WO2022000691A1 - 视角调整膜结构及其制作方法、显示装置 - Google Patents

视角调整膜结构及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022000691A1
WO2022000691A1 PCT/CN2020/106684 CN2020106684W WO2022000691A1 WO 2022000691 A1 WO2022000691 A1 WO 2022000691A1 CN 2020106684 W CN2020106684 W CN 2020106684W WO 2022000691 A1 WO2022000691 A1 WO 2022000691A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
viewing angle
material layer
optical material
crystal layer
Prior art date
Application number
PCT/CN2020/106684
Other languages
English (en)
French (fr)
Inventor
窦虎
吴梓平
俞刚
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/049,966 priority Critical patent/US11914235B2/en
Publication of WO2022000691A1 publication Critical patent/WO2022000691A1/zh
Priority to US18/421,873 priority patent/US20240160053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent

Definitions

  • the present application relates to the field of display technology, and in particular, to a viewing angle adjustment film structure and a manufacturing method thereof, and a display device.
  • a viewing angle diffusion film is used to modulate the light at a front viewing angle to a large viewing angle, so as to increase the display brightness of the display panel at a large viewing angle.
  • this leads to a loss of display brightness at a front viewing angle of the display panel and a substantial decrease in the contrast of the front viewing angle, and further, when the display panel is viewed from a front viewing angle, the problem of display quality deterioration occurs.
  • the present application provides a viewing angle adjustment film structure, a manufacturing method thereof, and a display device, so as to solve the problem that the display image when viewing the display panel from the front viewing angle is caused by the reduction of the display brightness and the front viewing angle contrast of the display panel due to the existing viewing angle diffusion film. quality deterioration.
  • an embodiment of the present application provides a viewing angle adjustment film structure
  • the viewing angle adjustment film structure includes a substrate, an isotropic optical material layer and a liquid crystal layer that are stacked in sequence, and the isotropic optical material layer is provided with grooves, The liquid crystal layer fills the groove, and the light enters the liquid crystal layer and then exits through the isotropic optical material layer; wherein, the orientation of the liquid crystal molecules in the liquid crystal layer changes according to the change of the external applied voltage or electric field, so as to adjust from the isotropic optical material.
  • the viewing angle adjustment film structure further includes a first electrode and a second electrode, the first electrode is arranged between the substrate and the isotropic optical material layer, and the second electrode is arranged on the side of the liquid crystal layer away from the isotropic optical material layer, And an externally applied voltage or electric field is provided for the liquid crystal layer through the first electrode and the second electrode.
  • the viewing angle adjustment film structure further includes a first alignment film and a second alignment film, the first alignment film is arranged between the isotropic optical material layer and the liquid crystal layer, and the second alignment film is arranged between the liquid crystal layer and the second electrode .
  • the viewing angle adjustment film structure further includes a support pad, which is arranged between the isotropic optical material layer and the second electrode and penetrates through the liquid crystal layer.
  • the number of grooves is multiple, and the multiple grooves are arranged at equal intervals.
  • the grooves are strip-shaped grooves, and a plurality of strip-shaped grooves are arranged in parallel and at equal intervals.
  • the cross-section of the groove perpendicular to the base body is a geometric shape symmetrical on the left and right sides, and the width of the cross-section gradually increases along the direction away from the base body.
  • the cross-sectional shape of the groove is an isosceles trapezoid, a U-shape or an arc shape with a central angle not greater than 180 degrees.
  • the embodiments of the present application further provide a method for fabricating a viewing angle adjustment film structure.
  • the fabrication method for the viewing angle adjustment film structure includes: providing a substrate; forming an isotropic optical material layer on the substrate, the isotropic optical material There are grooves on the layer; a liquid crystal layer is formed on the isotropic optical material layer, the liquid crystal layer fills the groove, and light is emitted from the liquid crystal layer and then exits through the isotropic optical material layer; wherein, the direction of the liquid crystal molecules in the liquid crystal layer
  • the deviator changes according to the change of the external applied voltage or electric field to adjust the viewing angle of the light emitted from the isotropic optical material layer; when the direction is deparallel to the matrix, the refractive index of the liquid crystal layer is the same as the refractive index of the isotropic optical material layer. The same; the refractive index of the liquid crystal layer is less than the refractive index of the isotropic optical material layer when the orientation is denormal to the substrate.
  • the method further includes: forming a first electrode on the base body; the manufacturing method of the viewing angle adjusting film structure further includes: forming a second electrode on the substrate; The electrode is fixed on the liquid crystal layer, the second electrode is located between the liquid crystal layer and the substrate, and an externally applied voltage or electric field is provided for the liquid crystal layer through the first electrode and the second electrode.
  • the method before forming the liquid crystal layer on the isotropic optical material layer, the method further includes: forming a first alignment film on the isotropic optical material layer; before fixing the second electrode on the liquid crystal layer through the substrate, the method further includes: : A second alignment film is formed on the second electrode.
  • the method further includes: forming a support pad on the isotropic optical material layer, the support pad is located between the isotropic optical material layer and the second electrode, and through the liquid crystal layer.
  • an embodiment of the present application further provides a display device, the display device includes any one of the above-mentioned viewing angle adjustment film structure and a display panel, the viewing angle adjustment film structure is located on the light emitting surface of the display panel, and the viewing angle adjustment film structure Adjusting the viewing angle of the light emitted by the light-emitting surface, so as to realize the front viewing angle display and the large viewing angle display of the display panel; wherein, the viewing angle adjustment film structure includes a substrate, an isotropic optical material layer and a liquid crystal layer arranged in sequence, and the isotropic There are grooves on the optical material layer, the liquid crystal layer fills the grooves, and the light enters the liquid crystal layer and then exits through the isotropic optical material layer.
  • the refractive index of the liquid crystal layer is the same as that of the isotropic optical material layer; when the orientation is denormal to the matrix, The refractive index of the liquid crystal layer is smaller than that of the isotropic optical material layer.
  • the viewing angle adjustment film structure further includes a first electrode and a second electrode, the first electrode is arranged between the substrate and the isotropic optical material layer, and the second electrode is arranged on the side of the liquid crystal layer away from the isotropic optical material layer, And an externally applied voltage or electric field is provided for the liquid crystal layer through the first electrode and the second electrode.
  • the viewing angle adjustment film structure further includes a first alignment film and a second alignment film, the first alignment film is arranged between the isotropic optical material layer and the liquid crystal layer, and the second alignment film is arranged between the liquid crystal layer and the second electrode .
  • the viewing angle adjustment film structure further includes a support pad, which is arranged between the isotropic optical material layer and the second electrode and penetrates through the liquid crystal layer.
  • the number of grooves is multiple, and the multiple grooves are arranged at equal intervals.
  • the grooves are strip-shaped grooves, and a plurality of strip-shaped grooves are arranged in parallel and at equal intervals.
  • the cross-section of the groove perpendicular to the base body is a geometric shape symmetrical on the left and right sides, and the width of the cross-section gradually increases along the direction away from the base body.
  • the display panel includes a color filter substrate, an array substrate disposed opposite the color filter substrate and provided with a plurality of pixel units, a liquid crystal material layer filled between the color filter substrate and the array substrate, and an array substrate disposed on the color filter substrate
  • the first polarizer on the side facing away from the liquid crystal material layer, and the second polarizer on the side of the array substrate facing away from the liquid crystal material layer, wherein the viewing angle adjustment film structure is arranged on the side of the first polarizer facing away from the color filter substrate
  • the light emitted by the pixel units in the array substrate is sequentially emitted through the liquid crystal material layer, the color filter substrate, the first polarizer, the substrate, the liquid crystal layer and the isotropic light material layer.
  • the viewing angle adjustment film structure includes a substrate, an isotropic optical material layer and a liquid crystal layer that are stacked in sequence, the isotropic optical material layer is provided with a groove, and the liquid crystal layer fills the groove, After the light enters the liquid crystal layer, it exits through the isotropic optical material layer, and by changing the external applied voltage or electric field, the director of the liquid crystal molecules in the liquid crystal layer can be changed. By controlling the externally applied voltage or electric field, the directors of the liquid crystal molecules are perpendicular to the substrate, and the refractive index of the corresponding liquid crystal layer is smaller than that of the isotropic optical material layer.
  • the viewing angle adjustment film structure can meet the needs of the complex use environment, and the use of the viewing angle adjustment film structure to replace the existing viewing angle diffusion film can solve the reduction of the front viewing angle display brightness and the front viewing angle contrast of the display panel due to the existing viewing angle diffusion film. , resulting in the deterioration of the display quality when the display panel is viewed from a frontal angle.
  • FIG. 1 is a schematic structural diagram of a viewing angle adjustment film structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the effect of adjusting the viewing angle of light by the viewing angle adjusting film structure provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of another effect of adjusting the viewing angle of light by the viewing angle adjusting film structure provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram of the distribution position of grooves on the isotropic light material layer provided by the embodiment of the present application.
  • FIG. 5 is another structural schematic diagram of the viewing angle adjustment film structure provided by the embodiment of the present application.
  • FIG. 6 is another structural schematic diagram of the viewing angle adjustment film structure provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a liquid crystal layer provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for fabricating a viewing angle adjustment film structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a viewing angle adjusting film structure provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram illustrating the effect of adjusting the viewing angle of light by the viewing angle adjusting film structure provided by an embodiment of the present application
  • FIG. 3 is the present application. Another schematic diagram of the effect of adjusting the viewing angle of light by the viewing angle adjusting film structure provided by the embodiment. As shown in FIG. 1 to FIG.
  • the viewing angle adjustment film structure 100 includes a substrate 101 , an isotropic optical material layer 102 and a liquid crystal layer 103 that are stacked in sequence, wherein the isotropic optical material layer 102 is provided with a groove 1021 , The liquid crystal layer 103 fills the groove 1021 , and the light L from the outside (eg, the light emitting surface of the display panel) enters the liquid crystal layer 103 and then exits through the isotropic optical material layer 102 .
  • the above-mentioned liquid crystal layer 103 includes a plurality of liquid crystal molecules 1031, and the orientation of the liquid crystal molecules 1031 in the liquid crystal layer 103 is changed according to the change of the externally applied voltage or electric field, so as to The viewing angle of the light beam L emitted from the isotropic optical material layer 102 is adjusted. Specifically, when the orientation of the liquid crystal molecules 1031 in the liquid crystal layer 103 is deparallel to the substrate 101, as shown in FIG.
  • the layer 103 will not be refracted at the interface of the isotropic optical material layer 102 after being injected, that is, the above-mentioned viewing angle adjusting film structure 100 will not affect the brightness and contrast of the light L at a front viewing angle.
  • the orientation of the liquid crystal molecules 1031 in the liquid crystal layer 103 is out of perpendicular to the substrate 101, as shown in FIG.
  • At least part of the incoming light L (for example, the incident light at a normal viewing angle) will be refracted at the interface of the isotropic optical material layer 103, so that at least part of the incoming light at a normal viewing angle can be adjusted to a light with a large viewing angle to enhance the Brightness of light at large viewing angles.
  • the light with a large viewing angle may refer to light with a viewing angle greater than a preset angle (eg, 45 degrees), and the light with a positive viewing angle may refer to light with a viewing angle smaller than a preset angle (eg, 20 degrees).
  • an appropriate externally applied voltage or electric field can be selected, so that the viewing angle adjusting film structure 100 can increase the light by sacrificing the brightness and contrast of the light L under the front viewing angle.
  • the brightness of L at a large viewing angle, or the viewing angle adjustment film structure 100 is not used to increase the brightness of the light L at a large viewing angle, thereby ensuring that the brightness and contrast of the light L at a front viewing angle are not reduced.
  • the viewing angle adjustment film structure 100 in the present application can meet the requirements of complex use environments.
  • the above-mentioned substrate 101 may be a transparent flexible substrate such as polyimide and polysiloxane, or may be a transparent rigid substrate such as glass or plastic.
  • the material of the isotropic optical material layer 102 may be UV curable resin or thermosetting resin such as epoxy resin, acrylic resin, urethane resin, silicone resin, phenolic resin, etc.
  • the material of the liquid crystal layer 103 can be a nematic liquid crystal material or a blue phase liquid crystal material, and when the shape of the liquid crystal molecules 1031 in the liquid crystal layer 103 is an elliptical spherical shape (as shown in FIG. 3 ) or a rod shape, the direction of the liquid crystal molecules 1031 The vector may be the long axis direction of the liquid crystal molecules.
  • the cross-section of the groove 1021 perpendicular to the base body 101 is a geometric shape symmetrical on the left and right sides, and the width of the cross-section gradually increases along the direction away from the base body 101 .
  • the shape of the above-mentioned cross-section may be an isosceles trapezoid (as shown in FIG. 1 ), a U-shape, or a circular arc with a central angle not greater than 180 degrees, or the like.
  • the number of the above-mentioned grooves 1021 may be multiple, and the multiple grooves 1021 are arranged at equal intervals.
  • the above-mentioned grooves 1021 can be specifically strip-shaped grooves, and when the number of grooves 1021 is multiple, the plurality of strip-shaped grooves 1021 can be parallel, etc.
  • the interval is set to adjust the viewing angle of light L in only one direction (eg, the horizontal direction X).
  • the plurality of grooves 1021 may include first grooves 1021 extending along a first direction (eg, horizontal direction X).
  • Strip grooves 10211, and second strip grooves 10212 extending in a second direction (eg, vertical direction Y) to adjust light L in two directions (eg, horizontal direction X and vertical direction Y) perspective.
  • the above-mentioned grooves 1021 may also be specifically pyramid-shaped grooves, and when the number of the grooves 1021 is multiple, the multiple pyramid-shaped grooves may be arranged at equal intervals, so that the Adjust the viewing angle of light L in the direction.
  • the above-mentioned viewing angle adjustment film structure 100 may further include a first electrode 104 and a second electrode 105 , wherein the first electrode 104 is disposed on the base body 101 and the isotropic optical material layer 102 In between, the second electrode 105 is disposed on the side of the liquid crystal layer 103 away from the isotropic optical material layer 102.
  • the material of the first electrode 104 and the second electrode 105 can be transparent indium tin oxide (ITO), indium oxynitride, etc.
  • the conductive oxide can also be a transparent conductive metal such as silver and copper, and an externally applied voltage or electric field can be provided to the liquid crystal layer 103 through the first electrode 104 and the second electrode 105 .
  • the above-mentioned viewing angle adjustment film structure 100 may further include a first alignment film 106 and a second alignment film 107 , and the first alignment film 106 is disposed between the isotropic optical material layer 102 and the liquid crystal layer 103 , the second alignment film 107 is disposed between the liquid crystal layer 103 and the second electrode 105 .
  • the first alignment film 106 and the second alignment film 107 can be organic (eg polyimide) or inorganic (eg SiO2) alignment films, and the external voltage or electric field is zero, that is, no voltage or electric field is applied to the liquid crystal
  • the directors of the liquid crystal molecules 1031 can be made parallel to the substrate 101, wherein the surface of the substrate 101 is parallel to the horizontal direction.
  • the director direction of the liquid crystal molecules 1031 in the liquid crystal layer 103 will gradually deflect from the direction parallel to the substrate to the direction perpendicular to the substrate, At the same time, the refractive index of the liquid crystal layer 103 will gradually decrease.
  • the equivalent refractive index n eff of the liquid crystal layer 103 can be calculated according to the following formula:
  • n o is the refractive index of the liquid crystal molecules o
  • n e is the refractive index of the liquid crystal molecules e.
  • the liquid crystal layer 103 may include a base 1032 and a protrusion 1033 located on the base 1032 .
  • the shape and size of the protrusion 1033 are the same as those of the groove 1021 on the isotropic light material layer 102 .
  • the protrusions 1033 may be obtained by filling the above-mentioned grooves 1021 with liquid crystal material.
  • the cross-sectional shape of the protrusion 1033 perpendicular to the base 101 may be an isosceles trapezoid, and the length W1 of the upper base, the length W2 of the lower base and the height H1 of the isosceles trapezoid may be 9.56 ⁇ m, 15.12 ⁇ m and 16.67 ⁇ m, respectively.
  • the separation distance between two adjacent protrusions 1031 may be 8-15 ⁇ m.
  • the refractive index n o of the o light corresponding to the liquid crystal molecules 1031 in the liquid crystal layer 103 is 1.517
  • the refractive index ne of the e light is 1.741.
  • the thickness of the isotropic optical material layer 102 may be in the range of 5-100 ⁇ m, and the thickness of the liquid crystal layer 103 may be in the range of 5-20 ⁇ m, for example, 18.8 ⁇ m, and in order to avoid the liquid crystal layer 103
  • the thickness of the isotropic optical material layer 102 can be set to be greater than the thickness of the liquid crystal layer 103, for example, the ratio of the two can be greater than or equal to 2.
  • the thickness of the liquid crystal layer 103 and the thickness of the isotropic optical material layer 102 both refer to the thickness of the region with the largest thickness in the corresponding film layer.
  • the direction of the directors of the liquid crystal molecules 1031 in the liquid crystal layer 103 is parallel to the substrate 101 .
  • the deflection angle from the direction perpendicular to the substrate 101 will gradually increase, and when the voltage applied to the first electrode 104 and the second electrode 105 is greater than or equal to 5V, the liquid crystal molecules 1031 in the liquid crystal layer 103 can be The director of is perpendicular to the above-mentioned base 101 .
  • the externally applied voltage required for the deflection of the directors of the liquid crystal molecules in the base 1032 that is not covered by the protrusions 1033 in the liquid crystal layer 103 is relatively high, and the required voltage for the deflection of the directors of the liquid crystal molecules in the protrusions 1033 is relatively high.
  • the externally applied voltage is relatively low, so in the present application, the directors of the liquid crystal molecules 1031 in the liquid crystal layer 103 are perpendicular to the above-mentioned substrate 101 may mean that the directors of the liquid crystal molecules in the protrusions 1033 are perpendicular to the substrate 101, while the directors of the liquid crystal molecules in the liquid crystal layer 103 are perpendicular to the substrate 101.
  • the directors of the liquid crystal molecules in the base 1032 not covered by the protrusions 1033 remain unchanged, that is, parallel to the substrate 101 .
  • the corresponding director data (for example, the angle ⁇ between the director direction of the liquid crystal molecules 1031 and the substrate 101) can be determined according to the simulation results of the directors of the liquid crystal molecules 1031 in the liquid crystal layer 103 under different externally applied voltages. , and then calculate the equivalent refractive index n eff of the liquid crystal layer 103 under different externally applied voltages.
  • the isotropic light material layer 102 in the viewing angle adjusting film structure 100 when the voltage applied to the first electrode 104 and the second electrode 105 gradually increases in the order of 2V, 3V, 4V, and 5V, the isotropic light material layer 102 in the viewing angle adjusting film structure 100 The refractive index difference between the liquid crystal layer 103 and the liquid crystal layer 103 will become larger and larger, and the refractive index difference will become larger and larger, corresponding to the above-mentioned viewing angle adjustment film structure 100 having an increasingly stronger viewing angle adjustment capability for the incident light L.
  • the above-mentioned viewing angle adjustment film structure 100 may further include a support pad 108 , the support pad 108 is disposed between the isotropic optical material layer 102 and the second electrode 105 and penetrates through the liquid crystal layer 103 , to precisely control the thickness of the viewing angle adjustment film structure and ensure the thickness uniformity of the viewing angle adjustment film structure.
  • the hardness of the support pad 108 is generally greater than that of the isotropic optical material layer 102, and its material can be an organic resin material or an inorganic insulating material.
  • the above-mentioned support pad 108 may be specifically disposed between the first alignment film 106 and the isotropic optical material layer 102, Alternatively, it may be disposed between the isotropic optical material layer 102 and the second electrode 105 and penetrate the first alignment film 106 and the liquid crystal layer 103 at the same time.
  • the viewing angle adjustment film structure in this embodiment includes a substrate, an isotropic optical material layer, and a liquid crystal layer that are stacked in sequence.
  • the isotropic optical material layer is provided with grooves, and the liquid crystal layer fills the grooves.
  • the light is injected from the liquid crystal layer and then exits through the isotropic optical material layer; wherein, the orientation of the liquid crystal molecules in the liquid crystal layer is changed according to the change of the external applied voltage or electric field, so as to adjust the light emitted from the isotropic optical material layer.
  • the viewing angle adjusting film structure can be used to replace the existing viewing angle diffusing film, so as to solve the problem that when the display panel is viewed from the front viewing angle due to the reduction of the front viewing angle display brightness and the front viewing angle contrast of the display panel by the existing viewing angle diffusing film quality deterioration.
  • FIG. 8 is a schematic flowchart of a method for fabricating a viewing angle adjustment film structure provided by an embodiment of the present application.
  • the manufacturing method of the viewing angle adjustment film structure includes the following steps:
  • the substrate may be a transparent flexible substrate such as polyimide and polysiloxane, or a transparent rigid substrate such as glass and plastic.
  • the material of the above-mentioned isotropic optical material layer may be a UV curable resin or a thermosetting resin such as epoxy resin, acrylic resin, polyurethane resin, silicone resin, and phenolic resin.
  • the cross section of the groove perpendicular to the base body may be a geometrical shape symmetrical on the left and right sides, and the width of the cross section increases gradually along the direction away from the base body.
  • the shape of the above-mentioned cross-section may be an isosceles trapezoid, a U-shape, or a circular arc with a central angle not greater than 180 degrees, or the like.
  • the number of the above-mentioned grooves may be multiple, and the multiple grooves are arranged at equal intervals.
  • the above-mentioned grooves may be specifically strip-shaped grooves, and when the number of grooves is multiple, the plurality of strip-shaped grooves may be arranged in parallel and at equal intervals, so that only one direction (for example, horizontal direction) to adjust the viewing angle of the incident light.
  • the plurality of grooves may include a first strip-shaped groove extending along a first direction (eg, a horizontal direction), and a second direction (eg, a horizontal direction) , vertical direction) extending second strip-shaped groove to adjust the viewing angle of the incident light in two directions (eg, horizontal direction and vertical direction).
  • the above-mentioned grooves may also be specifically pyramid-shaped grooves, and when the number of the grooves is multiple, the multiple pyramid-shaped grooves may be arranged at equal intervals, so that in multiple directions Adjusts the viewing angle of incoming light.
  • an isotropic optical material can be coated on the substrate to obtain an initial layer, and grooves can be embossed on the surface of the initial layer, and then the initial layer can be cured by ultraviolet light or heat to obtain an isotropic layer. layer of optical material.
  • a liquid crystal layer is formed on the isotropic optical material layer, the liquid crystal layer fills the grooves, and light is injected from the liquid crystal layer and then exits through the isotropic optical material layer, wherein the orientation of the liquid crystal molecules in the liquid crystal layer is misaligned according to an externally applied voltage Or change the electric field to adjust the viewing angle of the light emitted from the isotropic optical material layer.
  • the refractive index of the liquid crystal layer is the same as that of the isotropic optical material layer.
  • the refractive index of the liquid crystal layer is smaller than that of the isotropic optical material layer.
  • the refractive index of the liquid crystal layer 103 is the same as the refractive index of the isotropic optical material layer 102 , corresponding to the light L from the liquid crystal
  • the layer 103 will not be refracted at the interface of the isotropic optical material layer 102 after being injected, that is, the above-mentioned viewing angle adjusting film structure 100 will not affect the brightness and contrast of the light L at a front viewing angle. Further, as shown in FIG.
  • the refractive index of the liquid crystal layer 102 is smaller than the refractive index of the isotropic optical material layer 102 , corresponding to the radiation emitted from the liquid crystal layer 103 .
  • At least part of the incoming light L (for example, the incident light at a normal viewing angle) will be refracted at the interface of the isotropic optical material layer 103, so that at least part of the incoming light at a normal viewing angle can be adjusted to a light with a large viewing angle to enhance the Brightness of light at large viewing angles.
  • an appropriate externally applied voltage or electric field can be selected according to the actual use scene requirements of the above-mentioned viewing angle adjustment film structure 100, so as to utilize the viewing angle adjustment film structure 100 by sacrificing the brightness and contrast of the light L under the front viewing angle, The brightness of the light L at a large viewing angle is increased, or the viewing angle adjusting film structure 100 is not used to increase the brightness of the light L at a large viewing angle, thereby ensuring that the brightness and contrast of the light L at a front viewing angle are not reduced. In this way, the viewing angle adjustment film structure in the present application can meet the requirements of complex use environment.
  • the material of the liquid crystal layer 103 can be a nematic liquid crystal material or a blue phase liquid crystal material, and when the liquid crystal molecules 1031 in the liquid crystal layer 103 are in the shape of ellipsoids (as shown in FIG. 3 ) or rods, the liquid crystal molecules 1031 The director of can be the long axis direction of the liquid crystal molecules.
  • it may further include:
  • the above-mentioned S62 may include: forming an isotropic optical material layer on the substrate on which the first electrode is formed.
  • the manufacturing method of the above-mentioned viewing angle adjustment film structure may also include:
  • the substrate may be a transparent flexible substrate such as polyimide or polysiloxane, or a transparent rigid substrate such as glass or plastic.
  • S66 Fix the second electrode on the liquid crystal layer through the substrate, the second electrode is located between the liquid crystal layer and the substrate, and provide the liquid crystal layer with an externally applied voltage or electric field through the first electrode and the second electrode.
  • the materials of the first electrode 104 and the second electrode 105 may be transparent conductive oxides such as indium tin oxide (ITO), indium oxynitride, etc., or transparent conductive metals such as silver and copper.
  • a frame sealant may be provided between the edge region of the base body and the edge region of the substrate to bond the substrate to the base body, so that the second electrode can be fixed on the liquid crystal layer.
  • the first alignment film and the second alignment film can be organic (such as polyimide) or inorganic (such as SiO2) alignment films, and the external voltage or electric field is zero, that is, when no voltage or electric field is applied to the liquid crystal layer , the directors of the liquid crystal molecules can be made parallel to the substrate, wherein the surface of the substrate is parallel to the horizontal direction.
  • the hardness of the support pad is generally greater than that of the isotropic optical material layer, and its material may be an organic resin material or an inorganic insulating material.
  • the above-mentioned support pad can be specifically arranged between the first alignment film and the isotropic optical material layer, or can also be arranged on Between the isotropic optical material layer and the second electrode, and simultaneously penetrate the above-mentioned first alignment film 106 and the liquid crystal layer. In this way, the thickness of the viewing angle adjusting film structure can be precisely controlled by using the support pad, and the thickness uniformity of the viewing angle adjusting film structure can be ensured.
  • a substrate is provided, an isotropic optical material layer is formed on the substrate, grooves are arranged on the isotropic optical material layer, and then each layer is formed on the substrate.
  • the liquid crystal layer is formed on the isotropic optical material layer, the liquid crystal layer fills the groove, and the light enters the liquid crystal layer and then exits through the isotropic optical material layer. and change to adjust the viewing angle of the light emitted from the isotropic optical material layer.
  • the refractive index of the liquid crystal layer is the same as that of the isotropic optical material layer.
  • the refractive index of the liquid crystal layer is the same.
  • the refractive index of the liquid crystal layer is smaller than the refractive index of the isotropic optical material layer, so that the viewing angle adjustment film structure can be used to replace the existing viewing angle diffusing film, so as to solve the problem of the display brightness and positive viewing angle of the display panel due to the existing viewing angle diffusing film.
  • the reduction in viewing angle contrast leads to the deterioration of display quality when viewing the display panel from a front viewing angle.
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device 80 includes the viewing angle adjusting film structure 81 and the display panel 82 according to any one of the above embodiments, wherein the viewing angle adjusting film structure 81 is located on the light-emitting surface 82A of the display panel 82 , and the light-emitting surface 82A can be adjusted by the viewing angle adjusting film structure 81
  • the viewing angle of the emitted light is used to realize the front viewing angle display and the large viewing angle display of the display panel 82 .
  • the above-mentioned viewing angle adjustment film structure 81 may include a substrate, an isotropic optical material layer and a liquid crystal layer that are stacked in sequence, the isotropic optical material layer is provided with grooves, the liquid crystal layer fills the grooves, and the light emitting surface 82A emits The light is emitted from the liquid crystal layer and then exits through the isotropic optical material layer, wherein the orientation of the liquid crystal molecules in the liquid crystal layer is changed according to the change of the external applied voltage or electric field, so as to adjust the light emitted from the isotropic optical material layer. perspective.
  • the refractive index of the liquid crystal layer is the same as that of the isotropic optical material layer; when the orientation is deparallel to the matrix, the refractive index of the liquid crystal layer is smaller than that of the isotropic optical material layer.
  • the above-mentioned display panel 82 may include a color filter substrate 821, an array substrate 822 disposed opposite the color filter substrate 821 and provided with a plurality of pixel units, a color filter substrate filled with The liquid crystal material layer 823 between 821 and the array substrate 822, the first polarizer 824 disposed on the side of the color filter substrate 821 away from the liquid crystal material layer 823, and the first polarizer 824 disposed on the side of the array substrate 822 away from the liquid crystal material layer 823 The second polarizer 825 .
  • the above-mentioned viewing angle adjustment film structure 81 is disposed on the side of the first polarizer 824 away from the color filter substrate 821, and the light emitted by the pixel units in the array substrate 822 will pass through the liquid crystal material layer 823, the color filter substrate 821, the first The polarizer 824, the substrate, the liquid crystal layer and the isotropic light material layer are emitted.
  • the large viewing angle display of the display panel 82 corresponds to an application scenario in which multiple people watch the display panel.
  • a sufficiently large externally applied voltage or electric field can be provided to the liquid crystal layer in the viewing angle adjustment film structure 81 to make the liquid crystal
  • the director direction of the liquid crystal molecules in the layer is deflected by a preset angle from the direction parallel to the substrate to the direction perpendicular to the substrate.
  • the greater the refractive index difference between the isotropic optical material layers the stronger the viewing angle adjustment capability of the above-mentioned viewing angle adjusting film structure 81 to the light emitted by the light emitting surface 82A of the display panel 82 .
  • the size of the externally applied voltage or electric field provided to the liquid crystal layer can be dynamically adjusted according to the real-time demand for viewing viewing angle when viewing the display panel, so as to realize real-time adjustment of the viewing angle of the outgoing light.
  • the externally applied voltage or electric field provided to the liquid crystal layer can be increased, which is beneficial to improve the user viewing experience of the display panel.
  • the front viewing angle of the display panel 82 corresponds to the application scenario of viewing the display panel by a single person. In this case, it can be considered that there is no need to increase the brightness of the light emitted from the light emitting surface 82A under a large viewing angle, that is, it is The layer provides an externally applied voltage or electric field, or the provided externally applied voltage or electric field is zero, thereby ensuring that the above-mentioned viewing angle adjusting film structure 81 will not affect the brightness and contrast of the light emitted from the light exit surface 82A under the front viewing angle, and further Solve the problem of deterioration of display quality when viewing the display panel from a frontal angle.
  • the viewing angle adjusting film structure can be used to replace the existing viewing angle diffusing film, so as to solve the problem due to the existing viewing angle diffusing film.
  • the display brightness and the contrast ratio of the front viewing angle of the display panel are reduced, which leads to the deterioration of the display image quality when the display panel is viewed from the front viewing angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种视角调整膜结构(100)及其制作方法、显示装置(80),视角调整膜结构(100)包括依次层叠设置的基体(101)、各向同性光学材料层(102)和液晶层(103),各向同性光学材料层(102)上设有凹槽(1021),液晶层(103)填充凹槽(1021),光线从液晶层(103)射入后经由各向同性光学材料层(102)射出;液晶层(103)中液晶分子(1031)的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层(102)射出的光线的视角。

Description

视角调整膜结构及其制作方法、显示装置
本申请要求于2020年07月02日提交中国专利局、申请号为202010626734.6、发明名称为“视角调整膜结构及其制作方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种视角调整膜结构及其制作方法、显示装置。
背景技术
随着显示技术的飞速发展,市场对显示面板的分辨率要求越来越高,而显示面板的分辨率越高,对应显示面板的大视角显示亮度表现越差,因此,大视角显示亮度降低是超高清显示面板急需解决的技术问题。
现有技术利用视角扩散膜将正视角的光调制到大视角,以增加显示面板的大视角显示亮度。但是,这会导致显示面板正视角显示亮度的损失和正视角对比度的大幅度降低,进而当从正视角观看显示面板时会出现显示画质恶化的问题。
技术问题
本申请提供一种视角调整膜结构及其制作方法、显示装置,以解决由于现有视角扩散膜对显示面板的正视角显示亮度和正视角对比度的降低,而导致从正视角观看显示面板时显示画质的恶化问题。
技术解决方案
第一方面,本申请实施例提供一种视角调整膜结构,该视角调整膜结构包括依次层叠设置的基体、各向同性光学材料层和液晶层,各向同性光学材料层上设有凹槽,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出;其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角;当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同;当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率。
其中,视角调整膜结构还包括第一电极和第二电极,第一电极设置于基体和各向同性光学材料层之间,第二电极设置于液晶层背离各向同性光学材料层的一面上,且通过第一电极和第二电极为液晶层提供外部施加电压或电场。
其中,视角调整膜结构还包括第一取向膜和第二取向膜,第一取向膜设置于各向同性光学材料层和液晶层之间,第二取向膜设置于液晶层和第二电极之间。
其中,视角调整膜结构还包括支撑垫,支撑垫设置于各向同性光学材料层和第二电极之间,且贯穿液晶层。
其中,凹槽的数量为多个,多个凹槽等间隔设置。
其中,凹槽为条状凹槽,多个条状凹槽平行等间隔设置。
其中,凹槽垂直于基体的截面为左右两侧对称的几何形状,且截面的宽度在沿远离基体的方向上逐渐增大。
其中,凹槽的截面形状为等腰梯形、U字形或圆心角不大于180度的圆弧形。
第二方面,本申请实施例还提供一种视角调整膜结构的制作方法,该视角调整膜结构的制作方法,包括:提供基体;在基体上形成各向同性光学材料层,各向同性光学材料层上设有凹槽;在各向同性光学材料层上形成液晶层,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出;其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角;当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同;当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率。
其中,在基体上形成各向同性光学材料层之前,还包括:在基体上形成第一电极;视角调整膜结构的制作方法还包括:在衬底上形成第二电极;通过衬底将第二电极固设于液晶层上,第二电极位于液晶层和衬底之间,且通过第一电极和第二电极为液晶层提供外部施加电压或电场。
其中,在各向同性光学材料层上形成液晶层之前,还包括:在各向同性光学材料层上形成第一取向膜;在通过衬底将第二电极固设于液晶层上之前,还包括:在第二电极上形成第二取向膜。
其中,在通过衬底将第二电极固设于液晶层上之前,还包括:在各向同性光学材料层上形成支撑垫,支撑垫位于各向同性光学材料层和第二电极之间,且贯穿液晶层。
第三方面,本申请实施例还提供一种显示装置,该显示装置包括上述任一项的视角调整膜结构和显示面板,视角调整膜结构位于显示面板的出光面上,且通过视角调整膜结构调整出光面发出的光线的视角,以实现所述显示面板的正视角显示和大视角显示;其中,视角调整膜结构包括依次层叠设置的基体、各向同性光学材料层和液晶层,各向同性光学材料层上设有凹槽,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出,其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角;当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同;当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率。
其中,视角调整膜结构还包括第一电极和第二电极,第一电极设置于基体和各向同性光学材料层之间,第二电极设置于液晶层背离各向同性光学材料层的一面上,且通过第一电极和第二电极为液晶层提供外部施加电压或电场。
其中,视角调整膜结构还包括第一取向膜和第二取向膜,第一取向膜设置于各向同性光学材料层和液晶层之间,第二取向膜设置于液晶层和第二电极之间。
其中,视角调整膜结构还包括支撑垫,支撑垫设置于各向同性光学材料层和第二电极之间,且贯穿液晶层。
其中,凹槽的数量为多个,多个凹槽等间隔设置。
其中,凹槽为条状凹槽,多个条状凹槽平行等间隔设置。
其中,凹槽垂直于基体的截面为左右两侧对称的几何形状,且截面的宽度在沿远离基体的方向上逐渐增大。
其中,显示面板包括彩色滤光基板、与彩色滤光基板相对设置且设有多个像素单元的阵列基板、填充于彩色滤光基板与阵列基板之间的液晶材料层、设置于彩色滤光基板背离液晶材料层的一面上的第一偏光片、以及设置于阵列基板背离液晶材料层的一面上的第二偏光片,其中,视角调整膜结构设置于第一 偏光片背离彩色滤光基板的一面上,阵列基板中的像素单元发出的光线依次经由液晶材料层、彩色滤光基板、第一偏光片、基体、液晶层和各向同性光线材料层而射出。
有益效果
相较于现有技术,本申请提供的视角调整膜结构包括依次层叠设置的基体、各向同性光学材料层和液晶层,各向同性光学材料层上设有凹槽,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出,并且通过改变外部施加电压或电场,可改变液晶层中液晶分子的指向矢,如此,在需要增加大视角光线亮度的情况下,可以通过控制外部施加电压或电场,使得液晶分子的指向矢垂直于基体,对应液晶层的折射率小于各向同性光学材料层的折射率,在需要确保正视角光线亮度不被影响的情况下,还可以通过控制外部施加电压或电场,使得液晶分子的指向矢平行于基体,对应液晶层的折射率等于各向同性光学材料层的折射率,进而确保光线在正视角下的亮度和对比度不被降低,从而使得视角调整膜结构能够应对复杂的使用环境需求,并在利用视角调整膜结构替代现有视角扩散膜,能够解决由于现有视角扩散膜对显示面板的正视角显示亮度和正视角对比度的降低,而导致从正视角观看显示面板时显示画质的恶化问题。
附图说明
图1是本申请实施例提供的视角调整膜结构的结构示意图;
图2是本申请实施例提供的视角调整膜结构调整光线视角的效果示意图;
图3是本申请实施例提供的视角调整膜结构调整光线视角的另一效果示意图;
图4是本申请实施例提供的凹槽在各向同性光线材料层上的分布位置示意图;
图5是本申请实施例提供的视角调整膜结构的另一结构示意图;
图6是本申请实施例提供的视角调整膜结构的另一结构示意图;
图7是本申请实施例提供的液晶层的结构示意图;
图8是本申请实施例提供的视角调整膜结构的制作方法的流程示意图;
图9是本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1至图3,图1是本申请实施例提供的视角调整膜结构的结构示意图,图2是本申请实施例提供的视角调整膜结构调整光线视角的效果示意图,图3是本申请实施例提供的视角调整膜结构调整光线视角的另一效果示意图。如图1至图3所示,视角调整膜结构100包括依次层叠设置的基体101、各向同性光学材料层102和液晶层103,其中,各向同性光学材料层102上设有凹槽1021,液晶层103填充凹槽1021,来自外界(比如,显示面板的发光面)的光线L从液晶层103射入后经由各向同性光学材料层102射出。
在本实施例中,如图2和图3所示,上述液晶层103包括若干液晶分子1031,且该液晶层103中液晶分子1031的指向失会根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层102射出的光线L的视角。具体地,当液晶层103中液晶分子1031的指向失平行于基体101时,如图2所示,液晶层103的折射率与各向同性光学材料层102的折射率相同,对应光线L从液晶层103射入后并不会在各向同性光学材料层102的界面处发生折射,也即,上述视角调整膜结构100不会影响光线L在正视角下的亮度及对比度。进一步地,当液晶层103中液晶分子1031的指向失垂直于基体101时,如图3所示,液晶层102的折射率小于各向同性光学材料层102的折射率,对应从液晶层103射入后的至少部分光线L(比如,正视角的入射光线)会在各向同性光学材料层103的界面处发生折射,从而能够将至少部分的正视角入射光线调整为大视角的光线,以增强光线在大视角下的亮度。其中,大视角的光线可以指的是视角大于预设角度(比如,45度)的光线,正视角的光线可以指的是视角小于预设角度(比如,20度)的光线。
具体实施时,可以根据上述视角调整膜结构100的实际使用场景需求,选 择合适的外部施加电压或电场,以利用视角调整膜结构100通过牺牲光线L在正视角下的亮度和对比度,来增加光线L在大视角下的亮度,或者,不利用视角调整膜结构100增加光线L在大视角下的亮度,进而确保光线L在正视角下的亮度和对比度不被降低。如此,使得本申请中的视角调整膜结构100能够应对复杂的使用环境需求。
其中,上述基体101可以聚酰亚胺、聚硅氧烷等透明的柔性基体,也可以为玻璃、塑料等透明的刚性基体。上述各向同性光学材料层102的材质可以为环氧树脂、丙烯酸树脂、聚氨酯树脂、硅酮树脂、酚醛树脂等UV固化性树脂或者热固化性树脂。上述液晶层103的材质可以为向列相液晶材料或蓝相液晶材料,并且,当液晶层103中液晶分子1031的形状为椭圆球状(如图3所示)或棒状时,液晶分子1031的指向矢可以为该液晶分子的长轴方向。
具体地,上述凹槽1021垂直于基体101的截面为左右两侧对称的几何形状,且截面的宽度在沿远离基体101的方向上逐渐增大。在一个实施例中,上述截面的形状可以具体为等腰梯形(如图1所示)、U字形或圆心角不大于180度的圆弧形等。
其中,上述凹槽1021的数量可以为多个,且这多个凹槽1021等间隔设置。在一个实施例中,如图4中的a所示,上述凹槽1021可以具体为条状凹槽,且当凹槽1021的数量为多个时,这多个条状凹槽1021可以平行等间隔设置,以仅在一个方向(比如,水平方向X)上调整光线L的视角。在另一个实施例中,如图4中的b所示,当凹槽1021的数量为多个时,这多个凹槽1021可以包括沿第一方向(比如,水平方向X)延伸的第一条状凹槽10211、以及沿第二方向(比如,竖直方向Y)延伸的第二条状凹槽10212,以在两个方向(比如,水平方向X和竖直方向Y)上调整光线L的视角。在又一个实施例中,上述凹槽1021还可以具体为棱台状凹槽,且当凹槽1021的数量为多个时,这多个棱台状凹槽可以等间隔设置,以在多个方向上调整光线L的视角。
在一个具体实施例中,如图5所示,上述视角调整膜结构100还可以包括第一电极104和第二电极105,其中,第一电极104设置于基体101和各向同性光学材料层102之间,第二电极105设置于液晶层103背离各向同性光学材料层102的一面上,第一电极104和第二电极105的材质可以为氧化铟锡 (ITO)、氮氧化铟钛等透明导电氧化物,也可以银、铜等透明导电金属,并且可通过第一电极104和第二电极105为液晶层103提供外部施加电压或电场。
具体地,如图6所示,上述视角调整膜结构100还可以包括第一取向膜106和第二取向膜107,第一取向膜106设置于各向同性光学材料层102和液晶层103之间,第二取向膜107设置于液晶层103和第二电极105之间。其中,第一取向膜106和第二取向膜107可以为有机(如聚亚酰胺)或无机(如SiO2)配向膜,并在外部施加电压或电场为零,也即未施加电压或电场给液晶层103时,可使液晶分子1031的指向矢平行于基体101,其中,基体101的表面与水平方向平行。
并且,当施加在上述第一电极104和第二电极105上的电压逐渐增大时,液晶层103中液晶分子1031的指向矢方向会由平行于基体的方向逐渐向垂直于基体的方向偏转,与此同时,该液晶层103的折射率也会逐渐减小。具体地,当液晶分子1031的指向矢方向与基体101的夹角为θ时,上述液晶层103的等效折射率n eff可以根据如下公式计算得到:
Figure PCTCN2020106684-appb-000001
其中,n o为液晶分子的o光折射率,n e为液晶分子的e光折射率。
具体举例说明,如图7所示,上述液晶层103可以包括底座1032以及位于该底座1032上的凸起1033,该凸起1033的形状和尺寸与上述各向同性光线材料层102上凹槽1021的形状和尺寸相匹配,该凸起1033可以是由液晶材料填充上述凹槽1021得到的。具体地,该凸起1033垂直于基体101的截面形状可以为等腰梯形,该等腰梯形的上底边长W1、下底边长W2和高度H1可以分别为9.56μm、15.12μm和16.67μm,相邻两个凸起1031之间的间隔距离可以为8~15μm。在此例中,当液晶层103的材质为E7液晶材料时,对应液晶层103中液晶分子1031的o光折射率n o为1.517,e光折射率n e为1.741。在一些实施例中,上述各向同性光学材料层102的厚度的范围可以为5~100μm,上述液晶层103的厚度的范围可以为5~20μm,比如,18.8μm,并 且,为了避免液晶层103中液晶分子1031的泄露问题,可以设置各向同性光学材料层102的厚度大于液晶层103的厚度,比如,二者之比值可以大于或等于2。其中,上述液晶层103的厚度和上述各向同性光学材料层102的厚度均指的是对应膜层中厚度最大区域的厚度。
进一步地,当施加在上述第一电极104和第二电极105上的电压按照2V、3V、4V、5V的顺序逐渐增大时,液晶层103中液晶分子1031的指向矢方向由平行于基体101的方向向垂直于基体101的方向偏转的角度会逐渐增大,并且,当施加在上述第一电极104和第二电极105上的电压大于或等于5V时,可以使得液晶层103中液晶分子1031的指向矢垂直于上述基体101。需要说明的是,液晶层103中未被凸起1033覆盖的底座1032中液晶分子的指向矢发生偏转所需要的外部施加电压较高,而凸起1033中液晶分子的指向矢发生偏转所需要的外部施加电压较低,故在本申请中,液晶层103中液晶分子1031的指向矢垂直于上述基体101可以指的是凸起1033中液晶分子的指向矢垂直于基体101,而液晶层103中未被凸起1033覆盖的底座1032中液晶分子的指向矢仍保持不变,也即平行于基体101。
具体实施时,可以根据液晶层103中液晶分子1031的指向矢在不同外部施加电压下的仿真结果,确定对应的指向矢数据(比如,液晶分子1031的指向矢方向与基体101的夹角θ),进而计算得到液晶层103的在不同外部施加电压下的等效折射率n eff。接上一例子,当施加在上述第一电极104和第二电极105上的电压按照2V、3V、4V、5V的顺序逐渐增大时,上述视角调整膜结构100中各向同性光线材料层102和液晶层103的折射率差值会越来越大,并且该折射率差值越来越大,对应上述视角调整膜结构100对入射光线L的视角调整能力越来越强。需要说明的是,在理想情况下,当外部施加电压为0时,上述视角调整膜结构100中液晶层103和各向同性光线材料层102的折射率差值为零(图中未示出)。
在上述实施例中,请参阅图6,上述视角调整膜结构100还可以包括支撑垫108,该支撑垫108设置于各向同性光学材料层102和第二电极105之间,且贯穿液晶层103,以精确控制视角调整膜结构的厚度,并确保视角调整膜结构的厚度均一性。具体地,该支撑垫108的硬度一般大于各向同性光学材料层 102的硬度,其材质可以为有机树脂材料或无机绝缘材料。并且,当在各向同性光学材料层102和液晶层103之间设置有第一取向膜106时,上述支撑垫108可以具体设置于第一取向膜106和各向同性光学材料层102之间,或者,也可以设置于各向同性光学材料层102和第二电极105之间,且同时贯穿上述第一取向膜106和液晶层103。
区别于现有技术,本实施例中的视角调整膜结构包括依次层叠设置的基体、各向同性光学材料层和液晶层,各向同性光学材料层上设有凹槽,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出;其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角;当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同;当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率,从而,能够利用该视角调整膜结构替代现有视角扩散膜,以解决由于现有视角扩散膜对显示面板的正视角显示亮度和正视角对比度的降低,而导致从正视角观看显示面板时显示画质的恶化问题。
请参阅图8,图8是本申请实施例提供的视角调整膜结构的制作方法的流程示意图。该视角调整膜结构的制作方法包括以下步骤:
S61:提供基体。
其中,基体可以聚酰亚胺、聚硅氧烷等透明的柔性基体,也可以为玻璃、塑料等透明的刚性基体。
S62:在基体上形成各向同性光学材料层,各向同性光学材料层上设有凹槽。
其中,上述各向同性光学材料层的材质可以为环氧树脂、丙烯酸树脂、聚氨酯树脂、硅酮树脂、酚醛树脂等UV固化性树脂或者热固化性树脂。上述凹槽垂直于基体的截面可以为左右两侧对称的几何形状,且截面的宽度在沿远离基体的方向上逐渐增大。在一个实施例中,上述截面的形状可以具体为等腰梯形、U字形或圆心角不大于180度的圆弧形等。
具体地,上述凹槽的数量可以为多个,且这多个凹槽等间隔设置。在一个实施例中,上述凹槽可以具体为条状凹槽,且当凹槽的数量为多个时,这多个条状凹槽可以平行等间隔设置,以仅在一个方向(比如,水平方向)上调整入 射光线的视角。在另一个实施例中,当凹槽的数量为多个时,这多个凹槽可以包括沿第一方向(比如,水平方向)延伸的第一条状凹槽、以及沿第二方向(比如,竖直方向)延伸的第二条状凹槽,以在两个方向(比如,水平方向和竖直方向)上调整入射光线的视角。在又一个实施例中,上述凹槽还可以具体为棱台状凹槽,且当凹槽的数量为多个时,这多个棱台状凹槽可以等间隔设置,以在多个方向上对入射光线的视角进行调整。
具体实施时,可以在基体上涂布各向同性光学材料,得到初始层,并在该初始层上表面压印制作凹槽,接着对该初始层进行紫外光照或加热固化,以得到各向同性光学材料层。
S63:在各向同性光学材料层上形成液晶层,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出,其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角,当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同,当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率。
具体地,如图2所示,当液晶层103中液晶分子1031的指向失平行于基体101时,液晶层103的折射率与各向同性光学材料层102的折射率相同,对应光线L从液晶层103射入后并不会在各向同性光学材料层102的界面处发生折射,也即,上述视角调整膜结构100不会影响光线L在正视角下的亮度及对比度。进一步地,如图3所示,当液晶层103中液晶分子1031的指向失垂直于基体101时,液晶层102的折射率小于各向同性光学材料层102的折射率,对应从液晶层103射入后的至少部分光线L(比如,正视角的入射光线)会在各向同性光学材料层103的界面处发生折射,从而能够将至少部分的正视角入射光线调整为大视角的光线,以增强光线在大视角下的亮度。并且,具体实施时,可以根据上述视角调整膜结构100的实际使用场景需求,选择合适的外部施加电压或电场,以利用视角调整膜结构100通过牺牲光线L在正视角下的亮度和对比度,来增加光线L在大视角下的亮度,或者,不利用视角调整膜结构100增加光线L在大视角下的亮度,进而确保光线L在正视角下的亮度和对比度不被降低。如此,使得本申请中的视角调整膜结构能够应对复杂的使用环境 需求。
其中,上述液晶层103的材质可以为向列相液晶材料或蓝相液晶材料,并且,当液晶层103中液晶分子1031的形状为椭圆球状(如图3所示)或棒状时,液晶分子1031的指向矢可以为该液晶分子的长轴方向。
在一个实施例中,在上述S62之前,还可以包括:
S64:在基体上形成第一电极。
其中,上述S62可以具有包括:在形成有第一电极的基体上形成各向同性光学材料层。
进一步地,上述视角调整膜结构的制作方法还可以包括:
S65:在衬底上形成第二电极。
其中,衬底可以聚酰亚胺、聚硅氧烷等透明的柔性基体,也可以为玻璃、塑料等透明的刚性基体。
S66:通过衬底将第二电极固设于液晶层上,第二电极位于液晶层和衬底之间,且通过第一电极和第二电极为液晶层提供外部施加电压或电场。
其中,第一电极104和第二电极105的材质可以为氧化铟锡(ITO)、氮氧化铟钛等透明导电氧化物,也可以银、铜等透明导电金属。并且,具体实施时,可以在基体的边缘区域和衬底的边缘区域之间设置封框胶,以将衬底粘接在基体上,进而能够将第二电极固设于液晶层上。
在一个具体实施例中,在上述S63之前,还可以包括:
S67:在各向同性光学材料层上形成第一取向膜,第一取向膜设置于各向同性光学材料层和液晶层之间。
并且,在上述S66之前,还可以包括:
S68:在第二电极上形成第二取向膜,第二取向膜设置于液晶层和第二电极之间。
其中,第一取向膜和第二取向膜可以为有机(如聚亚酰胺)或无机(如SiO2)配向膜,并在外部施加电压或电场为零,也即未施加电压或电场给液晶层时,可使液晶分子的指向矢平行于基体,其中,基体的表面与水平方向平行。
在一些实施例中,在上述S66之前,还可以包括:
S69:在各向同性光学材料层上形成支撑垫,支撑垫设置于各向同性光学 材料层和第二电极之间,且贯穿液晶层。
其中,支撑垫的硬度一般大于各向同性光学材料层的硬度,其材质可以为有机树脂材料或无机绝缘材料。并且,当在各向同性光学材料层和液晶层之间设置有第一取向膜时,上述支撑垫可以具体设置于第一取向膜和各向同性光学材料层之间,或者,也可以设置于各向同性光学材料层和第二电极之间,且同时贯穿上述第一取向膜106和液晶层。如此,能够利用支撑垫精确控制视角调整膜结构的厚度,并确保视角调整膜结构的厚度均一性。
区别于现有技术,本实施例中的视角调整膜结构的制作方法,通过提供基体,并在基体上形成各向同性光学材料层,各向同性光学材料层上设有凹槽,然后在各向同性光学材料层上形成液晶层,液晶层填充凹槽,光线从液晶层射入后经由各向同性光学材料层射出,其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角,当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同,当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率,从而,能够利用该视角调整膜结构替代现有视角扩散膜,以解决由于现有视角扩散膜对显示面板的正视角显示亮度和正视角对比度的降低,而导致从正视角观看显示面板时显示画质的恶化问题。
请参阅图9,图9是本申请实施例提供的显示装置的结构示意图。该显示装置80包括上述任一实施例的视角调整膜结构81和显示面板82,其中,视角调整膜结构81位于显示面板82的出光面82A上,且可通过视角调整膜结构81调整出光面82A发出的光线的视角,以实现显示面板82的正视角显示和大视角显示。
具体地,上述视角调整膜结构81可以包括依次层叠设置的基体、各向同性光学材料层和液晶层,各向同性光学材料层上设有凹槽,液晶层填充凹槽,上述出光面82A发出的光线从液晶层射入后经由各向同性光学材料层射出,其中,液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从各向同性光学材料层射出的光线的视角。当指向失平行于基体时,液晶层的折射率与各向同性光学材料层的折射率相同;当指向失垂直于基体时,液晶层的折射率小于各向同性光学材料层的折射率。
在一个具体实施例中,继续参阅图9,上述显示面板82可以包括彩色滤光基板821、与彩色滤光基板821相对设置且设有多个像素单元的阵列基板822、填充于彩色滤光基板821与阵列基板822之间的液晶材料层823、设置于彩色滤光基板821背离液晶材料层823的一面上的第一偏光片824、以及设置于阵列基板822背离液晶材料层823的一面上的第二偏光片825。其中,上述视角调整膜结构81设置于第一偏光片824背离彩色滤光基板821的一面上,阵列基板822中像素单元发出的光线会依次经由液晶材料层823、彩色滤光基板821、第一偏光片824、基体、液晶层和各向同性光线材料层而射出。
其中,显示面板82的大视角显示对应多人观看显示面板的应用场景,在这种情况下,可以向视角调整膜结构81中的液晶层提供足够大的外部施加电压或电场,以使该液晶层中液晶分子的指向矢方向由平行于基体的方向向垂直于基体的方向偏转预设角度,其中,预设角度越大,需要向液晶层提供的外部施加电压或电场越大,液晶层与各向同性光学材料层之间的折射率差值越大,上述视角调整膜结构81对显示面板82的出光面82A发出的光线的视角调整能力越强。具体实施时,可以根据在观看显示面板时对观看视角的实时需求,动态调整向液晶层提供的外部施加电压或电场的大小,以实现对出射光线的视角大小进行实时调整,例如,在需要的观看视角变大时,可以增大向液晶层提供的外部施加电压或电场,如此,有利于提高显示面板的用户观看体验。
其中,显示面板82的正视角显示对应单人观看显示面板的应用场景,在这种情况下,可以认为不需要增加从出光面82A发出的光线在大视角下的亮度,也即,无需向液晶层提供外部施加电压或电场,或者提供的外部施加电压或电场大小为零,从而,能够确保上述视角调整膜结构81不会影响从出光面82A发出的光线在正视角下的亮度及对比度,进而解决从正视角观看显示面板时显示画质的恶化问题。
区别于现有技术,本实施例中的显示装置,通过在显示面板的发光面上设置视角调整膜结构,能够利用该视角调整膜结构替代现有视角扩散膜,以解决由于现有视角扩散膜对显示面板的正视角显示亮度和正视角对比度的降低,而导致从正视角观看显示面板时显示画质的恶化问题。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申 请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种视角调整膜结构,其包括依次层叠设置的基体、各向同性光学材料层和液晶层,所述各向同性光学材料层上设有凹槽,所述液晶层填充所述凹槽,光线从所述液晶层射入后经由所述各向同性光学材料层射出;
    其中,所述液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从所述各向同性光学材料层射出的光线的视角;
    当所述指向失平行于所述基体时,所述液晶层的折射率与所述各向同性光学材料层的折射率相同;当所述指向失垂直于所述基体时,所述液晶层的折射率小于所述各向同性光学材料层的折射率。
  2. 根据权利要求1所述的视角调整膜结构,其中,所述视角调整膜结构还包括第一电极和第二电极,所述第一电极设置于所述基体和所述各向同性光学材料层之间,所述第二电极设置于所述液晶层背离所述各向同性光学材料层的一面上,且通过所述第一电极和所述第二电极为所述液晶层提供外部施加电压或电场。
  3. 根据权利要求2所述的视角调整膜结构,其中,所述视角调整膜结构还包括第一取向膜和第二取向膜,所述第一取向膜设置于所述各向同性光学材料层和所述液晶层之间,所述第二取向膜设置于所述液晶层和所述第二电极之间。
  4. 根据权利要求2所述的视角调整膜结构,其中,所述视角调整膜结构还包括支撑垫,所述支撑垫设置于所述各向同性光学材料层和所述第二电极之间,且贯穿所述液晶层。
  5. 根据权利要求1所述的视角调整膜结构,其中,所述凹槽的数量为多个,所述多个凹槽等间隔设置。
  6. 根据权利要求5所述的视角调整膜结构,其中,所述凹槽为条状凹槽,所述多个条状凹槽平行等间隔设置。
  7. 根据权利要求1所述的视角调整膜结构,其中,所述凹槽垂直于所述基体的截面为左右两侧对称的几何形状,且所述截面的宽度在沿远离所述基体的方向上逐渐增大。
  8. 根据权利要求7所述的视角调整膜结构,其中,所述凹槽的截面形状 为等腰梯形、U字形或圆心角不大于180度的圆弧形。
  9. 一种视角调整膜结构的制作方法,其包括:
    提供基体;
    在所述基体上形成各向同性光学材料层,所述各向同性光学材料层上设有凹槽;
    在所述各向同性光学材料层上形成液晶层,所述液晶层填充所述凹槽,光线从所述液晶层射入后经由所述各向同性光学材料层射出;
    其中,所述液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从所述各向同性光学材料层射出的光线的视角;
    当所述指向失平行于所述基体时,所述液晶层的折射率与所述各向同性光学材料层的折射率相同;当所述指向失垂直于所述基体时,所述液晶层的折射率小于所述各向同性光学材料层的折射率。
  10. 根据权利要求9所述的视角调整膜结构的制作方法,其中,在所述基体上形成各向同性光学材料层之前,还包括:
    在所述基体上形成第一电极;
    所述视角调整膜结构的制作方法还包括:
    在衬底上形成第二电极;
    通过所述衬底将所述第二电极固设于所述液晶层上,所述第二电极位于所述液晶层和所述衬底之间,且通过所述第一电极和所述第二电极为所述液晶层提供外部施加电压或电场。
  11. 根据权利要求10所述的视角调整膜结构的制作方法,其中,在所述各向同性光学材料层上形成液晶层之前,还包括:
    在所述各向同性光学材料层上形成第一取向膜;
    在所述通过所述衬底将所述第二电极固设于所述液晶层上之前,还包括:
    在所述第二电极上形成第二取向膜。
  12. 根据权利要求10所述的视角调整膜结构的制作方法,其中,在所述通过所述衬底将所述第二电极固设于所述液晶层上之前,还包括:
    在所述各向同性光学材料层上形成支撑垫,所述支撑垫位于所述各向同性光学材料层和所述第二电极之间,且贯穿所述液晶层。
  13. 一种显示装置,其包括视角调整膜结构和显示面板,所述视角调整膜结构位于所述显示面板的出光面上,且通过所述视角调整膜结构调整所述出光面发出的光线的视角,以实现所述显示面板的正视角显示和大视角显示;
    其中,所述视角调整膜结构包括依次层叠设置的基体、各向同性光学材料层和液晶层,所述各向同性光学材料层上设有凹槽,所述液晶层填充所述凹槽,光线从所述液晶层射入后经由所述各向同性光学材料层射出,其中,所述液晶层中液晶分子的指向失根据外部施加电压或电场的改变而改变,以调整从所述各向同性光学材料层射出的光线的视角;
    当所述指向失平行于所述基体时,所述液晶层的折射率与所述各向同性光学材料层的折射率相同;当所述指向失垂直于所述基体时,所述液晶层的折射率小于所述各向同性光学材料层的折射率。
  14. 根据权利要求13所述的显示装置,其中,所述视角调整膜结构还包括第一电极和第二电极,所述第一电极设置于所述基体和所述各向同性光学材料层之间,所述第二电极设置于所述液晶层背离所述各向同性光学材料层的一面上,且通过所述第一电极和所述第二电极为所述液晶层提供外部施加电压或电场。
  15. 根据权利要求14所述的显示装置,其中,所述视角调整膜结构还包括第一取向膜和第二取向膜,所述第一取向膜设置于所述各向同性光学材料层和所述液晶层之间,所述第二取向膜设置于所述液晶层和所述第二电极之间。
  16. 根据权利要求14所述的显示装置,其中,所述视角调整膜结构还包括支撑垫,所述支撑垫设置于所述各向同性光学材料层和所述第二电极之间,且贯穿所述液晶层。
  17. 根据权利要求13所述的显示装置,其中,所述凹槽的数量为多个,所述多个凹槽等间隔设置。
  18. 根据权利要求17所述的显示装置,其中,所述凹槽为条状凹槽,所述多个条状凹槽平行等间隔设置。
  19. 根据权利要求13所述的显示装置,其中,所述凹槽垂直于所述基体的截面为左右两侧对称的几何形状,且所述截面的宽度在沿远离所述基体的方向上逐渐增大。
  20. 根据权利要求13所述的显示装置,其中,所述显示面板包括彩色滤光基板、与所述彩色滤光基板相对设置且设有多个像素单元的阵列基板、填充于所述彩色滤光基板与所述阵列基板之间的液晶材料层、设置于所述彩色滤光基板背离所述液晶材料层的一面上的第一偏光片、以及设置于所述阵列基板背离所述液晶材料层的一面上的第二偏光片,
    其中,所述视角调整膜结构设置于所述第一偏光片背离所述彩色滤光基板的一面上,所述阵列基板中的所述像素单元发出的光线依次经由所述液晶材料层、所述彩色滤光基板、所述第一偏光片、所述基体、所述液晶层和所述各向同性光线材料层而射出。
PCT/CN2020/106684 2020-07-02 2020-08-04 视角调整膜结构及其制作方法、显示装置 WO2022000691A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/049,966 US11914235B2 (en) 2020-07-02 2020-08-04 Viewing angle adjustment film structure, manufacturing method thereof, and display device
US18/421,873 US20240160053A1 (en) 2020-07-02 2024-01-24 Viewing angle adjustment film structure, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010626734.6A CN111796448A (zh) 2020-07-02 2020-07-02 视角调整膜结构及其制作方法、显示装置
CN202010626734.6 2020-07-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/049,966 A-371-Of-International US11914235B2 (en) 2020-07-02 2020-08-04 Viewing angle adjustment film structure, manufacturing method thereof, and display device
US18/421,873 Continuation US20240160053A1 (en) 2020-07-02 2024-01-24 Viewing angle adjustment film structure, manufacturing method thereof, and display device

Publications (1)

Publication Number Publication Date
WO2022000691A1 true WO2022000691A1 (zh) 2022-01-06

Family

ID=72810102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106684 WO2022000691A1 (zh) 2020-07-02 2020-08-04 视角调整膜结构及其制作方法、显示装置

Country Status (3)

Country Link
US (2) US11914235B2 (zh)
CN (1) CN111796448A (zh)
WO (1) WO2022000691A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815356A (zh) * 2022-05-16 2022-07-29 中国民用航空飞行学院 视角发光方向可调制型机载显示器
WO2023159659A1 (zh) * 2022-02-22 2023-08-31 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
WO2024000719A1 (en) * 2022-06-27 2024-01-04 Shenzhen Wicue Optoelectronics Co. LTD. Microstructured liquid crystal film for automotive glass

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568215A (zh) * 2021-09-22 2021-10-29 惠科股份有限公司 光学膜片和显示装置
CN113885239A (zh) * 2021-09-22 2022-01-04 北海惠科光电技术有限公司 光学膜片、显示组件及显示装置
CN115268127A (zh) * 2022-08-04 2022-11-01 中国民用航空飞行学院 一种视角发光方向可调制型驾驶舱显示器
CN115407570B (zh) * 2022-08-23 2023-12-15 武汉华星光电技术有限公司 显示面板及其制备方法
CN116859630A (zh) * 2023-07-28 2023-10-10 惠科股份有限公司 显示模组、驱动方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109396A1 (en) * 2004-11-19 2006-05-25 Au Optronics Corp. Viewing-angle adjustable liquid crystal display and method for adjusting the same
CN104246542A (zh) * 2012-04-23 2014-12-24 惠和株式会社 视角限制片和平板显示器
CN104696876A (zh) * 2015-04-02 2015-06-10 江苏双星彩塑新材料股份有限公司 视角扩宽膜片和具有该膜片的背光模组及液晶显示器
CN105589228A (zh) * 2016-03-08 2016-05-18 武汉华星光电技术有限公司 一种视角调节器及液晶显示器
CN107102460A (zh) * 2017-07-06 2017-08-29 京东方科技集团股份有限公司 防窥装置、显示器及显示器的驱动方法
CN210720946U (zh) * 2019-12-10 2020-06-09 北京京东方光电科技有限公司 一种显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798592A3 (en) * 1996-01-17 2007-09-19 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
CN101617269B (zh) * 2007-03-16 2011-11-09 夏普株式会社 视场角控制装置以及具有该视场角控制装置的显示器
CN103226257B (zh) * 2013-03-23 2015-09-23 明基材料有限公司 防窥装置
CN106873209B (zh) * 2015-09-30 2021-05-11 乐金显示有限公司 光控制装置、包括其的透明显示装置及其制造方法
TW201839470A (zh) * 2017-04-21 2018-11-01 昶曜科技股份有限公司 新北市新莊區中正路542號之16 3樓 主動式防窺裝置
CN109613640A (zh) * 2019-01-30 2019-04-12 惠科股份有限公司 光学膜层和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109396A1 (en) * 2004-11-19 2006-05-25 Au Optronics Corp. Viewing-angle adjustable liquid crystal display and method for adjusting the same
CN104246542A (zh) * 2012-04-23 2014-12-24 惠和株式会社 视角限制片和平板显示器
CN104696876A (zh) * 2015-04-02 2015-06-10 江苏双星彩塑新材料股份有限公司 视角扩宽膜片和具有该膜片的背光模组及液晶显示器
CN105589228A (zh) * 2016-03-08 2016-05-18 武汉华星光电技术有限公司 一种视角调节器及液晶显示器
CN107102460A (zh) * 2017-07-06 2017-08-29 京东方科技集团股份有限公司 防窥装置、显示器及显示器的驱动方法
CN210720946U (zh) * 2019-12-10 2020-06-09 北京京东方光电科技有限公司 一种显示面板及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159659A1 (zh) * 2022-02-22 2023-08-31 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN114815356A (zh) * 2022-05-16 2022-07-29 中国民用航空飞行学院 视角发光方向可调制型机载显示器
WO2024000719A1 (en) * 2022-06-27 2024-01-04 Shenzhen Wicue Optoelectronics Co. LTD. Microstructured liquid crystal film for automotive glass

Also Published As

Publication number Publication date
US20230152613A1 (en) 2023-05-18
CN111796448A (zh) 2020-10-20
US11914235B2 (en) 2024-02-27
US20240160053A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2022000691A1 (zh) 视角调整膜结构及其制作方法、显示装置
US10288914B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
WO2011036736A1 (ja) 立体画像表示装置
US9280019B2 (en) Substrate with spacer and liquid crystal cell containing the same
CN108508636B (zh) 液晶透镜及其制作方法、显示装置
EP3765894B1 (en) Display panel, display apparatus, and method of driving display panel
US10261386B2 (en) Display device and display terminal
CN107632448B (zh) 一种显示面板
US20110051046A1 (en) Optical sheet, backlight unit and liquid crystal display device having the same and method of fabricating optical sheet
US20150323821A1 (en) Display panel
JPWO2008155878A1 (ja) 液晶表示装置
US20200241368A1 (en) Privacy protection component and adjusting method, display panel and display device
JP6689745B2 (ja) 表示装置
WO2022241826A1 (zh) 光线控制膜和显示面板
US10001668B2 (en) Liquid crystal panel, display apparatus and display method
CN111552107B (zh) 光学膜、光学膜的制备方法及应用
CN110737145B (zh) 可变焦透镜和显示装置
JP3746403B2 (ja) 液晶表示装置
WO2020019603A1 (zh) 画素结构及显示装置
WO2021258929A1 (zh) 显示面板、其制作方法和显示装置
US20180356693A1 (en) Liquid crystal display device
CN114815411B (zh) 显示面板及移动终端
JP4194067B2 (ja) 液晶表示装置
TWI522651B (zh) 立體顯示器
US20240134093A1 (en) Splicing display module and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943230

Country of ref document: EP

Kind code of ref document: A1