WO2020155583A1 - 显示面板的伽玛调节方法及调节装置 - Google Patents

显示面板的伽玛调节方法及调节装置 Download PDF

Info

Publication number
WO2020155583A1
WO2020155583A1 PCT/CN2019/097269 CN2019097269W WO2020155583A1 WO 2020155583 A1 WO2020155583 A1 WO 2020155583A1 CN 2019097269 W CN2019097269 W CN 2019097269W WO 2020155583 A1 WO2020155583 A1 WO 2020155583A1
Authority
WO
WIPO (PCT)
Prior art keywords
gray
gamma
value
target
binding point
Prior art date
Application number
PCT/CN2019/097269
Other languages
English (en)
French (fr)
Inventor
陈�峰
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2020155583A1 publication Critical patent/WO2020155583A1/zh
Priority to US17/158,346 priority Critical patent/US11158247B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Definitions

  • the application relates to the field of display technology, and in particular to a gamma adjustment method and an adjustment device of a display panel.
  • the brightness perceived by human eyes and the actual display brightness of the display panel have a non-linear relationship.
  • human eyes are more sensitive to changes in brightness, and the opposite is true in a high-brightness environment.
  • This characteristic of the human eye is called Gamma (Gamma) characteristic.
  • Gamma Gamma
  • the non-linear parameter of the brightness and gray scale of the display panel can be called Gamma parameter, and the curve drawn according to the Gamma parameter is called Gamma characteristic curve.
  • the Gamma parameter describes the nonlinear relationship between brightness and grayscale, that is, the nonlinear relationship between brightness and the input voltage of the data line. Therefore, if the brightness of the display panel and the input voltage of the data line do not conform to the above-mentioned Gamma characteristic curve, the display panel needs to be Gamma corrected.
  • the present application provides a gamma adjustment method, an adjustment device, and a display device of a display panel to solve the deficiencies in related technologies.
  • a gamma adjustment method of a display panel includes: judging whether the current display panel is the first display panel in the current display panel group; if so, for the first current gray-scale binding point in the non-low gray-scale binding point interval, the current display panel The data line input voltage of the pixel is adjusted to the first reference gamma voltage; if not, the data line input voltage of the pixel is adjusted to the gamma corresponding to the reference gray-scale binding point of any display panel whose gamma adjustment has been completed.
  • the gray scale of the reference gray scale binding point is the same as the gray scale of the first current gray scale binding point; according to the comparison result between the sampling value of the optical parameter of the pixel and the first target value, adjust The data line input voltage of the pixel is determined as the gamma voltage when the sampled value of the optical parameter is basically the first target value; the data line input voltage of the pixel is determined as the gamma voltage;
  • the second current gray-scale binding point is to detect whether the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is less than the absolute value of the gamma voltage corresponding to the previous gray-scale binding point;
  • the absolute value of the gamma voltage corresponding to at least two gray-scale binding points before the current gray-scale binding point; the gray scale of the previous gray-scale binding point and the gray scale of the at least two gray-scale binding points are larger than all The gray scale of the second current gray scale binding point; fitting the absolute value of the gamma voltage of the at least two gray scale binding
  • a gamma adjustment device for a display panel which includes: a judgment module for judging whether the current display panel is the first display panel in the current display panel group; a first adjustment module, When the current display panel is the first display panel in the current display panel group, for the first current gray-scale binding point in the non-low gray-scale binding point interval, the pixels of the current display panel The data line input voltage is adjusted to the first reference gamma voltage; the second adjusting module is used to input the data line voltage of the pixel when the current display panel is not the first display panel in the current display panel group Adjusted to the gamma voltage corresponding to the reference gray-scale binding point of any display panel for which gamma adjustment has been completed; the gray scale of the reference gray-scale binding point is the same as the gray scale of the first current gray-scale binding point; The third adjustment module is configured to adjust the data line input voltage of the pixel according to the comparison result between the sampled value of the optical parameter
  • a display device including a display panel and the gamma adjustment device of the above-mentioned display panel.
  • the beneficial effects of the embodiments of the present application may include: by determining whether the current display panel is the first display panel in the current display panel group, when the current display panel is the first display panel in the current display panel group, it can be used for non-low gray scale
  • the first current gray-scale binding point in the range of the binding point adjusts the input voltage of the data line of the pixel of the current display panel to the first reference gamma voltage, or it can be displayed when the current display panel is not the first item in the current display panel group
  • the data line input voltage of the pixel is adjusted to the gamma voltage corresponding to the reference gray-scale binding point of any display panel whose gamma adjustment has been completed, wherein the gray-scale of the reference gray-scale binding point is equal to
  • the first current gray-scale binding point has the same gray scale, so that the data line input voltage of the first current gray-scale binding point of the current display panel can quickly approach the gamma voltage of the first current gray-scale binding point, shortening the gamma
  • the gamma adjustment can be made more targeted, which is beneficial to shorten the gamma adjustment. Time length, improve the efficiency of gamma adjustment.
  • the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is less than that of the gamma voltage corresponding to the previous gray-scale binding point.
  • the absolute value of the gamma voltage corresponding to the at least two gray-scale binding points located before the second current gray-scale binding point can be obtained, and the absolute value of the gamma voltage corresponding to the at least two gray-scale binding points
  • the absolute value fitting obtains the first relationship curve between the gray scale and the absolute value of the gamma voltage, and then adjusts the second current gray scale according to the gray scale of the second current gray scale binding point and the first relationship curve The gamma voltage of the second current gray-scale binding point after adjustment is positioned on the first relationship curve.
  • the absolute value of the gamma voltage corresponding to the second current gray-scale binding point should actually be located above
  • the first relationship curve is on or close to the first relationship curve described above. Therefore, the absolute value of the gamma voltage corresponding to the gray level of the second current gray level binding point on the first relationship curve should be the absolute value of the actual gamma voltage corresponding to the gray level of the second current gray level binding point, or close to The absolute value of the actual gamma voltage corresponding to the gray level of the second current gray level binding point.
  • the adjusted absolute value of the gamma voltage of the second current gray-scale binding point on the first relationship curve is closer to the absolute value of the actual gamma voltage corresponding to the gray level of the second current gray-scale binding point. In this way, by detecting whether the gamma voltage is reversed and correcting during the gamma adjustment process, the problem of low gray-scale black bands, bright bands, or color shifts caused by the gamma voltage reversal can be avoided.
  • a gamma adjustment method of a display panel includes a transparent display area and a non-transparent display area, the transparent display area is a double-sided luminous display area, the front of the transparent display area is the side facing the ambient light, and the back is the side facing away from the ambient light.
  • the gamma adjustment method includes: adjusting the data line input voltage of the pixel of the transparent display area to the current gamma voltage of the current gray-scale binding point; obtaining the current back light emission brightness of the transparent display area; Light-emitting brightness and the pre-stored first corresponding relationship between the back light-emitting brightness of the transparent display area and the gray scale to obtain the corresponding target back light-emitting brightness; wherein, for the current gray scale binding point, when the transparent display area is When the back light emission brightness is the target back light emission brightness, the front light emission brightness of the transparent display area is basically the same as that of the non-transparent display area; the third target is determined according to the comparison result of the current back light emission brightness and the target back light emission brightness Adjust the step size; adjust the data line input voltage of the pixel according to the third target adjustment step size, and determine the data line input voltage when the back light emission brightness of the transparent display area is basically the target back light emission brightness as The target gamma voltage of the current grayscale binding point.
  • a gamma adjustment device for a display panel is provided to adjust the display panel after delivery.
  • the display panel includes a transparent display area and a non-transparent display area.
  • the transparent display area is A double-sided light-emitting display area, the front of the transparent display area is the side facing the ambient light, and the back is the side facing away from the ambient light.
  • the gamma adjustment device includes: a fifth adjustment module for adjusting the pixels of the display panel The data line input voltage is adjusted to the current gamma voltage of the current gray-scale binding point; the second acquisition module is used to acquire the current back light emission brightness of the transparent display area; the third acquisition module is used to obtain the current back light emission brightness according to the current And the pre-stored first corresponding relationship between the back light emission brightness of the transparent display area and the gray scale to obtain the corresponding target back light emission brightness; wherein, for the current gray scale binding point, when the back light emission of the transparent display area is When the brightness is the target back light emission brightness, the front light emission brightness of the transparent display area is basically the same as the light emission brightness of the non-transparent display area; the determining module is used to determine according to the comparison result of the current back light emission brightness and the target back light emission brightness The third target adjustment step size; the sixth adjustment module is used to adjust the data line input voltage of the pixel according to the third target adjustment step size, and set the back light emission brightness of the transparent display area
  • the beneficial effects of the embodiments of the present application may include: after the display panel leaves the factory, the data line input voltage of the pixels of the display panel can be adjusted to the current gamma voltage of the current gray-scale binding point, and the current back light emission brightness of the transparent display area can be obtained , And then, according to the current back light emission brightness and the pre-stored first corresponding relationship between the back light emission brightness of the transparent display area and the gray scale, the corresponding target back light emission brightness is obtained, wherein, for the same gray scale binding point, when When the back light emission brightness of the transparent display area is the target back light emission brightness, the front light emission brightness of the transparent display area is basically the same as the light emission brightness of the non-transparent display area.
  • a third target adjustment step size is determined according to the comparison result of the current back light emission brightness and the target back light emission brightness, and the data line input voltage of the pixel is adjusted according to the third target adjustment step size, and the The back light emission brightness of the transparent display area is basically the data line input voltage when the target back light emission brightness is determined as the target gamma voltage of the current gray-scale binding point.
  • the front luminous brightness of the transparent display area can be basically consistent with the luminous brightness of the non-transparent display area.
  • the technical solution provided by the embodiments of the present application can reduce or eliminate the difference in brightness between the transparent display area and the non-transparent display area on the premise that the photosensitive element under the transparent display area can receive a sufficient amount of light, thereby improving the display effect .
  • a gamma adjustment device for a display panel including: a display; a memory for storing computer program code, the computer program code including computer instructions; and one or more processors , Connected to the display and the memory.
  • the one or more processors are configured such that when the one or more processors execute the computer instructions, the gamma adjustment device executes the gamma adjustment method of the display panel, and the processor generates The gamma adjustment information is displayed via the display.
  • a display device including a display panel and the gamma adjustment device of the above-mentioned display panel.
  • a computer storage medium including computer instructions, which when the computer instructions run on a computer, cause the computer to execute the gamma adjustment method of the display panel described above.
  • FIG. 1 is a flowchart of a method for adjusting gamma of a display panel according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the relationship between gray scale and gamma voltage according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing another relationship between gray scale and gamma voltage according to an embodiment of the present application.
  • FIG. 4 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 5 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application
  • FIG. 6 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 10 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 11 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 12 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 13 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 14 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • 15 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 16 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 17 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 19 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • 20 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • 21 is a schematic structural diagram of a gamma adjustment device of a display panel according to an embodiment of the present application.
  • Fig. 22 is a top view of a display panel according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram showing light emission of a transparent display area and a non-transparent display area according to an embodiment of the present application, which corresponds to a cross-sectional view along the line AA in FIG. 22;
  • FIG. 24 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • 25 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 26 is a flowchart of another method for adjusting gamma of a display panel according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a gamma adjustment device of a display panel according to an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of another gamma adjustment device of a display panel according to an embodiment of the present application.
  • LCM LCD Module, LCD display module
  • a group of gamma voltages includes a gamma voltage corresponding to each gray level in the 0-255 gray levels.
  • AMOLED Active-matrix organic light-emitting diode, active matrix organic light-emitting diode or active matrix organic light-emitting diode
  • a group of gamma voltages of the display panel may include a gamma voltage corresponding to each gray level of 0-255 gray levels.
  • the embodiment of the present application provides a gamma adjustment method, an adjustment device, and a display device of a display panel, which can solve the above technical problems, not only can improve the efficiency of gamma adjustment, but also avoid low gray levels caused by gamma voltage inversion Black band, bright band or color cast problem.
  • Fig. 1 is a flowchart of a method for adjusting gamma of a display panel according to an embodiment of the present application.
  • the gamma adjustment method of the display panel, as shown in FIG. 1, may include the following steps 101-109.
  • step 101 it is determined whether the current display panel is the first display panel in the current display panel group. If yes, go to step 102, if not, go to step 103.
  • a gamma adjustment device When performing gamma adjustment on the display panel, a gamma adjustment device with a debugging program and an optical measuring instrument are required.
  • the gamma adjustment device can continuously perform gamma adjustment on multiple display panels of the same batch during the time period from startup to shutdown, and these multiple display panels can be called a display panel group.
  • the gamma adjustment device can use different gamma adjustment methods for the first display panel and the non-first display panel in each display panel group. Ma adjustment. Specifically, for the current display panel group, the gamma adjustment device can determine whether the current display panel is the first display panel in the current display panel group, and if the current display panel is the first display panel in the current display panel group, execute the step 102. If the current display panel is not the first display panel in the current display panel group, perform step 103.
  • step 102 for the first current gray-scale binding point in the non-low gray-scale binding point interval, the data line input voltage of the pixel of the current display panel is adjusted to the first reference gamma voltage.
  • multiple gray scales can be selected from 0 to 255 gray scales as gray scale binding points (corresponding to the adjustable gray scale in the driver chip, also called gray scale binding points) for gamma adjustment, and each The respective gamma voltages of the gray scale binding points are used for data fitting to obtain the respective gamma voltages of the remaining gray scales.
  • the selected multiple gray-scale binding points may be evenly distributed from 0 to 255, so that the result of data fitting is more accurate.
  • the selected multiple gray-scale binding points may be divided into a low-gray-scale binding point interval, a medium-gray-scale binding point interval, and a high-gray-scale binding point interval according to the brightness level.
  • the middle gray scale binding point interval and the high gray scale binding point interval may be referred to as non-low gray scale binding point intervals.
  • the gray scale value of the gray scale binding point in the low gray scale binding point interval is smaller than the gray scale value of the gray scale binding point in the non-low gray scale binding point interval.
  • the boundary point between the low-gray-scale binding point interval and the non-low-gray-scale binding point interval can be a designated binding point, for example, it can be a gamma curve with a gamma value of 2.2 and a brightness of 1nit (nit) Grayscale.
  • the gamma adjustment device may perform gamma adjustment on the multiple gray-scale binding points respectively according to a preset adjustment sequence.
  • the gamma adjustment device can perform gamma adjustment on multiple gray-scale binding points in the order of gray-scale value from large to small, and can also perform gamma adjustment on multiple gray-scale binding points in the order of gray-scale value from small to large.
  • Gamma adjustment In the embodiment of the present application, the gamma adjustment device performs the gamma adjustment on the multiple gray-scale binding points respectively according to the gray-scale value in descending order.
  • the gamma adjustment device may first perform gamma adjustment on the gray-scale binding points in the non-low gray-scale binding point interval according to the order of the gray-scale values, and then adjust the gamma binding points in the low gray-scale binding point interval.
  • the gray-scale binding points are adjusted according to the order of gray-scale value from large to small.
  • the pixel unit of the display panel may include pixels of N colors, and N is a positive integer.
  • N may be 3
  • the pixel unit may include a pixel R of red color, a pixel G of green color, and a pixel B of blue color.
  • Each color pixel corresponds to a set of gamma voltages.
  • the pixels of each color can be adjusted separately. In the embodiment of the present application, the gamma adjustment for pixels of one color is described in detail.
  • the gamma adjustment device may change the current display panel
  • the input voltage of the data line of the pixel is adjusted to the first reference gamma voltage.
  • the first reference gamma voltage is a reference value of the gamma voltage of the first current gray-scale binding point, and the first reference gamma voltage is located near the gamma voltage of the first current gray-scale binding point.
  • the data line input voltage of the first current gray-scale binding point of the current display panel can be rapidly approached to the gamma voltage of the first current gray-scale binding point, shorten the time of gamma adjustment, and improve the efficiency of gamma adjustment.
  • the first reference gamma voltage may be a value pre-stored in the gamma adjustment device, or may be a value obtained by the gamma adjustment device through a data test.
  • step 103 the data line input voltage of the pixel is adjusted to the gamma voltage corresponding to the reference gray-scale binding point of any display panel whose gamma adjustment has been completed; the gray-scale of the reference gray-scale binding point is equal to The gray levels of the first current gray level binding points are the same.
  • the gamma adjustment device may adjust the pixel
  • the input voltage of the data line is adjusted to the gamma voltage corresponding to the reference gray-scale binding point of any display panel whose gamma adjustment has been completed, wherein the gray-scale of the reference gray-scale binding point is the same as the first current gray-scale
  • the gray scale of the binding points is the same. Since the manufacturing process of the display panels of the same batch is basically the same, the gamma voltages of different display panels are basically the same for the same gray scale binding point.
  • the gamma adjustment device can pre-store a group of gamma voltages of any display panel whose gamma adjustment has been completed to serve as a reference value for the gamma voltage of subsequent display panels. In this way, the data line input voltage of the first current gray-scale binding point of the current display panel can be rapidly approached to the gamma voltage of the first current gray-scale binding point, shorten the time of gamma adjustment, and improve the efficiency of gamma adjustment.
  • step 104 the data line input voltage of the pixel is adjusted according to the comparison result between the sampled value of the optical parameter of the pixel and the first target value.
  • the gamma adjustment device may obtain the sampling value of the optical parameter of the pixel through an optical measuring instrument, and the gamma adjustment device pre-stores the first target value of the optical parameter of the pixel.
  • the first target value of the optical parameter of the pixel can be calculated according to the first current gray-scale binding point and the designated gamma curve.
  • the gamma curve is used to indicate the relationship between each gray scale and the target value of the optical parameter.
  • the specified gamma curve may be a gamma curve with a gamma value of 2.2.
  • the gamma adjustment device can compare the sampled value of the optical parameter of the pixel with the first target value, and determine the adjustment direction and the adjustment step length according to the comparison result, and then, according to the determined adjustment direction and the adjustment step Adjust the input voltage of the data line of the pixel to make the input voltage of the data line of the pixel approach the gamma voltage.
  • step 105 the data line input voltage of the pixel is determined as the gamma voltage when the sampling value of the optical parameter is basically the first target value.
  • the gamma adjustment device may determine the data line input voltage of the pixel as the gamma voltage when the sampling value of the optical parameter is basically the first target value.
  • the sampling value of the optical parameter is basically the first target value, including two situations: one is that the sampling value of the optical parameter is the first target value, and the other is the sampling value of the optical parameter and the first target value.
  • the absolute value of the difference of a target value is less than the specified optical parameter value.
  • steps 104 to 105 since the data line input voltage of the pixel is adjusted according to the comparison result between the sampling value of the optical parameter of the pixel and the first target value, the gamma adjustment can be made more targeted. It is beneficial to shorten the duration of gamma adjustment and improve the efficiency of gamma adjustment.
  • the above is the method for adjusting the gamma of the gray scale binding point in the non-low grayscale binding point interval, and the following is the method for adjusting the gamma of the gray scale binding point in the low grayscale binding point interval.
  • step 106 for the second current gray-scale binding point in the low gray-scale binding point interval, it is detected whether the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is less than the gamma corresponding to the previous gray-scale binding point. The absolute value of the voltage. If yes, go to step 107.
  • the absolute value of the gamma voltage of the gray-scale binding point increases as the gray-scale value decreases.
  • the type of the driving transistor in the pixel driving circuit of the display panel is different, and the input voltage of the data line is also different.
  • the driving transistor when the driving transistor is a P-type transistor, when the input voltage of the data line increases, the gray scale value decreases.
  • the driving transistor when the driving transistor is an N-type transistor, when the input voltage of the data line increases, the gray scale value increases.
  • the driving transistor may be a TFT (Thin Film Transistor) or a MOS transistor (Metal-Oxide-Semiconductor) (for example, a metal, oxide, semiconductor field effect transistor).
  • the gamma adjustment device can detect whether the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is smaller than the previous gray-scale binding point. If it is detected that the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is smaller than the absolute value of the gamma voltage corresponding to the previous gray-scale binding point, step 107 is executed.
  • the driving transistor is an N-type transistor, and the data line input voltage is a positive voltage.
  • the gamma voltage of the gray-scale binding points D5, D4, D3, and D2 in the low-gray-scale binding point interval increases as the gray-scale value decreases.
  • step 107 is performed, wherein the gray-scale value of the gray-scale binding point D1 is smaller than the gray-scale value of the gray-scale binding point D2 Value, the gray-scale binding point D2 is the previous gray-scale binding point of the second current gray-scale binding point D1.
  • step 107 the absolute value of the gamma voltage corresponding to the at least two gray-scale binding points located before the second current gray-scale binding point is obtained; the gray scale of the previous gray-scale binding point, the at least two gray-scale binding points The gray scales of the two gray scale binding points are respectively larger than the gray scales of the second current gray scale binding point.
  • the gamma adjustment device may obtain the gamma voltages corresponding to at least two gray-scale binding points whose gray-scale values are respectively greater than the second current gray-scale binding point from the gray-scale binding points that have undergone gamma adjustment.
  • at least two gray-scale binding points whose gray-scale values are respectively greater than the second current gray-scale binding point may be adjacent to the second current gray-scale binding point in order. Specifically, in the at least two gray-scale binding points, the interval between the gray-scale binding point with the smaller gray scale and the second current gray-scale binding point is closer, and the gray-scale binding point with the larger gray scale among the at least two gray-scale binding points The interval with the second current gray scale binding is farther.
  • the gamma adjusting device can obtain the absolute value of the gamma voltage of the gray-scale binding points D5, D4, D3, and D2, and can also obtain the absolute value of the gray-scale binding points D3, D2.
  • the absolute value of the gamma voltage When the absolute value of the gamma voltage of the gray-scale binding points D3 and D2 is obtained, the gray-scale binding points D2 and D3 are adjacent to the second current gray-scale binding point D1 in turn, and the gray-scale value of the gray-scale binding point D2 is smaller.
  • the gray-scale value of the gray-scale binding point D3 is larger, and is farther from the second current gray-scale binding point D1.
  • the gray-scale binding point D2 is the previous gray-scale binding point of the second current gray-scale binding point D1
  • the absolute value of the gamma voltage corresponding to the gray-scale binding point D2 has been compared with the second current gray-scale
  • the absolute value of the gamma voltage corresponding to the binding point D1 is compared. Therefore, in this step 107, the absolute value of the gamma voltage corresponding to the gray-scale binding point D2 can be repeatedly obtained.
  • step 108 a first relationship curve between the gray scale and the absolute value of the gamma voltage is obtained by fitting the absolute value of the gamma voltage of the at least two gray scale binding points.
  • the gamma adjusting device can perform data fitting on the acquired absolute values of the gamma voltages of the at least two gray-scale binding points to obtain the first relationship curve between the gray-scale and the absolute value of the gamma voltage.
  • each gray scale value corresponds to an absolute value of the gamma voltage.
  • step 109 adjust the gamma voltage of the second current gray level tie point according to the gray level of the second current gray level tie point and the first relationship curve, so that the adjusted second current gray level
  • the absolute value of the gamma voltage of the order binding point is located on the first relationship curve.
  • the gamma adjusting device can calculate the absolute value of the corresponding gamma voltage according to the gray level value of the second current gray level binding point and the first relationship curve, and according to the obtained absolute value of the gamma voltage and display
  • the type of the driving transistor in the pixel driving circuit of the panel determines the corresponding gamma voltage.
  • the gamma adjusting device may adjust the gamma voltage of the second current gray-scale binding point to the determined gamma voltage, and the absolute value of the adjusted gamma voltage of the second current gray-scale binding point is located at The first relationship curve.
  • the gamma adjustment device can obtain the absolute value of the gamma voltage of the gray-scale binding points D5, D4, D3, and D2, and bind the gray-scale binding points D5, D4, D3 Data fitting is performed on the absolute value of the gamma voltage of D2 to obtain the first relationship curve 31. Then, the gamma adjusting device can obtain the absolute value of the gamma voltage corresponding to the second current gray-scale binding point D1 on the first relationship curve 31 according to the gray-scale value of the gray-scale binding point D1 and the first relationship curve 31. As shown in FIG. 3, the obtained absolute value of the gamma voltage corresponding to the second current gray level binding point D1 on the first relationship curve 31 may be the absolute value of the gamma voltage corresponding to the data point 32.
  • the gamma adjustment device may determine the gamma voltage of the second current gray-scale binding point according to the adjusted absolute value of the gamma voltage of the second current gray-scale binding point, and save it. For example, as shown in FIG. 3, the absolute value of the gamma voltage corresponding to the second current gray-scale binding point D1 is lower than the data point 32, and the gamma adjusting device sets the value of the gamma voltage corresponding to the second current gray-scale binding point D1 The absolute value is adjusted to the data point 32 to lie on the first relationship curve 31.
  • the beneficial effects of this embodiment include: by judging whether the current display panel is the first display panel in the current display panel group, when the current display panel is the first display panel in the current display panel group, it can be used for non-low gray scale binding.
  • the first current gray scale binding point in the dot interval adjusts the data line input voltage of the pixel of the current display panel to the first reference gamma voltage, or when the current display panel is not the first display panel in the current display panel group , Adjusting the input voltage of the data line of the pixel to the gamma voltage corresponding to the reference gray-scale binding point of any display panel whose gamma adjustment has been completed, wherein the gray-scale of the reference gray-scale binding point is the same as the
  • the first current gray-scale binding point has the same gray scale, so that the data line input voltage of the first current gray-scale binding point of the current display panel can quickly approach the gamma voltage of the first current gray-scale binding point, shortening the gamma adjustment The length of time to improve the efficiency
  • the gamma adjustment can be made more targeted, which is beneficial to shorten the gamma adjustment. Time length, improve the efficiency of gamma adjustment.
  • the absolute value of the gamma voltage corresponding to the second current gray-scale binding point is less than that of the gamma voltage corresponding to the previous gray-scale binding point.
  • the absolute value of the gamma voltage corresponding to the at least two gray-scale binding points located before the second current gray-scale binding point can be obtained, and the absolute value of the gamma voltage corresponding to the at least two gray-scale binding points
  • the absolute value fitting obtains the first relationship curve between the gray scale and the absolute value of the gamma voltage, and then adjusts the second current gray scale according to the gray scale of the second current gray scale binding point and the first relationship curve The gamma voltage of the second current gray-scale binding point after adjustment is positioned on the first relationship curve.
  • the absolute value of the gamma voltage corresponding to the second current gray-scale binding point should actually be located above
  • the first relationship curve is on or close to the first relationship curve described above. Therefore, the absolute value of the gamma voltage corresponding to the gray level of the second current gray level binding point on the first relationship curve should be the absolute value of the actual gamma voltage corresponding to the gray level of the second current gray level binding point, or close to The absolute value of the actual gamma voltage corresponding to the gray level of the second current gray level binding point.
  • the adjusted absolute value of the gamma voltage of the second current gray-scale binding point on the first relationship curve is closer to the absolute value of the actual gamma voltage corresponding to the gray level of the second current gray-scale binding point. In this way, by detecting whether the gamma voltage is reversed and correcting it during the gamma adjustment process, the problem of low gray-scale black bands, bright bands, or color shifts caused by the gamma voltage reversal can be avoided.
  • Fig. 4 is a flow chart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the aforementioned at least two gray-scale binding points are sequentially adjacent to the aforementioned second current gray-scale binding point.
  • the above step 108 may include the following steps 401 to 402.
  • step 401 a corresponding first linear equation indicating the relationship between the absolute value of the gamma voltage and the gray level value is calculated according to the gray scales corresponding to the at least two gray scale binding points and the absolute value of the gamma voltage.
  • step 402 the first straight line equation is determined as the first relationship curve.
  • the gamma adjustment device may obtain the gamma corresponding to at least two gray-scale binding points whose gray-scale values are respectively greater than the second current gray-scale binding point from the gray-scale binding points that have undergone gamma adjustment.
  • the absolute value of the voltage may be obtained.
  • at least two gray-scale binding points whose gray-scale values are respectively greater than the second current gray-scale binding point may be adjacent to the second current gray-scale binding point in order. Specifically, in the at least two gray-scale binding points, the interval between the gray-scale binding point with the smaller gray scale and the second current gray-scale binding point is closer, and the gray-scale binding point with the larger gray scale among the at least two gray-scale binding points The distance from the binding point of the second current gray scale is farther.
  • the gamma adjustment device can obtain the absolute value of the gamma voltage of the gray-scale binding points D5, D4, D3, D2, and can also obtain the gray-scale binding point D3. , The absolute value of the gamma voltage of D2.
  • the absolute value of the gamma voltage of the gray-scale binding points D3 and D2 is obtained, the gray-scale binding points D2 and D3 are adjacent to the second current gray-scale binding point D1 in turn, and the gray-scale value of the gray-scale binding point D2 is smaller. It is closer to the second current gray-scale binding point D1, the gray-scale value of the gray-scale binding point D3 is larger, and is farther from the second current gray-scale binding point D1.
  • the gamma adjusting device may calculate the corresponding first indicating the relationship between the absolute value of the gamma voltage and the grayscale value according to the gray scale corresponding to the at least two gray scale binding points and the absolute value of the gamma voltage.
  • Linear equation wherein, the absolute values of the gamma voltages corresponding to at least two gray-scale binding points may be partially located on the straight line corresponding to the first linear equation, and the absolute values of the gamma voltages corresponding to the remaining gray-scale binding points may be located on the first straight line.
  • the equation corresponds to the line outside.
  • the absolute values of the gamma voltages corresponding to the at least two gray scale binding points may all lie outside the straight line corresponding to the first straight line equation. In this way, the obtained first linear equation can reflect the relationship between the absolute value of the gamma voltage of the gray-scale binding point and the gray-scale value as a whole.
  • the aforementioned at least two gray-scale binding points may include only two gray-scale binding points, and the two gray-scale binding points are sequentially adjacent to the aforementioned second current gray-scale binding point.
  • the gamma adjustment device can obtain the absolute value of the gamma voltage of the gray-scale binding points D3 and D2, and according to the gray scale corresponding to the gray-scale binding points D3 and D2 The order value and the absolute value of the gamma voltage are calculated to obtain a corresponding first linear equation indicating the relationship between the absolute value of the gamma voltage and the gray-scale value. In this way, the amount of calculation is small, and the efficiency of gamma adjustment can be improved.
  • the gamma adjustment device may determine the obtained first straight line equation as the aforementioned first relationship curve.
  • the first linear equation is calculated based on the gray scales corresponding to the at least two gray scale binding points and the absolute value of the gamma voltage, which is simple to calculate and consumes less time, which is beneficial to improve the efficiency of gamma adjustment.
  • Fig. 5 is a flow chart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 501 to 502 may be further included.
  • step 501 a preset number of gray scales adjacent to the second current gray scale binding point are selected as additional gray scale binding points.
  • step 502 the additional gray-scale binding points are added to the first gray-scale binding point set of the current display panel.
  • each display panel corresponds to a gray-scale binding point set
  • the gray-scale binding point set includes a plurality of gray-scale binding points.
  • the gamma adjustment device can perform gamma adjustment on multiple gray-scale binding points in the gray-scale binding point set in descending order of gray-scale values.
  • the gamma adjustment device may choose to A preset number of gray scales adjacent to the second current gray scale binding point are used as additional gray scale binding points, and the additional gray scale binding points are added to the first gray scale binding point of the current display panel set.
  • the additional gray-scale binding point may include a first gray-scale binding point with a gray-scale value smaller than the second current gray-scale binding point, or may include a gray-scale value greater than the second current gray-scale binding point.
  • Point’s second gray-scale binding point or may include both a first gray-scale binding point with a gray-scale value less than the second current gray-scale binding point and a second gray-scale binding point with a gray-scale value greater than the second current gray-scale binding point Grayscale binding point.
  • the additional gray-scale binding point may include a first gray-scale binding point with a gray-scale value smaller than the second current gray-scale binding point, or may include a second gray-scale binding point with a gray-scale value greater than the second current gray-scale binding point, Or, the above-mentioned first gray-scale binding point and the second gray-scale binding point can be included at the same time. Therefore, the flexibility and diversity of gray-scale binding point selection and gamma adjustment methods are increased to adapt to different emergencies.
  • the gray scale of the second gray-scale binding point is smaller than the previous A gray scale bound to a gray scale.
  • the previous gray-scale binding point of the second current gray-scale binding point D1 is the gray-scale binding point D2
  • the gray-scale value of the second gray-scale binding point is smaller than the gray-scale value of the gray-scale binding point D2.
  • the additional gray-scale binding point includes a second gray-scale binding point whose gray-scale value is greater than the second current gray-scale binding point
  • the gray scale of the second gray-scale binding point is smaller than the previous one of the second current gray-scale binding point
  • the gray scale of the gray scale binding point therefore, the interval between the additional gray scale binding point and the second current gray scale binding point is smaller, so that the additional gray scale binding points are more concentrated.
  • the grayscale values of the 18 grayscale binding points included in the first grayscale binding point set of the current display panel are 255, 220, 190, 170, 145, 120, 95, 70, 45, 20, 14, 12, 10, 8, 6, 4, 2, and 0.
  • the gamma adjustment device can select 4 gray scales with gray scale values of 24, 22, 18, and 16 as additional gray scale bindings. Points and add 4 additional gray-scale binding points with gray-scale values of 24, 22, 18, and 16 to the first gray-scale binding point set.
  • the gray scale binding points with gray scale values of 18 and 16 are the first gray scale binding points
  • the gray scale binding points with gray scale values of 22 and 24 are the second gray scale binding points.
  • the level binding point set can use a preset number of gray levels adjacent to the second current gray level binding point as additional gray level binding points for centralized gamma adjustment, which improves the reliability of gamma adjustment.
  • Fig. 6 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 601 to 602 may be further included.
  • step 601 determine the preset number of unadjusted gray-scale binding points from the first gray-scale binding point set as the gray-scale binding points to be removed; the gray-scale binding points to be removed and The additional gray scale binding points are different.
  • step 602 the gray-scale binding points to be removed are removed from the first gray-scale binding point set.
  • the gamma adjustment device can determine the aforementioned preset number of unadjusted gray-scale binding points from the first gray-scale binding point set of the current display panel as the gray-scale binding points to be removed, and The gray-scale binding points to be removed are removed from the first gray-scale binding point set to keep the total number of gray-scale binding points in the first gray-scale binding point set unchanged.
  • the gray-scale binding points with gray-scale values of 14, 10, 6, and 2 in the first gray-scale binding point set can be used as the gray-scale binding points to be removed, and these gray-scale binding points to be removed Remove from the first gray-scale binding point set to obtain a new first gray-scale binding point set.
  • the new first gray scale binding point set includes 18 gray scale binding points 255, 220, 190, 170, 145, 120, 95, 70, 45, 24, 22, 20, 18, 16, 12, and 8. , 4, and 0.
  • the interval between adjacent binding points of the preset number of gray-scale binding points to be eliminated may be substantially the same.
  • the intervals between adjacent binding points of the gray-scale binding points 14, 10, 6, and 2 to be removed are all 4.
  • the intervals between adjacent binding points of the preset number of gray-scale binding points to be eliminated may not be completely the same. Since the interval between adjacent binding points of the preset number of gray-scale binding points to be removed is basically the same, the distribution of the removed gray-scale binding points is uniform, which can reduce the influence of the removed gray-scale binding points on the reliability of gamma adjustment .
  • Fig. 7 is a flow chart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following step 701 may be further included.
  • step 701 it is detected whether the voltage adjustment parameter of the second current gray-scale binding point in the low-gray-scale binding point interval meets the first preset condition, and if so, the current input voltage of the data line of the pixel is used as the The gamma voltage corresponding to the second current gray-scale binding point.
  • the adjustment can be suspended, that is, the execution of steps 106 to 109 is suspended, and the pixel
  • the current input voltage of the data line is used as the gamma voltage corresponding to the second current gray-scale binding point.
  • the voltage adjustment parameter is the number of voltage adjustments
  • the first preset condition is that the number of voltage adjustments is greater than the preset number. Since the voltage adjustment times of the second current gray-scale binding point can indirectly reflect the duration of the gamma adjustment of the second current gray-scale binding point, the voltage adjustment times of the second current gray-scale binding point are greater than the preset number as the first The preset conditions are easy to implement and have high accuracy.
  • the voltage adjustment parameter is a voltage adjustment duration
  • the first preset condition is that the voltage adjustment duration is greater than a preset duration. Since the voltage adjustment duration of the second current gray-scale binding point can directly reflect the gamma adjustment duration of the second current gray-scale binding point, the voltage adjustment duration of the second current gray-scale binding point is greater than the preset time as the first Preset conditions, high accuracy.
  • a prompt message for prompting an abnormal adjustment is output. Since it is detected that the voltage adjustment parameter of the second current gray-scale binding point meets the first preset condition, the prompt message for prompting the adjustment abnormality is output, which can prompt the tester to pay more attention in the subsequent test.
  • Fig. 8 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 102 may include the following steps 801 to 804.
  • step 801 the input voltage of the data line of the pixel is adjusted to obtain at least two sets of data.
  • the value of the optical parameter of the pixel will change as the input voltage of the data line of the pixel changes.
  • the at least two sets of data include the absolute value of the input voltage of the at least two data lines and the sampling value of the corresponding optical parameter.
  • the gamma adjusting device can adjust the input voltage of the data line of the pixel to obtain two or more sets of data.
  • Each group of data includes the absolute value of the input voltage of the data line and the sampling value of the corresponding optical parameter.
  • an example is described by adjusting the input voltage of the data line of the pixel to obtain three sets of data.
  • three sets of data V1, L1), (V2, L2) and (V3, L3) can be obtained, where V is the input voltage of the data line and L is the sampling of optical parameters value.
  • step 802 a second relationship curve between the absolute value of the input voltage of the data line and the sampled value of the optical parameter is obtained by fitting according to the at least two sets of data.
  • the gamma adjustment device can perform data fitting on the obtained at least two sets of data to obtain a second relationship curve between the absolute value of the input voltage of the data line and the sampled value of the optical parameter.
  • at least two sets of data may be partly located on the second relationship curve, and the other part may be located around the second relationship curve, or may be all located on the second relationship curve, or all located around the second relationship curve.
  • step 803 the target data line input voltage corresponding to the first target value is obtained according to the first target value of the optical parameter corresponding to the first current gray-scale binding point and the second relationship curve.
  • the gamma adjustment device can obtain the target data line input voltage corresponding to the first target value according to the first target value of the optical parameter corresponding to the first current gray-scale binding point and the aforementioned second relationship curve.
  • step 804 the first reference gamma voltage is determined according to the target data line input voltage, and the data line input voltage of the pixel is adjusted to the first reference gamma voltage.
  • the gamma adjusting device may determine the target data line input voltage obtained above as the first reference gamma voltage, and adjust the data line input voltage of the pixel to the first reference gamma voltage. Voltage.
  • the optical parameter may be brightness, or the optical parameter may be color coordinates, or it may include both brightness and color coordinates, which increases the flexibility and diversity of selecting optical parameters to adapt to different colors.
  • the accuracy requirements of the Ma adjustment When the above optical parameters include both brightness and color coordinates, the obtained gamma voltage is more accurate.
  • the sampling value of the brightness of the pixel is the sampling value of the brightness of the pixel unit, that is, the display panel The sampled value of the brightness. Since the above-mentioned sampling value of the brightness corresponding to the input voltage of the data line of the pixel is the sampling value of the brightness of the pixel unit, the display brightness value of the display panel can be directly collected as the brightness value of any color pixel, which can reduce the collection The difficulty of brightness improves the efficiency of gamma adjustment.
  • At least two sets of data are obtained by adjusting the input voltage of the data line of the pixel, and the second relationship between the absolute value of the input voltage of the data line and the sampled value of the optical parameter can be obtained according to the above-mentioned at least two sets of data.
  • Fig. 9 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the at least two sets of data include two sets of data, and the two sets of data include the absolute values of the input voltages of the two data lines and the sampling values of the corresponding optical parameters; The absolute values are all greater than the absolute value of the input voltage of the target data line.
  • the foregoing step 802 may include the following steps 901 to 902.
  • step 901 according to the absolute values of the input voltages of the two data lines and the corresponding sampling values of the optical parameters, a second value indicating the relationship between the sampling value of the optical parameter of the first current gray-scale binding point and the input voltage is calculated. Linear equation.
  • step 902 the second straight line equation is determined as the second relationship curve.
  • the gamma adjusting device can adjust the input voltage of the data line in a direction from high to low to obtain more than two sets of data.
  • Each set of data includes the absolute value of the input voltage of the data line and the sampling value of the corresponding optical parameter; the absolute value of the input voltage of the data line in each set of data is greater than the absolute value of the input voltage of the target data line.
  • the data line input voltage can be adjusted in the same direction, gradually approaching the gamma voltage, which is beneficial to improve the adjustment efficiency.
  • the gamma adjustment device can select two sets of data from the obtained data, and then determine the above-mentioned second linear equation based on the two sets of data. For example, the gamma adjustment device can sequentially obtain three sets of data (V1, L1), (V2, L2) and (V3, L3), and select (V1, L1) and (V3, L3) from these three sets of data, And according to (V1, L1) and (V3, L3), the following second linear equation is obtained:
  • the gamma adjustment device may determine the aforementioned second linear equation as the second relationship curve.
  • the gamma adjustment device can obtain the target data line input voltage corresponding to the first target value according to the first target value (T1) of the optical parameter corresponding to the first current gray-scale binding point and the aforementioned second relationship curve .
  • the second relationship curve is the linear equation expressed by the above-mentioned formula (1)
  • the target data line input voltage Vt corresponding to the first target value is
  • the gamma adjustment device may determine the target data line input voltage Vt obtained above as the first reference gamma voltage, and adjust the data line input voltage of the pixel to the first reference gamma voltage. Voltage.
  • the calculation of the above-mentioned second linear equation based on the absolute values of the input voltages of the two data lines and the sampling values of the corresponding optical parameters is easy to implement and the calculation speed is fast. Therefore, the calculated second linear equation is Determining the above-mentioned second relationship curve can improve the efficiency of gamma adjustment.
  • Fig. 10 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 101 may include the following steps 1001-1005.
  • step 1001 a pre-stored reference data line input voltage is obtained.
  • the reference data line input voltage may be a default value pre-stored in the gamma voltage register. Since the reference data line input voltage is pre-stored in the gamma voltage register of each display panel, the reference data line input voltage pre-stored in the gamma voltage register can be read during the gamma adjustment, and the data line of the pixel The input voltage is adjusted to the aforementioned reference data line input voltage to drive the pixel to emit light, and by comparing the first sampled value of the optical parameter of the pixel with the first target value, it is determined whether the current display panel is the first display in the current display panel group The panel is easy to implement and has strong applicability.
  • the reference data line input voltage may be a gamma voltage corresponding to a reference gray scale binding point of any display panel that has been gamma adjusted and stored in the gamma adjustment device in advance.
  • the gamma voltage corresponding to the gray level of any display panel whose gamma adjustment has been completed can be stored, and will be compared with the first current gray level of the current display panel.
  • the gray scale with the same gray scale value of the gray scale binding point is used as the reference gray scale binding point, and the gamma voltage corresponding to the reference gray scale binding point is used as the aforementioned reference data line input voltage. Since the gamma voltage corresponding to the same gray scale of each display panel in the same display panel group is basically the same, the time for the gamma adjustment of the display panel can be shortened, and the gamma adjustment efficiency can be improved.
  • any one of the above-mentioned display panels that have completed gamma adjustment may be a display panel that has the smallest time interval between the gamma adjustment time and the current time among the display panels that have completed the gamma adjustment. Since the gamma adjustment condition of the display panel with the smallest time interval between the gamma adjustment time and the current time in the display panel that has completed the gamma adjustment is the closest to the gamma adjustment condition of the current display panel, the reference value is relatively large. Further shorten the gamma adjustment time of the display panel and improve the efficiency of gamma adjustment.
  • step 1002 the first sampling value of the optical parameter of the pixel when the data line input voltage of the pixel is the reference data line input voltage is obtained.
  • the gamma adjustment device can adjust the data line input voltage of the pixel to the reference data line input voltage, and use an optical measuring instrument to obtain the first sampling value of the optical parameter of the pixel.
  • step 1003 it is determined whether the absolute value of the difference between the first sample value and the first target value is greater than a preset threshold, if yes, step 1004 is performed, and if not, step 1005 is performed.
  • the gamma adjustment device may compare the first sample value with the first target value, and determine whether the absolute value of the difference between the first sample value and the first target value is greater than a predetermined value. Set a threshold. If the absolute value of the aforementioned difference is greater than the preset threshold, indicating that the distance between the first sampled value and the first target value is far, then step 1004 is executed. If the absolute value of the aforementioned difference is less than or It is equal to the preset threshold, indicating that the distance between the first sampling value and the first target value is relatively short, and step 1005 is executed.
  • step 1004 it is determined that the current display panel is the first display panel in the current display panel group.
  • the gamma adjustment device may determine that the current display panel is the first display panel in the current display panel group.
  • step 1005 it is determined that the current display panel is not the first display panel in the current display panel group.
  • the gamma adjustment device can determine that the current display panel is not the first display panel in the current display panel group.
  • the first sampling value of the optical parameter of the pixel is acquired, and when the absolute value of the difference between the first sampling value and the first target value is If the value is greater than the preset threshold, it indicates that the pre-stored reference data line input voltage is not the reference data line input voltage obtained by gamma adjustment, and it is determined that the current display panel is the first display panel in the current display panel group.
  • the pre-stored reference data line input voltage is the reference data obtained by the gamma adjustment of other display panels in the current display panel group Line input voltage, and determine that the current display panel is not the first display panel in the current display panel group.
  • Fig. 11 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 104 may include the following steps 1101 to 1103.
  • step 1101 a second sampling value of the optical parameter of the pixel is obtained.
  • a first target adjustment step size is determined according to a comparison result between the second sampling value and the first target value.
  • step 1103 the data line input voltage of the pixel is adjusted according to the first target adjustment step size until the sampling value of the optical parameter of the pixel is the first target value.
  • the gamma adjustment device may obtain the second sampling value of the optical parameter of the pixel through an optical measuring instrument, and determine the first target according to the comparison result between the second sampling value and the first target value The step size is adjusted, and then the data line input voltage of the pixel is adjusted according to the first target adjustment step size until the sampling value of the optical parameter of the pixel is the first target value.
  • the first target adjustment step can be determined according to the comparison result, and the data line input voltage of the pixel can be adjusted according to the first target adjustment step. , Until the sampling value of the optical parameter of the pixel is the first target value. In this way, an appropriate adjustment step length can be determined, and improper adjustment step length can prevent the adjustment time from being longer.
  • Fig. 12 is a flow chart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 1102 may include the following steps 1201 to 1204.
  • step 1201 the absolute value of the difference between the second sampling value and the first target value is obtained to obtain a first absolute value.
  • step 1202 the ratio between the first absolute value and the first target value is obtained to obtain a first ratio.
  • step 1203 the target ratio interval to which the first ratio belongs in at least two preset ratio intervals is determined to obtain the first target ratio interval.
  • the first target adjustment step size is determined according to the first target ratio interval and the corresponding relationship between the preset ratio interval and the adjustment step size.
  • the gamma adjustment device may obtain the absolute value of the difference between the second sampling value and the first target value, obtain the first absolute value, and then obtain the first absolute value and the total value.
  • the ratio between the first target value is used to obtain a first ratio, and the first ratio is used to indicate the degree of deviation between the second sampled value and the first target value.
  • ratio intervals [30%, + ⁇ ), (5%, 30%], and [0, 5%) can be stored in the gamma adjustment device in advance.
  • Each ratio interval corresponds to an adjustment step length, where the ratio interval [30%, + ⁇ ), (5%, 30%], [0, 5%) corresponds to the respective adjustment step length as the first step value, the first The second step value, the third step value.
  • the first step value is greater than the second step value
  • the second step value is greater than the third step value.
  • the gamma adjustment device may determine the target ratio interval to which the first ratio belongs, obtain the first target ratio interval, and obtain the first target ratio interval according to the ratio between the first target ratio interval and the preset ratio interval and the adjustment step.
  • the corresponding relationship determines the first target adjustment step size.
  • the first target ratio interval is [30%, + ⁇ )
  • the value of the first target adjustment step length is the first step length value.
  • the first target ratio interval is (5%, 30%)
  • the value of the first target adjustment step is the second step value.
  • the first target ratio interval is [0, 5%)
  • the value of the first target adjustment step is the third step value.
  • the first ratio is 40%
  • the ratio interval to which the first ratio belongs is [30%, + ⁇ )
  • the first target ratio interval is [30%, + ⁇ )
  • the first target adjustment step is The first step is the long value.
  • the value of the corresponding first target adjustment step is larger, so that when the degree of deviation between the second sampling value and the first target value is larger, Using a relatively large adjustment step is beneficial to shorten the adjustment time.
  • the ratio in the first target ratio interval is smaller, the value of the corresponding first target adjustment step is smaller. In this way, the smaller the degree of deviation between the second sample value and the first target value, the comparison can be used Small adjustment step length avoids larger adjustment step length leading to longer adjustment time.
  • the first absolute value of the difference between the second sample value and the first target value and the first ratio between the first absolute value and the first target value are obtained.
  • the degree of deviation between the second sampling value and the first target value can be determined, and then the first target ratio interval to which the first ratio belongs in the at least two preset ratio intervals can be determined, and the degree of deviation corresponding to each ratio interval.
  • the first target adjustment step size is determined according to the first target ratio interval and the corresponding relationship between the preset ratio interval and the adjustment step size. In this way, the corresponding adjustment step size can be determined for the degree of deviation between the second sample value and the first target value, so that the adjustment step size is moderate.
  • Fig. 13 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • step 1301 may be further included, and step 1301 replaces step 105 shown in FIG. 1.
  • step 1301 it is detected whether the voltage adjustment parameter of the first current gray-scale binding point meets the second preset condition, and if so, the difference between the third sampling value of the optical parameter of the pixel and the first target value is detected. Whether the absolute value of the difference is smaller than the preset threshold, if so, the current input voltage of the data line of the pixel is determined as the gamma voltage corresponding to the first current gray-scale binding point.
  • the gamma adjustment device can detect whether the voltage adjustment parameter of the first current gray-scale binding point conforms to the second, during the process of fine-tuning the gamma voltage of the gray-scale binding point in the non-low gray-scale interval.
  • a preset condition if it is detected that the voltage adjustment parameter of the first current gray-scale binding point meets a second preset condition, the difference between the third sampling value of the optical parameter of the pixel and the first target value is detected Whether the absolute value of is less than the preset threshold, if it is detected that the absolute value of the difference between the third sampling value and the first target value is less than the preset threshold, it indicates that the value of the optical parameter of the pixel is basically the first target value , The current input voltage of the data line of the pixel is determined as the gamma voltage corresponding to the first current gray-scale binding point.
  • the voltage adjustment parameter is the number of voltage adjustments
  • the second preset condition is that the number of voltage adjustments is greater than the preset number. Since the voltage adjustment times of the first current gray-scale binding point can indirectly reflect the length of the gamma adjustment of the first current gray-scale binding point, the voltage adjustment times of the first current gray-scale binding point are greater than the preset number as the second The preset conditions are easy to implement and have high accuracy.
  • the voltage adjustment parameter is a voltage adjustment duration
  • the second preset condition is that the voltage adjustment duration is greater than a preset duration. Since the voltage adjustment duration of the first current gray-scale binding point can directly reflect the gamma adjustment duration of the first current gray-scale binding point, the voltage adjustment duration of the first current gray-scale binding point is greater than the preset duration as the second Preset conditions, high accuracy.
  • the gamma adjustment device detects that the voltage adjustment parameter of the current gray-scale binding point meets the second preset condition, it outputs a prompt message for prompting an abnormal adjustment. Since it is detected that the voltage adjustment parameter of the first current gray-scale binding point meets the second preset condition, the prompt message for prompting the adjustment abnormality is output, which can prompt the tester to pay more attention in the subsequent test.
  • Fig. 14 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 1401 to 1402 may also be included.
  • step 1401 a third relationship curve between the gray scale and the absolute value of the gamma voltage is obtained by fitting the absolute values of the respective gamma voltages of all gray scale binding points in the second gray scale binding point set.
  • step 1402 the absolute value of the gamma voltage corresponding to the gray scale without gamma adjustment is obtained according to the gray scale without gamma adjustment of the first display panel and the third relationship curve.
  • the gamma adjustment device after the gamma adjustment device completes the gamma adjustment of all the gray-scale binding points in the second gray-scale binding point set of the first display panel, it can adjust all the gray-scale binding points in the second gray-scale binding point set. Perform data fitting on the absolute values of the respective gamma voltages of the gray scale binding points to obtain the third relationship curve between the gray scale and the absolute value of the gamma voltage, and then according to the first display panel's un-gamma adjusted gray scale And the third relationship curve to obtain the absolute value of the gamma voltage corresponding to each of the gray scales without gamma adjustment.
  • the second gray scale binding point set of the first display panel includes 18 gray scale binding points 255, 220, 190, 170, 145, 120, 95, 70, 45, 24, 22, 20, 18, 16, 12, 8, 4, and 0, the gray scales of the first display panel without gamma adjustment are 0-255 gray scales except for the above 18 gray scale binding points.
  • the gamma register of the first display panel can perform data fitting on the absolute values of the respective gamma voltages of the above 18 gray-scale binding points to obtain the third relationship curve between the gray-scale and the absolute value of the gamma voltage, and then according to the The gray scale of the first display panel without gamma adjustment and the third relationship curve obtain the absolute value of the gamma voltage corresponding to the gray scale without gamma adjustment.
  • the absolute value of the gray scale and the absolute value of the gamma voltage can be obtained.
  • Fig. 15 is a flow chart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 1501 to 1505 may be included.
  • step 1501 for each gray scale that has not been adjusted by gamma, the corresponding gamma voltage is determined according to the absolute value of the corresponding gamma voltage.
  • step 1502 the data line input voltage of the pixel of the first display panel is adjusted to a corresponding gamma voltage.
  • step 1503 the fourth sampling value of the optical parameter of the pixel is obtained.
  • a second target adjustment step size is determined according to the comparison result between the fourth sampling value and the second target value of the optical parameter of the pixel.
  • step 1505 the data line input voltage of the pixel is adjusted according to the second target adjustment step size until the sampling value of the optical parameter of the pixel is basically the second target value.
  • the gamma Since the absolute value of the gamma voltage of each gray scale without gamma adjustment is obtained by data fitting, not by measurement, the gamma is determined according to the absolute value of the gamma voltage obtained by data fitting The voltage may not be accurate and there is a certain error. In order to make the gamma voltage of each gray scale without gamma adjustment more accurate, the gamma voltage obtained by data fitting can be fine-tuned to obtain a more accurate gamma voltage.
  • the gamma adjustment device may determine the corresponding gamma voltage according to the absolute value of the corresponding gamma voltage, and adjust the pixel value of the first display panel The data line input voltage is adjusted to the corresponding gamma voltage, and then the fourth sampling value of the optical parameter of the pixel is obtained, and according to the comparison between the fourth sampling value and the second target value of the optical parameter of the pixel As a result, the second target adjustment step size is determined, and then the data line input voltage of the pixel is adjusted according to the second target adjustment step size until the sampling value of the optical parameter of the pixel is basically the second target value.
  • the corresponding gamma voltage is determined according to the absolute value of the corresponding gamma voltage, and the data line input voltage of the pixel of the first display panel is adjusted to The corresponding gamma voltage is then determined according to the comparison result between the fourth sampling value of the optical parameter of the pixel and the second target value of the optical parameter of the pixel, and the second target adjustment step is determined according to the second target Adjusting the input voltage of the data line of the pixel until the sampling value of the optical parameter of the pixel is basically the second target value.
  • the gamma voltage of each gray-scale binding point obtained through data fitting without gamma adjustment can be fine-tuned to obtain a more accurate gamma voltage.
  • the current display panel group may include at least one display panel.
  • the gray scale binding point sets corresponding to each of the at least one display panel are the same or different. That is, when all the gray levels of the first display panel are adjusted by gamma, the gray level binding point set of multiple non-first display panels can be the same as the gray level binding point set of the first display panel, or it can be the same as that of the first display panel.
  • the gray-scale binding point sets of different display panels are different.
  • the set of gray-scale binding points corresponding to all display panels in the current display panel group can be the same or different, which increases the flexibility and diversity of selecting gray-scale binding points and gamma adjustment methods to adapt to different emergencies .
  • the sets of gray-scale binding points corresponding to all the display panels in the current display panel group are not the same, it is more conducive to discover the gray-scale binding points that have problems, so as to focus on in subsequent tests.
  • Fig. 16 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 1504 may include the following steps 1601 to 1604.
  • step 1601 the absolute value of the difference between the fourth sample value and the second target value is obtained to obtain a second absolute value.
  • step 1602 the ratio between the second absolute value and the second target value is obtained to obtain a second ratio.
  • step 1603 the target ratio interval to which the second ratio belongs in at least two preset ratio intervals is determined to obtain the second target ratio interval.
  • step 1604 the second target adjustment step size is determined according to the second target ratio interval and the correspondence between the preset ratio interval and the adjustment step size.
  • the value of the second target adjustment step length is the first step length value; when the second target ratio interval is (5% , 30%], the value of the second target adjustment step is the second step value; when the second target ratio interval is [0, 5%), the value of the second target adjustment step Is the third step value, the first step value is greater than the second step value, and the second step value is greater than the third step value.
  • the value of the corresponding second target adjustment step is larger. In this way, when the degree of deviation between the fourth sample value and the second target value is larger, Using a relatively large adjustment step is beneficial to shorten the adjustment time.
  • the ratio in the second target ratio interval is smaller, the value of the corresponding second target adjustment step is smaller. In this way, the smaller the degree of deviation between the fourth sampling value and the second target value, the comparison can be used Small adjustment step length avoids larger adjustment step length leading to longer adjustment time.
  • the method for determining the second target adjustment step size in this embodiment is similar to the method for determining the first target adjustment step size shown in FIG. 12, and will not be repeated here.
  • the degree of deviation between the fourth sampled value and the second target value can be determined, and then the second target ratio interval to which the second ratio of the at least two preset ratio intervals belongs can be determined, and the degree of deviation corresponding to each ratio interval can be determined.
  • the levels are different, and then, the second target adjustment step size is determined according to the second target ratio interval and the corresponding relationship between the preset ratio interval and the adjustment step size. In this way, the corresponding adjustment step size can be determined for the level of the degree of deviation between the fourth sample value and the second target value, so that the adjustment step size is moderate.
  • Fig. 17 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 1701 to 1702 may also be included.
  • step 1701 the first setting parameter of the adjustment range of the gray scale binding point is received.
  • step 1702 the minimum gray scale and the maximum gray scale of the gray scale binding point adjustment range are set according to the first setting parameter, and the non-low gray scale binding point interval and the low gray scale binding point interval are located in the gray scale binding point. Points within the adjustment range.
  • the gamma adjustment device may receive the first setting parameter of the gray-scale binding point adjustment range, and set the minimum gray level and the maximum gray level of the gray-scale binding point adjustment range according to the first setting parameter.
  • the minimum gray scale is the minimum gray scale in the low gray scale binding point interval
  • the maximum gray scale is the maximum gray scale in the non-low gray scale binding point interval.
  • the gray scale is The binding point adjustment range can be set independently.
  • Fig. 18 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 1801 to 1802 may be further included:
  • step 1801 the second setting parameter of the adjustment accuracy of the gray scale binding point is received.
  • step 1802 the accuracy of the gamma voltage is set according to the second setting parameter.
  • the gamma adjustment device may receive the second setting parameter of the adjustment accuracy of the grayscale binding point, and set the accuracy of the gamma voltage according to the second setting parameter.
  • the second setting parameter of the adjustment accuracy of the gray-scale binding point can be received, and the accuracy of the gamma voltage can be set according to the second setting parameter, the gamma adjustment of the gray-scale binding point is made
  • the precision can be set independently.
  • Fig. 19 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the following steps 1901 to 1902 may be further included:
  • step 1901 the third setting parameter of the target brightness corresponding to the maximum gray level in the second gray level binding point set of the first display panel is received.
  • step 1902 the target brightness corresponding to the maximum gray scale is set according to the third setting parameter.
  • the gamma adjustment device may receive the third setting parameter of the target brightness corresponding to the maximum gray level in the second gray level binding point set of the first display panel, and set the target brightness according to the third setting parameter.
  • the target brightness corresponding to the maximum gray scale Since the third setting parameter of the target brightness corresponding to the maximum gray level in the second gray level binding point set of the first display panel in each group of the current display panel can be received, and the maximum gray level corresponding can be set according to the third setting parameter
  • the target brightness of each maximum gray scale corresponds to a gamma adjustment group, so that multiple groups of gamma adjustment can be supported.
  • the target brightness corresponding to the largest gray scale in the second gray scale binding point set corresponding to the first display panel in each display panel group is different. Since the target brightness corresponding to the largest gray scale in the second gray scale binding point set corresponding to the first display panel in each display panel group is different, each display panel group can be used as a gamma adjustment group for corresponding Gamma adjustment can improve the efficiency of gamma adjustment.
  • Fig. 20 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • steps 2001 to 2002 may also be included:
  • step 2001 the fourth setting parameter of the first display area for displaying the grayscale picture on the display panel in the current display panel group is received.
  • step 2002 the start coordinate and the end coordinate of the first display area are set according to the fourth setting parameter.
  • the gamma adjustment device may receive the fourth setting parameter of the first display area for displaying the grayscale picture on the display panel in the current display panel group, and set all parameters according to the fourth setting parameter.
  • the start coordinates and end coordinates of the first display area Because it is possible to receive the fourth setting parameter of the first display area for displaying the grayscale picture on the display panel in the current display panel group, and to set the start coordinates and the end of the first display area according to the fourth setting parameter The coordinates, therefore, make the position of the display area for gamma adjustment independently settable.
  • the second display area corresponding to the full-screen display of the display panel is greater than or equal to the first display area.
  • the display area is the second display area. Since the second display area may be larger than the first display area, or may be equal to the first display area, the flexibility of selecting the size of the display area during gamma adjustment is increased And diversity to adapt to different power consumption requirements.
  • the second display area corresponding to the full-screen display of the display panel is larger than the first display area, because the first display area on the display panel for displaying grayscale pictures during the gamma adjustment is smaller than the second display corresponding to the full-screen display of the display panel Therefore, the power consumption during gamma adjustment can be reduced and energy can be saved.
  • the following steps may be further included: printing adjustment information during the gamma adjustment process; the adjustment information includes at least the gray level of the gray level binding point and the corresponding gamma voltage. Since the adjustment information can be printed during the gamma adjustment process, the tester can learn about the gamma adjustment in time, so as to find the problem in time.
  • the embodiment of the application also proposes a gamma adjustment device for a display panel.
  • the gamma adjustment device includes: a judgment module 2101 for judging whether the current display panel is in the current display panel group The first display panel; the first adjustment module 2102, for when the current display panel is the first display panel in the current display panel group, for the first current gray level in the non-low gray level binding point interval The binding point adjusts the input voltage of the data line of the pixel of the current display panel to the first reference gamma voltage; the second adjustment module 2103 is used for when the current display panel is not the first item in the current display panel group When the display panel is displayed, the data line input voltage of the pixel is adjusted to the gamma voltage corresponding to the reference gray-scale binding point of any display panel that has completed the gamma adjustment; The gray level of the first current gray level binding point is the same; the third adjustment module 2104 is used to adjust the data line input of the pixel according to the comparison result between the sampling value of the optical parameter
  • the absolute value of the gamma voltage corresponding to the two gray-scale binding points; the gray-scale of the previous gray-scale binding point and the gray-scales of the at least two gray-scale binding points are respectively greater than those of the second current gray-scale binding point Gray scale; a fitting module 2107 for fitting the absolute value of the gamma voltage of the at least two gray scale binding points to obtain a first relationship curve between the gray scale and the absolute value of the gamma voltage; a fourth adjustment module 2108 , Used to adjust the gamma voltage of the second current gray-scale binding point according to the gray-scale of the second current gray-scale binding point and the first relationship curve, so that the adjusted second current gray-scale is bound
  • the absolute value of the gamma voltage of a point is located on the first relationship curve.
  • the gamma adjustment device of the display panel can make the data line input voltage of the first current gray-scale binding point of the current display panel quickly approach the gamma voltage of the first current gray-scale binding point, shorten the gamma adjustment time and improve The efficiency of gamma adjustment.
  • the gamma adjustment can be made more targeted, which is beneficial to shorten the gamma adjustment. Time length, improve the efficiency of gamma adjustment.
  • the embodiment of the present application also proposes a display device including a display panel and a gamma adjustment device of the display panel as shown in FIG. 21.
  • the gamma adjustment device of the display panel can make the data line input voltage of the first current gray-scale binding point of the current display panel quickly approach the gamma voltage of the first current gray-scale binding point, shorten the gamma adjustment time and improve The efficiency of gamma adjustment.
  • the gamma adjustment can be made more targeted, which is beneficial to shorten the gamma adjustment. Time length, improve the efficiency of gamma adjustment.
  • the embodiment of the present application also proposes a gamma adjustment method, an adjustment device, and a display device for a display panel.
  • the display panel is a full screen.
  • the display panel 22 may include a non-transparent display area 221 and a transparent display area 222.
  • the transparent display area 222 is a double-sided light emitting display area, and the front side of the transparent display area 222 is the side facing the ambient light. The back is the side facing away from the ambient light.
  • the area of the transparent display area is smaller than the area of the non-transparent display area.
  • a display panel that is, a transparent display area 222
  • the photosensitive element 223 such as a camera and/or a distance sensor of the display device 23, and the transparent display area 222.
  • the area above the photosensitive element 223 of the display device 23 can also display a normal picture together with the non-transparent display area 221, and when the photosensitive element 223 is working, the transparent display area 222 may not display pictures, but normally transmits light. Ensure the realization of the photosensitive function.
  • the debugging method disclosed in the above embodiments can be used for debugging during the gamma debugging process before leaving the factory.
  • the transparent display area and the non-transparent display area are respectively subjected to a gamma debugging process, so that the initial brightness, chromaticity, etc. of the two display areas after leaving the factory are basically the same.
  • the transparent display area 222 is a double-sided light-emitting display
  • the non-transparent display area 221 is a single-sided light-emitting area
  • the attenuation speeds of the luminescent materials in the two areas are different, that is, the display panel works
  • the luminous brightness of the transparent display area 222 will gradually be lower than that of the non-transparent display area 221, resulting in uneven display brightness in the two areas. Therefore, the brightness of the transparent display area 222 needs to be adjusted to ensure the full screen display effect.
  • the embodiment of the present application provides a gamma adjustment method for a display panel, which is applied to the gamma adjustment device described below, or can be applied to a display device including a display panel, that is, the display device described below.
  • a program for gamma adjustment is installed. As shown in FIG. 24, the gamma adjustment method includes the following steps 2401-2405.
  • the gamma adjustment method of the display panel is applied to the display device as an example for description.
  • step 2401 the data line input voltage of the pixel of the display panel is adjusted to the current gamma voltage of the current gray-scale binding point.
  • a group of gamma voltage data of the transparent display area 222 is pre-stored in the gamma register of the display panel before leaving the factory, and the group of gamma voltage data includes the gamma voltage corresponding to each of the gray scales from 0 to 255.
  • a group of gamma voltage data of the transparent display area 222 is stored in the form of a first curve as an example for description. Each point on the first curve corresponds to a gray-scale gamma voltage, or the absolute value of the gamma voltage.
  • the gamma register of the display panel will also pre-store a group of gamma voltage data of the non-transparent display area 221 before leaving the factory, and the group of gamma voltage data also includes the gamma voltages corresponding to 0-255 gray scales.
  • a group of gamma voltage data in the non-transparent display area 221 can be stored in the form of a second curve. Each point on the second curve corresponds to a gray-scale gamma voltage, or the absolute value of the gamma voltage.
  • the display device may perform gamma adjustment on the transparent display area 222 according to a preset time period, and may also perform gamma adjustment when receiving a control instruction to start gamma adjustment.
  • the control instruction can be generated according to a user's input operation.
  • a gray-scale binding point can be selected from the third gray-scale binding point set of the transparent display area 222 as the current gray-scale binding point, and according to the gray-scale binding point of the current gray-scale binding point Value and the first curve determine the current gamma voltage of the current gray-scale binding point in the current state, and then adjust the data line input voltage of the pixel in the transparent display area to the current gamma voltage of the current gray-scale binding point to drive the pixel Glow.
  • step 2402 the current back light emission brightness of the transparent display area is acquired.
  • the current back light emission brightness of the transparent display area can be obtained through the photosensitive element 223 located under the display panel of the transparent display area.
  • the photosensitive element 223 here may be a camera.
  • step 2403 according to the current back light emission brightness and the pre-stored first correspondence between the back light emission brightness of the transparent display area and the gray scale, the corresponding target back light emission brightness is obtained.
  • the back light-emitting brightness of the transparent display area is the target back light-emitting brightness
  • the front light-emitting brightness of the transparent display area and the light-emitting brightness of the non-transparent display area are basically the same.
  • the gamma register of the display panel may pre-store the first corresponding relationship between the back light emission brightness of the transparent display area and the gray scale, and the display device may obtain the corresponding relationship according to the current back light emission brightness and the first corresponding relationship.
  • the brightness of the back of the target is basically the same as the light-emitting brightness of the non-transparent display area.
  • a third target adjustment step is determined according to the comparison result of the current back light emission brightness and the target back light emission brightness.
  • the display device can determine the third target adjustment step size according to the comparison result by comparing the current back light emission brightness with the target back light emission brightness. In this way, an appropriate adjustment step length can be determined, and an improper adjustment step length can be prevented from causing a larger adjustment duration.
  • step 2405 the data line input voltage of the pixel is adjusted according to the third target adjustment step, and the back light emission brightness of the transparent display area is basically determined as the data line input voltage when the target back light emission brightness is Is the target gamma voltage of the current grayscale binding point.
  • the display device can adjust the data line input voltage of the pixel according to the third target adjustment step, so that the back light emission brightness of the transparent display area gradually approaches the target back light emission brightness, and in the transparent display area
  • the data line input voltage is determined as the target gamma voltage of the current gray-scale binding point.
  • the beneficial effects of the embodiments of the present application may include: after the display panel leaves the factory, the data line input voltage of the pixels of the display panel can be adjusted to the current gamma voltage of the current gray-scale binding point, and the current back light emission brightness of the transparent display area can be obtained , And then, according to the current back light emission brightness and the pre-stored first corresponding relationship between the back light emission brightness of the transparent display area and the gray scale, the corresponding target back light emission brightness is obtained, wherein, for the same gray scale binding point, when When the back light emission brightness of the transparent display area is the target back light emission brightness, the front light emission brightness of the transparent display area is basically the same as the light emission brightness of the non-transparent display area.
  • a third target adjustment step size is determined according to the comparison result of the current back light emission brightness and the target back light emission brightness, and the data line input voltage of the pixel is adjusted according to the third target adjustment step size, and the The back light emission brightness of the transparent display area is basically the data line input voltage when the target back light emission brightness is determined as the target gamma voltage of the current gray-scale binding point.
  • the front luminous brightness of the transparent display area can be basically consistent with the luminous brightness of the non-transparent display area.
  • the technical solution provided by the embodiments of the present application can reduce or eliminate the difference in brightness between the transparent display area and the non-transparent display area on the premise that the photosensitive element under the transparent display area can receive a sufficient amount of light, thereby improving the display effect .
  • FIG. 25 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the above step 2404 may include the following steps 2501 to 2502.
  • step 2501 the absolute value of the difference between the current back light emission brightness and the target back light emission brightness is obtained to obtain a third absolute value.
  • step 2502 the ratio between the third absolute value and the target back light emission brightness is obtained to obtain a third ratio.
  • step 2503 the target ratio interval to which the third ratio belongs in at least two preset ratio intervals is determined to obtain the third target ratio interval.
  • step 2504 the third target adjustment step is determined according to the third target ratio interval and the correspondence between the preset ratio interval and the adjustment step.
  • the display device may obtain the third absolute value of the difference between the current back light emission brightness and the target back light emission brightness, and obtain the difference between the third absolute value and the target back light emission brightness Then, determine the third target ratio interval to which the third ratio belongs, and then determine the third target according to the third target ratio interval and the correspondence between the preset ratio interval and the adjustment step Adjust the step length.
  • the method for determining the third target adjustment step size in this embodiment is similar to the method for determining the first target adjustment step size shown in FIG. 12, and will not be repeated here.
  • the third target adjustment step size is determined according to the third target ratio interval and the correspondence between the preset ratio interval and the adjustment step size. In this way, the corresponding adjustment step size can be determined for the level of the deviation between the current back light emission brightness and the target back light emission brightness, so that the adjustment step size is moderate.
  • the value of the third target adjustment step length is the first step length value; when the third target ratio interval is (5% , 30%], the value of the third target adjustment step is the second step value; when the third target ratio interval is [0, 5%), the value of the third target adjustment step Is the third step value, the first step value is greater than the second step value, and the second step value is greater than the third step value.
  • the value of the corresponding third target adjustment step when the ratio in the third target ratio interval is larger, the value of the corresponding third target adjustment step is larger, so that the level of deviation between the current back light emission brightness and the target back light brightness
  • a larger adjustment step length can be used, which is beneficial to shorten the adjustment time.
  • the ratio in the third target ratio interval is smaller, the value of the corresponding third target adjustment step is smaller. In this way, the smaller the level of deviation between the current back light emission brightness and the target back light brightness, the comparison can be used Small adjustment step length avoids larger adjustment step length leading to longer adjustment time.
  • the gamma adjustment method shown in FIG. 26 can be used to adjust the gamma of the low-gray-scale binding point, as follows.
  • Fig. 26 is a flowchart showing a gamma adjustment method of a display panel according to another exemplary embodiment.
  • the current gray-scale binding point is in the low-gray-scale binding point interval, based on the embodiment shown in FIG. 24, after the above step 2405, the following steps 2601 to 2604 may be included.
  • step 2601 it is detected whether the absolute value of the target gamma voltage is smaller than the absolute value of the target gamma voltage corresponding to the previous gray-scale binding point. If yes, go to step 2602.
  • step 2602 obtain the absolute value of the target gamma voltage corresponding to at least two gray-scale binding points before the current gray-scale binding point; the gray scale of the previous gray-scale binding point, the at least two The gray scales of the gray scale binding points are respectively larger than the gray scales of the current gray scale binding points.
  • a fourth relationship curve between the gray scale and the absolute value of the gamma voltage is obtained by fitting the absolute value of the target gamma voltage of the at least two gray scale binding points.
  • step 2604 adjust the target gamma voltage according to the gray level of the current gray level binding point and the fourth relationship curve, so that the absolute value of the adjusted target gamma voltage is in the fourth relationship On the curve.
  • Steps 2601 to 2603 in this embodiment are similar to steps 106 to 109 in the embodiment shown in FIG. 1, and are not repeated here.
  • the absolute value of the target gamma voltage corresponding to the current gray-scale binding point is smaller than the target gamma voltage corresponding to the previous gray-scale binding point
  • the absolute value of the target gamma voltage corresponding to at least two gray-scale binding points located before the current gray-scale binding point can be obtained, and the target gamma voltage of the at least two gray-scale binding points
  • the fourth relationship curve between the gray scale and the absolute value of the gamma voltage is obtained by fitting the absolute value of, and then the current gray scale binding point is adjusted according to the gray scale of the current gray scale binding point and the fourth relationship curve
  • the absolute value of the adjusted target gamma voltage of the current gray-scale binding point is located on the fourth relationship curve.
  • the absolute value of the target gamma voltage corresponding to the current gray-scale binding points should actually be located at the above
  • the fourth relationship curve is on or close to the above-mentioned fourth relationship curve. Therefore, the absolute value of the target gamma voltage corresponding to the gray scale of the current gray scale binding point on the fourth relationship curve should be the absolute value of the actual gamma voltage corresponding to the gray scale of the current gray scale binding point, or close to the current gray scale The absolute value of the actual gamma voltage corresponding to the gray scale of the binding point.
  • the adjusted absolute value of the target gamma voltage of the current gray scale binding point on the fourth relationship curve is closer to the absolute value of the actual gamma voltage corresponding to the gray scale of the current gray scale binding point. In this way, by detecting whether the gamma voltage is reversed and correcting it during the gamma adjustment process, the problem of low gray-scale black bands, bright bands, or color shifts caused by the gamma voltage reversal can be avoided.
  • An embodiment of the present application also provides a gamma adjustment device for a display panel, which adjusts the display panel after delivery.
  • the display panel includes a transparent display area and a non-transparent display area, and the transparent display area is a double-sided light-emitting display area.
  • the front side of the transparent display area is the side facing the ambient light, and the back side is the side facing away from the ambient light. As shown in FIG.
  • the gamma adjusting device includes: a fifth adjusting module 2701 for adjusting the input voltage of the data line of the pixel of the display panel to the current gamma voltage of the current gray-scale binding point; and the second acquiring module 2702, used to obtain the current back light emission brightness of the transparent display area; the third obtaining module 2703, used to obtain the current back light emission brightness and the pre-stored first back light emission brightness and gray scale of the transparent display area Correspondence relationship to obtain the corresponding target back light emission brightness; wherein, for the current gray-scale binding point, when the back light emission brightness of the transparent display area is the target back light emission brightness, the front light emission brightness of the transparent display area is The luminous brightness of the transparent display area is basically the same; the determining module 2704 is configured to determine the third target adjustment step size according to the comparison result of the current back luminous brightness and the target back luminous brightness; the sixth adjusting module 2705 is configured to The third target adjustment step adjusts the data line input voltage of the pixel, and determines the data line input
  • the gamma adjustment device of the display panel includes a display 141, one or more processors 180, a memory 121, and a power supply 110, as shown in FIG. 28.
  • the memory 121 is configured to store computer program code, and the computer program code includes computer instructions.
  • the processor 180 is connected to the display 141 and the memory 121.
  • the processor 180 is configured to execute the gamma adjustment method of the display panel described above when the processor executes computer instructions.
  • the display 141 displays the gamma adjustment information generated by the processor 180.
  • the power supply 110 is configured to supply power to various components of the gamma adjustment device of the display panel.
  • the above-mentioned gamma adjustment device of the display panel can reduce or eliminate the brightness difference between the transparent display area and the non-transparent display area on the premise that the photosensitive element under the transparent display area can receive a sufficient amount of light, thereby improving the display effect .
  • An embodiment of the present application also provides a display device including a display panel and a gamma adjustment device of the display panel as shown in FIG. 27.
  • the display panel of the display device 23 may be the display panel 22 shown in FIG. 22, and the photosensitive element 223 is provided on the back (or under) the transparent display area 222, so
  • the photosensitive element 223 may be a camera, a photosensitive element, etc., and the number may be one or more.
  • the gamma adjusting device is the gamma adjusting device of the display panel shown in FIG. 27.
  • the gamma adjustment device of the display panel can reduce or eliminate the brightness difference between the transparent display area and the non-transparent display area under the premise of ensuring that the photosensitive element under the transparent display area can receive a sufficient amount of light, thereby improving display effect.
  • the display device in this embodiment may be any product or component with a display function, such as electronic paper, mobile phone, tablet computer, television, notebook computer, digital photo frame, and navigator.
  • a display function such as electronic paper, mobile phone, tablet computer, television, notebook computer, digital photo frame, and navigator.
  • the embodiments of the present application also provide a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are executed on the computer, the computer is caused to execute the gamma adjustment method of the display panel described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(22)的伽玛调节方法及调节装置。显示面板(22)的伽玛调节方法,包括:针对低灰阶绑点区间中的当前灰阶绑点,检测当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值(106);若是,则获取位于当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值(107);前一个灰阶绑点、至少两个灰阶绑点的灰阶均大于当前灰阶绑点的灰阶;根据至少两个灰阶绑点的伽玛电压的绝对值拟合得到第一关系曲线(108);根据当前灰阶绑点的灰阶与第一关系曲线,调节当前灰阶绑点的伽玛电压,使调节后的当前灰阶绑点的伽玛电压的绝对值位于第一关系曲线上(109)。

Description

显示面板的伽玛调节方法及调节装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板的伽玛调节方法及调节装置。
背景技术
相关技术中,人眼感知的亮度与显示面板的实际显示亮度并非线性关系。在低亮度环境中,人眼对亮度的变化更敏感,高亮度环境则反之。人眼的这种特性,称为Gamma(伽玛)特性。由于人眼对亮度非线性感知的特性,如果我们需要获得均匀变化的亮度感受,则显示面板显示的亮度就需要非均匀变化,以适应人眼的Gamma特性。显示面板的亮度与灰阶程度的非线性参数可以称为Gamma参数,根据Gamma参数绘制的曲线称为Gamma特性曲线。Gamma参数说明了亮度与灰阶的非线性关系,即亮度与数据线输入电压的非线性关系。因此,如果显示面板的亮度与数据线输入电压不符合上述的Gamma特性曲线,则需要对显示面板进行Gamma校正。
发明内容
本申请提供一种显示面板的伽玛调节方法及调节装置、显示设备,以解决相关技术中的不足。
根据本申请实施例的第一方面,提供一种显示面板的伽玛调节方法。所述方法包括:判断当前显示面板是否是当前显示面板组内的首件显示面板;若是,则针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压;若否,则将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压;所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同;根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压,并将所述光学参数的采样值基本为所述第一目标值时所述像素的数据线输入电压确定为伽玛电压;针对低灰阶绑点区间中的第二当前灰阶绑点,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值;若是,则获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述第二当前灰阶绑点的灰阶;根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线;根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
根据本申请实施例的第二方面,提供一种显示面板的伽玛调节装置,包括:判断模块,用于判断当前显示面板是否是当前显示面板组内的首件显示面板;第一调节模块,用于在所述当前显示面板是所述当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压;第二调节模块,用于在所述当前显示面板不是所述当前显示面板组内的首件显示面板时,将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压;所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同;第三调节模块,用于根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压,并将所述光学参数的采样值基本为所述第一目标值时所述像素的数据线输入电压确定为伽玛电压;检测模块,用于针对低灰阶绑点区间中的第二当前灰阶绑点,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值;第一获取模块,用于在所述第二当前灰阶绑点对应的伽玛电压的绝对值小于所述前一个灰阶绑点对应的伽玛电压的绝对值时,获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述第二当前灰阶绑点的灰阶;拟合模块,用于根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线;第四调节模块,用于根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
根据本申请实施例的第三方面,提供一种显示设备,包括显示面板以及上述的显示面板的伽玛调节装置。
本申请实施例的有益效果可包括:通过判断当前显示面板是否是当前显示面板组内的首件显示 面板,可以在当前显示面板是当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,将当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压,也可以在当前显示面板不是当前显示面板组内的首件显示面板时,将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压,其中,所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同,这样,可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过根据所述像素的光学参数的采样值与第一目标值之间的比较结果调节所述像素的数据线输入电压,可以使伽玛调节更有针对性,有利于缩短伽玛调节的时长,提高伽玛调节的效率。
而且,针对低灰阶绑点区间中的第二当前灰阶绑点,在检测到第二当前灰阶绑点对应的伽玛电压的绝对值小于前一个灰阶绑点对应的伽玛电压的绝对值时,可以获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值,并根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线,然后,根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。由于同一显示面板的所有灰阶绑点的伽玛电压按照灰阶绑点的同一排列方向的变化趋势一致,因此,第二当前灰阶绑点对应的伽玛电压的绝对值实际上应该位于上述的第一关系曲线上或者接近上述的第一关系曲线。所以,第二当前灰阶绑点的灰阶在第一关系曲线上对应的伽玛电压的绝对值应该为第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值,或者接近第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。所以,调节后的位于所述第一关系曲线上的第二当前灰阶绑点的伽玛电压的绝对值更接近第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。这样,通过在伽玛调节的过程中检测伽玛电压是否翻转并进行校正,可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
根据本申请实施例的第四方面,提供一种显示面板的伽玛调节方法。所述显示面板包括透明显示区与非透明显示区,所述透明显示区为双面发光显示区,所述透明显示区的正面为面向环境光的一面,背面为背离环境光的一面,所述伽玛调节方法,包括:将所述透明显示区的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压;获取所述透明显示区的当前背面发光亮度;根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度;其中,针对所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致;根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长;根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
根据本申请实施例的第五方面,提供一种显示面板的伽玛调节装置,对出厂后的显示面板进行调节,所述显示面板包括透明显示区与非透明显示区,所述透明显示区为双面发光显示区,所述透明显示区的正面为面向环境光的一面,背面为背离环境光的一面,所述伽玛调节装置,包括:第五调节模块,用于将显示面板的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压;第二获取模块,用于获取所述透明显示区的当前背面发光亮度;第三获取模块,用于根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度;其中,针对所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致;确定模块,用于根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长;第六调节模块,用于根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
本申请实施例的有益效果可包括:在显示面板出厂后,可以将显示面板的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压,并获取透明显示区的当前背面发光亮度,然后,根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度,其中,对于同一灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。然后,根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长,并根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。这样,当透明显示区的伽玛电压校正后,可以使透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。本申 请实施例提供的技术方案,在保证透明显示区下的感光元件能够接收到足够量的光线的前提下,可减小或消除透明显示区和非透明显示区的亮度差异,从而改善显示效果。
根据本申请实施例的第六方面,提供一种显示面板的伽玛调节装置,包括:显示器;存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及一个或多个处理器,连接至所述显示器和所述存储器。所述一个或多个处理器配置为当所述一个或多个处理器执行所述计算机指令时,所述伽玛调节装置执行上述的显示面板的伽玛调节方法,而且所述处理器生成的伽玛调节信息经由所述显示器显示。
根据本申请实施例的第七方面,提供一种显示设备,包括显示面板以及上述的显示面板的伽玛调节装置。
根据本申请实施例的第八方面,提供一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上文所述的显示面板的伽玛调节方法。
以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据本申请实施例示出的一种显示面板的伽玛调节方法的流程图;
图2是根据本申请实施例示出的一种灰阶与伽玛电压的关系示意图;
图3是根据本申请实施例示出的另一种灰阶与伽玛电压的关系示意图;
图4是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图5是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图6是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图7是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图8是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图9是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图10是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图11是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图12是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图13是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图14是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图15是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图16是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图17是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图18是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图19是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图20是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图21是根据本申请实施例示出的一种显示面板的伽玛调节装置的结构示意图;
图22是根据本申请实施例示出的一种显示面板的俯视图;
图23是根据本申请实施例示出的透明显示区与非透明显示区的发光示意图,其中,对应图22中的AA直线剖视图;
图24是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图25是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图26是根据本申请实施例示出的另一种显示面板的伽玛调节方法的流程图;
图27是根据本申请实施例示出的一种显示面板的伽玛调节装置的结构示意图;以及
图28是根据本申请实施例示出的另一种显示面板的伽玛调节装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
LCM(LCD Module,LCD显示模组)同一机种可使用同一组伽玛电压。一组伽玛电压中包括0~255灰阶中每个灰阶对应的伽玛电压。然而,由于工艺的差异,AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体或主动矩阵有机发光二极体)显示面板间的差异性较大,不像LCM一样拥有较高的一致性,因此,在出厂前需要对每片显示面板进行伽玛调节,得到每片显示面板各自的一组伽玛电压。显示面板的一组伽玛电压可包括0~255灰阶中每个灰阶对应的伽玛电压。
因此,如何提高伽玛调节的效率是要解决的一个技术问题。
本申请实施例提供一种显示面板的伽玛调节方法及调节装置、显示设备,可以解决上述的技术问题,不但可以提高伽玛调节的效率,还可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
图1是根据本申请实施例示出的一种显示面板的伽玛调节方法的流程图。该显示面板的伽玛调节方法,如图1所示,可以包括以下步骤101~109。
在步骤101中,判断当前显示面板是否是当前显示面板组内的首件显示面板。若是,则执行步骤102,若否,则执行步骤103。
在对显示面板进行伽玛调节时,需要安装有调试程序的伽玛调节设备以及光学测量仪器。伽玛调节设备在启动至关闭的时间段内,可以连续对多个同批次的显示面板进行伽玛调节,这多个显示面板可以称为一个显示面板组。
在对每个显示面板组中的显示面板进行伽玛调节时,伽玛调节设备可以对每个显示面板组内的首件显示面板与非首件显示面板分别采用不同的伽玛调节方法进行伽玛调节。具体地,针对当前显示面板组,伽玛调节设备可以判断当前显示面板是否是当前显示面板组内的首件显示面板,如果当前显示面板是当前显示面板组内的首件显示面板,则执行步骤102,如果当前显示面板不是当前显示面板组内的首件显示面板,则执行步骤103。
在步骤102中,针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压。
在一个实施例中,可以从0~255灰阶中选取多个灰阶作为灰阶绑点(驱动芯片中对应可调的灰阶,又称灰阶绑点)进行伽玛调节,得到每个灰阶绑点各自的伽玛电压,以供进行数据拟合,得到其余灰阶各自的伽玛电压。在一个实施例中,选取出的多个灰阶绑点可以在0~255中均匀分布,以使数据拟合的结果更准确。
在一个实施例中,可以将选取出的多个灰阶绑点按照亮度等级分为低灰阶绑点区间、中灰阶绑点区间以及高灰阶绑点区间。其中,中灰阶绑点区间与高灰阶绑点区间可以称为非低灰阶绑点区间。低灰阶绑点区间中的灰阶绑点的灰阶值小于非低灰阶绑点区间中的灰阶绑点的灰阶值。低灰阶绑点区间与非低灰阶绑点区间之间的分界点可以是指定的绑点,例如,可以是在伽玛值为2.2的伽玛曲线中,亮度为1nit(尼特)的灰阶。
在一个实施例中,伽玛调节设备可以按照预设的调节顺序对多个灰阶绑点分别进行伽玛调节。 例如,伽玛调节设备可以按照灰阶值从大到小的顺序对多个灰阶绑点分别进行伽玛调节,也可以按照灰阶值从小到大的顺序对多个灰阶绑点分别进行伽玛调节。在本申请实施例中,伽玛调节设备按照灰阶值从大到小的顺序对多个灰阶绑点分别进行伽玛调节。具体地,伽玛调节设备可以先对非低灰阶绑点区间中的灰阶绑点按照灰阶值从大到小的顺序进行伽玛调节,然后,再对低灰阶绑点区间中的灰阶绑点按照灰阶值从大到小的顺序进行伽玛调节。
在一个实施例中,显示面板的像素单元可以包括N种颜色的像素,N为正整数。例如,N可以为3,像素单元可以包括红颜色的像素R、绿颜色的像素G以及蓝颜色的像素B。每个颜色的像素各自对应一组伽玛电压。在对显示面板进行伽玛调节时,可以分别对每一种颜色的像素进行伽玛调节。在本申请实施例中,以对一种颜色的像素进行伽玛调节进行详细介绍。
在一个实施例中,在当前显示面板是当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,伽玛调节设备可以将当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压。其中,第一参考伽玛电压为第一当前灰阶绑点的伽玛电压的参考值,第一参考伽玛电压位于第一当前灰阶绑点的伽玛电压附近。这样,可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
在一个实施例中,第一参考伽玛电压可以是预先存储在伽玛调节设备中的值,也可以是伽玛调节设备通过数据测试得到的值。
在步骤103中,将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压;所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同。
在一个实施例中,在当前显示面板不是当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,伽玛调节设备可以将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压,其中,所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同。由于同批次的显示面板的制备工艺基本相同,因此,对于同一灰阶绑点,不同显示面板的伽玛电压基本相同。其中,“基本相同”的意思是,不同显示面板的伽玛电压相同,或者不同显示面板的伽玛电压的差值的绝对值小于指定电压值。因此,伽玛调节设备可以预先存储已完成伽玛调节的任一件显示面板的一组伽玛电压,以作为后续显示面板的伽玛电压的参考值。这样,可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
在步骤104中,根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压。
在本步骤中,伽玛调节设备可以通过光学测量仪器获取所述像素的光学参数的采样值,伽玛调节设备预先存储像素的光学参数的第一目标值。其中,像素的光学参数的第一目标值可以根据第一当前灰阶绑点以及指定的伽玛曲线计算得到。其中,伽玛曲线用于指示各个灰阶与光学参数的目标值的关系。例如,光学参数为亮度时,指定的伽玛曲线可以是伽玛值为2.2的伽玛曲线。
在本步骤中,伽玛调节设备可以对所述像素的光学参数的采样值与第一目标值进行比较,并根据比较结果确定调节方向以及调节步长,然后,根据确定的调节方向以及调节步长调节所述像素的数据线输入电压,使像素的数据线输入电压趋近伽玛电压。
在步骤105中,将所述光学参数的采样值基本为所述第一目标值时所述像素的数据线输入电压确定为伽玛电压。
在本步骤中,伽玛调节设备可以在所述光学参数的采样值基本为所述第一目标值时,将像素的数据线输入电压确定为伽玛电压。其中,光学参数的采样值基本为所述第一目标值包括两种情况:一种是,光学参数的采样值为所述第一目标值,另一种是光学参数的采样值与所述第一目标值的差值的绝对值小于指定光学参数值。
在步骤104~105中,由于通过根据所述像素的光学参数的采样值与第一目标值之间的比较结果调节所述像素的数据线输入电压,可以使伽玛调节更有针对性,有利于缩短伽玛调节的时长,提高伽玛调节的效率。
以上是对非低灰阶绑点区间中的灰阶绑点进行伽玛调节的方法,下面是对低灰阶绑点区间中的灰阶绑点进行伽玛调节的方法。
在步骤106中,针对低灰阶绑点区间中的第二当前灰阶绑点,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值。若是,则执行步骤107。
在一个实施例中,灰阶绑点的伽玛电压的绝对值随着灰阶值的减小而增大。在一个实施例中,显示面板的像素驱动电路中的驱动晶体管的类型不同,数据线输入电压也不同。例如,驱动晶体管为P型晶体管时,数据线输入电压增大时,灰阶值减小。反之,当驱动晶体管为N型晶体管时,数据线输入电压增大时,灰阶值增大。其中,驱动晶体管可以是TFT(Thin Film Transistor,薄膜晶体管),也可以是MOS管(Metal-Oxide-Semiconductor)(例如,金属、氧化物、半导体场效应晶体管)。以上是举例说明,本申请实施例不限于上述提供的实施例方式。
在对低灰阶绑点区间中的绑点进行伽玛调节时,由于灰阶较小,亮度较低,光学测量仪器获取的光学参数的采样值可能会发生偶尔不准确的情况,导致灰阶小的灰阶绑点的伽玛电压反而小于灰阶较大的灰阶绑点的伽玛电压。为避免上述情况,针对低灰阶绑点区间中的第二当前灰阶绑点,伽玛调节设备可以检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值,如果检测到第二当前灰阶绑点对应的伽玛电压的绝对值小于前一个灰阶绑点对应的伽玛电压的绝对值,则执行步骤107。
在一个示例性实施例中,驱动晶体管为N型晶体管,数据线输入电压为正电压。如图2所示,低灰阶绑点区间中灰阶绑点D5、D4、D3、D2的伽玛电压随着灰阶值的减小而增大。然而,如果检测到灰阶绑点D1的伽玛电压小于灰阶绑点D2的伽玛电压,则执行步骤107,其中,灰阶绑点D1的灰阶值小于灰阶绑点D2的灰阶值,灰阶绑点D2为第二当前灰阶绑点D1的前一个灰阶绑点。
在步骤107中,获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述第二当前灰阶绑点的灰阶。
在本步骤中,伽玛调节设备可以从已进行伽玛调节的灰阶绑点中获取灰阶值分别大于所述第二当前灰阶绑点的至少两个灰阶绑点对应的伽玛电压的绝对值。其中,灰阶值分别大于所述第二当前灰阶绑点的至少两个灰阶绑点可以与第二当前灰阶绑点依次相邻。具体地,至少两个灰阶绑点中灰阶小的灰阶绑点与第二当前灰阶绑点之间的间隔更近,至少两个灰阶绑点中灰阶大的灰阶绑点与第二当前灰阶绑之间的间隔更远。
继续上述的示例性实施例,如图2所示,伽玛调节设备可以获取灰阶绑点D5、D4、D3、D2的伽玛电压的绝对值,也可以获取灰阶绑点D3、D2的伽玛电压的绝对值。当获取灰阶绑点D3、D2的伽玛电压的绝对值时,灰阶绑点D2、D3依次与第二当前灰阶绑点D1相邻,灰阶绑点D2的灰阶值较小,与第二当前灰阶绑点D1较近,灰阶绑点D3的灰阶值较大,与第二当前灰阶绑点D1较远。示例地,灰阶绑点D2为第二当前灰阶绑点D1的前一个灰阶绑点,在步骤106中,灰阶绑点D2对应的伽玛电压的绝对值已经与第二当前灰阶绑点D1对应的伽玛电压的绝对值进行了比较,因此,此步骤107中,灰阶绑点D2对应的伽玛电压值的绝对值可以是重复获取。
在步骤108中,根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线。
在本步骤中,伽玛调节设备可以对获取的至少两个灰阶绑点的伽玛电压的绝对值进行数据拟合,得到灰阶与伽玛电压的绝对值的第一关系曲线。在第一关系曲线中,每个灰阶值对应一个伽玛电压的绝对值。
在步骤109中,根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
在本步骤中,伽玛调节设备可以根据第二当前灰阶绑点的灰阶值与第一关系曲线计算得到对应的伽玛电压的绝对值,并根据得到的伽玛电压的绝对值以及显示面板的像素驱动电路中的驱动晶体管的类型确定对应的伽玛电压。
在本步骤中,伽玛调节设备可以将第二当前灰阶绑点的伽玛电压调节为上述确定的伽玛电压,调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
继续上述的示例性实施例,如图3所示,伽玛调节设备可以获取灰阶绑点D5、D4、D3、D2的伽玛电压的绝对值,并对灰阶绑点D5、D4、D3、D2的伽玛电压的绝对值进行数据拟合,得到第一关系曲线31。然后,伽玛调节设备可以根据灰阶绑点D1的灰阶值以及第一关系曲线31得到第二当 前灰阶绑点D1在第一关系曲线31上对应的伽玛电压的绝对值。如图3所示,得到的第二当前灰阶绑点D1在第一关系曲线31上对应的伽玛电压的绝对值可以是数据点32对应的伽玛电压的绝对值。
在本步骤中,伽玛调节设备可以根据调节后的第二当前灰阶绑点的伽玛电压的绝对值确定第二当前灰阶绑点的伽玛电压,并进行保存。示例地,如图3所示,第二当前灰阶绑点D1对应的伽玛电压的绝对值低于数据点32,伽玛调节设备将第二当前灰阶绑点D1对应的伽玛电压的绝对值调节至数据点32,以位于第一关系曲线31上。
本实施例的有益效果包括:通过判断当前显示面板是否是当前显示面板组内的首件显示面板,可以在当前显示面板是当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,将当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压,也可以在当前显示面板不是当前显示面板组内的首件显示面板时,将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压,其中,所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同,这样,可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过根据所述像素的光学参数的采样值与第一目标值之间的比较结果调节所述像素的数据线输入电压,可以使伽玛调节更有针对性,有利于缩短伽玛调节的时长,提高伽玛调节的效率。
而且,针对低灰阶绑点区间中的第二当前灰阶绑点,在检测到第二当前灰阶绑点对应的伽玛电压的绝对值小于前一个灰阶绑点对应的伽玛电压的绝对值时,可以获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值,并根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线,然后,根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。由于同一显示面板的所有灰阶绑点的伽玛电压按照灰阶绑点的同一排列方向的变化趋势一致,因此,第二当前灰阶绑点对应的伽玛电压的绝对值实际上应该位于上述的第一关系曲线上或者接近上述的第一关系曲线。所以,第二当前灰阶绑点的灰阶在第一关系曲线上对应的伽玛电压的绝对值应该为第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值,或者接近第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。所以,调节后的位于所述第一关系曲线上的第二当前灰阶绑点的伽玛电压的绝对值更接近第二当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。这样,通过在伽玛调节的过程中检测伽玛电压是否翻转并进行校正,可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
图4是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,上述的至少两个灰阶绑点依次与上述的第二当前灰阶绑点相邻。在图1所示的实施例的基础上,上述的步骤108可以包括以下步骤401~402。
在步骤401中,根据所述至少两个灰阶绑点对应的灰阶以及伽玛电压的绝对值计算得到对应的指示伽玛电压的绝对值与灰阶值关系的第一直线方程。
在步骤402中,将所述第一直线方程确定为所述第一关系曲线。
在本实施例中,伽玛调节设备可以从已进行伽玛调节的灰阶绑点中获取灰阶值分别大于所述第二当前灰阶绑点的至少两个灰阶绑点对应的伽玛电压的绝对值。其中,灰阶值分别大于所述第二当前灰阶绑点的至少两个灰阶绑点可以与第二当前灰阶绑点依次相邻。具体地,至少两个灰阶绑点中灰阶小的灰阶绑点与第二当前灰阶绑点之间的间隔更近,至少两个灰阶绑点中灰阶大的灰阶绑点与第二当前灰阶绑点之间的间隔更远。
继续上述的示例性实施例,如图2和图3所示,伽玛调节设备可以获取灰阶绑点D5、D4、D3、D2的伽玛电压的绝对值,也可以获取灰阶绑点D3、D2的伽玛电压的绝对值。当获取灰阶绑点D3、D2的伽玛电压的绝对值时,灰阶绑点D2、D3依次与第二当前灰阶绑点D1相邻,灰阶绑点D2的灰阶值较小,与第二当前灰阶绑点D1较近,灰阶绑点D3的灰阶值较大,与第二当前灰阶绑点D1较远。
在本实施例中,伽玛调节设备可以根据所述至少两个灰阶绑点对应的灰阶以及伽玛电压的绝对值计算得到对应的指示伽玛电压的绝对值与灰阶值关系的第一直线方程。其中,至少两个灰阶绑点对应的伽玛电压的绝对值可以部分位于第一直线方程对应的直线上,其余的灰阶绑点对应的伽玛电压的绝对值可以位于第一直线方程对应的直线外。当然,至少两个灰阶绑点对应的伽玛电压的绝对值可以全部位于第一直线方程对应的直线外。这样,得到的第一直线方程可以整体反映灰阶绑点的 伽玛电压的绝对值与灰阶值的关系。
优选地,在本实施例中,上述的至少两个灰阶绑点可以只包括两个灰阶绑点,这两个灰阶绑点依次与上述的第二当前灰阶绑点相邻。继续上述的示例性实施例,如图2和图3所示,伽玛调节设备可以获取灰阶绑点D3、D2的伽玛电压的绝对值,并根据灰阶绑点D3、D2对应的灰阶值以及伽玛电压的绝对值计算得到对应的指示伽玛电压的绝对值与灰阶值关系的第一直线方程。这样,计算量小,可以提高伽玛调节的效率。
在本实施例中,伽玛调节设备可以将得到的第一直线方程确定为上述的第一关系曲线。
在本实施例中,由于至少两个灰阶绑点依次与第二当前灰阶绑点相邻,且相邻灰阶绑点对应的伽玛电压的绝对值近似为线性关系,因此,根据上述的至少两个灰阶绑点对应的灰阶以及伽玛电压的绝对值计算得到的第一直线方程比较接近第二当前灰阶绑点与上述的至少两个灰阶绑点之间的第一关系曲线。而且,根据上述的至少两个灰阶绑点对应的灰阶以及伽玛电压的绝对值计算得到第一直线方程,计算简易,耗时少,有利于提高伽玛调节的效率。
图5是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,在上述的步骤106之后,还可以包括以下步骤501~502。
在步骤501中,选择与所述第二当前灰阶绑点相邻的预设数目的灰阶作为附加的灰阶绑点。
在步骤502中,将所述附加的灰阶绑点添加至所述当前显示面板的第一灰阶绑点集合。
在一个实施例中,每个显示面板对应一个灰阶绑点集合,灰阶绑点集合中包括多个灰阶绑点。伽玛调节设备可以对灰阶绑点集合中的多个灰阶绑点按照灰阶值从大到小的顺序进行伽玛调节。
在本实施例中,如果所述第二当前灰阶绑点对应的伽玛电压的绝对值小于所述前一个灰阶绑点对应的伽玛电压的绝对值,则伽玛调节设备可以选择与所述第二当前灰阶绑点相邻的预设数目的灰阶作为附加的灰阶绑点,并将所述附加的灰阶绑点添加至所述当前显示面板的第一灰阶绑点集合。
优选地,所述附加的灰阶绑点可以包括灰阶值小于所述第二当前灰阶绑点的第一灰阶绑点,或者,可以包括灰阶值大于所述第二当前灰阶绑点的第二灰阶绑点,或者可以同时包括灰阶值小于所述第二当前灰阶绑点的第一灰阶绑点以及灰阶值大于所述第二当前灰阶绑点的第二灰阶绑点。
由于附加的灰阶绑点可以包括灰阶值小于第二当前灰阶绑点的第一灰阶绑点,或者可以包括灰阶值大于第二当前灰阶绑点的第二灰阶绑点,又或者可以同时包括上述的第一灰阶绑点与第二灰阶绑点,因此,增加了灰阶绑点选择和伽玛调节方式的灵活性和多样性,以适应不同的突发状况。
优选地,当所述附加的灰阶绑点包括灰阶值大于所述第二当前灰阶绑点的第二灰阶绑点时,所述第二灰阶绑点的灰阶小于所述前一个灰阶绑点的灰阶。例如,第二当前灰阶绑点D1的前一个灰阶绑点为灰阶绑点D2,第二灰阶绑点的灰阶值小于灰阶绑点D2的灰阶值。
当附加的灰阶绑点中包括灰阶值大于第二当前灰阶绑点的第二灰阶绑点时,由于第二灰阶绑点的灰阶小于第二当前灰阶绑点的前一个灰阶绑点的灰阶,因此,附加的灰阶绑点与第二当前灰阶绑点之间的间隔更小,使得附加的灰阶绑点更集中。
例如,当前显示面板的第一灰阶绑点集合中包括的18个灰阶绑点的灰阶值分别为255、220、190、170、145、120、95、70、45、20、14、12、10、8、6、4、2以及0。如果第二当前灰阶绑点的灰阶值为20,预设数目为4,则伽玛调节设备可以选择灰阶值为24、22、18、16的4个灰阶作为附加的灰阶绑点,并将灰阶值为24、22、18、16的4个附加的灰阶绑点添加至第一灰阶绑点集合。其中,灰阶值为18、16的灰阶绑点为第一灰阶绑点,灰阶值为22、24的灰阶绑点为第二灰阶绑点。
在本实施例中,在第二当前灰阶绑点对应的伽玛电压的绝对值小于前一个灰阶绑点对应的伽玛电压的绝对值时,说明在寻找上述的第二当前灰阶绑点对应的伽玛电压的过程中出现了问题,那么选择与第二当前灰阶绑点相邻的预设数目的灰阶作为附加的灰阶绑点,并添加至当前显示面板的第一灰阶绑点集合,可以将与第二当前灰阶绑点相邻的预设数目的灰阶作为附加的灰阶绑点集中进行伽玛调节,提高伽玛调节的可靠性。
图6是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图5所示的实施例的基础上,在上述的步骤502之后,还可以包括以下步骤601~602。
在步骤601中,从所述第一灰阶绑点集合中确定未调节的所述预设数目的灰阶绑点,作为待剔除的灰阶绑点;所述待剔除的灰阶绑点与所述附加的灰阶绑点不同。
在步骤602中,将所述待剔除的灰阶绑点从所述第一灰阶绑点集合中剔除。
在本实施例中,伽玛调节设备可以从当前显示面板的第一灰阶绑点集合中确定未调节的上述的预设数目的灰阶绑点,作为待剔除的灰阶绑点,并将所述待剔除的灰阶绑点从所述第一灰阶绑点集合中剔除,以保持第一灰阶绑点集合中灰阶绑点的总数目保持不变。
例如,可以将上述的第一灰阶绑点集合中的灰阶值为14、10、6、2的灰阶绑点作为待剔除的灰阶绑点,并将这些待剔除的灰阶绑点从所述第一灰阶绑点集合中剔除,得到新的第一灰阶绑点集合。新的第一灰阶绑点集合包括的18个灰阶绑点分别为255、220、190、170、145、120、95、70、45、24、22、20、18、16、12、8、4以及0。
在第一灰阶绑点集合中添加预设数目的灰阶绑点,并从第一灰阶绑点集合中剔除同一预设数目的灰阶绑点,可以维持第一灰阶绑点集合中灰阶绑点总数目不变,有利于避免单个显示面板的伽玛调节的总时间过长,提高伽玛调节的效率。
优选地,预设数目的待剔除的灰阶绑点中相邻绑点之间的间隔可基本相同。例如,待剔除的灰阶绑点14、10、6、2中相邻绑点之间的间隔均为4。当然,预设数目的待剔除的灰阶绑点中相邻绑点之间的间隔也可不完全相同。由于预设数目的待剔除的灰阶绑点中相邻绑点之间的间隔基本相同,使得剔除的灰阶绑点分布均匀,可以减小剔除灰阶绑点对伽玛调节可靠性的影响。
图7是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,在上述的步骤106之前,还可以包括以下步骤701。
在步骤701中,检测低灰阶绑点区间中的第二当前灰阶绑点的电压调整参数是否符合第一预设条件,若是,则将所述像素的数据线的当前输入电压作为所述第二当前灰阶绑点对应的伽玛电压。
在本实施例中,当低灰阶绑点区间中的第二当前灰阶绑点的电压调整参数符合第一预设条件时,可以暂停调节,即暂停执行步骤106至步骤109,并将像素的数据线的当前输入电压作为第二当前灰阶绑点对应的伽玛电压。这样,可以及时发现问题,避免浪费时间。
优选地,所述电压调整参数为电压调整次数,所述第一预设条件为所述电压调整次数大于预设次数。由于第二当前灰阶绑点的电压调整次数可以间接反映第二当前灰阶绑点的伽玛调节的时长,因此,将第二当前灰阶绑点的电压调整次数大于预设次数作为第一预设条件,便于实现,且准确性高。
优选地,所述电压调整参数为电压调整时长,所述第一预设条件为所述电压调整时长大于预设时长。由于第二当前灰阶绑点的电压调整时长可以直接反映第二当前灰阶绑点的伽玛调节的时长,因此,将第二当前灰阶绑点的电压调整时长大于预设时长作为第一预设条件,准确性高。
优选地,若检测到所述第二当前灰阶绑点的电压调整参数符合所述第一预设条件,则输出用于提示调节异常的提示信息。由于在检测到第二当前灰阶绑点的电压调整参数符合第一预设条件时输出用于提示调节异常的提示信息,可以提示测试人员在后续测试中进行重点关注。
图8是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤102可以包括以下步骤801~804。
在步骤801中,调节所述像素的数据线输入电压,获得至少两组数据。其中,所述像素的光学参数的值会随着所述像素的数据线输入电压改变而改变。所述至少两组数据中包括至少两个数据线输入电压的绝对值以及对应的光学参数的采样值。
在本实施例中,伽玛调节设备可以调节所述像素的数据线输入电压,以获得两组或者两组以上的数据。每组数据中包括数据线输入电压的绝对值以及对应的光学参数的采样值。下面以调节所述像素的数据线输入电压,获得三组数据为例进行说明。当调节所述像素的数据线输入电压时,可以获取三组数据(V1,L1)、(V2,L2)以及(V3,L3),其中,V为数据线输入电压,L为光学参数的采样值。
在步骤802中,根据所述至少两组数据拟合得到数据线输入电压的绝对值与光学参数的采 样值的第二关系曲线。
在本实施例中,伽玛调节设备可以对获得的所述至少两组数据进行数据拟合,得到数据线输入电压的绝对值与光学参数的采样值的第二关系曲线。其中,至少两组数据可以部分位于第二关系曲线上,另一部分位于第二关系曲线的周围,也可以全部位于第二关系曲线上,或者全部位于第二关系曲线的周围。
在步骤803中,根据所述第一当前灰阶绑点对应的光学参数的第一目标值以及所述第二关系曲线,获得所述第一目标值对应的目标数据线输入电压。
在本实施例中,伽玛调节设备可以根据第一当前灰阶绑点对应的光学参数的第一目标值以及上述的第二关系曲线得到第一目标值对应的目标数据线输入电压。
在步骤804中,根据所述目标数据线输入电压确定所述第一参考伽玛电压,并将所述像素的数据线输入电压调节为所述第一参考伽玛电压。
在本实施例中,伽玛调节设备可以将上述得到的目标数据线输入电压确定为所述第一参考伽玛电压,并将所述像素的数据线输入电压调节为所述第一参考伽玛电压。
在一个实施例中,所述光学参数可为亮度,或者,光学参数可为色坐标,又或者可以同时包括亮度和色坐标,增加了选择光学参数的灵活性与多样性,以适应不同的伽玛调节的准确度要求。当上述的光学参数同时包括亮度和色坐标,得到的伽玛电压更准确。
在一个实施例中,当所述光学参数包括亮度时,在调节任意一种颜色的像素的伽玛电压时,像素的亮度的采样值为所述像素单元的亮度的采样值,即为显示面板的亮度的采样值。由于上述的像素的数据线输入电压对应的亮度的采样值为像素单元的亮度的采样值,因此,可以直接采集显示面板的显示亮度的值作为任意一种颜色的像素的亮度值,可以降低采集亮度的难度,提高伽玛调节的效率。
在本实施例中,通过调节所述像素的数据线输入电压获得至少两组数据,可以根据上述的至少两组数据拟合得到数据线输入电压的绝对值与光学参数的采样值的第二关系曲线,然后,根据第一当前灰阶绑点对应的光学参数的第一目标值以及上述的第二关系曲线,可以获得第一目标值对应的目标数据线输入电压,将根据目标数据线输入电压确定第一参考伽玛电压,并将像素的数据线输入电压调节为第一参考伽玛电压,这样,可以迅速逼近第一当前灰阶绑点的伽玛电压。
图9是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,所述至少两组数据包括两组数据,所述两组数据包括两个数据线输入电压的绝对值以及对应的光学参数的采样值;所述两个数据线输入电压的绝对值均大于所述目标数据线输入电压的绝对值。在图8所示的实施例的基础上,上述的步骤802可以包括以下步骤901~902。
在步骤901中,根据所述两个数据线输入电压的绝对值以及对应的光学参数的采样值计算得到指示所述第一当前灰阶绑点的光学参数的采样值与输入电压关系的第二直线方程。
在步骤902中,将所述第二直线方程确定为所述第二关系曲线。
在本实施例中,伽玛调节设备可以按照电压由高向低的方向调节数据线输入电压,获得两组以上数据。每组数据包括数据线输入电压的绝对值以及对应的光学参数的采样值;每组数据中的数据线输入电压的绝对值均大于所述目标数据线输入电压的绝对值。这样,可以朝着同一方向调节数据线输入电压,逐步逼近伽玛电压,有利于提高调节效率。
在本实施例中,伽玛调节设备可以从获得的数据中选取两组数据,然后,根据这两组数据确定上述的第二直线方程。例如,伽玛调节设备可以依次获取三组数据(V1,L1)、(V2,L2)以及(V3,L3),并从这三组数据中选取(V1,L1)与(V3,L3),并根据(V1,L1)与(V3,L3)得到如下的第二直线方程:
Figure PCTCN2019097269-appb-000001
式(1)中,
Figure PCTCN2019097269-appb-000002
伽玛调节设备可以将上述的第二直线方程确定为第二关系曲线。
在本实施例中,伽玛调节设备可以根据第一当前灰阶绑点对应的光学参数的第一目标值(T1) 以及上述的第二关系曲线得到第一目标值对应的目标数据线输入电压。例如,当第二关系曲线为上述的式(1)表达的直线方程时,第一目标值对应的目标数据线输入电压Vt为
Figure PCTCN2019097269-appb-000003
在本实施例中,伽玛调节设备可以将上述得到的目标数据线输入电压Vt确定为所述第一参考伽玛电压,并将所述像素的数据线输入电压调节为所述第一参考伽玛电压。
在本实施例中,由于根据两个数据线输入电压的绝对值以及对应的光学参数的采样值计算得到上述的第二直线方程便于实现,且计算速度快,因此,将计算的第二直线方程确定为上述的第二关系曲线,可以提高伽玛调节的效率。
图10是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤101可以包括以下步骤1001~1005。
在步骤1001中,获取预先存储的参考数据线输入电压。
在一个实施例中,所述参考数据线输入电压可以为预先存储在伽玛电压寄存器中的默认值。由于每个显示面板的伽玛电压寄存器中预先存储有参考数据线输入电压,因此,在伽玛调节时可读取伽玛电压寄存器中预先存储的参考数据线输入电压,并将像素的数据线输入电压调整为上述的参考数据线输入电压,以驱动像素发光,并通过比较像素的光学参数的第一采样值与第一目标值来判断当前显示面板是否是当前显示面板组内的首件显示面板,实现简易,适用性强。
在另一个实施例中,所述参考数据线输入电压可以为预先存储在伽玛调节设备中的已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压。在伽玛调节设备对显示面板进行伽玛调节的过程中,可以存储已完成伽玛调节的任一件显示面板的灰阶各自对应的伽玛电压,并将与当前显示面板的第一当前灰阶绑点的灰阶值相同的灰阶作为参考灰阶绑点,以及将参考灰阶绑点对应的伽玛电压作为上述的参考数据线输入电压。由于同一显示面板组内各个显示面板的同一灰阶对应的伽玛电压基本相同,因此,可以缩短显示面板伽玛调节的时间,提高伽玛调节效率。
优选地,上述的已完成伽玛调节的任一件显示面板可以是已完成伽玛调节的显示面板中伽玛调节的时间与当前时间的时间间隔最小的显示面板。由于已完成伽玛调节的显示面板中伽玛调节的时间与当前时间的时间间隔最小的显示面板的伽玛调节条件与当前显示面板的伽玛调节条件最接近,因此,参考价值比较大,可以进一步缩短显示面板伽玛调节的时间,提高伽玛调节效率。
在步骤1002中,获取所述像素的数据线输入电压为所述参考数据线输入电压时所述像素的光学参数的第一采样值。
在本实施例中,伽玛调节设备可以将像素的数据线输入电压调节为参考数据线输入电压,并利用光学测量仪器获取像素的光学参数的第一采样值。
在步骤1003中,判断所述第一采样值与所述第一目标值的差值的绝对值是否大于预设阈值,若是,则执行步骤1004,若否,则执行步骤1005。
在本实施例中,伽玛调节设备可以将第一采样值与所述第一目标值进行比较,并判断所述第一采样值与所述第一目标值的差值的绝对值是否大于预设阈值,如果上述的差值的绝对值大于预设阈值,说明第一采样值与所述第一目标值之间的距离较远,则执行步骤1004,如果上述的差值的绝对值小于或等于预设阈值,说明第一采样值与所述第一目标值之间的距离较近,则执行步骤1005。
在步骤1004中,判定所述当前显示面板是所述当前显示面板组内的首件显示面板。
在本实施例中,在上述的差值的绝对值大于预设阈值时,伽玛调节设备可以判定所述当前显示面板是所述当前显示面板组内的首件显示面板。
在步骤1005中,判定所述当前显示面板不是所述当前显示面板组内的首件显示面板。
在本实施例中,在上述的差值的绝对值小于或等于预设阈值时,伽玛调节设备可以判定所述当前显示面板不是所述当前显示面板组内的首件显示面板。
在本实施例中,当像素的数据线输入电压为预先存储的参考数据线输入电压时,获取像素的光学参数的第一采样值,当第一采样值与第一目标值的差值的绝对值大于预设阈值,说明预先存储的参考数据线输入电压不是经伽玛调节得到的参考数据线输入电压,并判定所述当前显示面板是 所述当前显示面板组内的首件显示面板。当第一采样值与第一目标值的差值的绝对值小于或等于预设阈值时,说明预先存储的参考数据线输入电压是当前显示面板组中其他显示面板经伽玛调节得到的参考数据线输入电压,并判定所述当前显示面板不是所述当前显示面板组内的首件显示面板。采用预先存储的参考数据线输入电压驱动像素发光,并通过比较像素的光学参数的第一采样值与第一目标值来判断当前显示面板是否是当前显示面板组内的首件显示面板,便于实现,且可靠性强。
图11是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤104可以包括以下步骤1101~1103。
在步骤1101中,获取所述像素的光学参数的第二采样值。
在步骤1102中,根据所述第二采样值与所述第一目标值之间的比较结果确定第一目标调节步长。
在步骤1103中,根据所述第一目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值为所述第一目标值。
在本实施例中,伽玛调节设备可以通过光学测量仪器获取像素的光学参数的第二采样值,并根据所述第二采样值与所述第一目标值之间的比较结果确定第一目标调节步长,然后根据所述第一目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值为所述第一目标值。
在本实施例中,通过比较像素的光学参数的第二采样值与第一目标值,可以根据比较结果确定第一目标调节步长,并根据第一目标调节步长调节像素的数据线输入电压,直至所述像素的光学参数的采样值为所述第一目标值。这样,可以确定合适的调节步长,避免调节步长不当导致调节时长较大。
图12是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图11所示的实施例的基础上,上述的步骤1102可以包括以下步骤1201~1204。
在步骤1201中,获取所述第二采样值与所述第一目标值之间差值的绝对值,得到第一绝对值。
在步骤1202中,获取所述第一绝对值与所述第一目标值之间的比值,得到第一比值。
在步骤1203中,确定预设的至少两个比值区间中所述第一比值所属的目标比值区间,得到第一目标比值区间。
在步骤1204中,根据所述第一目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第一目标调节步长。
在本实施例中,伽玛调节设备可以获取所述第二采样值与所述第一目标值之间差值的绝对值,得到第一绝对值,然后,获取所述第一绝对值与所述第一目标值之间的比值,得到第一比值,所述第一比值用于指示第二采样值与第一目标值的偏离程度。
在本实施例中,伽玛调节设备中可以预先存储三个比值区间[30%,+∞)、(5%,30%]以及[0,5%)。每个比值区间对应一个调节步长,其中,比值区间[30%,+∞)、(5%,30%]、[0,5%)各自对应的调节步长为第一步长值、第二步长值、第三步长值。其中,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
在本实施例中,伽玛调节设备可以确定所述第一比值所属的目标比值区间,得到第一目标比值区间,并根据所述第一目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第一目标调节步长。当所述第一目标比值区间为[30%,+∞)时,所述第一目标调节步长的值为第一步长值。当所述第一目标比值区间为(5%,30%]时,所述第一目标调节步长的值为第二步长值。当所述第一目标比值区间为[0,5%)时,所述第一目标调节步长的值为第三步长值。例如,当第一比值为40%时,第一比值所属的比值区间为[30%,+∞),即第一目标比值区间为[30%,+∞),则第一目标调节步长为第一步长值。
当第一目标比值区间中的比值越大时,对应的第一目标调节步长的值越大,这样,在第二采样值与第一目标值之间的偏离程度的等级越大时,可以采用比较大的调节步长,有利于缩短调节时长。当第一目标比值区间中的比值越小时,对应的第一目标调节步长的值越小,这样,在第二采 样值与第一目标值之间的偏离程度的等级越小时,可以采用比较小的调节步长,避免调节步长较大导致调节时长较大。
在本实施例中,通过获取上述的第二采样值与上述的第一目标值之间差值的第一绝对值以及上述的第一绝对值与上述的第一目标值之间的第一比值,可以确定第二采样值与第一目标值之间的偏离程度,然后,可以确定预设的至少两个比值区间中第一比值所属的第一目标比值区间,每个比值区间对应的偏离程度的等级不同,然后,根据第一目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第一目标调节步长。这样,可以针对第二采样值与第一目标值之间的偏离程度的等级确定对应的调节步长,使调节步长适中。
图13是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤104之后,还可以包括以下步骤1301,步骤1301替换图1所示的步骤105。
在步骤1301中,检测所述第一当前灰阶绑点的电压调整参数是否符合第二预设条件,若是,则检测所述像素的光学参数的第三采样值与所述第一目标值的差值的绝对值是否小于预设阈值,若是,则将所述像素的数据线的当前输入电压确定为所述第一当前灰阶绑点对应的伽玛电压。
在本实施例中,伽玛调节设备可以在微调非低灰阶区间中灰阶绑点的伽玛电压的过程中,可以检测所述第一当前灰阶绑点的电压调整参数是否符合第二预设条件,如果检测到所述第一当前灰阶绑点的电压调整参数符合第二预设条件,则检测所述像素的光学参数的第三采样值与所述第一目标值的差值的绝对值是否小于预设阈值,如果检测到上述的第三采样值与所述第一目标值的差值的绝对值小于预设阈值,说明像素的光学参数的值基本上为第一目标值,则将所述像素的数据线的当前输入电压确定为所述第一当前灰阶绑点对应的伽玛电压。
在一个实施例中,所述电压调整参数为电压调整次数,所述第二预设条件为所述电压调整次数大于预设次数。由于第一当前灰阶绑点的电压调整次数可以间接反映第一当前灰阶绑点的伽玛调节的时长,因此,将第一当前灰阶绑点的电压调整次数大于预设次数作为第二预设条件,便于实现,且准确性高。
在另一个实施例中,所述电压调整参数为电压调整时长,所述第二预设条件为所述电压调整时长大于预设时长。由于第一当前灰阶绑点的电压调整时长可以直接反映第一当前灰阶绑点的伽玛调节的时长,因此,将第一当前灰阶绑点的电压调整时长大于预设时长作为第二预设条件,准确性高。
优选地,伽玛调节设备若检测到当前灰阶绑点的电压调整参数符合所述第二预设条件,则输出用于提示调节异常的提示信息。由于在检测到第一当前灰阶绑点的电压调整参数符合第二预设条件时输出用于提示调节异常的提示信息,可以提示测试人员在后续测试中进行重点关注。
在本实施例中,当第一当前灰阶绑点的电压调整参数符合第二预设条件且像素的光学参数的第三采样值与第一目标值的差值的绝对值小于预设阈值时,将所述像素的数据线的当前输入电压确定为所述第一当前灰阶绑点对应的伽玛电压。这样,可以及时发现问题,避免浪费时间。
图14是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,当所述首件显示面板的第二灰阶绑点集合中所有灰阶绑点完成伽玛调节后,即在上述的步骤109之后,还可以包括以下步骤1401~1402。
在步骤1401中,根据所述第二灰阶绑点集合中所有灰阶绑点各自的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第三关系曲线。
在步骤1402中,根据所述首件显示面板的未经伽玛调节的灰阶以及所述第三关系曲线,获得所述未经伽玛调节的灰阶各自对应的伽玛电压的绝对值。
在本实施例中,伽玛调节设备在所述首件显示面板的第二灰阶绑点集合中所有灰阶绑点完成伽玛调节后,可以对所述第二灰阶绑点集合中所有灰阶绑点各自的伽玛电压的绝对值进行数据拟合,得到灰阶与伽玛电压的绝对值的第三关系曲线,然后根据所述首件显示面板的未经伽玛调节的灰阶以及所述第三关系曲线,获得所述未经伽玛调节的灰阶各自对应的伽玛电压的绝对值。例如,首件显示面板的第二灰阶绑点集合包括的18个灰阶绑点分别为255、220、190、170、145、120、95、70、45、24、22、20、18、16、12、8、4以及0,首件显示面板的未经伽玛调节的灰阶为0~255灰阶中除了上述18个灰阶绑点的灰阶。首件显示面板的伽玛寄存器可以对上述18个灰阶绑点各自 的伽玛电压的绝对值进行数据拟合,得到灰阶与伽玛电压的绝对值的第三关系曲线,然后根据所述首件显示面板的未经伽玛调节的灰阶以及所述第三关系曲线,获得所述未经伽玛调节的灰阶各自对应的伽玛电压的绝对值。
在本实施例中,通过对首件显示面板的第二灰阶绑点集合中所有灰阶绑点各自的伽玛电压的绝对值拟合,可以得到灰阶与伽玛电压的绝对值的第三关系曲线,然后,根据首件显示面板的未经伽玛调节的灰阶以及所述第三关系曲线,可以获得未经伽玛调节的灰阶各自对应的伽玛电压的绝对值。这样,可以不必对每个灰阶绑点进行伽玛调节,可以大大缩短伽玛调节的时间。
图15是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图14所示的实施例的基础上,上述的步骤1402之后,还可以包括以下步骤1501~1505。
在步骤1501中,针对未经伽玛调节的每一个灰阶,根据对应的伽玛电压的绝对值确定对应的伽玛电压。
在步骤1502中,将所述首件显示面板的像素的数据线输入电压调节为对应的伽玛电压。
在步骤1503中,获取所述像素的光学参数的第四采样值。
在步骤1504中,根据所述第四采样值与所述像素的光学参数的第二目标值之间的比较结果确定第二目标调节步长。
在步骤1505中,根据所述第二目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值基本为所述第二目标值。
由于未经伽玛调节的每一个灰阶的伽玛电压的绝对值是通过数据拟合得到的,不是通过测量得到的,因此,根据数据拟合得到的伽玛电压的绝对值确定的伽玛电压可能并不准确,存在一定的误差。为了使未经伽玛调节的每一个灰阶的伽玛电压更准确,可以对通过数据拟合得到的伽玛电压进行微调,以得到更准确的伽玛电压。
在本实施例中,针对未经伽玛调节的每一个灰阶,伽玛调节设备可以根据对应的伽玛电压的绝对值确定对应的伽玛电压,并将所述首件显示面板的像素的数据线输入电压调节为对应的伽玛电压,然后获取所述像素的光学参数的第四采样值,并根据所述第四采样值与所述像素的光学参数的第二目标值之间的比较结果确定第二目标调节步长,接着,根据所述第二目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值基本为所述第二目标值。
在本实施例中,通过针对未经伽玛调节的每一个灰阶,根据对应的伽玛电压的绝对值确定对应的伽玛电压,并将首件显示面板的像素的数据线输入电压调节为对应的伽玛电压,然后根据像素的光学参数的第四采样值与像素的光学参数的第二目标值之间的比较结果确定第二目标调节步长,并根据所述第二目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值基本为所述第二目标值。这样,可以对未经伽玛调节、通过数据拟合得到的每一个灰阶绑点的伽玛电压进行微调,得到更准确的伽玛电压。
在一个实施例中,所述当前显示面板组可包括至少一件显示面板。所述至少一件显示面板各自对应的灰阶绑点集合相同或者不同。也就是,当首件显示面板的所有灰阶完成伽玛调节后,多个非首件显示面板各自的灰阶绑点集合可以与首件显示面板的灰阶绑点集合相同,也可以与首件显示面板的灰阶绑点集合不同。当前显示面板组内所有显示面板各自对应的灰阶绑点集合可以相同,也可以不相同,增加了选择灰阶绑点和伽玛调节方式的灵活性与多样性,以适应不同的突发状况。在当前显示面板组内所有显示面板各自对应的灰阶绑点集合不相同时,更有利于发现存在问题的灰阶绑点,以便在后续测试中重点关注。
图16是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图15所示的实施例的基础上,上述的步骤1504可以包括以下步骤1601~1604。
在步骤1601中,获取所述第四采样值与所述第二目标值之间差值的绝对值,得到第二绝对值。
在步骤1602中,获取所述第二绝对值与所述第二目标值之间的比值,得到第二比值。
在步骤1603中,确定预设的至少两个比值区间中所述第二比值所属的目标比值区间,得到第二目标比值区间。
在步骤1604中,根据所述第二目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第二目标调节步长。
优选地,当所述第二目标比值区间为[30%,+∞)时,所述第二目标调节步长的值为第一步长值;当所述第二目标比值区间为(5%,30%]时,所述第二目标调节步长的值为第二步长值;当所述第二目标比值区间为[0,5%)时,所述第二目标调节步长的值为第三步长值,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
当第二目标比值区间中的比值越大时,对应的第二目标调节步长的值越大,这样,在第四采样值与第二目标值之间的偏离程度的等级越大时,可以采用比较大的调节步长,有利于缩短调节时长。当第二目标比值区间中的比值越小时,对应的第二目标调节步长的值越小,这样,在第四采样值与第二目标值之间的偏离程度的等级越小时,可以采用比较小的调节步长,避免调节步长较大导致调节时长较大。
本实施例中的确定第二目标调节步长的方法与图12所示的确定第一目标调节步长的方法相似,在此不再赘述。
本实施例中,通过获取上述的第四采样值与上述的第二目标值之间差值的第二绝对值以及上述的第二绝对值与上述的第二目标值之间的第二比值,可以确定第四采样值与第二目标值之间的偏离程度,然后,可以确定预设的至少两个比值区间中第二比值所属的第二目标比值区间,每个比值区间对应的偏离程度的等级不同,然后,根据第二目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第二目标调节步长。这样,可以针对第四采样值与第二目标值之间的偏离程度的等级确定对应的调节步长,使调节步长适中。
图17是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤101之前,还可以包括以下步骤1701~1702。
在步骤1701中,接收灰阶绑点调节范围的第一设置参数。
在步骤1702中,根据所述第一设置参数设置所述灰阶绑点调节范围的最小灰阶与最大灰阶,非低灰阶绑点区间与低灰阶绑点区间位于所述灰阶绑点调节范围内。
在本实施例中,伽玛调节设备可以接收灰阶绑点调节范围的第一设置参数,并根据所述第一设置参数设置所述灰阶绑点调节范围的最小灰阶与最大灰阶。其中,最小灰阶为低灰阶绑点区间的最小灰阶,最大灰阶为非低灰阶绑点区间的最大灰阶。
在本实施例中,由于可以接收灰阶绑点调节范围的第一设置参数,并根据第一设置参数设置所述灰阶绑点调节范围的最小灰阶与最大灰阶,因此,使得灰阶绑点调节范围独立可设置。
图18是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤101之前,还可以包括以下步骤1801~1802:
在步骤1801中,接收灰阶绑点调节精度的第二设置参数。
在步骤1802中,根据所述第二设置参数设置所述伽玛电压的精度。
在本实施例中,伽玛调节设备可以接收灰阶绑点调节精度的第二设置参数,并根据所述第二设置参数设置所述伽玛电压的精度。
在本实施例中,由于可以接收灰阶绑点调节精度的第二设置参数,并根据所述第二设置参数设置所述伽玛电压的精度,因此,使得对灰阶绑点进行伽玛调节的精度独立可设置。
图19是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤101之前,还可以包括以下步骤1901~1902:
在步骤1901中,接收所述首件显示面板的第二灰阶绑点集合中最大灰阶对应的目标亮度的第三设置参数。
在步骤1902中,根据所述第三设置参数设置所述最大灰阶对应的目标亮度。
在本实施例中,伽玛调节设备可以接收所述首件显示面板的第二灰阶绑点集合中最大灰阶对应的目标亮度的第三设置参数,并根据所述第三设置参数设置所述最大灰阶对应的目标亮度。由于可以接收每组当前显示面板中首件显示面板的第二灰阶绑点集合中最大灰阶对应的目标亮度的第 三设置参数,并根据所述第三设置参数设置所述最大灰阶对应的目标亮度,其中,每个最大灰阶的目标亮度分别对应一个伽玛调节组,因此,使得可以支持多组伽玛调节。
优选地,每个显示面板组中的首件显示面板对应的第二灰阶绑点集合中最大灰阶对应的目标亮度不同。由于每个显示面板组中的首件显示面板对应的第二灰阶绑点集合中最大灰阶对应的目标亮度不同,因此,可以将每个显示面板组分别作为一个伽玛调节组进行对应的伽玛调节,可以提高伽玛调节效率。
图20是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图1所示的实施例的基础上,上述的步骤101之前,还可以包括以下步骤2001~2002:
在步骤2001中,接收所述当前显示面板组中的显示面板上用于显示灰阶画面的第一显示区域的第四设置参数。
在步骤2002中,根据所述第四设置参数设置所述第一显示区域的起始坐标与终止坐标。
在本实施例中,伽玛调节设备可以接收所述当前显示面板组中的显示面板上用于显示灰阶画面的第一显示区域的第四设置参数,并根据所述第四设置参数设置所述第一显示区域的起始坐标与终止坐标。由于可以接收当前显示面板组中的显示面板上用于显示灰阶画面的第一显示区域的第四设置参数,并根据所述第四设置参数设置所述第一显示区域的起始坐标与终止坐标,因此,使得进行伽玛调节的显示区域的位置独立可设置。
优选地,所述显示面板全屏显示对应的第二显示区域大于或等于所述第一显示区域。显示面板全屏显示时显示区域为第二显示区域,由于该第二显示区域可以大于所述第一显示区域,或者,可以等于第一显示区域,增加了伽玛调节时选择显示区域大小的灵活性与多样性,以适应不同的功耗需求。当显示面板全屏显示对应的第二显示区域大于所述第一显示区域时,由于在伽玛调节时显示面板上用于显示灰阶画面的第一显示区域小于显示面板全屏显示对应的第二显示区域,因此,可降低伽玛调节时的功耗,节约能源。
在一个实施例中,上述的步骤101之后,还可以包括以下步骤:在伽玛调节过程中打印调节信息;所述调节信息中至少包括灰阶绑点的灰阶以及对应的伽玛电压。由于可以在伽玛调节过程中打印调节信息,因此,可以使测试人员及时了解伽玛调节的情况,以便及时发现问题。
本申请的实施例还提出了一种显示面板的伽玛调节装置,如图21所示,所述伽玛调节装置,包括:判断模块2101,用于判断当前显示面板是否是当前显示面板组内的首件显示面板;第一调节模块2102,用于在所述当前显示面板是所述当前显示面板组内的首件显示面板时,针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压;第二调节模块2103,用于在所述当前显示面板不是所述当前显示面板组内的首件显示面板时,将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压;所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同;第三调节模块2104,用于根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压,并将所述光学参数的采样值基本为所述第一目标值时所述像素的数据线输入电压确定为伽玛电压;检测模块2105,用于针对低灰阶绑点区间中的第二当前灰阶绑点,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值;第一获取模块2106,用于在所述第二当前灰阶绑点对应的伽玛电压的绝对值小于所述前一个灰阶绑点对应的伽玛电压的绝对值时,获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述第二当前灰阶绑点的灰阶;拟合模块2107,用于根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线;第四调节模块2108,用于根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
通过上述的显示面板的伽玛调节装置可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过根据所述像素的光学参数的采样值与第一目标值之间的比较结果调节所述像素的数据线输入电压,可以使伽玛调节更有针对性,有利于缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过在伽玛调节的过程中检测伽玛电压是否翻转并进行校正,可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
本申请的实施例还提出了一种显示设备,包括显示面板以及如图21所示的显示面板的伽玛调节装置。
通过上述的显示面板的伽玛调节装置可以使当前显示面板的第一当前灰阶绑点的数据线输入电压迅速逼近第一当前灰阶绑点的伽玛电压,缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过根据所述像素的光学参数的采样值与第一目标值之间的比较结果调节所述像素的数据线输入电压,可以使伽玛调节更有针对性,有利于缩短伽玛调节的时长,提高伽玛调节的效率。
而且,通过在伽玛调节的过程中检测伽玛电压是否翻转并进行校正,可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
另外,本申请的实施例还提出了一种针对显示面板的伽玛调节方法及调节装置、显示设备。该显示面板为全面屏。如图22所示,显示面板22可包括非透明显示区221与透明显示区222,所述透明显示区222为双面发光显示区,所述透明显示区222的正面为面向环境光的一面,背面为背离环境光的一面。一般情况下,透明显示区的面积小于非透明显示区的面积。
如图22和图23所示,在本申请实施例中,在显示设备23的摄像头和/或距离传感器等感光元件223的上方也设置有显示面板(即透明显示区222),通过透明显示区222,使显示设备23的感光元件223上方的区域也能与非透明显示区221共同显示正常的画面,且在感光元件223工作时,透明显示区222可不显示画面,而是正常透光,以确保感光功能的实现。对于图22和图23所示的显示面板的透明显示区和非透明显示区,在出厂前的伽玛调试过程中均可采用以上各实施例中公开的调试方法进行调试。优选地,在出厂前,对透明显示区和非透明显示区分别进行伽玛调试过程,以使两个显示区出厂后的初始亮度、色度等保持基本一致。
基于本申请实施例中的显示面板,由于透明显示区222为双面发光显示,而非透明显示区221为单面发光区,使得两个区域的发光材料的衰减速度存在差异,即显示面板工作一段时间后,透明显示区222的发光亮度会逐渐低于非透明显示区221的发光亮度,导致两个区域显示亮度不均匀,因此需要对透明显示区222的亮度进行调整,以确保全面屏的显示效果。
本申请实施例提供一种显示面板的伽玛调节方法,应用于下文所述的伽玛调节装置,或者说,可以应用于包括显示面板的显示设备,即下文所述的显示设备,显示设备上安装有用于伽玛调节的程序。如图24所示,所述伽玛调节方法,包括以下步骤2401~2405。在实施例中,以显示面板的伽玛调节方法应用于显示设备为例来进行描述。
在步骤2401中,将显示面板的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压。
显示面板的伽玛寄存器中会在出厂前预先存储一组透明显示区222的伽玛电压数据,该组伽玛电压数据包括0~255灰阶各自对应的伽玛电压。在本实施例中,以透明显示区222的一组伽玛电压数据以第一曲线的形式保存为例进行说明。第一曲线上每一个点对应一个灰阶的伽玛电压,或者伽玛电压的绝对值。
当然,显示面板的伽玛寄存器中也会在出厂前预先存储一组非透明显示区221的伽玛电压数据,该组伽玛电压数据也包括0~255灰阶各自对应的伽玛电压。当然,非透明显示区221的一组伽玛电压数据可以以第二曲线的形式进行保存。第二曲线上每一个点对应一个灰阶的伽玛电压,或者伽玛电压的绝对值。
在一个实施例中,显示设备可以按照预设的时间周期对透明显示区222进行伽玛调节,也可以在接收到启动伽玛调节的控制指令时进行伽玛调节。其中,所述控制指令可以根据用户的输入操作生成。
在对透明显示区222进行伽玛调节时,可以从透明显示区222的第三灰阶绑点集合中选取一个灰阶绑点作为当前灰阶绑点,并根据当前灰阶绑点的灰阶值以及第一曲线确定当前状态下当前灰阶绑点的当前伽玛电压,然后,将所述透明显示区的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压,驱动像素发光。
在步骤2402中,获取所述透明显示区的当前背面发光亮度。
在本实施例中,可以通过位于透明显示区的显示面板下方的感光元件223获取透明显示区的当前背面发光亮度。其中,此处的感光元件223可以是摄像头。
在步骤2403中,根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度。其中,针对所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。
在本实施例中,显示面板的伽玛寄存器中可以预先存储有透明显示区的背面发光亮度与灰阶的第一对应关系,显示设备可以根据当前背面发光亮度与所述第一对应关系获得对应的目标背面发光亮度。其中,对于同一所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。
在步骤2404中,根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长。
在本实施例中,显示设备可以通过比较当前背面发光亮度与所述目标背面发光亮度,根据比较结果确定第三目标调节步长。这样,可以确定合适的调节步长,避免调节步长不当导致调节时长较大。
在步骤2405中,根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
在本实施例中,显示设备可以按照第三目标调节步长调节所述像素的数据线输入电压,使透明显示区的背面发光亮度逐渐趋近于目标背面发光亮度,并在所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时,将数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
本申请实施例的有益效果可包括:在显示面板出厂后,可以将显示面板的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压,并获取透明显示区的当前背面发光亮度,然后,根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度,其中,对于同一灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。然后,根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长,并根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。这样,当透明显示区的伽玛电压校正后,可以使透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致。本申请实施例提供的技术方案,在保证透明显示区下的感光元件能够接收到足够量的光线的前提下,可减小或消除透明显示区和非透明显示区的亮度差异,从而改善显示效果。
图25是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,在图24所示的实施例的基础上,上述的步骤2404,可以包括以下步骤2501~2502。
在步骤2501中,获取所述当前背面发光亮度与所述目标背面发光亮度之间差值的绝对值,得到第三绝对值。
在步骤2502中,获取所述第三绝对值与所述目标背面发光亮度之间的比值,得到第三比值。
在步骤2503中,确定预设的至少两个比值区间中所述第三比值所属的目标比值区间,得到第三目标比值区间。
在步骤2504中,根据所述第三目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第三目标调节步长。
在本实施例中,显示设备可以获取所述当前背面发光亮度与所述目标背面发光亮度之间差值的第三绝对值,并获取所述第三绝对值与所述目标背面发光亮度之间的第三比值,然后,确定所述第三比值所属的第三目标比值区间,接着,根据所述第三目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第三目标调节步长。
本实施例中确定第三目标调节步长的方法与图12所示的确定第一目标调节步长的方法相似,在此不再赘述。
本实施例中,通过获取上述的当前背面发光亮度与目标背面发光亮度之间差值的第三绝对值以及上述的第三绝对值与上述的目标背面发光亮度之间的第三比值,可以确定当前背面发光亮度与目标背面发光亮度之间的偏离程度,然后,可以确定预设的至少两个比值区间中第三比值所属的第三目标比值区间,每个比值区间对应的偏离程度的等级不同,然后,根据第三目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第三目标调节步长。这样,可以针对当前背面发光亮度与目标背面发光亮度之间的偏离程度的等级确定对应的调节步长,使调节步长适中。
优选地,当所述第三目标比值区间为[30%,+∞)时,所述第三目标调节步长的值为第一步长值;当所述第三目标比值区间为(5%,30%]时,所述第三目标调节步长的值为第二步长值;当所述第三目标比值区间为[0,5%)时,所述第三目标调节步长的值为第三步长值,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
本实施例中,当第三目标比值区间中的比值越大时,对应的第三目标调节步长的值越大,这样,在当前背面发光亮度与目标背面发光亮度之间的偏离程度的等级越大时,可以采用比较大的调节步长,有利于缩短调节时长。当第三目标比值区间中的比值越小时,对应的第三目标调节步长的值越小,这样,在当前背面发光亮度与目标背面发光亮度之间的偏离程度的等级越小时,可以采用比较小的调节步长,避免调节步长较大导致调节时长较大。
在显示面板出厂后,为了降低出厂后显示终端中伽玛调节的复杂度、提高伽玛调节的效率、以及出于人眼对低灰阶画面(例如亮度小于10尼特)的敏感度并不是十分强烈的考虑,采用图24或图25所示的伽玛调节方法对高灰阶绑点以及中灰阶绑点进行伽玛调节,即可满足实际应用中的大部分需求。进一步的,为了改善低灰阶画面的显示效果,可以采用如图26所示的伽玛调节方法对低灰阶绑点进行伽玛调节,具体如下。
图26是根据另一示例性实施例示出的显示面板的伽玛调节方法的流程图。在本实施例中,当所述当前灰阶绑点位于低灰阶绑点区间中时,在图24所示的实施例的基础上,上述的步骤2405之后,可以包括以下步骤2601~2604。
在步骤2601中,检测所述目标伽玛电压的绝对值是否小于前一个灰阶绑点对应的目标伽玛电压的绝对值。若是,则执行步骤2602。
在步骤2602中,获取位于所述当前灰阶绑点前的至少两个灰阶绑点对应的目标伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述当前灰阶绑点的灰阶。
在步骤2603中,根据所述至少两个灰阶绑点的目标伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第四关系曲线。
在步骤2604中,根据所述当前灰阶绑点的灰阶与所述第四关系曲线,调节所述目标伽玛电压,以使调节后的目标伽玛电压的绝对值位于所述第四关系曲线上。
本实施例中的步骤2601~2603与图1所示实施例中的步骤106~109相似,在此不再赘述。
本实施例中,当前灰阶绑点位于低灰阶绑点区间中时,在检测到当前灰阶绑点对应的目标伽玛电压的绝对值小于前一个灰阶绑点对应的目标伽玛电压的绝对值时,可以获取位于所述当前灰阶绑点前的至少两个灰阶绑点对应的目标伽玛电压的绝对值,并根据所述至少两个灰阶绑点的目标伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第四关系曲线,然后,根据所述当前灰阶绑点的灰阶与所述第四关系曲线,调节所述当前灰阶绑点的目标伽玛电压,使调节后的当前灰阶绑点的目标伽玛电压的绝对值位于所述第四关系曲线上。由于同一显示面板的所有灰阶绑点的伽玛电压按照灰阶绑点的同一排列方向的变化趋势一致,因此,当前灰阶绑点对应的目标伽玛电压的绝对值实际上应该位于上述的第四关系曲线上或者接近上述的第四关系曲线。所以,当前灰阶绑点的灰阶在第四关系曲线上对应的目标伽玛电压的绝对值应该为当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值,或者接近当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。所以,调节后的位于所述第四关系曲线上的当前灰阶绑点的目标伽玛电压的绝对值更接近当前灰阶绑点的灰阶对应的实际伽玛电压的绝对值。这样,通过在伽玛调节的过程中检测伽玛电压是否翻转并进行校正,可以避免伽玛电压翻转带来的低灰阶黑带、亮带或色偏问题。
本申请实施例还提供一种显示面板的伽玛调节装置,对出厂后的显示面板进行调节,所述显示面板包括透明显示区与非透明显示区,所述透明显示区为双面发光显示区,所述透明显示区的 正面为面向环境光的一面,背面为背离环境光的一面。如图27所示,所述伽玛调节装置,包括:第五调节模块2701,用于将显示面板的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压;第二获取模块2702,用于获取所述透明显示区的当前背面发光亮度;第三获取模块2703,用于根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度;其中,针对所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致;确定模块2704,用于根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长;第六调节模块2705,用于根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
本申请实施例中,显示面板的伽玛调节装置包括显示器141、一个或多个处理器180、存储器121、以及电源110,如图28所示。存储器121用于存储计算机程序代码,所述计算机程序代码包括计算机指令。处理器180连接至显示器141和存储器121。处理器180配置为当处理器执行计算机指令时,所述伽玛调节装置执行上文所述的显示面板的伽玛调节方法。显示器141显示处理器180生成的伽玛调节信息。电源110配置为向显示面板的伽玛调节装置的各个部件供电。
上述的显示面板的伽玛调节装置可以在保证透明显示区下的感光元件能够接收到足够量的光线的前提下,减小或消除透明显示区和非透明显示区的亮度差异,从而改善显示效果。
本申请实施例还提供一种显示设备,包括显示面板以及如图27所示的显示面板的伽玛调节装置。
在本实施例中,如图23所示,显示设备23的显示面板可以是如图22所示的显示面板22,所述感光元件223设于所述透明显示区222背面(或者下方),所述感光元件223可以为摄像头、光敏元件等,数量可以是一个,也可以是多个。所述伽玛调节装置为图27所示的显示面板的伽玛调节装置。
通过上述的显示面板的伽玛调节装置可以在保证透明显示区下的感光元件能够接收到足够量的光线的前提下,可减小或消除透明显示区和非透明显示区的亮度差异,从而改善显示效果。
本实施例中的显示设备可以为:电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本申请实施例还提供一种计算机存储介质,包括计算机指令。当计算机指令在计算机上运行时,使得计算机执行上文所述的显示面板的伽玛调节方法。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。

Claims (20)

  1. 一种显示面板的伽玛调节方法,包括:
    判断当前显示面板是否是当前显示面板组内的首件显示面板;若是,则针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压;若否,则将所述像素的数据线输入电压调节为已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压;所述参考灰阶绑点的灰阶与所述第一当前灰阶绑点的灰阶相同;
    根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压,并将所述光学参数的采样值基本为所述第一目标值时所述像素的数据线输入电压确定为伽玛电压;
    针对低灰阶绑点区间中的第二当前灰阶绑点,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值;若是,则获取位于所述第二当前灰阶绑点前的至少两个灰阶绑点对应的伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述第二当前灰阶绑点的灰阶;
    根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线;
    根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上。
  2. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述至少两个灰阶绑点依次与所述第二当前灰阶绑点相邻;
    根据所述至少两个灰阶绑点的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第一关系曲线,包括:
    根据所述至少两个灰阶绑点对应的灰阶以及伽玛电压的绝对值计算得到对应的指示伽玛电压的绝对值与灰阶值关系的第一直线方程;
    将所述第一直线方程确定为所述第一关系曲线。
  3. 根据权利要求1所述的显示面板的伽玛调节方法,其中,检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值之后,还包括:
    若所述第二当前灰阶绑点对应的伽玛电压的绝对值小于所述前一个灰阶绑点对应的伽玛电压的绝对值,则选择与所述第二当前灰阶绑点相邻的预设数目的灰阶作为附加的灰阶绑点;
    将所述附加的灰阶绑点添加至所述当前显示面板的第一灰阶绑点集合。
  4. 根据权利要求3所述的显示面板的伽玛调节方法,其中
    所述附加的灰阶绑点包括灰阶值小于所述第二当前灰阶绑点的第一灰阶绑点;和/或
    所述附加的灰阶绑点包括灰阶值大于所述第二当前灰阶绑点的第二灰阶绑点,所述第二灰阶绑点的灰阶小于所述前一个灰阶绑点的灰阶。
  5. 根据权利要求3所述的显示面板的伽玛调节方法,其中
    将所述附加的灰阶绑点添加至所述当前显示面板的第一灰阶绑点集合之后,还包括:
    从所述第一灰阶绑点集合中确定未调节的所述预设数目的灰阶绑点,作为待剔除的灰阶绑点;所述待剔除的灰阶绑点与所述附加的灰阶绑点不同;
    将所述待剔除的灰阶绑点从所述第一灰阶绑点集合中剔除。
  6. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述检测第二当前灰阶绑点对应的伽玛电压的绝对值是否小于前一个灰阶绑点对应的伽玛电压的绝对值之前,还包括:
    检测低灰阶绑点区间中的第二当前灰阶绑点的电压调整参数是否符合第一预设条件,若是,则将所述像素的数据线的当前输入电压作为所述第二当前灰阶绑点对应的伽玛电压,或输出用于提示调节异常的提示信息;其中
    所述电压调整参数为电压调整次数,且所述第一预设条件为所述电压调整次数大于预设次数,或所述电压调整参数为电压调整时长,且所述第一预设条件为所述电压调整时长大于预设时长;
    所述像素为所述显示面板包含的像素单元中任一颜色的像素,所述像素单元中包括N种颜色的像素,N为正整数;所述第二当前灰阶绑点对应的伽玛电压包括N种颜色的像素各自对应的伽玛电压。
  7. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述针对非低灰阶绑点区间中的第一当前灰阶绑点,将所述当前显示面板的像素的数据线输入电压调节为第一参考伽玛电压,包括:
    调节所述像素的数据线输入电压,获得至少两组数据;所述像素的光学参数的值随着所述像素的数据线输入电压改变而改变;所述至少两组数据中包括至少两个数据线输入电压的绝对值以及对应的光学参数的采样值;
    根据所述至少两组数据拟合得到数据线输入电压的绝对值与光学参数的采样值的第二关系曲线;
    根据所述第一当前灰阶绑点对应的光学参数的第一目标值以及所述第二关系曲线,获得所述第一目标值对应的目标数据线输入电压;
    根据所述目标数据线输入电压确定所述第一参考伽玛电压,并将所述像素的数据线输入电压调节为所述第一参考伽玛电压;其中
    所述光学参数包括色坐标;和/或
    所述光学参数包括亮度;所述像素为所述当前显示面板的像素单元中任一颜色的像素,所述像素单元中包括N种颜色的像素,N为正整数;所述像素的数据线输入电压对应的亮度的采样值为所述像素单元的亮度的采样值。
  8. 根据权利要求7所述的显示面板的伽玛调节方法,其中
    所述至少两组数据包括两组数据,所述两组数据包括两个数据线输入电压的绝对值以及对应的光学参数的采样值;所述两个数据线输入电压的绝对值均大于所述目标数据线输入电压的绝对值;
    根据所述至少两组数据拟合得到数据线输入电压的绝对值与光学参数的采样值的第二关系曲线,包括:
    根据所述两个数据线输入电压的绝对值以及对应的光学参数的采样值计算得到指示所述第一当前灰阶绑点的光学参数的采样值与输入电压关系的第二直线方程;
    将所述第二直线方程确定为所述第二关系曲线。
  9. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述判断当前显示面板是否是当前显示面板组内的首件显示面板,包括:
    获取预先存储的参考数据线输入电压;
    获取所述像素的数据线输入电压为所述参考数据线输入电压时所述像素的光学参数的第一采样值;
    判断所述第一采样值与所述第一目标值的差值的绝对值是否大于预设阈值,若是,则判定所述当前显示面板是所述当前显示面板组内的首件显示面板;若否,则判定所述当前显示面板不是所述当前显示面板组内的首件显示面板;其中
    所述参考数据线输入电压为预先存储在伽玛电压寄存器中的默认值;或所述参考数据线输入电压为预先存储在伽玛调节设备中的已完成伽玛调节的任一件显示面板的参考灰阶绑点对应的伽玛电压,而且,所述已完成伽玛调节的任一件显示面板包括已完成伽玛调节的显示面板中伽玛调节的时间与当前时间的时间间隔最小的显示面板。
  10. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压,包括:
    获取所述像素的光学参数的第二采样值;
    根据所述第二采样值与所述第一目标值之间的比较结果确定第一目标调节步长;
    根据所述第一目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值为所述第一目标值。
  11. 根据权利要求10所述的显示面板的伽玛调节方法,其中
    所述根据所述第二采样值与所述第一目标值之间的比较结果确定第一目标调节步长,包括:
    获取所述第二采样值与所述第一目标值之间差值的绝对值,得到第一绝对值;
    获取所述第一绝对值与所述第一目标值之间的比值,得到第一比值;
    确定预设的至少两个比值区间中所述第一比值所属的目标比值区间,得到第一目标比值区间;
    根据所述第一目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第一目标调节步长;其中
    当所述第一目标比值区间为[30%,+∞)时,所述第一目标调节步长的值为第一步长值;当所述第一目标比值区间为(5%,30%]时,所述第一目标调节步长的值为第二步长值;当所述第一目标比值区间为[0,5%)时,所述第一目标调节步长的值为第三步长值,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
  12. 根据权利要求1所述的显示面板的伽玛调节方法,其中,根据所述像素的光学参数的采样值与第一目标值之间的比较结果,调节所述像素的数据线输入电压之后,还包括:
    检测所述第一当前灰阶绑点的电压调整参数是否符合第二预设条件,若是,则检测所述像素的光学参数的第三采样值与所述第一目标值的差值的绝对值是否小于预设阈值,若是,则将所述像素的数据线的当前输入电压确定为所述第一当前灰阶绑点对应的伽玛电压;其中
    若检测到当前灰阶绑点的电压调整参数符合所述第二预设条件,则输出用于提示调节异常的提示信息;
    所述电压调整参数为电压调整次数,所述第二预设条件为所述电压调整次数大于预设次数;或所述电压调整参数为电压调整时长,所述第二预设条件为所述电压调整时长大于预设时长。
  13. 根据权利要求1所述的显示面板的伽玛调节方法,其中,根据所述第二当前灰阶绑点的灰阶与所述第一关系曲线,调节所述第二当前灰阶绑点的伽玛电压,以使调节后的第二当前灰阶绑点的伽玛电压的绝对值位于所述第一关系曲线上之后,还包括:
    当所述首件显示面板的第二灰阶绑点集合中所有灰阶绑点完成伽玛调节后,根据所述第二灰阶绑点集合中所有灰阶绑点各自的伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第三关系曲线;
    根据所述首件显示面板的未经伽玛调节的灰阶以及所述第三关系曲线,获得所述未经伽玛调节的灰阶各自对应的伽玛电压的绝对值。
  14. 根据权利要求13所述的显示面板的伽玛调节方法,其中
    所述获得未经伽玛调节的灰阶各自对应的伽玛电压的绝对值之后,还包括:
    针对未经伽玛调节的每一个灰阶,根据对应的伽玛电压的绝对值确定对应的伽玛电压;
    将所述首件显示面板的像素的数据线输入电压调节为对应的伽玛电压;
    获取所述像素的光学参数的第四采样值;
    根据所述第四采样值与所述像素的光学参数的第二目标值之间的比较结果确定第二目标调节步长;
    根据所述第二目标调节步长调节所述像素的数据线输入电压,直至所述像素的光学参数的采样值基本为所述第二目标值。
  15. 根据权利要求14所述的显示面板的伽玛调节方法,其中
    所述根据所述第四采样值与所述像素的光学参数的第二目标值之间的比较结果确定第二目标调节步长,包括:
    获取所述第四采样值与所述第二目标值之间差值的绝对值,得到第二绝对值;
    获取所述第二绝对值与所述第二目标值之间的比值,得到第二比值;
    确定预设的至少两个比值区间中所述第二比值所属的目标比值区间,得到第二目标比值区间;
    根据所述第二目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第二目标调节步长;其中
    当所述第二目标比值区间为[30%,+∞)时,所述第二目标调节步长的值为第一步长值;当所述第二目标比值区间为(5%,30%]时,所述第二目标调节步长的值为第二步长值;当所述第二目标比值区间为[0,5%)时,所述第二目标调节步长的值为第三步长值,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
  16. 根据权利要求1所述的显示面板的伽玛调节方法,其中,所述判断当前显示面板是否是当前显示面板组内的首件显示面板之前,还包括如下的至少一种:
    接收灰阶绑点调节范围的第一设置参数;根据所述第一设置参数设置所述灰阶绑点调节范围的最小灰阶与最大灰阶,非低灰阶绑点区间与低灰阶绑点区间位于所述灰阶绑点调节范围内;或
    接收灰阶绑点调节精度的第二设置参数;根据所述第二设置参数设置所述伽玛电压的精度;或
    接收所述首件显示面板的第二灰阶绑点集合中最大灰阶对应的目标亮度的第三设置参数;根据所述第三设置参数设置所述最大灰阶对应的目标亮度,其中每个显示面板组中的首件显示面板对应的第二灰阶绑点集合中最大灰阶对应的目标亮度不同;或
    接收所述当前显示面板组中的显示面板上用于显示灰阶画面的第一显示区域的第四设置参数;根据所述第四设置参数设置所述第一显示区域的起始坐标与终止坐标,其中,所述显示面板全屏显示对应的第二显示区域大于或等于所述第一显示区域;或
    在伽玛调节过程中打印调节信息;所述调节信息中至少包括灰阶绑点的灰阶以及对应的伽玛电压。
  17. 一种显示面板的伽玛调节方法,用于对出厂后的显示面板进行调节,所述显示面板包括透明显示区与非透明显示区,所述透明显示区为双面发光显示区,所述透明显示区的正面为面向环境光的一面,背面为背离环境光的一面,所述伽玛调节方法,包括:
    将所述透明显示区的像素的数据线输入电压调节为当前灰阶绑点的当前伽玛电压;
    获取所述透明显示区的当前背面发光亮度;
    根据所述当前背面发光亮度以及预先存储的所述透明显示区的背面发光亮度与灰阶的第一对应关系,获得对应的目标背面发光亮度;其中,针对所述当前灰阶绑点,当所述透明显示区的背面发光亮度为目标背面发光亮度时,所述透明显示区的正面发光亮度与非透明显示区的发光亮度基本一致;
    根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长;
    根据所述第三目标调节步长调节所述像素的数据线输入电压,并将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压。
  18. 根据权利要求17所述的显示面板的伽玛调节方法,其中,所述根据所述当前背面发光亮度与所述目标背面发光亮度比较结果确定第三目标调节步长,包括:
    获取所述当前背面发光亮度与所述目标背面发光亮度之间差值的绝对值,得到第三绝对值;
    获取所述第三绝对值与所述目标背面发光亮度之间的比值,得到第三比值;
    确定预设的至少两个比值区间中所述第三比值所属的目标比值区间,得到第三目标比值区间;
    根据所述第三目标比值区间以及预设的比值区间与调节步长的对应关系确定所述第三目标调节步长;其中
    当所述第三目标比值区间为[30%,+∞)时,所述第三目标调节步长的值为第一步长值;当所述第三目标比值区间为(5%,30%]时,所述第三目标调节步长的值为第二步长值;当所述第三目标比值区间为[0,5%)时,所述第三目标调节步长的值为第三步长值,所述第一步长值大于所述第二步长值,所述第二步长值大于第三步长值。
  19. 根据权利要求17所述的显示面板的伽玛调节方法,其中
    当所述当前灰阶绑点位于低灰阶绑点区间中时,将所述透明显示区的背面发光亮度基本为所述目标背面发光亮度时的数据线输入电压确定为所述当前灰阶绑点的目标伽玛电压之后,还包括:
    检测所述目标伽玛电压的绝对值是否小于前一个灰阶绑点对应的目标伽玛电压的绝对值;若是,则获取位于所述当前灰阶绑点前的至少两个灰阶绑点对应的目标伽玛电压的绝对值;所述前一个灰阶绑点的灰阶、所述至少两个灰阶绑点的灰阶分别大于所述当前灰阶绑点的灰阶;
    根据所述至少两个灰阶绑点的目标伽玛电压的绝对值拟合得到灰阶与伽玛电压的绝对值的第四关系曲线;
    根据所述当前灰阶绑点的灰阶与所述第四关系曲线,调节所述目标伽玛电压,以使调节后的目标伽玛电压的绝对值位于所述第四关系曲线上。
  20. 一种显示面板的伽玛调节装置,包括:
    显示器;
    存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及
    一个或多个处理器,连接至所述显示器和所述存储器;其中
    所述一个或多个处理器配置为当所述一个或多个处理器执行所述计算机指令时,执行根据权利要求1或17所述的显示面板的伽玛调节方法,而且所述处理器生成的伽玛调节信息经由所述显示器显示。
PCT/CN2019/097269 2019-01-31 2019-07-23 显示面板的伽玛调节方法及调节装置 WO2020155583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/158,346 US11158247B2 (en) 2019-01-31 2021-01-26 Gamma adjustment method and adjustment device for display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910100114.6A CN110767138B (zh) 2019-01-31 2019-01-31 显示面板的伽玛调节方法及调节装置、显示设备
CN201910100114.6 2019-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,346 Continuation US11158247B2 (en) 2019-01-31 2021-01-26 Gamma adjustment method and adjustment device for display panel

Publications (1)

Publication Number Publication Date
WO2020155583A1 true WO2020155583A1 (zh) 2020-08-06

Family

ID=69328555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097269 WO2020155583A1 (zh) 2019-01-31 2019-07-23 显示面板的伽玛调节方法及调节装置

Country Status (3)

Country Link
US (1) US11158247B2 (zh)
CN (1) CN110767138B (zh)
WO (1) WO2020155583A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767136B (zh) * 2018-12-29 2020-10-09 云谷(固安)科技有限公司 显示面板的亮度校正方法、显示面板的亮度校正装置及显示装置
CN110767138B (zh) * 2019-01-31 2020-12-04 昆山国显光电有限公司 显示面板的伽玛调节方法及调节装置、显示设备
CN111653249B (zh) * 2020-06-01 2021-03-12 昆山国显光电有限公司 显示面板的显示控制方法、装置及电子设备
CN111754913B (zh) * 2020-06-29 2022-10-11 昆山国显光电有限公司 一种伽马计算方法、装置和显示面板
CN111754912B (zh) 2020-06-29 2022-09-30 昆山国显光电有限公司 一种伽马调试方法和装置
CN111862875B (zh) 2020-07-27 2022-03-15 云谷(固安)科技有限公司 显示方法、显示面板、显示控制装置及存储介质
CN112132452A (zh) * 2020-09-22 2020-12-25 中电九天智能科技有限公司 一种对首件自动触发检测的方法及装置
CN112687228B (zh) * 2021-01-22 2022-09-06 昆山国显光电有限公司 伽马曲线的调节方法和调节装置
CN113506535B (zh) * 2021-07-28 2023-04-11 合肥维信诺科技有限公司 伽马调试的绑点选取方法、装置、设备及介质
CN113724664B (zh) * 2021-08-26 2022-09-09 Tcl华星光电技术有限公司 显示面板及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419783A (zh) * 2007-10-22 2009-04-29 中华映管股份有限公司 伽玛曲线校正方法
CN103310752A (zh) * 2013-06-05 2013-09-18 合肥京东方光电科技有限公司 伽马电压调整方法及伽马电压调整系统
US20160035293A1 (en) * 2014-07-29 2016-02-04 Synaptics Display Devices Gk Device and method for color adjustment and gamma correction and display panel driver using the same
CN106128383A (zh) * 2016-08-25 2016-11-16 深圳市华星光电技术有限公司 伽马曲线调试方法
CN107665689A (zh) * 2017-10-27 2018-02-06 深圳市华星光电技术有限公司 伽马芯片、时序控制芯片及液晶显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI321770B (en) * 2006-03-23 2010-03-11 Chi Mei Optoelectronics Corp Method and apparatus for adjusting grey level distribution of an image
TWI342532B (en) * 2006-07-10 2011-05-21 Himax Tech Inc Method for generating a gamma table
CN103761945B (zh) 2013-12-25 2016-02-24 深圳市华星光电技术有限公司 一种TFT-LCD液晶屏的Gamma曲线调整方法及调整装置
CN104091575A (zh) * 2014-06-26 2014-10-08 京东方科技集团股份有限公司 伽马电压产生电路及产生方法、数据驱动器
US9536485B2 (en) * 2014-08-18 2017-01-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Gamma voltage generating module and liquid crystal panel
CN105702215B (zh) * 2016-04-26 2018-05-25 京东方科技集团股份有限公司 伽马电压校正方法及装置
CN105741775B (zh) * 2016-05-05 2019-01-22 京东方科技集团股份有限公司 调整伽马曲线的方法及装置
CN106023930B (zh) * 2016-07-20 2018-10-23 武汉华星光电技术有限公司 伽马电压生成电路及驱动装置
CN106531065B (zh) * 2016-11-11 2019-05-10 武汉精测电子集团股份有限公司 一种一对多Gamma曲线并行调节系统及方法
CN107221288B (zh) * 2017-08-01 2019-11-05 京东方科技集团股份有限公司 灰阶电压调节装置及方法、显示驱动装置及显示装置
US10249245B1 (en) * 2017-11-22 2019-04-02 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Compensation system and compensation method for AMOLED
CN108364606B (zh) 2018-02-11 2020-10-30 武汉精测电子集团股份有限公司 一种OLED模组gamma调节方法
CN109029918B (zh) * 2018-06-06 2020-07-10 武汉精测电子集团股份有限公司 一种gamma调节绑点的方法及装置
CN108550345B (zh) * 2018-07-12 2020-04-21 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN108986731B (zh) * 2018-08-07 2021-10-08 京东方科技集团股份有限公司 一种显示面板及其补偿方法、显示装置
CN109166555B (zh) * 2018-10-29 2021-12-21 重庆先进光电显示技术研究院 伽马曲线校正方法及装置
CN110164371B (zh) * 2018-11-20 2021-01-26 京东方科技集团股份有限公司 显示模组的伽马校正方法及装置
CN110767138B (zh) * 2019-01-31 2020-12-04 昆山国显光电有限公司 显示面板的伽玛调节方法及调节装置、显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419783A (zh) * 2007-10-22 2009-04-29 中华映管股份有限公司 伽玛曲线校正方法
CN103310752A (zh) * 2013-06-05 2013-09-18 合肥京东方光电科技有限公司 伽马电压调整方法及伽马电压调整系统
US20160035293A1 (en) * 2014-07-29 2016-02-04 Synaptics Display Devices Gk Device and method for color adjustment and gamma correction and display panel driver using the same
CN106128383A (zh) * 2016-08-25 2016-11-16 深圳市华星光电技术有限公司 伽马曲线调试方法
CN107665689A (zh) * 2017-10-27 2018-02-06 深圳市华星光电技术有限公司 伽马芯片、时序控制芯片及液晶显示装置

Also Published As

Publication number Publication date
CN110767138A (zh) 2020-02-07
US11158247B2 (en) 2021-10-26
US20210150968A1 (en) 2021-05-20
CN110767138B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2020155583A1 (zh) 显示面板的伽玛调节方法及调节装置
US11380255B2 (en) Optical compensation method and device, display device, display method and storage medium
CN106205499B (zh) 用于改善画面质量的显示装置及驱动该显示装置的方法
CN113053310B (zh) 显示面板的伽玛调节方法及调节装置、显示设备
WO2022001321A1 (zh) 伽马调试方法及伽马调试装置
US11610548B2 (en) Method, a device, a display device and a medium for improving OLED residual images
CN110808009B (zh) Oled显示装置和方法
WO2018214622A1 (zh) 显示校正方法及系统
US8952947B2 (en) Display method for sunlight readable and electronic device using the same
CN109036249B (zh) 曲面显示面板的显示方法和曲面显示装置
WO2022048442A1 (zh) 显示面板的显示方法及显示装置
KR101362169B1 (ko) 감마 보정 시스템 및 그의 보정방법
CN101777311B (zh) 一种动态背光亮度控制方法
WO2015096337A1 (zh) 阵列基板和显示装置
WO2020253311A1 (zh) 显示面板的亮度补偿方法及装置、显示面板、存储介质
TWI383371B (zh) 時序控制器,顯示裝置與調整迦瑪電壓方法
CN109410839B (zh) 显示屏的校正优化方法、装置、电子设备及存储介质
WO2020211543A1 (zh) 显示调试方法、补偿方法及装置、显示装置和存储介质
CN112071264B (zh) 伽马校正方法及装置
CN106531093A (zh) 液晶显示装置的驱动方法及液晶显示装置
US20240087495A1 (en) Compensation method and compensation apparatus for display panel, and display apparatus and storage medium
CN108932936B (zh) 灰阶亮度的调节方法及显示装置
US10943539B1 (en) Driving method of active matrix organic light-emitting diode (AMOLED) display panel and display device
US10548194B1 (en) Local dimming control method and device
JP2013167846A (ja) 表示制御装置、表示制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914158

Country of ref document: EP

Kind code of ref document: A1