WO2022000211A1 - 拍摄系统的控制方法、设备、及可移动平台、存储介质 - Google Patents

拍摄系统的控制方法、设备、及可移动平台、存储介质 Download PDF

Info

Publication number
WO2022000211A1
WO2022000211A1 PCT/CN2020/099042 CN2020099042W WO2022000211A1 WO 2022000211 A1 WO2022000211 A1 WO 2022000211A1 CN 2020099042 W CN2020099042 W CN 2020099042W WO 2022000211 A1 WO2022000211 A1 WO 2022000211A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing
wireless signal
relative position
image
shooting
Prior art date
Application number
PCT/CN2020/099042
Other languages
English (en)
French (fr)
Inventor
张志鹏
龚明
陈颖
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/099042 priority Critical patent/WO2022000211A1/zh
Publication of WO2022000211A1 publication Critical patent/WO2022000211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the invention relates to the field of automation control, and in particular designs a control method and device for a photographing system, a movable platform and a storage medium.
  • Visual tracking is an important research direction of computer vision, which can be applied in many scenarios such as video surveillance, movie recording, and unmanned driving.
  • a target object such as a person
  • the target object can be photographed through a visual sensor such as a camera, and combined with an image recognition algorithm to ensure that the target object is in the captured image.
  • Optical flow can express the changes of the image, including the motion information of the image. Therefore, there are many schemes using optical flow for visual tracking.
  • visual tracking based on optical flow the tracking speed is limited by the camera frame. Influenced by factors such as rate, FOV (Field of View, visual range), it is easy to lose track of the target object, and a lot of calculations are required based on visual tracking, which requires high processor performance and real-time performance, and is not easy to implement on some small devices. .
  • the embodiment of the present invention discloses a control method, device, movable platform and storage medium of a photographing system, which can realize tracking control at low cost.
  • an embodiment of the present invention provides a control method of a photographing system, the photographing system includes a photographing device for photographing an environment and a posture adjusting device for adjusting the photographing posture of the photographing device, and the photographing system is on the A plurality of wireless signal positioning devices are arranged, and a wireless signal label device is arranged on the photographed object in the environment, and the method includes:
  • the relative position between the shooting device and the shooting object is determined through the wireless signals transmitted between the plurality of wireless signal positioning devices and the wireless signal tag device;
  • the attitude adjustment device is controlled in real time according to the relative position so that the photographed object is in the image captured by the photographing device.
  • an embodiment of the present invention also provides a control device, the control device is used to control a shooting system, and the shooting system includes a shooting device for shooting an environment and a shooting device for adjusting the shooting device
  • a posture adjustment device for posture a plurality of wireless signal positioning devices are set on the shooting system
  • a wireless signal label device is set on the shooting object in the environment
  • the control device includes a storage device and a processor, and the storage device stores
  • the processor runs the computer program, and is used to determine the location of the camera through the wireless signals transmitted between the plurality of wireless signal positioning devices and the wireless signal tag device during the shooting process of the shooting device.
  • the relative position between the photographing device and the photographing object; and the posture adjusting device is controlled in real time according to the relative position, so that the photographing object is in the image photographed by the photographing device.
  • an embodiment of the present invention further provides a movable platform, the movable platform includes a power assembly, a main body, a photographing device, a pan/tilt, a plurality of wireless signal positioning devices, and also includes a storage device and a controller;
  • the power assembly is used to drive the main body to move
  • the pan/tilt is arranged on the main body, and the photographing device is mounted on the main body through the pan/tilt; the photographing device is used for photographing the environment;
  • the plurality of wireless signal positioning devices are arranged on the main body or on the photographing device or on the platform; a wireless signal labeling device is arranged on the photographed object in the environment;
  • a computer program is stored in the storage device, and the processor runs the computer program to pass between the plurality of wireless signal positioning devices and the wireless signal tag device during the shooting process of the shooting device.
  • the transmitted wireless signal determines the relative position between the photographing device and the photographing object; and the posture adjusting device is controlled in real time according to the relative position, so that the photographing object is in the image captured by the photographing device.
  • an embodiment of the present invention further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the related methods of the embodiments of the present invention are implemented.
  • the present application determines the relative position between the wireless signal positioning device and the wireless signal tag device through the wireless signal transmitted between the two, and uses this as a basis to control the attitude adjustment device, so as to adjust the shooting field of view of the shooting device.
  • the operation cost is low, and the accuracy of calculating the relative position can be better ensured, and the efficiency of follow-up shooting is improved.
  • FIG. 1A is a schematic diagram of a wireless signal-based positioning method according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of a scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of one of the control methods of a photographing system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for controlling a photographing system according to an embodiment of the present invention.
  • FIG. 4A is a schematic flowchart of a method for controlling an attitude adjustment device according to an embodiment of the present invention
  • 4B is a schematic diagram of each image area involved in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • This application mainly controls the photographing system.
  • the photographing device in the photographing system is controlled to photograph an image of a certain photographed object
  • the posture adjusting device in the photographing system is controlled to move or rotate the photographing device through positioning and calculation processing. , so that the subject is always in the image captured by the camera.
  • This application combines positioning and visual tracking.
  • the relative position between the shooting object and the shooting device is determined through positioning, and then starting from the relative position, the attitude adjustment device (such as a PTZ, an aircraft and other devices) is controlled to move or rotate.
  • the shooting object is placed in the image shot by the shooting device, so as to achieve the purpose of tracking and shooting the shooting object.
  • the design is to determine the relative position based on the wireless signal positioning method.
  • the photographing system of the present application is provided with a plurality of wireless signal positioning devices, and the photographing object is provided with a wireless signal labeling device, the wireless signal labeling device sends a wireless signal, and the wireless signal positioning device receives the wireless signal.
  • the tracking distance between the wireless signal tag device and the one wireless signal positioning device can be calculated based on the receiving time of the wireless signal positioning device receiving the wireless signal, the sending time of the wireless signal tag device sending the wireless signal, and the speed of light. distance, the relative position between the photographing device and the photographing object can be determined.
  • a plurality of wireless signal positioning devices can be set on the photographing device, and can also be set on the attitude adjusting device.
  • the wireless signal sent by the wireless signal tag device carries the sending time information of the wireless signal.
  • the wireless signal positioning device After the wireless signal positioning device receives the wireless signal, it can determine the receiving time of the wireless signal, and analyze the sending time information from the wireless signal, and then determine the receiving time of the wireless signal. Combined with the reception time, combined with the speed of light, the tracking distance can be calculated. Since the relative position of each wireless signal positioning device on the photographing device or attitude adjustment device is determined, that is, the distance and azimuth angle between two wireless signal positioning devices are determined, therefore, based on each wireless signal positioning device on the shooting device Or the relative position on the attitude adjustment device, and the calculated tracking distances, so as to determine the relative position of the wireless signal tag device and the photographing device.
  • the relative azimuth of the photographed object can be determined.
  • the wireless signal positioning device A and the The wireless signal positioning device B is on a horizontal line, and the wireless signal positioning device C is directly above the lens 101.
  • the shooting device included in the shooting system can be a variety of common camera equipment, and the attitude adjustment device is used to adjust the shooting attitude of the shooting device. It can also be a movable platform that can move at multiple angles, such as an unmanned aerial vehicle, and the attitude adjustment device can also be a combination of a PTZ and a movable platform. By controlling the PTZ, or the movable platform, or simultaneously controlling the PTZ and the movable platform, the photographing posture of the photographing device is adjusted so that the photographed object is in the image photographed by the photographing device.
  • the photographing system includes an attitude adjustment device 110 and a photographing device 111 .
  • the attitude adjustment device 110 is composed of an aircraft and a gimbal.
  • the photographing system For tracking and photographing the photographing object 112 , the photographing object 112 needs to be kept in the image photographed by the photographing device 111 , that is, the image photographed by the photographing device 111 always includes the image object corresponding to the photographing object 112 .
  • the photographing object 112 includes a wireless signal tag device, which is used to generate and transmit wireless signals.
  • the aircraft of the attitude adjustment device 110 is provided with a wireless signal positioning device, such as wireless signal positioning devices A, B, and C.
  • the wireless signal Positioning devices A, B, and C will each receive wireless signals one after another, and the control equipment installed on the aircraft, camera, or gimbal will calculate each wireless signal positioning device and wireless signal based on the sending time, receiving time, and speed of light of the wireless signal.
  • the tracking distance between the tag devices is further calculated to determine the relative position.
  • the aircraft and/or the gimbal is then controlled based on the relative position.
  • the wireless signal positioning device and the wireless signal tag device may be a pair of transceiver devices that communicate based on Bluetooth technology, or a pair of transceiver devices that communicate based on Zifeng ZigBee technology.
  • the wireless signal positioning device and the wireless signal labeling device are pairs of transceiver devices that communicate based on UWB (Ultra Wide Band, ultra-wideband) technology, that is, the wireless signal positioning device is an ultra-wideband UWB positioning base station, and the wireless signal label device is UWB.
  • Positioning tag in one embodiment, based on the schematic diagram shown in FIG. 1A , the coordinate position of the UWB positioning base station on the photographing device or the photographing system as shown in FIG.
  • the UWB is calculated based on the sending time, the receiving time and the speed of light.
  • three circles are drawn by the three-point positioning method, and the intersection point is the position of the UWB positioning tag, which can be considered as the relative position between the shooting object and the shooting device.
  • FIG. 2 it is a schematic flowchart of one of the control methods of a shooting system according to an embodiment of the present invention.
  • a wireless signal tag device three wireless signal positioning devices, a control device, and an attitude adjustment are involved.
  • the number of wireless signal positioning devices is not limited, and may also include more numbers.
  • all wireless signal positioning devices receive the wireless signals sent by the same wireless signal tag device, and control the The device calculates the tracking distance based on the transmission time of the wireless signal sent by the same wireless signal tag device and the reception time when all wireless signal positioning devices receive the wireless signal of the wireless signal tag device.
  • the wireless signal tag device may also include a plurality of wireless signal tag devices.
  • each wireless signal tag device When sending wireless signal, each wireless signal tag device includes not only the sending time, but also the global unique identifier of the wireless signal tag device, so that the control device can calculate the corresponding tracking distance.
  • other wireless signal label devices can also be used as backup devices.
  • the main wireless signal label device fails, or the tracking device calculated by the control device
  • a wireless signal tag can be turned on again as the new main wireless signal tag device to send wireless signals.
  • the control device may be a separate device, or the control device may be provided in the attitude adjustment device, for example, the attitude adjustment device includes an unmanned aerial vehicle, and the control device is a controller provided in the unmanned aerial vehicle.
  • the method in the embodiment of the present invention specifically includes the following steps.
  • the wireless signal tag device sends a wireless signal to the current environment space, and the sending time is recorded in the sent wireless signal.
  • the wireless signal positioning device 1 in the current environment space receives the wireless signal, obtains the reception time 1 of the wireless signal, and records the reception time 1 in the wireless signal;
  • S203 Send the wireless signal 1 with the reception time 1 recorded to the control device;
  • the wireless signal positioning device 2 in the current environment space receives the wireless signal, obtains the reception time 2 of the wireless signal, and records the reception time 2 in the wireless signal;
  • S205 Send the wireless signal 2 recorded with the reception time 2 to the control device;
  • the wireless signal positioning device 3 in the current environment space receives the wireless signal, obtains the reception time 3 of the wireless signal, and records the reception time 3 in the wireless signal;
  • S207 Send the wireless signal 3 with the received time 3 recorded to the control device.
  • Each wireless signal locating device may receive wireless signals sequentially or simultaneously, and each wireless signal locating device executes corresponding steps after receiving the wireless signal, and each wireless signal locating device executes the corresponding steps in no particular order.
  • each wireless signal positioning apparatus may also analyze and determine the sending time from the received wireless signal, and then generate a data packet and send it to the control device according to the sending time and the obtained receiving time. If the data obtained by parsing the received wireless signal also includes the global unique identifier of the wireless signal tag device, the identifier will also be sent to the control device along with the sending time and the receiving time, so that the control device can calculate the different wireless signal tag devices.
  • the relative position with each wireless signal positioning device can be further processed based on the relative position of each wireless signal tag device to determine a more suitable relative position between the photographing device and the photographing object.
  • the control device calculates the tracking distance between the wireless signal positioning device 1 and the wireless signal tag device according to the sending time and the receiving time in the wireless signal 1, respectively, and calculates the wireless signal positioning device 2 according to the sending time and the receiving time in the wireless signal 2.
  • the tracking distance with the wireless signal tag device is calculated according to the transmission time and reception time in the wireless signal 3 , and the tracking distance between the wireless signal positioning device 2 and the wireless signal tag device is calculated.
  • the control device calculates and obtains the relative position of the wireless signal tag device relative to the shooting system where the three wireless signal positioning devices are located according to the three tracking distances, and uses the relative position as the relative position between the shooting device and the shooting object Location.
  • the control device controls the attitude adjustment device in real time according to the relative position so that the photographing object is in the image captured by the photographing device, for example, controlling the aircraft to fly up or down, controlling the rotation of the gimbal, and the like.
  • the present application determines the relative position between the wireless signal positioning device and the wireless signal tag device through the wireless signal transmitted between the two, and uses this as a basis to control the attitude adjustment device, so as to adjust the shooting field of view of the shooting device.
  • the operation cost is low, and the accuracy of calculating the relative position can be better ensured, and the efficiency of follow-up shooting is improved.
  • the photographing system includes: a photographing device for photographing the environment and a posture for adjusting the photographing posture of the photographing device
  • the adjusting device, a plurality of wireless signal positioning devices are arranged on the photographing system, and a wireless signal labeling device is arranged on the photographing object in the environment, and the method of the embodiment of the present invention includes the following steps.
  • the wireless signal tag device acts as a transmitter of wireless signals to send wireless signals, and each wireless signal positioning device acts as a receiver of wireless signals to receive wireless signals.
  • the wireless signal positioning apparatus includes an ultra-wideband UWB positioning base station, and the wireless signal tagging apparatus includes a UWB positioning tag.
  • the wireless signal positioning device may also be a Bluetooth receiver, and the wireless signal tag device may be a Bluetooth transmitter.
  • S302 Control the posture adjusting device in real time according to the relative position so that the photographed object is in the image photographed by the photographing device.
  • the attitude adjustment device is mainly used to adjust the shooting direction of the shooting device.
  • the shooting direction of the shooting device can be adjusted in time to change the shooting field of view, so that the shooting object is always in the shooting field of view.
  • the attitude adjustment device includes a pan/tilt that carries the photographing device.
  • the pan/tilt may be a pan/tilt with one rotation axis, or may be a pan/tilt with two rotation axes, or Can be a head with three axes of rotation.
  • the rotation axis of the gimbal includes: any one, or two, or more of a pitch axis, a roll axis, and a yaw axis
  • the S302 may include: adjusting the gimbal in real time according to the relative position
  • the posture may specifically include controlling the pan/tilt to rotate in the direction corresponding to the corresponding rotation axis.
  • the attitude adjustment device includes a gimbal carrying the photographing device and an unmanned aerial vehicle connected to the gimbal.
  • the UAV can be a fixed-wing aircraft, or a quad-rotor, hexa-rotor, or octa-rotor and other types of rotary-wing aircraft.
  • the aircraft mounts a shooting device through a gimbal to realize the tracking and shooting of the shooting object.
  • the pan/tilt head may, for example, comprise a single or multiple rotational axes.
  • the S302 may include: adjusting in real time any one or more of the attitude of the gimbal, the attitude of the drone, and the position of the drone according to the relative position.
  • the S302 may include: determining the position of the photographing object in the image captured by the photographing device according to the relative position and the photographing posture of the photographing device; The position in the image captured by the photographing device controls the posture adjusting device in real time.
  • the S302 may include the control method shown in FIG. 4A , please refer to FIG. A schematic flowchart of a method for controlling an attitude adjustment device according to an embodiment of the invention, the method includes the following steps.
  • S401 According to the relative position and the shooting posture of the shooting device, determine a target image area in the image shot by the shooting device; after the relative position between the shooting object and the shooting device is determined, the shooting object can be roughly determined In the image position area in the captured image, for example, according to the relative position, it can be determined that the photographed object is directly in front of the photographing device, then the middle position area in the image obtained by the photographing device is taken as the target image area, as shown in Figure 4B As shown, the target image area is the area 401, and the area of the target image area 401 is smaller than the captured image.
  • S402 Perform the recognition processing of the photographed object in the target image area, and determine the position of the photographed object in the image photographed by the photographing device; the image recognition algorithm may adopt a common recognition algorithm, and determine the photographing after the recognition. Relatively precise position of the object in the image, so as to control the attitude adjustment device more precisely.
  • S403 Control the posture adjusting device in real time according to the position of the photographing object in the image photographed by the photographing device.
  • the shooting object can always be located at a certain image position in the image captured by the shooting device, and the tracking shooting can be continuously completed.
  • Performing image recognition in the target image area can, on the one hand, determine whether the image really tracks and capture the subject, and on the other hand, can further accurately determine the position of the subject in the image, so as to facilitate the control of the shooting device, so that the subject not only It is necessary to capture the obtained image, and also ensure that the subject is at the specified target image position, for example, ensure that the image position area of the subject in the image is always in the middle of the area.
  • the positioning error of the wireless signal positioning device when the target image area is determined according to the relative position, the positioning error of the wireless signal positioning device that may exist during positioning based on the wireless signal is considered, for example, the wireless signal positioning device receives the wireless signal and determines the error of the receiving time etc.
  • the target image area when determining the target image area, it may include: determining the initial image position area according to the relative position and the shooting posture of the shooting device, and according to the positioning error information of the wireless signal positioning device; The target image area is determined in the image captured by the capturing device.
  • the maximum possible error of UWB in the tracking and shooting process can be combined to calculate the area where the maximum frame selection area may appear in the captured image under the error, and the maximum frame selection area may appear in the captured image.
  • the appearing area is used as the initial image area.
  • the target image area is area 401
  • the initial image area when considering the error is area 402.
  • Area 402 is slightly larger than area 401, but smaller than the area of the captured image.
  • the position of the shooting object in the image captured by the shooting device determined in S402 is the position of an image point.
  • the position finally determined in S402 is: in the target image area
  • the actual image area 404 is only for illustration. In actual image recognition and segmentation, the actual image area of the photographed object may be more accurate, and may only cover the photographed object itself.
  • the target image area may be determined directly from the image captured by the photographing device, or the target image area may be determined from a partial area of the image captured by the photographing device, that is, the target image area may be determined based on experience Or demand, first determine a maximum range area that can be framed when tracking an object, and then determine the target image area or the initial image position area, the maximum range area can be the area 403 in FIG. 4B, for example , when shooting a subject, the requirement for tracking shooting is to require the subject to always be in the middle of the image, because the subsequent control has always been to adjust the attitude adjustment device to make the subject in the middle of the image. Therefore, the initial image set at the beginning The location area is just the area 403 shown in FIG.
  • the target image area is determined according to the obtained relative position and the shooting posture of the shooting device, so that the scope of image analysis and recognition can be narrowed to a certain extent, saving calculation It can also largely guarantee that the desired subject must be in the image.
  • the method may further include: according to the position of the photographed object in the image photographed by the photographing device , determining a reference image area of the photographed object in the image; running a preset object recognition algorithm for the reference image area to determine whether the photographed object is an object of a preset type. If it is determined that the photographed object is an object of a preset type, the control of the posture adjusting device in real time according to the position of the photographed object in the image captured by the photographing device is triggered.
  • the attitude adjustment device will be controlled to rotate or move, so as to facilitate the tracking and photographing of the photographic object of the preset type.
  • position tracking that is, relative position tracking
  • position tracking can be performed on multiple subjects, but only a certain preset type of subjects can be tracked, for example, when pets and children need to be taken care of at the same time
  • the position of one or more pets can be tracked, and the children can be tracked and photographed.
  • Children and each pet are provided with wireless signal tag devices as shooting objects, and the real-time real-time information of each shooting object is determined by the wireless signal positioning device and control device on the shooting system (for example, the shooting system includes a drone, a PTZ, and a shooting device).
  • the relative position at periodic time points Only when the shooting object is a child, that is, a preset type, the shooting system will track and shoot based on the relative position corresponding to the preset type. For other types of shooting objects such as pet dogs , then only the relative position is known, and the attitude adjustment device is not controlled to take the initiative to track and shoot.
  • the identification and relative position of each photographed object can be recorded on the control device.
  • the user When the user needs, he can track and photograph any photographed object based on the corresponding relative position.
  • a selection interface can be set, and the user can select the desired object on the selection interface.
  • the type of the object to be tracked and photographed is to set the preset type. In this way, the present application can perform tracking and photography of a plurality of photographed objects as required.
  • the selectable shooting objects on the selection interface can be initialized by the user, and icons, or characters, or numbers can be used to mark each shooting object set with the wireless signal tag device to distinguish it. Different types of photographing objects, it is convenient for the user to set the preset type.
  • the embodiment of the present invention first determines a reference image area, and only executes the object recognition algorithm in the reference image area, which reduces the workload and saves the time spent in image recognition. hardware resources.
  • the size of the reference image area is fixed, and is an image area with fixed length and width determined based on the position of the photographing object in the image photographed by the photographing device. Or in a possible embodiment, the size of the reference image area is determined according to the relative position.
  • the reference image area may be determined in the same manner as the aforementioned target image area, that is, according to the relative position and the photographing posture of the photographing device, the image captured by the photographing device.
  • the reference image area is determined in the above, and the influence of the positioning error can be further considered, according to the relative position and the shooting posture of the shooting device, and according to the positioning error information of the wireless signal positioning device, determine the initial reference image position area; According to The initial reference image position determines a reference image area in the image captured by the capturing device.
  • the number of the plurality of wireless signal positioning devices is greater than or equal to 3, wherein the plurality of wireless signal positioning devices are not in a straight line, so that the photographing device and the photographing object can be better ensured The accuracy of the relative position recognition between them.
  • the wireless signal tag device is used to send a wireless signal
  • the S301 may include: according to the wireless signals sent by the wireless signal tag device received by the multiple wireless signal positioning devices, determine the The relative position between the photographing device and the photographing object.
  • control method of the photographing system may further include: controlling the photographing device to focus in real time according to the relative position. That is to say, in addition to realizing the tracking and photographing of the photographing device by controlling the attitude adjustment device, the focusing control of the photographing device can also be performed according to the relative position, so as to realize automatic focusing. After the relative position is obtained, the focusing can be guided based on the increase and decrease of the distance, so that the focusing is faster and more accurate.
  • the control method of the photographing system may further include: zooming the photographing device in real time according to the relative position.
  • the zooming includes at least one of optical zooming and digital zooming.
  • the zooming By zooming, the imaging size of the subject in the picture captured by the camera can be adjusted, and the relative position is used to guide the zoom control.
  • the relative position becomes larger, the zoom can be controlled to zoom in on the subject, so that the size of the subject in the image is different. becomes smaller, and when the relative position becomes larger, you can control the zoom to zoom out the subject so that the subject does not become larger in size in the image.
  • control device may further perform zoom processing on the photographing device according to the relative position
  • the method in this embodiment of the present invention may further include: acquiring a target size of the photographing object in the image of the photographing device ; according to the target size and the relative position of the photographing object in the image of the photographing device, zooming the photographing device in real time.
  • the target size of the shooting object in the shooting device can be acquired in real time, and the zoom adjustment can be performed in real time according to the target size combined with the change direction of the relative position to ensure that the imaging size of the shooting object meets the requirements. For example, when the relative position becomes larger, the target size of the subject in the image will become smaller if the zoom is not used. At this time, the zoom adjustment is used to maintain the size of the distant subject in the captured image to meet the above-mentioned requirements.
  • the zoom adjustment is used to maintain the zoomed subject in the captured image. size to meet the above-mentioned imaging size requirements.
  • the target size may be an initial size, such as the size of the image after the object enters the shooting range of the shooting device for the first time, and the target size may also be a size set by the user.
  • the The acquiring the target size of the photographing object in the image of the photographing device includes: detecting a user's target size setting operation; determining the target size of the photographing object in the image of the photographing device according to the detected setting operation .
  • the location area of the object can be automatically identified, and an editing frame can be displayed, which can be a rectangular frame. If adjusted, the subsequent default target size is the initial size, that is, the size corresponding to the current rectangular frame.
  • the set size of the rectangular frame is used as the target size, and the user can perform the target size setting operation by dragging the four corners and four sides of the rectangular frame.
  • the present application determines the relative position between the wireless signal positioning device and the wireless signal tag device through the wireless signal transmitted between the two, and uses this as a basis to control the attitude adjustment device, so as to adjust the shooting field of view of the shooting device.
  • the computational cost is low, and the accuracy of calculating the relative position can be better ensured, which can not only provide support for tracking shooting, but also better realize automatic focusing, Auto zoom and other functions.
  • FIG. 5 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the control device in the embodiment of the present invention may be used to control a photographing system, and the photographing system includes a camera for photographing an environment.
  • a photographing device and a posture adjusting device for adjusting the photographing posture of the photographing device, a plurality of wireless signal positioning devices are arranged on the photographing system, and a wireless signal labeling device is arranged on the photographing object in the environment.
  • the control device can adjust the photographing attitude of the photographing device by controlling the attitude adjusting device, and the attitude adjusting device can be a gimbal, and the photographing device can be connected to the gimbal; the attitude adjusting device can also be a movable platform such as an aircraft, the photographing device It is fixed on the movable platform; the attitude adjustment device can also be a combination of the movable platform and the pan/tilt, and the photographing device is mounted on the movable platform by being connected to the pan/tilt.
  • the control device can also be used as one of the components of the posture adjusting device to realize the adjustment of the photographing posture of the photographing device.
  • control device may be a smart terminal such as a smart phone, a tablet computer, a smart wearable device installed with a corresponding application, or a remote control used to remotely control a movable platform or a PTZ, It may also be a certain component provided in the movable platform or the PTZ, such as the motion controller 604 in the movable platform, the control chip in the PTZ, and so on.
  • the control device includes a storage device 502, a processor 501, and also includes a communication interface and a user interface.
  • the storage device 502 stores a computer program
  • the processor 501 invokes and executes the program instructions stored in the storage device 502 to implement the related methods and steps mentioned in the foregoing embodiments.
  • the communication interface is used to communicate with the attitude adjustment device, send corresponding control commands to the attitude adjustment device, and can also receive various data fed back by the attitude adjustment device.
  • the user interface can be provided for the user to operate and manage the control device, for example, to upgrade the computer program stored in the storage device 502 .
  • the storage device 502 may include a volatile memory (volatile memory), such as random-access memory (RAM); the storage device 502 may also include a non-volatile memory (non-volatile memory), such as a flash memory. Flash memory (flash memory), solid-state drive (solid-state drive, SSD), etc.; the storage device 502 may also include a combination of the above-mentioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory such as a flash memory.
  • flash memory flash memory
  • solid-state drive solid-state drive, SSD
  • the storage device 502 may also include a combination of the above-mentioned types of memory.
  • the processor 501 may be a central processing unit (central processing unit, CPU).
  • the processor 501 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or the like.
  • the above-mentioned PLD may be a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL), or the like.
  • the processor 501 calls a computer program stored in the storage device 502 to locate the device and the wireless signal through the plurality of wireless signals during the shooting process of the shooting device
  • the wireless signal transmitted between the tag devices determines the relative position between the photographing device and the photographing object
  • the posture adjusting device is controlled in real time according to the relative position so that the photographed object is in the image captured by the photographing device.
  • the wireless signal location device includes an ultra-wideband UWB location base station, and the wireless signal tag device includes a UWB location label.
  • the posture adjusting device includes a pan/tilt supporting the photographing device, and the processor 501 is configured to adjust the posture of the pan/tilt in real time according to the relative position.
  • the attitude adjustment device includes a gimbal carrying the photographing device and a drone connected to the gimbal, and the processor 501 is configured to adjust the cloud in real time according to the relative position At least one of the attitude of the stage, the attitude of the drone, and the position of the drone.
  • the processor 501 is configured to determine the position of the shooting object in the image captured by the shooting device according to the relative position and the shooting posture of the shooting device; The position in the image captured by the photographing device controls the posture adjusting device in real time.
  • the processor 501 is configured to determine a target image area in the image captured by the photographing device according to the relative position and the photographing posture of the photographing device; The identification processing of the photographing object determines the position of the photographing object in the image photographed by the photographing device.
  • the processor 501 is configured to determine an initial image position area according to the relative position and the shooting posture of the shooting device, and according to the positioning error information of the wireless signal positioning device; according to the initial image The position determines the target image area in the image captured by the camera.
  • the processor 501 is further configured to determine a reference image area of the photographed object in the image according to the position of the photographed object in the image photographed by the photographing device; run the operation for the reference image area
  • a preset object recognition algorithm determines whether the shooting object is an object of a preset type; if it is determined that the shooting object is an object of a preset type, triggering the execution of the shooting according to the shooting object in the shooting device.
  • the position in the image controls the attitude adjustment device in real time.
  • the size of the reference image area is fixed.
  • the size of the reference image area is determined according to the relative position.
  • the number of the plurality of wireless signal locating devices is greater than or equal to 3, wherein the plurality of wireless signal locating devices are not in a straight line.
  • the wireless signal tag device is configured to send a wireless signal
  • the processor 501 is configured to determine according to the wireless signals sent by the wireless signal tag device received by the multiple wireless signal positioning devices The relative position between the photographing device and the photographing object.
  • the processor 501 is further configured to control the focus of the photographing device in real time according to the relative position.
  • the processor 501 is further configured to zoom the photographing device in real time according to the relative position.
  • the zooming includes at least one of optical zooming and digital zooming.
  • the processor 501 is further configured to acquire the target size of the photographed object in the image of the photographing device; according to the target size of the photographed object in the image of the photographing device and the According to the relative position, the camera is zoomed in real time.
  • the processor 501 is configured to detect a user's target size setting operation; and determine the target size of the photographing object in the image of each photographing device according to the detected setting operation.
  • the present application determines the relative position between the wireless signal positioning device and the wireless signal tag device through the wireless signal transmitted between the two, and uses this as a basis to control the attitude adjustment device, so as to adjust the shooting field of view of the shooting device.
  • the utility model has the advantages of simple structure and easy implementation. Compared with visual tracking, the operation cost is low, and the accuracy of calculating the relative position can be better ensured, and the efficiency of follow-up shooting is improved.
  • FIG. 6 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • the movable platform in the embodiment of the present invention may be some aircraft, such as UAV (Unmanned Aerial Vehicle, unmanned aerial vehicle), or Some mobile robots, maybe even driverless cars and so on.
  • the movable platform includes a main body 602 structure and a power assembly 601.
  • the power assembly 601 is used to drive the main body 602 to move.
  • the main body 602 refers to the frame and other components
  • the power assembly 601 refers to the propeller, electronic speed regulation, etc. components such as the device.
  • the movable platform further includes a photographing device 606 , a pan/tilt 603 and a plurality of wireless signal positioning devices 607 .
  • the photographing device 606, the pan/tilt 603, and the plurality of wireless signal positioning devices 607 may be fixedly disposed on the main body 602 as peripheral devices, or may be detachably disposed on the main body 602 as peripheral devices, that is, :
  • the main body 602 is used for setting the photographing device 606 , the pan/tilt 603 and a plurality of wireless signal positioning devices 607 .
  • the photographing device 606 is mounted on the main body 602 through the pan/tilt 603; the photographing device 606 is used for photographing the environment; the plurality of wireless signal positioning devices 607 are arranged on the main body 602 or set A wireless signal tag device is set on the photographing device 606 or on the pan/tilt 603; on the photographing object in the environment.
  • the movable platform further includes a storage device and a controller 604, where a computer program is stored in the storage device, and the processor executes the computer program to implement the content of the related methods in the foregoing embodiments.
  • the storage device may include a volatile memory (volatile memory), such as RAM; the storage device may also include a non-volatile memory (non-volatile memory), such as flash memory, SSD, etc.; the storage device may also include the above-mentioned A combination of types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory SSD, etc.
  • the storage device may also include the above-mentioned A combination of types of memory.
  • the controller 604 may be a CPU.
  • the controller 604 may further include a hardware chip.
  • the above-mentioned hardware chips may be specialized ASICs, PLDs, and the like.
  • the above-mentioned PLD may be an FPGA, a GAL, or the like.
  • a computer program is stored in the storage device, and the processor runs the computer program for, during the shooting process of the shooting device 606, the multiple wireless signal positioning devices 607 and the wireless signal tag device Determine the relative position between the photographing device 606 and the photographing object by the wireless signal transmitted between them; control the posture adjusting device in real time according to the relative position so that the photographing object is in the image captured by the photographing device 606 .
  • the wireless signal positioning apparatus 607 includes an ultra-wideband UWB positioning base station, and the wireless signal tagging apparatus includes a UWB positioning tag.
  • the controller 604 is configured to adjust the posture of the PTZ 603 in real time according to the relative position.
  • the controller 604 is configured to adjust one of the posture of the gimbal 603 , the posture of the main body 602 and the position of the main body 602 in real time according to the relative position.
  • the controller 604 is configured to determine the position of the photographed object in the image photographed by the photographing device 606 according to the relative position and the photographing posture of the photographing device 606; according to the photographing The position of the object in the image captured by the capturing device 606 controls the posture adjusting device in real time.
  • the controller 604 is configured to determine a target image area in the image captured by the photographing device 606 according to the relative position and the photographing posture of the photographing device; in the target image area The identification process of the photographed object is performed, and the position of the photographed object in the image photographed by the photographing device 606 is determined.
  • the controller 604 is configured to determine the initial image position area according to the relative position and the shooting posture of the shooting device 606, and according to the positioning error information of the wireless signal positioning device 607;
  • the initial image position determines the target image area in the image captured by the capturing device 606 .
  • the controller 604 is further configured to determine a reference image area of the photographed object in the image according to the position of the photographed object in the image photographed by the photographing device 606; for the reference image area Running a preset object recognition algorithm to determine whether the shooting object is an object of a preset type; if it is determined that the shooting object is an object of a preset type, triggering the execution of the shooting device 606 according to the shooting object
  • the position in the captured image controls the attitude adjustment device in real time.
  • the size of the reference image area is fixed.
  • the size of the reference image area is determined according to the relative position.
  • the number of the plurality of wireless signal locating devices 607 is greater than or equal to 3, wherein the plurality of wireless signal locating devices 607 are not in a straight line.
  • the wireless signal tag device is configured to send a wireless signal
  • the controller 604 is configured to locate the wireless signal according to the wireless signals sent by the wireless signal tag device received by the plurality of wireless signal positioning devices 607, The relative position between the photographing device 606 and the photographing object is determined.
  • controller 604 is further configured to control the focus of the photographing device 606 in real time according to the relative position.
  • the controller 604 is further configured to zoom the photographing device 606 in real time according to the relative position.
  • the zooming includes at least one of optical zooming and digital zooming.
  • the controller 604 is further configured to acquire the target size of the photographed object in the image of the photographing device 606 ; according to the target size of the photographed object in the image of the photographing device 606 and the relative position, the camera 606 is zoomed in real time.
  • the controller 604 is configured to detect a user's target size setting operation; and determine the target size of the photographed object in the image of each photographing device 606 according to the detected setting operation.
  • controller 604 for the specific implementation of the controller 604 in this embodiment of the present invention, reference may be made to the specific descriptions of the related methods in the foregoing embodiments, and details are not described herein.
  • the present application determines the relative position between the wireless signal positioning device and the wireless signal tag device through the wireless signal transmitted between the two, and uses this as a basis to control the attitude adjustment device, so as to adjust the shooting field of view of the shooting device.
  • the utility model has the advantages of simple structure and easy implementation. Compared with visual tracking, the operation cost is low, and the accuracy of calculating the relative position can be better ensured, and the efficiency of follow-up shooting is improved.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Abstract

一种拍摄系统的控制方法、设备、及可移动平台、存储介质,其中方法包括:在拍摄装置拍摄的过程中,通过多个无线信号定位装置和无线信号标签装置之间传输的无线信号确定拍摄装置与拍摄对象之间的相对位置(S301);根据相对位置实时地控制姿态调节装置以使拍摄对象在拍摄装置拍摄的图像中(S302)。本申请结构简洁,易于实现,相对于基于光流场等算法的视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,提高了跟着拍摄的效率。

Description

拍摄系统的控制方法、设备、及可移动平台、存储介质 技术领域
本发明涉及自动化控制领域,尤其设计一种拍摄系统的控制方法、设备、及可移动平台、存储介质。
背景技术
视觉跟踪是计算机视觉的一个重要研究方向,可以应用在视频监控、电影录制、无人驾驶等诸多场景中。对于需要跟踪的目标对象(比如人),可以通过摄像头等视觉传感器对该目标对象进行拍摄,结合图像识别算法,来保证目标对象在拍摄到的图像中。
光流(optical flow)可以表达图像的变化,包括图像的运动信息,因此,目前采用光流来进行视觉跟踪的方案较多,而使用基于光流等方式的视觉跟踪时,跟踪速度受摄像头帧率、FOV(Field of View,可视范围)等因素影响,容易跟丢目标对象,且基于视觉跟踪需要经过大量的计算,对处理器性能和实时性要求较高,不易在一些小型设备上实现。
发明内容
本发明实施例公开了一种拍摄系统的控制方法、设备、可移动平台及存储介质,可低成本实现跟踪控制。
一方面,本发明实施例提供了一种拍摄系统的控制方法,所述拍摄系统包括用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置一个无线信号标签装置,所述方法包括:
在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;
根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄 装置拍摄的图像中。
另一方面,本发明实施例还提供了一种控制设备,所述控制设备用于对拍摄系统进行控制,所述拍摄系统包括用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置一个无线信号标签装置,该控制设备包括存储装置和处理器,所述存储装置中存储有计算机程序,所述处理器运行所述计算机程序,用于在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
再一方面,本发明实施例还提供了一种可移动平台,该可移动平台包括在动力组件、主体、拍摄装置、云台、多个无线信号定位装置,还包括存储装置和控制器;
所述动力组件,用于带动所述主体移动;
所述云台设置在所述主体上,所述拍摄装置通过所述云台挂载在所述主体上;所述拍摄装置用于对环境进行拍摄;
所述多个无线信号定位装置设置在所述主体上或设置在所述拍摄装置上或设置在所述云台上;所述环境中的拍摄对象上设置一个无线信号标签装置;
所述存储装置中存储有计算机程序,所述处理器运行所述计算机程序,用于在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
相应地,本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器运行时,实现本发明各实施例的相关方法。
本申请通过在无线信号定位装置和所述无线信号标签装置之间传输的无线信号来确定两者之间的相对位置,以此作为依据来控制姿态调节装置,达到调整拍摄装置的拍摄视场的目的,结构简洁,易于实现,相对于基于光流场等算法的 视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,提高了跟着拍摄的效率。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A是本发明实施例基于无线信号的定位方式示意图;
图1B是是本发明实施例的一种场景示意图;
图2是本发明实施例的一种拍摄系统的控制方法的其中一种流程示意图;
图3是本发明实施例的另一种拍摄系统的控制方法的流程示意图;
图4A是本发明实施例的对姿态调节装置进行控制的方法流程示意图;
图4B是本发明实施例所涉及的各图像区域的示意图;
图5是本发明实施例的一种控制设备的结构示意图;
图6是本发明实施例的一种可移动平台的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请主要对拍摄系统进行控制,一方面控制拍摄系统中的拍摄装置拍摄针对某个拍摄对象的图像,另一方面,通过定位以及计算处理,控制拍摄系统中的姿态调节装置移动或者转动拍摄装置,使得拍摄对象始终处于拍摄装置所拍摄的图像中。本申请将定位和视觉跟踪相结合,首先通过定位来确定拍摄对象与拍摄装置之间的相对位置,然后从相对位置出发,来控制姿态调节装置(例如云台、飞行器等装置)移动或者转动,使得拍摄对象处于拍摄装置拍摄的图像中,达到对该拍摄对象进行跟踪拍摄的目的。并且,在所述相对位置的确定过程中,考虑 到拍摄对象和拍摄装置之间的距离不会太远,设计的是基于无线信号定位的方式来确定相对位置。
本申请的拍摄系统上设置有多个无线信号定位装置,而拍摄对象上设置有一个无线信号标签装置,无线信号标签装置发送无线信号,无线信号定位装置接收该无线信号。通过对无线信号定位装置接收无线信号的接收时间、无线信号标签装置发送无线信号的发送时间、以及光速,可以计算无线信号标签装置到该一个无线信号定位装置之间的跟踪距离,基于多个跟踪距离,即可确定所述拍摄装置与所述拍摄对象之间的相对位置。多个无线信号定位装置可以设置在拍摄装置上,也可以设置在姿态调节装置上。
无线信号标签装置发送的无线信号中,携带了该无线信号发送时间信息,无线信号定位装置接收到无线信号后,可以确定该无线信号的接收时间,通过从无线信号中解析出发送时间信息,再结合接收时间,结合光速即可开始计算跟踪距离。由于各个无线信号定位装置在拍摄装置或姿态调节装置上的相对位置是确定的,即两两无线信号定位装置之间的距离和方位角度是确定的,因此,基于各个无线信号定位装置在拍摄装置或姿态调节装置上的相对位置、计算得到的各个跟踪距离,进而确定无线信号标签装置和拍摄装置的相对位置。在一个简单的实施例中,基于上述提及的多个跟踪距离,以及无线信号定位装置之间的方位、距离,至少可以确定拍摄对象的相对方位,例如图1A中,无线信号定位装置A和无线信号定位装置B在一条水平线上,无线信号定位装置C在镜头101的正上方,拍摄对象102相对于拍摄装置103的相对方位的确定可以为:由于L1=L2>L3,则可以认为拍摄对象102在拍摄装置103的正上方,单纯基于该拍摄方位,也能对姿态调节装置进行移动或者转动控制。
所述拍摄系统包括的拍摄装置可以为常见的各种摄像设备,而姿态调节装置用于调整拍摄装置的拍摄姿态,该姿态调节装置可以是单轴云台、双轴云台、三轴云台等云台装置,也可以是可多角度运动的可移动平台,比如无人机,该姿态调节装置也可以是云台和可移动平台的组合。通过控制云台、或者控制可移动平台、或者同时控制云台和可移动平台,来调整拍摄装置的拍摄姿态以使拍摄对象在所述拍摄装置拍摄的图像中。
具体如图1B所示,是本发明实施例的一种场景示意图,在图1B中,拍摄系统包括姿态调节装置110和拍摄装置111,该姿态调节装置110由飞行器和云 台组成,该拍摄系统用来对拍摄对象112进行跟踪拍摄,需要将拍摄对象112始终保持在拍摄装置111拍摄得到的图像中,也就是拍摄装置111拍摄得到的图像中始终包括拍摄对象112所对应的图像对象。拍摄对象112上包括无线信号标签装置,用于生成无线信号,并发送无线信号,姿态调节装置110的飞行器上设置了无线信号定位装置,例如设置有无线信号定位装置A、B、C,无线信号定位装置A、B、C会先后各自接收到无线信号,设置在飞行器或者拍摄装置或者云台上的控制设备会基于无线信号的发送时间、接收时间以及光速,计算各个无线信号定位装置与无线信号标签装置之间的跟踪距离,并进一步计算确定相对位置。再基于相对位置对飞行器和/或云台进行控制。
无线信号定位装置和无线信号标签装置可以是基于蓝牙技术进行通信的收发装置对、也可以是基于紫峰ZigBee技术进行通信的收发装置对,在一个实施例中,为了保证跟踪距离计算的准确性,无线信号定位装置和无线信号标签装置是基于UWB(Ultra Wide Band,超带宽)技术进行通信的收发装置对,即所述无线信号定位装置为超宽带UWB定位基站,所述无线信号标签装置为UWB定位标签,在一个实施例中,基于图1A所示的示意图,UWB定位基站在拍摄装置或者如图1B中的拍摄系统上的坐标位置已知,基于发送时间、接收时间以及光速计算测得UWB定位标签到UWB定位基站距离后,通过三点定位法画3个圆,交点即为UWB定位标签的位置,该位置可以认为是拍摄对象到拍摄装置之间的相对位置。
如图2所示,是本发明实施例的一种拍摄系统的控制方法的其中一种流程示意图,在本方法实施例中涉及无线信号标签装置、三个无线信号定位装置、控制设备以及姿态调节装置。其中,无线信号定位装置的数量并不限定,还可以包括更多数量,在计算各个无线信号定位装置所对应的跟踪距离时,所有无线信号定位装置接收同一无线信号标签装置发送的无线信号,控制设备基于同一无线信号标签装置发送无线信号的发送时间、所有无线信号定位装置接收该无线信号标签装置的无线信号时的接收时间进行跟踪距离的计算。无线信号标签装置也可以包括多个,每一个无线信号标签装置在发送无线信号时,除了包括发送时间外,还包括无线信号标签装置的全局唯一标识,以便于控制设备计算相应的跟踪距离。在一个实施例中,多个无线信号标签装置中,除了当前使用的无线信号标签装置以外,其他的无线信号标签装置也可以作为备用装置,当主无线信号标签装置出 现故障,或者控制设备计算的跟踪距离存在指定的问题时,可以再次开启一个无线信号标签作为新的主无线信号标签装置发送无线信号。控制设备可以为一个单独的设备,或者所述控制设备可以设置在姿态调节装置中,例如,姿态调节装置包括一个无人机,所述控制设备为该无人机中设置的控制器。本发明实施例的所述方法具体包括如下步骤。
S201:无线信号标签装置向当前环境空间发送无线信号,该发送出去的无线信号中记录了发送时间。
S202:在当前环境空间中的无线信号定位装置1接收无线信号,获取无线信号的接收时间1,并在该无线信号中记录接收时间1;
S203:将记录了接收时间1的无线信号1发送给控制设备;
S204:在当前环境空间中的无线信号定位装置2接收无线信号,获取无线信号的接收时间2,并在该无线信号中记录接收时间2;
S205:将记录了接收时间2的无线信号2发送给控制设备;
S206:在当前环境空间中的无线信号定位装置3接收无线信号,获取无线信号的接收时间3,并在该无线信号中记录接收时间3;
S207:将记录了接收时间3的无线信号3发送给控制设备。
各个无线信号定位装置可能先后或者同时接收到无线信号,各个无线信号定位装置在接收到无线信号之后,即执行相应的步骤,各个无线信号定位装置执行相应步骤不分先后。
在其他实施例中,各无线信号定位装置也可以从接收到的无线信号中解析确定发送时间,然后根据发送时间、获取到的接收时间生成一个数据包发送给控制设备。如果对接收到的无线信号解析得到的数据中还包括无线信号标签装置的全局唯一标识,则该标识也会随同发送时间、接收时间一起发送给控制设备,以便于控制设备计算不同无线信号标签装置与各无线信号定位装置之间的相对位置,基于各无线信号标签装置的相对位置,还可以进行进一步处理,以确定更合适的拍摄装置与拍摄对象之间的相对位置。
S208:控制设备分别根据无线信号1中的发送时间、接收时间计算无线信号定位装置1与无线信号标签装置之间的跟踪距离、根据无线信号2中的发送时间、接收时间计算无线信号定位装置2与无线信号标签装置之间的跟踪距离、根据无线信号3中的发送时间、接收时间计算无线信号定位装置2与无线信号标签装置 之间的跟踪距离。
S209:控制设备根据三个跟踪距离计算得到无线信号标签装置相对于三个无线信号定位装置所处的拍摄系统的相对位置,将该相对位置作为所述拍摄装置与所述拍摄对象之间的相对位置。
S210:控制设备根据相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中,例如控制飞行器向上或向下飞行、控制云台转动等控制。
本申请通过在无线信号定位装置和所述无线信号标签装置之间传输的无线信号来确定两者之间的相对位置,以此作为依据来控制姿态调节装置,达到调整拍摄装置的拍摄视场的目的,结构简洁,易于实现,相对于基于光流等算法的视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,提高了跟着拍摄的效率。
再请参见图3,是本发明实施例的另一种拍摄系统的控制方法的流程示意图,所述拍摄系统包括:用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置有一个无线信号标签装置,本发明实施例的所述方法包括如下步骤。
S301:在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置。所述无线信号标签装置作为无线信号的发送端发送无线信号、各个无线信号定位装置作为无线信号的接收端接收无线信号。在一个可能的实施例中,所述无线信号定位装置包括超宽带UWB定位基站,所述无线信号标签装置包括UWB定位标签。在其他实施例中,所述无线信号定位装置也可以为蓝牙接收端、所述无线信号标签装置则为可以为蓝牙发送端。
S302:根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。姿态调节装置主要用于调节拍摄装置的拍摄方向,当拍摄对象即将离开拍摄视野范围时,能够及时地调整拍摄装置的拍摄方向,改变拍摄视野范围,使拍摄对象始终处于拍摄视野范围内,拍摄到的图像上始终包括拍摄对象对应的图像对象。
在一个可能的实施例中,所述姿态调节装置包括承载所述拍摄装置的云台, 该云台例如可以是具有一个转动轴的云台,也可以是具有两个转动轴的云台,还可以是具有三个转动轴的云台。云台的转动轴包括:俯仰轴、横滚轴以及偏航轴中的任意一个、或者两个、或者多个,而所述S302则可以包括:根据所述相对位置实时地调节所述云台的姿态,具体可以包括控制云台在相应的转动轴所对应的方向上转动。
在一个可能的实施例中,所述姿态调节装置包括承载所述拍摄装置的云台和连接所述云台的无人机。该无人机可以是固定翼飞行器,也可以是四旋翼、六旋翼、或八旋翼等类型的旋翼飞行器,该飞行器通过云台挂载拍摄装置,实现拍摄对象的跟踪拍摄。所述云台例如可以包括单个或多个转动轴。所述S302可以包括:根据所述相对位置实时地调节所述云台的姿态、无人机的姿态和无人机的位置中的任意一种或多种。
在一个可能的实施例中,所述S302可包括:根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
在一个可能的实施例中,为了达到对拍摄对象进行相对较为快捷且精准的跟踪拍摄,提高跟踪拍摄的效率,所述S302可以包括如图4A所示的控制方法,请参见图4A,是本发明实施例的对姿态调节装置进行控制的方法流程示意图,该方法包括如下步骤。
S401:根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域;在确定了拍摄对象与拍摄装置之间的相对位置后,可以大致确定拍摄对象在拍摄得到的图像中的图像位置区域,例如,根据相对位置可以确定拍摄对象处于拍摄装置的正前方,那么就将拍摄装置拍摄得到的图像中的中间位置区域作为目标图像区域,如图4B所示,目标图像区域为区域401,该目标图像区域401的面积小于拍摄得到的图像。
S402:在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;图像识别算法可以采用常见的识别算法,在识别后确定拍摄对象在图像中的相对精确的位置,以便于对姿态调节装置进行较为精准的控制。
S403:根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。在一个实施例中,通过对所述姿态调节装置的实时控制,可以 使拍摄对象始终处于所述拍摄装置拍摄的图像中的某个图像位置处,持续完成跟踪拍摄。在目标图像区域进行图像识别,一方面可以确定图像是否真的跟踪拍摄到了拍摄对象,另一方面,可以进一步精确确定拍摄对象在图像中的位置,以便于对拍摄装置进行控制,使得拍摄对象不仅要在拍摄得到的图像,而且还要确保该拍摄对象在指定的目标图像位置处,比如保证拍摄对象在图像中的图像位置区域一直处于正中间的区域。
在一个可能的实施例中,在根据相对位置确定目标图像区域时,考虑到基于无线信号进行定位时可能存在的无线信号定位装置的定位误差,比如无线信号定位装置接收无线信号确定接收时间的误差等,在确定目标图像区域时,可以包括:根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始图像位置区域;根据所述初始图像位置在所述拍摄装置拍摄的图像中确定目标图像区域。在一个可能的实施例中,可以结合UWB在跟踪拍摄过程中可能存在的最大误差,计算出在该误差下在拍摄的图像中的最大框选面积可能出现的区域,将该最大框选面积可能出现的区域作为初始图像区域,例如参考图4B,目标图像区域为区域401,考虑误差时的初始图像区域为区域402,区域402略大于区域401,但均小于拍摄得到的图像的面积。
在一个实施例中,在S402中确定的所述拍摄对象在所述拍摄装置拍摄的图像中的位置为一个图像点的位置,如图4B所示,S402最终确定的位置为:在目标图像区域中进行图像识别后确定的拍摄对象的实际图像区域404中的一个图像点405的位置。其中,实际图像区域404仅为示意,在实际的图像识别和分割中,拍摄对象的实际图像区域可以更加精准,可以仅覆盖拍摄对象本身。
在一个可能的实施例中,在S401中,可以直接从拍摄装置拍摄的图像中确定出目标图像区域,也可以是从拍摄装置拍摄的图像的部分区域中确定出目标图像区域,即可以根据经验或需求,先确定出一个在跟踪对象时所能够框选的最大范围区域,然后再确定所述目标图像区域或者所述初始图像位置区域,该最大范围区域可以是图4B中的区域403,例如,对拍摄对象拍摄时,跟踪拍摄的需求是要求该拍摄对象一直在图像的中间位置区域,因为后续的控制一直都是调整姿态调节装置使拍摄对象在图像中间,因此,一开始设置的初始图像位置区域就以图4B所示的区域403即可,后续再根据获取到的相对位置和所述拍摄装置的拍摄姿态确定目标图像区域,如此可以在一定程度上缩小图像分析识别的范围,节 省运算量,也可以很大程度上保证所需的拍摄对象一定在图像中。
在一个实施例中,在S301、S302以及上述提及的一个或者多个可能的实施例的基础上,所述方法还可以包括:根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象。如果确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。也就是说,只有拍摄对象是某个指定类型的对象时,才会控制姿态调节装置转动或移动,以便于对预设类型的拍摄对象进行跟踪拍摄。在一些场景中,可以对多个拍摄对象进行位置跟踪(即相对位置的跟踪),但仅仅对其中的某个预设类型的拍摄对象进行跟踪拍摄,例如,在需要同时照看宠物和小朋友的情况下,可以对一个或者多个宠物进行位置跟踪,而对小朋友进行跟踪拍摄。小朋友和每个宠物都作为拍摄对象设置有无线信号标签装置,通过拍摄系统(例如该拍摄系统包括无人机、云台以及拍摄装置)上的无线信号定位装置和控制设备确定各个拍摄对象的实时或者周期性时间点上的相对位置,只有在拍摄对象为小朋友即预设类型时,拍摄系统才会基于该预设类型所对应的相对位置进行跟踪拍摄,而对于其他类型的拍摄对象比如宠物狗,则仅仅知道相对位置即可,并不会控制姿态调节装置而主动去进行跟踪拍摄。控制设备上可以记录各个拍摄对象的标识和相对位置,当用户需要时,可以基于相应的相对位置对任一拍摄对象进行跟踪拍摄,例如,可以设置一个选择界面,用户可以在选择界面上选择想要跟踪拍摄的对象的类型即设置预设类型,如此一来,通过本申请可以根据需要对多个拍摄对象进行跟踪拍摄。在初始化时,该选择界面上可供选择的拍摄对象可以由用户进行初始化设置,可以使用图标、或文字、或数字等标识来对被设置有无线信号标签装置的各个拍摄对象进行标记,以区别不同类型的拍摄对象,方便用户设置所述预设类型。
并且,为了减少识别对象的类型时的计算量,本发明实施例先确定一个参考图像区域,仅仅在该参考图像区域中执行对象识别算法,减少了工作量,节省了图像识别时所耗费的软硬件资源。在一个可能的实施例中,所述参考图像区域的尺寸是固定不变的,是一个基于所述拍摄对象在所述拍摄装置拍摄的图像中的位置确定的长宽固定的图像区域。或者在一个可能的实施例中,所述参考图像区域的尺寸是根据所述相对位置确定的。在一个可能的实施例中,所述参考图像区域 可以与前述提及的目标图像区域的确定方式相同,即根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定参考图像区域,并且,还可以进一步考虑定位误差的影响,根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始参考图像位置区域;根据所述初始参考图像位置在所述拍摄装置拍摄的图像中确定参考图像区域。
在一个可能的实施例中,所述多个无线信号定位装置的数量大于或等于3,其中,所述多个无线信号定位装置不在一条直线上,以此可以较好地确保拍摄装置和拍摄对象之间的相对位置识别的精确度。
在一个可能的实施例中,所述无线信号标签装置用于发送无线信号,所述S301可以包括:根据所述多个无线信号定位装置接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置与所述拍摄对象之间的相对位置。
在一个可能的实施例中,本发明实施例的拍摄系统的控制方法还可以包括:根据所述相对位置实时地控制所述拍摄装置进行对焦。也就是说,除了通过控制姿态调节装置实现对拍摄装置进行跟踪拍摄外,还可以根据相对位置来对拍摄装置进行对焦控制,以实现自动对焦。在得到相对位置后,可以基于距离的增大和缩小来指导对焦,使得对焦更快捷准确。
在一个可能的实施例中,本发明实施例的拍摄系统的控制方法还可以包括:根据所述相对位置实时地对所述拍摄装置进行变焦。其中,在一个实施例中,所述变焦包括光学变焦和数字变焦中的至少一种。通过变焦可以调整拍摄对象在拍摄装置拍摄的图片中的成像尺寸,以相对位置指导进行变焦控制,当相对位置变大时,可以控制变焦以拉近拍摄对象,使得拍摄对象在图像中的尺寸不会变小,当相对位置变大时,可以控制变焦以拉远拍摄对象,使得拍摄对象在图像中的尺寸不会变大。
在一个可能的实施例中,控制设备还可以根据相对位置对拍摄装置进行变焦处理,本发明实施例的所述方法还可以包括:获取所述拍摄对象在所述拍摄装置的图像中的目标尺寸;根据所述拍摄对象在所述拍摄装置的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置进行变焦。如果需要保证需要跟踪拍摄的拍摄对象在图像中的成像尺寸不变、或者成像尺寸不小于预定的最小成像尺寸、或者成像尺寸不大于预定的最大成像尺寸、或者需要保证成像尺寸在最小成像尺寸和最大成像尺寸之间,则可以实时地获取所述拍摄对象在所述拍摄装置中的目 标尺寸,根据目标尺寸结合相对位置的变化方向,实时地进行变焦调整,以确保拍摄对象的成像尺寸满足要求,例如,当相对位置变大时,如果不变焦则拍摄对象在图像中的目标尺寸会变小,此时通过变焦调整来保持变远的拍摄对象在拍摄到的图像中的尺寸,以满足上述提及的成像尺寸的要求,而当相对位置变小时,如果不变焦则拍摄对象在图像中的目标尺寸会变大,此时通过变焦调整来保持变近的拍摄对象在拍摄到的图像中的尺寸,以满足上述提及的成像尺寸的要求。
其中,所述目标尺寸可以是一个初始尺寸,比如拍摄对象第一次进入到拍摄装置的拍摄范围后成像的尺寸,所述目标尺寸也可以是一个用户设置的尺寸,在一个实施例中,所述获取所述拍摄对象在拍摄装置的图像中的目标尺寸,包括:检测用户的目标尺寸设置操作;根据所述检测到的设置操作确定所述拍摄对象在所述拍摄装置的图像中的目标尺寸。在显示拍摄装置当前拍摄的图像的界面上,可以自动识别出拍摄对象的位置区域,并显示一个编辑框,该编辑框可以为矩形框,如果用户直接确认或者在预设的时间范围内不做调整,则后续默认目标尺寸为初始尺寸,即当前矩形框所对应的尺寸。如果检测到用户的目标尺寸设置操作,则根据设置后的矩形框的尺寸作为目标尺寸,用户可以通过拖动矩形框的四个角、四个边等方式来进行目标尺寸设置操作。
本申请通过在无线信号定位装置和所述无线信号标签装置之间传输的无线信号来确定两者之间的相对位置,以此作为依据来控制姿态调节装置,达到调整拍摄装置的拍摄视场的目的,结构简洁,易于实现,相对于视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,不仅能够为跟踪拍摄提供支持,还能够较好地实现自动对焦、自动变焦等功能。
再请参见图5,是本发明实施例的一种控制设备的结构示意图,本发明实施例的所述控制设备可以用于对拍摄系统进行控制,所述拍摄系统包括用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置一个无线信号标签装置。该控制设备可以通过控制姿态调节装置来调节拍摄装置的拍摄姿态,而姿态调节装置可以是云台,拍摄装置可以接入到云台上;姿态调节装置也可以是可移动平台例如飞行器,拍摄装置固定在可移动平台;姿态调节装置也可以是可移动平台和云台的组合,拍摄装置通过接入到云台上从而搭载在可移动平台 上。控制设备也可以作为姿态调节装置的其中一个部件来实现对拍摄装置的拍摄姿态的调整。
在一个实施例中,该控制设备可以是一个安装了相应应用的智能手机、平板电脑、智能可穿戴设备等智能终端,也可以是用于对可移动平台或云台进行远程控制的遥控器,也可以是设置在可移动平台或云台中的某个部件,比如可移动平台中的运动控制器604、云台中的控制芯片等等。
该控制设备包括存储装置502、处理器501,并且还包括通信接口、用户接口。所述存储装置502中存储有计算机程序,所述处理器501调用并执行存储装置502中存储的程序指令,实现前述实施例中提及的相关方法及步骤。所述通信接口用于与姿态调节装置通信,发送相应的控制指令给姿态调节装置,同时也可以接收姿态调节装置反馈的各种数据。所述用户接口可以提供给用户对控制设备进行操作管理,比如对存储装置502中存储的计算机程序进行升级等处理。
所述存储装置502可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置502也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置502还可以包括上述种类的存储器的组合。
所述处理器501可以是中央处理器501(central processing unit,CPU)。所述处理器501还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。
在一个实施例中,所述处理器501,调用所述存储装置502中存储的计算机程序,用于在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;
根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
在一个实施例中,所述无线信号定位装置包括超宽带UWB定位基站,所述 无线信号标签装置包括UWB定位标签。
在一个实施例中,所述姿态调节装置包括承载所述拍摄装置的云台,所述处理器501,用于根据所述相对位置实时地调节所述云台的姿态。
在一个实施例中,所述姿态调节装置包括承载所述拍摄装置的云台和连接所述云台的无人机,所述处理器501,用于根据所述相对位置实时地调节所述云台的姿态、无人机的姿态和无人机的位置中的至少一种。
在一个实施例中,所述处理器501,用于根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
在一个实施例中,所述处理器501,用于根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域;在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置。
在一个实施例中,所述处理器501,用于根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始图像位置区域;根据所述初始图像位置在所述拍摄装置拍摄的图像中确定目标图像区域。
在一个实施例中,所述处理器501,还用于根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象;若确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
在一个实施例中,所述参考图像区域的尺寸是固定不变的。
在一个实施例中,所述参考图像区域的尺寸是根据所述相对位置确定的。
在一个实施例中,所述多个无线信号定位装置的数量大于或等于3,其中,所述多个无线信号定位装置不在一条直线上。
在一个实施例中,所述无线信号标签装置用于发送无线信号,其中,所述处理器501,用于根据所述多个无线信号定位装置接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置与所述拍摄对象之间的相对位置。
在一个实施例中,所述处理器501,还用于根据所述相对位置实时地控制所述拍摄装置的对焦。
在一个实施例中,所述处理器501,还用于根据所述相对位置实时地对所述拍摄装置进行变焦。
在一个实施例中,所述变焦包括光学变焦和数字变焦中的至少一种。
在一个实施例中,所述处理器501,还用于获取所述拍摄对象在所述拍摄装置的图像中的目标尺寸;根据所述拍摄对象在所述拍摄装置的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置进行变焦。
在一个实施例中,所述处理器501,用于检测用户的目标尺寸设置操作;根据所述检测到的设置操作确定所述拍摄对象在所述每一个拍摄装置的图像中的目标尺寸。
本发明实施例的所述处理器501的具体实现可参考前述实施例中相关方法的具体描述,在此不赘述。
本申请通过在无线信号定位装置和所述无线信号标签装置之间传输的无线信号来确定两者之间的相对位置,以此作为依据来控制姿态调节装置,达到调整拍摄装置的拍摄视场的目的,结构简洁,易于实现,相对于视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,提高了跟着拍摄的效率。
再请参见图6,是本发明实施例的一种可移动平台的结构示意图,本发明实施例的所述可移动平台可以是一些飞行器,比如UAV(Unmanned Aerial Vehicle,无人机),也可以是一些可移动机器人,甚至还可以是无人驾驶汽车等等。该可移动平台包括主体602结构、动力组件601,该动力组件601用于带动主体602移动,比如对于飞行器而言,主体602是指机架等组成部分,动力组件601是指螺旋桨、电子调速器等部件构成。
在一个实施例中,在该可移动平台上还包括拍摄装置606、云台603以及多个无线信号定位装置607。
在另一个实施例中,拍摄装置606、云台603以及多个无线信号定位装置607可以作为外设固定设置在主体602上,也可以作为外设可拆卸地设置在所述主体602上,即:所述主体602用于设置拍摄装置606、云台603以及多个无线信号定位装置607。
所述拍摄装置606通过所述云台603挂载在所述主体602上;所述拍摄装置606用于对环境进行拍摄;所述多个无线信号定位装置607设置在所述主体602 上或设置在所述拍摄装置606上或设置在所述云台603上;所述环境中的拍摄对象上设置一个无线信号标签装置。
所述可移动平台还包括存储装置和控制器604,所述存储装置中存储有计算机程序,所述处理器运行所述计算机程序,实现前述实施例中相关方法的内容。
同样,所述存储装置可以包括易失性存储器(volatile memory),例如RAM;存储装置也可以包括非易失性存储器(non-volatile memory),例如flash memory,SSD等;存储装置还可以包括上述种类的存储器的组合。
所述控制器604可以是CPU。所述控制器604还可以进一步包括硬件芯片。上述硬件芯片可以是专ASIC,PLD等。上述PLD可以是FPGA,GAL等。
所述存储装置中存储有计算机程序,所述处理器运行所述计算机程序,用于在所述拍摄装置606拍摄的过程中,通过所述多个无线信号定位装置607和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置606与所述拍摄对象之间的相对位置;根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置606拍摄的图像中。
在一个实施例中,所述无线信号定位装置607包括超宽带UWB定位基站,所述无线信号标签装置包括UWB定位标签。
在一个实施例中,所述控制器604,用于根据所述相对位置实时地调节所述云台603的姿态。
在一个实施例中,所述控制器604,用于根据所述相对位置实时地调节所述云台603的姿态、主体602的姿态和主体602的位置中的一种。
在一个实施例中,所述控制器604,用于根据所述相对位置和所述拍摄装置606的拍摄姿态确定所述拍摄对象在所述拍摄装置606拍摄的图像中的位置;根据所述拍摄对象在所述拍摄装置606拍摄的图像中的位置实时地控制所述姿态调节装置。
在一个实施例中,所述控制器604,用于根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置606拍摄的图像中确定目标图像区域;在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置606拍摄的图像中的位置。
在一个实施例中,所述控制器604,用于根据所述相对位置和所述拍摄装置 606的拍摄姿态,并根据无线信号定位装置607的定位误差信息,确定初始图像位置区域;根据所述初始图像位置在所述拍摄装置606拍摄的图像中确定目标图像区域。
在一个实施例中,所述控制器604,还用于根据所述拍摄对象在所述拍摄装置606拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象;若确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置606拍摄的图像中的位置实时地控制所述姿态调节装置。
在一个实施例中,所述参考图像区域的尺寸是固定不变的。
在一个实施例中,所述参考图像区域的尺寸是根据所述相对位置确定的。
在一个实施例中,所述多个无线信号定位装置607的数量大于或等于3,其中,所述多个无线信号定位装置607不在一条直线上。
在一个实施例中,所述无线信号标签装置用于发送无线信号,其中,所述控制器604,用于根据所述多个无线信号定位装置607接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置606与所述拍摄对象之间的相对位置。
在一个实施例中,所述控制器604,还用于根据所述相对位置实时地控制所述拍摄装置606的对焦。
在一个实施例中,所述控制器604,还用于根据所述相对位置实时地对所述拍摄装置606进行变焦。
在一个实施例中,所述变焦包括光学变焦和数字变焦中的至少一种。
在一个实施例中,所述控制器604,还用于获取所述拍摄对象在所述拍摄装置606的图像中的目标尺寸;根据所述拍摄对象在所述拍摄装置606的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置606进行变焦。
在一个实施例中,所述控制器604,用于检测用户的目标尺寸设置操作;根据所述检测到的设置操作确定所述拍摄对象在所述每一个拍摄装置606的图像中的目标尺寸。
本发明实施例的所述控制器604的具体实现可参考前述实施例中相关方法的具体描述,在此不赘述。
本申请通过在无线信号定位装置和所述无线信号标签装置之间传输的无线信号来确定两者之间的相对位置,以此作为依据来控制姿态调节装置,达到调整 拍摄装置的拍摄视场的目的,结构简洁,易于实现,相对于视觉跟踪而言,运算成本低,并且还能较好地保证计算相对位置的精确度,提高了跟着拍摄的效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (52)

  1. 一种拍摄系统的控制方法,所述拍摄系统包括用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,其特征在于,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置一个无线信号标签装置,所述方法包括:
    在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;
    根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
  2. 根据权利要求1所述的方法,其特征在于,所述无线信号定位装置包括超宽带UWB定位基站,所述无线信号标签装置包括UWB定位标签。
  3. 根据权利要求1或2所述的方法,其特征在于,所述姿态调节装置包括承载所述拍摄装置的云台,
    所述根据所述相对位置实时地控制所述姿态调节装置,包括:
    根据所述相对位置实时地调节所述云台的姿态。
  4. 根据权利要求1或2所述的方法,其特征在于,所述姿态调节装置包括承载所述拍摄装置的云台和连接所述云台的无人机,
    所述根据所述相对位置实时地控制所述姿态调节装置,包括:
    根据所述相对位置实时地调节所述云台的姿态、无人机的姿态和无人机的位置中的至少一种。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述相对位置实时地控制所述姿态调节装置,包括:
    根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;
    根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置,包括:
    根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域;
    在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域,包括:
    根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始图像位置区域;
    根据所述初始图像位置在所述拍摄装置拍摄的图像中确定目标图像区域。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;
    针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象;
    若确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
  9. 根据权利要求8所述的方法,其特征在于,所述参考图像区域的尺寸是固定不变的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述参考图像区域的尺寸是根据所述相对位置确定的。
  11. 根据权利要求1所述的方法,其特征在于,所述多个无线信号定位装置的数量大于或等于3,其中,所述多个无线信号定位装置不在一条直线上。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述无线信号标签装置用于发送无线信号,其中,
    所述通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置,包括:
    根据所述多个无线信号定位装置接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置与所述拍摄对象之间的相对位置。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述相对位置实时地控制所述拍摄装置的对焦。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述相对位置实时地对所述拍摄装置进行变焦。
  15. 根据权利要求14所述的方法,其特征在于,所述变焦包括光学变焦和数字变焦中的至少一种。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述拍摄对象在所述拍摄装置的图像中的目标尺寸;
    根据所述拍摄对象在所述拍摄装置的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置进行变焦。
  17. 根据权利要求16所述的方法,其特征在于,所述获取所述拍摄对象在所述每一个拍摄装置的图像中的目标尺寸,包括:
    检测用户的目标尺寸设置操作;
    根据所述检测到的设置操作确定所述拍摄对象在所述每一个拍摄装置的图像中的目标尺寸。
  18. 一种控制设备,其特征在于,所述控制设备用于对拍摄系统进行控制,所述拍摄系统包括用于对环境进行拍摄的拍摄装置和用于调节拍摄装置的拍摄姿态的姿态调节装置,所述拍摄系统上设置多个无线信号定位装置,所述环境中的拍摄对象上设置一个无线信号标签装置,该控制设备包括存储装置和处理器;
    所述存储装置,用于存储有计算机程序;
    所述处理器,运行所述计算机程序,用于:
    在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;
    根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
  19. 如权利要求18所述的控制设备,其特征在于,所述无线信号定位装置包括超宽带UWB定位基站,所述无线信号标签装置包括UWB定位标签。
  20. 根据权利要求18或19所述的控制设备,其特征在于,所述姿态调节装置包括承载所述拍摄装置的云台,
    所述处理器,用于根据所述相对位置实时地调节所述云台的姿态。
  21. 根据权利要求18或19所述的控制设备,其特征在于,所述姿态调节装置包括承载所述拍摄装置的云台和连接所述云台的无人机,
    所述处理器,用于根据所述相对位置实时地调节所述云台的姿态、无人机的姿态和无人机的位置中的至少一种。
  22. 根据权利要求18-21任一项所述的控制设备,其特征在于,所述处理器,用于:
    根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;
    根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿 态调节装置。
  23. 根据权利要求22所述的控制设备,其特征在于,所述处理器,用于:
    根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域;
    在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置。
  24. 根据权利要求23所述的控制设备,其特征在于,所述处理器,用于:
    根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始图像位置区域;
    根据所述初始图像位置在所述拍摄装置拍摄的图像中确定目标图像区域。
  25. 根据权利要求22所述的控制设备,其特征在于,所述处理器,还用于:
    根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;
    针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象;
    若确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
  26. 根据权利要求25所述的控制设备,其特征在于,所述参考图像区域的尺寸是固定不变的。
  27. 根据权利要求25或26所述的控制设备,其特征在于,所述参考图像区域的尺寸是根据所述相对位置确定的。
  28. 根据权利要求18所述的控制设备,其特征在于,所述多个无线信号定位装置的数量大于或等于3,其中,所述多个无线信号定位装置不在一条直线上。
  29. 根据权利要求18-28任一项所述的控制设备,其特征在于,所述无线信号标签装置用于发送无线信号,其中,
    所述处理器,用于根据所述多个无线信号定位装置接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置与所述拍摄对象之间的相对位置。
  30. 根据权利要求18所述的控制设备,其特征在于,所述处理器,还用于根据所述相对位置实时地控制所述拍摄装置的对焦。
  31. 根据权利要求18所述的控制设备,其特征在于,所述处理器,还用于根据所述相对位置实时地对所述拍摄装置进行变焦。
  32. 根据权利要求31所述的控制设备,其特征在于,所述变焦包括光学变焦和数字变焦中的至少一种。
  33. 根据权利要求18所述的控制设备,其特征在于,所述处理器,还用于获取所述拍摄对象在所述拍摄装置的图像中的目标尺寸;根据所述拍摄对象在所述拍摄装置的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置进行变焦。
  34. 根据权利要求33所述的控制设备,其特征在于,所述处理器,用于:
    检测用户的目标尺寸设置操作;
    根据所述检测到的设置操作确定所述拍摄对象在所述每一个拍摄装置的图像中的目标尺寸。
  35. 一种可移动平台,其特征在于,该可移动平台包括在动力组件、主体,还包括存储装置和控制器;
    所述动力组件,用于带动所述主体移动;
    所述主体用于设置拍摄装置、云台以及多个无线信号定位装置,所述拍摄装置通过所述云台挂载在所述主体上;所述拍摄装置用于对环境进行拍摄;
    所述多个无线信号定位装置设置在所述主体上或设置在所述拍摄装置上或 设置在所述云台上;所述环境中的拍摄对象上设置一个无线信号标签装置;
    所述存储装置中存储有计算机程序,所述处理器运行所述计算机程序,用于在所述拍摄装置拍摄的过程中,通过所述多个无线信号定位装置和所述无线信号标签装置之间传输的无线信号确定所述拍摄装置与所述拍摄对象之间的相对位置;根据所述相对位置实时地控制所述姿态调节装置以使拍摄对象在所述拍摄装置拍摄的图像中。
  36. 如权利要求35所述的可移动平台,其特征在于,所述无线信号定位装置包括超宽带UWB定位基站,所述无线信号标签装置包括UWB定位标签。
  37. 根据权利要求35或36所述的可移动平台,其特征在于,所述控制器,用于根据所述相对位置实时地调节所述云台的姿态。
  38. 根据权利要求35或36所述的可移动平台,其特征在于,所述控制器,用于根据所述相对位置实时地调节所述云台的姿态、主体的姿态和主体的位置中的一种。
  39. 根据权利要求35-38任一项所述的可移动平台,其特征在于,所述控制器,用于根据所述相对位置和所述拍摄装置的拍摄姿态确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置;根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述控制器,用于根据所述相对位置和所述拍摄装置的拍摄姿态,在所述拍摄装置拍摄的图像中确定目标图像区域;在所述目标图像区域中进行所述拍摄对象的识别处理,确定所述拍摄对象在所述拍摄装置拍摄的图像中的位置。
  41. 根据权利要求40所述的可移动平台,其特征在于,所述控制器,用于根据所述相对位置和所述拍摄装置的拍摄姿态,并根据无线信号定位装置的定位误差信息,确定初始图像位置区域;根据所述初始图像位置在所述拍摄装置拍摄的 图像中确定目标图像区域。
  42. 根据权利要求39所述的可移动平台,其特征在于,所述控制器,还用于根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置,在图像中确定拍摄对象的参考图像区域;针对所述参考图像区域运行预设的对象识别算法以确定所述拍摄对象是否为预设类型的对象;若确定所述拍摄对象为预设类型的对象,则触发执行所述根据所述拍摄对象在所述拍摄装置拍摄的图像中的位置实时地控制所述姿态调节装置。
  43. 根据权利要求42所述的可移动平台,其特征在于,所述参考图像区域的尺寸是固定不变的。
  44. 根据权利要求42或43所述的可移动平台,其特征在于,所述参考图像区域的尺寸是根据所述相对位置确定的。
  45. 根据权利要求35所述的可移动平台,其特征在于,所述多个无线信号定位装置的数量大于或等于3,其中,所述多个无线信号定位装置不在一条直线上。
  46. 根据权利要求35-45任一项所述的可移动平台,其特征在于,所述无线信号标签装置用于发送无线信号,其中,
    所述控制器,用于根据所述多个无线信号定位装置接收到的无线信号标签装置发送的无线信号,确定所述拍摄装置与所述拍摄对象之间的相对位置。
  47. 根据权利要求35所述的可移动平台,其特征在于,所述控制器,还用于根据所述相对位置实时地控制所述拍摄装置的对焦。
  48. 根据权利要求35所述的可移动平台,其特征在于,所述控制器,还用于根据所述相对位置实时地对所述拍摄装置进行变焦。
  49. 根据权利要求48所述的可移动平台,其特征在于,所述变焦包括光学变 焦和数字变焦中的至少一种。
  50. 根据权利要求35所述的可移动平台,其特征在于,所述控制器,还用于获取所述拍摄对象在所述拍摄装置的图像中的目标尺寸;根据所述拍摄对象在所述拍摄装置的图像中的目标尺寸和所述相对位置,实时地对所述拍摄装置进行变焦。
  51. 根据权利要求50所述的可移动平台,其特征在于,所述控制器,用于检测用户的目标尺寸设置操作;根据所述检测到的设置操作确定所述拍摄对象在所述每一个拍摄装置的图像中的目标尺寸。
  52. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器运行时,实现如权利要求1-17任一项所述的方法。
PCT/CN2020/099042 2020-06-29 2020-06-29 拍摄系统的控制方法、设备、及可移动平台、存储介质 WO2022000211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099042 WO2022000211A1 (zh) 2020-06-29 2020-06-29 拍摄系统的控制方法、设备、及可移动平台、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099042 WO2022000211A1 (zh) 2020-06-29 2020-06-29 拍摄系统的控制方法、设备、及可移动平台、存储介质

Publications (1)

Publication Number Publication Date
WO2022000211A1 true WO2022000211A1 (zh) 2022-01-06

Family

ID=79315071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099042 WO2022000211A1 (zh) 2020-06-29 2020-06-29 拍摄系统的控制方法、设备、及可移动平台、存储介质

Country Status (1)

Country Link
WO (1) WO2022000211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430459A (zh) * 2022-01-26 2022-05-03 Oppo广东移动通信有限公司 拍摄方法、装置、终端和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106023251A (zh) * 2016-05-16 2016-10-12 西安斯凯智能科技有限公司 一种跟踪系统及跟踪方法
US20180247419A1 (en) * 2017-02-24 2018-08-30 Grasswonder Inc. Object tracking method
CN110720209A (zh) * 2018-07-20 2020-01-21 深圳市大疆创新科技有限公司 一种图像处理方法及设备
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN110996047A (zh) * 2019-11-18 2020-04-10 北京小米移动软件有限公司 宠物追踪拍摄方法、装置、系统及计算机可读存储介质
CN111161354A (zh) * 2019-12-30 2020-05-15 广东博智林机器人有限公司 相机位姿确定方法、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106023251A (zh) * 2016-05-16 2016-10-12 西安斯凯智能科技有限公司 一种跟踪系统及跟踪方法
US20180247419A1 (en) * 2017-02-24 2018-08-30 Grasswonder Inc. Object tracking method
CN110720209A (zh) * 2018-07-20 2020-01-21 深圳市大疆创新科技有限公司 一种图像处理方法及设备
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN110996047A (zh) * 2019-11-18 2020-04-10 北京小米移动软件有限公司 宠物追踪拍摄方法、装置、系统及计算机可读存储介质
CN111161354A (zh) * 2019-12-30 2020-05-15 广东博智林机器人有限公司 相机位姿确定方法、装置、电子设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430459A (zh) * 2022-01-26 2022-05-03 Oppo广东移动通信有限公司 拍摄方法、装置、终端和可读存储介质

Similar Documents

Publication Publication Date Title
CN110692027B (zh) 用于提供无人机应用的易用的释放和自动定位的系统和方法
US10979615B2 (en) System and method for providing autonomous photography and videography
US10264189B2 (en) Image capturing system and method of unmanned aerial vehicle
WO2018098824A1 (zh) 一种拍摄控制方法、装置以及控制设备
WO2018077050A1 (zh) 一种目标跟踪方法以及飞行器
WO2018214078A1 (zh) 拍摄控制方法及装置
WO2017075964A1 (zh) 无人机拍摄控制方法、无人机拍摄方法、移动终端和无人机
WO2020107372A1 (zh) 拍摄设备的控制方法、装置、设备及存储介质
WO2018098704A1 (zh) 控制方法、设备、系统、无人机和可移动平台
WO2019113966A1 (zh) 一种避障方法、装置和无人机
EP3299925B1 (en) Method, apparatus and system for controlling unmanned aerial vehicle
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
JP2006086591A (ja) 移動体追跡システム、撮影装置及び撮影方法
WO2021212445A1 (zh) 拍摄方法、可移动平台、控制设备和存储介质
WO2018120350A1 (zh) 对无人机进行定位的方法及装置
US20210112194A1 (en) Method and device for taking group photo
CN112154649A (zh) 航测方法、拍摄控制方法、飞行器、终端、系统及存储介质
WO2019104641A1 (zh) 无人机、其控制方法以及记录介质
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2023041013A1 (zh) 一种无人机拍摄方法、装置、无人机及存储介质
CN109814588A (zh) 飞行器以及应用于飞行器的目标物追踪系统和方法
CN113747071A (zh) 一种无人机拍摄方法、装置、无人机及存储介质
WO2022000211A1 (zh) 拍摄系统的控制方法、设备、及可移动平台、存储介质
CN108419052B (zh) 一种多台无人机全景成像方法
WO2020237478A1 (zh) 一种飞行规划方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942460

Country of ref document: EP

Kind code of ref document: A1