WO2022241826A1 - 光线控制膜和显示面板 - Google Patents

光线控制膜和显示面板 Download PDF

Info

Publication number
WO2022241826A1
WO2022241826A1 PCT/CN2021/097189 CN2021097189W WO2022241826A1 WO 2022241826 A1 WO2022241826 A1 WO 2022241826A1 CN 2021097189 W CN2021097189 W CN 2021097189W WO 2022241826 A1 WO2022241826 A1 WO 2022241826A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light control
electrode layer
viewing angle
Prior art date
Application number
PCT/CN2021/097189
Other languages
English (en)
French (fr)
Inventor
徐昊天
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2022241826A1 publication Critical patent/WO2022241826A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present application relates to the field of display technology, in particular to a light control film and a display panel.
  • Anti-peeping films are often used in display devices to achieve anti-peeping display.
  • the visible area of the anti-peeping film is limited, so that when the display device using it is displayed, the screen displayed by the display device is only for the user to read from the front, and it is not located in the user's Other people on the side can only see the pitch-black display, thereby effectively protecting the user's commercial secrets and/or personal privacy.
  • the traditional anti-spy film structure is generally to set periodically arranged horizontal light-blocking structures on the substrate, and block large-angle light through the light-impermeable light-blocking structures to achieve anti-peeping.
  • the distance between adjacent light-blocking structures needs to be made very small, which will result in low light transmittance of the peep-proof film, thereby affecting the display effect of the display device.
  • the present application provides a light control film and a display panel to alleviate the technical problem of low light transmittance in the existing anti-peeping film.
  • An embodiment of the present application provides a light control film, which includes:
  • a light-blocking member disposed on one side of the first base material layer, with a light-transmitting area between the light-blocking members;
  • the light control member is arranged on the light-transmitting member and corresponds to the light-transmitting area, and is used to reduce the light exit angle of the light passing through the light-transmitting member.
  • the side of the light-transmitting member away from the first substrate layer has a protruding structure, and the protruding structure forms the light control member.
  • the longitudinal cross-sectional shape of the raised structure is an arc
  • the side of the light-transmitting member away from the first substrate layer has a groove structure, and the light control member is disposed in the groove structure.
  • the refractive index of the light control member is greater than the refractive index of the light-transmitting member.
  • the longitudinal cross-sectional shape of the light control member is an ellipse.
  • the light-blocking member is integrally provided, and the light-blocking member is provided with an opening as the light-transmitting region.
  • the light control film further includes:
  • a first electrode layer disposed between the first substrate layer and the light blocking member
  • a viewing angle conversion layer disposed on a side of the light blocking member and the light control member away from the first electrode layer;
  • the viewing angle conversion layer is used to prevent light passing through the viewing angle conversion layer from being refracted when there is a voltage difference between the first electrode layer and the second electrode layer; and between the first electrode layer and the second electrode layer When there is no voltage difference on the second electrode layer, the light passing through the viewing angle conversion layer is refracted.
  • the viewing angle conversion layer includes a polymer and liquid crystal molecules dispersed in the polymer, and the polymer and the liquid crystal molecules have different refractive indices.
  • the viewing angle conversion layer includes a cylindrical mirror and a liquid crystal layer arranged in sequence on the side of the second electrode layer away from the second substrate layer, and the cylindrical The mirror and the liquid crystal layer have different refractive indices.
  • the embodiment of the present application also provides a display panel, which includes a light control film, and the light control film includes:
  • a light-blocking member disposed on one side of the first base material layer, with a light-transmitting area between the light-blocking members;
  • the light control member is arranged on the light-transmitting member and corresponds to the light-transmitting area, and is used to reduce the light exit angle of the light passing through the light-transmitting member.
  • the side of the light-transmitting member away from the first substrate layer has a protruding structure, and the protruding structure forms the light control member.
  • the longitudinal section shape of the raised structure is an arc
  • the side of the light-transmitting member away from the first substrate layer has a groove structure, and the light control member is disposed in the groove structure.
  • the refractive index of the light control member is greater than the refractive index of the light transmitting member.
  • the longitudinal cross-sectional shape of the light control member is an ellipse.
  • the light blocking member is integrally provided, and the light blocking member is provided with an opening as the light transmission area.
  • the light control film further includes:
  • a first electrode layer disposed between the first substrate layer and the light blocking member
  • a viewing angle conversion layer disposed on a side of the light blocking member and the light control member away from the first electrode layer;
  • the viewing angle conversion layer is used to prevent light passing through the viewing angle conversion layer from being refracted when there is a voltage difference between the first electrode layer and the second electrode layer; and between the first electrode layer and the second electrode layer When there is no voltage difference on the second electrode layer, the light passing through the viewing angle conversion layer is refracted.
  • the viewing angle conversion layer includes a polymer and liquid crystal molecules dispersed in the polymer, and the polymer and the liquid crystal molecules have different refractive indices.
  • the viewing angle conversion layer includes a lenticular lens and a liquid crystal layer arranged in sequence on the side of the second electrode layer away from the second substrate layer, and the lenticular lens different from the refractive index of the liquid crystal layer.
  • a light control member is arranged on the light transmission member in the light transmission area, the light control member is a microlens structure, and the microlens structure can reduce the intensity of the light passing through the light transmission member.
  • the light exit angle so that when a specific light exit angle is realized, the area of the light transmission region can be increased, and the light transmittance of the light control film can be improved.
  • a viewing angle conversion layer is provided on the light control member, and by controlling the voltage difference between the first electrode layer and the second electrode layer, the viewing angle conversion layer controls the light passing through the light-transmitting member to realize switching of different viewing angles.
  • FIG. 1 is a schematic cross-sectional structure diagram of a first type of light control film provided in an embodiment of the present application.
  • FIG. 2 is a schematic top view structural view of the light control film provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the transmission of light in the light control film provided by the embodiment of the present application.
  • FIG. 4 is a distribution diagram of angular luminance of a traditional anti-peeping film structure.
  • FIG. 5 is a graph of angular luminance distribution of the light control film provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second cross-sectional structure of the light control film provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a third cross-sectional structure of a light control film provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another top view structure of the light control film provided by the embodiment of the present application.
  • FIG. 9 is another schematic structural view of the top view of the light control film provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fourth cross-sectional structure of the light control film provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fifth cross-sectional structure of the light control film provided by the embodiment of the present application.
  • FIG. 12 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional structure diagram of the first light control film provided by the embodiment of the present application
  • FIG. 2 is a schematic top view structure of the light control film provided by the embodiment of the present application.
  • the light control film 100 is applied in a display device, and can realize the anti-peeping function of the display device.
  • the light control film 100 includes a first substrate layer 10, a light blocking member 20, a light transmitting member 30 and a light control member 40, the light blocking member 20 is arranged on one side of the first substrate layer 10, and the There is a light-transmitting area 21 between the light-blocking members 20 .
  • the light-transmitting member 30 is filled in the light-transmitting region 21 .
  • the light control member 40 is disposed on the light-transmitting member 30 and corresponds to the light-transmitting region 21 , and is used to reduce the light exit angle of the light passing through the light-transmitting member 30 .
  • the material of the first substrate layer 10 is a transparent material, and generally adopts a light-transmitting glass or resin material, such as polyethylene terephthalate (Polyethylene terephthalate, PET) or polycarbonate ( Polycarbonate, PC) and other transparent resin materials.
  • a light-transmitting glass or resin material such as polyethylene terephthalate (Polyethylene terephthalate, PET) or polycarbonate ( Polycarbonate, PC) and other transparent resin materials.
  • the light blocking member 20 is disposed on one side of the first substrate layer 10 for blocking and absorbing light.
  • the light-blocking members 20 are arrayed in a strip shape along the horizontal direction on the first substrate layer 10 , the strip-shaped light-blocking members 20 are parallel to each other, and the light-blocking members 20 There is also a space between the components 20 , and the space can transmit light to serve as the light-transmitting region 21 .
  • the light-blocking members 20 arranged in an array along the horizontal direction in this way can block light rays from diverging in the horizontal direction, so as to realize the anti-peeping function in the horizontal direction.
  • the material of the light-blocking member 20 includes materials with light-shielding properties such as black acrylic resin.
  • the light-transmitting member 30 is arranged in the light-transmitting region 21 between the light-blocking members 20, and is used to maintain the stability between the light-blocking members 20, for example, the light-blocking member 20 can maintain the The separation distance ensures that the effective light-transmitting area 21 allows light to pass through.
  • the material of the light-transmitting member 30 may depend on the specific processing technology. For example, when using a laser for subtractive processing, the material of the light-transmitting member 30 may be the same as that of the first substrate layer 10; When processing by engraving, the material of the light-transmitting member 30 may be a photosensitive material or the like.
  • the side of the light-transmitting member 30 away from the first substrate layer 10 has a protruding structure, and the protruding structure forms the light-controlling member 40 , that is, the light-transmitting member 30 in this embodiment.
  • the protruding structure is used as the light control member 40 for reducing the light exit angle of the light passing through the light transmission member 30 .
  • the longitudinal section shape of the raised structure is an arc, so that the raised structure is equivalent to a convex microlens, which can play the role of converging light.
  • FIG. 3 is a schematic diagram of the transmission of light in the light control film provided by the embodiment of the present application.
  • the distance between O and the coordinate point B, ⁇ represents the outgoing angle of the light in the transparent member 30 .
  • the coordinate values of multiple coordinate points can be calculated through the formula, and the circular arc of the raised structure can be obtained based on the calculated coordinate points.
  • the distance of the boundary interface, H is the distance from the light source emission point O to the wave front S, ⁇ 0 is the outgoing angle of the known light, n 2 is the refractive index of the outgoing medium, the outgoing medium of the present embodiment is air, and the refractive index of air
  • the value is 1.
  • the wave front S refers to a virtual plane parallel to the first substrate layer 10
  • the light emitted by the point light source after passing through the light control member 40 is perpendicular to the virtual plane
  • R (n 1 *R 0 -n 2 *cos ⁇ 0 R 0 )/(n 1 -n 2 *cos ⁇ ).
  • the protruding structure on the light-transmitting member 30 is used as the light-controlling member 40, no other film layers are arranged on the light-controlling member 40, and the exit medium of the light after passing through the light-controlling member 40 is air, and the air
  • the refractive index is smaller than the refractive index of the light control member 40, and it can be understood that the refractive index of air is the smallest compared with the refractive index of general film materials, so air has the smallest refractive index compared with general film materials and the light control member 40.
  • the difference in refractive index between 40 is the largest, so that the raised structures can be provided with smaller raised heights.
  • the embodiment of the present application can increase the interval between the light blocking members 20, that is, can increase the area of the light transmission region 21, thereby improving the The light controls the light transmittance of the film.
  • FIG. 4 is a diagram of angular brightness distribution of a traditional anti-peeping film structure
  • FIG. 5 is a diagram of angular brightness distribution of a light control film provided by an embodiment of the present application.
  • Angular luminance refers to the luminance corresponding to the exit angle of the light.
  • the abscissa indicates the different exit angles of the light
  • the ordinate indicates the luminance corresponding to each exit angle.
  • the data shown in Fig. 4 and Fig. 5 are obtained by measurement under the condition that other parameter values are set to be the same except for the light control member 40, and other parameters include the height, width and width of the light blocking member 20 and the light blocking member 20. interval between etc.
  • the light output angle of the traditional anti-spy film structure is within the range of ⁇ 45°
  • the light output angle range of ⁇ 45° is also the visible range of the traditional anti-spy film, and the light within this visible range
  • the intensity decays rapidly as the light exit angle changes.
  • the light exit angle of the light control film according to the embodiment of the present application is within the range of ⁇ 30°
  • the light exit angle range of ⁇ 30° is also the visible range of the light control film, and within this In the visible range, the change trend of the light intensity is relatively gentle with the change of the light output angle.
  • the light control film according to the embodiment of the present application is provided with a light control member 40, so that the light exit angle of the light is narrowed from 45° to 30°, so in order to achieve a specific light output angle, the light control film of the embodiment of the present application can set a larger interval between the light blocking members 20 than the traditional anti-peeping film to increase light transmission
  • the area of the region 21 further increases the light transmittance of the light control film.
  • the light control film of the embodiment of the present application has a gentler angular luminance distribution in the range of viewing angles, which can improve the uniformity of luminance distribution.
  • the relative standard deviation can be used to evaluate the brightness of the emitted light within the range of ⁇ 30°, so as to characterize the unevenness of the angular brightness.
  • the relative standard deviation can be expressed as follows: Among them, N represents the number of sampling points. The sampling point refers to the measurement of the brightness of the emitted light at a specific angle of light by using a detection instrument. The larger the number of samples, the higher the measurement accuracy.
  • the detection instrument measures once every 1 measure, and the number of samples is 90; if the detection instrument measures every 2 measures, the number of samples is 45.
  • Li represents the brightness value of the sampling point at the i-th row, Represents the average brightness of the sampling light in the sampling area, and its value can be given by the following formula:
  • the uniformity of brightness can be defined as (1-RSD)*100%. According to the above formula, the light control film of the embodiment of the present application can increase the uniformity of brightness from 39% to 65%.
  • the exit angle of the light passing through the light-transmitting member 30 can be reduced, so that when a specific light exit angle is achieved, , the area of the light-transmitting region 21 can be increased, the light transmittance of the light control film 100 can be improved, and the uniformity of light brightness distribution in the visible range can also be improved.
  • FIG. 6 is a schematic diagram of a second cross-sectional structure of a light control film provided in an embodiment of the present application.
  • the light-transmitting member 30 of the light control film 101 has a groove structure on the side away from the first substrate layer 10 , and the light-controlling member 40 is disposed in the recess. in the groove structure.
  • the longitudinal cross-sectional shape of the groove structure is an arc
  • the light control member 40 is arranged in the groove, so the surface of the light control member 40 in contact with the light-transmitting member 30 is also an arc.
  • the height of the light control member 40 exceeds the upper surface of the light blocking member 20, and the surface of the interface between the light control member 40 and the exit medium is also a circular arc, then the overall longitudinal direction of the light control member 40
  • the cross-sectional shape is an ellipse, so that the light control member 40 is a convex microlens.
  • the upper surface of the light blocking member 20 refers to the side of the light blocking member 20 away from the first substrate layer 10 .
  • the refractive index of the light control member 40 is greater than the refractive index of the light-transmitting member 30 .
  • the material of the light control member 40 can be selected from materials that can be cured by ultraviolet light and the like.
  • the light control film 101 of this embodiment is provided with the light control member 40 including two arcuate surfaces, which can also reduce the light exit angle of the light passing through the light transmission member 30, so that when a specific light exit angle is achieved , can increase the area of the light-transmitting region 21, increase the light transmittance of the light control film 101, and improve the uniformity of light brightness distribution in the visible range.
  • the light control member 40 using two arc surfaces can reduce the curvature of the arc surface of the light control member 40 and reduce the convex portion of the light control member 40. Height, enhanced light control effect.
  • FIG. 7 is a schematic diagram of a third cross-sectional structure of a light control film provided in an embodiment of the present application.
  • the light transmission member 30 of the light control film 102 is provided with a groove structure
  • the light control film 103 further includes a protective layer 50
  • the protective layer 50 is arranged on the barrier The upper surface of the optical component 20 and the inside of the groove structure.
  • the longitudinal section shape of the groove structure is an arc
  • the part of the protective layer 50 filled in the groove structure forms a convex microlens as the light control member 40
  • the protective layer 50 uses a refractive index
  • a transparent material with a refractive index greater than that of the light-transmitting member 30 can still reduce the light exit angle of the light passing through the light-transmitting member 30 , so as to achieve the purpose of increasing the light transmittance of the light control film 102 .
  • Fig. 8 is another schematic top view structure diagram of the light control film provided by the embodiment of the present application
  • Fig. 9 is another schematic diagram of the light control film provided by the embodiment of the present application Schematic diagram of a top view structure.
  • the light-blocking member 20 of the light control film is designed in one piece, and the light-blocking member 20 is provided with an opening as the light-transmitting region 21, and the light-transmitting member 30 fills in the light-blocking member 20.
  • the above-mentioned light-transmitting area 21 can realize anti-peeping at all angles like this.
  • the openings can be arranged regularly, as shown in FIG. 8 , or arranged randomly, as shown in FIG. 9 .
  • FIG. 10 is a schematic diagram of a fourth cross-sectional structure of a light control film provided in an embodiment of the present application.
  • the light control film 103 further includes a first electrode layer 61, a viewing angle conversion layer 70, a second electrode layer 62 and a second substrate layer 11, and the first electrode layer 61 is disposed on the first electrode layer 61.
  • the viewing angle conversion layer 70 is disposed on a side of the light blocking member 20 and the light control member 40 away from the first electrode layer 61 .
  • the second electrode layer 62 is disposed on a side of the viewing angle conversion layer 70 away from the light control member 40 .
  • the second substrate layer 11 is disposed on a side of the second electrode layer 62 away from the viewing angle conversion layer 70 .
  • the viewing angle conversion layer 70 is used to prevent the light passing through the viewing angle conversion layer 70 from being refracted when there is a voltage difference between the first electrode layer 61 and the second electrode layer 62; When there is no voltage difference between the first electrode layer 61 and the second electrode layer 62 , the light passing through the viewing angle conversion layer 70 is refracted.
  • both the first electrode layer 61 and the second electrode layer 62 are made of transparent conductive electrode materials, such as indium tin oxide (Indium Tin Oxide, ITO), etc., to improve light transmittance.
  • transparent conductive electrode materials such as indium tin oxide (Indium Tin Oxide, ITO), etc.
  • the viewing angle conversion layer 70 includes a polymer 71 and liquid crystal molecules 72 dispersed in the polymer 71 , and the polymer 71 and the liquid crystal molecules 72 have different refractive indices.
  • polymerization induced phase separation Polymerization induced phase separation
  • thermal phase separation can usually be used. Thermal Induced Phase Separations, Phase Separation by Solvent Evaporation, LC In Templated Cavities, Nematic Curved Align Phase and other methods.
  • the polymer 71 when the polymer-induced phase separation method is adopted, can be: epoxy resin, acrylate, methyl biphenyl diacrylate, biphenyl diethylene ester, etc.; It is mixed with liquid crystal, and after the phase separation occurs, the mercaptan is cured by UV light to form polymer 71; when the microcapsule method is adopted, polymer 71 can be obtained by drying polyvinyl alcohol aqueous solution.
  • the material of the liquid crystal molecules 72 may be cholesteric liquid crystal, nematic liquid crystal and the like.
  • the liquid crystal molecules 72 can be deflected under the action of the electric field provided by the first electrode layer 61 and the second electrode layer 62 , so that the refractive index changes.
  • the refractive index of the liquid crystal molecules 72 is not consistent with the refractive index of the polymer 71, after the light control member 40
  • the outgoing light will be refracted when passing through the interface between the polymer 71 and the liquid crystal molecules 72 , so that the outgoing light angle is diverged after being narrowed by the light control member 40 .
  • the liquid crystal molecules 72 are deflected under the action of an electric field, and the refractive index of the liquid crystal molecules 72 is the same as that of the polymer 71 have the same refractive index, and no refraction occurs when the outgoing light passing through the light control member 40 passes through the interface between the polymer 71 and the liquid crystal molecule 72, so that the outgoing light angle is narrowed by the light control member 40 The light still exits the light conversion layer at a small angle to realize the anti-peeping function.
  • the second base material layer 11 is disposed on the side of the second electrode layer 62 away from the viewing angle conversion layer 70 , and the material of the second base material layer 11 can be compared with the material of the first base material layer 10 same.
  • the viewing angle conversion layer 70 by disposing the viewing angle conversion layer 70 on the light control member 40 and changing the voltage difference between the first electrode layer 61 and the second electrode layer 62, the viewing angle conversion layer 70 can be controlled.
  • the deflection of the liquid crystal molecules 72 of 70 realizes the opening and closing of the anti-peeping function.
  • the anti-peeping function When there is no voltage difference between the first electrode layer 61 and the second electrode layer 62, the anti-peeping function is closed, and the light passes through the Scattering will occur after the light control film; when there is a voltage difference between the first electrode layer 61 and the second electrode layer 62, the anti-peeping function is turned on, and the light still exits at a small angle after passing through the light control film .
  • FIG. 11 is a schematic diagram of a fifth cross-sectional structure of a light control film provided in an embodiment of the present application.
  • the viewing angle conversion layer 70 of the light control film 104 includes a cylindrical mirror 74 and a liquid crystal that are sequentially arranged on the side of the second electrode layer 62 away from the second substrate layer 11 .
  • layer 73 , the liquid crystal layer 73 is provided on the entire surface, and the refractive index of the cylindrical lens 74 and the liquid crystal layer 73 are different.
  • the liquid crystal in the liquid crystal layer 73 can be deflected under the action of the electric field provided by the first electrode layer 61 and the second electrode layer 62 , so that the refractive index changes.
  • the liquid crystal refractive index of the liquid crystal layer 73 is inconsistent with the refractive index of the cylindrical lens 74, and the The outgoing light from 40 will be refracted when passing through the interface between the cylindrical lens 74 and the liquid crystal layer 73 , so that the outgoing light whose angle of light is narrowed by the light control member 40 diverges.
  • the liquid crystal in the liquid crystal layer 73 is deflected under the action of an electric field, and at this time the refractive index of the liquid crystal in the liquid crystal layer 73 is consistent with the The refractive index of the cylindrical lens 74 is consistent, and no refraction occurs when the outgoing light passing through the light control member 40 passes through the interface between the cylindrical lens 74 and the liquid crystal layer 73, so that the light exit angle is determined by the specified
  • the light emitted from the reduced light control member 40 is still emitted from the light conversion layer at a small angle, so as to realize the anti-peeping function.
  • Embodiments of the present application further provide a display panel, which includes the light control film of one of the above embodiments.
  • FIG. 12 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • the display panel 1000 is a liquid crystal display (Liquid Crystal Display, LCD) panel, and the display panel 1000 sequentially includes a backlight module 80, a lower polarizer 90, an array substrate 91, a second liquid crystal layer 92, and a color filter substrate from bottom to top. 93 and the upper polarizer 94.
  • LCD liquid crystal display
  • the backlight module 80 adopts a direct-type backlight or an edge-type backlight.
  • the backlight module 80 adopts a direct-type backlight as an example.
  • the light exit angle of the light can be reduced to improve the light transmittance of the light control film 100, and at the same time, the visibility of the light control film 100 can be improved.
  • the uniformity of luminance distribution within the range further improves the brightness of the display panel 1000 and improves the display quality of the display panel 1000 .
  • the light control film 100 may not be arranged in the backlight module 80, but directly hung on the display panel 1000, which can also be achieved under the premise of realizing the anti-peeping function of the display panel 1000 , increasing the light transmittance of the light control film 100 , further increasing the brightness of the display panel 1000 , and improving the display quality of the display panel 1000 .
  • An embodiment of the present application also provides a display device, which includes the display panel of one of the foregoing embodiments, components such as a circuit board bound to the display panel, and a cover plate covering the display panel.
  • Display devices include electronic devices such as mobile phones, televisions, and wearable devices.
  • the present application provides a light control film and a display panel
  • the light control film includes a first base material layer, a light blocking member, a light transmitting member and a light control member, the light blocking member is arranged on one side of the first base material layer, And there is a light-transmitting area between the light-blocking members; the light-transmitting member is filled in the light-transmitting area; the light-controlling member is arranged on the light-transmitting member and corresponds to the light-transmitting area, and is used to reduce the distance of light passing through the light-transmitting member.
  • the light exit angle so that when a specific light exit angle is realized, the area of the light transmission region can be increased, and the light transmittance of the light control film can be improved.
  • a viewing angle conversion layer is provided on the light control member, and by controlling the voltage difference between the first electrode layer and the second electrode layer, the viewing angle conversion layer controls the light passing through the light-transmitting member to realize switching of different viewing angles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请提供一种光线控制膜和显示面板;该光线控制膜的阻光构件设置在第一基材层的一侧,且阻光构件之间具有透光区;透光构件填充于透光区;控光构件设置于对应透光区的透光构件上,用于缩小经过透光构件的光线的出光角度,以使得在实现特定的出光角度时,能够增大透光区的面积,以缓解现有防窥膜存在光透过率低的问题。

Description

光线控制膜和显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种光线控制膜和显示面板。
背景技术
防窥膜常被用于显示装置以实现防窥显示,防窥膜的可视区域有限,使得应用其的显示装置在显示时,显示装置所显示出的画面仅供用户正面阅读,而位于用户旁侧的其他人则仅能看到漆黑的显示屏,从而有效保护了用户的商业机密和/或个人隐私。
传统的防窥膜结构一般是在基板上设置周期性排列的水平阻光结构,通过不透光的阻光结构阻挡大角度光线实现防窥。为了获得较小的防窥视角,相邻阻光结构间的距离需要做的很小,如此会导致防窥膜的光透过率低,进而影响显示装置的显示效果。
因此,现有防窥膜存在光透过率低的技术问题需要解决。
技术问题
本申请提供一种光线控制膜和显示面板,以缓解现有防窥膜存在光透过率低的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种光线控制膜,其包括:
第一基材层;
阻光构件,设置在所述第一基材层的一侧,且所述阻光构件之间具有透光区;
透光构件,填充于所述透光区内;
控光构件,设置于所述透光构件上,且对应于所述透光区,用于缩小经过所述透光构件的光线的出光角度。
在本申请实施例提供的光线控制膜中,所述透光构件远离所述第一基材层 的一侧具有凸起结构,所述凸起结构形成所述控光构件。
在本申请实施例提供的光线控制膜中,所述凸起结构的纵截面形状为圆弧,所述圆弧上的坐标点(Rx、Rz)满足关系式:Rx=R*sin(θ),Rz=R*cos(θ);其中R表示光线的发射点与所述坐标点之间的距离,θ表示光线在所述透光构件内的出射角度。
在本申请实施例提供的光线控制膜中,所述透光构件远离所述第一基材层的一侧具有凹槽结构,所述控光构件设置在所述凹槽结构内。
在本申请实施例提供的光线控制膜中,所述控光构件的折射率大于所述透光构件的折射率。
在本申请实施例提供的光线控制膜中,所述控光构件的纵截面形状为椭圆。
在本申请实施例提供的光线控制膜中,所述阻光构件为一体式设置,且所述阻光构件上设置有开孔作为所述透光区。
在本申请实施例提供的光线控制膜中,所述光线控制膜还包括:
第一电极层,设置于所述第一基材层和所述阻光构件之间;
视角转换层,设置于所述阻光构件和所述控光构件远离所述第一电极层的一侧;
第二电极层,设置于所述视角转换层远离所述控光构件的一侧;以及
第二基材层,设置于所述第二电极层远离所述视角转换层的一侧;
其中,所述视角转换层用于在所述第一电极层和所述第二电极层存在电压差时,使经过所述视角转换层的光线不发生折射;并在所述第一电极层和所述第二电极层不存在电压差时,使经过所述视角转换层的光线发生折射。
在本申请实施例提供的光线控制膜中,所述视角转换层包括聚合物以及分散在所述聚合物中的液晶分子,且所述聚合物和所述液晶分子的折射率不同。
在本申请实施例提供的光线控制膜中,所述视角转换层包括依次设置在所述第二电极层远离所述第二基材层一侧的柱面镜和液晶层,且所述柱面镜和所述液晶层的折射率不同。
本申请实施例还提供一种显示面板,其包括光线控制膜,所述光线控制膜包括:
第一基材层;
阻光构件,设置在所述第一基材层的一侧,且所述阻光构件之间具有透光区;
透光构件,填充于所述透光区内;
控光构件,设置于所述透光构件上,且对应于所述透光区,用于缩小经过所述透光构件的光线的出光角度。
在本申请实施例提供的显示面板中,所述透光构件远离所述第一基材层的一侧具有凸起结构,所述凸起结构形成所述控光构件。
在本申请实施例提供的显示面板中,所述凸起结构的纵截面形状为圆弧,所述圆弧上的坐标点(Rx、Rz)满足关系式:Rx=R*sin(θ),Rz=R*cos(θ);其中R表示光线的发射点与所述坐标点之间的距离,θ表示光线在所述透光构件内的出射角度。
在本申请实施例提供的显示面板中,所述透光构件远离所述第一基材层的一侧具有凹槽结构,所述控光构件设置在所述凹槽结构内。
在本申请实施例提供的显示面板中,所述控光构件的折射率大于所述透光构件的折射率。
在本申请实施例提供的显示面板中,所述控光构件的纵截面形状为椭圆。
在本申请实施例提供的显示面板中,所述阻光构件为一体式设置,且所述阻光构件上设置有开孔作为所述透光区。
在本申请实施例提供的显示面板中,所述光线控制膜还包括:
第一电极层,设置于所述第一基材层和所述阻光构件之间;
视角转换层,设置于所述阻光构件和所述控光构件远离所述第一电极层的一侧;
第二电极层,设置于所述视角转换层远离所述控光构件的一侧;以及
第二基材层,设置于所述第二电极层远离所述视角转换层的一侧;
其中,所述视角转换层用于在所述第一电极层和所述第二电极层存在电压差时,使经过所述视角转换层的光线不发生折射;并在所述第一电极层和所述第二电极层不存在电压差时,使经过所述视角转换层的光线发生折射。
在本申请实施例提供的显示面板中,所述视角转换层包括聚合物以及分散 在所述聚合物中的液晶分子,且所述聚合物和所述液晶分子的折射率不同。
在本申请实施例提供的显示面板中,所述视角转换层包括依次设置在所述第二电极层远离所述第二基材层一侧的柱面镜和液晶层,且所述柱面镜和所述液晶层的折射率不同。
有益效果
本申请提供的光线控制膜和显示面板中通过在所述透光区的透光构件上设置控光构件,控光构件为微透镜结构,微透镜结构能够缩小经过所述透光构件的光线的出光角度,如此在实现特定的出光角度时,能够增大所述透光区的面积,提高了光线控制膜的光透过率。同时在控光构件上设置视角转换层,并通过控制第一电极层和第二电极层之间的电压差,使视角转换层对经过透光构件的光线进行控制,实现不同视角的切换。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光线控制膜的第一种剖面结构示意图。
图2为本申请实施例提供的光线控制膜的一种俯视结构示意图。
图3为本申请实施例提供的光线在光线控制膜内的传导示意图。
图4为传统防窥膜结构的角亮度分布图。
图5为本申请实施例提供的光线控制膜的角亮度分布图。
图6为本申请实施例提供的光线控制膜的第二种剖面结构示意图。
图7为本申请实施例提供的光线控制膜的第三种剖面结构示意图。
图8为本申请实施例提供的光线控制膜的另一种俯视结构示意图。
图9为本申请实施例提供的光线控制膜的又一种俯视结构示意图。
图10为本申请实施例提供的光线控制膜的第四种剖面结构示意图。
图11为本申请实施例提供的光线控制膜的第五种剖面结构示意图。
图12为本申请实施例提供的显示面板的一种剖面结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。在附图中,为了清晰理解和便于描述,夸大了一些层和区域的厚度。即附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
请结合参照图1和图2,图1为本申请实施例提供的光线控制膜的第一种剖面结构示意图;图2为本申请实施例提供的光线控制膜的一种俯视结构示意图。所述光线控制膜100应用于显示装置中,可实现显示装置的防窥功能。所述光线控制膜100包括第一基材层10、阻光构件20、透光构件30以及控光构件40,所述阻光构件20设置在第一基材层10的一侧,且所述阻光构件20之间具有透光区21。所述透光构件30填充于所述透光区21内。所述控光构件40设置于透光构件30上,且对应于透光区21,用于缩小经过透光构件30的光线的出光角度。
具体地,所述第一基材层10的材质为透明材质,一般采用可透光的玻璃或树脂材质等,比如聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)或聚碳酸酯(Polycarbonate,PC)等透明树脂材料。
所述阻光构件20设置在所述第一基材层10的一侧,用于遮挡吸收光线。可选地,所述阻光构件20呈长条状沿水平方向阵列排布在所述第一基材层10上,各长条状的阻光构件20之间相互平行,且所述阻光构件20之间还具有间隔,该间隔内能够透光以作为透光区21。如此沿水平方向阵列排布的阻光构件20能够阻挡光线向水平方向发散,以此实现在水平方向的防窥功能。其中所述阻光构件20的材料包括黑色丙烯酸树脂等具有遮光性能的材料。
所述透光构件30设置在所述阻光构件20之间的透光区21内,用于维持所述阻光构件20之间的稳定性,比如可以维持所述阻光构件20之间的间隔距 离,保证有效的透光区21使光线透过。所述透光构件30的材料可视具体加工工艺而定,比如使用激光进行减材加工时,所述透光构件30的材料可与所述第一基材层10的材料相同;当使用光刻进行加工时,所述透光构件30的材料可为光敏材料等。
所述透光构件30远离所述第一基材层10的一侧具有凸起结构,所述凸起结构形成所述控光构件40,也即本实施例的所述透光构件30上的凸起结构作为所述控光构件40,用于缩小经过透光构件30的光线的出光角度。所述凸起结构的纵截面形状为圆弧,以使得所述凸起结构相当于一个凸微透镜,能够起到汇聚光线的作用。
下面将具体阐述如何得出所述凸起结构的圆弧:
请参照图3,图3为本申请实施例提供的光线在光线控制膜内的传导示意图。所述凸起结构的圆弧上的任一坐标点B:(Rx、Rz)满足关系式:Rx=R*sin(θ),Rz=R*cos(θ);其中R表示光线的发射点O与所述坐标点B之间的距离,θ表示光线在所述透光构件30内的出射角度。通过该公式可以计算出多个坐标点的坐标值,基于计算出来的坐标点能够得出所述凸起结构的圆弧。
在图3中,把光源近似为位于相邻所述阻光构件20中间位置的点光源,该光源的发射点O发出的一条光线A为已经的,该已知光线A的光程为:Φ0=n 1*R 0+n 2(H-R 0*cos(θ 0)),其中n 1为所述透光构件30的折射率,R 0为光源发射点O到所述凸起结构与出射介质分界界面的距离,H为光源发射点O到波前面S的距离,θ 0为已知光线的出射角度,n 2为出射介质的折射率,本实施例的出射介质为空气,空气的折射率值为1。需要说明的是,波前面S是指与所述第一基材层10平行的一个虚拟平面,点光源发出的光线经过所述控光构件40后的出射光线均与该虚拟平面垂直。
同样的,经过所述凸起结构的圆弧上任一坐标点B的光线光程为:
Φ=n 1*R+n 2(H-R*cos(θ)),需求光源的所有入射光线准直出射,根据透镜等光程性则有:Φ0=Φ,整理可得:
R=(n 1*R 0-n 2*cosθ 0R 0)/(n 1-n 2*cosθ)。
然后根据三角函数可以得到所述凸起结构的圆弧上的任一坐标点B:(Rx,Rz):Rx=R*sin(θ),Rz=R*cos(θ)。通过将光线出射角度θ离散化,可以得到 所述凸起结构的圆弧上的一系列离散坐标点,对这些离散坐标点进行插值或拟合,即可得到所述凸起结构的圆弧。
进一步地,把所述透光构件30上的凸起结构作为控光构件40,所述控光构件40上未设置其他膜层,光线经过所述控光构件40后的出射介质为空气,空气的折射率小于所述控光构件40的折射率,且可以理解的,空气的折射率相较于一般膜材的折射率是最小的,故空气相较于一般膜材与所述控光构件40之间的折射率差异是最大的,如此所述凸起结构可以设置较小的凸起高度。
本实施例通过设置所述控光构件40,能够缩小经过所述透光构件30的光线的出光角度,故相较于未设置所述控光构件40的情况,并在所述阻光构件20的宽度和高度相同时,为实现特定的出光角度,本申请实施例能够增大所述阻光构件20之间的间隔,也即能够增大所述透光区21的面积,进而提高所述光线控制膜的光透过率。
下面将对本申请实施例的所述光线控制膜能够实现的有益效果进行模拟:
请结合参照图4和图5,图4为传统防窥膜结构的角亮度分布图;图5为本申请实施例提供的光线控制膜的角亮度分布图。角亮度是指光线的出射角度对应的光亮度,如在图4和图5中,横坐标表示光线不同的出射角度,纵坐标表示各出射角度对应的光亮度。其中图4和图5示出的数据是在除控光构件40外其他参数值设置相同的情况下通过量测得到的,其他参数包括所述阻光构件20的高度、宽度以及阻光构件20之间的间隔等。
在图4中,可以看出传统防窥膜结构的出光角度在±45°范围内,该±45°的出光角度范围也即传统防窥膜的可视范围,且在该可视范围内光强度随着出光角度的变化发生快速衰减。在图5中,可以看出本申请实施例所述光线控制膜的出光角度在±30°范围内,该±30°的出光角度范围也即所述光线控制膜的可视范围,且在该可视范围内随着出光角度的变化光强度的变化趋势较为平缓。
因此,通过对比图4和图5的角亮度分布图,能够明显看出:本申请实施例所述光线控制膜片由于设置有控光构件40,使光线的出光角度从45°被收窄到30°,如此为了实现特定的出光角度,本申请实施例的所述光线控制膜相较于传统防窥膜,可以把所述阻光构件20之间间隔设置的更大,以增大透光区 21的面积,进而提高所述光线控制膜的光透过性。
进一步地,通过对比图4和图5的角亮度分布图还可以看出:本申请实施例的所述光线控制膜在可视角度范围内角亮度分布更加平缓,进而可提高光亮度分布的均匀性。具体地,可以使用相对标准偏差(RSD)对±30°范围内的出射光亮度进行评价,以表征其角亮度不均匀性。相对标准差可以被表示成如下形式:
Figure PCTCN2021097189-appb-000001
其中N表示采样点数量,采样点是指通过采用探测仪器对特定出光角度的出射光亮度进行量测,采样数量越多,量测精度越高。例如,出光角度在0-89°的范围内,探测仪器每1度量测一次,则采样数量为90,若探测仪器每2度量测一次,则采样数量为45。Li代表第i行处采样点的亮度值,
Figure PCTCN2021097189-appb-000002
代表采样光线在采样区域的亮度平均值,其值可以由如下公式给出:
Figure PCTCN2021097189-appb-000003
而光亮度的均匀性可定义为(1-RSD)*100%,由上述公式计算可得,本申请实施例的光线控制膜可将光亮度的均匀性从39%提升至65%。
在本实施例中,通过在所述透光构件30上设置凸起结构作为所述控光构件40,能够缩小经过所述透光构件30的光线的出光角度,如此在实现特定的出光角度时,能够增大所述透光区21的面积,提高了光线控制膜100的光透过率,同时还能够提高可视范围内光亮度分布的均匀性。
在一种实施例中,请参照图6,图6为本申请实施例提供的光线控制膜的第二种剖面结构示意图。与上述实施例不同的是,所述光线控制膜101的所述透光构件30在远离所述第一基材层10的一侧具有凹槽结构,所述控光构件40设置在所述凹槽结构内。
具体地,所述凹槽结构的纵截面形状为圆弧,所述控光构件40设置所述凹槽内,则所述控光构件40与所述透光构件30接触的表面也为圆弧,同时所述控光构件40的高度还超出所述阻光构件20的上表面,且所述控光构件40与出射介质界面的表面也为圆弧,则所述控光构件40整体的纵截面形状为椭圆,使所述控光构件40呈凸微透镜。其中所述阻光构件20的上表面是指所述阻光构件20远离所述第一基材层10的一面。
进一步地,所述控光构件40的折射率大于所述透光构件30的折射率。所述控光构件40的材料可以选用能够采用紫外光固化的材料等。
本实施例的所述光线控制膜101因设置有包括两个圆弧面的控光构件40, 同样能实现缩小经过所述透光构件30的光线的出光角度,以在实现特定的出光角度时,能够增大所述透光区21的面积,提高光线控制膜101的光透过率,以及提高可视范围内光亮度分布的均匀性等效果。同时,采用两个圆弧面的控光构件40相较于采用一个圆弧面的控光构件40能够减小所述控光构件40圆弧曲面曲率,降低所述控光构件40凸起部分高度,增强光线控制效果。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,请参照图7,图7为本申请实施例提供的光线控制膜的第三种剖面结构示意图。与上述实施例不同的是,所述光线控制膜102的所述透光构件30设置有凹槽结构,且所述光线控制膜103还包括保护层50,所述保护层50设置在所述阻光构件20的上表面以及所述凹槽结构内。
具体地,所述凹槽结构的纵截面形状为圆弧,所述保护层50填充在所述凹槽结构内的部分形成凸微透镜以作为控光构件40,所述保护层50采用折射率大于所述透光构件30的折射率的透明材料,如此仍可缩小经过所述透光构件30的光线的出光角度,实现提高光线控制膜102的光透过率的目的。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,请参照图8和图9,图8为本申请实施例提供的光线控制膜的另一种俯视结构示意图,图9为本申请实施例提供的光线控制膜的又一种俯视结构示意图。与上述实施例不同的是,所述光线控制膜的阻光构件20为一体式设计的,所述阻光构件20上设置有开孔作为透光区21,所述透光构件30填充在所述透光区21,如此可实现全方位角防窥。所述开孔可以规则排布,如图8所示,亦或随机排布,如图9所示。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,请参照图10,图10为本申请实施例提供的光线控制膜的第四种剖面结构示意图。与上述实施例不同的是,所述光线控制膜103还包括第一电极层61、视角转换层70、第二电极层62以及第二基材层11,第一电极层61设置于所述第一基材层10和所述阻光构件20之间。所述视角转换层70设置于所述阻光构件20和所述控光构件40远离所述第一电极层61的一侧。所述第二电极层62设置于所述视角转换层70远离所述控光构件40的一侧。所述第二基材层11设置于所述第二电极层62远离所述视角转换层70的 一侧。其中,所述视角转换层70用于在所述第一电极层61和所述第二电极层62存在电压差时,使经过所述视角转换层70的光线不发生折射;并在所述第一电极层61和所述第二电极层62不存在电压差时,使经过所述视角转换层70的光线发生折射。
可选地,所述第一电极层61和所述第二电极层62均采用透明导电电极材料,比如氧化铟锡(Indium Tin Oxide,ITO)等,以提高光线的透过率。
可选地,所述视角转换层70包括聚合物71以及分散在所述聚合物71中的液晶分子72,且所述聚合物71和所述液晶分子72的折射率不同。具体地,为了使液晶分子72可以以小液滴形式分散在聚合物71中,实现所需的视角转换层70,通常可以用聚合物引发相分离法(Polymerization induced phase separation)、热引法相分离法(Thermal Induced Phase Separations)、溶剂挥发引发相分离法(Phase Separation by Solvent Evaporation)、空穴法(LC In Templated Cavities)、微胶囊法(Nematic Curved Align Phase)等方法进行制备。比如采用聚合物引发相分离法时,聚合物71可以为:环氧树脂、丙烯酸酯、甲基联苯二丙烯酸酯、联苯形双乙烯酸酯等;采用热引发相分离法时可用硫醇与液晶混合,在相分离发生后使用UV光固化硫醇,形成聚合物71;采用微胶囊法时,聚合物71可用聚乙烯醇水溶液经烘干获得。液晶分子72的材料可以为胆甾相液晶、向列相液晶等。
进一步地,液晶分子72可在所述第一电极层61和所述第二电极层62提供的电场作用下发生偏转,从而发生折射率变化。当所述第一电极层61和所述第二电极层62之间不存在电压时,所述液晶分子72的折射率与所述聚合物71的折射率不一致,经过所述控光构件40的出射光线在通过聚合物71和液晶分子72的分界面时将发生折射,如此使得出光角度被所述控光构件40缩小后的出射光线发散。当所述第一电极层61和所述第二电极层62之间存在压差时,所述液晶分子72在电场作用下发生偏转,此时所述液晶分子72的折射率与所述聚合物71的折射率相一致,经过所述控光构件40的出射光线在通过聚合物71和液晶分子72的分界面时无折射现象发生,如此使得出光角度被所述控光构件40缩小后的出射光线仍以小角度从所述光转换层出射,以实现防窥功能。
所述第二基材层11设置在所述第二电极层62远离所述视角转换层70的一侧,所述第二基材层11的材料可与所述第一基材层10的材料相同。
在本实施例中,通过在所述控光构件40上设置视角转换层70,并通过改变所述第一电极层61和所述第二电极层62之间的电压差,以控制视角转换层70的液晶分子72的偏转来实现防窥功能的开启和关闭,当所述第一电极层61和所述第二电极层62之间无电压差时,防窥功能关闭,光线在经过所述光线控制膜后将发生散射;当所述第一电极层61和所述第二电极层62之间存在电压差时,防窥功能开启,光线在经过所述光线控制膜后仍以小角度出射。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,请参照图11,图11为本申请实施例提供的光线控制膜的第五种剖面结构示意图。与上述实施例不同的是,所述光线控制膜104的所述视角转换层70包括依次设置在所述第二电极层62远离所述第二基材层11一侧的柱面镜74和液晶层73,所述液晶层73整面设置,且所述柱面镜74和所述液晶层73的折射率不同。
具体地,液晶层73中的液晶可在所述第一电极层61和所述第二电极层62提供的电场作用下发生偏转,从而发生折射率变化。当所述第一电极层61和所述第二电极层62之间不存在电压时,所述液晶层73的液晶折射率与所述柱面镜74的折射率不一致,经过所述控光构件40的出射光线在通过所述柱面镜74和所述液晶层73的分界面时将发生折射,如此使得出光角度被所述控光构件40缩小后的出射光线发散。当所述第一电极层61和所述第二电极层62之间存在压差时,所述液晶层73的液晶在电场作用下发生偏转,此时所述液晶层73的液晶折射率与所述柱面镜74的折射率相一致,经过所述控光构件40的出射光线在通过所述柱面镜74和所述液晶层73的分界面时无折射现象发生,如此使得出光角度被所述控光构件40缩小后的出射光线仍以小角度从所述光转换层出射,以实现防窥功能。其他说明请参照上述实施例,在此不再赘述。
本申请实施例还提供一种显示面板,所述显示面板包括上述实施例其中之一的光线控制膜。
具体地,请参照图12,图12为本申请实施例提供的显示面板的一种剖面 结构示意图。所述显示面板1000为液晶显示(Liquid Crystal Display,LCD)面板,所述显示面板1000从下至上依次包括背光模组80、下偏光片90、阵列基板91、第二液晶层92、彩膜基板93以及上偏光片94。
所述背光模组80采用直下式背光或侧入式背光,本实施例以所述背光模组80采用直下式背光为例说明,所述背光模组80包括背板81、依次设置在所述背板81形成的容纳空间内的反射片82、背光光源83、扩散片84、光学膜片85以及光线控制膜100等。
所述背光光源83发出的光线在经过所述光线控制膜100后,能够缩小光线的出光角度,以提高了光线控制膜100的光透过率,同时还能够提高所述光线控制膜100可视范围内光亮度分布的均匀性,进而提高所述显示面板1000的亮度,提升所述显示面板1000的显示品质。
可选地,所述光线控制膜100也可以不设置在所述背光模组80内,而是直接外挂在所述显示面板1000上,同样可在实现所述显示面板1000防窥功能的前提下,提高所述光线控制膜100的光透过率,进而提高所述显示面板1000的亮度,提升所述显示面板1000的显示品质。
本申请实施例还提供一种显示装置,其包括前述实施例其中之一的显示面板、绑定于所述显示面板的电路板等器件以及覆盖在所述显示面板上的盖板等,所述显示装置包括手机、电视、可穿戴设备等电子设备。
根据上述实施例可知:
本申请提供一种光线控制膜和显示面板,所述光线控制膜包括第一基材层、阻光构件、透光构件以及控光构件,阻光构件设置在第一基材层的一侧,且阻光构件之间具有透光区;透光构件填充于所述透光区内;控光构件设置于透光构件上,且对应于透光区,用于缩小经过透光构件的光线的出光角度,如此在实现特定的出光角度时,能够增大所述透光区的面积,提高了光线控制膜的光透过率。同时在控光构件上设置视角转换层,并通过控制第一电极层和第二电极层之间的电压差,使视角转换层对经过透光构件的光线进行控制,实现不同视角的切换。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种光线控制膜,其包括:
    第一基材层;
    阻光构件,设置在所述第一基材层的一侧,且所述阻光构件之间具有透光区;
    透光构件,填充于所述透光区内;
    控光构件,设置于所述透光构件上,且对应于所述透光区,用于缩小经过所述透光构件的光线的出光角度。
  2. 根据权利要求1所述的光线控制膜,其中,所述透光构件远离所述第一基材层的一侧具有凸起结构,所述凸起结构形成所述控光构件。
  3. 根据权利要求2所述的光线控制膜,其中,所述凸起结构的纵截面形状为圆弧,所述圆弧上的坐标点(Rx、Rz)满足关系式:Rx=R*sin(θ),Rz=R*cos(θ);其中R表示光线的发射点与所述坐标点之间的距离,θ表示光线在所述透光构件内的出射角度。
  4. 根据权利要求1所述的光线控制膜,其中,所述透光构件远离所述第一基材层的一侧具有凹槽结构,所述控光构件设置在所述凹槽结构内。
  5. 根据权利要求4所述的光线控制膜,其中,所述控光构件的折射率大于所述透光构件的折射率。
  6. 根据权利要求4所述的光线控制膜,其中,所述控光构件的纵截面形状为椭圆。
  7. 根据权利要求1所述的光线控制膜,其中,所述阻光构件为一体式设置,且所述阻光构件上设置有开孔作为所述透光区。
  8. 根据权利要求1所述的光线控制膜,其中,所述光线控制膜还包括:
    第一电极层,设置于所述第一基材层和所述阻光构件之间;
    视角转换层,设置于所述阻光构件和所述控光构件远离所述第一电极层的一侧;
    第二电极层,设置于所述视角转换层远离所述控光构件的一侧;以及
    第二基材层,设置于所述第二电极层远离所述视角转换层的一侧;
    其中,所述视角转换层用于在所述第一电极层和所述第二电极层存在电压 差时,使经过所述视角转换层的光线不发生折射;并在所述第一电极层和所述第二电极层不存在电压差时,使经过所述视角转换层的光线发生折射。
  9. 根据权利要求8所述的光线控制膜,其中,所述视角转换层包括聚合物以及分散在所述聚合物中的液晶分子,且所述聚合物和所述液晶分子的折射率不同。
  10. 根据权利要求8所述的光线控制膜,其中,所述视角转换层包括依次设置在所述第二电极层远离所述第二基材层一侧的柱面镜和液晶层,且所述柱面镜和所述液晶层的折射率不同。
  11. 一种显示面板,其包括光线控制膜,所述光线控制膜包括:
    第一基材层;
    阻光构件,设置在所述第一基材层的一侧,且所述阻光构件之间具有透光区;
    透光构件,填充于所述透光区内;
    控光构件,设置于所述透光构件上,且对应于所述透光区,用于缩小经过所述透光构件的光线的出光角度。
  12. 根据权利要求11所述的显示面板,其中,所述透光构件远离所述第一基材层的一侧具有凸起结构,所述凸起结构形成所述控光构件。
  13. 根据权利要求12所述的显示面板,其中,所述凸起结构的纵截面形状为圆弧,所述圆弧上的坐标点(Rx、Rz)满足关系式:Rx=R*sin(θ),Rz=R*cos(θ);其中R表示光线的发射点与所述坐标点之间的距离,θ表示光线在所述透光构件内的出射角度。
  14. 根据权利要求11所述的显示面板,其中,所述透光构件远离所述第一基材层的一侧具有凹槽结构,所述控光构件设置在所述凹槽结构内。
  15. 根据权利要求14所述的显示面板,其中,所述控光构件的折射率大于所述透光构件的折射率。
  16. 根据权利要求14所述的显示面板,其中,所述控光构件的纵截面形状为椭圆。
  17. 根据权利要求11所述的显示面板,其中,所述阻光构件为一体式设置,且所述阻光构件上设置有开孔作为所述透光区。
  18. 根据权利要求11所述的显示面板,其中,所述光线控制膜还包括:
    第一电极层,设置于所述第一基材层和所述阻光构件之间;
    视角转换层,设置于所述阻光构件和所述控光构件远离所述第一电极层的一侧;
    第二电极层,设置于所述视角转换层远离所述控光构件的一侧;以及
    第二基材层,设置于所述第二电极层远离所述视角转换层的一侧;
    其中,所述视角转换层用于在所述第一电极层和所述第二电极层存在电压差时,使经过所述视角转换层的光线不发生折射;并在所述第一电极层和所述第二电极层不存在电压差时,使经过所述视角转换层的光线发生折射。
  19. 根据权利要求18所述的显示面板,其中,所述视角转换层包括聚合物以及分散在所述聚合物中的液晶分子,且所述聚合物和所述液晶分子的折射率不同。
  20. 根据权利要求18所述的显示面板,其中,所述视角转换层包括依次设置在所述第二电极层远离所述第二基材层一侧的柱面镜和液晶层,且所述柱面镜和所述液晶层的折射率不同。
PCT/CN2021/097189 2021-05-17 2021-05-31 光线控制膜和显示面板 WO2022241826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110535099.5A CN113281925A (zh) 2021-05-17 2021-05-17 光线控制膜和显示面板
CN202110535099.5 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022241826A1 true WO2022241826A1 (zh) 2022-11-24

Family

ID=77279662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097189 WO2022241826A1 (zh) 2021-05-17 2021-05-31 光线控制膜和显示面板

Country Status (2)

Country Link
CN (1) CN113281925A (zh)
WO (1) WO2022241826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072072A (zh) * 2023-03-30 2023-05-05 惠科股份有限公司 显示面板及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114170922A (zh) * 2021-12-08 2022-03-11 Tcl华星光电技术有限公司 显示面板及其制造方法
CN114967224B (zh) * 2022-04-07 2024-01-30 武汉华星光电技术有限公司 背光模组及显示装置
CN117970546B (zh) * 2024-04-01 2024-06-11 苏州弘德光电材料科技有限公司 光控制膜及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047754A1 (fr) * 2006-10-20 2008-04-24 Sharp Kabushiki Kaisha Dispositif d'affichage et dispositif de commande d'angle de vision associé
CN203117442U (zh) * 2013-01-23 2013-08-07 巨享科技有限公司 用于3d影像显示且具防窥功能的光学膜
WO2018225643A1 (ja) * 2017-06-05 2018-12-13 信越ポリマー株式会社 視野角制御体及びその製造方法、並びに視野角制御画像表示体
CN110068946A (zh) * 2019-05-17 2019-07-30 京东方科技集团股份有限公司 一种显示模组、显示装置和视角控制方法
CN110764291A (zh) * 2019-10-31 2020-02-07 上海天马微电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN112631001A (zh) * 2020-12-21 2021-04-09 武汉华星光电技术有限公司 显示模组及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323031A (ja) * 2005-05-17 2006-11-30 Nec Corp 視野角切替型表示装置及び端末装置
CN103605237B (zh) * 2013-11-22 2016-06-15 京东方科技集团股份有限公司 一种显示装置
CN105549236B (zh) * 2016-02-19 2020-05-12 京东方科技集团股份有限公司 可切换防窥装置及其制备方法、显示装置
CN108508509B (zh) * 2018-04-12 2019-10-29 京东方科技集团股份有限公司 一种防窥膜及其制作方法、背光模组、显示装置
CN109445173B (zh) * 2019-01-02 2021-01-22 京东方科技集团股份有限公司 一种防窥膜及其制作方法、显示模组
CN213023865U (zh) * 2020-10-13 2021-04-20 昆山龙腾光电股份有限公司 宽窄视角可切换的显示面板及显示装置
CN112198702A (zh) * 2020-10-15 2021-01-08 深圳市华星光电半导体显示技术有限公司 显示面板及显示模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047754A1 (fr) * 2006-10-20 2008-04-24 Sharp Kabushiki Kaisha Dispositif d'affichage et dispositif de commande d'angle de vision associé
CN203117442U (zh) * 2013-01-23 2013-08-07 巨享科技有限公司 用于3d影像显示且具防窥功能的光学膜
WO2018225643A1 (ja) * 2017-06-05 2018-12-13 信越ポリマー株式会社 視野角制御体及びその製造方法、並びに視野角制御画像表示体
CN110068946A (zh) * 2019-05-17 2019-07-30 京东方科技集团股份有限公司 一种显示模组、显示装置和视角控制方法
CN110764291A (zh) * 2019-10-31 2020-02-07 上海天马微电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN112631001A (zh) * 2020-12-21 2021-04-09 武汉华星光电技术有限公司 显示模组及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072072A (zh) * 2023-03-30 2023-05-05 惠科股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN113281925A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2022241826A1 (zh) 光线控制膜和显示面板
US8926157B2 (en) Light diffusing member and method of manufacturing the same, and display device
TWI662302B (zh) Display device
US8300188B2 (en) Liquid crystal display panel with micro-lens array and liquid crystal display device
CN110888270B (zh) 一种显示面板和显示装置
EP2204690A1 (en) Illuminating device and display device
CN107945760B (zh) 液晶显示面板及其驱动方法、显示装置
US11036075B2 (en) Color filter substrate and liquid crystal display panel
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
JP6689745B2 (ja) 表示装置
WO2022178921A1 (zh) 显示装置
JP2007004156A (ja) 基板アセンブリ及びこれを有する表示装置
WO2021174976A1 (zh) 显示面板和显示装置
CN111983837A (zh) 液晶显示装置及电子设备
CN110673380A (zh) 显示面板及其制作方法、显示装置
US7777844B2 (en) Liquid crystal displaying device with color pixels and in-cell retarder
US11940680B2 (en) Display panel and display module
WO2013157431A1 (ja) 光制御部材およびその製造方法、表示装置
CN209821557U (zh) 显示装置
US10962839B2 (en) Liquid crystal display panel and method for producing liquid crystal display panel
US7423711B2 (en) Display apparatus
CN114594622B (zh) 宽窄视角可切换的显示面板及显示装置
JP5026899B2 (ja) 液晶表示装置
CN113138479B (zh) 显示面板
KR20150066320A (ko) 액정표시장치 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17413249

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940278

Country of ref document: EP

Kind code of ref document: A1