WO2022001321A1 - 伽马调试方法及伽马调试装置 - Google Patents

伽马调试方法及伽马调试装置 Download PDF

Info

Publication number
WO2022001321A1
WO2022001321A1 PCT/CN2021/089291 CN2021089291W WO2022001321A1 WO 2022001321 A1 WO2022001321 A1 WO 2022001321A1 CN 2021089291 W CN2021089291 W CN 2021089291W WO 2022001321 A1 WO2022001321 A1 WO 2022001321A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
value
target
sub
register
Prior art date
Application number
PCT/CN2021/089291
Other languages
English (en)
French (fr)
Inventor
王玉青
陈心全
张小宝
韩冲
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2022001321A1 publication Critical patent/WO2022001321A1/zh
Priority to US17/835,447 priority Critical patent/US11823609B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the present application relates to the field of display, in particular to a gamma debugging method and a gamma debugging device.
  • the under-screen camera means that the camera is located below the display screen and does not affect the display function of the display screen.
  • the display screen above the camera normally displays the image, and when the user uses the camera, the display screen above the camera does not display the image.
  • the current display screen still has the problem of inconsistent brightness when the camera position is set and when the camera position is not set.
  • the present application provides a gamma debugging method and a gamma debugging device, which can improve the brightness consistency of a display panel.
  • Aspect 1 The present application provides a gamma debugging method.
  • the gamma debugging method is used for a display panel, the display panel has a first display area and a second display area, and the light transmittance of the first display area is greater than that of the second display area the light transmittance, the method includes: selecting a test area with the same shape and size as the first display area in the second display area; acquiring the first current brightness value of the test area when the specified grayscale corresponds to the specified register value; according to The linear relationship between the first current brightness value and the register value of the display panel and the brightness determines multiple first target brightness values when the first display area corresponds to multiple register values under the specified gray scale; according to the multiple first target brightness values , and perform gamma debugging on the first display area.
  • an embodiment of the present application provides a gamma debugging device.
  • the gamma debugging device is used in a display panel.
  • the display panel has a first display area and a second display area.
  • the light transmittance of the first display area is greater than that of the first display area.
  • the device includes: a test area setting module for selecting a test area with the same shape and size as the first display area in the second display area; a current brightness value acquisition module for acquiring the test area The first current brightness value corresponding to the specified register value under the specified gray scale; the target brightness value determination module is used to determine the first display area according to the first current brightness value and the linear relationship between the register value and the brightness of the display panel.
  • a plurality of first target luminance values corresponding to a plurality of register values under the gray scale; the gamma debugging module is used to perform gamma debugging on the first display area according to the plurality of first target luminance values.
  • the shape and size of the selected test area and the first display area are the same, so based on the first current luminance value of the test area, the determined first A target brightness value is more in line with the target brightness actually required by the first display area, and the test area is located in the second display area, so that the actual display brightness of the first display area and the actual display brightness of the second display area tend to be consistent, improving the display The brightness of the panel is consistent, thereby improving the user experience; on the other hand, according to the linear relationship between the register value of the display panel and the brightness, it only needs to test the first current brightness value of the test area once to determine that the first display area is in the designated area.
  • the multiple first target brightness values corresponding to multiple register values in the gray scale can avoid obtaining the current brightness value of the test area multiple times, thereby simplifying the gamma debugging process and shortening the gamma debugging time
  • FIG. 1 shows a schematic flowchart of a gamma debugging method according to an embodiment of the present application.
  • FIG. 2 shows a schematic top-view structure diagram of a display panel provided by an embodiment.
  • FIG. 3 shows a schematic diagram of the relationship between register values and brightness of a display panel provided by an example.
  • FIG. 4 shows a schematic top-view structure diagram of a display panel provided by another example.
  • FIG. 5 shows a schematic diagram of a voltage drop of a display panel according to an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a voltage drop after the display panel is omitted according to another embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a gamma debugging apparatus according to an embodiment of the present application.
  • a light-transmitting display area may be provided on the above-mentioned electronic device, and the photosensitive component may be arranged on the back of the light-transmitting display area, so as to ensure the normal operation of the photosensitive component, a full-screen display of the electronic device can be realized.
  • embodiments of the present application provide a gamma debugging method and a gamma debugging device.
  • the following will describe the embodiments of the gamma debugging method and the gamma debugging device with reference to the accompanying drawings.
  • the embodiment of the present application provides a gamma debugging method, and the gamma debugging method is used for a display panel, and the display panel may be an organic light emitting diode (Organic Light Emitting Diode, OLED) display panel.
  • OLED Organic Light Emitting Diode
  • the gamma debugging method may include the following steps:
  • step 110 a test area with the same shape and size as the first display area (transparent display area) is selected in the second display area (main display area).
  • Step 120 Obtain the first current luminance value of the test area corresponding to the specified register value under the specified gray scale.
  • Step 130 According to the first current luminance value and the linear relationship between the register value of the display panel and the luminance, determine a plurality of first target luminance values when the first display area corresponds to a plurality of register values at a specified gray scale.
  • Step 140 Perform gamma adjustment on the first display area according to the plurality of first target luminance values.
  • the gamma debugging method provided by the embodiment of the present application can be used for the display panel as shown in FIG. 2 .
  • the display panel 100 has a first display area AA1, a second display area AA2, and a non-display area NA surrounding the first display area AA1 and the second display area AA2.
  • the light transmittance of the first display area AA1 is greater than The transmittance of the second display area AA2.
  • the light transmittance of the first display area AA1 may be greater than or equal to 15%.
  • the transmittance of at least part of the functional film layer of the display panel in this embodiment may be greater than 80%, Even at least part of the functional film layer may have a light transmittance greater than 90%.
  • the light transmittance of the first display area AA1 of the display panel 100 is greater than the light transmittance of the second display area AA2, so that the display panel 100 can integrate a photosensitive component on the back of the first display area AA1, so as to realize the screen of the photosensitive component such as a camera.
  • the first display area AA1 can display images, which increases the display area of the display panel 100 and realizes a full-screen design of the display device.
  • the shape of the first display area AA1 may be a circle, a rectangle, an ellipse, etc., which is not limited in this application.
  • the light transmittance of the first display area AA1 is improved by reducing the pixel density of the first display area AA1.
  • the display effect will deteriorate with the reduction of the pixel density. Therefore, the size of the first display area AA1 can be adjusted The setting is relatively small, and its size can only be enough to cover the photosensitive surface of the photosensitive component.
  • the shape and size of the selected test area and the first display area are the same, so based on the first current luminance value of the test area, the determined first target luminance value is more In line with the actual target brightness required for gamma debugging in the first display area, and the test area is located in the second display area, so that the actual display brightness of the first display area and the actual display brightness of the second display area tend to be consistent, improving the display panel's brightness.
  • Brightness consistency improves user experience; on the other hand, according to the linear relationship between the register value of the display panel and the brightness, it only needs to test the first current brightness value of the test area once to determine that the first display area is at the specified grayscale
  • the multiple first target brightness values corresponding to multiple register values can avoid obtaining the current brightness value of the test area multiple times, thereby simplifying the gamma debugging process and improving the gamma debugging efficiency.
  • the selected test area Q1 may be located at any position of the second display area AA2.
  • Different display panels have different shapes and sizes.
  • the center point of the test area Q1 may coincide with the center point of the display panel 100 . In this way, it is possible to avoid repeatedly moving the position of the optical measuring device to obtain the brightness of the test areas of different display panels, thereby improving the efficiency of gamma debugging.
  • the specified grayscale may be any grayscale.
  • the specified grayscale may be 255 grayscale.
  • the register value may be a value from "000” to "FFF" in hexadecimal notation.
  • the register value represents the brightness level parameter of the display panel, and different register values can represent different display brightness levels when displaying the same screen.
  • the register value is "FFF”, which can represent the maximum display brightness level corresponding to the brightest state; the register value is "000”, which can represent the minimum display brightness level corresponding to the darkest state.
  • the range of register values corresponding to the same screen is "000" to "FFF".
  • the type of the gamma register may be a 51 register and the register value may be a 51 register value.
  • the specified register value may be any register value. For example, specify a register value of "7FF".
  • step 120 what is obtained may be the first current brightness value of the test area when the corresponding register value is "7FF" under the grayscale of 255, that is, the first current luminance value when the corresponding register value of the test area is "7FF" under the white screen Current brightness value.
  • an optical measuring device such as a color analyzer CA310 or a color analyzer CA410, can be used to measure the brightness of the test area. During the measurement process, the center point of the lens of the optical measuring device can be aligned with the center point of the test area to obtain the brightness value of the test area more accurately.
  • step 130 under the specified gray scale, the multiple register values of the first display area and the multiple first target luminance values may be in one-to-one correspondence.
  • the register value of the display panel and the brightness of the second display area of the display panel have a linear relationship and are a straight line passing through the origin.
  • step 130 may specifically include: taking the first current luminance value as the first target luminance value when the first display area corresponds to the specified register value at the specified grayscale; obtaining the second display area at the specified grayscale The second current brightness value when corresponding to the specified register value; the ratio of the first product to the second product is taken as the first target brightness value of the first display area corresponding to other register values under the specified gray scale; wherein, the first product is the 2.
  • the product of the current brightness value and other register values, the second product is the product of the specified register value and the coefficient M, the coefficient M is the ratio of the second current brightness value and the first current brightness value, and the other register values are among the multiple register values. Any other register value other than the specified register value.
  • both the first display area AA1 and the second display area AA2 of the display panel 100 can be controlled to display normally, that is, the entire display panel can be controlled to display a white image.
  • the second current luminance value L2 7FF of the second display area when the register value corresponding to the 255 gray scale is "7FF" can be obtained.
  • the center point of the lens of the optical measuring device can be aligned with the center point of the second display area AA2, so as to obtain the brightness value of the second display area AA2 more accurately.
  • the luminance ratio between the second display area and the first display area is constant.
  • the first current luminance value of the test area when the 255 grayscale corresponding register value is "7FF" is L1 7FF
  • the shape and size of the test area and the first display area are the same, and L1 7FF can be directly used as the first display area.
  • the first target luminance value when the corresponding register value is "7FF" in the 255 grayscale area.
  • the first target luminance value when the first display area corresponds to other register values at a gray scale of 255 can be calculated according to the following formula (1).
  • L1 x represents the first target brightness value of the first display area when the corresponding register value is X at 255 grayscale
  • L2 x represents the current brightness value of the second display area when the corresponding register value is X at 255 grayscale
  • M represents the ratio of the second current luminance value L2 7FF to the first current luminance value L1 7FF.
  • the value of M may be between 2 and 2.5, which is not limited in this application.
  • the register value of the display panel has a linear relationship with the brightness of the display panel, and L2 x can be calculated according to the following formula (2).
  • the register value expressed in hexadecimal can be converted to decimal, and the conversion of hexadecimal "7FF" to decimal is 2047.
  • L2 7FF ⁇ X is the first product
  • 7FF ⁇ M is the second product
  • M is
  • the current brightness of the second display area at the specified register value can be measured only once, the current brightness of the second display area at any register value can be calculated, and then the first display area at any register value can be calculated. value of the first target luminance value. While ensuring that the determined first target brightness value is more in line with the target brightness actually required for gamma debugging in the first display area, it can avoid multiple measurements of the current brightness of the second display area or test area, thereby improving gamma debugging efficiency .
  • step 130 may specifically include: taking the first current luminance value as the first target luminance value when the first display area corresponds to the specified register value under the specified gray scale; calculating the first current luminance value and other registers The third product of values, the ratio of the third product to the specified register value is taken as the first target brightness value corresponding to other register values in the first display area under the specified grayscale; wherein, the other register values are divided by multiple register values. Any other register value other than the specified register value.
  • the first current luminance value of the test area when the 255 grayscale corresponding register value is "7FF" is L1 7FF
  • the shape and size of the test area and the first display area are the same, and L1 7FF can be directly used as the first display area.
  • the first target luminance value when the corresponding register value is "7FF" in the 255 grayscale area.
  • the first target luminance value L1 x when the first display area corresponds to other register values at a gray scale of 255 can be calculated according to the following formula (3).
  • L1 7FF ⁇ X is the third product.
  • register values expressed in hexadecimal can be converted to decimal.
  • the current brightness value of the test area can be measured only once, and the first target brightness value of the first display area at any register value can be calculated. While ensuring that the determined first target brightness value is more in line with the target brightness actually required for gamma debugging in the first display area, it can avoid multiple measurements of the current brightness of the second display area or test area, thereby improving gamma debugging efficiency .
  • the second display area further includes an auxiliary area Q2 at least partially surrounding the test area Q1.
  • the method may further include: controlling the auxiliary area Q2 to display completely black , control other areas of the first display area AA1 and the second display area AA2 except the auxiliary area Q2 to display normally.
  • the first grayscale is 255 grayscale
  • the auxiliary area Q2 can be controlled to display completely black
  • other areas of the first display area AA1 and the second display area AA2 except the auxiliary area Q2 can be controlled to normally display a white picture.
  • Optical measurement equipment such as the lens of the color analyzer
  • the auxiliary area Q2 is completely black, which can better align the lens of the optical measurement equipment with the test area Measure the brightness value of the test area Q1;
  • the auxiliary area Q2 is completely black, which can prevent the brightness of the display area around the test area Q1 from interfering with the test area Q1, so that the brightness of the test area Q1 can also be accurately measured. value.
  • the auxiliary area is disposed at least partially around the test area, and it should be understood that the shape of the auxiliary area matches the shape of the test area.
  • the size of the auxiliary area in the first direction and/or the second direction does not need to be too large, and the size of the auxiliary area can be set to achieve the effect of aligning the lens of the optical measuring device with the test area.
  • step 140 may specifically include: performing gamma debugging on the first display area according to each first target luminance value to obtain each target data voltage value corresponding to each sub-pixel in the first display area.
  • each target data voltage value corresponding to each sub-pixel in the first display area at the 255 grayscale corresponding register value can be obtained, and the first display area at the 255 grayscale corresponding register value is other
  • the above target data voltage value can be stored in the integrated circuit (Integrated Circuit, IC) of the display panel, so that the actual display brightness of the first display area conforms to each first target. Brightness value.
  • the data driving circuit 10 and the total power supply voltage terminal 20 of the display panel 100 are located in the non-display area NA of the display panel 100 , and are located on either side of the first display area AA1 in the second direction Y, the data driving The circuit 10 and the total power supply voltage terminal 20 are arranged on the same side.
  • the first display area AA1 of the display panel 100 includes n rows of sub-pixels D11 to D1n
  • the second display area AA2 includes m rows of sub-pixels D21 to D2m in total.
  • the data driving circuit 10 can be electrically connected to the pixel circuits 30 of the sub-pixels in the first display area AA1 and the second display area AA2 of the display panel 100 through the data lines 11 , and provide light-emitting signals for the sub-pixels of the display panel 100 through the data lines 11 , so that the display panel 100 displays a preset image.
  • the total power supply voltage terminal 20 may be electrically connected to the pixel circuits 30 of the sub-pixels in the first display area AA1 and the second display area AA2 of the display panel 100 through the power supply voltage line 21 .
  • the data line 11 and the power supply voltage line 21 themselves have resistance values.
  • the voltage drop (IR drop) on the data line 11 and the power supply voltage line 21 is gradually increasing, and the current value on the data line 11 is very small, and its current value is at the microamp level; and the current value on the power supply voltage line 21 is usually at the milliamp level, which is lower than that on the data line 11. The current value is much larger, therefore, the voltage drop on the data line 11 can be ignored.
  • the data voltage value output by the data driving circuit 10 is the data voltage value actually obtained by the sub-pixels in each row, and the power supply voltage value actually obtained by the sub-pixels in each row is smaller than the power supply voltage value output by the total power supply voltage terminal 20 .
  • the gamma debugging is an overall debugging, that is, when the first display area obtained through step 140 has a corresponding register value of “7FF” or other values in the 255 grayscale, the target data voltage values corresponding to each sub-pixel are the same value. Data.
  • the current I flowing through the sub-pixel is proportional to (Vdd-Data) 2
  • the display brightness of the sub-pixel is also proportional to its current I, so the sub-pixel
  • the brightness of a pixel is proportional to (Vdd-Data) 2.
  • Sub-pixels located in different rows have different power supply voltage values Vdd. If the same data voltage value Data obtained by gamma debugging is provided to sub-pixels in different rows, the actual display brightness of sub-pixels in different rows will be different. Are not the same.
  • the first display area includes n rows of sub-pixels, where n is a positive integer greater than or equal to 1.
  • the method may further include:
  • Step 150 Determine the target current value corresponding to each sub-pixel in the first display area based on each target data voltage value corresponding to each sub-pixel in the first display area;
  • Step 160 Determine the power supply voltage value actually obtained by each sub-pixel in the first display area based on the target current value corresponding to each sub-pixel in the first display area;
  • Step 170 Calculate the data voltage value to be output by the data driving circuit of the display panel according to the following formula (4):
  • Data' represents the data voltage value that the data driving circuit of the display panel needs to output
  • Data represents the target data voltage value
  • Vdd represents the power supply voltage value output by the power supply voltage terminal of the first display area
  • Vdd x represents the first display area.
  • step 150 the target current value corresponding to each sub-pixel in the first display area can be calculated according to formula (5).
  • k is a known coefficient, and k is determined by the channel length and width of the transistor in the pixel circuit corresponding to the sub-pixel.
  • the data voltage value Data' required to be output by the data driving circuit required by any row of sub-pixels in the first display area can be accurately determined, and the data voltage value Data' required to be output by the data driving circuit can be stored in the display area.
  • the actual display brightness of the first display area is more in line with each first target brightness value.
  • each column of sub-pixels in the first display area is electrically connected to the power supply voltage terminal 211 of the first display area through a power supply voltage line, and the one in each column of sub-pixels that is closest to the power supply voltage terminal is the first row of sub-pixels. pixel. As shown in FIG.
  • one power supply voltage line 21 can be electrically connected to the sub-pixels of the first display area AA1 and the second display area AA2 at the same time, that is, the power supply voltage value of the power supply voltage terminal 211 of the first display area AA1 is determined by the display panel 100
  • the power supply voltage value of the power supply voltage terminal 211 of the first display area AA1 may be the same as the power supply voltage value actually obtained by the sub-pixel D2m in the mth row of the second display area AA2.
  • the power supply voltage value actually obtained by each sub-pixel in the first display area is calculated according to the following formula (6):
  • I tatal represents the total current value output by the power supply voltage terminal 211 of the first display area
  • I i represents the target current value corresponding to the ith row of sub-pixels
  • i is greater than or equal to 1 and less than or equal to x
  • R represents the adjacent two rows of sub-pixels The resistance value of the supply voltage line between the pixels.
  • a row of sub-pixels D11-D1n in the first display area AA1 is taken as an example.
  • the power supply voltage line itself has resistance, and the voltage drop dVdd on the power supply voltage line can be calculated according to the following formula.
  • the power supply voltage value Vdd x actually obtained by each sub-pixel in the column can be calculated according to the following formula.
  • Vdd 1 Vdd-dVdd 1 (11)
  • Vdd 2 Vdd-dVdd 1 -dVdd 2 (12)
  • Vdd 3 Vdd-dVdd 1 -dVdd 2 -dVdd 3 (13)
  • the power supply voltage value actually obtained by any row of sub-pixels in the first display area can be accurately determined, and further, the data required to be output by the data driving circuit required by any row of sub-pixels in the first display area can be accurately determined Voltage value Data'.
  • the gamma debugging method provided by the embodiments of the present application may further include: determining a second target luminance value of the second display area at the first gray scale according to target requirements; and according to the second target luminance The gamma adjustment is performed on the second display area, so that the difference between the actual brightness value of the second display area and the second target brightness value is within the first preset range.
  • step 110 gamma debugging may be performed on the second display area AA2, so that the actual brightness value of the second display area AA2 can meet the actual requirements.
  • the target requirement may be a customer requirement.
  • the customer generally proposes a brightness requirement for a white image, that is, the brightness requirement under 255 grayscale. If the first grayscale is 255 grayscale, then the second target brightness value is proposed by the customer. The brightness requirement of the white screen is proposed. If the first grayscale is another grayscale value, the second target luminance value of the second display area AA2 at the first grayscale can be calculated according to the following formula (15).
  • L 255 represents the luminance value corresponding to the 255 grayscale, which is generally given in the target requirements.
  • S represents the value of the first gray scale, and T represents a gamma (Gamma) value.
  • T may be 2.2.
  • L s represents the second target luminance value of the second display area AA2 at the first gray scale.
  • the second target brightness value gamma debugging is performed on the second display area AA2, specifically, the gray-scale voltage is provided to the sub-pixels in the second display area AA2, and the value of the gray-scale voltage is continuously adjusted until after the adjustment Under the gray-scale voltage of , the difference between the actual brightness value of the second display area AA2 and the second target brightness value is within the first preset range to meet the target requirement.
  • the specific value of the first preset range may be set according to actual requirements.
  • the first preset range may be -43nit to 43nit, which is not limited in this application.
  • gamma debugging is first performed on the second display area according to the target requirements to meet the actual requirements, so as to ensure that there is no obvious difference in brightness between the first display area and the second display area.
  • the display area also meets the actual needs.
  • the gamma debugging method provided in the embodiments of the present application may further include: performing voltage drop compensation on the second display area, so that the luminance value of the first area at the first gray scale is the same as that of the second display area. The difference between the average luminance values of the regions under the first gray scale is within the second preset range.
  • the above steps may be performed before the step of performing gamma adjustment on the second display area.
  • the voltage drop (IR drop) on the data line and the power supply voltage line increases gradually. Therefore, the different positions of the second display area Display brightness may vary. Compensating the voltage drop in the second display area can ensure that the display brightness at different positions of the second display area is consistent with the overall brightness of the second display area, that is, to ensure that the brightness value of the first area at the first gray scale is the same as the first area.
  • the average luminance values of the two display areas at the first gray scale tend to be the same.
  • the specific value of the second preset range may be set according to actual requirements.
  • the second preset range may be 8.6 nit to 15 nit, which is not limited in this application.
  • step 140 may include: calculating, based on the first target luminance value of the first display area at the specified grayscale, the first target luminance value of the first display area at other grayscales; The first target luminance value of the first display area at the first gray scale and the first target luminance values of the other gray scales are used to perform gamma adjustment on the first display area.
  • the first target luminance value of the first display area at other gray scales can be calculated according to the above formula (15).
  • the default gamma value can be 2.2 or other values.
  • FIG. 7 shows a schematic structural diagram of a gamma debugging apparatus provided according to an embodiment of the present application.
  • the gamma debugging device can be used for the above-mentioned display panel.
  • the gamma debugging device provided by the embodiment of the present application includes the following modules:
  • the test area selection module 701 is used to select the test area identical to the shape and size of the first display area in the second display area;
  • the current brightness value acquiring module 702 is configured to acquire the first current brightness value when the test area corresponds to the specified register value under the specified gray scale;
  • the target brightness value determination module 703 is used to determine a plurality of first target brightnesses when the first display area corresponds to a plurality of register values under a specified gray scale according to the first current brightness value and the linear relationship between the register value of the display panel and the brightness value;
  • the gamma debugging module 704 is configured to perform gamma debugging on the first display area according to the plurality of first target brightness values.
  • the shape and size of the selected test area and the first display area are the same, so based on the first current luminance value of the test area, the determined first target luminance value is more In line with the target brightness actually required by the first display area, and the test area is located in the second display area, so that the actual display brightness of the first display area and the actual display brightness of the second display area tend to be consistent, improving the brightness consistency of the display panel , so as to improve the user experience; on the other hand, according to the linear relationship between the register value of the display panel and the brightness, it is only necessary to test the first current brightness value of the test area once to determine that the first display area corresponds to the specified grayscale.
  • the multiple first target brightness values when there are one register value can avoid obtaining the current brightness value of the test area multiple times, thereby simplifying the gamma debugging process and shortening the gamma debugging time.
  • the target luminance value determination module 703 can be specifically used for:
  • the first product is the product of the second current brightness value and other register values
  • the second product is the product of the specified register value and the coefficient M
  • the coefficient M is the ratio of the second current brightness value and the first current brightness value
  • other registers The value is any other register value except the specified register value among the multiple register values.
  • the current brightness of the second display area at the specified register value can be measured only once, the current brightness of the second display area at any register value can be calculated, and then the first display area at any register value can be calculated. value of the first target luminance value. While ensuring that the determined first target brightness value is more in line with the target brightness actually required for gamma debugging in the first display area, it can avoid multiple measurements of the current brightness of the second display area or test area, thereby improving gamma debugging efficiency .
  • the target luminance value determination module 703 can be specifically used for:
  • the other register value is any other register value except the specified register value among the multiple register values.
  • the current brightness value of the test area can be measured only once, and the first target brightness value of the first display area at any register value can be calculated. While ensuring that the determined first target brightness value is more in line with the target brightness actually required for gamma debugging in the first display area, it can avoid multiple measurements of the current brightness of the second display area or test area, thereby improving gamma debugging efficiency .
  • the apparatus further includes a control module configured to control the auxiliary area to be displayed in full black, and to control other areas of the first display area and the second display area except the auxiliary area to display normally.
  • the auxiliary area Q2 is completely black, which can better align the lens of the optical measurement equipment with the test area Q1, so as to measure the brightness value of the test area Q1 more accurately; on the other hand, the auxiliary area Q2 is fully displayed Black display can prevent the brightness of the display area around the test area Q1 from interfering with the test area Q1, so that the brightness value of the test area Q1 can also be accurately measured.
  • the gamma debugging module 704 is specifically configured to:
  • gamma debugging is performed on the first display area to obtain each target data voltage value corresponding to each sub-pixel in the first display area.
  • the above target data voltage values can be stored in the integrated circuit IC of the display panel, so that the actual display brightness of the first display area conforms to the first target brightness values.
  • the first display area of the display panel includes n rows of sub-pixels, where n is a positive integer greater than or equal to 1, and the apparatus further includes a data voltage determination module for:
  • Data' Data-(Vdd-Vdd x );
  • Data' represents the data voltage value that the data driving circuit of the display panel needs to output
  • Data represents the target data voltage value
  • Vdd represents the power supply voltage value output by the power supply voltage terminal of the first display area
  • Vdd x represents the first display area.
  • the data voltage value Data' required to be output by the data driving circuit required by any row of sub-pixels in the first display area can be accurately determined, and the data voltage value Data' required to be output by the data driving circuit can be stored in the display area.
  • the actual display brightness of the first display area is more in line with each first target brightness value.
  • each column of sub-pixels in the first display area is electrically connected to the power supply voltage terminal of the first display area through a power supply voltage line, and the sub-pixels in each column that are closest to the power supply voltage terminal are the first row of sub-pixels , the data voltage determination module is specifically used for:
  • I tatal represents the total current value output by the power supply voltage terminal of the first display area
  • I i represents the target current value corresponding to the ith row of sub-pixels
  • i is greater than or equal to 1 and less than or equal to x
  • R represents the adjacent two rows of sub-pixels resistance value between the supply voltage lines.
  • the power supply voltage value actually obtained by any row of sub-pixels in the first display area can be accurately determined, and further, the data required to be output by the data driving circuit required by any row of sub-pixels in the first display area can be accurately determined Voltage value Data'.
  • the gamma debugging module 704 may also be used to:
  • gamma debugging is performed on the second display area, so that the difference between the actual brightness value of the second display area and the second target brightness value is within a preset range.
  • gamma debugging is first performed on the second display area according to the target requirements to meet the actual requirements, so as to ensure that there is no obvious difference in brightness between the first display area and the second display area.
  • the display area also meets the actual needs.
  • the center point of the test area coincides with the center point of the display panel. In this way, it is possible to avoid repeatedly moving the position of the optical measuring device to obtain the brightness of the test areas of different display panels, thereby improving the efficiency of gamma debugging.
  • the functional blocks shown in the above-described structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof.
  • it When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the present application are programs or code segments used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave.
  • a "machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • the code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种伽马调试方法及伽马调试装置,伽马调试方法用于显示面板,显示面板具有第一显示区(AA1)及第二显示区(AA2),第一显示区(AA1)的透光率大于第二显示区(AA2)的透光率,方法包括:在第二显示区选取与第一显示区的形状及尺寸相同的测试区(110);获取测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值(120);根据第一当前亮度值及显示面板的寄存器值与亮度的线性关系,确定第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值(130);根据多个第一目标亮度值,对第一显示区进行伽马调试(140)。该伽马调试方法及伽马调试装置能够提高显示面板的亮度一致性。

Description

伽马调试方法及伽马调试装置
相关申请的交叉引用
本申请要求享有于2020年06月29日提交的名称为“伽马调试方法及伽马调试装置”的中国专利申请第202010602541.7号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示领域,具体涉及一种伽马调试方法及伽马调试装置。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。
目前出现了屏下摄像头的设计,屏下摄像头是指摄像头位于显示屏下方且不影响显示屏的显示功能。当用户不使用摄像头时,摄像头上方的显示屏正常显示图像,当用户使用摄像头时,摄像头上方的显示屏不显示图像。
但是,目前的显示屏仍存在设置摄像头位置处和未设置摄像头位置处在显示时亮度不一致的问题。
发明内容
本申请提供一种伽马调试方法及伽马调试装置,能够提高显示面板的亮度一致性。第一方面本申请提供一种伽马调试方法,该伽马调试方法用于显示面板,该显示面板具有第一显示区及第二显示区,第一显示区的透光率大于第二显示区的透光率,该方法包括:在第二显示区选取与第一显示区的形状及尺寸相同的测试区;获取测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值;根据第一当前亮度值及显示面板的寄存器值与亮度的线性关系,确定第一显示区在指定灰阶下对应多个寄存器值时的多 个第一目标亮度值;根据多个第一目标亮度值,对第一显示区进行伽马调试。
第二方面,本申请实施例提供一种伽马调试装置,该伽马调试装置用于显示面板,该显示面板具有第一显示区及第二显示区,第一显示区的透光率大于第二显示区的透光率,该装置包括:测试区设置模块,用于在第二显示区选取与第一显示区的形状及尺寸相同的测试区;当前亮度值获取模块,用于获取测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值;目标亮度值确定模块,用于根据第一当前亮度值及显示面板的寄存器值与亮度的线性关系,确定第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值;伽马调试模块,用于根据多个第一目标亮度值,对第一显示区进行伽马调试。
根据本申请实施例提供的伽马调试方法及伽马调试装置,一方面,选取的测试区与第一显示区的形状及尺寸相同,因此基于测试区的第一当前亮度值,确定出的第一目标亮度值更符合第一显示区实际所需的目标亮度,并且测试区位于第二显示区,从而使得第一显示区实际显示亮度与第二显示区的实际显示亮度趋于一致,提高显示面板的亮度一致性,从而提高用户体验;另一方面,根据显示面板的寄存器值与亮度的线性关系,仅需测试一次测试区的第一当前亮度值,即可确定出第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值,能够避免多次获取测试区的当前亮度值,从而简化伽马调试流程,缩短伽马调试时间。
附图说明
图1示出根据本申请一种实施例的伽马调试方法的流程示意图。
图2示出一种实施例提供的显示面板的俯视结构示意图。
图3示出一种示例提供的显示面板的寄存器值与亮度的关系示意图。
图4示出另一种示例提供的显示面板的俯视结构示意图。
图5示出根据本申请一种实施例的显示面板的压降示意图。
图6示出根据本申请另一种实施例的省略显示面板后的压降示意图。
图7示出根据本申请一种实施例的伽马调试装置的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
在诸如手机和平板电脑等电子设备上,需要在设置显示面板的一侧集成诸如前置摄像头、红外光传感器、接近光传感器等感光组件。在一些实施例中,可以在上述电子设备上设置透光显示区,将感光组件设置在透光显示区背面,在保证感光组件正常工作的情况下,实现电子设备的全面屏显示。
若基于同一个目标亮度值对透光显示区和主显示区进行伽马调试,由于显示面板的不同区域的压降存在差异,完成伽马调试后,显示面板的透光显示区和主显示区仍存在亮度不一致的问题,导致透光显示区和主显示区之间存在明显的分界线。
为解决上述问题,本申请实施例提供了一种伽马调试方法及伽马调试装置,以下将结合附图对伽马调试方法及伽马调试装置的各实施例进行说明。
本申请实施例提供一种伽马调试方法,该伽马调试方法用于显示面板,该显示面板可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示面板。
如图1所示,本申请实施例提供的伽马调试方法可以包括以下步骤:
步骤110,在第二显示区(主显示区)选取与第一显示区(透光显示区)的形状及尺寸相同的测试区。
步骤120,获取测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值。
步骤130,根据第一当前亮度值及显示面板的寄存器值与亮度的线性关系,确定第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值。
步骤140,根据多个第一目标亮度值,对第一显示区进行伽马调试。
本申请实施例提供的伽马调试方法可以用于如图2所示的显示面板。如图2所示,显示面板100具有第一显示区AA1、第二显示区AA2以及围绕第一显示区AA1、第二显示区AA2的非显示区NA,第一显示区AA1的透光率大于第二显示区AA2的透光率。
本申请中,第一显示区AA1的透光率可以大于等于15%。为确保第一显示区AA1的透光率大于15%,甚至大于40%,甚至具有更高的透光率,本实施例中显示面板的至少部分功能膜层的透光率可以大于80%,甚至至少部分功能膜层的透光率可以大于90%。
显示面板100的第一显示区AA1的透光率大于第二显示区AA2的透光率,使得显示面板100在第一显示区AA1的背面可以集成感光组件,实现例如摄像头的感光组件的屏下集成,同时第一显示区AA1能够显示画面,提高显示面板100的显示面积,实现显示装置的全面屏设计。
在一些实施例中,第一显示区AA1的形状可以是圆形、矩形、椭圆形等,本申请对此不作限定。通常会通过降低第一显示区AA1的像素密度,来提高第一显示区AA1的透光率,然而显示效果会随着像素密度的降低而变差,因此,可以将第一显示区AA1的尺寸设置的比较小,其尺寸可以仅够覆盖住感光组件的感光面即可。
根据本申请实施例提供的伽马调试方法,一方面,选取的测试区与第一显示区的形状及尺寸相同,因此基于测试区的第一当前亮度值,确定出的第一目标亮度值更符合第一显示区伽马调试实际所需的目标亮度,并且测试区位于第二显示区,从而使得第一显示区实际显示亮度与第二显示区的实际显示亮度趋于一致,提高显示面板的亮度一致性,从而提高用户体验;另一方面,根据显示面板的寄存器值与亮度的线性关系,仅需测试一次测试区的第一当前亮度值,即可确定出第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值,能够避免多次获取测试区的当前亮 度值,从而简化伽马调试流程,提高伽马调试效率。
在步骤110中,选取的测试区Q1可以位于第二显示区AA2的任意位置。不同显示面板的形状及尺寸上有差别,在一些实施例中,如图2所示,测试区Q1的中心点可以与显示面板100的中心点重合。如此,可避免反复移动光学量测设备的位置以获取不同显示面板的测试区的亮度,进而提高伽马调试效率。
在步骤120中,指定灰阶可以是任意灰阶。示例性的,指定灰阶可以是255灰阶。
在一些实施例中,寄存器值可以是以十六进制记法的从“000”到“FFF”的值。寄存器值表示显示面板的亮度等级参数,不同的寄存器值可以表示在显示同一画面时不同的显示亮度等级。例如,寄存器值为“FFF”,可以表示对应于最亮状态的最大显示亮度级;寄存器值为“000”,可以表示对应于最暗状态的最小显示亮度级。同一画面对应的寄存器值的范围为“000”到“FFF”。
在一些实施例中,伽马寄存器的类型可以是51寄存器,寄存器值可以是51寄存器值。
在一些实施例中,指定寄存器值可以是任意寄存器值。例如,指定寄存器值为“7FF”。
在步骤120中,获取的可以是测试区在255灰阶下对应寄存器值为“7FF”时的第一当前亮度值,即获取测试区在白色画面下对应寄存器值为“7FF”时的第一当前亮度值。在一些实施例中,可以利用光学量测设备,例如色彩分析仪CA310,或者色彩分析仪CA410量测测试区的亮度。在量测过程中,可以将光学量测设备的镜头中心点与测试区的中心点对齐,以更准确的获取测试区的亮度值。
在步骤130中,在指定灰阶下,第一显示区的多个寄存器值与多个第一目标亮度值可以是一一对应的。
如图3所示,显示面板的寄存器值与显示面板的第二显示区的亮度为线性关系且为过原点的直线。
在一些实施例中,步骤130具体可以包括:将第一当前亮度值作为第 一显示区在指定灰阶下对应指定寄存器值时的第一目标亮度值;获取第二显示区在指定灰阶下对应指定寄存器值时的第二当前亮度值;将第一乘积与第二乘积的比值作为第一显示区在指定灰阶下对应其它寄存器值的第一目标亮度值;其中,第一乘积为第二当前亮度值与其它寄存器值的乘积,第二乘积为指定寄存器值与系数M的乘积,系数M为第二当前亮度值与第一当前亮度值的比值,其它寄存器值为多个寄存器值中除指定寄存器值之外的其它任意一个寄存器值。
仍以指定灰阶为255灰阶,指定寄存器值为“7FF”为例。如图4所示,可以控制显示面板100的第一显示区AA1及第二显示区AA2均正常显示,即控制整个显示面板显示白色画面。然后可以获取第二显示区的在255灰阶对应寄存器值为“7FF”时的第二当前亮度值L2 7FF。在量测过程中,可以将光学量测设备的镜头中心点与第二显示区AA2的中心点对齐,以更准确的获取第二显示区AA2的亮度值。
同一灰阶下,寄存器值不同时,第二显示区和第一显示区的亮度比值是一定的。示例性的,测试区在255灰阶对应寄存器值为“7FF”时的第一当前亮度值为L1 7FF,测试区与第一显示区的形状及尺寸相同,可以直接将L1 7FF作为第一显示区在255灰阶对应寄存器值为“7FF”时的第一目标亮度值。可以按照下述公式(1)计算第一显示区在255灰阶下对应其它寄存器值时的第一目标亮度值。
Figure PCTCN2021089291-appb-000001
其中,L1 x表示第一显示区在255灰阶下对应寄存器值为X时的第一目标亮度值,L2 x表示第二显示区在255灰阶下对应寄存器值为X时的当前亮度值,M表示第二当前亮度值L2 7FF与第一当前亮度值为L1 7FF的比值。示例性的,M的取值可以为2~2.5之间,本申请对此并不限定。
显示面板的寄存器值与显示面板的亮度存在线性关系,可以根据下述公式(2)计算L2 x
Figure PCTCN2021089291-appb-000002
可以将十六进制表示的寄存器值换算为十进制,十六进制“7FF”换算为十进制为2047。示例性的,L2 7FF为410nit,X为“3FF”,十六进制 “3FF”换算为十进制为1023,则L2 3FF大约为205nit。在上述公式(1)、(2)中,L2 7FF×X为第一乘积,7FF×M为第二乘积,M为
Figure PCTCN2021089291-appb-000003
根据本申请实施例,可以仅测量一次第二显示区在指定寄存器值时的当前亮度,即可计算出第二显示区在任意寄存器值时的当前亮度,继而计算出第一显示区在任意寄存器值时的第一目标亮度值。在保证确定出的第一目标亮度值更符合第一显示区伽马调试实际所需的目标亮度的同时,能够避免多次测量第二显示区或测试区的当前亮度,进而提高伽马调试效率。
显示面板的寄存器值与显示面板的第一显示区的亮度也为线性关系且也为过原点的直线。在另一些实施例中,步骤130具体可以包括:将第一当前亮度值作为第一显示区在指定灰阶下对应指定寄存器值时的第一目标亮度值;计算第一当前亮度值与其它寄存器值的第三乘积,将第三乘积与指定寄存器值的比值,作为第一显示区在指定灰阶下对应其它寄存器值的第一目标亮度值;其中,其它寄存器值为多个寄存器值中除指定寄存器值之外的其它任意一个寄存器值。
示例性的,测试区在255灰阶对应寄存器值为“7FF”时的第一当前亮度值为L1 7FF,测试区与第一显示区的形状及尺寸相同,可以直接将L1 7FF作为第一显示区在255灰阶对应寄存器值为“7FF”时的第一目标亮度值。可以按照下述公式(3)计算第一显示区在255灰阶下对应其它寄存器值时的第一目标亮度值L1 x
Figure PCTCN2021089291-appb-000004
在上述公式(3)中,L1 7FF×X为第三乘积。同样的,可以将十六进制表示的寄存器值换算为十进制。
根据本申请实施例,可以仅测量一次测试区的当前亮度值,即可计算出第一显示区在任意寄存器值时的第一目标亮度值。在保证确定出的第一目标亮度值更符合第一显示区伽马调试实际所需的目标亮度的同时,能够避免多次测量第二显示区或测试区的当前亮度,进而提高伽马调试效率。
在一些可选的实施例中,如图2所示,第二显示区还包括至少部分围绕测试区Q1的辅助区Q2,在步骤120之前,该方法还可以包括:控制辅 助区Q2全黑显示,控制第一显示区AA1及第二显示区AA2除辅助区Q2之外的其它区域正常显示。
示例性的,第一灰阶为255灰阶,可以控制辅助区Q2全黑显示,控制第一显示区AA1及第二显示区AA2除辅助区Q2的其他区域正常显示白色画面。光学量测设备,例如色彩分析仪的镜头外周设置有遮光结构,一方面,辅助区Q2全黑显示,可以更好的将光学量测设备的镜头与测试区Q1进行对位,从而更准确的量测测试区Q1的亮度值;另一方面,辅助区Q2全黑显示,可以避免测试区Q1周围的显示区域的亮度对测试区Q1造成干扰,从而也可以准确的量测测试区Q1的亮度值。
在上述实施例中,辅助区至少部分围绕测试区设置,应当理解的是,辅助区的形状与测试区的形状是相匹配的。另外,辅助区在第一方向和/或第二方向上的尺寸可不必过大,将辅助区的尺寸设置为能够达到将光学量测设备的镜头与测试区对位的效果即可。
在一些可选的实施例中,步骤140具体可以包括:根据各第一目标亮度值,对第一显示区进行伽马调试,得到第一显示区的各子像素对应的各目标数据电压值。
示例性的,通过步骤140可以得到第一显示区在255灰阶对应寄存器值为“7FF”时各子像素对应的各目标数据电压值,以及第一显示区在255灰阶对应寄存器值为其它数值时各子像素对应的各目标数据电压值,可以将上述各目标数据电压值存储至显示面板的集成电路(Integrated Circuit,IC)中,使得第一显示区的实际显示亮度符合各第一目标亮度值。
如图5所示,显示面板100的数据驱动电路10及总电源电压端20位于显示面板100的非显示区NA,且位于第一显示区AA1在第二方向Y上的任意一侧,数据驱动电路10及总电源电压端20同侧设置。示例性的,显示面板100的第一显示区AA1包括n行子像素D11~D1n,第二显示区AA2共包括m行子像素D21~D2m。数据驱动电路10可以通过数据线11与显示面板100的第一显示区AA1及第二显示区AA2的各子像素的像素电路30电连接,通过数据线11为显示面板100的子像素提供发光信号,以使显示面板100显示预设图像。总电源电压端20可以通过电源电压线21 与显示面板100的第一显示区AA1及第二显示区AA2的各子像素的像素电路30电连接。
数据线11及电源电压线21本身存在电阻值,在第二方向Y且远离数据驱动电路10及总电源电压端20的方向上,数据线11及电源电压线21上的压降(IR drop)是逐渐增大的,而数据线11上的电流值是非常小的,其电流值是微安级别的;而电源电压线21上的电流值通常是毫安级别的,要比数据线11上的电流值大很多,因此,数据线11上压降可以忽略不计。可以理解的是,数据驱动电路10输出的数据电压值即为各行子像素实际获取的数据电压值,而各行子像素实际获取的电源电压值则小于总电源电压端20输出的电源电压值。
另外,伽马调试为整体性调试,即通过步骤140得到的第一显示区在255灰阶对应寄存器值为“7FF”或其他数值时,各子像素对应的各目标数据电压值为同一个数值Data。为了补偿子像素对应的像素电路中晶体管的阈值电压V th的影响,流过子像素的电流I与(Vdd-Data) 2成正比,而子像素的显示亮度与其电流I也是正比关系,因此子像素的亮度与(Vdd-Data) 2成正比。位于不同行的子像素,其实际获取的电源电压值Vdd是有差距的,若向不同行的子像素提供伽马调试得到的同一个数据电压值Data,不同行的子像素的实际显示亮度并不相同。
为了避免显示面板的电源电压线21上的压降(IR drop)影响。例如,第一显示区包括n行子像素,n为大于等于1的正整数。在一些可选的实施例中,在步骤140之间,该方法还可以包括:
步骤150,基于第一显示区的各子像素对应的各目标数据电压值,确定第一显示区的各子像素对应的目标电流值;
步骤160,基于第一显示区的各子像素对应的目标电流值,确定第一显示区的各子像素实际获取的电源电压值;
步骤170,按照以下公式(4)计算显示面板的数据驱动电路需要输出的数据电压值:
Data′=Data-(Vdd-Vdd x)          (4)
其中,Data′表示显示面板的数据驱动电路需要输出的数据电压值, Data表示目标数据电压值,Vdd表示第一显示区的电源电压端输出的电源电压值,Vdd x表示第一显示区的第x行的各子像素实际获取的电源电压值,x为大于等于1且小于等于n的正整数。
在步骤150中,可以按照公式(5)计算第一显示区的各子像素对应的目标电流值。
I=k(Vdd-Data) 2          (5)
其中,k为已知系数,k由子像素对应的像素电路中晶体管的沟道长度及宽度等决定。
根据本申请实施例,能够准确的确定第一显示区中任意一行子像素所需的数据驱动电路需要输出的数据电压值Data′,可以将数据驱动电路需要输出的数据电压值Data′存储至显示面板的集成电路IC中,使得第一显示区的实际显示亮度更符合各第一目标亮度值。
在一些可选的实施例中,第一显示区的各列子像素各自通过一条电源电压线与第一显示区的电源电压端211电连接,各列子像素中最靠近电源电压端的为第一行子像素。如图5所示,一条电源电压线21可以同时与第一显示区AA1及第二显示区AA2的子像素电连接,即第一显示区AA1的电源电压端211的电源电压值由显示面板100的总电源电压端20提供,第一显示区AA1的电源电压端211的电源电压值可以与第二显示区AA2第m行子像素D2m实际获取的电源电压值相同。
示例性的,按照以下公式(6)计算第一显示区的各子像素实际获取的电源电压值:
Figure PCTCN2021089291-appb-000005
其中,I tatal表示第一显示区的电源电压端211输出的总电流值,I i表示第i行子像素对应的目标电流值,i大于等于1且小于等于x,R表示相邻两行子像素之间的电源电压线的电阻值。
如图6所示,以第一显示区AA1的一列子像素D11~D1n为例。电源电压线本身存在电阻,可根据以下公式计算电源电压线上的压降dVdd。
dVdd 1=I tatal×R           (7)
dVdd 2=(I tatal-I 1)×R          (8)
dVdd 3=(I tatal-I 1-I 2)×R       (9)
Figure PCTCN2021089291-appb-000006
进一步的,可根据以下公式计算该列各子像素实际获取的电源电压值Vdd x
Vdd 1=Vdd-dVdd 1         (11)
Vdd 2=Vdd-dVdd 1-dVdd 2          (12)
Vdd 3=Vdd-dVdd 1-dVdd 2-dVdd 3          (13)
Figure PCTCN2021089291-appb-000007
根据本申请实施例,能够准确的确定第一显示区中任意一行子像素实际获取的电源电压值,进而能够准确的确定第一显示区中任意一行子像素所需的数据驱动电路需要输出的数据电压值Data′。
在一些可选的实施例中,本申请实施例提供的伽马调试方法还可以包括:根据目标需求,确定第二显示区在第一灰阶下的第二目标亮度值;根据第二目标亮度值,对第二显示区进行伽马调试,使第二显示区的实际亮度值与第二目标亮度值的差值在第一预设范围内。
具体的,上述步骤可以在步骤110之前,即可以先对第二显示区AA2进行伽马调试,使第二显示区AA2的实际亮度值符合实际需求。
示例性的,目标需求可以是客户需求,客户一般是提出白色画面的亮度需求,即255灰阶下的亮度需求,若第一灰阶是255灰阶,则第二目标亮度值即为客户提出的提出白色画面的亮度需求。若第一灰阶是其他灰阶值,则可以根据以下公式(15)计算第二显示区AA2在第一灰阶下的第二目标亮度值。
L s=L 255*(S/255) T*100%         (15)
上述公式(1)中,L 255表示255灰阶对应的亮度值,目标需求中一般会给出该数值。S表示第一灰阶的数值,T表示伽马(Gamma)值,示例性的,T可以为2.2。L s表示第二显示区AA2在第一灰阶下的第二目标亮度值。
根据第二目标亮度值,对第二显示区AA2进行伽马调试,具体的可以是向第二显示区AA2内的子像素提供灰阶电压,并不断调整灰阶电压的数 值,直至在调整后的灰阶电压下,第二显示区AA2的实际亮度值与第二目标亮度值的差值在第一预设范围内,以满足目标需求。另外,可以根据实际需求设置第一预设范围的具体数值,例如,第一预设范围可以是-43nit~43nit,本申请对此不作限定。
根据本申请实施例,先根据目标需求对第二显示区进行伽马调试,以满足实际需求,进而确保第一显示区与第二显示区亮度没有明显差别的情况下,在整体上,第一显示区也符合实际需求。
在一些可选的实施例中,本申请实施例提供的伽马调试方法还可以包括:对第二显示区进行压降补偿,使第一区域在第一灰阶下的亮度值与第二显示区在第一灰阶下的平均亮度值的差值在第二预设范围内。
具体的,上述步骤可以在对第二显示区进行伽马调试的步骤之前。如上文所述,在远离数据驱动电路10及总电源电压端20的方向上,数据线及电源电压线上的压降(IR drop)是逐渐增大的,因此,第二显示区的不同位置处的显示亮度可能是不同的。对第二显示区进行压降补偿,可以保证第二显示区不同位置处的显示亮度与第二显示区的整体亮度是一致的,即保证第一区域在第一灰阶下的亮度值与第二显示区在第一灰阶下的平均亮度值趋于一致。
另外,可以根据实际需求设置第二预设范围的具体数值,例如,第二预设范围可以是8.6nit~15nit,本申请对此不作限定。
在一些可选的实施例中,步骤140可以包括:基于第一显示区在指定灰阶下的第一目标亮度值,计算第一显示区在其他各灰阶下的第一目标亮度值;根据第一显示区在第一灰阶下的第一目标亮度值及在其他各灰阶下的第一目标亮度值,对第一显示区进行伽马调试。
具体的,可以根据上述公式(15)计算第一显示区在其他各灰阶下的第一目标亮度值。预设伽马值可以为2.2,也可以是其他数值。
图7示出根据本申请一种实施例提供的伽马调试装置的结构示意图。该伽马调试装置可以用于上述显示面板。如图7所示,本申请实施例提供的伽马调试装置包括以下模块:
测试区选取模块701,用于在第二显示区选取与第一显示区的形状及 尺寸相同的测试区;
当前亮度值获取模块702,用于获取测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值;
目标亮度值确定模块703,用于根据第一当前亮度值及显示面板的寄存器值与亮度的线性关系,确定第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值;
伽马调试模块704,用于根据多个第一目标亮度值,对第一显示区进行伽马调试。
根据本申请实施例提供的伽马调试装置,一方面,选取的测试区与第一显示区的形状及尺寸相同,因此基于测试区的第一当前亮度值,确定出的第一目标亮度值更符合第一显示区实际所需的目标亮度,并且测试区位于第二显示区,从而使得第一显示区实际显示亮度与第二显示区的实际显示亮度趋于一致,提高显示面板的亮度一致性,从而提高用户体验;另一方面,根据显示面板的寄存器值与亮度的线性关系,仅需测试一次测试区的第一当前亮度值,即可确定出第一显示区在指定灰阶下对应多个寄存器值时的多个第一目标亮度值,能够避免多次获取测试区的当前亮度值,从而简化伽马调试流程,缩短伽马调试时间。
在一些可选的实施例中,目标亮度值确定模块703具体可以用于:
将第一当前亮度值作为第一显示区在指定灰阶下对应指定寄存器值时的第一目标亮度值;
获取第二显示区在指定灰阶下对应指定寄存器值时的第二当前亮度值;
将第一乘积与第二乘积的比值作为第一显示区在指定灰阶下对应其它寄存器值的第一目标亮度值;
其中,第一乘积为第二当前亮度值与其它寄存器值的乘积,第二乘积为指定寄存器值与系数M的乘积,系数M为第二当前亮度值与第一当前亮度值的比值,其它寄存器值为多个寄存器值中除指定寄存器值之外的其它任意一个寄存器值。
根据本申请实施例,可以仅测量一次第二显示区在指定寄存器值时的当前亮度,即可计算出第二显示区在任意寄存器值时的当前亮度,继而计 算出第一显示区在任意寄存器值时的第一目标亮度值。在保证确定出的第一目标亮度值更符合第一显示区伽马调试实际所需的目标亮度的同时,能够避免多次测量第二显示区或测试区的当前亮度,进而提高伽马调试效率。
在一些可选的实施例中,目标亮度值确定模块703具体可以用于:
将第一当前亮度值作为第一显示区在指定灰阶下对应指定寄存器值时的第一目标亮度值;
计算第一当前亮度值与其它寄存器值的第三乘积,将第三乘积与指定寄存器值的比值,作为第一显示区在指定灰阶下对应其它寄存器值的第一目标亮度值;
其中,其它寄存器值为多个寄存器值中除指定寄存器值之外的其它任意一个寄存器值。
根据本申请实施例,可以仅测量一次测试区的当前亮度值,即可计算出第一显示区在任意寄存器值时的第一目标亮度值。在保证确定出的第一目标亮度值更符合第一显示区伽马调试实际所需的目标亮度的同时,能够避免多次测量第二显示区或测试区的当前亮度,进而提高伽马调试效率。
在一些可选的实施例中,该装置还包括控制模块,用于控制辅助区全黑显示,控制第一显示区及第二显示区除辅助区之外的其它区域正常显示。
一方面,辅助区Q2全黑显示,可以更好的将光学量测设备的镜头与测试区Q1进行对位,从而更准确的量测测试区Q1的亮度值;另一方面,辅助区Q2全黑显示,可以避免测试区Q1周围的显示区域的亮度对测试区Q1造成干扰,从而也可以准确的量测测试区Q1的亮度值。
在一些可选的实施例中,伽马调试模块704具体用于:
根据各第一目标亮度值,对第一显示区进行伽马调试,得到第一显示区的各子像素对应的各目标数据电压值。
可以将上述各目标数据电压值存储至显示面板的集成电路IC中,使得第一显示区的实际显示亮度符合各第一目标亮度值。
在一些可选的实施例中,显示面板的第一显示区包括n行子像素,n为大于等于1的正整数,该装置还包括数据电压确定模块,用于:
基于第一显示区的各子像素对应的各目标数据电压值,确定第一显示 区的各子像素对应的目标电流值;
基于第一显示区的各子像素对应的目标电流值,确定第一显示区的各子像素实际获取的电源电压值;
按照以下公式计算显示面板的数据驱动电路需要输出的数据电压值:
Data′=Data-(Vdd-Vdd x);
其中,Data′表示显示面板的数据驱动电路需要输出的数据电压值,Data表示目标数据电压值,Vdd表示第一显示区的电源电压端输出的电源电压值,Vdd x表示第一显示区的第x行的各子像素实际获取的电源电压值,x为大于等于1且小于等于n的正整数。
根据本申请实施例,能够准确的确定第一显示区中任意一行子像素所需的数据驱动电路需要输出的数据电压值Data′,可以将数据驱动电路需要输出的数据电压值Data′存储至显示面板的集成电路IC中,使得第一显示区的实际显示亮度更符合各第一目标亮度值。
在一些可选的实施例中,第一显示区的各列子像素各自通过一条电源电压线与第一显示区的电源电压端电连接,各列子像素中最靠近电源电压端的为第一行子像素,数据电压确定模块具体用于:
按照以下公式计算第一显示区的各子像素实际获取的电源电压值:
Figure PCTCN2021089291-appb-000008
其中,I tatal表示第一显示区的电源电压端输出的总电流值,I i表示第i行子像素对应的目标电流值,i大于等于1且小于等于x,R表示相邻两行子像素之间的电源电压线的电阻值。
根据本申请实施例,能够准确的确定第一显示区中任意一行子像素实际获取的电源电压值,进而能够准确的确定第一显示区中任意一行子像素所需的数据驱动电路需要输出的数据电压值Data′。
在一些可选的实施例中,伽马调试模块704还可以用于:
根据目标需求,确定第二显示区在指定灰阶下的第二目标亮度值;
根据第二目标亮度值,对第二显示区进行伽马调试,使第二显示区的实际亮度值与第二目标亮度值的差值在预设范围内。
根据本申请实施例,先根据目标需求对第二显示区进行伽马调试,以 满足实际需求,进而确保第一显示区与第二显示区亮度没有明显差别的情况下,在整体上,第一显示区也符合实际需求。
在一些可选的实施例中,测试区的中心点与显示面板的中心点重合。如此,可避免反复移动光学量测设备的位置以获取不同显示面板的测试区的亮度,进而提高伽马调试效率。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
本申请如上文所述的实施例并没有详尽叙述所有的细节,也不限制本申请的范围。显然,根据以上描述,本领域普通技术人员可作很多的修改和变化。本说明书具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请的范围仅由所附权利要求书限定。

Claims (20)

  1. 一种伽马调试方法,所述伽马调试方法用于显示面板,所述显示面板具有第一显示区及第二显示区,所述第一显示区的透光率大于所述第二显示区的透光率,,所述方法包括:
    在所述第二显示区选取与所述第一显示区的形状及尺寸相同的测试区;
    获取所述测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值;
    根据所述第一当前亮度值及所述显示面板的寄存器值与亮度的线性关系,确定所述第一显示区在所述指定灰阶下对应多个寄存器值时的多个第一目标亮度值;
    根据所述多个第一目标亮度值,对所述第一显示区进行伽马调试。
  2. 根据权利要求1所述的伽马调试方法,其中,根据所述第一当前亮度值及所述显示面板的寄存器值与亮度的线性关系,确定所述第一显示区在所述指定灰阶下对应多个寄存器值时的多个第一目标亮度值,包括:
    将所述第一当前亮度值作为所述第一显示区在所述指定灰阶下对应所述指定寄存器值时的第一目标亮度值;
    获取所述第二显示区在所述指定灰阶下对应所述指定寄存器值时的第二当前亮度值;
    将第一乘积与第二乘积的比值作为所述第一显示区在所述指定灰阶下对应其它寄存器值的第一目标亮度值;
    其中,所述第一乘积为所述第二当前亮度值与所述其它寄存器值的乘积,所述第二乘积为所述指定寄存器值与系数M的乘积,所述系数M为所述第二当前亮度值与所述第一当前亮度值的比值,所述其它寄存器值为所述多个寄存器值中除所述指定寄存器值之外的其它任意一个寄存器值。
  3. 根据权利要求1所述的伽马调试方法,其中,根据所述第一当前亮度值及所述显示面板的寄存器值与亮度的线性关系,确定所述第一显示区在所述指定灰阶下对应多个寄存器值时的多个第一目标亮度值,包括:
    将所述第一当前亮度值作为所述第一显示区在所述指定灰阶下对应所述指定寄存器值时的第一目标亮度值;
    计算所述第一当前亮度值与其它寄存器值的第三乘积,将所述第三乘 积与所述指定寄存器值的比值,作为所述第一显示区在所述指定灰阶下对应其它寄存器值的第一目标亮度值;
    其中,所述其它寄存器值为所述多个寄存器值中除所述指定寄存器值之外的其它任意一个寄存器值。
  4. 根据权利要求1所述的伽马调试方法,其中,所述第二显示区还包括至少部分围绕所述测试区的辅助区,在所述获取所述测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值之前,所述方法还包括:
    控制所述辅助区全黑显示,控制所述第一显示区及所述第二显示区除所述辅助区之外的其它区域正常显示。
  5. 根据权利要求1所述的伽马调试方法,其中,根据所述多个第一目标亮度值,对所述第一显示区进行伽马调试,包括:
    根据各所述第一目标亮度值,对所述第一显示区进行伽马调试,得到所述第一显示区的各子像素对应的各目标数据电压值。
  6. 根据权利要求5所述的伽马调试方法,其中,所述第一显示区包括n行子像素,n为大于等于1的正整数,在根据所述多个第一目标亮度值,对所述第一显示区进行伽马调试之后,所述方法还包括:
    基于所示第一显示区的各子像素对应的各目标数据电压值,确定所述第一显示区的各子像素对应的目标电流值,按照以下公式计算第一显示区的各子像素对应的目标电流值:
    I=k(Vdd-Data) 2;其中,k为已知系数,k由子像素对应的像素电路中晶体管的沟道长度及宽度等决定。
  7. 根据权利要求6所述的伽马调试方法,还包括:基于所述第一显示区的各子像素对应的目标电流值,确定所述第一显示区的各子像素实际获取的电源电压值;
    按照以下公式计算所述显示面板的数据驱动电路需要输出的数据电压值:
    Data′=Data-(Vdd-Vdd x);
    其中,Data′表示所述显示面板的数据驱动电路需要输出的数据电压值,Data表示所述目标数据电压值,Vdd表示所述第一显示区的电源电压端输 出的电源电压值,Vdd x表示所述第一显示区的第x行的各子像素实际获取的电源电压值,x为大于等于1且小于等于n的正整数。
  8. 根据权利要求7所述的伽马调试方法,其中,所述第一显示区的各列子像素各自通过一条电源电压线与所述第一显示区的电源电压端电连接,所述各列子像素中最靠近所述电源电压端的为第一行子像素,所述基于所述第一显示区的各子像素的目标电流值,确定所述第一显示区的各子像素实际获取的电源电压值,包括:
    按照以下公式计算所述第一显示区的各子像素实际获取的电源电压值:
    Figure PCTCN2021089291-appb-100001
    其中,所述I tatal表示所述第一显示区的电源电压端输出的总电流值,所述I i表示第i行子像素对应的目标电流值,i大于等于1且小于等于x,R表示相邻两行子像素之间的电源电压线的电阻值。
  9. 根据权利要求1所述的伽马调试方法,其中,在选取测试区前,所述方法还包括:
    根据目标需求,确定所述第二显示区在所述指定灰阶下的第二目标亮度值;
    根据所述第二目标亮度值,对所述第二显示区进行伽马调试,使所述第二显示区的实际亮度值与所述第二目标亮度值的差值在预设范围内。
  10. 根据权利要求1所述的伽马调试方法,其中,所述测试区的中心点与所述显示面板的中心点重合。
  11. 一种伽马调试装置,用于如权利要求1所述显示面板的调试,,所述装置包括:
    测试区设置模块,用于在所述第二显示区选取与所述第一显示区的形状及尺寸相同的测试区;
    当前亮度值获取模块,用于获取所述测试区在指定灰阶下对应指定寄存器值时的第一当前亮度值;
    目标亮度值确定模块,用于根据所述第一当前亮度值及所述显示面板的寄存器值与亮度的线性关系,确定所述第一显示区在所述指定灰阶下对应多个寄存器值时的多个第一目标亮度值;
    伽马调试模块,用于根据所述多个第一目标亮度值,对所述第一显示区进行伽马调试。
  12. 根据权利要求11所述的伽马调试装置,其中,所述目标亮度值确定模块具体用于:
    将所述第一当前亮度值作为所述第一显示区在所述指定灰阶下对应所述指定寄存器值时的第一目标亮度值;
    获取所述第二显示区在所述指定灰阶下对应所述指定寄存器值时的第二当前亮度值;
    将第一乘积与第二乘积的比值作为所述第一显示区在所述指定灰阶下对应其它寄存器值的第一目标亮度值;
    其中,所述第一乘积为所述第二当前亮度值与所述其它寄存器值的乘积,所述第二乘积为所述指定寄存器值与系数M的乘积,所述系数M为所述第二当前亮度值与所述第一当前亮度值的比值,所述其它寄存器值为所述多个寄存器值中除所述指定寄存器值之外的其它任意一个寄存器值。
  13. 根据权利要求11所述的伽马调试装置,其中,所述目标亮度值确定模块具体用于:
    将所述第一当前亮度值作为所述第一显示区在所述指定灰阶下对应所述指定寄存器值时的第一目标亮度值;
    计算所述第一当前亮度值与其它寄存器值的第三乘积,将所述第三乘积与所述指定寄存器值的比值,作为所述第一显示区在所述指定灰阶下对应其它寄存器值的第一目标亮度值;
    其中,所述其它寄存器值为所述多个寄存器值中除所述指定寄存器值之外的其它任意一个寄存器值。
  14. 根据权利要求11所述的伽马调试装置,其中,所述装置还包括控制模块,所述控制模块用于:
    控制所述辅助区全黑显示,控制所述第一显示区及所述第二显示区除所述辅助区之外的其它区域正常显示。
  15. 根据权利要求11所述的伽马调试装置,其中,所述伽马调试模块具体用于:
    根据各所述第一目标亮度值,对所述第一显示区进行伽马调试,得到所述第一显示区的各子像素对应的各目标数据电压值。
  16. [根据细则26改正21.05.2021]
    根据权利要求15所述的伽马调试装置,其中,所述第一显示区包括n行子像素,n为大于等于1的正整数,所述伽马调试模块还包括数据电压确定模块,所述数据电压确定模块用于:
    基于所示第一显示区的各子像素对应的各目标数据电压值,确定所述第一显示区的各子像素对应的目标电流值,按照以下公式计算第一显示区的各子像素对应的目标电流值:
    I=k(Vdd-Data) 2
    其中,k为已知系数,k由子像素对应的像素电路中晶体管的沟道长度及宽度等决定。
  17. 根据权利要求16所述的伽马调试方法,还包括:
    基于所述第一显示区的各子像素对应的目标电流值,确定所述第一显示区的各子像素实际获取的电源电压值;
    按照以下公式计算所述显示面板的数据驱动电路需要输出的数据电压值:
    Data′=Data-(Vdd-Vdd x);
    其中,Data′表示所述显示面板的数据驱动电路需要输出的数据电压值,Data表示所述目标数据电压值,Vdd表示所述第一显示区的电源电压端输出的电源电压值,Vdd x表示所述第一显示区的第x行的各子像素实际获取的电源电压值,x为大于等于1且小于等于n的正整数。
  18. 根据权利要求17所述的伽马调试装置,其中,所述第一显示区的各列子像素各自通过一条电源电压线与所述第一显示区的电源电压端电连接,所述各列子像素中最靠近所述电源电压端的为第一行子像素,所述数据电压确定模块具体用于:
    按照以下公式计算所述第一显示区的各子像素实际获取的电源电压值:
    Figure PCTCN2021089291-appb-100002
    其中,所述I tatal表示所述第一显示区的电源电压端输出的总电流值,所述I i表示第i行子像素对应的目标电流值,i大于等于1且小于等于x,R 表示相邻两行子像素之间的电源电压线的电阻值。
  19. 根据权利要求11所述的伽马调试装置,其中,所述伽马调试模块还用于:
    根据目标需求,确定所述第二显示区在所述指定灰阶下的第二目标亮度值;
    根据所述第二目标亮度值,对所述第二显示区进行伽马调试,使所述第二显示区的实际亮度值与所述第二目标亮度值的差值在预设范围内。
  20. 根据权利要求11-18任一项所述的伽马调试装置,其中,所述测试区的中心点与所述显示面板的中心点重合。
PCT/CN2021/089291 2020-06-29 2021-04-23 伽马调试方法及伽马调试装置 WO2022001321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/835,447 US11823609B2 (en) 2020-06-29 2022-06-08 Method and apparatus for gamma debugging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010602541.7 2020-06-29
CN202010602541.7A CN111833793B (zh) 2020-06-29 2020-06-29 伽马调试方法及伽马调试装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/835,447 Continuation US11823609B2 (en) 2020-06-29 2022-06-08 Method and apparatus for gamma debugging

Publications (1)

Publication Number Publication Date
WO2022001321A1 true WO2022001321A1 (zh) 2022-01-06

Family

ID=72899049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089291 WO2022001321A1 (zh) 2020-06-29 2021-04-23 伽马调试方法及伽马调试装置

Country Status (3)

Country Link
US (1) US11823609B2 (zh)
CN (1) CN111833793B (zh)
WO (1) WO2022001321A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332954A1 (en) * 2022-08-25 2024-03-06 Samsung Display Co., Ltd. Gamma voltage correction device and gamma voltage correction method for display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111833793B (zh) * 2020-06-29 2022-06-07 昆山国显光电有限公司 伽马调试方法及伽马调试装置
CN112468803B (zh) * 2020-11-06 2023-04-07 昆山丘钛光电科技有限公司 一种摄像模组的曝光标定方法、装置、设备及介质
CN112365845B (zh) * 2020-11-10 2022-01-25 京东方科技集团股份有限公司 伽马调试方法和伽马调试装置
US12002401B2 (en) * 2020-12-14 2024-06-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Gamma correction method and apparatus, electronic device, and readable storage medium
CN112863421B (zh) * 2021-02-09 2022-09-06 武汉天马微电子有限公司 伽马调节方法及装置、驱动芯片、显示装置
US11967264B2 (en) 2021-02-22 2024-04-23 Chengdu Boe Optoelectronics Technology Co., Ltd. Method and apparatus for obtaining correspondences between grayscales and grayscale voltages, and display apparatus
CN115145662A (zh) * 2021-03-31 2022-10-04 北京小米移动软件有限公司 屏幕显示亮度调节方法、装置及存储介质
KR20220147764A (ko) * 2021-04-27 2022-11-04 삼성디스플레이 주식회사 표시 패널, 이를 포함하는 전자 장치, 및 전자 장치 제조 방법
CN113539165B (zh) * 2021-07-30 2023-04-07 合肥维信诺科技有限公司 显示面板的伽马调试方法、装置、设备及存储介质
CN113554984B (zh) * 2021-09-18 2022-10-21 苇创微电子(上海)有限公司 一种显示器IR-Drop的全局统计校准方法
CN115359751A (zh) * 2022-09-05 2022-11-18 昆山国显光电有限公司 伽马调试方法及装置、计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160104429A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Data voltage compensation circuit and display device including the same
CN108766347A (zh) * 2018-06-13 2018-11-06 京东方科技集团股份有限公司 一种显示面板、其显示方法及显示装置
US10311798B2 (en) * 2014-12-29 2019-06-04 Lg Display Co., Ltd. Organic light emitting diode display and method for controlling luminance thereof
CN109979389A (zh) * 2019-04-08 2019-07-05 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN110021272A (zh) * 2019-01-29 2019-07-16 信利(惠州)智能显示有限公司 显示模组的gamma调节方法、装置、计算机和存储介质
CN110599957A (zh) * 2019-10-25 2019-12-20 武汉天马微电子有限公司 用于显示面板的伽马调试装置、伽马调试方法及显示方法
CN111223437A (zh) * 2020-03-11 2020-06-02 昆山国显光电有限公司 一种伽马寄存器校准方法、伽马寄存器校准装置及显示装置
CN111833793A (zh) * 2020-06-29 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166559B (zh) * 2018-11-09 2020-08-28 重庆先进光电显示技术研究院 显示面板的伽马值调试方法及装置
CN110299104B (zh) 2019-06-29 2020-11-06 昆山国显光电有限公司 一种显示面板的驱动电路及驱动方法、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160104429A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Data voltage compensation circuit and display device including the same
US10311798B2 (en) * 2014-12-29 2019-06-04 Lg Display Co., Ltd. Organic light emitting diode display and method for controlling luminance thereof
CN108766347A (zh) * 2018-06-13 2018-11-06 京东方科技集团股份有限公司 一种显示面板、其显示方法及显示装置
CN110021272A (zh) * 2019-01-29 2019-07-16 信利(惠州)智能显示有限公司 显示模组的gamma调节方法、装置、计算机和存储介质
CN109979389A (zh) * 2019-04-08 2019-07-05 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN110599957A (zh) * 2019-10-25 2019-12-20 武汉天马微电子有限公司 用于显示面板的伽马调试装置、伽马调试方法及显示方法
CN111223437A (zh) * 2020-03-11 2020-06-02 昆山国显光电有限公司 一种伽马寄存器校准方法、伽马寄存器校准装置及显示装置
CN111833793A (zh) * 2020-06-29 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332954A1 (en) * 2022-08-25 2024-03-06 Samsung Display Co., Ltd. Gamma voltage correction device and gamma voltage correction method for display device

Also Published As

Publication number Publication date
US11823609B2 (en) 2023-11-21
CN111833793B (zh) 2022-06-07
US20220301482A1 (en) 2022-09-22
CN111833793A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022001321A1 (zh) 伽马调试方法及伽马调试装置
CN108877676B (zh) 电压降补偿方法及其装置、显示装置
WO2021043143A1 (zh) 一种显示屏老化补偿方法、电路系统、电子设备
CN110021267B (zh) 显示面板的亮度均一性补偿方法及装置
CN111833791B (zh) 伽马调试方法及伽马调试装置
WO2022016976A1 (zh) 显示面板的补偿参数确定方法及装置
CN110444152B (zh) 光学补偿方法及装置、显示装置、显示方法及存储介质
US8106930B2 (en) Image display system and method for eliminating mura defects
US10460680B2 (en) Flexible display panel and display method thereof
TWI383371B (zh) 時序控制器,顯示裝置與調整迦瑪電壓方法
US11164502B2 (en) Display panel and driving method thereof and display device
WO2020155583A1 (zh) 显示面板的伽玛调节方法及调节装置
CN111798799B (zh) 显示面板的gamma调节方法和装置
CN111833794A (zh) 亮度补偿方法及装置、参数确定方法及装置、显示装置
CN109949744B (zh) 伽马电压校正方法及装置
US20140292820A1 (en) Image control display device and image control method
TW202015031A (zh) 顯示器系統及其顯示畫面補償方法
CN114582284A (zh) 一种显示驱动方法、显示驱动器以及显示装置
CN111653249B (zh) 显示面板的显示控制方法、装置及电子设备
CN116860143A (zh) 一种图像显示处理方法及装置
US20230073431A1 (en) System and method for reducing display artifacts
WO2020097930A1 (zh) 用于在双屏显示面板上显示图像的方法以及相关的装置
TWI784767B (zh) 顯示面板及其亮度調節方法、顯示裝置
CN112581912B (zh) 显示补偿方法、显示补偿装置以及电子设备
CN114267279A (zh) 补偿灰阶确定方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834389

Country of ref document: EP

Kind code of ref document: A1