region.
  • the maximum size in the width direction refers to the maximum dimension in the width direction.
  • the long side of the second sub-pixel 14 is parallel to a set of opposite sides of the first sub-pixel 12, the long side of the third sub-pixel 16a, and the long side of the fourth sub-pixel 16b.
  • the first sub-pixel is a square or quasi-square, so a set of opposite sides opposite to each other are parallel to each other and have the same length, while the third and fourth sub-pixels are rectangular or quasi-rectangular, then they have a set of mutually opposite sides. Parallel long sides and a set of short sides parallel to each other. For example, as shown in FIG.
  • the first subpixel 12 has a first side and a second side opposite to each other from the third subpixel 16a and the fourth subpixel 16b, respectively, adjacent to the first side, and opposite to the second side and a fourth side opposite the first side and adjacent to the second and third sides.
  • the first and fourth sides of the first sub-pixel 12 and the long sides of the second sub-pixel 14 are parallel to each other, and the long sides of the third sub-pixel 16a and the fourth sub-pixel 16b are parallel to each other. In this way, it is beneficial to uniformly arrange the sub-pixels, thereby improving the display quality.
  • an extension line of one side of the first sub-pixel 12 close to the edge of the first pixel unit and an extension line of a short side of the third sub-pixel 16a close to the same side edge of the first pixel unit coincide.
  • the extension line of the other side of the first sub-pixel 12 close to the edge of the first pixel unit coincides with the extension line of the long side of the fourth sub-pixel 16b close to the same side edge of the first pixel unit.
  • the third side of the first sub-pixel 12 may be collinear with the short side of the third sub-pixel 16a, and the fourth side of the first sub-pixel 12 may be collinear with the long side of the fourth sub-pixel collinear. In this way, the regular shape of the pixel unit is ensured as much as possible, so that the arrangement of the sub-pixels is more compact and uniform.
  • the extension line of the second side of the first sub-pixel 12 does not overlap with the third sub-pixel 16a, and the extension line of the first side does not overlap with the fourth sub-pixel 16b. In this way, the dislocation arrangement between the sub-pixels is ensured, the protruding degree of the sub-pixels at the display edge is weakened, and the color edge problem at the display edge is effectively improved.
  • the length of the long side of the second sub-pixel, the third sub-pixel and the fourth sub-pixel may be the same as the length of the side of the first sub-pixel.
  • the first pixel unit is further formed into a regular shape, so that the arrangement of the sub-pixels is more compact and uniform.
  • an extension line of at least one of the two long sides of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the third sub-pixel 16a. Further, the extension line of one long side of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the third sub-pixel 16a, and the extension line of the other long side of the second sub-pixel 14 is connected to the first sub-pixel 14. The sides of the pixel 12 close to the third sub-pixel 16a coincide. For example, as shown in FIG. 3 , an extension line of one long side of the second sub-pixel 14 passes between the first sub-pixel 12 and the third sub-pixel 16a.
  • the extension line of the other long side of the second sub-pixel 14 is collinear with the first side of the first sub-pixel.
  • an extension line of at least one of the two long sides of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the fourth sub-pixel 16b.
  • the extension line of one long side of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the fourth sub-pixel 16b, and the extension line of the other long side of the second sub-pixel 14 is connected to the first sub-pixel 14.
  • the sides of the pixel 12 close to the fourth sub-pixel 16b coincide. For example, as shown in FIG.
  • an extension line of one long side of the second sub-pixel 14 passes between the first sub-pixel 12 and the fourth sub-pixel 16b.
  • the extension line of the other long side of the second sub-pixel 14 is collinear with the first side of the first sub-pixel.
  • the size of the light transmission reserved area is ensured as much as possible, which is beneficial to, for example, the realization of the under-screen camera function.
  • the extension lines of the two long sides of the second sub-pixel 14 both pass through the gap between the first sub-pixel 12 and the third sub-pixel 16a.
  • translating the second subpixel 14 in the opposite direction of the first direction can pass between the first subpixel 12 and the third subpixel 16a.
  • the extension lines of the two long sides of the second sub-pixel 14 both pass through the gap between the first sub-pixel 12 and the fourth sub-pixel 16b. That is, translating the second subpixel 14 in the opposite direction of the second direction can pass between the first subpixel 12 and the fourth subpixel 16b.
  • two first pixel units and two second pixel units adjacent to each other constitute a repeating unit (as shown by the dotted box in FIG. 6 );
  • the units are arranged along the first direction X and the second direction Y; each repeating unit includes two first pixel units and two second pixel units, and the two second pixel units are respectively located at the geometric centers of the two first pixel units. side of the line.
  • a plurality of repeating units are arranged in an array along the first direction and the second direction to form a display matrix.
  • the jaggedness of the irregular edge area (for example, the arc area) of the display area is also a factor affecting the display quality.
  • the sub-pixels on different rows form steps along the extension direction of the irregular-shaped edge area, so that when the display panel displays an image, the image jaggedness in the irregular-shaped area is aggravated, which affects the display effect of the display panel.
  • a plurality of repeating units may be arranged in a first direction (X direction) and a second direction (Y direction) intersecting the row and column directions, and as the repeating units are repeatedly arranged, may
  • the connection line of the edges of the multiple sub-pixels located at the irregular edge of the display area and the tangent of the irregular edge tend to be coincident or parallel, so that the connection line of the multiple sub-pixel edges is smoother and closer to the shape of the irregular edge, which can reduce the problem of the irregular edge.
  • the jaggedness of the image at the edge is beneficial to improve the display effect of the display panel.
  • the sub-pixels located at the irregular-shaped edge of the display area can also include multiple colors, thereby further reducing the color fringing formed at the irregular-shaped edge of the display panel, thereby improving the display effect of the display panel.
  • any second pixel unit and the first pixel unit adjacent to it in the first direction X the second pixel unit in the second pixel unit.
  • the length of the connecting line between the center point of the sub-pixel R2 and the center point of the third sub-pixel G21 is L1, the center point of the second sub-pixel R1 in the first pixel unit and the center of the third sub-pixel G21 in the second pixel unit.
  • the length of the line connecting the points is L2, and L1 is not equal to L2.
  • the center point of the second sub-pixel R2 in the second pixel unit and the fourth sub-pixel in the other first pixel unit The length of the line connecting the center point of G12 is L3.
  • the length of the line connecting the center point of the second subpixel R1 and the center point of the fourth subpixel G12 is L4, and L3 is not equal to L4. That is to say, in the same repeating unit, the lengths of the center connecting lines between the centers of the plurality of red sub-pixels and the centers of the plurality of green sub-pixels in two adjacent pixel units are different.
  • each sub-pixel is ensured, and when the first pixel unit and the second pixel unit are repeatedly arranged to form a display matrix, it is further avoided that the sub-pixels of the same color are arranged in a single column, and the sub-pixels of the same row or column are weakened. The degree of bulge, thereby improving the color fringing problem at the display edge.
  • any one of the second pixel units and the first pixel unit adjacent to it in the first direction X within the second pixel unit.
  • the connecting line between the second sub-pixel R2, the third sub-pixel G21, and the center points of the second sub-pixel R1 in the first pixel unit forms a scalene triangle S1.
  • the second sub-pixel R1, the fourth sub-pixel G12 and The connecting line between the center points of the second sub-pixels R2 in the second pixel unit forms a scalene triangle S2.
  • red sub-pixels in a second pixel unit in the same repeating unit, red sub-pixels in a second pixel unit, and red sub-pixels and different green sub-pixels in the first pixel unit adjacent to the second pixel unit in the row and column directions
  • the connecting lines between the centers of the pixels may respectively form scalene triangles.
  • the center line of any two second sub-pixels does not coincide with the center line between the center of any second sub-pixel and the center of the third sub-pixel, and any two The center connecting line between the centers of the two sub-pixels does not overlap with the center connecting line between the center of any second sub-pixel and the center of the fourth sub-pixel.
  • the second sub-pixel is a red sub-pixel
  • the first sub-pixel is a blue sub-pixel
  • the third and fourth sub-pixels are green sub-pixels.
  • connection between any two red sub-pixels such as the central connection between the second sub-pixels R1 and R2 in adjacent pixel units, and between any two of R1/R2 and G11/G12/G21/G22
  • the centers of the lines are not collinear.
  • the center connection line LL1 between the second subpixels R1 and R2 does not overlap with the center connection line LL2 between the second subpixel R1 and the fourth subpixel G21 of the adjacent pixel unit.
  • the center line connecting the two red sub-pixels R1 and R2 in the adjacent first pixel unit and the second pixel unit in the same repeating unit along the first direction passes through the adjacent first pixel unit and The second pixel unit is located between the blue sub-pixels B2 and G21 of the same pixel unit.
  • the line connecting the centers of the two red sub-pixels R1 and R2 in the adjacent first pixel unit and the second pixel unit along the second direction passes through the adjacent first pixel unit and the second pixel unit.
  • the unit is located between the blue sub-pixels B1 and G11 of the same pixel unit.
  • the pixel arrangement structure can prevent the sub-pixels emitting light of the same color from being arranged in a single column, but also the protruding degree of the sub-pixels at the display edge is further weakened, and the color edge problem at the display edge is effectively improved.
  • the first virtual connecting lines passing through the center of the first sub-pixel and the center of the third sub-pixel in each first pixel unit are parallel to each other;
  • the second virtual connection lines passing through the center of the first sub-pixel and the center of the fourth sub-pixel are parallel to each other; the first virtual connection line and the second virtual connection line are not coincident.
  • the lines between the centers of B1 and G11 in the same repeating unit are parallel to each other, that is, LL3 and LL4 are parallel to each other, and the lines between the centers of B2 and G22 are parallel to each other Parallel, that is, LL5 and LL6 are parallel to each other.
  • the extension lines connecting the center lines of the blue sub-pixels and the green sub-pixels in the two pixel units with the same sub-pixel structure are not collinear.
  • the overall pixel arrangement structure can prevent the sub-pixels emitting light of the same color from being arranged in a single column, weakening the protruding degree of the sub-pixels at the display edge, and effectively improving the color edge problem at the display edge.
  • the center line between the first sub-pixel and the second sub-pixel in one first pixel unit and the first sub-pixel and the second sub-pixel in another first pixel unit are connected.
  • the extension lines of the lines connecting the centers of the second sub-pixels are not coincident, that is, LL7 and LL8 are not coincident.
  • the line connecting the center of the first sub-pixel and the center of the second sub-pixel in one second pixel unit and the line connecting the center of the first sub-pixel and the center of the second sub-pixel in another second pixel unit is not an extension line. coincide.
  • the two center connecting lines between the center of the red sub-pixel R1 and the center of the blue sub-pixel B1 in the two first pixel units, the centers of the red sub-pixel R2 in the two second pixel units and The two center lines between the centers of the blue sub-pixels B2 are not collinear.
  • the red sub-pixels of different pixel units in the same repeating unit and the The connection lines between the centers of the blue sub-pixels are set to be non-collinear, so that the sub-pixels in the same column include multiple colors, which effectively improves the color fringing problem at the display edge.
  • the third virtual connection lines passing through the center of the second sub-pixel and the center of the third sub-pixel in each first pixel unit are parallel to each other;
  • the fourth virtual connection line between the center of the second sub-pixel and the center of the fourth sub-pixel is parallel to each other; the third virtual connection line and the fourth virtual connection line are non-overlapping.
  • the extension line of the connection between the center of the red sub-pixel and the center of the green sub-pixel in two pixel units with the same sub-pixel structure not collinear.
  • the overall pixel arrangement structure can prevent the sub-pixels emitting light of the same color from being arranged in a single column, weakening the protruding degree of the sub-pixels at the display edge, and effectively improving the color edge problem at the display edge.
  • the second sub-pixel R1 in the first pixel unit and the fourth sub-pixel in the second pixel unit is greater than the distance between the third sub-pixel G11 and the fourth sub-pixel G12 in the first pixel unit and the first sub-pixel R1, as shown in FIG. 5 , for example, L5 is greater than L6, and L5 is greater than L7.
  • L5 is greater than L6, and L5 is greater than L7.
  • the area of the light transmission reserved area Z is larger than the light emitting area of one second sub-pixel R1/R2.
  • each repeating unit includes two first pixel units, two second pixel units and a light-transmitting reserved area formed by intervals between adjacent sub-pixels.
  • each repeating unit is located in a virtual square, and when the repeating unit is arranged in an array, a plurality of virtual squares are arranged in an array in the form of shared sides to form a display matrix. In this way, the display uniformity is favorable, and the display effect is improved.
  • the pixel arrangement structure includes virtual polygons formed by arranging four virtual quadrilaterals in a manner of sharing edges, and the four virtual quadrilaterals specifically include a first virtual quadrilateral 30 , a second virtual quadrilateral Virtual quadrilateral 40 , third virtual quadrilateral 50 and fourth virtual quadrilateral 60 .
  • the first virtual quadrilateral 30 shares a first shared side g with the third virtual quadrilateral 50 in the row direction, and shares a second shared side h with the second virtual quadrilateral 40 in the column direction.
  • the fourth virtual quadrilateral 60 shares a third shared side j with the third virtual quadrilateral 50 in the column direction, and shares a fourth shared side i with the second virtual quadrilateral 40 in the row direction.
  • the sides of the first virtual quadrilateral 30 , the second virtual quadrilateral 40 , the third virtual quadrilateral 50 and the fourth virtual quadrilateral 60 away from the shared side constitute respective sides of the virtual polygon.
  • the first subpixel is located at the position of the first vertex of each virtual quadrilateral
  • the second subpixel is located at the position of the second vertex of each virtual quadrilateral
  • the first vertex and the second vertex are alternately and spaced apart
  • the green subpixel is located at the position of each virtual quadrilateral Inside.
  • any side of each of the aforementioned virtual quadrilaterals is not parallel to the row or column direction; or the lengths of any two sides of each of the aforementioned virtual quadrilaterals are not equal; or any two sides of each of the aforementioned virtual quadrilaterals are mutually not parallel; or any two interior angles of each of the preceding virtual quadrilaterals are not equal.
  • the first virtual quadrilateral, the second virtual quadrilateral, the third virtual quadrilateral and the fourth virtual quadrilateral are all irregular quadrilaterals, so that a larger light-transmitting area can be formed on the premise of satisfying the compact arrangement of sub-pixels, thereby
  • the light transmittance of the display panel is further improved, and convenience is provided for the diversification of the functions of the display panel.
  • the opening area of the first sub-pixel is staggered from the opening area of the second sub-pixel and the opening area of the third sub-pixel, that is, the opening area of the second sub-pixel is
  • the first direction X has no projected overlap area with the opening of the first sub-pixel and the opening of the third sub-pixel. In this way, the arrangement between the sub-pixels can be made more compact.
  • at least the extension line of the side of the second sub-pixel away from the fourth sub-pixel does not pass through the opening area of the third sub-pixel.
  • the opening area of the second sub-pixel may partially overlap with the opening area of the first sub-pixel along the first direction X, but not overlap with the third sub-pixel.
  • the line connecting the centers of the green sub-pixels in the same row and/or column is a non-straight line or an approximate straight line.
  • the lines connecting the centers of the green sub-pixels located in the same row and/or column are zigzag.
  • the connection between the two green sub-pixels in any pixel group of odd-numbered rows or columns and the centers of the two most adjacent green sub-pixels in the pixel group of adjacent even-numbered rows or columns forms a fifth virtual quadrilateral;
  • the smallest interior angle ⁇ in the five virtual quadrilaterals is ⁇ 60°.
  • the green sub-pixels in the adjacent pixel groups are not easy to be too close, which further prevents the adjacent two green sub-pixels from being difficult to distinguish due to the close distance of the adjacent green sub-pixels, which is visually recognized by the human eye. A two-in-one situation.
  • a display panel including the pixel arrangement structure of the above embodiments.
  • the pixel arrangement structure of the present application also has the following features.
  • the pixel arrangement structure of the present application includes the first pixel unit.
  • the first pixel unit includes the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may be one of a blue light-emitting sub-pixel, a red light-emitting sub-pixel and a green light-emitting sub-pixel, respectively.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may also be sub-pixels that emit light of other colors than blue, red and green
  • the third sub-pixel or the fourth sub-pixel may be a white or yellow sub-pixel, which is not limited herein.
  • light of different colors has different wavelength ranges. The shorter the wavelength, the higher the energy of the light. The light with high energy easily causes the decay of the organic light-emitting material, making the sub-pixels emitting photons with high energy easier to decay. The wavelength of blue light is shorter than that of red light and green light.
  • the energy of blue light is higher, and the organic light-emitting material that emits blue light is more prone to decay, causing the light emitted from the pixel unit to be prone to reddish, resulting in the phenomenon of white light color shift.
  • the light emitted by each sub-pixel is repeatedly reflected and re-reflected between the anode and the cathode through the Fabry-Perot microcavity effect, resulting in amplification and constructive interference, the brightness of the light increases, and the color shift The situation is further magnified. As a preferred embodiment, as shown in FIGS.
  • the first sub-pixel 12 is a blue sub-pixel
  • the second sub-pixel 14 is a red sub-pixel
  • the pixel 16b is a green sub-pixel.
  • the light-emitting area of the blue sub-pixel is larger than the light-emitting area of the red sub-pixel and the green sub-pixel, so that display defects caused by different decay rates of organic light-emitting materials emitting light of different colors can be reduced to a certain extent.
  • the light-emitting area of the green sub-pixel may be equal to the light-emitting area of the red sub-pixel, but since the human eye is more sensitive to green light than red light, in other embodiments, the green sub-pixel The light-emitting area of the sub-pixel may be smaller than the light-emitting area of the red sub-pixel, which is not limited herein.
  • the first pixel unit there is a co-edge triangle with non-overlapping areas formed by the respective centers of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b as vertices, and the The center of one sub-pixel 12 and the center of the second sub-pixel 14 are the co-edge vertices of the co-edge triangle.
  • the first subpixel 12 is located on one side of the center line c between the third subpixel 16a and the fourth subpixel 16b
  • the second subpixel 14 is located on the third subpixel 16a and the fourth subpixel 16b.
  • the other side of the center line c of the four sub-pixels 16b is the first subpixel 12 and the center of the second sub-pixel 14 as vertices.
  • the centers of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b are sequentially connected to form a virtual quadrilateral, and the centers of the first sub-pixel 12, the second sub-pixel 14 and the third sub-pixel 16a
  • the line connecting the midpoints forms a first triangle (not shown), and the line connecting the centers of the first sub-pixel 12, the second sub-pixel 14 and the fourth sub-pixel 16b forms a second triangle.
  • the first triangle and the second triangle take the connection line d between the center of the first subpixel and the center of the second subpixel as a common side, that is, a common side triangle, and the areas of the two triangles do not overlap each other.
  • the common triangle is an acute triangle, so that the sub-pixels of the pixel structure are arranged more uniformly, which is beneficial to improve the display effect.
  • the second sub-pixel has a second long axis and a second short axis, and in the first pixel unit, the center line of the second sub-pixel along its long-axis direction does not pass through the third sub-pixel and/or the fourth sub-pixel center.
  • the long axis direction of the subpixel refers to the longitudinal extension direction of the light emitting region of the subpixel
  • the short axis direction of the subpixel refers to the width direction of the light emitting region of the subpixel opposite to the longitudinal extension direction of the light emitting region.
  • the center line of the second sub-pixel along its long axis direction refers to a straight line passing through the center of the second sub-pixel along the longitudinal extension direction of the light-emitting region of the sub-pixel.
  • the first triangle and the second triangle share a side with the center connecting line d between the center of the first sub-pixel 12 and the center of the second sub-pixel 14 , and the second sub-pixel 14 is along its long axis
  • the centerline of a direction refers to a straight line passing through its center and extending in the direction of its long axis.
  • the sub-pixels in the first pixel unit can be dislocated, thereby effectively improving the color fringing problem.
  • the projection of the vertex of the co-edge triangle on the opposite side opposite to the vertex is located on the opposite side, and the projection is on the center of the third sub-pixel and/or the center of the fourth sub-pixel. not coincident. For example, as shown in FIG.
  • the center of the second sub-pixel 14 (a vertex of the center line d) is on the opposite side e (the line connecting the center of the first sub-pixel and the center of the third sub-pixel)
  • the projection is on the opposite side e.
  • the projection is located between the center of the first sub-pixel 12 and the center of the third sub-pixel 16a, that is, does not coincide with the center of the third sub-pixel 16a.
  • the projection of the center of the first sub-pixel 12 (the other vertex of the center line d) on the opposite side b (the center line of the second sub-pixel and the fourth sub-pixel) is located on the opposite side b .
  • the projection is located between the center of the second sub-pixel 14 and the center of the fourth sub-pixel 16b, that is, does not coincide with the center of the fourth sub-pixel 16b.
  • the projection of the vertex on the co-edge of the co-edge triangle on the opposite side of the vertex is close to or located at the center point of the opposite side. In this way, the arrangement of the sub-pixels is made more uniform, and the occurrence of the color fringing phenomenon is further avoided, which is beneficial to the improvement of the display quality.
  • the projection of the co-edge vertex on the opposite side refers to the projection of the vertex on the opposite side in the direction perpendicular to the opposite side of the vertex, that is, the side that passes through the vertex and is opposite to the vertex
  • the intersection of the vertical line and the opposite side is the projection of the aforementioned vertex on the opposite side.
  • one vertex of the common side d of the first triangle and the second triangle is the center of the second sub-pixel 14, passing through the center of the second sub-pixel and perpendicular to the vertical line of the opposite side e opposite to it , the intersection with the pair of sides e is the projection of the aforementioned vertex on the opposite side.
  • the pixel arrangement directly determines the display effect.
  • the sub-pixels are usually arranged along the row and column directions according to certain rules as evenly as possible, but the pixel arrangement is also prone to color fringing and Visual graininess.
  • the aforementioned pixel arrangement structure it is possible to take into account the arrangement uniformity, compactness and spacing between sub-pixels, and to seek a balance between the three, which is beneficial to reduce the risk of color mixing, improve color fringing, and visual graininess.
  • each sub-pixel is staggered due to the aforementioned constraints, so as to avoid the sub-pixels emitting the same color light being arranged in a single column, thereby improving the color fringing problem at the display edge.
  • the staggered arrangement of the sub-pixels makes the sub-pixels located at the rounded corners of the display panel better match the rounded corner design, that is, the smooth transition of the edge connection lines of the sub-pixels located at the edge at the rounded corners is tangent to the radian of the rounded corners. or match, thereby improving the jaggedness at the rounded corners.
  • the distance between sub-pixels of the same color in the same pixel unit can be appropriately increased.
  • the distance between the third and fourth sub-pixels sensitive to human eyes The sub-pixels and the second sub-pixels are arranged close to each other, which can avoid the display graininess caused by the recognition of multiple sub-pixels as one due to the inability of the sensitive sub-pixels to be distinguished by human eyes during display.
  • the first pixel unit and the second pixel unit further include a blank area disposed outside the second sub-pixel 14 , and the blank area is the aforementioned light transmission reserved area Z.
  • the area can be preset so that the outside light penetrates to reach the photosensitive device under the screen.
  • the size of the light transmission reserved area in the first direction ranges from 10 ⁇ m to 90 ⁇ m
  • the size in the second direction ranges from 20 ⁇ m to 90 ⁇ m.
  • the pixel arrangement structure further includes a plurality of second pixel units.
  • the first pixel unit and the second pixel unit are adjacent to each other, and the plurality of first pixel units and the plurality of second pixel units are alternately arranged in the first direction and the second direction.
  • the first direction is the X direction
  • the second direction is the Y direction.
  • the first pixel units and the second pixel units are alternately arranged, and in the second direction, the first pixel units and the second pixel units are alternately arranged.
  • any two adjacent first pixel units are separated by one second pixel unit, and any two adjacent second pixel units are separated by one first pixel unit spaced out.
  • the first direction and the second direction may also be other directions intersecting the row direction and the column direction, which are not limited here.
  • the first direction and the row direction are not limited here.
  • the included angle of the directions is a direction of 45°
  • the second direction is perpendicular to the first direction
  • the included angle of the second direction and the column direction is a direction of 45°.
  • each sub-pixel structure in the second pixel unit is mirror-symmetrical with each sub-pixel structure in the first pixel unit after being rotated by a predetermined angle. That is to say, the sub-pixels in the first pixel unit and the sub-pixels of the same color in the second pixel unit have the same shape and size (light-emitting area), and the sub-pixels in the second pixel unit rotate clockwise or counterclockwise by a predetermined angle.
  • the structure of the sub-pixel is mirror-symmetrical with the structure of the corresponding sub-pixel in the first pixel unit.
  • the predetermined angle is greater than 0° and less than 360°. For example, the arrangement structure of each sub-pixel in the second pixel unit shown in FIG.
  • the sub-pixels in the unit are arranged in mirror symmetry. In this way, not only the sub-pixels that avoid emitting light of the same color in the row direction or the column direction are arranged in a single column, but also the protruding degree of the sub-pixels located in the same row or column is weakened, and the color fringing problem of the display edge is further improved. . At the same time, it can also effectively improve the color shift.
  • the third sub-pixel and the fourth sub-pixel can be set as sub-pixels of the color sensitive to human eyes, such as green sub-pixels, and each green sub-pixel can be composed of red sub-pixels and red sub-pixels. The blue sub-pixels are surrounded, resulting in more uniform color mixing and improved color casts.
  • each sub-pixel structure in the second pixel unit is rotated by a predetermined angle, it is mirror-symmetrical with each sub-pixel structure in the first pixel unit, and it is also possible to form a large-area light-transmitting prefab between adjacent pixel units as much as possible.
  • the reserved area Z (see Figure 6) is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the sub-pixel structures of the first pixel unit and the second pixel unit may also be the same, which is not limited herein. That is to say, the smallest repeating unit in the pixel arrangement structure is one pixel unit.
  • the first pixel unit and the second pixel unit adjacent thereto form a first pixel group.
  • the first pixel unit and the second pixel unit adjacent thereto form a second pixel group.
  • a first pixel unit and a second pixel unit adjacent to it form a first pixel group; in the second direction, a first pixel unit and a second pixel unit adjacent to it A second pixel group is formed.
  • two first pixel units and two second pixel units constitute a repeating unit, and the two second pixel units are respectively located in One side of the line connecting the geometric centers of the two first pixel units.
  • two adjacent first pixel groups or two adjacent second pixel groups constitute a repeating unit, and a plurality of repeating units are arranged along the first direction and the second direction.
  • the center of the third sub-pixel in the first pixel group or the center of the fourth sub-pixel is located outside the line connecting the centers of the two second sub-pixels in the first pixel group; and/or the third sub-pixel in the second pixel group
  • the center of the sub-pixel or the center of the fourth sub-pixel is located outside the line connecting the centers of the two second sub-pixels in the second pixel group.
  • the sub-pixels can be arranged in dislocation, and when the repeating units are repeatedly arranged to form a display matrix, it is further avoided that the sub-pixels of the same color are arranged in a single column, and the same row or the same color is weakened.
  • the degree of protrusion of the sub-pixels of the column thereby improving the color fringing problem of the display edge. It should be noted that, in order to improve the resolution, the sub-pixel rendering technology is used, and in order to realize full-color display, it is necessary to borrow colors that cannot be displayed from the adjacent sub-pixels.
  • the uniform arrangement of sub-pixels means that the distance between each sub-pixel is within a reasonable range, avoiding that the distance between sub-pixels in some areas of the pixel arrangement structure is too small and tight, and the distance between sub-pixels in some areas is too large and loose. resulting in poor display performance.
  • the jaggedness of the irregular edge area (for example, the arc area) of the display area is also a factor affecting the display quality.
  • the inventor of the present application has found that the sub-pixels on different rows form a step shape along the extension direction of the irregular edge area, so that when the display panel displays an image, the image jaggedness in the irregular area is aggravated, which affects the display effect of the display panel. . Therefore, as an embodiment, a plurality of repeating units may be arranged along the first direction and the second direction which are obliquely intersecting with the row direction and the column direction.
  • connection lines of the edges of multiple sub-pixels and the tangents of the irregular-shaped edges tend to overlap or be parallel, so that the connection lines of the edges of multiple sub-pixels are more smooth and close to the shape of the irregular-shaped edges, thereby reducing the jaggedness of the image at the irregular-shaped edges. It is beneficial to improve the display effect of the display panel.
  • the sub-pixels located at the irregular-shaped edge of the display area can also include multiple colors, thereby further reducing the color fringing formed at the irregular-shaped edge of the display panel, thereby improving the display effect of the display panel.
  • the first direction and the second direction are perpendicular to each other, and the included angle between the first direction and the row direction is preferably 45°.
  • the center of the third sub-pixel 16a or the center of the fourth sub-pixel 16b is located at the center of the second sub-pixel 14 in the first pixel unit and the second in the second pixel unit adjacent to the first pixel unit.
  • the outer side of the connecting line between the centers of the sub-pixels 14 is located at the center of the second sub-pixel 14 in the pixel unit where it is located and the second sub-pixel in another pixel unit adjacent to it 14 to the outside of the connecting line between the centers.
  • the center of the second sub-pixel R1 in the first pixel unit and the center of the second sub-pixel R2 in the second pixel unit adjacent to the first pixel unit The extension line of the connecting line in the center is staggered from the center of the third sub-pixel G11 and the center of the fourth sub-pixel G12 in the first pixel unit, and the center of the third sub-pixel G11 and the center of the fourth sub-pixel G12 are located in the aforementioned Connect the sides of the extension cord.
  • the fact that the center of the sub-pixel is located on the outside of the center line means that the line between the center and the center of the sub-pixel and its extension line are staggered.
  • the center of the sub-pixel is located on the center line and its extension line. side.
  • the first sub-pixel and the second sub-pixel may be blue sub-pixels and red sub-pixels, respectively, and the third sub-pixel and the fourth sub-pixel may be green sub-pixels.
  • the green sub-pixel has a smaller light-emitting area.
  • the length of the center connecting line d between the center of the first subpixel and the center of the second subpixel and the length of the connecting line c between the center of the third subpixel and the center of the fourth subpixel are not equal. It is easy to understand that the light-emitting areas of sub-pixels that emit light of different colors are generally different.
  • the light-emitting areas of blue sub-pixels are larger than the light-emitting areas of red sub-pixels and green sub-pixels.
  • the length of the center connecting line d is unequal to the length of the center connecting line c, it can be ensured that the distance between the first sub-pixel and the second sub-pixel, as well as the distance between the third sub-pixel and the fourth sub-pixel satisfies the predetermined
  • the conditions are set so that the sub-pixels are arranged as closely as possible, and the distribution uniformity of the sensitive color sub-pixels is improved, the visual resolution is improved, and the display quality is improved.
  • the length of the line e connecting the center of the first sub-pixel and the center of the third sub-pixel is not equal to the center of the first sub-pixel and the center of the fourth sub-pixel in the same pixel unit
  • the length a of the connection is not equal to the center of the first sub-pixel and the center of the fourth sub-pixel in the same pixel unit
  • the length a of the connection is Specifically, in one embodiment, the first subpixel is a blue subpixel, the second subpixel is a red subpixel, and the third subpixel and the fourth subpixel are green subpixels.
  • the blue sub-pixels and different green sub-pixels in the same pixel unit have different lengths of the center connecting lines.
  • the distances from the center of the third sub-pixel and the center of the fourth sub-pixel to the center of the second sub-pixel are unequal. In this way, on the one hand, adjacent sub-pixels are less likely to be too close, further avoiding the situation where two adjacent sub-pixels are difficult to distinguish due to the close distance between adjacent sub-pixels and are visually merged into one by the human eye. On the other hand, by setting the lengths of the connecting lines between the centers of the first sub-pixel and the second sub-pixel and the third sub-pixel and the fourth sub-pixel to be different, the dislocation arrangement of the sub-pixels is exacerbated.
  • the sub-pixels of the same color are further prevented from being arranged in a single column, and the protruding degree of the sub-pixels in the same row or column is weakened, thereby improving the color fringing problem of the display edge.
  • the ratio of the distances from the center of the third sub-pixel and the center of the fourth sub-pixel to the center of the first sub-pixel are (3-2): (2-1).
  • the distances from the center of the third sub-pixel and the center of the fourth sub-pixel to the center of the second sub-pixel are also (3-2): (2-1).
  • center of the sub-pixel may be the geometric center of the sub-pixel figure, or may be the center of the emission color of the sub-pixel, which is not limited herein.
  • the minimum distance between two adjacent sub-pixels is p, and along the first direction and the second direction, the two adjacent pixel units are the most similar.
  • the minimum distance between adjacent sub-pixels of different colors is also p. Among them, 10um ⁇ p ⁇ 30um.
  • the arrangement of the sub-pixels is made more uniform, which is beneficial to improve the display quality;
  • the display panel provided in the embodiment of the present application may be an organic light-emitting display panel
  • the sub-pixels include at least an anode and a cathode, and a light-emitting layer located between the anode and the cathode
  • the driving circuit applies a voltage between the anode and the cathode. , which stimulates the migration of carriers and acts on the light-emitting layer, thereby emitting light.
  • the display panel may further include a pixel definition layer, the pixel definition layer defines a plurality of pixel openings, and the light-emitting layers of the sub-pixels are disposed in the pixel openings to avoid cross-color or interference between adjacent sub-pixels. Therefore, the area of the pixel opening is the light-emitting area of the sub-pixel.
  • the opening area of the mask is larger than the area of the pixel opening, so that the Leave a margin for evaporation. For example, as shown in FIG.
  • the inner side of the sub-pixel is called the pixel side, that is, the boundary of the pixel opening of the pixel definition layer (PDL layer), and the outer side is called the virtual side of the sub-pixel, and the virtual side is Refers to the boundary of the vapor deposition opening of the Mask (mask). Therefore, in the embodiments of the present application, the distance between sub-pixels refers to the distance between pixel sides of two sub-pixels. Specifically, in the embodiments shown in FIG. 3 and FIG. 4 , there are two adjacent and parallel pixel sides between two adjacent sub-pixels, and the minimum distance between the two adjacent sub-pixels is the The vertical distance between two adjacent and parallel pixel edges.
  • the minimum distance between the second sub-pixel in the first pixel unit and the third sub-pixel of the second pixel unit adjacently arranged along the first direction is q, p ⁇ q ⁇ 3p.
  • the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel may be rectangular or quasi-rectangular, and the first sub-pixel
  • the long axis directions (extending directions) of the pixels, the second subpixels, the third subpixels, and the fourth subpixels intersect the row direction and the column direction.
  • the sub-pixels can be closely arranged, and the sub-pixels of the same color are prevented from being independently formed in a row, which effectively improves the color fringing phenomenon.
  • the sub-pixels located at the odd-shaped edges of the display panel can better match the rounded corner design, that is, the inclination of the sub-pixels is tangent or coincident with the radian of the rounded corners, so as to realize a smooth transition of the edges of each sub-pixel at the rounded corners, and then Improve jaggedness at rounded corners.
  • the extension directions of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel are parallel to the first direction, and the included angle with the row direction or the column direction is 30°-60°.
  • the inclination of the sub-pixels can be further made to be tangent or coincident with the radian of the rounded corners, so as to realize a smooth transition of the edges of each sub-pixel at the rounded corners, and further improve the jagged problem at the rounded corners.
  • the human eye is more sensitive to the picture quality in the horizontal or vertical direction, but is less sensitive to the picture quality in the direction with an included angle of 45° from the horizontal direction, therefore, as a preferred implementation , as shown in FIG. 7 , the included angle between the first direction and the row direction is 45°, which can further improve the overall display quality.
  • the force of the mask is usually transmitted in the row or column direction.
  • the tension force F is transmitted in the row direction, and the opening of the mask plate corresponding to the sub-pixel inclined relative to the row or column direction can apply the force in the row direction.
  • the column direction is decomposed, so as to avoid the deformation of the opening caused by the concentration of the FMM tension force F, and reduce the difficulty of making the mask plate and the difficulty of opening the mesh.
  • the openings of the mask plate are arranged obliquely, and more openings can be arranged in the mask plate of the same length and width, which reduces the manufacturing cost of the mask.
  • first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel may also have other shapes, which are not limited here.
  • first sub-pixel may be a square
  • the pixel and the fourth sub-pixel are rectangular.
  • the projection of at least one vertex on the common side of the common triangle on the opposite side of the vertex is entirely located between the two sub-pixel contours corresponding to the pair of sides and the intersection of the pair of sides.
  • the intersection of the straight line passing through the vertex on the common side of the common triangle and perpendicular to the vertex-to-edge and the vertex-to-edge is located between the two sub-pixel contours corresponding to the vertex-to-edge and the intersection of the vertex-to-edge.
  • the extension line of the side of the second sub-pixel along the long axis direction or the tangent of the side does not intersect the third sub-pixel and/or the fourth sub-pixel as a whole.
  • the projection of the sub-pixel corresponding to the vertex on the common side of the common triangle on the vertex-to-edge may be entirely located between the two sub-pixel contours corresponding to the vertex-to-edge and the intersection of the vertex-to-edge.
  • the extended line of the side of the second sub-pixel along the long axis direction or the tangent of the side may not intersect the third sub-pixel and/or the fourth sub-pixel as a whole.
  • two vertices that share a side are the center of the first sub-pixel and the center of the second sub-pixel, respectively.
  • two sub-pixels adjacent to each other have two pixel sides that are opposite and parallel to each other.
  • the first sub-pixel and the third sub-pixel have two pixel sides that are relatively parallel to each other, and the two pixel sides are the outline boundaries of the first sub-pixel and the third sub-pixel.
  • the projection of the second sub-pixel towards the opposite side e is located between the intersection of the opposite side e and the contour of the first sub-pixel and the second sub-pixel contour, that is, the projection of the second sub-pixel towards the opposite side e is located on the opposite side e Between the intersections of the two opposite and parallel pixel sides of the first sub-pixel and the second sub-pixel.
  • the projection of the first sub-pixel toward the opposite side b is not located between the opposite side b and the center line connecting the second sub-pixel and the third sub-pixel, but is not Without prejudice to the understanding of the technical concept, in other embodiments, the projection of the first sub-pixel toward the opposite side b may be located on the opposite side b and two of the second sub-pixel and the third sub-pixel are parallel to each other. between the intersections of pixel edges. In this way, on the one hand, the sub-pixels are arranged more uniformly, and on the other hand, the sub-pixels are staggered to further reduce the color fringing phenomenon.
  • the first subpixel has a first long axis and a first short axis; the third subpixel has a third long axis and a third short axis, and the fourth subpixel has a fourth long axis and a fourth short axis. That is, each sub-pixel is a regular figure or irregular figure with a long axis and a short axis, such as a rectangle or a rectangle-like shape. In this way, on the one hand, compared with other sub-pixel shapes, the arrangement between the sub-pixels can be closely dislocated, and the protruding degree of the sub-pixels is weakened, thereby effectively improving the color fringing phenomenon.
  • the third sub-pixel and the fourth sub-pixel are sub-pixels of the same color, for example, both are green sub-pixels, then the third long axis and the fourth long axis are parallel to each other and have the same length, and the third short axis and the fourth short axis are the same.
  • the axes are parallel to each other and of equal length.
  • the ratio between the first major axis and the first minor axis is between 1.5 and 1; the ratio between the second major axis and the second minor axis is between 5 and 1; the ratio between the third major axis and the third minor axis is between 5 and 1. between 5 and 1.
  • the ratio between the first major axis and the first minor axis is between 1.5 and 1; the ratio between the second major axis and the second minor axis is between 5 and 1; the ratio between the third major axis and the third minor axis is between 5 and 1. between 5 and 1.
  • the first sub-pixel is a square
  • the ratio of the first long axis to the first short axis is 1
  • the second sub-pixel, the third sub-pixel and the fourth sub-pixel are All are rectangles
  • the ratio of the long and short axes of the second sub-pixel, the third sub-pixel and the fourth sub-pixel is between 5:1.
  • the sub-pixels can be dislocated correspondingly, so as to reduce the color fringing phenomenon as much as possible.
  • a large-area light-transmitting reserved area can be formed between adjacent sub-pixels as much as possible, which is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the distance is greater than the distance between the third sub-pixel G11 and the fourth sub-pixel G12 in the first pixel unit and the second sub-pixel R1.
  • a continuous light-transmitting reserved area Z can be formed in each repeating unit and the area can meet the normal operation of the photosensitive device under the screen, thereby improving the light transmittance of the display panel and providing convenience for the diversification of functions of the display panel. sex.
  • the area of the light transmission reserved area Z is larger than the light emitting area of one first sub-pixel R1/R2.
  • the pixel arrangement structure includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel.
  • the centers of the two second sub-pixels that are arranged in the position are vertices connecting lines to form a virtual quadrilateral, and the virtual quadrilateral includes two equilateral sides arranged oppositely, short sides and long sides that are oppositely arranged and connect the equilateral vertices; the short sides and The long sides are not parallel.
  • a third sub-pixel or a fourth sub-pixel is arranged in the virtual quadrilateral, and the light-emitting color of the third sub-pixel and the fourth sub-pixel is the same.
  • the virtual quadrilateral is divided into a first virtual quadrilateral in which the third subpixel is disposed and a second virtual quadrilateral in which the fourth subpixel is disposed, according to whether the third subpixel or the fourth subpixel is disposed in the virtual quadrilateral.
  • the virtual quadrilateral shares sides with the adjacent second virtual quadrilateral.
  • the center of the first sub-pixel is the sum of the four interior angles formed by the vertices equal to 360°
  • the center of the second sub-pixel is the sum of the four interior angles formed by the vertices. and equals 360°.
  • the length of the first equilateral side of the first virtual quadrilateral is not equal to the length of the second equilateral side of the second virtual quadrilateral, and the length of the short side of the first virtual quadrilateral is equal to the length of the short side of the second virtual quadrilateral , the length of the long side of the first virtual quadrilateral is equal to the length of the long side of the second virtual quadrilateral.
  • first virtual quadrilateral and the adjacent inverted first virtual quadrilateral share a first equilateral side
  • second virtual quadrilateral and the adjacent inverted second virtual quadrilateral share a second equilateral side side.
  • the pixel arrangement structure includes a virtual polygon formed by arranging four virtual quadrilaterals in a manner of sharing edges, and the four virtual quadrilaterals specifically include a first virtual quadrilateral 30, a second virtual quadrilateral 40, and an inverted first virtual quadrilateral 30.
  • the resulting third virtual quadrilateral 50 and the fourth virtual quadrilateral 60 resulting from inverting the second virtual quadrilateral 40 .
  • the first imaginary quadrilateral shares a first equilateral side with the third imaginary quadrilateral in the row direction, and shares a short side with the second imaginary quadrilateral in the column direction.
  • the third imaginary quadrilateral shares a long side with the fourth imaginary quadrilateral in the column direction, and the fourth imaginary quadrilateral shares a second equilateral side with the second imaginary quadrilateral in the row direction.
  • the length of the first equilateral is not equal to the length of the second equilateral.
  • the non-common sides of the first virtual quadrilateral, the second virtual quadrilateral, the third virtual quadrilateral, and the fourth virtual quadrilateral constitute respective sides of the virtual polygon.
  • the second subpixel is located at the position of the first vertex of each virtual quadrilateral
  • the first subpixel is located at the position of the second vertex of each virtual quadrilateral
  • the first vertex and the second vertex are alternately and spaced apart
  • the third subpixel or the fourth subpixel Pixels are located within each virtual quad.
  • a line connecting the centers of the two first sub-pixels is a first diagonal line
  • a line connecting the centers of the two second sub-pixels is a second diagonal line
  • the first diagonal line in the virtual quadrilateral The center of the third sub-pixel and/or the fourth sub-pixel is offset from the second diagonal.
  • any side of each aforementioned virtual quadrilateral is not parallel to the row or column direction; or any two opposite sides of each aforementioned virtual quadrilateral are not parallel to each other; or any two interior angles of each aforementioned virtual quadrilateral are not parallel. equal.
  • the first virtual quadrilateral, the second virtual quadrilateral, the third virtual quadrilateral and the fourth virtual quadrilateral are all irregular quadrilaterals, so that a larger light-transmitting area can be formed on the premise of satisfying the compact arrangement of sub-pixels, thereby The light transmittance of the display panel is further improved, and convenience is provided for the diversification of the functions of the display panel.
  • the second sub-pixel 14 has a first side and a second side opposite to the third sub-pixel 16a and the fourth sub-pixel 16b respectively, and is adjacent to the first side and a third side opposite the second side, and a fourth side opposite the first side and connected to the second side and the third side.
  • the extension lines of the second side and the fourth side are staggered from the third sub-pixel 16a, and the extension lines of the first side and the fourth side are staggered from the fourth sub-pixel 16b. That is to say, the third sub-pixel 16a and the fourth sub-pixel 16b are located between the corresponding side extension lines of the second sub-pixel 14, respectively.
  • the sub-pixels are arranged as compactly as possible, and the protruding degree of the sub-pixels at the display edge is weakened, thereby effectively improving the color fringing problem at the display edge.
  • the line connecting the centers of the third sub-pixels in the same row and/or column is a non-straight line
  • the line connecting the centers of the fourth sub-pixels in the same row and/or column is a non-straight line.
  • the center connection lines of the green sub-pixels located in the same row and/or column are zigzag.
  • the two green sub-pixels in any pixel group of odd-numbered rows or columns are connected with the centers of the two most adjacent green sub-pixels in the pixel group of adjacent even-numbered rows or columns to form a fifth virtual quadrilateral;
  • the smallest interior angle ⁇ in a virtual quadrilateral is ⁇ 60°.
  • the green sub-pixels in the adjacent pixel groups are not easy to be too close, which further prevents the adjacent two green sub-pixels from being difficult to distinguish due to the close distance of the adjacent green sub-pixels, which is visually recognized by the human eye. A two-in-one situation.
  • the line connecting the centers of the first sub-pixels in the same row and/or columns may be straight lines, and the lines connecting the centers of the second sub-pixels in the same row and/or columns may be straight lines.
  • the sub-pixels can be arranged more uniformly, which is beneficial to improve the display quality.
  • a second aspect of the present application further provides a display panel, including the pixel arrangement structure in the above embodiments.
  • the pixel arrangement structure of the present application further includes the following features.
  • the pixel arrangement structure of the present application includes the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may be one of a blue light-emitting sub-pixel, a red light-emitting sub-pixel and a green light-emitting sub-pixel, respectively.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may also be sub-pixels that emit light of other colors than blue, red and green
  • the third sub-pixel 16a or the fourth sub-pixel 16b may be a white or yellow sub-pixel, which is not limited herein.
  • light of different colors has different wavelengths. Higher wavelengths mean higher energy of light. Light with high energy easily causes the decay of organic light-emitting materials, making sub-pixels emitting photons with high energy easier to decay. The wavelength of blue light is shorter than that of red light and green light.
  • the energy of blue light is higher, and the organic light-emitting material that emits blue light is more prone to decay, causing the light emitted from the pixel unit to be prone to reddish, resulting in the phenomenon of white light color shift.
  • the light emitted by each sub-pixel is repeatedly reflected and re-reflected between the anode and the cathode through the Fabry-Perot microcavity effect, resulting in amplification and constructive interference, the brightness of the light increases, and the color shift The situation is further magnified. As a preferred embodiment, as shown in FIG.
  • the first sub-pixel 12 is a blue sub-pixel
  • the second sub-pixel 14 is a red sub-pixel
  • the third sub-pixel 16a and the fourth sub-pixel 16b are Green subpixel.
  • the light-emitting area of the blue sub-pixel is larger than the light-emitting area of the red sub-pixel and the green sub-pixel, so that display defects caused by different decay rates of organic light-emitting materials emitting light of different colors can be reduced to a certain extent.
  • the light-emitting area of the green sub-pixel may be equal to the light-emitting area of the red sub-pixel, but since the human eye is more sensitive to green light than red light, in other embodiments, the green sub-pixel The light-emitting area of the sub-pixel may be smaller than the light-emitting area of the red sub-pixel, which is not limited herein.
  • the centers of the two first sub-pixels 12 arranged in alignment and the centers of the two second sub-pixels 14 arranged in alignment are vertices connecting lines to form a virtual quadrilateral. That is to say, the centers of the two first sub-pixels 12 serve as a group of diagonal vertices of the virtual quadrilateral, and the centers of the two second sub-pixels 14 serve as another group of diagonal vertices of the virtual quadrilateral. For example, as shown in FIG.
  • the first virtual quadrilateral 30 includes two opposite sides of equal length arranged opposite to each other, short sides and long sides arranged opposite to each other and connecting vertices of the opposite sides of equal length.
  • the center line connecting the first sub-pixel 12 and the second sub-pixel 14 is the first opposite side of equal length, and the other first sub-pixel 12 and the second sub-pixel 14
  • the line connecting the centers of the two sub-pixels 14 is the second opposite side of equal length.
  • the center line connecting the first sub-pixel 12 and the second sub-pixel 14 is the long side of the virtual quadrangle, and the center line connecting the other first sub-pixel 12 and the second sub-pixel 14 is the short side of the virtual quadrilateral. side.
  • a third sub-pixel or a fourth sub-pixel is arranged in the virtual quadrilateral, and the light-emitting color of the third sub-pixel and the fourth sub-pixel is the same.
  • the pixel arrangement structure includes a plurality of virtual quadrilaterals, and the plurality of virtual quadrilaterals include a first virtual quadrilateral and a second virtual quadrilateral that are adjacent and share a side; the first virtual quadrilateral is provided with one of the third subpixels, One of the fourth sub-pixels is arranged in the second virtual quadrilateral.
  • four virtual quadrilaterals are arranged in a manner of sharing sides, and the four virtual quadrilaterals specifically include a first virtual quadrilateral 30 , a second virtual quadrilateral 40 , and an inverted first virtual quadrilateral 30
  • the resulting third virtual quadrilateral 50 and the fourth virtual quadrilateral 60 resulting from inverting the virtual second quadrilateral 40 .
  • the first virtual quadrilateral 30 shares a first shared side g with the third virtual quadrilateral 50 in the row direction, and shares a second shared side h with the second virtual quadrilateral 40 in the column direction.
  • the fourth virtual quadrilateral 60 shares the third shared side j with the third virtual quadrilateral 50 in the column direction, and the fourth virtual quadrilateral 60 shares the fourth shared side i with the second virtual quadrilateral 40 in the row direction.
  • the sides of the virtual quadrilaterals remote from the shared side constitute the sides of the virtual polygon.
  • the second sub-pixel 14 is located at the first vertex position of each virtual quadrilateral, the first sub-pixel 12 is located at the second vertex position of each virtual quadrilateral, and the first and second vertexes are alternately and spaced apart.
  • a third sub-pixel 16 a is provided in the first virtual quadrilateral 30 and the second virtual quadrilateral 40 , and a fourth sub-pixel 16 b is provided in the third virtual quadrilateral 50 and the fourth virtual quadrilateral 60 .
  • the short side of the virtual quadrilateral is not parallel to the long side of the virtual quadrilateral.
  • the pixel arrangement directly determines the display effect.
  • each sub-pixel is usually arranged along the row and column directions as uniformly as possible.
  • the existing pixel arrangement structure is also prone to color shift and color fringing.
  • the virtual quadrilateral has a set of opposite sides of equal length, a set of long sides and short sides with different lengths, and the long sides and short sides are not parallel, so that the sub-pixels can be arranged in dislocation, and can Taking into account the arrangement uniformity, compactness and spacing between sub-pixels, seeking a balance among the three is conducive to reducing the risk of color mixing and improving the problems of color fringing and edge jaggedness.
  • each sub-pixel is staggered due to the aforementioned constraints, so as to avoid the sub-pixels emitting the same color light being arranged in a single column, thereby improving the color fringing problem at the display edge.
  • the staggered arrangement of the sub-pixels makes the sub-pixels located at the rounded corners of the display panel better match the rounded corner design, that is, the smooth transition of the edge connection lines of the sub-pixels located at the edge at the rounded corners is tangent to the radian of the rounded corners. or match, thereby improving the jaggedness at the rounded corners.
  • the third sub-pixel and the fourth sub-pixel can be set as green sub-pixels sensitive to human eyes, surrounded by blue and red sub-pixels, so as to make the color mixing more uniform and avoid color shift.
  • the sum of four interior angles with the center of the first subpixel as the vertex is equal to 360°;
  • the sum of the interior angles equals 360°.
  • the length of the first opposite side of the first virtual quadrilateral is not equal to the length of the second opposite side of the second virtual quadrilateral; the length of the long side of the first virtual quadrilateral is equal to the length of the long side of the second virtual quadrilateral; the first The length of the short side of the virtual quadrilateral is equal to the length of the short side of the second virtual quadrilateral.
  • the sub-pixels can be compactly arranged, and the sub-pixels can be arranged relatively uniformly and regularly, which is beneficial to the improvement of the display quality.
  • the short side or the long side of the first virtual quadrilateral and the adjacent second virtual quadrilateral are shared.
  • the first virtual quadrilateral 30 and the adjacent third virtual quadrilateral 50 are inverted, and the opposite sides of the first equal length share the same side, and the second virtual quadrilateral 40 is opposite to the opposite side.
  • the adjacent fourth virtual quadrilaterals 60 are inverted, and the opposite sides of the second equal length are shared.
  • the imaginary quadrilateral 30 shares a short side with the adjacent imaginary quadrilateral 40
  • the third imaginary quadrilateral 50 shares a long side with the adjacent fourth imaginary quadrilateral 60 . That is to say, the structures in which the adjacent first virtual quadrilaterals or the second virtual quadrilaterals are turned 180 degrees along the preset angle are the same.
  • the sub-pixels are arranged compactly, and on the other hand, the sub-pixels are arranged regularly and the repeating units are closer to a regular pattern as a whole, which is beneficial to the improvement of display quality.
  • the protruding degree of the sub-pixels can be weakened, and the color fringing can be effectively improved.
  • the length of the first opposite side of equal length may also be equal to the length of the second opposite side of equal length, which is not limited herein. In this way, the dislocation arrangement of the sub-pixels is further exacerbated, which is beneficial to improve the color fringing.
  • the pixel structure includes a first pixel unit and a second pixel unit, the first pixel unit and the second pixel unit are adjacent to each other, and the plurality of first pixel units and the plurality of second pixel units are located in the first pixel unit.
  • any two adjacent first pixel units are separated by one second pixel unit, and any two adjacent second pixel units are separated by one first pixel unit spaced out.
  • each sub-pixel structure of the first pixel unit and the second pixel unit is mirror-symmetrical after being rotated by 90 degrees relative to each other. That is to say, the sub-pixels in the first pixel unit and the sub-pixels of the same color in the second pixel unit have the same shape and size (light-emitting area), and the sub-pixels in the second pixel unit rotate clockwise or counterclockwise by a predetermined angle.
  • the structure of the sub-pixel is mirror-symmetrical with the structure of the corresponding sub-pixel in the first pixel unit.
  • the predetermined angle is greater than 0° and less than 360°.
  • the arrangement structure of each sub-pixel in the second pixel unit shown in FIG. The sub-pixels in the unit are arranged in mirror symmetry. In this way, not only the sub-pixels that avoid emitting light of the same color in the row direction or the column direction are arranged in a single column, but also the protruding degree of the sub-pixels located in the same row or column is weakened, and the color fringing problem of the display edge is further improved. . At the same time, it can also effectively improve the color shift.
  • the third sub-pixel and the fourth sub-pixel can be set as sub-pixels of the color sensitive to human eyes, such as green sub-pixels, and each green sub-pixel can be composed of red sub-pixels and red sub-pixels.
  • the blue sub-pixels are surrounded, resulting in more uniform color mixing and improved color casts.
  • each sub-pixel structure in the second pixel unit is rotated by a predetermined angle, it is mirror-symmetrical with each sub-pixel structure in the first pixel unit, and it is also possible to form a large-area light-transmitting prefab between adjacent pixel units as much as possible.
  • the reserved area Z (see Figure 7) is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the sub-pixel structures of the first pixel unit and the second pixel unit may also be the same, which is not limited herein. That is to say, the smallest repeating unit in the pixel arrangement structure is one pixel unit.
  • the respective centers of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b are vertices to form two acute triangles with common sides but not overlapping
  • the center of the first sub-pixel 12 and the center of the second sub-pixel 14 are the common-edge vertices of the common-edge triangle.
  • the centers of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b are sequentially connected to form a virtual quadrilateral, and the centers of the first sub-pixel 12, the second sub-pixel 14 and the third sub-pixel 16a
  • the line connecting the midpoints forms a first triangle (not shown), and the line connecting the centers of the first sub-pixel 12, the second sub-pixel 14 and the fourth sub-pixel 16b forms a second triangle.
  • the first triangle and the second triangle take the connection line d between the center of the first sub-pixel 12 and the center of the second sub-pixel 14 as a common side, and the areas of the two triangles do not overlap each other.
  • the second sub-pixel 14 and the third sub-pixel 16 a are not arranged in the same row along the direction perpendicular to the center line of the first sub-pixel 12 and the third sub-pixel 16 a. That is to say, in a direction perpendicular to the connecting line between the centers of the first sub-pixel 12 and the third sub-pixel 16a, the second sub-pixel 14 and the third sub-pixel 16a are arranged staggered. In other words, within the aforementioned virtual quadrilateral, the line connecting the centers of the two first sub-pixels is the first diagonal line, and the line connecting the centers of the two second sub-pixels is the second diagonal line, and the third sub-pixel and/or The center of the fourth subpixel is offset from the second diagonal line.
  • the first sub-pixels 12 and the third sub-pixels 16a are arranged along the second direction Y perpendicular to the first direction, and along the direction perpendicular to the center connection line of the first sub-pixels 12 and the third sub-pixels 16a , that is, in the first direction X, the second sub-pixels 14 and the third sub-pixels 16a are arranged staggered.
  • the vertices of the aforementioned virtual quadrilateral are located at the center of the first sub-pixel, the center of the second sub-pixel in the first pixel unit, and the center of the first sub-pixel or the center of the second sub-pixel in the two second pixel units adjacent to the first pixel unit.
  • the center of the pixel; or, the vertices of the virtual quadrilateral are respectively set at the center of the first sub-pixel, the center of the second sub-pixel in the second pixel unit, and the center of the first sub-pixel in the two first pixel units adjacent to the second pixel unit or the center of the second subpixel.
  • the blank area outside the second sub-pixels R1 / R2 is the aforementioned light transmission reserved area.
  • the size of the light transmission reserved area in the first direction ranges from 10 ⁇ m to 90 ⁇ m
  • the size in the second direction ranges from 20 ⁇ m to 90 ⁇ m.
  • the first sub-pixel 12 and the second sub-pixel 14 are not arranged in the same row along the direction perpendicular to the center connection line of the first sub-pixel 12 and the third sub-pixel 16a. That is to say, the second sub-pixel 14 and the first sub-pixel 12 are also staggered along the direction perpendicular to the center line of the first sub-pixel 12 and the third sub-pixel 16a. Further, the center of the second sub-pixel 14 is used as a vertex of the co-edge of the co-edge triangle, and the projection on the opposite side opposite to the vertex is located on the opposite side, and the projection and the third sub-pixel are on the opposite side. The center of 16a and the center of the first sub-pixel 12 do not coincide.
  • the center of the second sub-pixel 14 (a vertex of the center line d) is on the opposite side e (the line connecting the center of the first sub-pixel 12 and the center of the third sub-pixel 16a)
  • the projection on is on the opposite side e.
  • the projection is located between the center of the first sub-pixel 12 and the center of the third sub-pixel 16, that is, does not coincide with the center of the third sub-pixel 16a.
  • the projection of the co-edge vertex on the opposite side refers to the projection of the vertex on the opposite side in the direction perpendicular to the opposite side of the vertex, that is, the side that passes through the vertex and is opposite to the vertex
  • the intersection of the vertical line and the opposite side is the projection of the aforementioned vertex on the opposite side.
  • one vertex of the common side d of the first triangle and the second triangle is the center of the second sub-pixel 14, passing through the center of the second sub-pixel 14 and perpendicular to the vertical direction of the opposite side e.
  • the intersection of the line and the pair of sides e is the projection of the aforementioned vertex on the opposite side.
  • the center line e of the first sub-pixel 12 and the second sub-pixel 14 intersects with the center line c of the third sub-pixel 16a and the fourth sub-pixel 16b, but not vertical. It is easy to understand that the center line of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16 and the fourth sub-pixel 16b forms a virtual quadrilateral, and the center line of the first sub-pixel 12 and the second sub-pixel 14 is connected c, and the center line d of the third sub-pixel 16a and the fourth sub-pixel 16b is the diagonal line of the aforementioned virtual quadrilateral.
  • the sub-pixels in the pixel unit can be closely arranged, and the misalignment is aggravated.
  • the degree of arrangement further weakens the display color fringing.
  • the first sub-pixel 12 and the second sub-pixel 14 may be blue sub-pixels and red sub-pixels, respectively, and the third sub-pixel 16a and the fourth sub-pixel 16b may be green sub-pixels Compared with the blue sub-pixel, the green sub-pixel has a smaller light-emitting area.
  • the length of the connection line d between the center of the first subpixel 12 and the center of the second subpixel 14 and the length of the connection line c between the center of the third subpixel 16a and the center of the fourth subpixel 16b are not equal. It is easy to understand that the light-emitting areas of sub-pixels that emit light of different colors are generally different. For example, the light-emitting areas of blue sub-pixels are larger than the light-emitting areas of red sub-pixels and green sub-pixels.
  • the length of the center connection line d By designing the length of the center connection line d to be unequal to the length of the center connection line c, the distance between the first sub-pixel 12 and the second sub-pixel 14, and the third sub-pixel 16a and the fourth sub-pixel 16b can be guaranteed.
  • the spacing of the pixels satisfies the preset conditions, so that the sub-pixels are arranged as closely as possible, and the distribution uniformity of the sensitive color sub-pixels is improved, the visual resolution is improved, and the display quality is improved.
  • the length of the line e connecting the center of the first sub-pixel 12 and the center of the third sub-pixel 16 a is not equal to the length of the center of the first sub-pixel 12 and the fourth sub-pixel 12 in the same pixel unit.
  • the first subpixel 12 is a blue subpixel
  • the second subpixel 14 is a red subpixel
  • the third subpixel 16a and the fourth subpixel 16b are green subpixels.
  • the blue sub-pixels and different green sub-pixels in the same pixel unit have different lengths of the center lines.
  • the distances from the center of the third sub-pixel 16a and the center of the fourth sub-pixel 16b to the center of the second sub-pixel 14 are unequal. In this way, on the one hand, adjacent sub-pixels are less likely to be too close, further avoiding the situation where two adjacent sub-pixels are difficult to distinguish due to the close distance between adjacent sub-pixels and are visually merged into one by the human eye. On the other hand, by setting the lengths of the connecting lines between the centers of the first sub-pixel 12 and the second sub-pixel 14 and the third sub-pixel 16a and the fourth sub-pixel 16b to be different, the dislocation arrangement of the sub-pixels is exacerbated.
  • the sub-pixels of the same color are further prevented from being arranged in a single column, and the protruding degree of the sub-pixels in the same row or column is weakened, thereby improving the color edge problem of the display edge.
  • the ratios of the distances from the center of the third subpixel 16a and the center of the fourth subpixel 16b to the center of the first subpixel 12 are (3 ⁇ 2): (2 ⁇ 1).
  • the distances from the center of the third sub-pixel 16 a and the center of the fourth sub-pixel 16 b to the center of the second sub-pixel 14 are also (3 ⁇ 2): (2 ⁇ 1). It can be understood that in addition to color fringing and graininess, the key factors affecting the display quality are resolution and uniformity.
  • the center of the third sub-pixel 16a and the fourth sub-pixel 16b is defined to the first sub-pixel 12 and The ratio of the distances between the centers of the second sub-pixels 14 makes the arrangement of the sub-pixels achieve a good balance among uniformity, compactness, and degree of dislocation, so that the display quality is comprehensively improved.
  • the center of the sub-pixel may be the geometric center of the sub-pixel figure, or may be the center of the emission color of the sub-pixel, which is not limited herein.
  • the light emitting areas of the third sub-pixel 16a and the fourth sub-pixel 16b may be the same.
  • the third sub-pixel 16a and the fourth sub-pixel 16b can be set as sub-pixels of colors sensitive to human eyes, so that the resolution can be improved as much as possible, and the display can be made more uniform.
  • the light emitting areas of the first sub-pixel 12, the third sub-pixel 16a and the fourth sub-pixel 16b may also be the same. In this way, the overall arrangement of the sub-pixels is more compact and uniform, and the display effect is improved.
  • the first sub-pixel 12 , the second sub-pixel 14 , the third sub-pixel 16 a and the fourth sub-pixel 16 b may all be rectangular or quasi-rectangular, and the long axis direction of the second sub-pixel 14 is perpendicular to the
  • the connecting lines at the centers of the first sub-pixel 12 and the third sub-pixel 16 are parallel to each other.
  • the long axis direction of the second sub-pixel 14 is parallel to the first direction
  • the direction of the center connecting line between the first sub-pixel 12 and the third sub-pixel 16 a is parallel to the second direction
  • the first sub-pixel 14 is parallel to the first direction.
  • One direction is perpendicular to the second direction.
  • the sub-pixels can be closely arranged, and the sub-pixels of the same color are prevented from being independently formed in a row, which effectively improves the color fringing phenomenon.
  • the sub-pixels located at the odd-shaped edges of the display panel can better match the rounded corner design, that is, the inclination of the sub-pixels is tangent or coincident with the radian of the rounded corners, so as to realize a smooth transition of the edges of each sub-pixel at the rounded corners, and then Improve jaggedness at rounded corners.
  • the extension direction of the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b is parallel to the first direction, and the included angle with the row direction or the column direction is 30°- 60°.
  • the inclination of the sub-pixels can be further made to be tangent or coincident with the radian of the rounded corners, so as to realize a smooth transition of the edges of each sub-pixel at the rounded corners, and further improve the jagged problem at the rounded corners.
  • the included angle between the first direction and the row direction is 45°, which can further improve the overall display quality.
  • the force of the mask is usually transmitted in the row or column direction.
  • the tension force F is transmitted in the row direction, and the opening of the mask plate corresponding to the sub-pixel inclined relative to the row or column direction can apply the force in the row direction.
  • the column direction is decomposed, so as to avoid the deformation of the opening caused by the concentration of the FMM tension force F, and reduce the difficulty of making the mask plate and the difficulty of opening the mesh.
  • the openings of the mask plate are arranged obliquely, and more openings can be arranged in the mask plate of the same length and width, which reduces the manufacturing cost of the mask.
  • first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b may also have other shapes, which are not limited here.
  • first sub-pixel 12 It may be square, and the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b are rectangular.
  • the quasi-rectangle refers to that, due to process limitations or for the convenience of mask fabrication, the shape of the sub-pixels may not be strictly rectangular, but roughly rectangular, for example, a rounded rectangle with rounded corners or chamfered corners rectangle.
  • the rounded rectangle is a shape formed by rounding the top corners of the rectangle
  • the chamfered rectangle is a shape formed by cutting off one or more top corners of the rectangle. Setting the shape of the sub-pixel to be a rectangle-like shape can more flexibly adjust the aperture ratio of the sub-pixel, and meet the constraints of the mask plate during fabrication.
  • the first subpixel 12 has a first long axis and a first short axis
  • the second subpixel 14 has a second long axis and a second short axis
  • the third subpixel 16a has a third long axis and a third short axis.
  • Short axis
  • the fourth subpixel 16b has a fourth long axis and a fourth short axis. That is, each sub-pixel is a regular figure or irregular figure with a long axis and a short axis, such as a rectangle or a rectangle-like shape.
  • the third sub-pixel 16a and the fourth sub-pixel 16b are sub-pixels of the same color, for example, both are green sub-pixels, then the third long axis and the fourth long axis are parallel to each other and have the same length, and the third short axis and the third The four minor axes are parallel to each other and have the same length.
  • the ratio between the first major axis and the first minor axis is between 1.5 and 1; the ratio between the second major axis and the second minor axis is between 5 and 1; the ratio between the third major axis and the third minor axis is between 5 and 1. between 5 and 1.
  • the first sub-pixel 12 is a square
  • the ratio of the first long axis to the first short axis is 1
  • the second sub-pixel 14 , the third sub-pixel 16 a and the first sub-pixel 16 a are
  • the four sub-pixels 16b are all rectangular, and the ratio of the long and short axes of the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b is between 5:1.
  • the sub-pixels can be dislocated correspondingly, so as to reduce the color fringing phenomenon as much as possible.
  • a large-area light-transmitting reserved area Z can be formed between adjacent sub-pixels as much as possible, which is beneficial to improve the lighting area of the photosensitive device under the screen.
  • the length of the long axis of the sub-pixel refers to the maximum dimension in the longitudinal extension direction of the light-emitting region of the sub-pixel
  • the length of the short axis of the sub-pixel refers to the length of the light-emitting region of the sub-pixel in the direction opposite to the longitudinal extension direction of the light-emitting region.
  • the maximum size in the width direction refers to the maximum dimension in the width direction.
  • the first long axis, the second long axis, the third long axis and the fourth long axis are parallel to each other.
  • the first sub-pixel 12, the second sub-pixel 14, the third sub-pixel 16a and the fourth sub-pixel 16b respectively have a set of opposite sides, and the pairs of opposite sides are parallel to each other .
  • the first sub-pixel 12 , the second sub-pixel 14 , the third sub-pixel 16 a and the fourth sub-pixel 16 b respectively have another set of opposite sides, and a plurality of groups of the other pairs of opposite sides are parallel to each other.
  • the shape of the first sub-pixel 12 is a square
  • the shape of the second sub-pixel 14 , the third sub-pixel 16 a and the fourth sub-pixel 16 b is a rectangle
  • the first sub-pixel 14 is in the shape of a rectangle.
  • the ratio between the lengths of the first major axis and the first minor axis of the pixel 12 is 1, and the first major axis, the second major axis, the third major axis and the fourth major axis are parallel to each other.
  • the first subpixel 12 has a first side and a second side opposite to the third subpixel 16a and the fourth subpixel 16b, respectively, a third side adjacent to the first side and opposite to the second side, and a third side opposite to the first side.
  • a fourth side with one side opposite and connected to the second side and the third side.
  • the first and fourth sides of the first sub-pixel 12 and the long sides of the second sub-pixel 12 are parallel to each other, and the long sides of the third sub-pixel 16a and the fourth sub-pixel 16b are parallel to each other. In this way, it is beneficial to uniformly arrange the sub-pixels, thereby improving the display quality.
  • an extension line of a side of the first sub-pixel 12 close to the edge of the pixel unit coincides with an extension line of a short side of the third sub-pixel 16a close to the edge of the same side of the pixel unit.
  • the extension line of the other side of the first sub-pixel 12 close to the edge of the pixel unit coincides with the extension line of the long side of the fourth sub-pixel 16b close to the edge of the same side of the pixel unit.
  • the third side of the first sub-pixel 12 and the short side of the third sub-pixel 16a are collinear
  • the fourth side of the first sub-pixel 12 and the long side of the fourth sub-pixel 16b are collinear collinear.
  • the first pixel unit has a regular shape as much as possible, so that the arrangement of the sub-pixels is more compact and uniform.
  • the extension line of the second side of the first sub-pixel 12 is staggered from the third sub-pixel 16a, and the extension line of the first side is staggered from the fourth sub-pixel 16b. In this way, the degree of dislocation between the sub-pixels is ensured, the degree of protrusion of the sub-pixels at the display edge is weakened, and the color edge problem at the display edge is effectively improved.
  • the length of the long side of the first sub-pixel 12 , the third sub-pixel 16 a and the fourth sub-pixel 16 b may be the same as the length of the side of the second sub-pixel 14 .
  • the first pixel unit is further formed into a regular shape, so that the arrangement of the sub-pixels is more compact and uniform.
  • the extension line of at least one of the two long sides of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the third sub-pixel 16a. Further, the extension line of one long side of the second sub-pixel 14 passes through the gap between the first sub-pixel 12 and the third sub-pixel 16a, and the extension line of the other long side of the second sub-pixel 14 is connected to the first sub-pixel 14. The sides of the pixel 12 close to the third sub-pixel 16a coincide. For example, an extension line of one long side of the second sub-pixel 14 may pass between the first sub-pixel 12 and the third sub-pixel 16a. The extension line of the other long side of the second sub-pixel 14 is collinear with the first side of the first sub-pixel 12.
  • the extension lines of the two long sides of the second sub-pixel 14 both pass through the gap between the first sub-pixel 12 and the third sub-pixel 16a. That is, translating the second subpixel 14 in the first direction can pass between the first subpixel 12 and the third subpixel 16a.
  • the center lines of the third sub-pixels 16a in the same row and/or column are non-straight lines or approximately straight lines
  • the center lines of the fourth sub-pixels 16b in the same row and/or column are non-straight lines or approximately straight lines.
  • the center lines of the green sub-pixels located in the same row and/or column may be in a zigzag shape. In this way, on the one hand, the protruding degree of the sub-pixels is weakened, and the color fringing is improved; The two adjacent green sub-pixels are difficult to distinguish due to their proximity, and are visually merged into one by the human eye.
  • the line connecting the centers of the first sub-pixels in the same row and/or columns may be straight lines, and the lines connecting the centers of the second sub-pixels 14 in the same row and/column may be straight lines.
  • the sub-pixels can be arranged more uniformly, which is beneficial to improve the display quality.
  • the long axis directions of the adjacent third subpixels 16a and the fourth subpixels 16b arranged in the same row are different.
  • the first direction and the second direction are directions inclined to the horizontal row direction and the vertical column direction.
  • two adjacent first directions in the same row The long axis directions of the two sub-pixels R1 and R2 are opposite to each other.
  • the long-axis directions of the adjacent third sub-pixels 16a and the fourth sub-pixels 16b arranged along the first direction and the second direction are also different.
  • the center of the third sub-pixel 16a in the first pixel unit or the center of the fourth sub-pixel 16b is located at the center of the second sub-pixel 14 in the first pixel unit and the first pixel unit in the second pixel unit adjacent to the first pixel unit.
  • the center of the third sub-pixel 16a or the center of the fourth sub-pixel 16b in one pixel unit is located at the center of the second sub-pixel 14 in the pixel unit where it is located and the second sub-pixel in another pixel unit adjacent to it
  • the center of the second sub-pixel R1 in the first pixel unit and the center of the second sub-pixel R2 in the second pixel unit adjacent to the first pixel unit The extension line of the connecting line in the center is staggered from the center of the third sub-pixel G11 and the center of the fourth sub-pixel G12 in the first pixel unit, and the center of the third sub-pixel G11 and the center of the fourth sub-pixel G12 are located in the aforementioned Connect the sides of the extension cord. It should be noted that the fact that the center of the sub-pixel is located outside the center connecting line means that the center of the sub-pixel is staggered from the center connecting line, for example, the center of the sub-pixel is located on one side of the center connecting line.
  • the minimum distance between two adjacent sub-pixels is p, and along the first direction and the second direction, the most adjacent two adjacent pixel units are different.
  • the minimum distance between sub-pixels of a color is also n. Among them, 10um ⁇ n ⁇ 30um.
  • the arrangement of the sub-pixels is made more uniform, which is beneficial to improve the display quality;
  • the display panel provided in the embodiment of the present application may be an organic light-emitting display panel
  • the sub-pixels include at least an anode and a cathode, and a light-emitting layer located between the anode and the cathode
  • the driving circuit applies a voltage between the anode and the cathode. , which stimulates the migration of carriers and acts on the light-emitting layer, thereby emitting light.
  • the display panel may further include a pixel definition layer, the pixel definition layer defines a plurality of pixel openings, and the light-emitting layers of the sub-pixels are disposed in the pixel openings to avoid cross-color or interference between adjacent sub-pixels. Therefore, the area of the pixel opening is the light-emitting area of the sub-pixel.
  • the opening area of the mask is larger than the area of the pixel opening, so that the Leave a margin for evaporation. For example, as shown in FIG.
  • the inner side of the sub-pixel is called the pixel side, that is, the boundary of the pixel opening of the pixel definition layer (PDL layer), and the outer side is called the virtual side of the sub-pixel, and the virtual side is Refers to the boundary of the vapor deposition opening of the Mask (mask). Therefore, in the embodiments of the present application, the distance between sub-pixels refers to the distance between pixel sides of two sub-pixels. Specifically, in the embodiments shown in FIG. 3 and FIG. 7 , there are two adjacent and parallel pixel sides between two adjacent sub-pixels, and the minimum distance between two adjacent sub-pixels is the distance between the two adjacent sub-pixels. The vertical distance between two adjacent and parallel pixel edges.
  • the minimum distance between the second sub-pixel R1 in the first pixel unit and the third sub-pixel G21 of the second pixel unit arranged adjacently along the second direction is p, n ⁇ p ⁇ 3n.
  • the minimum distance between the second sub-pixel R2 in the second pixel unit and the third sub-pixel G11 of the first pixel unit arranged adjacently along the first direction is q, where n ⁇ q ⁇ 3n.
  • a virtual quadrilateral is formed by connecting the centers of the four adjacent third sub-pixels and the fourth sub-pixels, and the minimum interior angle ⁇ of the virtual quadrilateral is greater than 60° and less than 90°.
  • the distance between the adjacent four third sub-pixels and the fourth sub-pixel is limited by controlling the minimum angle, so as to avoid uneven display caused by the distance being too large.
  • it also makes the green sub-pixels in the adjacent pixel groups less likely to be too close, and further avoids that the adjacent green sub-pixels are difficult to distinguish due to the close distance between the adjacent green sub-pixels. A situation where the human eye visually merges into one.
  • the connecting lines between the centers of the third sub-pixels in the same row and/or column are non-straight lines or approximately straight lines; and/or the center lines connecting the fourth sub-pixels in the same row and/or column are non-straight lines or approximately straight lines.
  • the center lines of the green sub-pixels located in the same row and/or column are in a jagged shape. In this way, on the one hand, the protruding degree of the sub-pixels is weakened, and the color fringing phenomenon is improved; The two adjacent green sub-pixels are difficult to distinguish due to the close distance, and are visually merged into one by the human eye.
  • the centers of the red sub-pixels are not in a straight line; or in the first direction and the second direction, the centers of the green sub-pixels are not in a straight line; or in the first direction and the second direction In the two directions, the centers of the blue sub-pixels are not on a straight line. In this way, the dislocation arrangement between the sub-pixels is ensured, and the color fringing phenomenon is effectively improved.
  • the center line connecting the first sub-pixels in the same row and/or column may be a straight line
  • the center line connecting the second sub-pixels in the same row and/column may be a straight line, which is not limited herein.
  • the two green sub-pixels in any pixel group of odd-numbered rows or columns are connected with the centers of the two most adjacent green sub-pixels in the pixel group of adjacent even-numbered rows or columns to form a fifth virtual quadrilateral;
  • the smallest interior angle ⁇ in a virtual quadrilateral is ⁇ 60°.
  • a third aspect of the present application further provides a display panel, including the pixel arrangement structure in the above embodiments.
  • the present application further provides a mask for fabricating the pixel arrangement structure provided by the embodiment of the present application.
  • the mask includes a plurality of opening areas, and the opening areas are connected to the first sub-pixels 12 .
  • the shape and position of the second sub-pixel 14 , the third sub-pixel 16 a or the fourth sub-pixel 16 b are corresponding.
  • the present application also provides a display device, the display device including the display panel 100 in the embodiments in the above aspects.
  • the display device can be applied to fields such as mobile phone terminals, bionic electronics, electronic skins, wearable devices, vehicle-mounted devices, Internet of Things devices, and artificial intelligence devices.
  • the above-mentioned display device may be a digital device such as a mobile phone, a tablet, a handheld computer, an ipod, and a smart watch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请涉及一种像素排布结构,包括多个第一像素单元和多个第二像素单元,多个第一像素单元与多个第二像素单元在第一方向以及第二方向上交替排布;每个第一像素单元和第二像素单元均包括第一子像素、第二子像素、第三子像素和第四子像素;第一子像素位于第三子像素的中心和第四子像素的中心的连线的一侧,第二子像素位于第三子像素和第四子像素中心连线的另一侧;第二像素单元旋转预定角度后其子像素排布结构与第一像素单元的子像素排布结构镜像对称。

Description

像素排布结构、显示面板及显示装置
相关申请的交叉引用
本申请要求于2020年07月01日提交中国专利局、申请号为2020106221094、发明名称为“像素排布结构、显示面板及显示装置”的中国专利申请、于2020年07月01日提交中国专利局、申请号为2020106221107、发明名称为“像素排布结构、显示面板及显示装置”的中国专利申请、于2020年07月01日提交中国专利局、申请号为2020106220956、发明名称为“像素排布结构、显示面板及显示装置”的中国专利申请的优先权,这些申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种像素排布结构、显示面板及显示装置。
背景技术
随着显示技术的不断发展,人们对于显示面板的分辨率的要求也越来越高。由于具有显示质量高等优点,高分辨率显示面板的应用范围也越来越广。通常,可以通过减小子像素的尺寸和减小子像素间的间距来提高显示装置的分辨率。然而,子像素的尺寸和子像素之间的间距的减小对制作工艺精度要求也越来越高,从而会导致显示装置的制作工艺的难度和制作成本增加。
子像素渲染(Sup-Pixel Rendering,SPR)技术可以利用人眼对不同色彩子像素的分辨率的差异,改变常规的红、绿、蓝三色子像素简单定义一个像素的模式,通过不同的像素间共享某些位置分辨率不敏感颜色的子像素,用相对较少的子像素,模拟实现相同的像素分辨率表现能力,从而降低制作工艺的难度和制作成本。
发明内容
基于此,有必要提供一种像素排布结构、显示面板及显示装置,能够实现高分辨率的同时,有效改善彩边现象及显示效果。
根据本申请的第一方面,提供一种像素排布结构,包括多个第一像素单元和多个第二像素单元,多个所述第一像素单元与多个所述第二像素单元在第一方向以及第二方向上交替排布;
每个所述第一像素单元和所述第二像素单元均包括第一子像素、第二子像素、第三子像素和第四子像素;所述第一子像素位于所述第三子像素的中心和所述第四子像素中心之间的连线的一侧,所述第二子像素位于所述第三子像素的中心和所述第四子像素的中心之间的连线的另一侧;
所述第二像素单元旋转预定角度后其子像素排布结构与所述第一像素单元的子像素排布结构镜像对称;
所述预定角度大于0°,且小于360°。
上述的像素排布结构,将第二像素单元旋转预定角度后其子像素排布结构与第一像素单元中的子像素排布结构镜像对称,可以兼顾子像素的排列紧密度和子像素之间的间距,在二者之间寻求一个平衡,在具有高分辨率的同时,有利于降低混色风险和色偏、改善彩边,和视觉颗粒感。
根据本申请的第二方面,提供一种像素排布结构,包括第一像素单元;所述第一像素单元包括第一子像素、第二子像素、第三子像素和第四子像素;在所述第一像素单元内,以所述第一子像素、所述第二子像素、所述第三子像素和所述第四子像素的各自中心为顶 点构成面积不重叠的共边三角形;且以所述第一子像素的中心和所述第二子像素的中心为所述共边三角形的共边顶点;
其中,所述第二子像素具有第二长轴和第二短轴,在所述第一像素单元内,所述第二子像素沿其长轴方向的中心线不经过所述第三子像素和/或所述第四子像素的中心。
根据本申请的第三方面,提供了一种像素排布结构,其中,包括第一子像素、第二子像素、第三子像素和第四子像素;对位设置的两个所述第一子像素的中心、对位设置的两个所述第二子像素中心为顶点连线形成虚拟四边形,所述虚拟四边形包括相向设置的两等边、相向设置且连接等边顶点的短边和长边;所述虚拟四边形的短边与所述虚拟四边形的长边非平行;所述虚拟四边形内布设有一个第三子像素或者一个第四子像素,所述第三子像素与所述第四子像素发光颜色相同。
根据本申请的第四方面,提供一种显示面板,包括如本申请上述第一至第三方面的实施例所述的像素排布结构。
根据本申请的第五方面,提供一种显示装置,包括如本申请第四或第五方面的实施例所述的显示面板。
附图说明
图1为一种像素排布示意图;
图2为本申请一实施例中的显示面板的结构示意图;
图3为本申请一实施例中的第一像素单元的排布示意图;
图4为本申请一实施例中的第二像素单元的排布示意图;
图5为本申请一实施例中的重复单元的像素排布示意图;
图6为本申请一实施例中的显示矩阵的排布示意图;
图7为本申请一实施例中像素排布结构的局部结构示意图;
图8为本申请一实施例的像素排布结构的示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
应当理解,尽管本文可以使用术语“第一”、“第二”等来描述各种元件,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。这些术语仅用于将一个元件和另一个元件区分开。例如,在不脱离本申请的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
OLED显示面板为电流驱动,需要提供连接OLED器件的像素驱动电路,为OLED器件提供驱动电流而使得OLED器件发光。OLED器件至少包括阳极、阴极和位于阳极和阴极之间的有机发光材料。以顶发光的OLED显示面板为例,有机发光材料由于稳定性差,无法使用传统的刻蚀工艺进行图案化,取而代之的是使用利用掩膜板的蒸镀工艺进行图案化。将有机发光材料置于真空环境中,通过加热使得有机材料蒸发或者升华。蒸发有机材料的腔体和待蒸镀的阵列基板之间设置有掩模板,掩模板上设置有对应于需要蒸镀区域的开口,不需要蒸镀的区域则没有开口。蒸发或者升华的有机材料分子通过开口附着到待蒸镀的阵列基板上,从而直接形成图案化的有机材料层。对应蒸镀各个子像素发光材料层的掩模板为精细金属掩模板(FMM,Fine Metal Mask)简称精细掩模板。受制于精细掩模板开 口的尺寸、开口之间间距的尺寸限制以及张网的难度,相关技术的像素排布使得有机发光显示面板的像素密度(PPI,pixel per inch,下称像素密度)无法得到进一步的提升。
为解决上述的问题,相关技术中利用渲染像素技术(SPR,Sub Pixel Rendering)来提升显示面板的分辨率。如图1所示,采用非渲染的像素包括三个子像素,而采用渲染的像素仅包括2个子像素,因此可以在子像素不变的情况下像素的个数提升了50%,进而提升了分辨率。然而渲染像素技术中每个像素仅包括2个子像素,其为了实现全彩色显示需要向旁边的子像素借用其不能显示的颜色。因此,该类像素排布结构进行显示时,由于在行方向和/或列方向上各个颜色的子像素的数量有差异,或显示边缘的子像素的凸出程度不同,会导致在画面边缘出现彩边,影响显示质量。
与此同时,为使显示面板具有较好的发光效果,子像素的排布期望更均匀,且将相邻的同色子像素设计为共用一个掩膜板开口,从而增加掩膜板的开口面积,降低对位难度。但是,采用该种像素排布结构的显示面板在显示时会出现人眼难以将相邻的同色子像素清晰分辨,导致视觉上合二为一的情况发生而产生颗粒感,影响显示质量。
此外,为使终端设备实现更多的功能,屏下显示区域设置感光器件也越来越广泛,例如,在屏下显示区域设置指纹识别器件。其中,指纹识别器件包括用于指纹图像获取的感光器件,该感光器件可以包括光学传感器,光学传感器可以包括多个像素点,该多个像素点可以分别接收物体不同位置反射的光信号,并将接收的光信号转换成电信号,从而生成物体的图像。因此,像素点接收的光信号的进光量以及对比度均会影响所生成的物体的图像质量。如此,对显示面板的透光性也具有一定的要求,进一地为像素排布结构的设计增加了难度。
为解决上述问题,本申请实施例提供了一种像素排布结构、显示面板及显示装置,能够较佳地改善上述问题。
图2示出了本申请一实施例中的显示面板的结构示意图。
参阅附图,本申请至少一实施例中的显示面板100,包括显示区域10和非显示区域20,显示区域10通过多个子像素来显示图像。具体地,显示区域10可以为矩形,非显示区域20环绕显示区域10设置,当然,显示区域10和非显示区域20的形状和布置包括但不限于上述的示例,例如,当显示面板100用于佩戴在用户上的可穿戴设备(例如手表)时,显示区域10可以具有圆形形状;当显示基板用于车辆上进行显示时,显示区域10及非显示区域20可采用例如圆形、多边形或其他形状。显示区域10设有发射不同颜色光的多个子像素,子像素意味着用于发射光的最小单元(例如,显示面板100的最小可寻址单元)。
图3示出了本申请一实施例中的第一像素单元的排布示意图;图4示出了本申请一实施例中第二像素单元的排布示意图。图5示出了本申请一实施例中的重复单元的像素排布示意图;图6示出了本申请一实施例中的显示矩阵的排布示意图。图7为本申请一实施例中像素排布结构的局部结构示意图。
具体参见图3至图7,本申请的第一方面提供了一种像素排布结构。
根据本申请的第一方面,本申请公开的至少一实施例中的像素排布结构,包括多个第一像素单元和多个第二像素单元。第一像素单元和第二像素单元彼此相邻,且多个第一像素单元与多个第二像素单元在第一方向以及第二方向上交替排布。例如,如图5及图6所示,第一方向为图中的X方向,第二方向为图中的Y方向。在第一方向上,第一像素单元和第二像素单元交替排布,在第二方向上,第一像素单元和第二像素单元交替排布。也就是说,在第一方向和第二方向上,任意两个相邻的第一像素单元由一个第二像素单元间隔开来,任意两个相邻的第二像素单元由一个第一像素单元间隔开来。作为一种具体地实施方式,第一方向与行方向的夹角为45°,第二方向与第一方向相垂直,与列方向的夹角 为45°。如此,使子像素可以紧凑排布,充分利用空间,提高了开口率。
第一像素单元和第二像素单元均包括第一子像素12、第二子像素14、第三子像素16a和第四子像素16b。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b可以分别为红色的子像素、蓝色的子像素和绿色的子像素中的一种。当然,在其他一些实施例中,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b还可以为发射红色、绿色和蓝色之外其他颜色光的子像素,例如,白色或黄色,在此不作限定。应当理解的是,不同颜色光具有不同的波长,波长越高意味着光的能量越高,能量高的光容易引起有机发光材料的衰变,使得发射能量高的光子的子像素更容易衰减。蓝光波长相较于红光波长和绿光波长短,因此,蓝光的能量更高,发射蓝光的有机发光材料更容易发生衰变,导致像素单元中发出的光容易偏红,造成白光色偏现象。且,每个子像素发射的光通过微腔效应在阳极和阴极之间重复反射和再反射,进行放大和相长干涉,光的亮度增加,色偏情况进一步被放大。作为一种较佳地实施方式,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积,这样,可以一定程度降低因发射不同颜色光的有机发光材料衰减速率不同而造成的显示不良。例如,具体到如图3及图4所示的实施例中,第一子像素12为蓝色的子像素,第二子像素14为红色的子像素,第三子像素16a和第四子像素16b为绿色的子像素。则第一子像素12的发光面积大于第二子像素14的发光面积,第二子像素14的发光面积大于第三子像素16a或第四子像素16b的发光面积。需要指出,一些实施方式中,绿色的子像素的发光面积可以与红色的子像素的发光面积相等,但由于人眼对绿光比较敏感,在另一些实施方式中,绿色的子像素的发光面积可以小于红色子像素的发光面积,在此不作限定。
在一个像素单元内,具有以第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的各自中心为顶点构成共边但不交叠的共边三角形。具体地,如图3和图4所示,第一子像素12位于第三子像素16a的中心和第四子像素16b的中心之间的中心连线c的一侧,第二子像素14位于第三子像素16a的中心和第四子像素16b的中心之间的中心连线c的另一侧。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的中心依次连线形成虚拟四边形,第二子像素14、第一子像素12和第三子像素16a的中心连线构成第一三角形(图未标),第二子像素14、第一子像素12和第四子像素16b的中心连线构成第二三角形。第一三角形和第二三角形以第一子像素的中心和第二子像素的中心之间的中心连线d作为共同边,且两个三角形彼此不交叠。作为一种较佳的实施例中,共边三角形为锐角三角形,如此,使像素结构的子像素排布较为均匀,有利于提高显示效果。其中,第二像素单元中各子像素结构旋转预定角度后与所述第一像素单元中各子像素结构成镜像对称。也就是说,第一像素单元中的子像素和第二像素单元中的同色子像素的形状、大小(发光面积)相同,第二像素单元沿顺时针或逆时针旋转预定角度后的子像素结构与第一像素单元中对应的子像素的结构镜像对称。其中,所述预定角度大于0°,小于360°,例如,图4所示的第二像素单元的子像素排布结构顺时针旋转90°后沿第一方向与图3所示的第一像素单元的子像素排布结构成镜像对称。
可以理解,像素排布结构直接决定着显示效果,为保证显示均匀,如图1所示,各子像素通常会沿着行方向和列方向呈一定规则尽可能均匀排布,但该种像素排布结构容易出现色偏、彩边和视觉颗粒感。采用本申请实施例公开的像素排布结构,第二像素单元的子像素排布结构旋转预定角度后与第一像素单元的子像素排布结构成镜像对称。如此,可以兼顾子像素的排列紧密度和子像素之间的间距,在二者之间寻求一个平衡,有利于降低混色风险和色偏、改善彩边,和视觉颗粒感。例如,可以将第三子像素16a和第四子像素16b设置为人眼敏感颜色的子像素,如绿色的子像素,每一个绿色的子像素均可由红色的子像素和蓝色的子像素围绕,有效的改善了色偏。又例如,第一像素单元和第二像素单元重复排列形成显示矩阵时,第二像素单元中各子像素结构旋转预定角度后与第一像素单元 中各子像素结构成镜像对称,使在行方向或列方向避免发射同种颜色光的子像素单独排成一列,有效改善了显示边缘的彩边问题。此外,采用前述的像素排布结构,可以适当拉大同一像素单元中的同色子像素的距离,如将人眼敏感的第三子像素16a和第四子像素16b的距离适当拉大,而将第一子像素12和第二子像素14设置为彼此靠拢,不仅可以避免显示时人眼敏感子像素无法分辨而识别为一个造成的显示颗粒感,还可以尽可能使相邻的像素单元之间能够形成面积较大的透光预留区Z(见图5),有利于提高屏下感光器件的采光面积。
一些实施例中,同一像素单元中,第二子像素14的中心和第一子像素12的中心之间的中心连线d,和第三子像素16a的中心和第四子像素16b的中心之间的中心连线c的长度不等。容易理解,通常发射不同颜色光的子像素的发光面积大小不同,例如,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积大小。通过将中心连线d的长度设计为与中心连线c的长度不等,可以保证第二子像素14和第一子像素12之间的间距,以及第三子像素16a和第四子像素16b的间距满足预设条件,以尽可能使各子像素紧密排列,且改善敏感颜色子像素的分布均匀性,提高视觉上的分辨率,提升显示质量。
一些实施例中,第一像素单元中第二子像素14的中心与第三子像素16a的中心之间的中心连线a的长度,不等于第一像素单元中第二子像素14的中心与第四子像素16b的中心之间的中心连线b的长度。第二像素单元中第二子像素14的中心与第三子像素16a的中心之间的中心连线的长度,不等于第二像素单元中第二子像素14的中心与第四子像素16b的中心之间的中心连线的长度。具体到实施方式中,第二子像素14为红色的子像素、第一子像素12为蓝色的子像素,第三子像素16a和第四子像素16b为绿色的子像素。同一像素单元中红色子像素与不同的绿色子像素的中心连线长度不同。如此,加剧了子像素的错位排布,在第一像素单元和第二像素单元重复排列形成显示矩阵时,进一步地避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。
需要说明的是,子像素的中心可以是子像素图形的几何中心,也可以是子像素的发光颜色的中心,在此不作限定。
一些实施例中,同一像素单元中,沿第一方向和第二方向,相邻的两个子像素之间的最小距离为n,沿第一方向和第二方向,相邻的两个像素单元中最相邻的不同颜色的子像素之间的最小距离也为n。其中,10um<n<30um。如此,一方面,使子像素的排布更为均匀,有利于提高显示质量,另一方面,可以有效的避免相邻子像素之间的发光串色或干扰产生锯齿感。
进一步地,如图5所示,第一像素单元中的第二子像素R1与沿第二方向相邻排布的第二像素单元的第三子像素G21之间的最小距离为p,n<p<3n。第二像素单元中的第二子像素R2与沿第一方向相邻排布的第一像素单元的第三子像素G11的最小距离为q,n<q<3n。如此,可以界定出了透光预留区Z拥有足够大小,进而满足屏下感光器件的正常工作所需要的进光量。
需要说明的是,本申请实施例提供的显示面板,可以为有机发光显示面板,子像素至少包括阳极和阴极,以及位于阳极和阴极之间的发光层,驱动电路向阳极和阴极之间施加电压,激发载流子迁移,作用于发光层,从而发射出光线。显示面板还可以包括像素定义层,像素定义层界定出了多个像素开口,子像素的发光层设于像素开口中,以避免相邻的子像素之间发生串色或干扰。因此,像素开口的面积即为子像素的发光面积。但是,受限于蒸镀技术,为保证发光材料完全蒸镀于像素开口内,通常,掩膜板的开口面积大于像素开口的面积,以留有蒸镀余量。例如,如图3所示,子像素的内侧边称为像素边,即是像素定义层(Pixel Define Layer,PDL)的像素开口的边界,外侧边称为子像素的虚拟边,所述虚拟边是指Mask(掩膜板)的蒸镀开口的边界。故,本申请的实施例中,子像素之间的 间距是指两个子像素的像素边之间的距离。较佳地,各子像素的每一像素边与对应的虚拟边彼此平行,并且各像素边距对应的虚拟边的垂直距离相等。这样使得最终的子像素排列更为均匀和规则,从而可以有效提高子像素的发光层的制作精度和良率,并降低Mask张网时产生褶皱风险。
示例地,第一子像素、第二子像素、第三子像素和第四子像素可以为具有长轴和短轴的规则图形或不规则图形,例如,椭圆形、圆形、扇形、哑铃形、梨形、四边形、矩形、类矩形、圆角矩形、星形、心形的一种。如图5及图6所示,作为一种较佳的实施方式,第一子像素、第二子像素、第三子像素和第四子像素均可以为矩形或类矩形。第一子像素、第二子像素、第三子像素和第四子像素的长轴方向(延伸方向)与行方向和列方向相交。这样,一方面,相较于其他子像素形状,子像素之间排列可以做到紧密排布,且避免同色子像素独立成一行,有效改善彩边现象。另一方面,使位于显示面板异形边缘的子像素更能匹配圆角设计,即子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进而改善圆角处的锯齿问题。较佳地,第一子像素、第二子像素、第三子像素和第四子像素的延伸方向与第一方向相平行,行方向和列方向相互垂直,并且该第一方向与行方向或列方向的夹角为30°-60°。这样,可以进一步使子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进一步改善圆角处的锯齿问题。需要强调的是,由于人眼对水平或垂直方向上的画面质量较为敏感,而对与水平方向的夹角为45°的方向上的画面质量较为不敏感,因此,作为一种优选的实施方式,如图6所示,第一方向与行方向的夹角为45°,如此可以进一步提高整体显示质量。特别指出的是,掩膜板受力通常沿行或列方向传递,例如,掩模板的张网力F沿行方向传递,对应子像素相对行或列方向倾斜设置的掩膜板的开口可以将受力在行方向和列方向分解,从而避免FMM的张网力F集中造成的开口变形,降低了掩膜板的制作难度和张网难度。且掩膜板的开口倾斜设置,在同样长度和宽度的掩膜板中,可以设置更多的开口,降低了掩膜的制作成本。
具体到一个实施例中,第一子像素可以为正方形或类正方形,第二子像素的形状为矩形或类矩形,第三子像素和第四子像素为矩形或类矩形。如此,在使子像素紧密排列的同时,可以让各子像素错位排布,从而有效改善了彩边。需要说明的是,类矩形或类正方形是指,由于工艺限制或者为了掩膜板的制作便利,子像素的形状可能不是严格的矩形或正方形,而是大致为矩形或正方形,例如,具有圆角的圆角矩形或切角矩形。其中,圆角矩形是矩形的顶角被倒圆角形成的形状,切角矩形是矩形的顶角被切掉一个或多个所形成的形状。将子像素的形状设置为类矩形或类正方形可以更加灵活地调整子像素的开口率,并满足掩膜板在制作时的限制条件。
一些实施例中,第三子像素和第四子像素的发光面积相同。例如,第三子像素和第四子像素可以设置为人眼敏感颜色的子像素,这样,可以尽可能提高分辨率的同时,使显示更为均匀。进一步地,第二子像素、第三子像素和第四子像素的发光面积也可以相同。如此,有利于子像素排布整体上更为紧凑和均匀,提高了显示效果。具体到一些实施例中,第一子像素具有第一长轴和第一短轴;第二子像素具有第二长轴和第二短轴;第三子像素具有第三长轴和第三短轴,第四子像素具有第四长轴和第四短轴。也就是说,各子像素均为具有长轴和短轴的规则图形或不规则图形,例如前述的矩形或类矩形。其中,第三子像素和第四子像素为同色子像素,例如均为绿色的子像素,则第三长轴和第四长轴彼此平行且长度相等,第三短轴和第四短轴彼此平行且长度相等,这样,使第三子像素和第四子像素的发光面积相等。
一些实施例中,第一长轴和第一短轴的长度的比值在1.5~1之间;第二长轴和第二短轴的长度的比值在5~1之间;第三长轴和第三短轴的长度的比值在5~1之间。例如,如图3及图4所示的实施例中,第一子像素为正方形,第二长轴和第二短轴之比为1,第二子 像素、第三子像素和第四子像素均为长方形,第二子像素、第三子像素和第四子像素的长短轴之比在5:1之间。如此,可以尽可能保证开口率的前提下,相应的使各子像素能够错位排布,以尽可能降低彩边现象。且还可以尽可能使相邻的子像素之间能够形成面积较大的透光预留区,有利于提高屏下感光器件的采光面积。
需要说明的是,子像素的长轴的长度是指子像素的发光区纵长延伸方向的最大尺寸,子像素的短轴的长度是指子像素的发光区在与发光区纵长延伸方向相对的宽度方向的最大尺寸。
一些实施例中,第二子像素14的长边与第一子像素12的一组相对边、第三子像素16a的长边以及第四子像素16b的长边相互平行。可以理解,第一子像素为正方形或类正方形,因此其彼此相对的一组对边彼此平行且长度相等,而第三子像素和第四子像素为矩形或类矩形,则其具有一组彼此平行的长边和一组彼此平行的短边。例如,如图3所示,第一子像素12具有分别与第三子像素16a和第四子像素16b彼此相对的第一边和第二边、与第一边相邻且与第二边相对的第三边,以及与第一边相对且与第二边和第三边相邻的第四边。其中,第一子像素12的第一边和第四边与第二子像素14的长边彼此平行,且与第三子像素16a和第四子像素16b的长边彼此平行。如此,有利于子像素均匀排布,进而提高了显示质量。
一些实施例中,在第一像素单元内,第一子像素12靠近第一像素单元边缘的一条边的延长线与第三子像素16a靠近第一像素单元同侧边缘的一条短边的延长线重合。第一子像素12靠近第一像素单元边缘的另一条边的延长线与第四子像素16b靠近第一像素单元同侧边缘的一条长边的延长线重合。具体到实施例中,一个像素单元,第一子像素12的第三边可以与第三子像素16a的短边共线,第一子像素12的第四边可以与第四子像素的长边共线。如此,尽可能地保证像素单元呈规则形状,使子像素排布更紧凑和均匀。
一些实施例中,如图3及图4所示,第一子像素12的第二边的延长线与第三子像素16a不重合,第一边的延长线与第四子像素16b不重合。如此,保证了子像素之间的错位排布,弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
一些实施例中,第二子像素、第三子像素和第四子像素的长边长度与第一子像素的边长可以相同。如此,进一步的使第一像素单元呈规则形状,使子像素排布更紧凑和均匀。
一些实施例中,在第一像素单元中,第二子像素14的两条长边中的至少一条长边的延长线穿过第一子像素12与第三子像素16a之间的间隙。进一步地,第二子像素14的一条长边的延长线穿过第一子像素12与第三子像素16a之间的间隙,第二子像素14的另一条长边的延长线与第一子像素12的靠近第三子像素16a的边重合。例如,如图3所示,第二子像素14的一条长边的延长线穿过第一子像素12和第三子像素16a之间。第二子像素14的另一条长边的延长线与第一子像素的第一边共线。在第二像素单元中,第二子像素14的两条长边中的至少一条长边的延长线穿过第一子像素12与第四子像素16b之间的间隙。进一步地,第二子像素14的一条长边的延长线穿过第一子像素12与第四子像素16b之间的间隙,第二子像素14的另一条长边的延长线与第一子像素12的靠近第四子像素16b的边重合。例如,如图4所示,第二子像素14的一条长边的延长线穿过第一子像素12和第四子像素16b之间。第二子像素14的另一条长边的延长线与第一子像素的第一边共线。如此,使子像素排布均匀的前提下,尽可能保证透光预留区的大小,有利于例如屏下摄像功能的实现。当然,另一些实施例中,在第一像素单元中,第二子像素14的两条长边的延长线均穿过第一子像素12与第三子像素16a之间的间隙。也就是说,将第二子像素14沿第一方向的反方向平移能够穿过第一子像素12和第三子像素16a之间。在第二像素单元中,第二子像素14的两条长边的延长线均穿过第一子像素12与第四子像素16b之间的间隙。也就是说,将第二子像素14沿第二方向的反方向平移能够穿过第一子像素12和第四子像素16b之间。
参阅图5及图6,本申请的一些实施例中,相互相邻的两个第一像素单元和两个第二像素单元构成重复单元(如图6的虚线方框所示);多个重复单元沿第一方向X和第二方向Y排布;每个重复单元包括两个第一像素单元和两个第二像素单元,两个第二像素单元分别位于两个第一像素单元几何中心连线的一侧。例如,如图5及图6所示,多个重复单元沿第一方向和第二方向阵列排布形成显示矩阵。可以理解,随着刘海屏或者显示屏开孔的技术的应用,显示区域异形边缘区域(例如弧形区域)锯齿感也是影响显示质量的一个因素。不同行上的子像素沿异形边缘区域的延伸方向形成阶梯状,从而使显示面板在显示图像时,在该异形区域处图像锯齿感加重,影响显示面板的显示效果。因此,作为一种实施例方式,多个重复单元可以沿与行方向和列方向相交的第一方向(X方向)和第二方向(Y方向)排布,随着重复单元重复排布,可以使位于显示区域异形边缘的多个子像素的边缘的连线与异形边缘的切线趋于重合或平行,从而使多个子像素边缘的连线更为圆滑而接近异形边缘的形状,进而能够降低在异形边缘处图像的锯齿感,有利于提高显示面板的显示效果。此外,还可以使位于显示区域异形边缘的子像素包括多种颜色,从而进一步降低显示面板的异形边缘处形成的彩边的情况,进而提高显示面板的显示效果。
一些实施例中,如图5及图6所示,在一个重复单元中,任一第二像素单元和在第一方向X与其相邻的第一像素单元中,第二像素单元内的第二子像素R2的中心点与第三子像素G21的中心点的连线长度为L1,第一像素单元内的第二子像素R1的中心点与第二像素单元内的第三子像素G21的中心点的连线长度为L2,L1不等于L2。该第二像素单元和在第二方向Y与其相邻的另一个第一像素单元中,第二像素单元内的第二子像素R2的中心点与另一个第一像素单元内的第四子像素G12的中心点的连线长度为L3,另一个第一像素单元内,第二子像素R1的中心点与第四子像素G12的中心点的连线长度为L4,L3不等于L4。也就是说,同一重复单元中,两个相邻像素单元里多个红色子像素的中心和多个绿色子像素的中心之间的中心连线的长短不同。如此,保证各子像素的错位排布,在第一像素单元和第二像素单元重复排列形成显示矩阵时,进一步地避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。
一些实施例中,如图6所示,在一个所述重复单元中,任一所述第二像素单元和在第一方向X与其相邻的第一像素单元中,所述第二像素单元内的所述第二子像素R2、所述第三子像素G21,以及所述第一像素单元内的所述第二子像素R1的中心点之间的连线构成不等边三角形S1。且该所述第二像素单元和在第二方向Y与其相邻的另一个第一像素单元中,所述另一个第一像素单元中的所述第二子像素R1、第四子像素G12以及该所述第二像素单元内的所述第二子像素R2的中心点之间的连线构成不等边三角形S2。也就是说,同一重复单元中,一个第二像素单元内的红色子像素,和在行方向和列方向与所述第二像素单元相邻第一像素单元中的红色子像素和不同的绿色子像素的中心之间的连线分别可构成不等边三角形。如此,在第一像素单元和第二像素单元重复排列形成显示矩阵时,也可以进一步避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。
一些实施例中,在一个重复单元中,任意两个第二子像素中心连线与任意一个第二子像素的中心和第三子像素的中心之间的中心连线非重合,任意两个第二子像素的中心之间的中心连线与任意一个第二子像素中心和第四子像素的中心连线非重合。例如,一些实施例中,第二子像素为红色的子像素,第一子像素为蓝色的子像素,第三子像素和第四子像素为绿色的子像素。任意两个红色子像素之间的连线,例如相邻像素单元中的第二子像素R1和R2之间的中心连线,与R1/R2和G11/G12/G21/G22任意两者之间的中心连线不共线。例如,如图6所示,第二子像素R1和R2之间的中心连线LL1与第二子像素R1和相邻像素单元的第四子像素G21之间的中心连线LL2不重合。换言之,同一重复单元中沿第一方向相邻的第一像素单元和第二像素单元中的两个红色的子像素R1和R2的中心连 线,穿过所述相邻的第一像素单元和第二像素单元中位于同一像素单元的蓝色子像素B2和G21之间。同理,沿第二方向相邻的第一像素单元和第二像素单元中的两个红色的子像素R1和R2的中心连线,穿过所述相邻的第一像素单元和第二像素单元中位于同一像素单元的蓝色子像素B1和G11之间。如此,不仅可以使像素排布结构整体上避免发射同种颜色光的子像素单独排成一列,进一步弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
一些实施例中,如图6所示,在一个重复单元中,每个第一像素单元中穿过第一子像素中心与第三子像素中心的第一虚拟连接线相互平行;每个第二像素单元中穿过第一子像素中心与第四子像素中心的第二虚拟连接线相互平行;第一虚拟连接线与第二虚拟连接线非重合。具体到实施例中,如图5及图6所示,同一重复单元中B1与G11的中心之间的连线相互平行,即LL3与LL4相互平行,B2和G22的中心之间的连线相互平行,即LL5与LL6相互平行。且同一重复单元中,两个相同子像素结构的像素单元中的蓝色子像素和绿色子像素的中线连线的延长线不共线。如此,可以使像素排布结构整体上避免发射同种颜色光的子像素单独排成一列,弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
一些实施例中,如图6所示,在一个重复单元中,一个第一像素单元中的第一子像素与第二子像素中心连线和另一个第一像素单元中的第一子像素与第二子像素中心的连线的延长线非重合,即LL7和LL8非重合。一个第二像素单元中的第一子像素与第二子像素中心之间的连线与另一个第二像素单元中的第一子像素与第二子像素中心之间的连线的延长线非重合。任一个第一像素单元中的第一子像素与第二子像素中心之间的连线与任一个第二像素单元中的第一子像素与第二子像素中心之间的连线的延长线非重合。也即是说,如图5及图6所示,同一重复单元中,不同像素单元中红色的子像素和蓝色的子像素的中心之间的连线的延长线均不共线。例如,两个第一像素单元中的红色的子像素R1的中心和蓝色的子像素B1的中心之间的两条中心连线、两个第二像素单元中的红色子像素R2的中心和蓝色的子像素B2的中心之间的两条中心连线均不共线。可以理解,由于第一子像素和第二子像素位于第三子像素的中心和第四子像素的中心之间的连线的两侧,将同一重复单元中的不同像素单元的红色子像素和蓝色子像素的中心之间的连线设置为不共线,则使同一列的子像素包括多种颜色,有效改善了显示边缘的彩边问题。
一些实施例中,在一个重复单元中,每个第一像素单元中穿过第二子像素中心与第三子像素中心的第三虚拟连接线相互平行;每个第二像素单元中穿过第二子像素中心与第四子像素中心的第四虚拟连接线相互平行;所述第三虚拟连接线与所述第四虚拟连接线非重合。具体到实施例中,如图5及图6所示,同一重复单元中,两个相同子像素结构的像素单元中的红色子像素的中心和绿色子像素的中心之间的连线的延长线不共线。如此,可以使像素排布结构整体上避免发射同种颜色光的子像素单独排成一列,弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
值得强调的是,屏下感光器件接收的光信号的进光量以及对比度均会影响所生成的物体的图像质量,采用其他像素排布结构的显示面板,虽然可透光区域较多,使总体的透光面积无差异,但在特定区域内连续的透光区域的面积较小,无法满足屏下感光器件正常工作所需的光透过率。本申请的一些实施例中,在第一方向X上相邻的第一像素单元和第二像素单元中,第一像素单元内的第二子像素R1与该第二像素单元内的第四子像素G21之间的距离大于该第一像素单元内的第三子像素G11和第四子像素G12与该第一子像素R1之间的距离,如图5所示,例如,L5大于L6,且L5大于L7。如此,每一重复单元中可以形成连续的透光预留区Z,从而提高了显示面板的透光率,为显示面板的功能多样化提供了便利性。作为一种实施方式,透光预留区Z的面积大于一个第二子像素R1/R2的发光面积。
可以理解,每个重复单元包括两个第一像素单元、两个第二像素单元以及由相邻的子像素之间间隔形成的透光预留区。较佳地,每个重复单元位于一个虚拟正方形内,重复单元阵列排布时,多个虚拟正方形以共享边的形式阵列排布形成显示矩阵。如此,有利于显示均匀性,提高了显示效果。
一些实施例中,如图7所示,该像素排布结构包括由四个虚拟四边形以共享边的方式排布形成的虚拟多边形,所述四个虚拟四边形具体包括第一虚拟四边形30、第二虚拟四边形40、第三虚拟四边形50和第四虚拟四边形60。第一虚拟四边形30沿行方向与第三虚拟四边形50共享第一共享边g,在列方向与第二虚拟四边形40共享第二共享边h。第四虚拟四边形60沿列方向与第三虚拟四边形50共享第三共享边j,在行方向与第二虚拟四边形40共享第四共享边i。第一虚拟四边形30、第二虚拟四边形40、第三虚拟四边形50和第四虚拟四边形60远离共享边的侧边构成了虚拟多边形的各个边。第一子像素位于各虚拟四边形的第一顶点位置处,第二子像素位于各虚拟四边形的第二顶点位置处,第一顶点和第二顶点交替且间隔设置,绿色的子像素位于各虚拟四边形内。
进一步地,每一前述的虚拟四边形的任一边与行或列方向不平行;或者每一前述的虚拟四边形的任意两条边的长度不相等;或者每一前述的虚拟四边形的任意两条边彼此不平行;或者每一前述的虚拟四边形的任意两个内角不相等。如此,第一虚拟四边形、第二虚拟四边形、第三虚拟四边形和第四虚拟四边形均为不规则的四边形,从而可以在满足子像素排布紧凑的前提下,形成较大的透光区域,从而进一步提高了显示面板的透光率,为显示面板的功能多样化提供了便利性。
一些实施例中,在一个像素单元中,沿第一方向X第一子像素的开口区与第二子像素开口区和第三子像素的开口区相互错开,即第二子像素的开口区沿第一方向X与第一子像素的开口和第三子像素的开口没有投影交叠区。如此,可以使子像素之间排列可以做到更为紧凑。另一些实施例中,至少第二子像素远离第四子像素的一侧边的延长线不穿过第三子像素的开口区。例如,第二子像素的开口区可以与第一子像素的开口区沿第一方向X部分交叠,但与第三子像素不交叠。
一些实施例中,位于同一行和/或列的绿色的子像素的中心的连线为非直线或近似直线。例如,如图5及图6所示,位于同一行和/或列的绿色的子像素的中心的连线呈锯齿状。奇数行或列的任一像素组中两个绿色的子像素,与相邻偶数行或列的像素组中最相邻的两个绿色的子像素的中心的连线形成第五虚拟四边形;第五虚拟四边形中的最小内角γ≥60°。如此,使相邻像素组中的绿色的子像素不易太近,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
在本申请的第一方面还提供了一种显示面板,包括上述实施例的像素排布结构。
再次参见图3至图7,本申请的像素排布结构还具有以下的特征。
本申请的像素排布结构,包括所述第一像素单元。所述第一像素单元包括所述第一子像素12、第二子像素14、第三子像素16a和第四子像素16b。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b可以分别为蓝色发光子像素、红色发光子像素和绿色发光子像素中的一种。当然,在其他一些实施例中,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b还可以为发射蓝色、红色和绿色之外其他颜色光的子像素,例如,第三子像素或第四子像素可以为白色或黄色的子像素,在此不作限定。应当理解的是,不同颜色光具有不同的波长范围,波长越短意味着光的能量越高,能量高的光容易引起有机发光材料的衰变,使得发射能量高的光子的子像素更容易衰减。蓝光波长相较于红光波长和绿光波长短,因此,蓝光的能量更高,发射蓝光的有机发光材料更容易发生衰变,导致像素单元中发出的光容易偏红,造成白光色偏现象。且,每个子像素发射的光 通过法布里-珀罗微腔(Fabry-Perot microcavity)效应在阳极和阴极之间重复反射和再反射,进行放大和相长干涉,光的亮度增加,色偏情况进一步被放大。作为一种较佳地实施方式,如图3及图4所示,第一子像素12为蓝色的子像素,第二子像素14为红色的子像素,第三子像素16a和第四子像素16b为绿色的子像素。其中,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积,这样,可以一定程度降低因发射不同颜色光的有机发光材料衰减速率不同而造成的显示不良。需要指出,一些实施方式中,绿色的子像素的发光面积可以与红色的子像素的发光面积相等,但由于人眼相较于红光对绿光比较敏感,在另一些实施方式中,绿色的子像素的发光面积可以小于红色的子像素的发光面积,在此不作限定。
在第一像素单元内,具有以第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的各自中心为顶点构成的面积不重叠的共边三角形,且以第一子像素12的中心和第二子像素14的中心为所述共边三角形的共边顶点。具体地,如图3和图4所示,第一子像素12位于第三子像素16a和第四子像素16b中心连线c的一侧,第二子像素14位于第三子像素16a和第四子像素16b中心连线c的另一侧。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的中心依次连线形成虚拟四边形,第一子像素12、第二子像素14和第三子像素16a的中点连线构成第一三角形(图未标),第一子像素12、第二子像素14和第四子像素16b的中心连线构成第二三角形。第一三角形和第二三角形以第一子像素的中心和第二子像素的中心连线d作为共同边,即为共边三角形,且两个三角形彼此面积不重叠。作为一种较佳地实施例中,共边三角形为锐角三角形,如此,使像素结构的子像素排布较为均匀,有利于提高显示效果。
其中,第二子像素具有第二长轴和第二短轴,在第一像素单元内,第二子像素沿其长轴方向的中心线不经过第三子像素和/或第四子像素的中心。可以理解,子像素的长轴方向是指子像素的发光区的纵长延伸方向,子像素的短轴指子像素的发光区在与发光区的纵长延伸方向相对的宽度方向。因此,第二子像素沿其长轴方向的中心线是指沿子像素的发光区的纵长延伸方向经过第二子像素中心的直线。例如,如图3所示,第一三角形和第二三角形以第一子像素12的中心和第二子像素14的中心之间的中心连线d共边,第二子像素14沿其长轴方向的中心线是指经过其中心且沿其长轴方向延伸的直线。通过第二子像素沿其长轴方向的中心线不经过第三子像素和/或第四子像素的中心,使第一像素单元内的各子像素能够错位排布,从而有效的改善彩边问题。进一步地,共边三角形的共边的顶点在与该顶点相对的对边上的投影位于所述对边上,且该投影与所述第三子像素的中心和/或第四子像素的中心不重合。例如,如图3所示,第二子像素14的中心(中心连线d的一个顶点)在与其相对的对边e(第一子像素的中心和第三子像素的中心连线)上的投影位于对边e上。且该投影位于第一子像素12的中心和第三子像素16a的中心之间,也即与第三子像素16a的中心不重合。对应地,第一子像素12的中心(中心连线d的另一个顶点)在与其相对的对边b(第二子像素和第四子像素的中心连线)上的投影位于对边b上。且该投影位于第二子像素14的中心和第四子像素16b的中心之间,也即与第四子像素16b的中心不重合。作为一种较佳地实施方式,该共边三角形的共边上的顶点在该顶点对边上的投影接近或者位于所述对边的中心点上。如此,使子像素的排布较为均匀,更进一步避免彩边现象的出现,有利于显示质量的提高。
需要说明的是,共边顶点在对边的投影是指,该顶点沿垂直于该顶点的对边方向上在所述对边上的投影,也即,经过该顶点且与该顶点的对边垂直的垂线和该对边的交点即是前述的顶点在对边的投影。例如,如图3所示,第一三角形和第二三角形的共边d的一个顶点为第二子像素14的中心,经过第二子像素的中心且垂直于与其相对的对边e的垂线,与该对边e的交点即为前述的顶点在与其相对的对边上的投影。
可以理解,像素排布结构直接决定着显示效果,为保证显示均匀,各子像素通常会 沿着行方向和列方向呈一定规则尽可能均匀排布,但像素排布结构也容易出现彩边和视觉颗粒感。采用前述的像素排布结构,可以兼顾子像素的排列均匀性、紧密度和子像素之间的间距,在三者之间寻求一个平衡,有利于降低混色风险、改善彩边,和视觉颗粒感。例如,当形成显示矩阵时,各子像素受前述的限制条件而错开排布,避免发射同种颜色光的子像素单独排成一列,改善了显示边缘的彩边问题。且,错开排布的子像素使位于显示面板圆角处的子像素更能匹配圆角设计,即位于边缘的子像素的边缘连线在圆角处的平滑过渡,与圆角的弧度相切或相吻合,进而改善圆角处的锯齿问题。此外,采用前述的像素排布结构,可以适当拉大同一像素单元中的同色子像素的距离,如将人眼敏感的第三子像素和第四子像素的距离适当拉大,而将第一子像素和第二子像素设置为彼此靠拢,可以避免显示时人眼敏感子像素无法分辨而将多个子像素识别为一个造成的显示颗粒感。
值得强调的是,屏下感光器件接收的光信号的进光量以及对比度均会影响生成的图像质量,采用其他像素排布结构的显示面板,虽然可透光区域较多,使总体的透光面积无差异,但在特定区域内连续的透光区域的面积较小,无法满足屏下感光器件正常工作所需的光透过率。采用前述的像素排布的限制条件,还可以在一个像素单元内错位排布形成透光预留区,有利于实现诸如屏下摄像的显示屏的制作。例如,如图5及图6所示,第一像素单元和第二像素单元中还包括设置在第二子像素14外侧的空白区,该空白区即为前述的透光预留区Z,该区域可以预设为外界光线贯穿到达屏下的感光器件。具体到一个实施例中,所述透光预留区在第一方向上的尺寸范围为10μm~90μm,在第二方向上的尺寸范围为20μm~90μm。
一些实施例中,该像素排布结构还包括多个第二像素单元。第一像素单元和第二像素单元彼此相邻,且多个第一像素单元与多个第二像素单元在第一方向以及第二方向上交替排布。例如,如图5所示,第一方向为X方向,第二方向为Y方向。在第一方向上,第一像素单元和第二像素单元交替排布,在第二方向上,第一像素单元和第二像素单元交替排布。也就是说,在第一方向和第二方向上,任意两个相邻的第一像素单元由一个第二像素单元间隔开来,任意两个相邻的第二像素单元由一个第一像素单元间隔开来。可以理解,在其他一些实施例中,该第一方向和第二方向也可以为其他与行方向和列方向相交的方向,在此不作限定,例如,如图6所示,第一方向与行方向的夹角为45°的方向,第二方向与第一方向相垂直,且与列方向的夹角为45°的方向。
一些实施例中,第二像素单元中各子像素结构旋转预定角度后与所述第一像素单元中各子像素结构成镜像对称。也就是说,第一像素单元中的子像素和第二像素单元中的同色子像素的形状、大小(发光面积)相同,第二像素单元中的子像素沿顺时针或逆时针旋转预定角度后的子像素结构与第一像素单元中对应的子像素的结构镜像对称。其中,所述的预定角度大于0°,小于360°,例如,图4所示的第二像素单元中各子像素排布结构旋转90°后沿第一方向与图3所示的第一像素单元中各子像素排布结构成镜像对称。如此,不仅使在行方向或列方向避免发射同种颜色光的子像素单独排成一列,且弱化了位于同一行或列的子像素的凸出程度,进一步地改善了显示边缘的彩边问题。且同时还可以有效改善色偏,例如,可以将第三子像素和第四子像素设置为人眼敏感颜色的子像素,如绿色的子像素,每一个绿色的子像素均可由红色的子像素和蓝色的子像素围绕,从而使用混色更为均匀,改善了色偏。此外,第二像素单元中各子像素结构旋转预定角度后与第一像素单元中各子像素结构成镜像对称,还可以尽可能使相邻的像素单元之间能够形成面积较大的透光预留区Z(见图6),有利于提高屏下感光器件的采光面积。可以理解,在另一些实施例中,第一像素单元和第二像素单元的子像素结构也可以相同,在此不作限定。也就是说,像素排布结构中的最小重复单元即为一个像素单元。
进一步地,一些实施例中,在第一方向上,第一像素单元和与之相邻的第二像素单元构成第一像素组。在第二方向上,第一像素单元和与之相邻的第二像素单元构成第二像 素组。换言之,在第一方向,一个第一像素单元和与之相邻的一个第二像素单元构成第一像素组;在第二方向,一个第一像素单元和与之相邻的一个第二像素单元构成第二像素组。具体到如图5、图6及图7所示的实施例中,以像素单元为单位,两个第一像素单元和两个第二像素单元构成一个重复单元,两个第二像素单元分别位于两个第一像素单元几何中心连线的一侧。以像素组为单位,两个相邻的第一像素组或两个相邻的第二像素组构成一个重复单元,多个重复单元沿第一方向和第二方向排布。其中,第一像素组内第三子像素的中心或第四子像素的中心位于第一像素组中的两个第二子像素的中心连线的外侧;和/或第二像素组内第三子像素的中心或第四子像素的中心位于第二像素组内的两个第二子像素的中心连线的外侧。如此,在尽可能保证子像素排布均匀的前提下,使子像素能够错位排布,在重复单元重复排列形成显示矩阵时,进一步地避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。需要说明的是,为提高分辨率,是利用子像素渲染技术,而为了实现全彩色显示需要向旁边的子像素借用其不能显示的颜色。因此,子像素排布均匀是指,各子像素之间的距离在合理的范围内,避免像素排布结构中部分区域子像素距离过小而紧密,而部分区域子像素距离过大而疏松,导致显示效果不佳。
可以理解,随着刘海屏或者显示屏开孔的技术的应用,显示区域异形边缘区域(例如弧形区域)锯齿感也是影响显示质量的一个因素。本申请的发明人研究发现,不同行上的子像素沿异形边缘区域的延伸方向形成阶梯状,从而使显示面板在显示图像时,在该异形区域处图像锯齿感加重,影响显示面板的显示效果。因此,作为一种实施例方式,多个重复单元可以沿与行方向和列方向倾斜相交的第一方向和第二方向排布,随着重复单元重复排布,可以使位于显示区域异形边缘的多个子像素的边缘的连线与异形边缘的切线趋于重合或平行,从而使多个子像素边缘的连线更为圆滑而接近异形边缘的形状,进而能够降低在异形边缘处图像的锯齿感,有利于提高显示面板的显示效果。此外,还可以使位于显示区域异形边缘的子像素包括多种颜色,从而进一步降低显示面板的异形边缘处形成的彩边的情况,进而提高显示面板的显示效果。较佳地,第一方向与第二方向彼此垂直,第一方向与行方向的夹角优选45°。
一些实施例中,第三子像素16a的中心或第四子像素16b的中心位于第一像素单元中第二子像素14中心和与该第一像素单元相邻的第二像素单元中的第二子像素14的中心之间的连线的外侧。换言之,一个像素单元中的第三子像素16a的中心或第四子像素16b的中心位于其所在像素单元中第二子像素14中心和与之相邻的另一像素单元中的第二子像素14的中心之间的连线的外侧。例如,具体到一些实施例中,如图5及图6,第一像素单元中的第二子像素R1的中心和与第一像素单元相邻的第二像素单元中的第二子像素R2的中心的连线的延长线,与第一像素单元中的第三子像素G11的中心和第四子像素G12的中心错开,且第三子像素G11的中心和第四子像素G12的中心位于前述的连线的延长线的两侧。需要说明的是,子像素的中心位于中心连线的外侧是指,子像素的中心与中心之间的连线及其延长线错开,例如,子像素的中心位于中心连线及其延长线的一侧。
作为一种较佳的实施方式,第一子像素和第二子像素可以分别为蓝色的子像素和红色的子像素,第三子像素和第四子像素可以为绿色的子像素,相较于蓝色和红色的子像素,绿色的子像素的发光面积较小。同一像素单元中,第一子像素的中心和第二子像素的中心之间的中心连线d,和第三子像素的中心和第四子像素的中心连线c的长度不等。容易理解,通常发射不同颜色光的子像素的发光面积大小不同,例如,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积大小。通过将中心连线d的长度设计为与中心连线c的长度不等,可以保证第一子像素和第二子像素之间的间距,以及第三子像素和第四子像素的间距满足预设条件,以尽可能使各子像素紧密排列,且改善敏感颜色子像素的分布均匀性,提高视觉上的分辨率,提升显示质量。
如图3及图4所示,一个像素单元中,第一子像素的中心与第三子像素中心连线e的长度,不等于同一像素单元中第一子像素的中心与第四子像素中心连线的长度a。具体到一个实施例中,第一子像素为蓝色的子像素、第二子像素为红色的子像素,第三子像素和第四子像素为绿色的子像素。同一像素单元中蓝色子像素与不同的绿色子像素的中心连线长度不同。另一些实施例中,一个像素单元中,第三子像素的中心和第四子像素的中心分别到第二子像素的中心的距离不相等。如此,一方面,使相邻的子像素不易太近,进一步地避免因相邻子像素距离较近而导致的相邻的两个子像素难以分辨,被人眼视觉上合二为一的情况。另一方面,通过第一子像素和第二子像素与第三子像素和第四子像素的中心的连线的长度设置为不同,加剧了子像素的错位排布,在第一像素单元和第二像素单元重复排列形成显示矩阵时,进一步地避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。
进一步地,第三子像素的中心和第四子像素的中心分别到第一子像素的中心的距离比值为(3~2):(2~1)。第三子像素的中心和第四子像素的中心分别到所述第二子像素的中心的距离也为(3~2):(2~1)。可以理解,显示质量影响因素除了彩边、颗粒感,关键因素还有分辨率、均匀性,因此,通过进一步地限定第三子像素和第四子像素的中心到第一子像素和第二子像素的中心的距离之比,使子像素的排布在均匀性、紧凑性、错位程度之间达到一个良好的平衡,使显示质量得到综合提升。
需要说明的是,子像素的中心可以是子像素图形的几何中心,也可以是子像素的发光颜色的中心,在此不作限定。
进一步地,同一像素单元中,沿第一方向和第二方向,相邻的两个子像素之间的最小距离为p,沿第一方向和第二方向,相邻的两个像素单元中最相邻的不同颜色的子像素之间的最小距离也为p。其中,10um<p<30um。如此,一方面,使子像素的排布更为均匀,有利于提高显示质量,另一方面,可以有效的避免相邻子像素之间的发光串色或干扰产生锯齿感。需要说明的是,本申请实施例提供的显示面板,可以为有机发光显示面板,子像素至少包括阳极和阴极,以及位于阳极和阴极之间的发光层,驱动电路向阳极和阴极之间施加电压,激发载流子迁移,作用于发光层,从而发射出光线。显示面板还可以包括像素定义层,像素定义层界定出了多个像素开口,子像素的发光层设于像素开口中,以避免相邻的子像素之间发生串色或干扰。因此,像素开口的面积即为子像素的发光面积,但是,受限于蒸镀技术,为保证发光材料完全蒸镀于像素开口内,通常,掩膜板的开口面积大于像素开口的面积,以留有蒸镀余量。例如,如图3所示,子像素的内侧边称为像素边,即是像素定义层(PDL层)的像素开口的边界,外侧边称为子像素的虚拟边,所述虚拟边是指Mask(掩膜板)的蒸镀开口的边界。故,本申请的实施例中,子像素之间的间距是指两个子像素的像素边之间的距离。而具体到如图3及图4所示的实施例中,相邻的两个子像素之间具有彼此相邻且平行的两条像素边,则相邻的两个子像素之间最小距离为该彼此相邻且平行的两条像素边之间的垂线距离。
进一步地,第一像素单元中的第二子像素与沿第一方向相邻排布的第二像素单元的第三子像素之间的最小距离为q,p<q<3p。如此,可以保证透光预留区拥有足够大小,进而满足屏下感光器件的正常工作所需要的进光量。
如图5、6及图7所示,作为一种较佳的实施方式,第一子像素、第二子像素、第三子像素和第四子像素均可以为矩形或类矩形,第一子像素、第二子像素、第三子像素和第四子像素的长轴方向(延伸方向)与行方向和列方向相交。这样,一方面,相较于其他子像素形状,子像素之间排列可以做到紧密排布,且避免同色子像素独立成一行,有效改善彩边现象。另一方面,使位于显示面板异形边缘的子像素更能匹配圆角设计,即子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进而改善圆角处的锯齿问题。较佳地,第一子像素、第二子像素、第三子像素和第四子像素的延伸方向 与第一方向相平行,与行方向或列方向的夹角为30°-60°。这样,可以进一步使子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进一步改善圆角处的锯齿问题。需要强调的是,由于人眼对水平或垂直方向上的画面质量较为敏感,而对与水平方向的夹角为45°的方向上的画面质量较为不敏感,因此,作为一种优选的实施方式,如图7所示,第一方向与行方向的夹角为45°,如此可以进一步提高整体显示质量。特别指出的是,掩膜板受力通常沿行或列方向传递,例如,张网力F沿行方向传递,对应子像素相对行或列方向倾斜设置的掩膜板的开口可以将受力在行方向和列方向分解,从而避免FMM张网力F集中造成的开口变形,降低了掩膜板的制作难度和张网难度。且掩膜板的开口倾斜设置,在同样长度和宽度的掩膜板中,可以设置更多的开口,降低了掩膜的制作成本。
当然,第一子像素、第二子像素、第三子像素和第四子像素还可以为其他形状,在此不作限定,例如,第一子像素可以为正方形,第二子像素、第三子像素和第四子像素为长方形。
本申请的一些实施例中,共边三角形的共边上至少一个顶点在该顶点对边上的投影,整体位于该对边对应的两子像素轮廓与该对边的交点之间。换言之,经过共边三角形的共边上的顶点且垂直于该顶点对边的直线与该顶点对边的交点,位于该顶点对边对应的两子像素轮廓与该顶点对边的交点之间。进一步地,在一个像素单元内,第二子像素沿其长轴方向侧边的延长线或该侧边的切线,与第三子像素和/或第四子像素整体不相交。例如,共边三角形的共边上的顶点对应的子像素在该顶点对边上的投影可以整体位于该顶点对边对应的两子像素轮廓与该顶点对边的交点之间。如此,使第二子像素沿其长轴方向侧边的延长线或该侧边的切线,可以与第三子像素和/或第四子像素整体不相交。具体到一些实施例中,如图3及图4所示,共边的两顶点分别为第一子像素的中心和第二子像素的中心。为使子像素的排布更为均匀且降低制作难度,彼此相邻的两个子像素具有彼此相对且平行的两个像素边。例如,第一子像素和第三子像素具有彼此相对平行的两条像素边,所述两条像素边即为第一子像素和第三子像素的轮廓边界。第二子像素朝向对边e的投影整体位于对边e与第一子像素的轮廓和第二子像素轮廓的交点之间,也即第二子像素朝向对边e的投影,位于对边e与第一子像素和第二子像素的两条彼此相对且平行的像素边的交点之间。可以理解,在图3所示的实施例中,第一子像素朝向对边b的投影整体并没有位于对边b与第二子像素和第三子像素的中心连线的之间,但并不妨碍对该技术构思的理解,在另一些实施例中,第一子像素朝向对边b的投影整体,可以位于对边b与第二子像素和第三子像素的两条彼此且平行的像素边的交点之间。如此,一方面使子像素排布更为均匀,另一方面,使子像素错位排布进一步降低了彩边现象。
同一像素单元中,第一子像素具有第一长轴和第一短轴;第三子像素具有第三长轴和第三短轴,第四子像素具有第四长轴和第四短轴。也就是说,各子像素均为具有长轴和短轴的规则图形或不规则图形,例如矩形或类矩形。如此,一方面,相较于其他子像素形状,子像素之间排列可以做到紧密错位排布,且弱化了子像素的凸出程度,有效改善彩边现象。较佳地,第三子像素和第四子像素为同色子像素,例如均为绿色的子像素,则第三长轴和第四长轴彼此平行且长度相等,第三短轴和第四短轴彼此平行且长度相等。进一步地,第一长轴和第一短轴的比值在1.5~1之间;第二长轴和第二短轴的比值在5~1之间;第三长轴和第三短轴的比值在5~1之间。例如,如图3及图4所示的实施例中,第一子像素为正方形,第一长轴和第一短轴之比为1,第二子像素、第三子像素和第四子像素均为长方形,第二子像素、第三子像素和第四子像素的长短轴之比在5:1之间。如此,可以尽可能保证开口率的前提下,相应的使各子像素能够错位排布,以尽可能降低彩边现象。且还可以尽可能使相邻的子像素之间能够形成面积较大的透光预留区,有利于提高屏下感光器件的采光面积。
一些实施例中,在第一方向上相邻的第一像素单元和第二像素单元中,第一像素单元内的第二子像素R1与该第二像素单元内的第三子像素G21之间的距离大于该第一像素单元内的第三子像素G11和第四子像素G12与该第二子像素R1之间的距离。如此,进一步保证每一重复单元中可以形成连续且面积可以满足屏下感光器件正常工作的透光预留区Z,从而提高了显示面板的透光率,为显示面板的功能多样化提供了便利性。作为一种实施方式,透光预留区Z的面积大于一个第一子像素R1/R2的发光面积。
如图7和图8所示,该像素排布结构包括第一子像素、第二子像素、第三子像素和第四子像素,其中对位设置的两所述第一子像素中心、对位设置的两所述第二子像素中心为顶点连线形成虚拟四边形,所述虚拟四边形包括相向设置的两等边、相向设置且连接等边顶点的短边和长边;所述短边与所述长边非平行。
所述虚拟四边形内布设有第三子像素或者第四子像素,所述第三子像素与所述第四子像素发光颜色相同。
所述虚拟四边形以其内布设第三子像素还是第四子像素,分为其内布设第三子像素的第一虚拟四边形和其内布设第四子像素的第二虚拟四边形,所述第一虚拟四边形和相邻的第二虚拟四边形共边。
所述第一虚拟四边形和相邻的第二虚拟四边形中,第一子像素的中心为顶点构成的四个内角之和等于360°,且第二子像素的中心为顶点构成的四个内角之和等于360°。如此,通过虚拟四边形的角度限制各子像素之间的间距和相对位置,可以尽可能地使子像素排布均匀,且保持子像素错位排布,在显示均匀、紧凑和改善彩边问题上达到一个平衡。
所述第一虚拟四边形的第一等边长度不等于所述第二虚拟四边形的第二等边长度不等,所述第一虚拟四边形的短边长度等于所述第二虚拟四边形的短边长度,所述第一虚拟四边形的长边长度等于所述第二虚拟四边形的长边长度。
在列方向上,所述第一虚拟四边形与相邻的第二虚拟四边形以短边或者长边为共边。在行方向上,所述第一虚拟四边形与相邻的倒置第一虚拟四边形以第一等边为共边,所述第二虚拟四边形与相邻的倒置第二虚拟四边形以第二等边为共边。
所述像素排布结构包括由四个虚拟四边形以共享边的方式排布形成的虚拟多边形,所述四个虚拟四边形具体包括第一虚拟四边形30、第二虚拟四边形40、倒置第一虚拟四边形30后得到的第三虚拟四边形50和倒置第二虚拟四边形40后得到的第四虚拟四边形60。
所述第一虚拟四边形沿行方向与第三虚拟四边形共享第一等边,在列方向与第二虚拟四边形共享短边。第三虚拟四边形沿列方向与第四虚拟四边形共享长边,在行方向第四虚拟四边形与第二虚拟四边形共享第二等边。
第一等边的长度与第二等边的长度不等。
第一虚拟四边形、第二虚拟四边形、第三虚拟四边形和第四虚拟四边形的非共边构成了虚拟多边形的各个边。
第二子像素位于各虚拟四边形的第一顶点位置处,第一子像素位于各虚拟四边形的第二顶点位置处,第一顶点和第二顶点交替且间隔设置,第三子像素或第四子像素位于各虚拟四边形内。
所述虚拟四边形内以两所述第一子像素的中心连线为第一对角线、两所述第二子像素的中心连线为第二对角线,所述虚拟四边形内所述第三子像素和/或第四子像素的中心偏离所述第二对角线。
进一步地,每一前述的虚拟四边形的任一边与行或列方向不平行;或者每一前述的虚拟四边形的任意两条对边彼此不平行;或者每一前述的虚拟四边形的任意两个内角不相等。如此,第一虚拟四边形、第二虚拟四边形、第三虚拟四边形和第四虚拟四边形均为不规则的四边形,从而可以在满足子像素排布紧凑的前提下,形成较大的透光区域,从而进一步提高了显示面板的透光率,为显示面板的功能多样化提供了便利性。
如图3及图4所示,一个像素单元中,第二子像素14具有分别与第三子像素16a和第四子像素16b彼此相对的第一边和第二边、与第一边相邻且与第二边相对的第三边,以及与第一边相对且与第二边和第三边相连的第四边。其中,第二边和第四边的延长线与所述第三子像素16a错开,第一边和第四边的延长线与第四子像素16b错开。也就是说,第三子像素16a和第四子像素16b分别位于第二子像素14相应的边延长线之间。如此,尽可能地保证子像素排布紧凑,且弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
位于同一行和/或列的第三子像素的中心连线为非直线,同一行和/或列的第四子像素的中心连线为非直线。例如,如图5、图6及图8所示,位于同一行和/或列的绿色的子像素的中心连线呈锯齿状。奇数行或列的任一像素组中两个绿色的子像素,与相邻偶数行或列的像素组中最相邻的两个绿色的子像素的中心连线形成第五虚拟四边形;第五虚拟四边形中的最小内角γ≥60°。如此,使相邻像素组中的绿色的子像素不易太近,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
可以理解,在一些实施例中,同一行和/列的第一子像像素的中心连线可以直线,同一行和/列的第二子像素的中心连线可以为直线。如此,可以使子像素排布更为均匀,有利于提高显示质量。
本申请的第二方面还提供了一种显示面板,包括上述实施例中的像素排布结构。
再次参见图3至图7,并一并参见图8,本申请的所述像素排布结构还包括以下特征。
本申请的所述像素排布结构,包括所述第一子像素12、第二子像素14、第三子像素16a和第四子像素16b。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b可以分别为蓝色发光子像素、红色发光子像素和绿色发光子像素中的一种。当然,在其他一些实施例中,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b还可以为发射蓝色、红色和绿色之外其他颜色光的子像素,例如,第三子像素16a或第四子像素16b可以为白色或黄色的子像素,在此不作限定。应当理解的是,不同颜色光具有不同的波长,波长越高意味着光的能量越高,能量高的光容易引起有机发光材料的衰变,使得发射能量高的光子的子像素更容易衰减。蓝光波长相较于红光波长和绿光波长短,因此,蓝光的能量更高,发射蓝光的有机发光材料更容易发生衰变,导致像素单元中发出的光容易偏红,造成白光色偏现象。且,每个子像素发射的光通过法布里-珀罗微腔(Fabry-Perot microcavity)效应在阳极和阴极之间重复反射和再反射,进行放大和相长干涉,光的亮度增加,色偏情况进一步被放大。作为一种较佳地实施方式,如图3所示,第一子像素12为蓝色的子像素,第二子像素14为红色的子像素,第三子像素16a和第四子像素16b为绿色的子像素。其中,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积,这样,可以一定程度降低因发射不同颜色光的有机发光材料衰减速率不同而造成的显示不良。需要指出,一些实施方式中,绿色的子像素的发光面积可以与红色的子像素的发光面积相等,但由于人眼相较于红光对绿光比较敏感,在另一些实施方式中,绿色的子像素的发光面积可以小于红色的子像素的发光面积,在此不作限定。
对位设置的两个第一子像素12的中心、对位设置的两个第二子像素14的中心为顶点连线形成虚拟四边形。也就是说,两个第一子像素12的中心作为该虚拟四边形的一组对角顶点,两个第二子像素14的中心作为该虚拟四边形的另一组对角顶点。例如,图7所示,在第一虚拟四边形30中,两个第一子像素沿第二方向排布,两个第二子像素沿第一方向排布,两个第一子像素的中心和两个第二子像素的中心依次连线构成所述的虚拟四边形。该第一虚拟四边形包括相向设置的两等长对边、相向设置且连接等长对边顶点的短边和长边。继续参阅图7,在第一虚拟四边形30中,沿列方向,一个第一子像素12和第 二子像素14的中心连线为第一等长对边,另一个第一子像素12和第二子像素14的中心连线为第二等长对边。沿行方向,一个第一子像素12和第二子像素14的中心连线为该虚拟四边形的长边,另一个第一子像素12和第二子像素14的中心连线为虚拟四边形的短边。
该虚拟四边形内布设有一个第三子像素或者一个第四子像素,第三子像素与第四子像素发光颜色相同。具体地,该像素排布结构包括多个虚拟四边形,多个虚拟四边形包括相邻且共边的第一虚拟四边形和第二虚拟四边形;第一虚拟四边形内设有一个所述第三子像素,第二虚拟四边形内设有一个所述第四子像素。具体到如图7所示的实施例中,四个虚拟四边形以共享边的方式排布,所述四个虚拟四边形具体包括第一虚拟四边形30、第二虚拟四边形40、倒置第一虚拟四边形30后得到的第三虚拟四边形50和倒置虚拟第二四边形40后得到的第四虚拟四边形60。第一虚拟四边形30沿行方向与第三虚拟四边形50共享第一共享边g,在列方向与第二虚拟四边形40共享第二共享边h。第四虚拟四边形60沿列方向与第三虚拟四边50形共享第三共享边j,第四虚拟四边形60在行方向与第二虚拟四边形40共享第四共享边i。各虚拟四边形远离共享边的侧边构成了虚拟多边形的各个边。第二子像素14位于各虚拟四边形的第一顶点位置处,第一子像素12位于各虚拟四边形的第二顶点位置处,第一顶点和第二顶点交替且间隔设置。第一虚拟四边形30和第二虚拟四边形40内设有一个第三子像素16a,第三虚拟四边形50和第四虚拟四边形60内设有一个第四子像素16b。
其中,该虚拟四边形的短边与该虚拟四边形的长边非平行。可以理解,像素排布结构直接决定着显示效果,为保证显示均匀,例如图1所示的像素排布结构,各子像素通常会沿着行方向和列方向呈一定规则尽可能均匀排布,但现有的像素排布结构也容易出现色偏、彩边。采用前述的像素排布结构,虚拟四边形的具有一组等长对边,一组长度不同的长边和短边,且长边和短边非平行,使各子像素可以错位排布,且可以兼顾子像素的排列均匀性、紧密度和子像素之间的间距,在三者之间寻求一个平衡,有利于降低混色风险、改善彩边和边缘锯齿问题。例如,当形成显示矩阵时,各子像素受前述的限制条件而错开排布,避免发射同种颜色光的子像素单独排成一列,改善了显示边缘的彩边问题。且,错开排布的子像素使位于显示面板圆角处的子像素更能匹配圆角设计,即位于边缘的子像素的边缘连线在圆角处的平滑过渡,与圆角的弧度相切或相吻合,进而改善圆角处的锯齿问题。此外,可以将第三子像素和第四子像素设置为人眼敏感的绿色子像素,其周围由蓝色和红色的子像素围绕,从而使混色更均匀,避免色偏。
一些实施例中,该第一虚拟四边形和相邻的第二虚拟四边形中,以第一子像素的中心为顶点的四个内角之和等于360°;以第二子像素的中心为顶点的四个内角之和等于360°。如此,通过虚拟四边形的角度限制各子像素之间的间距和相对位置,可以尽可能地使子像素排布均匀,且保持子像素错位排布,在显示均匀、紧凑和改善彩边问题上达到一个平衡。
进一步地,第一虚拟四边形的第一等长对边长度不等于第二虚拟四边形的第二等长对边长度;第一虚拟四边形的长边长度等于第二虚拟四边形的长边长度;第一虚拟四边形的短边长度等于所述第二虚拟四边形的短边长度。如此,在形成显示矩阵时,使子像素能够紧凑排布,且各子像素之间能够保持较为均匀和规律的排布,有利于显示质量的提高。具体地,在列方向上,第一虚拟四边形与相邻的第二虚拟四边形以短边或者长边为共边。具体到如图7所示的实施例中,在行方向上,第一虚拟四边形30与相邻的第三虚拟四边形50倒置,且以第一等长对边共边,第二虚拟四边形40与相邻的第四虚拟四边形60倒置,且以第二等长对边为共边。在列方向上,虚拟四边形30与相邻的虚拟四边形40共享短边,第三虚拟四边形50与相邻的第四虚拟四边形60共享长边。也就是说,相邻的第一虚拟四边形或第二虚拟四边形沿预设角度翻转180度的结构相同。如此,在形成显示矩阵时,一方面各子像素之间排布较为紧凑,另一方面,子像素排布具有规律且重复单元整体 上更接近规则图形,从而有利于显示质量的提高。再一方面,能够弱化子像素的凸出程度,有效地改善了彩边。
可以理解,另一些实施例中,第一等长对边的长度也可以与第二等长对边的长度相等,在此不作限定。如此,进一步地加剧了子像素的错位排布,有利于改善彩边。
本申请的实施例中,该像素结构包括第一像素单元和第二像素单元,第一像素单元和第二像素单元彼此相邻,且多个第一像素单元与多个第二像素单元在第一方向以及第二方向上交替排布。例如,如图7及图8所示,在第一方向上,第一像素单元和第二像素单元交替排布,在第二方向上,第一像素单元和第二像素单元交替排布。也就是说,在第一方向和第二方向上,任意两个相邻的第一像素单元由一个第二像素单元间隔开来,任意两个相邻的第二像素单元由一个第一像素单元间隔开来。进一步地,第一像素单元和第二像素单元的各子像素结构在相对旋转90度后镜像对称。也就是说,第一像素单元中的子像素和第二像素单元中的同色子像素的形状、大小(发光面积)相同,第二像素单元中的子像素沿顺时针或逆时针旋转预定角度后的子像素结构与第一像素单元中对应的子像素的结构镜像对称。其中,所述的预定角度大于0°,小于360°,例如,图4所示的第二像素单元中各子像素排布结构旋转90°后沿第一方向与图3所示的第一像素单元中各子像素排布结构成镜像对称。如此,不仅使在行方向或列方向避免发射同种颜色光的子像素单独排成一列,且弱化了位于同一行或列的子像素的凸出程度,进一步地改善了显示边缘的彩边问题。且同时还可以有效改善色偏,例如,可以将第三子像素和第四子像素设置为人眼敏感颜色的子像素,如绿色的子像素,每一个绿色的子像素均可由红色的子像素和蓝色的子像素围绕,从而使用混色更为均匀,改善了色偏。此外,第二像素单元中各子像素结构旋转预定角度后与第一像素单元中各子像素结构成镜像对称,还可以尽可能使相邻的像素单元之间能够形成面积较大的透光预留区Z(见图7),有利于提高屏下感光器件的采光面积。可以理解,在另一些实施例中,第一像素单元和第二像素单元的子像素结构也可以相同,在此不作限定。也就是说,像素排布结构中的最小重复单元即为一个像素单元。
其中,在每一个像素单元内,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的各自中心为顶点构成两个共边但不交叠的锐角三角形,且以第一子像素12的中心和第二子像素14的中心为所述共边三角形的共边顶点。具体地,如图3和图4所示,第一子像素12位于第三子像素16a和第四子像素16b中心连线c的一侧,第二子像素14位于第三子像素16a和第四子像素16b中心连线c的另一侧。第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的中心依次连线形成虚拟四边形,第一子像素12、第二子像素14和第三子像素16a的中点连线构成第一三角形(图未标),第一子像素12、第二子像素14和第四子像素16b的中心连线构成第二三角形。第一三角形和第二三角形以第一子像素12的中心和第二子像素14的中心连线d作为共同边,且两个三角形彼此面积不重叠。
其中,沿垂直于第一子像素12和第三子像素16a的中心连线方向,第二子像素14与第三子像素16a未设置在同一排。也就是说,在垂直于第一子像素12和第三子像素16a的中心连线方向,第二子像素14与第三子像素16a错开排布。换言之,前述的虚拟四边形内以两第一子像素的中心连线为第一对角线、两第二子像素的中心连线为第二对角线,虚拟四边形内第三子像素和/或第四子像素的中心偏离第二对角线。具体到实施例中,第一子像素12和第三子像素16a沿与第一方向垂直的第二方向Y排布,沿垂直于第一子像素12和第三子像素16a的中心连线方向,即第一方向X,第二子像素14与第三子像素16a错开排布。前述的虚拟四边形的顶点分设在第一像素单元中的第一子像素中心、第二子像素中心以及与第一像素单元相邻的两第二像素单元中的第一子像素中心或第二子像素的中心;或者,虚拟四边形的顶点分设在第二像素单元中的第一子像素中心、第二子像素中心以及与第二像素单元相邻的两第一像素单元中的第一子像素中心或第二子像素的中心。 如此,不仅使在行方向或列方向避免发射同种颜色光的子像素单独排成一列,且弱化了位于同一行或列的子像素的凸出程度,进一步地改善了显示边缘的彩边问题。
值得强调的是,屏下感光器件接收的光信号的进光量以及对比度均会影响生成物体的图像质量,采用其他像素排布结构的显示面板,虽然可透光区域较多,使总体的透光面积无差异,但在特定区域内连续的透光区域的面积较小,无法满足屏下感光器件正常工作所需的光透过率。由于第二子像素14和第三子像素16a错开排布,则在第二子像素14的外侧形成透光预留区,有利于实现诸如屏下摄像的显示屏的制作。具体而言,如图7和图8所示,第二子像素R1/R2外侧的空白区即为前述的透光预留区。具体到一个实施例中,所述透光预留区在第一方向上的尺寸范围为10μm~90μm,在第二方向上的尺寸范围为20μm~90μm。
在同一像素单元中,沿垂直于第一子像素12和第三子像素16a的中心连线方向,第一子像素12和第二子像素14也未设置在同一行。也就是说,沿垂直于第一子像素12和第三子像素16a的中心连线方向,第二子像素14和第一子像素12也错位排布。进一步地说,第二子像素14的中心作为共边三角形的共边的一个顶点,在与该顶点相对的对边上的投影位于所述对边上,且该投影与所述第三子像素16a的中心和第一子像素12的中心不重合。例如,如图7所示,第二子像素14的中心(中心连线d的一个顶点)在与其相对的对边e(第一子像素12的中心和第三子像素16a的中心连线)上的投影位于对边e上。且该投影位于第一子像素12的中心和第三子像素16的中心之间,也即与第三子像素16a的中心不重合。如此,保证了各子像素之间的完全错位排布,进一步避免同色子像素单独成一行,且弱化了子像素的凸出情况,避免了彩边现象的出现,有利于显示质量的提高。
需要说明的是,共边顶点在对边的投影是指,该顶点沿垂直于该顶点的对边方向上在所述对边上的投影,也即,经过该顶点且与该顶点的对边垂直的垂线和该对边的交点即是前述的顶点在对边的投影。例如,如图7所示,第一三角形和第二三角形的共边d的一个顶点为第二子像素14的中心,经过第二子像素14的中心且垂直于与其相对的对边e的垂线,与该对边e的交点即为前述的顶点在与其相对的对边上的投影。
如图3及图4所示,在同一像素单元中,第一子像素12和第二子像素14的中心连线e与第三子像素16a和第四子像素16b的中心连线c相交但不垂直。容易理解,第一子像素12、第二子像素14、第三子像素16和第四子像素16b的中心连线形成一个虚拟四边形,第一子像素12与第二子像素14的中心连线c,以及第三子像素16a和第四子像素16b的中心连线d为前述的虚拟四边形的对角线。由于第二子像素14和第三子像素16a在第一方向上错位排布,且该虚拟四边形的对角线不垂直,则使像素单元中的各子像素可以紧密排布,且加剧了错位排布程度,进一步地弱化了显示彩边。作为一种较佳的实施方式,第一子像素12和第二子像素14可以分别为蓝色的子像素和红色的子像素,第三子像素16a和第四子像素16b可以为绿色的子像素,相较于蓝色子像素,绿色的子像素的发光面积较小。同一像素单元中,第一子像素12的中心和第二子像素14的中心的连线d,和第三子像素16a的中心和第四子像素16b的中心连线c的长度不等。容易理解,通常发射不同颜色光的子像素的发光面积大小不同,例如,蓝色的子像素的发光面积大于红色的子像素和绿色的子像素的发光面积大小。通过将中心连线d的长度设计为与中心连线c的长度不等,可以保证第一子像素12和第二子像素14之间的间距,以及第三子像素16a和第四子像素16b的间距满足预设条件,以尽可能使各子像素紧密排列,且改善敏感颜色子像素的分布均匀性,提高视觉上的分辨率,提升显示质量。
如图3及图4所示,同一像素单元中,第一子像素12的中心与第三子像素16a中心连线e的长度,不等于同一像素单元中第一子像素12的中心与第四子像素16b中心连线的长度a。具体到一个实施例中,第一子像素12为蓝色的子像素、第二子像素14为红色的子像素,第三子像素16a和第四子像素16b为绿色的子像素。同一像素单元中蓝色子像 素与不同的绿色子像素的中心连线长度不同。另一些实施例中,一个像素单元中,第三子像素16a的中心和第四子像素16b的中心分别到第二子像素14的中心的距离不相等。如此,一方面,使相邻的子像素不易太近,进一步地避免因相邻子像素距离较近而导致的相邻的两个子像素难以分辨,被人眼视觉上合二为一的情况。另一方面,通过第一子像素12和第二子像素14与第三子像素16a和第四子像素16b的中心的连线的长度设置为不同,加剧了子像素的错位排布,在第一像素单元和第二像素单元重复排列形成显示矩阵时,进一步地避免同色子像素单独排成一列,且弱化了同一行或列的子像素的凸出程度,从而改善了显示边缘的彩边问题。
同一像素单元中,第三子像素16a的中心和第四子像素16b的中心分别到第一子像素12的中心的距离比值为(3~2):(2~1)。第三子像素16a的中心和第四子像素16b的中心分别到所述第二子像素14的中心的距离也为(3~2):(2~1)。可以理解,显示质量影响因素除了彩边、颗粒感,关键因素还有分辨率、均匀性,因此,通过进一步地限定第三子像素16a和第四子像素16b的中心到第一子像素12和第二子像素14的中心的距离之比,使子像素的排布在均匀性、紧凑性、错位程度之间达到一个良好的平衡,使显示质量得到综合提升。需要说明的是,子像素的中心可以是子像素图形的几何中心,也可以是子像素的发光颜色的中心,在此不作限定。
示例地,第三子像素16a和第四子像素16b的发光面积可以相同。例如,第三子像素16a和第四子像素16b可以设置为人眼敏感颜色的子像素,这样,可以尽可能提高分辨率的同时,使显示更为均匀。进一步地,第一子像素12、第三子像素16a和第四子像素16b的发光面积也可以相同。如此,有利于子像素排布整体上更为紧凑和均匀,提高了显示效果。作为一种优选的实施方式,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b均可以为矩形或类矩形,第二子像素14的长轴方向与垂直于第一子像素12和第三子像素16的中心连线方向彼此平行。具体地,如图3及图7所示,第二子像素14的长轴方向平行于第一方向,第一子像素12和第三子像素16a的中心连线方向平行于第二方向,第一方向垂直于第二方向。这样,一方面,相较于其他子像素形状,子像素之间排列可以做到紧密排布,且避免同色子像素独立成一行,有效改善彩边现象。另一方面,使位于显示面板异形边缘的子像素更能匹配圆角设计,即子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进而改善圆角处的锯齿问题。
较佳地,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b的延伸方向与第一方向相平行,与行方向或列方向的夹角为30°-60°。这样,可以进一步使子像素的倾斜与圆角的弧度相切或相吻合,实现各子像素边缘在圆角处的平滑过渡,进一步改善圆角处的锯齿问题。需要强调的是,由于人眼对水平或垂直方向上的画面质量较为敏感,而对与水平方向的夹角为45°的方向上的画面质量较为不敏感,因此,作为一种优选的实施方式,第一方向与行方向的夹角为45°,如此可以进一步提高整体显示质量。特别指出的是,掩膜板受力通常沿行或列方向传递,例如,张网力F沿行方向传递,对应子像素相对行或列方向倾斜设置的掩膜板的开口可以将受力在行方向和列方向分解,从而避免FMM张网力F集中造成的开口变形,降低了掩膜板的制作难度和张网难度。且掩膜板的开口倾斜设置,在同样长度和宽度的掩膜板中,可以设置更多的开口,降低了掩膜的制作成本。
当然,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b还可以为其他形状,在此不作限定,例如,如图3及图7,第一子像素12可以为正方形,第二子像素14、第三子像素16a和第四子像素16b为长方形。
需要说明的是,类矩形是指,由于工艺限制或者为了掩膜板的制作便利,子像素的形状可能不是严格的矩形,而是大致为矩形,例如,具有圆角的圆角矩形或切角矩形。其中,圆角矩形是矩形的顶角被倒圆角形成的形状,切角矩形是矩形的顶角被切掉一个或多个所 形成的形状。将子像素的形状设置为类矩形可以更加灵活地调整子像素的开口率,并满足掩膜板在制作时的限制条件。
同一像素单元中,第一子像素12具有第一长轴和第一短轴;第二子像素14具有第二长轴和第二短轴;第三子像素16a具有第三长轴和第三短轴;第四子像素16b具有第四长轴和第四短轴。也就是说,各子像素均为具有长轴和短轴的规则图形或不规则图形,例如矩形或类矩形。较佳地,第三子像素16a和第四子像素16b为同色子像素,例如均为绿色的子像素,则第三长轴和第四长轴彼此平行且长度相等,第三短轴和第四短轴彼此平行且长度相等。进一步地,第一长轴和第一短轴的比值在1.5~1之间;第二长轴和第二短轴的比值在5~1之间;第三长轴和第三短轴的比值在5~1之间。例如,如图3及图4所示的实施例中,第一子像素12为正方形,第一长轴和第一短轴之比为1,第二子像素14、第三子像素16a和第四子像素16b均为长方形,第二子像素14、第三子像素16a和第四子像素16b的长短轴之比在5:1之间。如此,可以尽可能保证开口率的前提下,相应的使各子像素能够错位排布,以尽可能降低彩边现象。且还可以尽可能使相邻的子像素之间能够形成面积较大的透光预留区Z,有利于提高屏下感光器件的采光面积。
需要说明的是,子像素的长轴的长度是指子像素的发光区纵长延伸方向的最大尺寸,子像素的短轴的长度是指子像素的发光区在与发光区纵长延伸方向相对的宽度方向的最大尺寸。
第一长轴、第二长轴、第三长轴和第四长轴两两平行。具体而言,沿子像素的长轴方向,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b分别具有一组对边,多组对边之间彼此平行。沿子像素的短轴方向,第一子像素12、第二子像素14、第三子像素16a和第四子像素16b分别具有另一组对边,多组另一组对边彼此平行。例如,如图3及图7所示的实施例中,第一子像素12的形状为正方形,第二子像素14、第三子像素16a和第四子像素16b的形状为矩形,第一子像素12的第一长轴和第一短轴长度之比为1,第一长轴、第二长轴、第三长轴和第四长轴两两平行。第一子像素12具有分别与第三子像素16a和第四子像素16b彼此相对的第一边和第二边、与第一边相邻且与第二边相对的第三边,以及与第一边相对且与第二边和第三边相连的第四边。其中,第一子像素12的第一边和第四边与第二子像素12的长边彼此平行,且与第三子像素16a和第四子像素16b的长边彼此平行。如此,有利于子像素均匀排布,进而提高了显示质量。
在像素单元内,第一子像素12靠近像素单元边缘的一条边的延长线与第三子像素16a靠近像素单元同侧边缘的一条短边的延长线重合。第一子像素12靠近像素单元边缘的另一条边的延长线与第四子像素16b靠近像素单元同侧边缘的一条长边的延长线重合。具体到实施例中,一个像素单元中,第一子像素12的第三边与第三子像素16a的短边共线,第一子像素12的第四边与第四子像素16b的长边共线。如此,尽可能地保证第一像素单元呈规则形状,使子像素排布更紧凑和均匀。进一步地,一些实施例中,第一子像素12的第二边的延长线与所述第三子像素16a错开,第一边的延长线与第四子像素16b错开。如此,保证了子像素之间的错位程度,弱化了显示边缘的子像素的凸出程度,有效改善了显示边缘的彩边问题。
进一步地,一些实施例中,第一子像素12、第三子像素16a和第四子像素16b的长边长度与第二子像素14的边长也可以相同。如此,进一步的使第一像素单元呈规则形状,使子像素排布更紧凑和均匀。
第二子像素14的两条长边中的至少一条长边的延长线穿过第一子像素12与所述第三子像素16a之间的间隙。进一步地,第二子像素14的一条长边的延长线穿过第一子像素12与第三子像素16a之间的间隙,第二子像素14的另一条长边的延长线与第一子像素12的靠近第三子像素16a的边重合。例如,可以将第二子像素14的一条长边的延长线穿过第一子像素12和第三子像素16a之间。第二子像素14的另一条长边的延长线与第一子像 素12的第一边共线。如此,使子像素排布均匀的前提下,尽可能保证透光预留区的大小,有利于例如屏下摄像功能的实现。当然,另一些实施例中,第二子像素14的两条长边的延长线均穿过第一子像素12与第三子像素16a之间的间隙。也就是说,将第二子像素14沿第一方向平移能够穿过第一子像素12和第三子像素16a之间。
位于同一行和/或列的第三子像素16a的中心连线为非直线或近似直线,同一行和/或列的第四子像素16b的中心连线为非直线或近似直线。例如,如图7及图8所示,位于同一行和/或列的绿色的子像素的中心连线可以呈锯齿状。如此,一方面,弱化了子像素的凸出程度,改善了彩边;另一方面,使相邻像素组中的绿色的子像素不易太近,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
可以理解,在一些实施例中,同一行和/列的第一子像像素的中心连线可以直线,同一行和/列的第二子像素14的中心连线可以为直线。如此,可以使子像素排布更为均匀,有利于提高显示质量。
进一步地,沿第一方向和第二方向,排布在同一排相邻的第三子像素16a和第四子像素16b的长轴方向不同。例如,如图4所示,第一方向和第二方向为与水平行方向和竖直列方向倾斜设置的方向,沿第一方向和第二方向,排布在同一排相邻的两个第二子像素R1和R2的长轴方向彼此相反。相应地,沿第一方向和第二方向排布的相邻的第三子像素16a和第四子像素16b的长轴方向也不同。如此,一方面,以尽可能使各子像素紧密排列的同时,加剧了子像素的错位排布,有效改善了色偏。另一方面,避免同色子像素距离过近而造成人眼识别为一个形成的颗粒感。
第一像素单元中的第三子像素16a的中心或第四子像素16b的中心位于第一像素单元中第二子像素14中心和与该第一像素单元相邻的第二像素单元中的第二子像素14的中心连线的外侧。换言之,一个像素单元中的第三子像素16a的中心或第四子像素16b的中心位于其所在像素单元中第二子像素14中心和与之相邻的另一像素单元中的第二子像素14的中心连线的延长线的外侧。例如,具体到一些实施例中,如图7及图8,第一像素单元中的第二子像素R1的中心和与第一像素单元相邻的第二像素单元中的第二子像素R2的中心的连线的延长线,与第一像素单元中的第三子像素G11的中心和第四子像素G12的中心错开,且第三子像素G11的中心和第四子像素G12的中心位于前述的连线的延长线的两侧。需要说明的是,子像素的中心位于中心连线的外侧是指,子像素的中心与中心连线错开,例如,子像素的中心位于中心连线的一侧。
同一像素单元中,沿第一方向和第二方向,相邻的两个子像素之间的最小距离为p,沿第一方向和第二方向,相邻的两个像素单元中最相邻的不同颜色的子像素之间的最小距离也为n。其中,10um<n<30um。如此,一方面,使子像素的排布更为均匀,有利于提高显示质量,另一方面,可以有效的避免相邻子像素之间的发光串色或干扰产生锯齿感。需要说明的是,本申请实施例提供的显示面板,可以为有机发光显示面板,子像素至少包括阳极和阴极,以及位于阳极和阴极之间的发光层,驱动电路向阳极和阴极之间施加电压,激发载流子迁移,作用于发光层,从而发射出光线。显示面板还可以包括像素定义层,像素定义层界定出了多个像素开口,子像素的发光层设于像素开口中,以避免相邻的子像素之间发生串色或干扰。因此,像素开口的面积即为子像素的发光面积,但是,受限于蒸镀技术,为保证发光材料完全蒸镀于像素开口内,通常,掩膜板的开口面积大于像素开口的面积,以留有蒸镀余量。例如,如图7所示,子像素的内侧边称为像素边,即是像素定义层(PDL层)的像素开口的边界,外侧边称为子像素的虚拟边,所述虚拟边是指Mask(掩膜板)的蒸镀开口的边界。故,本申请的实施例中,子像素之间的间距是指两个子像素的像素边之间的距离。而具体到如图3及图7所示的实施例中,相邻的两个子像素之间具有彼此相邻且平行的两条像素边,则相邻的两个子像素之间最小距离为该彼此相邻且平行的 两条像素边之间的垂线距离。
进一步地,第一像素单元中的第二子像素R1与沿第二方向相邻排布的第二像素单元的第三子像素G21之间的最小距离为p,n<p<3n。或者第二像素单元中的第二子像素R2与沿第一方向相邻排布的第一像素单元的第三子像素G11之间的最小距离为q,n<q<3n。如此,可以保证透光预留区拥有足够大小,进而满足屏下感光器件的正常工作所需要的进光量。
相邻四个第三子像素和第四子像素的中心连线形成虚拟四边形,该虚拟四边形的最小内角γ大于60°,小于90°。如此,一方面,通过控制最小角度限制相邻的四个第三子像素和第四子像素的距离,避免距离过大而导致显示不均。另一方面,也使相邻像素组中的绿色的子像素不易太近,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
位于同一行和/或列的第三子像素的中心连线为非直线或近似直线;和/或同一行和/或列的第四子像素的中心连线为非直线或近似直线。例如,如图6所示,位于同一行和/或列的绿色的子像素的中心连线呈锯齿状。如此,一方面,弱化了子像素的凸出程度,改善了彩边现象,另一方面,使相邻像素组中的绿色的子像素不易太近,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
在第一方向和第二方向上,红色的子像素的中心不在一条直线上;或在第一方向和第二方向上,绿色的子像素的中心不在一条直线上;或在第一方向和第二方向上,蓝色的子像素的中心不在一条直线上。如此,保证了子像素之间的错位排布,有效地改善了彩边现象。
可以理解,在一些实施例中,同一行和/列的第一子像像素的中心连线可以直线,同一行和/列的第二子像素的中心连线可以为直线,在此不作限定。
奇数行或列的任一像素组中两个绿色的子像素,与相邻偶数行或列的像素组中最相邻的两个绿色的子像素的中心连线形成第五虚拟四边形;第五虚拟四边形中的最小内角γ≥60°。如此,进一步地避免因相邻的绿色的子像素距离较近而导致的相邻的两个绿色的子像素难以分辨,被人眼视觉上合二为一的情况。
本申请的第三方面还提供了一种显示面板,包括上述实施例中的像素排布结构。
基于同样的申请构思,本申请还提供一种掩膜板,用于制作本申请实施例提供的像素排布结构,该掩膜板包括多个开口区域,所述开口区域与第一子像素12、第二子像素14、第三子像素16a或第四子像素16b的形状和位置相对应。
基于同样的申请构思,本申请还提供一种显示装置,该显示装置包括上述各个方面中的实施例中的显示面板100。
具体地,该显示装置可以应用于手机终端、仿生电子、电子皮肤、可穿戴设备、车载设备、物联网设备及人工智能设备等领域。例如,上述显示装置可以为手机、平板、掌上电脑、ipod、智能手表等数码设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (58)

  1. 一种像素排布结构,其中,包括多个第一像素单元和多个第二像素单元,多个所述第一像素单元与多个所述第二像素单元在第一方向以及第二方向上交替排布;
    每个所述第一像素单元和所述第二像素单元均包括第一子像素、第二子像素、第三子像素和第四子像素;所述第一子像素位于所述第三子像素的中心和所述第四子像素的中心之间的连线的一侧,所述第二子像素位于所述第三子像素的中心和所述第四子像素的中心之间的连线的另一侧;
    所述第二像素单元旋转预定角度后其子像素排布结构与所述第一像素单元的子像素排布结构成镜像对称;
    所述预定角度大于0°,且小于360°。
  2. 根据权利要求1所述的像素排布结构,其中,所述第一像素单元中所述第二子像素的中心与所述第三子像素的中心之间的连线长度不等于所述第一像素单元中所述第二子像素的中心与所述第四子像素的中心之间的连线的长度;
    所述第二像素单元中所述第二子像素的中心与所述第三子像素的中心之间的连线的长度不等于所述第二像素单元中所述第二子像素的中心与所述第四子像素的中心之间的连线的长度。
  3. 根据权利要求1所述的像素排布结构,其中,相互相邻的两个第一像素单元和两个第二像素单元构成重复单元;多个所述重复单元沿第一方向和第二方向排布;
    在每个所述重复单元中,两个所述第二像素单元分别位于两个第一像素单元几何中心之间的连线的一侧。
  4. 根据权利要求3所述的像素排布结构,其中,在一个重复单元中,在任一所述第二像素单元和在第一方向与其相邻的第一像素单元中,所述第二像素单元内的所述第二子像素的中心与所述第三子像素的中心之间的连线的长度为L1,所述第一像素单元内的所述第二子像素的中心与所述第二像素单元内的所述第三子像素的中心之间的连线长度为L2;L1不等于L2;
    在该所述第二像素单元和在第二方向与其相邻的另一个第一像素单元中,所述第二像素单元内的所述第二子像素的中心与所述另一个第一像素单元内的所述第四子像素的中心之间的连线的长度为L3,在所述另一个第一像素单元内,所述第二子像素的中心与所述第四子像素的中心之间的连线长度为L4;所述L3不等于L4。
  5. 根据权利要求3所述的像素排布结构,其中,在一个所述重复单元中,任一所述第二像素单元和在第一方向与其相邻的第一像素单元中,所述第二像素单元内的所述第二子像素、所述第三子像素,以及所述第一像素单元内的所述第二子像素的中心之间的连线构成不等边三角形;
    且该所述第二像素单元和在第二方向与其相邻的另一个第一像素单元中,所述另一个第一像素单元中的所述第二子像素、第四子像素,以及该所述第二像素单元内的所述第二子像素的中心之间的连线构成不等边三角形。
  6. 根据权利要求3所述的像素排布结构,其中,在一个所述重复单元中,任意两个所述第二子像素的中心之间连线与任意一个所述第二子像素的中心和所述第三子像素的中心之间的连线非重合,任意两个所述第二子像素的中心之间的连线与任意一个所述第二子像素的中心和所述第四子像素的中心之间的连线非重合。
  7. 根据权利要求3所述的像素排布结构,其中,在一个所述重复单元中,两个所述第一像素单元中穿过第一子像素中心与第三子像素中心的第一虚拟连接线相互平行;两个所述第二像素单元中穿过第一子像素中心与第四子像素中心的第二虚拟连接线相互平行;所述第一虚拟连接线与所述第二虚拟连接线非重合。
  8. 根据权利要求3所述的像素排布结构,其中,在一个所述重复单元中,一个所述 第一像素单元中的所述第一子像素的中心与第二子像素的中心的连线的延长线与另一个所述第一像素单元中的所述第一子像素的中心与第二子像素的中心的连线的延长线非重合;一个所述第二像素单元中的所述第一子像素的中心与第二子像素的中心的连线的延长线与另一个所述第二像素单元中的所述第一子像素的中心与第二子像素的中心的连线的延长线非重合;任一个所述第一像素单元中的所述第一子像素的中心与第二子像素的中心的连线的延长线与任一个所述第二像素单元中的所述第一子像素的中心与第二子像素中心的连线的延长线非重合。
  9. 根据权利要求3所述的像素排布结构,其中,在一个所述重复单元中,两个所述第一像素单元中第二子像素中心与第三子像素中心的第三虚拟连接线相互平行;两个所述第二像素单元中第二子像素中心与第四子像素中心的第四虚拟连接线相互平行;所述第三虚拟连接线的延长线与所述第四虚拟连接线的延长线非重合。
  10. 根据权利要求3所述的像素排布结构,其中,在所述第一方向上相邻的所述第一像素单元和第二像素单元中,所述第一像素单元内的所述第二子像素与该所述第二像素单元内的所述第四子像素之间的距离大于该所述第一像素单元内的所述第三子像素与该所述第二子像素之间的距离,所述第一像素单元内的所述第二子像素与该所述第二像素单元内的所述第四子像素之间的距离大于所述第四子像素与该所述第二子像素之间的距离。
  11. 根据权利要求1所述的像素排布结构,其中,所述预定角度为90°。
  12. 根据权利要求1所述的像素排布结构,其中,所述第一子像素的颜色为蓝色,所述第二子像素的颜色为红色,所述第三子像素的颜色为绿色,所述第四子像素的颜色为绿色。
  13. 根据权利要求12所述的像素排布结构,其中,所述第一子像素的形状为正方形或类正方形,所述第二子像素、所述第三子像素和所述第四子像素的形状为矩形或类矩形。
  14. 根据权利要求13所述的像素排布结构,其中,所述第一子像素的发光面积大于所述第二子像素的发光面积,所述第二子像素的发光面积大于或等于所述第三子像素或第四子像素的发光面积。
  15. 根据权利要求14所述的像素排布结构,其中,所述第三子像素和所述第四子像素的发光面积相同。
  16. 根据权利要求15所述的像素排布结构,其中,所述第二子像素、所述第三子像素和所述第四子像素的发光面积相同。
  17. 根据权利要求13所述的像素排布结构,其中,所述第二子像素的长边与所述第一子像素的一组相对边、所述第三子像素的长边以及所述第四子像素的长边相互平行。
  18. 根据权利要求17所述的像素排布结构,其中,在所述第一像素单元内,所述第一子像素靠近所述第一像素单元边缘的一条边的延长线与所述第三子像素靠近所述第一像素单元同侧边缘的一条短边的延长线重合;
    所述第一子像素靠近所述第一像素单元边缘的另一条边的延长线与所述第四子像素靠近所述第一像素单元同侧边缘的一条长边的延长线重合。
  19. 根据权利要求18所述的像素排布结构,其中,所述第二子像素的两条长边中的至少一条长边的延长线穿过所述第一子像素与所述第三子像素之间的间隙。
  20. 根据权利要求19所述的像素排布结构,其中,所述第二子像素的一条长边的延长线穿过所述第一子像素与所述第三子像素之间的间隙,所述第二子像素的另一条长边的延长线与所述第一子像素的靠近所述第三子像素的边重合。
  21. 根据权利要求19所述的像素排布结构,其中,所述第二子像素的两条长边的延长线均穿过所述第一子像素与所述第三子像素之间的间隙。
  22. 根据权利要求13-21任一项所述的像素排布结构,其中,所述第二子像素、所述第三子像素和所述第四子像素的长边长度与所述第一子像素的边长相同。
  23. 一种像素排布结构,包括第一像素单元;
    所述第一像素单元包括第一子像素、第二子像素、第三子像素和第四子像素;
    在所述第一像素单元内,以所述第一子像素、所述第二子像素、所述第三子像素和所述第四子像素的各自中心为顶点构成面积不重叠的共边三角形;且以所述第一子像素的中心和所述第二子像素的中心为所述共边三角形的共边顶点;
    其中,所述第二子像素具有第二长轴和第二短轴,在所述第一像素单元内,所述第二子像素沿其长轴方向的中心线不经过所述第三子像素和/或所述第四子像素的中心。
  24. 根据权利要求23所述的像素排布结构,其中,所述共边三角形的共边两端顶点之一在该顶点对边上的投影位于所述顶点对边上,且与所述第三子像素的中心或第四子像素的中心不重合。
  25. 根据权利要求24所述的像素排布结构,其中,所述共边三角形的共边上顶点在该顶点对边上的投影整体位于所述对边对应的两子像素轮廓与该顶点对边的交点距离内。
  26. 根据权利要求25所述的像素排布结构,其中,所述共边三角形的共边上顶点在该顶点对边上的投影接近或者位于所述对边的中心点上。
  27. 根据权利要求24所述的像素排布结构,其中,在所述第一像素单元内,所述第二子像素沿其长轴方向侧边的延长线或该侧边的切线,与所述第三子像素和/或第四子像素整体不相交;
    所述共边三角形的共边上顶点对应的子像素在该顶点对边上的投影整体位于所述对边对应的两子像素轮廓与该顶点对边的交点距离内。
  28. 根据权利要求23所述的像素排布结构,其中,所述第三子像素和第四子像素均为绿色发光子像素;所述第一子像素为蓝色发光子像素,所述第二子像素为红色发光子像素。
  29. 根据权利要求23所述的像素排布结构,其中,所述像素排布结构还包括所述第二像素单元,所述第一像素单元与所述第二像素单元交替排列;
    所述第二像素单元的各子像素结构与所述第一像素单元的各子像素结构相同;或者
    所述第二像素单元的各子像素结构旋转预定角度后与所述第一像素单元中各子像素结构成镜像对称;
    所述预定角度大于0°,且小于360°。
  30. 根据权利要求29所述的像素排布结构,其中,所述预定角度为90°。
  31. 根据权利要求29所述的像素排布结构,其中,所述第一像素单元中的所述第三子像素的中心或第四子像素的中心,位于所述第一像素单元中第二子像素中心和与之相邻的第二像素单元中的第二子像素的中心连线或其延长线的外侧。
  32. 根据权利要求23所述的像素排布结构,其中,各子像素为具有长轴和短轴的规则图形或者不规则图形;
    所述第一子像素具有第一长轴和第一短轴;第三子像素具有第三长轴和第三短轴;所述第四子像素具有第四长轴和第四短轴;
    所述子像素的形状选自椭圆形、圆形、扇形、哑铃形、梨形、四边形、多边形、类矩形、圆角矩形、星形、心形的一种;
    在所述第一像素单元内,所述第二长轴、第三长轴和第四长轴两两平行;
    所述第一长轴和第一短轴的比值在1.5~1之间;所述第二长轴和第二短轴的比值在5~1之间;所述第三长轴和第三短轴的比值在5~1之间;所述第四长轴和第四短轴的比值在5~1之间。
  33. 根据权利要求23所述的像素排布结构,其中,所述共边三角形的两三角形为锐角三角形,且所述第三子像素的中心和第四子像素的中心分别到所述第二子像素的中心的距离不等。
  34. 根据权利要求33所述的像素排布结构,其中,所述第三子像素的中心和第四子像素的中心分别到所述第二子像素的中心的距离比值为(3~2):(2~1)。
  35. 根据权利要求23所述的像素排布结构,其中,所述第一方向和第二方向垂直;所述第一方向与行方向的夹角为45°;
    所述第一像素单元的子像素的长轴方向与第一方向相平行。
  36. 根据权利要求23所述的像素排布结构,其中,所述第一像素单元还包括设置在第二子像素外侧的透光预留区;
    所述透光预留区的面积大于所述第一像素单元中子像素的最小发光面积;
    所述透光预留区在第一方向上的尺寸范围为10μm~90μm,在第二方向上的尺寸范围为20μm~90μm。
  37. 根据权利要求23所述的像素排布结构,其中,
    在行方向上,每行所述第一子像素中心的连线为直线;每行所述第二子像素中心的连线为直线;每行所述第三子像素或第四子像素的中心连线为非直线或近似直线。
  38. 根据权利要求23所述的像素排布结构,其中,在第一方向和第二方向上,红色的子像素的中心不在一条直线上;或
    在第一方向和第二方向上,绿色的子像素的中心不在一条直线上;或
    在第一方向和第二方向上,蓝色的子像素的中心不在一条直线上。
  39. 一种像素排布结构,其中,包括第一子像素、第二子像素、第三子像素和第四子像素;
    对位设置的两个所述第一子像素的中心、对位设置的两个所述第二子像素中心为顶点连线形成虚拟四边形,所述虚拟四边形包括相向设置的两等边、相向设置且连接等边顶点的短边和长边;所述虚拟四边形的短边与所述虚拟四边形的长边非平行;
    所述虚拟四边形内布设有一个第三子像素或者一个第四子像素,所述第三子像素与所述第四子像素发光颜色相同。
  40. 根据权利要求39所述的像素排布结构,其中,所述像素排布结构包括多个虚拟四边形;
    所述多个虚拟四边形包括相邻且共边的第一虚拟四边形和第二虚拟四边形;
    所述第一虚拟四边形内设有一个所述第三子像素,所述第二虚拟四边形内设有一个所述第四子像素。
  41. 根据权利要求40所述的像素排布结构,其中,所述第一虚拟四边形和相邻的所述第二虚拟四边形中,以所述第一子像素的中心为顶点的四个内角之和等于360°;
    以所述第二子像素的中心为顶点的四个内角之和等于360°。
  42. 根据权利要求40所述的像素排布结构,其中,所述第一虚拟四边形的第一等长对边长度不等于所述第二虚拟四边形的第二等长对边长度;
    所述第一虚拟四边形的短边长度等于所述第二虚拟四边形的短边长度;
    所述第一虚拟四边形的长边长度等于所述第二虚拟四边形的长边长度。
  43. 根据权利要求42所述的像素排布结构,其中,在列方向上,所述第一虚拟四边形与相邻的所述第二虚拟四边形以短边或者长边为共边。
  44. 根据权利要求42所述的像素排布结构,其中,在行方向上,所述第一虚拟四边形与相邻的倒置第一虚拟四边形以第一等长对边为共边,所述第二虚拟四边形与相邻的倒置第二虚拟四边形以第二等长对边为共边。
  45. 根据权利要求40所述的像素排布结构,其中,所述像素排布结构包括由四个虚拟四边形以共享边的方式排布形成的虚拟多边形;
    所述四个虚拟四边形具体包括第一虚拟四边形、第二虚拟四边形、倒置第一虚拟四边形后得到的虚拟四边形和倒置第二虚拟四边形后得到的虚拟四边形。
  46. 根据权利要求45所述的像素排布结构,其中,所述第一虚拟四边形沿行方向与倒置第一虚拟四边形后得到的虚拟四边形共享第一等长对边,在列方向与第二虚拟四边形共享短边;
    所述倒置第一虚拟四边形后得到的虚拟四边形沿列方向与倒置第二虚拟四边形后得到的虚拟四边形共享长边,在行方向倒置第二虚拟四边形后得到的虚拟四边形与第二虚拟四边形共享第二等长对边。
  47. 根据权利要求46所述的像素排布结构,其中,第一等长对边的长度与第二等长对边的长度不等;所述第二子像素位于各虚拟四边形的第一顶点位置处,第一子像素位于各虚拟四边形的第二顶点位置处,第一顶点和第二顶点交替且间隔设置,第三子像素或第四子像素位于各虚拟四边形内。
  48. 根据权利要求40所述的像素排布结构,其中,所述虚拟四边形内以两所述第一子像素的中心连线为第一对角线、两所述第二子像素的中心连线为第二对角线,所述虚拟四边形内所述第三子像素和/或第四子像素的中心偏离所述第二对角线。
  49. 根据权利要求40所述的像素排布结构,其中,所述像素排布结构包括第一像素单元和第二像素单元;所述第一像素单元和第二像素单元均包括第一子像素、第二子像素、第三子像素和第四子像素;在第一方向和第二方向上,所述第一像素单元与所述第二像素单元交替排列。
  50. 根据权利要求39所述的像素排布结构,其中,所述虚拟四边形的顶点分设在所述第一像素单元中的第一子像素中心、第二子像素中心以及与第一像素单元相邻的两第二像素单元中的第一子像素中心或第二子像素的中心;或者,所述虚拟四边形的顶点分设在所述第二像素单元中的第一子像素中心、第二子像素中心以及与第二像素单元相邻的两第一像素单元中的第一子像素中心或第二子像素的中心。
  51. 根据权利要求39所述的像素排布结构,其中,所述第三子像素和第四子像素均为绿色发光子像素;所述第一子像素为蓝色发光子像素,所述第二子像素为红色发光子像素。
  52. 根据权利要求39所述的像素排布结构,其中,
    所述第二像素单元的各子像素结构与所述第一像素单元的各子像素结构相同;或者
    所述第二像素单元的各子像素结构旋转预定角度后与所述第一像素单元中各子像素结构成镜像对称;
    所述预定角度大于0°,且小于360°。
  53. 根据权利要求52所述的像素排布结构,其中,所述预定角度为90°。
  54. 根据权利要求39所述的像素排布结构,其中,各子像素为具有长轴和短轴的规则图形或者不规则图形;
    所述第一子像素具有第一长轴和第一短轴;所述第二子像素具有第二长轴和第二短轴;所述第三子像素具有第三长轴和第三短轴;所述第四子像素具有第四长轴和第四短轴;
    所述子像素的形状选自椭圆形、圆形、扇形、哑铃形、梨形、四边形、多边形、类矩形、圆角矩形、星形、心形的一种;
    在所述第一像素单元内,所述第二长轴、第三长轴和第四长轴两两平行;
    所述第一长轴和第一短轴的比值在1.5~1之间;所述第二长轴和第二短轴的比值在5~1之间;所述第三长轴和第三短轴的比值在5~1之间;所述第四长轴和第四短轴的比值在5~1之间。
  55. 根据权利要求39所述的像素排布结构,其中,
    在行方向上,每行所述第一子像素中心的连线为直线;每行所述第二子像素中心的连线为直线;每行所述第三子像素或第四子像素的中心连线为非直线或近似直线。
  56. 根据权利要求39所述的像素排布结构,其中,在第一方向和第二方向上,红色 的子像素的中心不在一条直线上;或
    在第一方向和第二方向上,绿色的子像素的中心不在一条直线上;或
    在第一方向和第二方向上,蓝色的子像素的中心不在一条直线上。
  57. 一种显示面板,包括权利要求1-56任意一项所述的像素排布结构。
  58. 一种显示装置,包括权利要求57所述的显示面板。
PCT/CN2021/089606 2020-07-01 2021-04-25 像素排布结构、显示面板及显示装置 WO2022001327A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2022580483A JP2023532055A (ja) 2020-07-01 2021-04-25 画素配列構造、表示パネル及び表示装置
KR1020237002010A KR20230017359A (ko) 2020-07-01 2021-04-25 픽셀 배열 구조, 디스플레이 패널 및 디스플레이 장치
EP23152335.8A EP4203655A1 (en) 2020-07-01 2021-04-25 Pixel arrangement structure, display panel, and display device
KR1020237000098A KR20230010812A (ko) 2020-07-01 2021-04-25 픽셀 배열 구조, 디스플레이 패널 및 디스플레이 장치
KR1020237002013A KR20230017360A (ko) 2020-07-01 2021-04-25 픽셀 배열 구조, 디스플레이 패널 및 디스플레이 장치
EP23152340.8A EP4210455A1 (en) 2020-07-01 2021-04-25 Pixel arrangement structure, display panel, and display device
EP21833145.2A EP4177954A4 (en) 2020-07-01 2021-04-25 Pixel arrangement structure, display panel, and display device
US17/980,839 US20230071258A1 (en) 2020-07-01 2022-11-04 Pixel arrangement structures, display panels, and display devices
US17/982,250 US20230065025A1 (en) 2020-07-01 2022-11-07 Pixel arrangement structures, display panels, and display devices
US17/982,253 US20230058293A1 (en) 2020-07-01 2022-11-07 Pixel arrangement structures, display panels, and display devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010622095.6A CN112436029B (zh) 2020-07-01 2020-07-01 像素排布结构、显示面板及显示装置
CN202010622109.4 2020-07-01
CN202010622109.4A CN112436030B (zh) 2020-07-01 2020-07-01 像素排布结构、显示面板及显示装置
CN202010622110.7A CN112436031B (zh) 2020-07-01 2020-07-01 像素排布结构、显示面板及显示装置
CN202010622110.7 2020-07-01
CN202010622095.6 2020-07-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/980,839 Continuation US20230071258A1 (en) 2020-07-01 2022-11-04 Pixel arrangement structures, display panels, and display devices
US17/982,250 Continuation US20230065025A1 (en) 2020-07-01 2022-11-07 Pixel arrangement structures, display panels, and display devices
US17/982,253 Continuation US20230058293A1 (en) 2020-07-01 2022-11-07 Pixel arrangement structures, display panels, and display devices

Publications (1)

Publication Number Publication Date
WO2022001327A1 true WO2022001327A1 (zh) 2022-01-06

Family

ID=79317367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089606 WO2022001327A1 (zh) 2020-07-01 2021-04-25 像素排布结构、显示面板及显示装置

Country Status (6)

Country Link
US (3) US20230071258A1 (zh)
EP (3) EP4177954A4 (zh)
JP (3) JP2023532055A (zh)
KR (3) KR20230017360A (zh)
TW (1) TWI780694B (zh)
WO (1) WO2022001327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4362643A1 (en) * 2022-10-25 2024-05-01 Samsung Display Co., Ltd. Display panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974482B2 (en) * 2020-11-30 2024-04-30 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and related devices
TWI831595B (zh) * 2023-02-02 2024-02-01 華碩電腦股份有限公司 降低顯示面板邊緣彩邊現象之方法
CN116798336B (zh) * 2023-08-21 2023-11-14 长春希达电子技术有限公司 亚像素单元排布结构、显示器、虚拟像素结构和复用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140055330A1 (en) * 2012-08-24 2014-02-27 Sung-Jae Park Pixels group and display panel having the same
CN106653799A (zh) * 2016-10-31 2017-05-10 昆山工研院新型平板显示技术中心有限公司 像素结构以及包含所述像素结构的oled显示面板
US20170133449A1 (en) * 2013-06-07 2017-05-11 Samsung Display Co., Ltd. Display device
CN106935612A (zh) * 2015-12-30 2017-07-07 昆山工研院新型平板显示技术中心有限公司 Oled像素结构、有机发光显示器件及其显示方法
CN110518036A (zh) * 2019-08-23 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN112436031A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置
CN112436029A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置
CN112436030A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190843B1 (ko) * 2013-07-09 2020-12-15 삼성디스플레이 주식회사 단위 화소 및 이를 구비한 유기 발광 표시 장치
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN109148543B (zh) * 2018-08-30 2022-04-19 京东方科技集团股份有限公司 一种像素结构及显示面板
CN109524449B (zh) * 2019-01-09 2020-12-04 昆山国显光电有限公司 像素结构、显示基板和显示装置
CN110444569A (zh) * 2019-08-02 2019-11-12 云谷(固安)科技有限公司 像素排列结构及显示面板
CN111341817B (zh) * 2020-03-11 2021-08-13 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140055330A1 (en) * 2012-08-24 2014-02-27 Sung-Jae Park Pixels group and display panel having the same
US20170133449A1 (en) * 2013-06-07 2017-05-11 Samsung Display Co., Ltd. Display device
CN106935612A (zh) * 2015-12-30 2017-07-07 昆山工研院新型平板显示技术中心有限公司 Oled像素结构、有机发光显示器件及其显示方法
CN106653799A (zh) * 2016-10-31 2017-05-10 昆山工研院新型平板显示技术中心有限公司 像素结构以及包含所述像素结构的oled显示面板
CN110518036A (zh) * 2019-08-23 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN112436031A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置
CN112436029A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置
CN112436030A (zh) * 2020-07-01 2021-03-02 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177954A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4362643A1 (en) * 2022-10-25 2024-05-01 Samsung Display Co., Ltd. Display panel

Also Published As

Publication number Publication date
EP4210455A1 (en) 2023-07-12
EP4203655A1 (en) 2023-06-28
JP2023102289A (ja) 2023-07-24
EP4177954A1 (en) 2023-05-10
US20230058293A1 (en) 2023-02-23
KR20230017360A (ko) 2023-02-03
EP4177954A4 (en) 2023-06-28
KR20230010812A (ko) 2023-01-19
TWI780694B (zh) 2022-10-11
TW202137186A (zh) 2021-10-01
JP2023532055A (ja) 2023-07-26
US20230071258A1 (en) 2023-03-09
US20230065025A1 (en) 2023-03-02
KR20230017359A (ko) 2023-02-03
JP2023102290A (ja) 2023-07-24

Similar Documents

Publication Publication Date Title
WO2022001311A1 (zh) 显示面板及显示装置
CN112436031B (zh) 像素排布结构、显示面板及显示装置
CN112436029B (zh) 像素排布结构、显示面板及显示装置
WO2021179837A1 (zh) 像素排布结构、显示面板及显示装置
WO2022001327A1 (zh) 像素排布结构、显示面板及显示装置
AU2021201511B2 (en) Pixel arrangement structure, display substrate, display device and mask plate group
WO2020020337A1 (zh) 子像素排列结构、掩膜装置、显示面板及装置
WO2022052514A1 (zh) 显示基板以及显示装置
WO2019153951A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
CN112436030B (zh) 像素排布结构、显示面板及显示装置
WO2019153949A1 (zh) 像素排列结构、显示基板和显示装置
TWI779689B (zh) 顯示面板及顯示裝置
WO2021179859A1 (zh) 显示面板及显示装置
WO2023109186A1 (zh) 像素排布结构、显示面板和显示装置
WO2021093481A1 (zh) 有机发光显示基板及其制备方法、显示装置
CN115548079A (zh) 一种阵列基板、显示面板及显示装置
US20240179991A1 (en) Array substrate and display device
CN113097273B (zh) 一种显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833145

Country of ref document: EP

Effective date: 20230201