WO2021261503A1 - 接続構造体の製造方法 - Google Patents
接続構造体の製造方法 Download PDFInfo
- Publication number
- WO2021261503A1 WO2021261503A1 PCT/JP2021/023710 JP2021023710W WO2021261503A1 WO 2021261503 A1 WO2021261503 A1 WO 2021261503A1 JP 2021023710 W JP2021023710 W JP 2021023710W WO 2021261503 A1 WO2021261503 A1 WO 2021261503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opening
- electrode
- electrodes
- conductive paste
- metal mask
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
Definitions
- the present invention relates to a method for manufacturing a connection structure using a conductive paste containing solder particles.
- a method using a metal mask is known as a method of arranging a conductive paste containing solder particles on an electrode.
- the conductive paste is placed on the electrodes through the openings in the metal mask.
- solder is supplied to at least one of the joint surfaces of the two electrodes via the opening of the metal mask, the joint surfaces are overlapped with each other, and the solder between the joint surfaces is heated.
- a joining method for joining two electrodes through a process of once melting and then solidifying the solder is disclosed.
- One of the two electrodes is located on the junction side of the electronic component and the other is located on the junction side of the circuit board.
- the shape of the opening of the metal mask is a shape in which a contour is formed by a straight line portion parallel to the Y-axis direction and a curved line portion narrowed from both ends of the straight line portion toward the X axis.
- the two tea bowl-shaped shapes are arranged line-symmetrically along the Y-axis, and are drum-shaped.
- the conductive paste is arranged on one electrode through one opening of the metal mask. Further, in the conventional method, it is necessary to arrange the conductive paste only on the electrode portion.
- An object of the present invention is a connection in which a conductive paste can be satisfactorily placed on two adjacent electrodes in one opening of a metal mask, and the uniformity of the amount of solder aggregated on each electrode can be improved. It is to provide a method of manufacturing a structure.
- a first aspect of the present invention is to place a conductive paste containing a plurality of solder particles on the surface of a first connection target member having a plurality of first electrodes on the surface by using a metal mask.
- a second connection target member having a plurality of second electrodes on the surface on the surface opposite to the first connection target member side of the conductive paste in the arrangement step is provided on the first electrode and the first connection target member.
- the first connection target member and the second connection target member are formed by heating the conductive paste to a temperature equal to or higher than the melting point of the solder particles in the second arrangement step of arranging the two electrodes so as to face each other.
- the connection portion is formed by the conductive paste, and the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
- the metal mask has an opening having a length direction and a width direction, and the opening has a throttle portion having a small opening width in a central portion in the length direction and a throttle portion in the length direction of the throttle portion.
- a first wide portion that is connected to one side and has a larger opening width than the throttle portion, and a first wide portion that is connected to the other side of the throttle portion in the length direction and has a larger opening width than the throttle portion.
- the maximum opening width of the opening is A and the minimum opening width of the throttle is B
- the B / A is 0.3 or more and 0.7 or less.
- the metal mask is arranged so as to face the wide portion of the.
- the contours of both ends of the opening in the length direction include a curved line.
- the first connection target member has a convex partition on the surface of the surface on the first electrode side where the first electrode does not exist.
- the metal mask is arranged so that at least a part of the partition portion faces the drawing portion in the first arrangement step.
- the contour of the throttle portion includes a curved line.
- the contour of the throttle portion includes a straight line.
- the conductive paste can be satisfactorily placed on two adjacent electrodes at one opening of the metal mask, and the amount of solder aggregated on each electrode is uniform. Can be enhanced.
- FIG. 1 is a plan view schematically showing a first example of the metal mask used in the present invention.
- FIG. 2 is a plan view schematically showing a second example of the metal mask used in the present invention.
- FIG. 3A is a plan view for explaining a first arrangement step of the method for manufacturing a connection structure according to a first embodiment of the present invention
- FIG. 3B is a plan view for explaining the first arrangement step of the method. It is sectional drawing for demonstrating the 1st arrangement process of the manufacturing method of the connection structure which concerns on 1st Embodiment.
- FIG. 4 (c) is a cross-sectional view for explaining a second arrangement step of the method for manufacturing a connection structure according to the first embodiment of the present invention, and FIG.
- FIG. 4 (d) is a cross-sectional view for explaining the second arrangement step of the present invention. It is sectional drawing of the connection structure obtained by the manufacturing method of the connection structure which concerns on 1st Embodiment.
- FIG. 5 is a cross-sectional view for explaining a first arrangement step of the method for manufacturing a connection structure according to a second embodiment of the present invention.
- FIG. 6 is a plan view schematically showing the metal mask used in Comparative Example 2.
- FIG. 7 is a plan view schematically showing the metal mask used in Comparative Example 1.
- a conductive paste containing a plurality of solder particles is placed on the surface of a first connection target member having a plurality of first electrodes on the surface using a metal mask. It comprises a first placement step.
- a second connection target member having a plurality of second electrodes on the surface opposite to the first connection target member side of the conductive paste is provided.
- a second arrangement step of arranging the first electrode and the second electrode so as to face each other is provided.
- the conductive paste is heated above the melting point of the solder particles to connect the first connection target member and the second connection target member.
- the portion is formed of the conductive paste, and the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
- the metal mask has the following opening X.
- the opening X is an opening that satisfies all of the following (1) to (3).
- a throttle portion having a small opening width in the central portion in the length direction, and a first wide portion connected to one side of the throttle portion in the length direction and having a larger opening width than the throttle portion. It has a second wide portion that is continuous with the other side of the throttle portion in the length direction and has a larger opening width than the throttle portion.
- the B / A is 0.3 or more and 0.7 or less.
- one of the first electrodes adjacent to each other is opposed to the first wide portion.
- the metal mask is arranged so that the other first electrode faces the second wide portion.
- the conductive paste can be satisfactorily placed on two adjacent electrodes at one opening of the metal mask at the same time.
- the uniformity of the amount of solder that aggregates on each electrode can be improved. That is, since the method for manufacturing a connection structure according to the present invention has the above-mentioned configuration, both printability and uniformity of the amount of solder aggregated on each electrode can be improved. As a result, in each of the plurality of electrodes of the obtained connection structure, continuity reliability can be improved and connection failure can be prevented.
- the conductive paste is arranged on one electrode through one opening of the metal mask. Further, in the conventional method, it is necessary to arrange the conductive paste only on the electrode portion. In recent years, with the miniaturization of electronic components, the diameter of the opening of the metal mask has also been reduced. However, when the opening area of the metal mask is small, the conductive paste cannot be satisfactorily placed on the electrode through the opening, and the printability may be deteriorated.
- the present inventors use, for example, a metal mask having a rectangular opening so as not to make the opening area excessively small, on two adjacent electrodes via one rectangular opening. It was found that when the conductive paste was placed on the electrodes, the amount of solder aggregated on each electrode was likely to be biased.
- the present inventors can use a metal mask having an opening X to satisfactorily place the conductive paste on two adjacent electrodes at one opening of the metal mask at the same time. It was found that the uniformity of the amount of solder aggregated on each electrode can be improved.
- a plurality of solder particles are likely to gather between the upper and lower facing electrodes at the time of conductive connection between the electrodes, and the plurality of solder particles can be arranged on the electrodes (lines). Also, some of the plurality of solder particles are difficult to place between the lateral electrodes that should not be connected, and the amount of solder particles placed between the lateral electrodes that should not be connected can be significantly reduced. can. As a result, in the present invention, the conduction reliability between the upper and lower electrodes to be connected can be effectively increased, and the insulation reliability between the adjacent lateral electrodes which should not be connected can be effectively increased. Can be done.
- the metal mask has an opening X that satisfies all of the above-mentioned (1) to (3).
- the metal mask may have only one opening X, or may have two or more openings X.
- the metal mask may have three or more openings X, five or more, or ten or more openings X.
- the shapes of the plurality of openings X may be the same or different.
- the metal mask may have an opening other than the opening X.
- FIG. 1 is a plan view schematically showing a first example of the metal mask used in the present invention.
- the periphery of one opening X is shown enlarged.
- the size and size are appropriately changed from the actual size and size.
- the metal mask 10 shown in FIG. 1 has an opening X having a length direction L and a width direction W.
- the left-right direction is the length direction L of the opening X
- the vertical direction is the width direction W of the opening X.
- the length direction L and the width direction W are directions orthogonal to each other.
- the length direction L is larger than the width direction W.
- the metal mask 10 has an opening X having a first wide portion 11, a drawing portion 13, and a second wide portion 12.
- the opening X is formed by the first wide portion 11, the throttle portion 13, and the second wide portion 12.
- the diaphragm portion 13 is a portion having a small opening width in the central portion of the opening X in the length direction L.
- the diaphragm portion 13 is a portion having a smaller opening width than the first wide portion 11 and the second wide portion 12.
- the first wide portion 11 is a portion that is continuous with one side of the throttle portion 13 in the length direction L and has a larger opening width than the throttle portion 13.
- the second wide portion 12 is a portion that is continuous with the other side of the throttle portion 13 in the length direction L and has a larger opening width than the throttle portion 13.
- the B / A is 0.3 or more and 0.7 or less.
- the maximum opening width A exists in at least one of the first wide portion and the second wide portion.
- the opening width of at least one of the first wide portion and the second wide portion is the maximum opening width A of the opening X.
- the opening widths of both the first wide portion and the second wide portion are the maximum opening width A of the opening X. ..
- the contours of both ends of the opening X in the length direction L are curved lines.
- the first wide portion 11 and the second wide portion 12 are each composed of a curved line.
- the outline of the aperture portion 13 is a curved line.
- the opening X does not have a portion formed by a straight line.
- the shape of the opening X when viewed in a plan view is a so-called gourd shape.
- FIG. 2 is a plan view schematically showing a second example of the metal mask used in the present invention.
- the periphery of one opening X is enlarged and shown.
- the metal mask 10A shown in FIG. 2 has an opening X having a length direction L and a width direction W.
- the left-right direction is the length direction L of the opening X
- the vertical direction is the width direction W of the opening X.
- the length direction L and the width direction W are directions orthogonal to each other.
- the length direction L is larger than the width direction W.
- the metal mask 10A has an opening X having a first wide portion 11A, a drawing portion 13A, and a second wide portion 12A.
- the opening X is formed by the first wide portion 11A, the throttle portion 13A, and the second wide portion 12A.
- the diaphragm portion 13A is a portion having a small opening width in the central portion of the opening X in the length direction L.
- the diaphragm portion 13A is a portion having a smaller opening width than the first wide portion 11A and the second wide portion 12A.
- the first wide portion 11A is a portion that is continuous with one side of the throttle portion 13A in the length direction L and has a larger opening width than the throttle portion 13A.
- the second wide portion 12A is a portion that is continuous with the other side of the throttle portion 13A in the length direction L and has a larger opening width than the throttle portion 13A.
- the B / A is 0.3 or more and 0.7 or less.
- the maximum opening width A exists in at least one of the first wide portion 11A and the second wide portion 12A.
- the contours of both ends of the opening X in the length direction L are curved lines.
- the first wide portion 11A and the second wide portion 12A are each composed of a curved line.
- the contour of the diaphragm portion 13A is a straight line.
- the opening X has a portion composed of a curved line and a portion composed of a straight line.
- the shape of the opening X when viewed in a plan view is a so-called dumbbell shape.
- the contours at both ends of the opening X in the length direction may include a curved line or a straight line.
- the contours of both ends of the opening X in the length direction may be curved or straight.
- the shape when viewed in a plan view is a drum-shaped opening, but the present invention is not limited to this.
- the contours at both ends of the opening X in the length direction preferably include a curved line, and preferably a curved line.
- the contour of the first wide portion and the contour of the second wide portion each include a curved line, and it is preferable that the contour is a curved line.
- both ends of the opening X in the length direction are point-shaped, if the point-shaped portion and the portion connected to the point-shaped portion are curved (that is, if the dot-shaped portion constitutes a part of the curve).
- the contours at both ends of the opening X in the length direction are regarded as curves.
- the contour of the throttle portion may include a curved line, a straight line, or a curved line and a straight line.
- the contour of the throttle portion may be a curved line, a straight line, or may be composed of a curved line and a straight line.
- the contour of the drawn portion preferably includes a curved line, and is preferably a curved line.
- the contour of the drawn portion preferably includes a straight line, and is preferably a straight line.
- the number of the drawn portions of the opening X is one. From the viewpoint of satisfactorily arranging the conductive paste on the electrode, it is preferable that the opening X has one drawing portion connected to the first wide portion and the second wide portion. From the viewpoint of satisfactorily arranging the conductive paste on the electrode, the opening X has one throttle portion connected to the first wide portion and one throttle portion connected to the second wide portion. It is preferable to have.
- the ratio of the contour length composed of the curve is preferably 85% or more, more preferably 88% or more. It is more preferably 90% or more. In this case, the conductive paste can be placed even better on the electrodes.
- the ratio of the length of the contour composed of the curve may be 100% or less than 100%. It may be 95% or less.
- the ratio of the contour length composed of straight lines is preferably 15% or less, more preferably 12% or less. It is more preferably 10% or less. In this case, the conductive paste can be placed even better on the electrodes.
- the ratio of the contour length composed of straight lines may be 0% or may exceed 0%. It may be% or more.
- the contours at both ends of the opening X in the length direction include a curve or are curved
- the ratio of the length of the contour composed of the curve is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more.
- the conductive paste can be placed even better on the electrodes.
- the ratio of the lengths of the contours composed of curves may be 100%. , It may be less than 100%, or it may be 95% or less.
- the ratio of the lengths of the contours composed of straight lines is 15% or less. It is preferably 12% or less, more preferably 10% or less, and even more preferably 10% or less. In this case, the conductive paste can be placed even better on the electrodes.
- the ratio of the lengths of the contours composed of straight lines may be 0%. , 0% may be exceeded, and may be 5% or more.
- the ratio of the length of the contour composed of the curve is 85 when the total length of the contour of the drawing portion is 100%. % Or more, more preferably 88% or more, and even more preferably 90% or more. In this case, the conductive paste can be placed even better on the electrodes.
- the ratio of the lengths of the contours composed of straight lines may be 100%. , It may be less than 100%, or it may be 95% or less.
- the ratio of the lengths of the contours composed of straight lines is preferably 15% or less, and more preferably 12% or less. It is preferably 10% or less, and more preferably 10% or less. In this case, the conductive paste can be placed even better on the electrodes.
- the ratio of the lengths of the contours composed of straight lines may be 0%. , 0% may be exceeded, and may be 5% or more.
- the ratio of the length of the contour composed of straight lines may exceed 0%, may be 5% or more, may be 50% or more, or may be 100% or less.
- the opening X may or may not be axisymmetric at the central position in the length direction with a straight line parallel to the width direction as the axis of symmetry.
- the opening X may or may not be axisymmetric at the central position in the length direction with a straight line parallel to the length direction as the axis of symmetry.
- the ratio (B / A) of the minimum opening width (B) of the throttle portion to the maximum opening width (A) of the opening X is 0.3 or more and 0.7 or less. be. If the ratio (B / A) is less than 0.3, the size of the opening becomes too small, so that the variation becomes large when the conductive paste is arranged, and the printability tends to deteriorate. When the ratio (B / A) exceeds 0.7, when the amount of solder arranged between the opposing electrodes increases, the uniformity of the amount of solder aggregated on each electrode tends to decrease.
- the above ratio (B / A) is preferably 0.35 or more, more preferably 0.4 or more, preferably 0.5 or less, and more preferably 0.45 or less.
- the ratio (B / A) is at least the above lower limit and at least the above upper limit, the effect of the present invention can be more effectively exhibited.
- the ratio (B / A) is at least the above lower limit, printability can be further improved, and when the ratio (B / A) is at least the above upper limit, the amount of solder that aggregates on each electrode The uniformity of the solder can be further improved.
- the opening width of the opening X can be set, for example, in relation to the length of the first electrode in the vertical direction.
- one of the first electrodes adjacent to each other faces the first wide portion 11A of the opening X, and the other first electrode is the opening. It faces the second wide portion 12A of X.
- the maximum opening width (A) of the opening X is preferably 1.0 times or more, more preferably 1.02 times or more, and preferably 1.1 times the length in the vertical direction of the first electrode. It is twice or less, more preferably 1.08 times or less.
- the minimum opening width (B) of the throttle portion is preferably 0.45 times or more, more preferably 0.47 times or more, and preferably 0.65 times the length in the vertical direction of the first electrode. It is not more than double, more preferably 0.48 times or less.
- the opening length of the opening X is preferably 1.13 times or more, more preferably 1.15 times or more, and preferably 1.15 times or more with respect to the total length of the adjacent first electrodes in the left-right direction. It is 1.19 times or less, more preferably 1.18 times or less.
- the opening area of the opening X is preferably 0.95 times or more, more preferably 0.97 times or more, preferably 1.04 times or less, and more than the total area of the adjacent first electrodes. It is preferably 1.02 times or less. When the opening area is at least the above lower limit and at least the above upper limit, the effect of the present invention can be more effectively exhibited.
- the opening area of the opening X1 on one side and the opening area of the other It is preferable that the difference from the opening area of the opening X2 on the side is small.
- the opening area of the opening X2 on the other side of the opening area of the opening X1 on the one side is the same, or the opening area of the opening X2 on the other side of the opening area of the opening X1 on the one side is larger.
- the opening area on the one side is preferably 1.3 times or less (more preferably 1.2 times or less, still more preferably 1.1 times or less) the smaller opening area.
- the metal mask preferably has a plurality of openings X.
- the conductive paste can be placed on more electrodes, for example four or more electrodes.
- FIG. 6 is a plan view schematically showing the metal mask used in Comparative Example 2.
- opening Y the periphery of one opening (sometimes referred to as opening Y) is shown enlarged.
- the metal mask 100 shown in FIG. 6 has an opening Y having a length direction L and a width direction W.
- the left-right direction is the length direction L of the opening Y
- the vertical direction is the width direction W of the opening Y.
- the length direction L and the width direction W are directions orthogonal to each other.
- the length direction L is larger than the width direction W.
- the metal mask 100 has an opening Y having a first wide portion 101, a drawing portion 103, and a second wide portion 102.
- the opening portion Y is formed by the first wide portion 101, the throttle portion 103, and the second wide portion 102.
- the diaphragm portion 103 is a portion having a small opening width in the central portion of the opening Y in the length direction L.
- the diaphragm portion 103 is a portion having a smaller opening width than the first wide portion 101 and the second wide portion 102.
- the first wide portion 101 is a portion that is continuous with one side of the throttle portion 103 in the length direction L and has a larger opening width than the throttle portion 103.
- the second wide portion 102 is a portion that is continuous with the other side of the throttle portion 103 in the length direction L and has a larger opening width than the throttle portion 103.
- the B / A is 0.75.
- the maximum opening width A exists in at least one of the first wide portion 101 and the second wide portion 102.
- the contours of both ends of the opening Y in the length direction L are curved lines.
- the first wide portion 101 and the second wide portion 102 are each composed of a curved line.
- the outline of the aperture portion 103 is a straight line.
- the opening Y has a portion formed by a curved line and a portion formed by a straight line.
- the shape of the opening Y when viewed in a plan view is a so-called dumbbell shape.
- the metal mask 100 since the above ratio (B / A) exceeds 0.7, some of the plurality of solder particles are likely to be arranged between the lateral electrodes that should not be connected at the time of conductive connection between the electrodes. , The amount of solder particles placed between the lateral electrodes that should not be connected increases. As a result, when the metal mask 100 is used, the conduction reliability between the upper and lower electrodes to be connected and the insulation reliability between the adjacent lateral electrodes which should not be connected are lowered.
- FIG. 7 is a plan view schematically showing the metal mask used in Comparative Example 1.
- opening Y the periphery of one opening (sometimes referred to as opening Y) is shown enlarged.
- the metal mask 100A shown in FIG. 7 has an opening Y having a length direction L and a width direction W.
- the left-right direction is the length direction L of the opening Y
- the vertical direction is the width direction W of the opening Y.
- the length direction L and the width direction W are directions orthogonal to each other.
- the length direction L is larger than the width direction W.
- the ratio (B / A) is different between the metal mask 10 shown in FIG. 1 and the metal mask 100A shown in FIG. 7. That is, in the metal mask 100A shown in FIG. 7, when the maximum opening width of the opening Y is A and the minimum opening width of the throttle portion 103 is B, the B / A is 0.24.
- the maximum opening width A exists in at least one of the first wide portion 101A and the second wide portion 102A.
- the above ratio (B / A) is less than 0.3, so that the variation becomes large when the conductive paste is arranged, and the printability tends to deteriorate. That is, in the metal mask 100A, the conductive paste cannot be satisfactorily placed on two adjacent electrodes at one opening Y at the same time.
- FIG. 3A is a plan view for explaining a first arrangement step of the method for manufacturing a connection structure according to a first embodiment of the present invention
- FIG. 3B is a plan view for explaining the first arrangement step of the method. It is sectional drawing for demonstrating the 1st arrangement process of the manufacturing method of the connection structure which concerns on 1st Embodiment.
- FIG. 3 (b) is a cross-sectional view taken along the line I-I of FIG. 3 (a). In FIG. 3, the metal mask 10 shown in FIG. 1 is used.
- the conductive paste 3 is arranged on the surface of the first connection target member 1 having the plurality of first electrodes 1a on the surface (upper surface) by using the metal mask 10.
- the conductive paste 3 contains a plurality of solder particles 3A, a thermosetting component 3B, and a flux.
- the conductive paste 3 contains a thermosetting compound and a thermosetting agent as the thermosetting component 3B.
- the conductive paste 3 is arranged as follows.
- one of the first electrodes 1a faces the first wide portion 11 of the opening X, and the other first electrode 1a is the opening X.
- the metal mask 10 is arranged so as to face the second wide portion 12.
- the conductive paste 3 is applied from the upper surface portion of the metal mask 10, and the conductive paste 3 is placed on the surface of the first connection target member 1 via the opening X.
- the solder particles 3A are placed on both the one first electrode 1a and the other first electrode 1a.
- FIG. 5 is a cross-sectional view for explaining a first arrangement step of the method for manufacturing a connection structure according to a second embodiment of the present invention.
- the structure of the first connection target member is different between the first arrangement step shown in FIG. 3B and the first arrangement step shown in FIG.
- a first connection target member 1A having a convex partition portion 5 is used in a portion of the surface on the side of the first electrode 1a where the first electrode 1a does not exist. ing.
- the partition portion 5 is arranged between the adjacent first electrodes 1a. The height of the partition portion 5 is higher than the height of the first electrode 1a.
- the comparison with the first connection target member having no partition portion 5 for example, the first connection target member 1 shown in FIG. 3B.
- the uniformity of the amount of solder that aggregates on each electrode can be further improved.
- the metal mask 10 is arranged so that at least a part of the partition portion 5 faces the drawing portion 13.
- the conductive paste 3 is arranged in the same manner as in the first embodiment.
- the partition portion 5 may or may not face the first wide portion 11 of the opening X. Further, the partition portion 5 may or may not face the second wide portion 12 of the opening X.
- the first connection target member having no convex partition portion may be used, or the first connection target member having the convex partition portion may be used.
- the metal mask is removed after the first placement step.
- FIG. 4C is a cross-sectional view for explaining a second arrangement step of the method for manufacturing a connection structure according to the first embodiment of the present invention.
- FIG. 4D is a cross-sectional view of the connection structure obtained by the method for manufacturing the connection structure according to the first embodiment of the present invention. Note that FIGS. 4 (c) and 4 (d) show a state in which the first connection target member having no convex partition portion is used, but the first connection having the above partition portion is shown. The same applies when the target member is used.
- the second connection target member 2 having a second electrode 2a on the surface (lower surface).
- the second connection target member 2 is arranged on the surface of the conductive paste 3 opposite to the first connection target member 1 side.
- the second connection target member 2 is arranged on the surface of the conductive paste 3 from the second electrode 2a side. At this time, the first electrode 1a and the second electrode 2a are opposed to each other.
- the conductive paste 3 is heated above the melting point of the solder particles 3A.
- the conductive paste 3 is heated above the curing temperature of the thermosetting component 3B (thermosetting compound).
- the solder particles 3A existing in the region where the electrodes are not formed gather between the first electrode 1a and the second electrode 2a (self-aggregation effect).
- the solder particles 3A are more effectively collected between the first electrode 1a and the second electrode 2a.
- the solder particles 3A are melted and bonded to each other.
- the thermosetting component 3B is thermoset. As a result, as shown in FIG.
- connection portion 4 connecting the first connection target member 1 and the second connection target member 2 is formed by the conductive paste 3, and the connection structure 20 is formed. Is obtained.
- the connecting portion 4 is formed by the conductive paste 3, the solder portion 4A is formed by joining the plurality of solder particles 3A, and the cured product portion 4B is formed by thermally curing the thermosetting component 3B.
- the first electrode 1a and the second electrode 2a are electrically connected by the soldering portion 4A in the connecting portion 4. If the solder particles 3A move sufficiently, the solder particles 3A that are not located between the first electrode 1a and the second electrode 2a start to move, and then the first electrode 1a and the second electrode 2a. It is not necessary to keep the temperature constant until the movement of the solder particles 3A to and from 2a is completed.
- the weight of the second connection target member 2 is added to the conductive paste 3. Therefore, when the connecting portion 4 is formed, the solder particles 3A gather more effectively between the first electrode 1a and the second electrode 2a. If pressure is applied in at least one of the second arrangement step and the connection step, the solder particles 3A tend to gather between the first electrode 1a and the second electrode 2a. It is more likely to be hindered.
- the first connection target member 1 and the second connection target member 1 and the second connection target are in a state where the alignment between the first electrode 1a and the second electrode 2a is slightly deviated. Even when the members 2 are overlapped with each other, the slight deviation can be corrected to connect the first electrode 1a and the second electrode 2a (self-alignment effect). This is because the molten solder that is self-aggregated between the first electrode 1a and the second electrode 2a is the solder between the first electrode 1a and the second electrode 2a and the other conductive paste.
- the second arrangement step and the connection step may be continuously performed. Further, after performing the second arrangement step, the obtained laminate of the first connection target member 1, the conductive paste 3, and the second connection target member 2 is moved to the heating portion, and the connection step is performed. May be done. In order to perform the heating, the laminate may be arranged on the heating member, or the laminate may be arranged in the heated space.
- the heating temperature in the connection step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 220 ° C. or lower.
- connection step a method of heating the entire connection structure using a reflow furnace or an oven at a temperature equal to or higher than the melting point of the solder and a temperature higher than the curing temperature of the thermosetting component, or a method of connecting the connection structure.
- a method of locally heating only the portion can be mentioned.
- Examples of the appliance used for the method of locally heating include a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater, and the like.
- the conductive paste can be satisfactorily placed on the first electrode even when the distance between the adjacent first electrodes is short.
- the solder particles can easily collect between the first electrode and the second electrode, and the uniformity of the amount of solder aggregated on each electrode can be improved. Therefore, the solder particles can be efficiently arranged on the electrode (line).
- the uniformity of the amount of solder can be further improved in a plurality of solder portions. Further, it is difficult for a part of the solder particles to be arranged in the region (space) where the electrode is not formed, and the amount of the solder particles arranged in the region where the electrode is not formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. Moreover, it is possible to prevent electrical connection between horizontally adjacent electrodes that should not be connected, and it is possible to improve insulation reliability.
- the first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, flexible printed circuit boards, and flexible devices. Examples thereof include electronic components such as flat cables, rigid flexible boards, glass epoxy boards, circuit boards such as glass boards, and the like.
- the first and second connection target members are preferably electronic components.
- At least one of the first connection target member and the second connection target member is a resin film, a flexible printed substrate, a flexible flat cable, or a rigid flexible substrate.
- Resin films, flexible printed substrates, flexible flat cables and rigid flexible substrates have the properties of high flexibility and relatively light weight.
- solder tends to be difficult to collect on the electrodes.
- the conductive paste even if a resin film, a flexible printed substrate, a flexible flat cable, or a rigid flexible substrate is used, the solder is efficiently collected on the electrodes, so that the conduction reliability between the electrodes is reliable. Can be sufficiently enhanced.
- the conduction reliability between the electrodes due to no pressurization is higher than when other connected members such as semiconductor chips are used. The improvement effect can be obtained even more effectively.
- the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
- the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
- the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
- the electrode When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
- the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
- the trivalent metal element include Sn, Al and Ga.
- the first electrode and the second electrode are arranged in an area array or a peripheral.
- the solder can be more effectively aggregated on the electrodes.
- the area array is a structure in which the electrodes are arranged in a grid pattern on the surface on which the electrodes of the members to be connected are arranged.
- the peripheral is a structure in which electrodes are arranged on the outer peripheral portion of a member to be connected.
- the solder may be aggregated along the direction perpendicular to the comb, whereas in the above area array or peripheral structure, the entire surface on the surface where the electrodes are arranged is covered. It is necessary for the solder to agglomerate evenly. Therefore, in the conventional method, the amount of solder tends to be non-uniform, whereas in the method of the present invention, the solder can be uniformly aggregated on the entire surface.
- the first connection target member may have a convex partition portion on the surface of the surface of the first electrode side where the first electrode does not exist.
- the shape of the partition is not particularly limited.
- the height of the partition portion is preferably higher than that of the first electrode.
- the height of the partition portion is preferably higher at 20 ⁇ m or more, more preferably higher at 25 ⁇ m or more, preferably higher at 30 ⁇ m or less, and more preferably higher at 27 ⁇ m or less than the first electrode.
- the height of the first electrode is the height of the exposed electrode portion.
- the material of the above partition is not particularly limited.
- Examples of the material of the partition portion include glass epoxy and glass.
- Examples of the method for obtaining the first connection target member having the partition portion include a method of retrofitting the partition portion between the electrodes.
- the conductive paste is preferably an anisotropic conductive paste.
- the conductive paste is preferably used for electrical connection of electrodes.
- the conductive paste is preferably a circuit connection material.
- the conductive paste contains a plurality of solder particles.
- Both the central part and the outer surface of the solder particles are formed of solder.
- the solder particles are particles in which both the central portion and the outer surface are solder.
- conductive particles having a base particle formed of a material other than solder and a solder portion arranged on the surface of the base particle are used instead of the solder particles, the conductivity is on the electrode. It becomes difficult for particles to collect. Further, in the above-mentioned conductive particles, since the solder bondability between the conductive particles is low, the conductive particles that have moved on the electrodes tend to move easily to the outside of the electrodes, and the effect of suppressing the displacement between the electrodes is also obtained. Tends to be low.
- the solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal).
- the solder particles are preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles).
- the low melting point metal particles are particles containing a low melting point metal.
- the low melting point metal means a metal having a melting point of 450 ° C. or lower.
- the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 230 ° C. or lower.
- the solder is preferably a low melting point solder having a melting point of less than 230 ° C.
- the melting point of the solder particles can be determined by differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.
- the solder particles contain tin.
- the tin content in 100% by weight of the metal contained in the solder particles is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. ..
- the tin content in the solder particles is at least the above lower limit, the continuity reliability and connection reliability between the solder portion and the electrode are further improved.
- the tin content may be determined using a high frequency inductively coupled plasma emission spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). Can be measured.
- ICP-AES high frequency inductively coupled plasma emission spectroscopic analyzer
- EDX-800HS fluorescent X-ray analyzer
- the solder melts and joins to the electrodes, and the solder part conducts between the electrodes.
- the solder portion and the electrode are likely to make surface contact rather than point contact, so that the connection resistance is low.
- the bonding strength between the solder portion and the electrode is increased, and as a result, the peeling between the solder portion and the electrode is more difficult to occur, and the conduction reliability and the connection reliability are further improved.
- the low melting point metal constituting the solder particles is not particularly limited.
- the low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like.
- the low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode.
- the low melting point metal is more preferably a tin-bismuth alloy or a tin-indium alloy.
- the solder particles are nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chrome, etc. It may contain a metal such as molybdenum or palladium. Further, from the viewpoint of further increasing the bonding strength between the solder portion and the electrode, the solder particles preferably contain nickel, copper, antimony, aluminum or zinc. From the viewpoint of further increasing the bonding strength between the solder portion and the electrode, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more in 100% by weight of the metal contained in the solder particles. It is preferably 1% by weight or less.
- the content of the solder particles in 100% by weight of the conductive paste is preferably 40% by weight or more, more preferably 45% by weight or more, still more preferably 50% by weight or more, and most preferably 55% by weight or more. Is 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less.
- the content of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrodes, it is easy to arrange a large amount of solder between the electrodes, and conduction is achieved. Reliability can be improved even more effectively. From the viewpoint of further effectively enhancing the conduction reliability, it is preferable that the content of the solder particles is large.
- the conductive paste may contain a thermosetting component.
- the thermosetting component preferably contains a thermosetting compound.
- the conductive paste may contain a thermosetting compound and a thermosetting agent as thermosetting components.
- the conductive paste preferably contains a thermosetting compound and a thermosetting agent as a thermosetting component.
- the conductive paste contains a curing accelerator as a thermosetting component.
- the conductive paste preferably contains a thermosetting compound.
- the thermosetting compound is a compound that can be cured by heating.
- the thermosetting compound is not particularly limited. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds. Epoxy compounds or episulfide compounds are preferable, and epoxy compounds are more preferable, from the viewpoint of further improving the curability and viscosity of the conductive paste and further enhancing the conduction reliability.
- the conductive paste preferably contains an epoxy compound. Only one kind of the thermosetting compound may be used, or two or more kinds may be used in combination.
- the epoxy compound is a compound having at least one epoxy group.
- examples of the epoxy compound include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, phenol novolac type epoxy compound, biphenyl type epoxy compound, biphenyl novolac type epoxy compound, biphenol type epoxy compound, and naphthalene type epoxy compound.
- Fluolene type epoxy compound Fluolene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, adamantan skeleton epoxy compound, tricyclodecane skeleton epoxy compound, naphthylene ether type
- examples thereof include epoxy compounds and epoxy compounds having a triazine nucleus as a skeleton. Only one kind of the epoxy compound may be used, or two or more kinds may be used in combination.
- the epoxy compound is liquid or solid at room temperature (23 ° C.), and when the epoxy compound is solid at room temperature, the melting temperature of the epoxy compound is preferably equal to or lower than the melting point of the solder particles.
- the viscosity is high at the stage where the members to be connected are bonded, and when acceleration is applied due to an impact such as transportation, the first member to be connected and the second connection target are connected. It is possible to suppress the positional deviation from the member. Further, the heat at the time of curing can greatly reduce the viscosity of the conductive paste, and the aggregation of the solder at the time of conductive connection can be efficiently promoted.
- thermosetting component preferably contains an epoxy compound, and the thermosetting compound is an epoxy compound. It is preferable to include it.
- thermosetting compound preferably contains a thermosetting compound having a polyether skeleton.
- thermosetting compound having the above-mentioned polyether skeleton includes a compound having a glycidyl ether group at both ends of an alkyl chain having 3 to 12 carbon atoms, and a polyether skeleton having 2 to 4 carbon atoms.
- examples thereof include a polyether type epoxy compound having a structural unit in which 2 to 10 are continuously bonded.
- thermosetting compound preferably contains a thermosetting compound having an isocyanulu skeleton.
- thermosetting compound having an isocyanulous skeleton examples include triisocyanurate-type epoxy compounds, and the TEPIC series (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L) manufactured by Nissan Chemical Industries, Ltd. TEPIC-PAS, TEPIC-VL, TEPIC-UC) and the like.
- thermosetting compound preferably has high heat resistance, and more preferably a novolak type epoxy compound.
- the novolak type epoxy compound has relatively high heat resistance.
- the content of the thermosetting compound in 100% by weight of the conductive paste is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10% by weight or more, and preferably 99% by weight or less. It is more preferably 90% by weight or less, further preferably 80% by weight or less, and particularly preferably 70% by weight or less.
- the content of the thermosetting compound is at least the above lower limit and at least the above upper limit, the solder can be arranged more efficiently on the electrodes, and the insulation reliability between the electrodes can be further effectively improved. , The conduction reliability between the electrodes can be further effectively improved. From the viewpoint of further effectively enhancing the impact resistance, it is preferable that the content of the thermosetting compound is large.
- the content of the epoxy compound in 100% by weight of the conductive paste is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10% by weight or more, preferably 99% by weight or less, more preferably 99% by weight or less. Is 90% by weight or less, more preferably 80% by weight or less, and particularly preferably 70% by weight or less.
- the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrodes, and the insulation reliability between the electrodes can be further effectively improved. The conduction reliability between the soldering can be further effectively improved. From the viewpoint of further enhancing the impact resistance, it is preferable that the content of the epoxy compound is large.
- the conductive paste may contain a thermosetting agent.
- the conductive paste may contain a thermosetting agent together with the thermosetting compound.
- the thermosetting agent heat-cures the thermosetting compound.
- the thermosetting agent is not particularly limited. Examples of the heat curing agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride curing agent, a thermal cation curing agent, and a heat radical generator. Only one type of the thermosetting agent may be used, or two or more types may be used in combination.
- the thermal curing agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent.
- the thermosetting agent is preferably a latent curing agent.
- the latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent or a latent amine curing agent.
- the thermosetting agent may be coated with a polymer substance such as a polyurethane resin or a polyester resin.
- the above imidazole curing agent is not particularly limited.
- Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, and 2,4-diamino-6.
- the above thiol curing agent is not particularly limited.
- examples of the thiol curing agent include trimethylolpropanetris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.
- the above amine curing agent is not particularly limited.
- examples of the amine curing agent include hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5] undecane and bis (4).
- the acid anhydride curing agent is not particularly limited, and any acid anhydride used as a curing agent for a thermosetting compound such as an epoxy compound can be widely used.
- the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrochloride phthalic acid, hexahydrohydride phthalic acid, methylhexahydrohydride phthalic acid, methyltetrahydrohydride phthalic acid, and methylbutenyltetrahydrochloride phthalic acid.
- Anhydride of phthalic acid derivative maleic anhydride, nadic acid anhydride, methylnadic acid anhydride, glutaric anhydride, succinic anhydride, glycerinbis anhydrous trimellitic acid monoacetate, ethylene glycol bis anhydrous trimellitic acid, etc.
- Acid anhydride curing agent trifunctional acid anhydride curing agent such as trimellitic anhydride, and pyromellitic anhydride, benzophenonetetracarboxylic acid anhydride, methylcyclohexenetetracarboxylic acid anhydride, polyazelineic acid anhydride, etc. Examples thereof include an acid anhydride curing agent having four or more functions.
- the thermal cation initiator is not particularly limited.
- Examples of the thermal cation initiator include an iodonium-based cation curing agent, an oxonium-based cation curing agent, a sulfonium-based cation curing agent, and the like.
- Examples of the iodine-based cationic curing agent include bis (4-tert-butylphenyl) iodinenium hexafluorophosphate and the like.
- Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
- Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.
- thermal radical generator is not particularly limited.
- thermal radical generator include azo compounds and organic peroxides.
- examples of the azo compound include azobisisobutyronitrile (AIBN) and the like.
- examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
- the content of the thermosetting agent is not particularly limited. With respect to 100 parts by weight of the thermosetting compound, the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, and more preferably. It is 100 parts by weight or less, more preferably 75 parts by weight or less.
- the content of the thermosetting agent is at least the above lower limit, it is easy to sufficiently cure the conductive paste.
- the content of the thermosetting agent is not more than the above upper limit, it becomes difficult for the surplus thermosetting agent that was not involved in the curing to remain after curing, and the heat resistance of the cured product is further increased.
- the conductive paste may contain a curing accelerator.
- the curing accelerator is not particularly limited.
- the curing accelerator preferably acts as a curing catalyst in the reaction between the thermosetting compound and the thermosetting agent.
- the curing accelerator preferably acts as a curing catalyst in the reaction with the thermosetting compound.
- As the curing accelerator only one kind may be used, or two or more kinds may be used in combination.
- the curing accelerator examples include phosphonium salts, tertiary amines, tertiary amine salts, quaternary onium salts, tertiary phosphines, crown ether complexes, amine complex compounds, and phosphonium ylides.
- the curing accelerator includes imidazole compound, isocyanurate of imidazole compound, dicyandiamide, derivative of dicyandiamide, melamine compound, derivative of melamine compound, diaminomaleonitrile, diethylenetriamine, triethylenetetramine, tetraethylenepentamine.
- Amine compounds such as bis (hexamethylene) triamine, triethanolamine, diaminodiphenylmethane, organic acid dihydrazide, 1,8-diazabicyclo [5,4,0] undecene-7,3,9-bis (3-aminopropyl) -2,4,8,10-Tetraoxaspiro [5,5] undecane, boron trifluoride, boron trifluoride-amine complex compound, and triphenylphosphine, tricyclohexylphosphine, tributylphosphine, methyldiphenylphosphine, etc.
- Organic phosphorus compounds and the like can be mentioned.
- the above phosphonium salt is not particularly limited.
- the phosphonium salt include tetranormal butyl phosphonium bromide, tetranormal butyl phosphonium O-O diethyl dithiophosphate, methyl tributyl phosphonium dimethyl phosphate, tetranormal butyl phosphonium benzotriazole, tetranormal butyl phosphonium tetrafluoroborate, and tetranormal butyl.
- Phosphornium tetraphenylborate and the like can be mentioned.
- the content of the curing accelerator is appropriately selected so that the thermosetting compound can be cured well.
- the content of the curing accelerator with respect to 100 parts by weight of the thermosetting compound is preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, preferably 10 parts by weight or less, and more preferably 8 parts by weight. It is less than the weight part.
- the thermosetting compound can be satisfactorily cured.
- the solder can be arranged more efficiently on the electrodes, and the conduction reliability between the upper and lower electrodes to be connected can be improved. Can be enhanced even more effectively.
- the conductive paste may be used, for example, as a flux, a filler, a bulking agent, a softening agent, a plasticizer, a thickener, a thixo agent, a leveling agent, a polymerization catalyst, a curing catalyst, a colorant, and an antioxidant. It may contain various additives such as an agent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
- the following materials were prepared for the conductive paste.
- Thermosetting component (thermosetting compound): Thermosetting compound 1: Phenol novolac type epoxy compound, "DEN431” manufactured by Dow Chemical Co., Ltd.
- Thermosetting compound 2 Bisphenol F type epoxy compound, "DER354" manufactured by Dow Chemical Co., Ltd.
- Thermosetting component (curing accelerator): "Boron trifluoride ethylamine” manufactured by Tokyo Chemical Industry Co., Ltd.
- Solder particles SnBi solder particles, "Sn42Bi58ST-3" manufactured by Mitsui Mining & Smelting Co., Ltd., melting point 138 ° C.
- benzylamine adibic acid salt A mixed solvent of 200 g of water and 350 g of ethanol as a reaction solvent was added to a glass beaker, 70.719 g of adipic acid (manufactured by Tokyo Chemical Industry Co., Ltd., melting point 153 ° C.) was added, and the mixture was dissolved at room temperature until uniform. Then, 96.452 g of benzylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was heated and stirred at 100 ° C. for about 10 minutes to obtain a mixed solution. The obtained mixed solution was placed in a refrigerator at 5 ° C to 10 ° C and left overnight. The precipitated crystals were separated by filtration, washed with water, and vacuum dried to obtain a flux.
- adipic acid manufactured by Tokyo Chemical Industry Co., Ltd., melting point 153 ° C.
- the melting point of the solder particles and the melting point of the flux were measured using a differential scanning calorimetry (DSC) device (“EXSTAR DSC7020” manufactured by SII).
- Metal mask A having a substantially shaped opening X shown in FIG. 1.
- Maximum opening width A of opening X 170 ⁇ m
- Minimum opening width B of the throttle part 52 ⁇ m
- Opening length of opening X 380 ⁇ m
- Metal mask B having a substantially shaped opening X shown in FIG. 1.
- Maximum opening width A of opening X 165 ⁇ m
- Minimum opening width B of the throttle part 67 ⁇ m
- Opening length of opening X 385 ⁇ m
- Metal mask C having a substantially shaped opening X shown in FIG. 1.
- Maximum opening width A of opening X 162 ⁇ m
- Minimum opening width B 77 ⁇ m
- Opening length of opening X 391 ⁇ m
- Metal mask D having a substantially shaped opening X shown in FIG. 2.
- Maximum opening width A of opening X 162 ⁇ m
- Minimum opening width B of the throttle part 91 ⁇ m
- Opening length of opening X 377 ⁇ m
- Contours at both ends of the opening X in the length direction Curve Contour of the aperture: Straight line
- Metal mask E having a substantially shaped opening X shown in FIG. 2.
- Maximum opening width A of opening X 140 ⁇ m
- Minimum opening width B of the throttle part 98 ⁇ m
- Opening length of the opening 335 ⁇ m
- Metal mask F having a substantially shaped opening Y shown in FIG. 7.
- Maximum opening width A of opening Y 170 ⁇ m
- Minimum opening width B of the throttle part 41 ⁇ m
- Opening length of opening Y 380 ⁇ m
- Contour of the aperture curve
- Metal mask G having a substantially shaped opening Y shown in FIG.
- Maximum opening width A of opening Y 160 ⁇ m
- Minimum opening width B of the throttle part 120 ⁇ m
- Opening length of opening Y 365 ⁇ m
- Contours at both ends of the opening Y in the length direction Curve Contour of the aperture: Straight line
- Metal mass H having an opening having a rectangular shape in a plan view Minimum opening width and maximum opening width: 140 ⁇ m Opening length of the opening: 335 ⁇ m Ratio (minimum opening width / maximum opening width): 1 Contours at both ends in the length direction of the opening: straight line No iris (all contours are straight)
- Example 1 Preparation of Anisotropic Conductive Paste 100 parts by weight of a thermosetting compound (1:50 parts by weight of a thermosetting compound, 2:50 parts by weight of a thermosetting compound), 30 parts by weight of a curing accelerator, and solder particles. 162 parts by weight and 3 parts by weight of flux were mixed to obtain an anisotropic conductive paste.
- FR-4 substrate, thickness 0.5 mm a glass epoxy substrate having a surface (upper surface) of 140 ⁇ m and an electrode thickness of 15 ⁇ m was prepared.
- one first electrode faces the first wide portion of the opening, and the other first electrode is the first electrode of the opening.
- the metal mask A was arranged so as to face the wide portion of 2.
- the anisotropic conductive paste was placed on the upper surface of the member to be connected.
- the temperature of the anisotropic conductive paste layer is heated to reach the melting point of the solder particles ⁇ 10 ° C. 30 seconds after the start of temperature rise, and the temperature is further increased 30 seconds to 40 seconds after the start of temperature rise. Retained.
- the temperature of the anisotropic conductive paste layer is heated so that the temperature of the anisotropic conductive paste layer becomes the melting point of the solder particles + 80 ° C. 70 seconds after the start of temperature rise to cure the anisotropic conductive paste layer.
- a test connection structure (P) was obtained. No pressurization was performed during heating. In the obtained test connection structure (P), the second connection target member is not used.
- first electrode faces the first wide portion of the opening, and the other first electrode is the first electrode of the opening.
- the metal mask A was arranged so as to face the wide portion of 2.
- the anisotropic conductive paste was placed on the upper surface of the first connection target member (first placement step).
- the metal mask A was removed, and the second connection target member was placed on the upper surface of the anisotropic conductive paste so that the first electrode and the second electrode face each other (second placement step).
- no pressurization was performed.
- the weight of the flexible printed substrate is added to the anisotropic conductive paste layer.
- the temperature of the anisotropic conductive paste layer is heated to reach the melting point of the solder particles ⁇ 10 ° C.
- connection structure (Q) was obtained. No pressurization was performed during heating.
- the obtained connection structure (Q) includes a second connection target member.
- Example 2 to 5 and Comparative Examples 1 and 2 A test connection structure (P) and a connection structure (Q) were obtained in the same manner as in Example 1 except that the types of metal masks were changed as shown in Tables 1 and 2.
- Example 3 The test connection is the same as in Example 1 except that the metal mask H is used and the metal mask H is arranged so that the opening of the metal mask H faces the two adjacent first electrodes. A structure (P) and a connection structure (Q) were obtained.
- the transfer rate (transfer area rate and transfer height rate) is calculated as follows.
- Transfer area ratio is 80% or more
- Transfer area ratio is 50% or more and less than 80%
- Transfer area ratio is less than 50%
- the coefficient of variation (CV value) of the transfer rate was calculated as follows. Calculated using the CV value (CV value of transfer area ratio) calculated using the standard deviation of the transfer area ratio and the average value of the transfer area ratio, and the standard deviation of the transfer height ratio and the average value of the transfer height ratio. The printability (2) was determined by comparing with the CV value (CV value of the transfer height ratio) and using the larger value.
- CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of transfer area rate or transfer height rate Dn: Average value of transfer area rate or transfer height rate
- test connection structure (P) adjacent first electrodes (X) and (Y) in which a conductive paste is arranged at one opening.
- the second electrodes (X) and (Y) were arranged so as to face the same, and a test connection structure (P2) was obtained.
- an X-ray transmission image of the test connection structure (P2) was acquired using an X-ray transmission device (“MF100C” manufactured by Hitachi Engineering Co., Ltd.).
- image processing of the X-ray transmission image is performed using the image processing software "ImageJ", and the amount of solder (X) arranged between the first electrode (X) and the second electrode (X) is determined.
- the amount of solder (Y) arranged between the first electrode (Y) and the second electrode (Y) was converted into a pixel value.
- the total of the solder amount (X) and the solder amount (Y) was set to 100%, and the absolute value (Z) of the difference between the solder amount (X) and the solder amount (Y) was measured.
- Absolute value (Z) was obtained for each of the 200 electrodes, and the average value of the absolute value (Z) and the maximum value of the absolute value (Z) were calculated.
- the average value of the absolute value (Z) is preferably less than 9%.
- connection structure (Q) of Examples 1 to 5 tend to be superior in uniformity of the amount of solder aggregated on each electrode as compared with the connection structures (Q) of Comparative Examples 1 to 3.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
メタルマスクの1つの開口部で隣り合う2つの電極上に導電ペーストを良好に配置することができ、かつ各電極上に凝集するはんだ量の均一性を高めることができる接続構造体の製造方法を提供する。 本発明に係る接続構造体の製造方法は、複数の第1の電極を表面に有する第1の接続対象部材の表面上に、メタルマスクを用いて、導電ペーストを配置する第1の配置工程を備え、メタルマスクは、長さ方向と幅方向とを有する開口部を有し、前記開口部は、特定の絞り部と、特定の第1の幅広部と、特定の第2の幅広部とを有し、絞り部の最小開口幅B/開口部の最大開口幅Aが0.3以上0.7以下であり、第1の配置工程において、隣り合う第1の電極のうち、一方の第1の電極が第1の幅広部と対向するように、かつ、他方の第1の電極が第2の幅広部と対向するように、メタルマスクを配置する。
Description
本発明は、はんだ粒子を含む導電ペーストを用いた接続構造体の製造方法に関する。
はんだ粒子を含む導電ペーストを電極上に配置する方法として、メタルマスクを用いる方法が知られている。この方法では、メタルマスクの開口部を介して、導電ペーストが電極上に配置される。
下記の特許文献1には、2つの電極の各接合面の少なくとも一方にメタルマスクの開口部を介して半田を供与した後、接合面同士を重ね合わせて、各接合面間の半田を加熱により一旦溶融させた後に半田を固化させる処理を経て、2つの電極を接合する接合方法が開示されている。2つの電極のうちの一方は、電子部品の接合側に配置されており、他方は回路基板の接合側に配置されている。上記メタルマスクの開口部の形状は、Y軸方向に平行な直線部と、上記直線部の両端から各々曲線でX軸に向け絞った曲線部とにより輪郭が構成されている形状であり、2つの茶碗型形状がY軸に線対称に並んで配置された形状であり、鼓型形状である。
特許文献1に記載のように、従来のメタルマスクを用いた導電ペーストの配置方法では、メタルマスクの1つの開口部を介して、1つの電極上に導電ペーストが配置される。また、従来の方法では、電極部分にのみ導電ペーストを配置する必要がある。
本発明の目的は、メタルマスクの1つの開口部で隣り合う2つの電極上に導電ペーストを良好に配置することができ、かつ各電極上に凝集するはんだ量の均一性を高めることができる接続構造体の製造方法を提供することである。
本発明の広い局面によれば、複数の第1の電極を表面に有する第1の接続対象部材の表面上に、メタルマスクを用いて、複数のはんだ粒子を含む導電ペーストを配置する第1の配置工程と、前記導電ペーストの前記第1の接続対象部材側とは反対の表面上に、複数の第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する第2の配置工程と、前記はんだ粒子の融点以上に前記導電ペーストを加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電ペーストにより形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する接続工程とを備え、前記メタルマスクは、長さ方向と幅方向とを有する開口部を有し、前記開口部は、前記長さ方向の中央部分に開口幅が小さい絞り部と、前記絞り部の前記長さ方向の一方側に連なっておりかつ前記絞り部よりも開口幅の大きい第1の幅広部と、前記絞り部の前記長さ方向の他方側に連なっておりかつ前記絞り部よりも開口幅の大きい第2の幅広部とを有し、前記開口部の最大開口幅をAとし、前記絞り部の最小開口幅をBとしたときに、B/Aが0.3以上0.7以下であり、前記第1の配置工程において、隣り合う前記第1の電極のうち、一方の前記第1の電極が前記第1の幅広部と対向するように、かつ、他方の前記第1の電極が前記第2の幅広部と対向するように、前記メタルマスクを配置する、接続構造体の製造方法が提供される。
本発明に係る接続構造体の製造方法のある特定の局面では、前記開口部の前記長さ方向の両端の輪郭が、曲線を含む。
本発明に係る接続構造体の製造方法のある特定の局面では、前記第1の接続対象部材は、前記第1の電極側の表面の前記第1の電極が存在しない部分に、凸状の仕切り部を有し、前記第1の配置工程において、前記仕切り部の少なくとも一部が前記絞り部と対向するように、前記メタルマスクを配置する。
本発明に係る接続構造体の製造方法のある特定の局面では、前記絞り部の輪郭が、曲線を含む。
本発明に係る接続構造体の製造方法のある特定の局面では、前記絞り部の輪郭が、直線を含む。
本発明に係る接続構造体の製造方法では、メタルマスクの1つの開口部で隣り合う2つの電極上に導電ペーストを良好に配置することができ、かつ各電極上に凝集するはんだ量の均一性を高めることができる。
以下、本発明を詳細に説明する。
(接続構造体の製造方法)
本発明に係る接続構造体の製造方法は、複数の第1の電極を表面に有する第1の接続対象部材の表面上に、メタルマスクを用いて、複数のはんだ粒子を含む導電ペーストを配置する第1の配置工程を備える。本発明に係る接続構造体の製造方法は、上記導電ペーストの上記第1の接続対象部材側とは反対の表面上に、複数の第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する第2の配置工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の融点以上に上記導電ペーストを加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電ペーストにより形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する接続工程を備える。
本発明に係る接続構造体の製造方法は、複数の第1の電極を表面に有する第1の接続対象部材の表面上に、メタルマスクを用いて、複数のはんだ粒子を含む導電ペーストを配置する第1の配置工程を備える。本発明に係る接続構造体の製造方法は、上記導電ペーストの上記第1の接続対象部材側とは反対の表面上に、複数の第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する第2の配置工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の融点以上に上記導電ペーストを加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電ペーストにより形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する接続工程を備える。
本発明に係る接続構造体の製造方法では、上記メタルマスクは、以下の開口部Xを有する。
開口部Xは、以下の(1)~(3)の全てを満足する開口部である。
(1)長さ方向と幅方向とを有する。
(2)上記長さ方向の中央部分に開口幅が小さい絞り部と、上記絞り部の上記長さ方向の一方側に連なっておりかつ上記絞り部よりも開口幅の大きい第1の幅広部と、上記絞り部の上記長さ方向の他方側に連なっておりかつ上記絞り部よりも開口幅の大きい第2の幅広部とを有する。
(3)開口部の最大開口幅をAとし、上記絞り部の最小開口幅をBとしたときに、B/Aが0.3以上0.7以下である。
本発明に係る接続構造体の製造方法では、上記第1の配置工程において、隣り合う上記第1の電極のうち、一方の上記第1の電極が上記第1の幅広部と対向するように、かつ、他方の上記第1の電極が上記第2の幅広部と対向するように、上記メタルマスクを配置する。
本発明に係る接続構造体の製造方法では、上記の構成が備えられているので、メタルマスクの1つの開口部で隣り合う2つの電極上に同時に導電ペーストを良好に配置することができ、かつ各電極上に凝集するはんだ量の均一性を高めることができる。すなわち、本発明に係る接続構造体の製造方法では、上記の構成が備えられているので、印刷性と、各電極上に凝集するはんだ量の均一性との双方を高めることができる。この結果、得られる接続構造体の複数の電極のそれぞれにおいて、導通信頼性を高めることができ、接続不良を防ぐことができる。
従来のメタルマスクを用いた導電ペーストの配置方法では、メタルマスクの1つの開口部を介して、1つの電極上に導電ペーストが配置される。また、従来の方法では、電極部分にのみ導電ペーストを配置する必要がある。近年、電子部品の小型化に伴って、メタルマスクの開口部も小径化している。しかしながら、メタルマスクの開口面積が小さい場合には、開口部を介して、導電ペーストを電極上に良好に配置することができず、印刷性が低下することがある。
なお、本発明者らは、開口面積を過度に小さくしないように、例えば、矩形状の開口部を有するメタルマスクを用いて、1つの矩形状の開口部を介して、隣り合う2つの電極上に導電ペーストを配置した場合には、各電極上に凝集するはんだ量に偏りが生じやすいことを見出した。
このような課題に対して、本発明者らは、開口部Xを有するメタルマスクを用いることで、メタルマスクの1つの開口部で隣り合う2つの電極上に同時に導電ペーストを良好に配置することができ、かつ各電極上に凝集するはんだ量の均一性を高めることができることを見出した。
本発明では、電極間の導電接続時に、複数のはんだ粒子が、上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に配置することができる。また、複数のはんだ粒子の一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだ粒子の量をかなり少なくすることができる。結果として、本発明では、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。
(メタルマスク)
上記メタルマスクは、上述した(1)~(3)の全てを満足する開口部Xを有する。上記メタルマスクは、開口部Xを1つのみ有していてもよく、2つ以上有していてもよい。上記メタルマスクは、開口部Xを3つ以上有していてもよく、5つ以上有していてもよく、10個以上有していてもよい。上記メタルマスクが複数の開口部Xを有する場合に、複数の開口部Xの形状は、それぞれ同一であってもよく、異なっていてもよい。また、上記メタルマスクは、開口部X以外の開口部を有していてもよい。
上記メタルマスクは、上述した(1)~(3)の全てを満足する開口部Xを有する。上記メタルマスクは、開口部Xを1つのみ有していてもよく、2つ以上有していてもよい。上記メタルマスクは、開口部Xを3つ以上有していてもよく、5つ以上有していてもよく、10個以上有していてもよい。上記メタルマスクが複数の開口部Xを有する場合に、複数の開口部Xの形状は、それぞれ同一であってもよく、異なっていてもよい。また、上記メタルマスクは、開口部X以外の開口部を有していてもよい。
図1は、本発明において用いられるメタルマスクの第1の例を模式的に示す平面図である。図1では、1つの開口部Xの周辺が拡大して示されている。なお、図1及び後述の図では、図示の便宜上、寸法及び大きさは、実際の寸法及び大きさから適宜変更している。
図1に示すメタルマスク10は、長さ方向Lと幅方向Wとを有する開口部Xを有する。図1において、左右方向が開口部Xの長さ方向Lであり、上下方向が開口部Xの幅方向Wである。長さ方向Lと幅方向Wとは、互いに直交する方向である。長さ方向Lは、幅方向Wよりも大きい。
メタルマスク10は、第1の幅広部11と、絞り部13と、第2の幅広部12とを有する開口部Xを有する。第1の幅広部11と、絞り部13と、第2の幅広部12とにより、開口部Xが構成されている。絞り部13は、開口部Xの長さ方向Lの中央部分に存在する開口幅が小さい部分である。絞り部13は、第1の幅広部11及び第2の幅広部12よりも開口幅が小さい部分である。第1の幅広部11は、絞り部13の長さ方向Lの一方側に連なっておりかつ絞り部13よりも開口幅の大きい部分である。第2の幅広部12は、絞り部13の長さ方向Lの他方側に連なっておりかつ絞り部13よりも開口幅の大きい部分である。
開口部Xの最大開口幅をAとし、絞り部13の最小開口幅をBとしたときに、B/Aは、0.3以上0.7以下である。最大開口幅Aは、第1の幅広部及び第2の幅広部のうちの少なくとも一方に存在する。第1の幅広部及び第2の幅広部の少なくとも一方の開口幅が、開口部Xの最大開口幅Aである。第1の幅広部と第2の幅広部との開口幅が同じである場合に、第1の幅広部及び第2の幅広部の双方の開口幅が、開口部Xの最大開口幅Aである。
開口部Xの長さ方向Lの両端の輪郭は、曲線である。第1の幅広部11及び第2の幅広部12はそれぞれ、曲線により構成されている。絞り部13の輪郭は、曲線である。開口部Xは、直線により構成されている部分を有さない。平面視したときの開口部Xの形状は、所謂、瓢箪形状である。
図2は、本発明において用いられるメタルマスクの第2の例を模式的に示す平面図である。図2では、1つの開口部Xの周辺が拡大して示されている。
図2に示すメタルマスク10Aは、長さ方向Lと幅方向Wとを有する開口部Xを有する。図2において、左右方向が開口部Xの長さ方向Lであり、上下方向が開口部Xの幅方向Wである。長さ方向Lと幅方向Wとは、互いに直交する方向である。長さ方向Lは、幅方向Wよりも大きい。
メタルマスク10Aは、第1の幅広部11Aと、絞り部13Aと、第2の幅広部12Aとを有する開口部Xを有する。第1の幅広部11Aと、絞り部13Aと、第2の幅広部12Aとにより、開口部Xが構成されている。絞り部13Aは、開口部Xの長さ方向Lの中央部分に存在する開口幅が小さい部分である。絞り部13Aは、第1の幅広部11A及び第2の幅広部12Aよりも開口幅が小さい部分である。第1の幅広部11Aは、絞り部13Aの長さ方向Lの一方側に連なっておりかつ絞り部13Aよりも開口幅の大きい部分である。第2の幅広部12Aは、絞り部13Aの長さ方向Lの他方側に連なっておりかつ絞り部13Aよりも開口幅の大きい部分である。
開口部Xの最大開口幅をAとし、絞り部13Aの最小開口幅をBとしたときに、B/Aは、0.3以上0.7以下である。最大開口幅Aは、第1の幅広部11A及び第2の幅広部12Aのうちの少なくとも一方に存在する。
開口部Xの長さ方向Lの両端の輪郭は、曲線である。第1の幅広部11A及び第2の幅広部12Aはそれぞれ、曲線により構成されている。絞り部13Aの輪郭は、直線である。開口部Xは、曲線により構成されている部分と直線により構成されている部分とを有する。平面視したときの開口部Xの形状は、所謂、ダンベル形状である。
本発明では、開口部Xの長さ方向の両端の輪郭は、曲線を含んでいてもよく、直線を含んでいてもよい。本発明では、開口部Xの長さ方向の両端の輪郭は、曲線であってもよく、直線であってもよい。長さ方向の両端が直線である開口部Xでは、例えば、平面視したときの形状が、鼓形状の開口部であるが、これに限られない。電極上に導電ペーストを良好に配置する観点からは、開口部Xの長さ方向の両端の輪郭は、曲線を含むことが好ましく、曲線であることが好ましい。電極上に導電ペーストを良好に配置する観点からは、上記第1の幅広部の輪郭及び上記第2の幅広部の輪郭はそれぞれ、曲線を含むことが好ましく、曲線であることが好ましい。なお、開口部Xの長さ方向の両端が点状である場合に、該点状部分とそれに連なる部分とが曲線であれば(即ち点状部分が曲線の一部を構成していれば)、開口部Xの長さ方向の両端の輪郭は、曲線とみなす。
上記絞り部の輪郭は、曲線を含んでいてもよく、直線を含んでいてもよく、曲線と直線とを含んでいてもよい。上記絞り部の輪郭は、曲線であってもよく、直線であってもよく、曲線と直線とにより構成されていてもよい。電極上に導電ペーストを良好に配置する観点からは、上記絞り部の輪郭は、曲線を含むことが好ましく、曲線であることが好ましい。開口部Xを有するメタルマスクを容易に作製する観点からは、上記絞り部の輪郭は、直線を含むことが好ましく、直線であることが好ましい。
電極上に導電ペーストを良好に配置する観点からは、開口部Xが有する上記絞り部の数は1つであることが好ましい。電極上に導電ペーストを良好に配置する観点からは、開口部Xにおいて、上記第1の幅広部と上記第2の幅広部とに連なる絞り部は1つであることが好ましい。電極上に導電ペーストを良好に配置する観点からは、開口部Xにおいて、上記第1の幅広部に連なる絞り部は1つであり、かつ上記第2の幅広部に連なる絞り部は1つであることが好ましい。
上記開口部Xの輪郭の長さを100%としたときに、曲線で構成されている輪郭の長さの割合が、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。なお、上記開口部Xの輪郭の長さを100%としたときに、曲線で構成されている輪郭の長さの割合は、100%であってもよく、100%未満であってもよく、95%以下であってもよい。
上記開口部Xの輪郭の長さを100%としたときに、直線で構成されている輪郭の長さの割合が、15%以下であることが好ましく、12%以下であることがより好ましく、10%以下であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。なお、上記開口部Xの輪郭の長さを100%としたときに、直線で構成されている輪郭の長さの割合は、0%であってもよく、0%を超えてもよく、5%以上であってもよい。
開口部Xの長さ方向の両端の輪郭が曲線を含む又は曲線であるメタルマスクにおいて、上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、曲線で構成されている輪郭の長さの割合が、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、曲線で構成されている輪郭の長さの割合は、100%であってもよく、100%未満であってもよく、95%以下であってもよい。
また、上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合が、15%以下であることが好ましく、12%以下であることがより好ましく、10%以下であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合は、0%であってもよく、0%を超えてもよく、5%以上であってもよい。
上記絞り部の輪郭が曲線を含む又は曲線であるメタルマスクにおいて、上記絞り部の輪郭の長さの合計を100%としたときに、曲線で構成されている輪郭の長さの割合が、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合は、100%であってもよく、100%未満であってもよく、95%以下であってもよい。
また、上記絞り部の輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合が15%以下であることが好ましく、12%以下であることがより好ましく、10%以下であることがさらに好ましい。この場合には、電極上に導電ペーストをより一層良好に配置することができる。上記第1の幅広部と上記第2の幅広部との輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合は、0%であってもよく、0%を超えてもよく、5%以上であってもよい。
開口部Xを有するメタルマスクを容易に作製する観点からは、上記絞り部の輪郭が直線を含む又は直線であるメタルマスクにおいて、上記絞り部の輪郭の長さの合計を100%としたときに、直線で構成されている輪郭の長さの割合が、0%を超えてもよく、5%以上であってもよく、50%以上であってもよく、100%以下であってもよい。
上記開口部Xは、長さ方向の中央の位置において、幅方向に平行な直線を対称軸として、線対称であってもよく、線対称でなくてもよい。上記開口部Xは、長さ方向の中央の位置において、長さ方向に平行な直線を対称軸として、線対称であってもよく、線対称でなくてもよい。
本発明の効果を発揮させるために、上記絞り部の最小開口幅(B)の、開口部Xの最大開口幅(A)に対する比(B/A)は、0.3以上0.7以下である。上記比(B/A)が0.3未満であると、開口部の大きさが小さくなりすぎるために、導電ペーストを配置する際にばらつきが大きくなり、印刷性が低下しやすい。上記比(B/A)が0.7を超えると、対向する電極の間に配置されるはんだ量が増加したときに、各電極上に凝集するはんだ量の均一性が低下しやすい。上記比(B/A)は、好ましくは0.35以上、より好ましくは0.4以上であり、好ましくは0.5以下、より好ましくは0.45以下である。上記比(B/A)が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮させることができる。特に、上記比(B/A)が上記下限以上であると、印刷性をより一層高めることができ、上記比(B/A)が上記上限以下であると、各電極上に凝集するはんだ量の均一性をより一層高めることができる。
開口部Xの開口幅は、例えば第1の電極の上下方向の長さとの関係により設定することができる。第1の配置工程において、隣り合う第1の電極のうち、一方の第1の電極が、開口部Xの第1の幅広部11Aと対向し、かつ、他方の第1の電極が、開口部Xの第2の幅広部12Aと対向する。
開口部Xの最大開口幅(A)は、第1の電極の上下方向の長さに対して、好ましくは1.0倍以上、より好ましくは1.02倍以上であり、好ましくは1.1倍以下、より好ましくは1.08倍以下である。
上記絞り部の最小開口幅(B)は、第1の電極の上下方向の長さに対して、好ましくは0.45倍以上、より好ましくは0.47倍以上であり、好ましくは0.65倍以下、より好ましくは0.48倍以下である。
開口部Xの開口長さは、好ましくは隣り合う第1の電極の左右方向の長さの合計に対して、好ましくは1.13倍以上、より好ましくは1.15倍以上であり、好ましくは1.19倍以下、より好ましくは1.18倍以下である。
開口部Xの開口面積は、隣り合う第1の電極の面積の合計に対して、好ましくは0.95倍以上、より好ましくは0.97倍以上であり、好ましくは1.04倍以下、より好ましくは1.02倍以下である。上記開口面積が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮させることができる。
長さ方向の中央の位置において、幅方向に平行な直線を対称軸として、開口部Xを開口部X1と開口部X2とに2分割したときに、一方側の開口部X1の開口面積と他方側の開口部X2の開口面積との差は小さいことが好ましい。一方側の開口部X1の開口面積の他方側の開口部X2の開口面積は同じであるか、又は、一方側の開口部X1の開口面積の他方側の開口部X2の開口面積のうち、大きい方の開口面積は小さい方の開口面積の1.3倍以下(より好ましくは1.2倍以下、さらに好ましくは1.1倍以下)であることが好ましい。
上記メタルマスクは、開口部Xを複数有することが好ましい。この場合には、より多くの電極上、例えば4個以上の電極上に、導電ペーストを配置することができる。
図6は、比較例2で用いたメタルマスクを模式的に示す平面図である。図6では、1つの開口部(開口部Yと称することがある)の周辺が拡大して示されている。
図6に示すメタルマスク100は、長さ方向Lと幅方向Wとを有する開口部Yを有する。図6において、左右方向が開口部Yの長さ方向Lであり、上下方向が開口部Yの幅方向Wである。長さ方向Lと幅方向Wとは、互いに直交する方向である。長さ方向Lは、幅方向Wよりも大きい。
メタルマスク100は、第1の幅広部101と、絞り部103と、第2の幅広部102とを有する開口部Yを有する。第1の幅広部101と、絞り部103と、第2の幅広部102とにより、開口部Yが構成されている。絞り部103は、開口部Yの長さ方向Lの中央部分に存在する開口幅が小さい部分である。絞り部103は、第1の幅広部101及び第2の幅広部102よりも開口幅が小さい部分である。第1の幅広部101は、絞り部103の長さ方向Lの一方側に連なっておりかつ絞り部103よりも開口幅の大きい部分である。第2の幅広部102は、絞り部103の長さ方向Lの他方側に連なっておりかつ絞り部103よりも開口幅の大きい部分である。
開口部Yの最大開口幅をAとし、絞り部103の最小開口幅をBとしたときに、B/Aは、0.75である。最大開口幅Aは、第1の幅広部101及び第2の幅広部102のうちの少なくとも一方に存在する。
開口部Yの長さ方向Lの両端の輪郭は、曲線である。第1の幅広部101及び第2の幅広部102はそれぞれ、曲線により構成されている。絞り部103の輪郭は、直線である。開口部Yは、曲線により構成されている部分と直線により構成されている部分とを有する。平面視したときの開口部Yの形状は、所謂、ダンベル形状である。
メタルマスク100では、上記比(B/A)が0.7を超えるので、電極間の導電接続時に、複数のはんだ粒子の一部が、接続されてはならない横方向の電極間に配置され易く、接続されてはならない横方向の電極間に配置されるはんだ粒子の量が多くなる。結果として、メタルマスク100を用いた場合は、接続されるべき上下の電極間の導通信頼性及び接続されてはならない隣接する横方向の電極間の絶縁信頼性が低下する。
図7は、比較例1で用いたメタルマスクを模式的に示す平面図である。図7では、1つの開口部(開口部Yと称することがある)の周辺が拡大して示されている。
図7に示すメタルマスク100Aは、長さ方向Lと幅方向Wとを有する開口部Yを有する。図7において、左右方向が開口部Yの長さ方向Lであり、上下方向が開口部Yの幅方向Wである。長さ方向Lと幅方向Wとは、互いに直交する方向である。長さ方向Lは、幅方向Wよりも大きい。
図1に示すメタルマスク10と、図7に示すメタルマスク100Aとでは、比(B/A)が異なる。すなわち、図7に示すメタルマスク100Aでは、開口部Yの最大開口幅をAとし、絞り部103の最小開口幅をBとしたときに、B/Aは、0.24である。最大開口幅Aは、第1の幅広部101A及び第2の幅広部102Aのうちの少なくとも一方に存在する。
メタルマスク100Aでは、上記比(B/A)が0.3未満であるので、導電ペーストを配置する際にばらつきが大きくなり、印刷性が低下しやすい。すなわち、メタルマスク100Aでは、1つの開口部Yで隣り合う2つの電極上に同時に導電ペーストを良好に配置することができない。
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
(第1の配置工程)
図3(a)は、本発明の第1の実施形態に係る接続構造体の製造方法の第1の配置工程を説明するための平面図であり、図3(b)は、本発明の第1の実施形態に係る接続構造体の製造方法の第1の配置工程を説明するための断面図である。図3(b)は、図3(a)のI-I線に沿う断面図である。図3では、図1に示すメタルマスク10が用いられている。
図3(a)は、本発明の第1の実施形態に係る接続構造体の製造方法の第1の配置工程を説明するための平面図であり、図3(b)は、本発明の第1の実施形態に係る接続構造体の製造方法の第1の配置工程を説明するための断面図である。図3(b)は、図3(a)のI-I線に沿う断面図である。図3では、図1に示すメタルマスク10が用いられている。
第1の配置工程では、複数の第1の電極1aを表面(上面)に有する第1の接続対象部材1の表面上に、メタルマスク10を用いて、導電ペースト3を配置する。本実施形態では、導電ペースト3は、複数のはんだ粒子3Aと、熱硬化性成分3Bと、フラックスとを含む。導電ペースト3は、熱硬化性成分3Bとして、熱硬化性化合物と熱硬化剤とを含む。
具体的には、以下のようにして、導電ペースト3が配置される。
隣り合う第1の電極1aのうち、一方の第1の電極1aが、開口部Xの第1の幅広部11と対向するように、かつ、他方の第1の電極1aが、開口部Xの第2の幅広部12と対向するように、メタルマスク10を配置する。次いで、メタルマスク10の上面部分から、導電ペースト3を塗布し、開口部Xを介して、導電ペースト3を第1の接続対象部材1の表面上に配置する。導電ペースト3の配置後に、はんだ粒子3Aは、一方の第1の電極1a上と他方の第1の電極1a上との双方に配置されている。
図5は、本発明の第2の実施形態に係る接続構造体の製造方法の第1の配置工程を説明するための断面図である。
図3(b)に示す第1の配置工程と、図5に示す第1の配置工程とでは、第1の接続対象部材の構造が異なる。
図5に示す第1の配置工程では、第1の電極1a側の表面の、第1の電極1aが存在しない部分に、凸状の仕切り部5を有する第1の接続対象部材1Aが用いられている。仕切り部5は、隣り合う第1の電極1a間に配置されている。仕切り部5の高さは、第1の電極1aの高さよりも高い。
仕切り部5を有する第1の接続対象部材1Aを用いることにより、仕切り部5を有さない第1の接続対象部材(例えば図3(b)に示す第1の接続対象部材1)と比べて、各電極上に凝集するはんだ量の均一性をより一層高めることができる。
仕切り部5を有する第1の接続対象部材1Aを用いる場合の第1の配置工程では、仕切り部5の少なくとも一部が絞り部13と対向するように、メタルマスク10を配置する。その後、第1の実施形態と同様にして、導電ペースト3が配置される。なお、仕切り部5は、開口部Xの第1の幅広部11と対向してもよく、対向しなくてもよい。また、仕切り部5は、開口部Xの第2の幅広部12と対向してもよく、対向しなくてもよい。
上記のように、本発明では、凸状の仕切り部を有さない第1の接続対象部材を用いてもよく、凸状の仕切り部を有する第1の接続対象部材を用いてもよい。
上記第1の配置工程後、メタルマスクは、取り除かれることが好ましい。
(第2の配置工程)
図4(c)は、本発明の第1の実施形態に係る接続構造体の製造方法の第2の配置工程を説明するための断面図である。図4(d)は、本発明の第1の実施形態に係る接続構造体の製造方法で得られる接続構造体の断面図である。なお、図4(c),(d)では、凸状の仕切り部を有さない第1の接続対象部材を用いた場合の様子が示されているが、上記仕切り部を有する第1の接続対象部材を用いた場合でも同様である。
図4(c)は、本発明の第1の実施形態に係る接続構造体の製造方法の第2の配置工程を説明するための断面図である。図4(d)は、本発明の第1の実施形態に係る接続構造体の製造方法で得られる接続構造体の断面図である。なお、図4(c),(d)では、凸状の仕切り部を有さない第1の接続対象部材を用いた場合の様子が示されているが、上記仕切り部を有する第1の接続対象部材を用いた場合でも同様である。
第2の電極2aを表面(下面)に有する第2の接続対象部材2を用意する。第2の配置工程では、導電ペースト3の第1の接続対象部材1側とは反対の表面上に、第2の接続対象部材2を配置する。導電ペースト3の表面上に、第2の電極2a側から、第2の接続対象部材2を配置する。このとき、第1の電極1aと第2の電極2aとを対向させる。
(接続工程)
次に、はんだ粒子3Aの融点以上に導電ペースト3を加熱する。好ましくは、熱硬化性成分3B(熱硬化性化合物)の硬化温度以上に導電ペースト3を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子3Aは、第1の電極1aと第2の電極2aとの間に集まる(自己凝集効果)。本発明では、はんだ粒子3Aが、第1の電極1aと第2の電極2aとの間により一層効果的に集まる。また、はんだ粒子3Aは溶融し、互いに接合する。また、熱硬化性成分3Bは熱硬化する。この結果、図4(d)に示すように、第1の接続対象部材1と第2の接続対象部材2とを接続している接続部4が、導電ペースト3により形成され、接続構造体20が得られる。導電ペースト3により接続部4が形成され、複数のはんだ粒子3Aが接合することによってはんだ部4Aが形成され、熱硬化性成分3Bが熱硬化することによって硬化物部4Bが形成される。接続部4中のはんだ部4Aにより、第1の電極1aと第2の電極2aとが、電気的に接続される。はんだ粒子3Aが十分に移動すれば、第1の電極1aと第2の電極2aとの間に位置していないはんだ粒子3Aの移動が開始してから、第1の電極1aと第2の電極2aとの間にはんだ粒子3Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
次に、はんだ粒子3Aの融点以上に導電ペースト3を加熱する。好ましくは、熱硬化性成分3B(熱硬化性化合物)の硬化温度以上に導電ペースト3を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子3Aは、第1の電極1aと第2の電極2aとの間に集まる(自己凝集効果)。本発明では、はんだ粒子3Aが、第1の電極1aと第2の電極2aとの間により一層効果的に集まる。また、はんだ粒子3Aは溶融し、互いに接合する。また、熱硬化性成分3Bは熱硬化する。この結果、図4(d)に示すように、第1の接続対象部材1と第2の接続対象部材2とを接続している接続部4が、導電ペースト3により形成され、接続構造体20が得られる。導電ペースト3により接続部4が形成され、複数のはんだ粒子3Aが接合することによってはんだ部4Aが形成され、熱硬化性成分3Bが熱硬化することによって硬化物部4Bが形成される。接続部4中のはんだ部4Aにより、第1の電極1aと第2の電極2aとが、電気的に接続される。はんだ粒子3Aが十分に移動すれば、第1の電極1aと第2の電極2aとの間に位置していないはんだ粒子3Aの移動が開始してから、第1の電極1aと第2の電極2aとの間にはんだ粒子3Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
なお、上記第2の配置工程及び上記接続工程において、加圧は行われない方が好ましい。この場合には、導電ペースト3には、第2の接続対象部材2の重量が加わる。このため、接続部4の形成時に、はんだ粒子3Aが、第1の電極1aと第2の電極2aとの間により一層効果的に集まる。なお、上記第2の配置工程及び上記接続工程の内の少なくとも一方において、加圧を行えば、はんだ粒子3Aが第1の電極1aと第2の電極2aとの間に集まろうとする作用が阻害される傾向が高くなる。
また、本実施形態では、加圧を行っていないため、第1の電極1aと第2の電極2aとのアライメントが僅かにずれた状態で、第1の接続対象部材1と第2の接続対象部材2とが重ね合わされた場合でも、その僅かなずれを補正して、第1の電極1aと第2の電極2aとを接続させることができる(セルフアライメント効果)。これは、第1の電極1aと第2の電極2aとの間に自己凝集している溶融したはんだが、第1の電極1aと第2の電極2aとの間のはんだと導電ペーストのその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電ペーストが硬化していないこと、及び、その温度、時間にて、導電ペーストのはんだ粒子以外の成分の粘度が十分低いことが望ましい。
なお、上記第2の配置工程と上記接続工程とは連続して行われてもよい。また、上記第2の配置工程を行った後に、得られる第1の接続対象部材1と導電ペースト3と第2の接続対象部材2との積層体を、加熱部に移動させて、上記接続工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
上記接続工程における加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは220℃以下である。
上記接続工程における加熱方法としては、はんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
本発明では、開口部Xを有するメタルマスクが用いられているので、隣り合う第1の電極間の距離が短い場合でも、該第1の電極上に導電ペーストを良好に配置することができる。また、本発明では、はんだ粒子が第1の電極と第2の電極との間に集まりやすく、かつ、各電極上に凝集するはんだ量の均一性を高めることができる。そのため、はんだ粒子を電極(ライン)上に効率的に配置することができる。本発明では、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。また、はんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
(接続対象部材)
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、はんだを電極上により一層効果的に凝集させることができる。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだが凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだが凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、全面にて均一にはんだを凝集させることができる。
上述したように、上記第1の接続対象部材は、上記第1の電極側の表面の上記第1の電極が存在しない部分に、凸状の仕切り部を有していてもよい。
上記仕切り部の形状は、特に限定されない。
上記仕切り部の高さは、上記第1の電極よりも高いことが好ましい。上記仕切り部の高さは、上記第1の電極よりも、20μm以上で高いことが好ましく、25μm以上で高いことがより好ましく、30μm以下で高いことが好ましく、27μm以下で高いことがより好ましい。なお、上記第1の電極の高さは、露出している電極部分の高さである。
上記仕切り部の材質は特に限定されない。上記仕切り部の材質としては、ガラスエポキシ、及びガラス等が挙げられる。
仕切り部を有する第1の接続対象部材を得る方法としては、電極間に仕切り部を後付けする方法等が挙げられる。
(導電ペースト)
上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電ペーストは、電極の電気的な接続に好適に用いられる。上記導電ペーストは、回路接続材料であることが好ましい。
上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電ペーストは、電極の電気的な接続に好適に用いられる。上記導電ペーストは、回路接続材料であることが好ましい。
<はんだ粒子>
上記導電ペーストは、複数のはんだ粒子を含む。
上記導電ペーストは、複数のはんだ粒子を含む。
上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。
上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは230℃以下である。上記はんだは、融点が230℃未満の低融点はんだであることが好ましい。
上記はんだ粒子の融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
また、上記はんだ粒子は錫を含むことが好ましい。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が、上記下限以上であると、はんだ部と電極との導通信頼性及び接続信頼性がより一層高くなる。
なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。
上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。
上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。上記低融点金属は、錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
上記導電ペースト100重量%中、上記はんだ粒子の含有量は、好ましくは40重量%以上、より好ましくは45重量%以上、さらに好ましくは50重量%以上、最も好ましくは55重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性をより一層効果的に高めることができる。導通信頼性をより一層効果的に高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
<熱硬化性成分>
上記導電ペーストは、熱硬化性成分を含んでいてもよい。上記熱硬化性成分は、熱硬化性化合物を含むことが好ましい。上記導電ペーストは、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。導電ペーストをより一層良好に硬化させるために、上記導電ペーストは、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。導電ペーストをより一層良好に硬化させるために、上記導電ペーストは、熱硬化性成分として硬化促進剤を含むことが好ましい。
上記導電ペーストは、熱硬化性成分を含んでいてもよい。上記熱硬化性成分は、熱硬化性化合物を含むことが好ましい。上記導電ペーストは、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。導電ペーストをより一層良好に硬化させるために、上記導電ペーストは、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。導電ペーストをより一層良好に硬化させるために、上記導電ペーストは、熱硬化性成分として硬化促進剤を含むことが好ましい。
(熱硬化性成分:熱硬化性化合物)
上記導電ペーストは、熱硬化性化合物を含むことが好ましい。上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電ペーストの硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電ペーストは、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記導電ペーストは、熱硬化性化合物を含むことが好ましい。上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電ペーストの硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電ペーストは、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記エポキシ化合物は、常温(23℃)で液状又は固体であり、上記エポキシ化合物が常温で固体である場合には、上記エポキシ化合物の溶融温度は、上記はんだ粒子の融点以下であることが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、導電ペーストの粘度を大きく低下させることができ、導電接続時のはんだの凝集を効率よく進行させることができる。
絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記熱硬化性成分はエポキシ化合物を含むことが好ましく、上記熱硬化性化合物はエポキシ化合物を含むことが好ましい。
電極上にはんだをより一層効果的に配置する観点からは、上記熱硬化性化合物は、ポリエーテル骨格を有する熱硬化性化合物を含むことが好ましい。
上記ポリエーテル骨格を有する熱硬化性化合物としては、炭素数3~12のアルキル鎖の両末端にグリシジルエーテル基を有する化合物、並びに炭素数2~4のポリエーテル骨格を有し、該ポリエーテル骨格2~10個が連続して結合した構造単位を有するポリエーテル型エポキシ化合物等が挙げられる。
硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物は、イソシアヌル骨格を有する熱硬化性化合物を含むことが好ましい。
上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-UC)等が挙げられる。
電極上にはんだをより一層効率的に配置する観点、接続されるべき上下の電極間の導通信頼性をより一層効果的に高める観点、及び熱硬化性化合物の変色をより一層効果的に抑制する観点からは、上記熱硬化性化合物は、高い耐熱性を有することが好ましく、ノボラック型エポキシ化合物であることがより好ましい。ノボラック型エポキシ化合物は、比較的高い耐熱性を有する。
上記導電ペースト100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは99重量%以下、より好ましくは90重量%以下、さらに好ましくは80重量%以下、特に好ましくは70重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。
上記導電ペースト100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは99重量%以下、より好ましくは90重量%以下、さらに好ましくは80重量%以下、特に好ましくは70重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。
(熱硬化性成分:熱硬化剤)
上記導電ペーストは、熱硬化剤を含んでいてもよい。上記導電ペーストは、上記熱硬化性化合物とともに熱硬化剤を含んでいてもよい。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤は特に限定されない。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン硬化剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記導電ペーストは、熱硬化剤を含んでいてもよい。上記導電ペーストは、上記熱硬化性化合物とともに熱硬化剤を含んでいてもよい。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤は特に限定されない。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン硬化剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
導電ペーストを低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
上記熱カチオン開始剤は特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、導電ペーストを十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
(熱硬化性成分:硬化促進剤)
上記導電ペーストは硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記導電ペーストは硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記硬化促進剤としては、ホスホニウム塩、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、アミン錯体化合物及びホスホニウムイリド等が挙げられる。具体的には、上記硬化促進剤としては、イミダゾール化合物、イミダゾール化合物のイソシアヌル酸塩、ジシアンジアミド、ジシアンジアミドの誘導体、メラミン化合物、メラミン化合物の誘導体、ジアミノマレオニトリル、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノールアミン、ジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン化合物、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、三フッ化ホウ素、三フッ化ホウ素-アミン錯体化合物、並びに、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン及びメチルジフェニルホスフィン等の有機リン化合物等が挙げられる。
上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO-Oジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
上記熱硬化性化合物が良好に硬化するように、上記硬化促進剤の含有量は適宜選択される。上記熱硬化性化合物100重量部に対する上記硬化促進剤の含有量は、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、上記熱硬化性化合物を良好に硬化させることができる。また、上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
(他の成分)
上記導電ペーストは、必要に応じて、例えば、フラックス、充填剤(フィラー)、増量剤、軟化剤、可塑剤、増粘剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
上記導電ペーストは、必要に応じて、例えば、フラックス、充填剤(フィラー)、増量剤、軟化剤、可塑剤、増粘剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
以下、実施例を挙げて本発明をさらに詳しく説明する。本発明は以下の実施例のみに限定されない。
導電ペーストの材料として、以下を用意した。
熱硬化性成分(熱硬化性化合物):
熱硬化性化合物1:フェノールノボラック型エポキシ化合物、ダウ・ケミカル社製「DEN431」
熱硬化性化合物2:ビスフェノールF型エポキシ化合物、ダウ・ケミカル社製「DER354」
熱硬化性化合物1:フェノールノボラック型エポキシ化合物、ダウ・ケミカル社製「DEN431」
熱硬化性化合物2:ビスフェノールF型エポキシ化合物、ダウ・ケミカル社製「DER354」
熱硬化性成分(硬化促進剤):
東京化成工業社製「三フッ化ホウ素エチルアミン」
東京化成工業社製「三フッ化ホウ素エチルアミン」
はんだ粒子:
SnBiはんだ粒子、三井金属鉱業社製「Sn42Bi58ST-3」、融点138℃
SnBiはんだ粒子、三井金属鉱業社製「Sn42Bi58ST-3」、融点138℃
フラックス:
アジビン酸ベンジルアミン塩(融点170℃)
アジビン酸ベンジルアミン塩(融点170℃)
アジビン酸ベンジルアミン塩の調製:
ガラスビーカーに、反応溶媒である水200gとエタノール350gとの混合溶媒を添加し、アジピン酸(東京化成工業社製、融点153℃)70.719gを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(東京化成工業社製)96.452gを入れて、100℃で約10分間加熱撹拌し、混合液を得た。得られた混合液を5℃~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取した後、水で洗浄し、真空乾燥してフラックスを得た。
ガラスビーカーに、反応溶媒である水200gとエタノール350gとの混合溶媒を添加し、アジピン酸(東京化成工業社製、融点153℃)70.719gを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(東京化成工業社製)96.452gを入れて、100℃で約10分間加熱撹拌し、混合液を得た。得られた混合液を5℃~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取した後、水で洗浄し、真空乾燥してフラックスを得た。
はんだ粒子の融点及びフラックスの融点は、示差走査熱量測定(DSC)装置(SII社製「EXSTAR DSC7020」)を用いて、測定した。
以下のメタルマスクA~Hを用意した。
図1に示す略形状の開口部Xを有するメタルマスクA:
開口部Xの最大開口幅A:170μm
絞り部の最小開口幅B:52μm
開口部Xの開口長さ:380μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.31
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
開口部Xの最大開口幅A:170μm
絞り部の最小開口幅B:52μm
開口部Xの開口長さ:380μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.31
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
図1に示す略形状の開口部Xを有するメタルマスクB:
開口部Xの最大開口幅A:165μm
絞り部の最小開口幅B:67μm
開口部Xの開口長さ:385μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.41
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
開口部Xの最大開口幅A:165μm
絞り部の最小開口幅B:67μm
開口部Xの開口長さ:385μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.41
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
図1に示す略形状の開口部Xを有するメタルマスクC:
開口部Xの最大開口幅A:162μm
絞り部の最小開口幅B:77μm
開口部Xの開口長さ:391μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.48
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
開口部Xの最大開口幅A:162μm
絞り部の最小開口幅B:77μm
開口部Xの開口長さ:391μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.48
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
図2に示す略形状の開口部Xを有するメタルマスクD:
開口部Xの最大開口幅A:162μm
絞り部の最小開口幅B:91μm
開口部Xの開口長さ:377μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.56
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
開口部Xの最大開口幅A:162μm
絞り部の最小開口幅B:91μm
開口部Xの開口長さ:377μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.56
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
図2に示す略形状の開口部Xを有するメタルマスクE:
開口部Xの最大開口幅A:140μm
絞り部の最小開口幅B:98μm
開口部の開口長さ:335μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.70
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
開口部Xの最大開口幅A:140μm
絞り部の最小開口幅B:98μm
開口部の開口長さ:335μm
比(絞り部の最小開口幅B/開口部Xの最大開口幅A):0.70
開口部Xの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
図7に示す略形状の開口部Yを有するメタルマスクF:
開口部Yの最大開口幅A:170μm
絞り部の最小開口幅B:41μm
開口部Yの開口長さ:380μm
比(絞り部の最小開口幅B/開口部Yの最大開口幅A):0.24
開口部Yの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
開口部Yの最大開口幅A:170μm
絞り部の最小開口幅B:41μm
開口部Yの開口長さ:380μm
比(絞り部の最小開口幅B/開口部Yの最大開口幅A):0.24
開口部Yの長さ方向の両端の輪郭:曲線
絞り部の輪郭:曲線
図6に示す略形状の開口部Yを有するメタルマスクG:
開口部Yの最大開口幅A:160μm
絞り部の最小開口幅B:120μm
開口部Yの開口長さ:365μm
比(絞り部の最小開口幅B/開口部Yの最大開口幅A):0.75
開口部Yの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
開口部Yの最大開口幅A:160μm
絞り部の最小開口幅B:120μm
開口部Yの開口長さ:365μm
比(絞り部の最小開口幅B/開口部Yの最大開口幅A):0.75
開口部Yの長さ方向の両端の輪郭:曲線
絞り部の輪郭:直線
平面視にて長方形状を有する開口部を有するメタルマスH:
最小開口幅及び最大開口幅:140μm
開口部の開口長さ:335μm
比(最小開口幅/最大開口幅):1
開口部の長さ方向の両端の輪郭:直線
絞り部なし(輪郭は全て直線)
最小開口幅及び最大開口幅:140μm
開口部の開口長さ:335μm
比(最小開口幅/最大開口幅):1
開口部の長さ方向の両端の輪郭:直線
絞り部なし(輪郭は全て直線)
(実施例1)
(1)異方性導電ペーストの作製
熱硬化性化合物100重量部(熱硬化性化合物1:50重量部、熱硬化性化合物2:50重量部)と、硬化促進剤30重量部と、はんだ粒子162重量部と、フラックス3重量部とを配合して、異方性導電ペーストを得た。
(1)異方性導電ペーストの作製
熱硬化性化合物100重量部(熱硬化性化合物1:50重量部、熱硬化性化合物2:50重量部)と、硬化促進剤30重量部と、はんだ粒子162重量部と、フラックス3重量部とを配合して、異方性導電ペーストを得た。
(2)試験用接続構造体(P)(L/S=120μm/95μm)の作製
第1の接続対象部材として、銅電極パターン(第1の電極、L/S=120μm/95μm、電極の長さ:140μm、電極の厚み:15μm)を表面(上面)に有するガラスエポキシ基板(FR-4基板、厚み0.5mm)を用意した。
第1の接続対象部材として、銅電極パターン(第1の電極、L/S=120μm/95μm、電極の長さ:140μm、電極の厚み:15μm)を表面(上面)に有するガラスエポキシ基板(FR-4基板、厚み0.5mm)を用意した。
第1の接続対象部材の隣り合う第1の電極のうち、一方の第1の電極が開口部の第1の幅広部と対向するように、かつ、他方の第1の電極が開口部の第2の幅広部と対向するように、メタルマスクAを配置した。次いで、接続対象部材の上面に、異方性導電ペーストを配置した。次いで、異方性導電ペースト層の温度が、昇温開始から30秒後にはんだ粒子の融点-10℃となるように加熱し、さらに、昇温開始から30秒後から40秒後はその温度を保持した。次いで、異方性導電ペースト層の温度が、昇温開始から70秒後に異方性導電ペースト層の温度がはんだ粒子の融点+80℃となるように加熱し、異方性導電ペースト層を硬化させ、試験用接続構造体(P)を得た。なお、加熱時には、加圧を行わなかった。なお、得られた試験用接続構造体(P)では、第2の接続対象部材を用いていない。
(3)接続構造体(Q)(L/S=120μm/95μm)の作製
第1の接続対象部材として、銅電極パターン(第1の電極、L/S=120μm/95μm、電極の長さ:140μm、電極の厚み:15μm)を表面(上面)に有するガラスエポキシ基板(FR-4基板、厚み0.5mm)を用意した。
第1の接続対象部材として、銅電極パターン(第1の電極、L/S=120μm/95μm、電極の長さ:140μm、電極の厚み:15μm)を表面(上面)に有するガラスエポキシ基板(FR-4基板、厚み0.5mm)を用意した。
第2の接続対象部材として、銅電極パターン(第2の電極、L/S=120μm/95μm、電極の長さ:120μm)を下面に有するLEDチップを用意した。
第1の接続対象部材の隣り合う第1の電極のうち、一方の第1の電極が開口部の第1の幅広部と対向するように、かつ、他方の第1の電極が開口部の第2の幅広部と対向するように、メタルマスクAを配置した。次いで、第1の接続対象部材の上面に、異方性導電ペーストを配置した(第1の配置工程)。次いで、メタルマスクAを取り除き、異方性導電ペーストの上面に、第2の接続対象部材を、第1の電極と第2の電極とが対向するように配置した(第2の配置工程)。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。次いで、異方性導電ペースト層の温度が、昇温開始から30秒後にはんだ粒子の融点-10℃となるように加熱し、さらに、昇温開始から30秒後から40秒後はその温度を保持した。次いで、異方性導電ペースト層の温度が、昇温開始から70秒後に異方性導電ペースト層の温度がはんだ粒子の融点+80℃となるように加熱し、異方性導電ペースト層を硬化させ、接続部を形成し、第1の電極と第2の電極とを接続部中のはんだ部により電気的に接続した(接続工程)。このようにして、接続構造体(Q)を得た。なお、加熱時には、加圧を行わなかった。なお、得られた接続構造体(Q)は、第2の接続対象部材を備える。
(実施例2~5及び比較例1,2)
メタルマスクの種類を表1,2に示すように変更したこと以外は、実施例1と同様にして、試験用接続構造体(P)及び接続構造体(Q)を得た。
メタルマスクの種類を表1,2に示すように変更したこと以外は、実施例1と同様にして、試験用接続構造体(P)及び接続構造体(Q)を得た。
(比較例3)
メタルマスクHを用い、メタルマスクHの開口部が、隣り合う2個の第1の電極と対向するように、メタルマスクHを配置したこと以外は、実施例1と同様にして、試験用接続構造体(P)及び接続構造体(Q)を得た。
メタルマスクHを用い、メタルマスクHの開口部が、隣り合う2個の第1の電極と対向するように、メタルマスクHを配置したこと以外は、実施例1と同様にして、試験用接続構造体(P)及び接続構造体(Q)を得た。
(評価)
(1)印刷性
得られた異方性導電ペーストを配置するメタルマスクと同じ開口形状のメタルマスクを用いて、ガラス板上に異方性導電ペーストを配置した。次いで、非接触表面性状測定装置(三鷹光器社製「PF-60」)を用いて配置された異方性導電ペースト100個の形状を測定した。測定結果から、異方性導電ペーストの転写率を算出し、転写率の変動係数(CV値)を算出し、印刷性(1)及び(2)を以下の基準で判定した。印刷性(1)及び(2)の結果が良好であるほど、メタルマスクの1つの開口部で隣り合う2つの電極上に導電ペーストを良好に配置することができている。
(1)印刷性
得られた異方性導電ペーストを配置するメタルマスクと同じ開口形状のメタルマスクを用いて、ガラス板上に異方性導電ペーストを配置した。次いで、非接触表面性状測定装置(三鷹光器社製「PF-60」)を用いて配置された異方性導電ペースト100個の形状を測定した。測定結果から、異方性導電ペーストの転写率を算出し、転写率の変動係数(CV値)を算出し、印刷性(1)及び(2)を以下の基準で判定した。印刷性(1)及び(2)の結果が良好であるほど、メタルマスクの1つの開口部で隣り合う2つの電極上に導電ペーストを良好に配置することができている。
転写率(転写面積率及び転写高さ率)は、以下のようにして算出する。
転写面積率(%)=(A/S)×100
転写高さ率(%)=(B/H)×100
A:転写物の実測面積値
S:メタルマスクの開口面積値
B:転写物の実測高さ値
H:メタルマスクの厚み値
転写高さ率(%)=(B/H)×100
A:転写物の実測面積値
S:メタルマスクの開口面積値
B:転写物の実測高さ値
H:メタルマスクの厚み値
[印刷性(1)の判定基準]
〇:転写面積率が80%以上
△:転写面積率が50%以上80%未満
×:転写面積率が50%未満
〇:転写面積率が80%以上
△:転写面積率が50%以上80%未満
×:転写面積率が50%未満
転写率の変動係数(CV値)を以下のようにして算出した。転写面積率の標準偏差及び転写面積率の平均値を用いて算出したCV値(転写面積率のCV値)と、転写高さ率の標準偏差及び転写高さ率の平均値を用いて算出したCV値(転写高さ率のCV値)とを比較し、値の大きい方を用いて印刷性(2)を判定した。
CV値(%)=(ρ/Dn)×100
ρ:転写面積率又は転写高さ率の標準偏差
Dn:転写面積率又は転写高さ率の平均値
ρ:転写面積率又は転写高さ率の標準偏差
Dn:転写面積率又は転写高さ率の平均値
[印刷性(2)の判定基準]
○:転写面積率のCV値及び転写高さ率のCV値のうちの大きい方の値が、0.2%未満
△:転写面積率のCV値及び転写硬さ率のCV値のうちの大きい方の値が、0.2%以上、0.3%未満
×:転写面積率のCV値及び転写高さ率のCV値のうちの大きい方の値が、0.3%以上
○:転写面積率のCV値及び転写高さ率のCV値のうちの大きい方の値が、0.2%未満
△:転写面積率のCV値及び転写硬さ率のCV値のうちの大きい方の値が、0.2%以上、0.3%未満
×:転写面積率のCV値及び転写高さ率のCV値のうちの大きい方の値が、0.3%以上
(2)各電極上に凝集するはんだ量の均一性
得られた試験用接続構造体(P)において、1つの開口部で導電ペーストを配置した隣り合う第1の電極(X),(Y)を特定し、それに対向するように第2の電極(X),(Y)を配置して、試験用接続構造体(P2)を得た。次いで、X線透過装置(日立エンジニアリング社製「MF100C」)を用いて、試験用接続構造体(P2)のX線透過画像を取得した。次いで、画像処理ソフト「ImageJ」を用いて、X線透過画像の画像処理を行い、第1の電極(X)及び第2の電極(X)間に配置されているはんだ量(X)と、第1の電極(Y)及び第2の電極(Y)間に配置されているはんだ量(Y)とをピクセル値に換算した。次いで、はんだ量(X)とはんだ量(Y)との合計を100%とし、はんだ量(X)とはんだ量(Y)との差の絶対値(Z)を測定した。
得られた試験用接続構造体(P)において、1つの開口部で導電ペーストを配置した隣り合う第1の電極(X),(Y)を特定し、それに対向するように第2の電極(X),(Y)を配置して、試験用接続構造体(P2)を得た。次いで、X線透過装置(日立エンジニアリング社製「MF100C」)を用いて、試験用接続構造体(P2)のX線透過画像を取得した。次いで、画像処理ソフト「ImageJ」を用いて、X線透過画像の画像処理を行い、第1の電極(X)及び第2の電極(X)間に配置されているはんだ量(X)と、第1の電極(Y)及び第2の電極(Y)間に配置されているはんだ量(Y)とをピクセル値に換算した。次いで、はんだ量(X)とはんだ量(Y)との合計を100%とし、はんだ量(X)とはんだ量(Y)との差の絶対値(Z)を測定した。
200箇所の電極において、絶対値(Z)をそれぞれ求め、絶対値(Z)の平均値及び絶対値(Z)の最大値を算出した。なお、絶対値(Z)の平均値は、9%未満であることが好ましい。
[各電極上に凝集するはんだ量の均一性の判定基準]
○○:絶対値(Z)の平均値が7%未満
○:絶対値(Z)の平均値が7%以上9%未満
△:絶対値(Z)の平均値が9%以上11%未満
×:絶対値(Z)の平均値が11%以上
○○:絶対値(Z)の平均値が7%未満
○:絶対値(Z)の平均値が7%以上9%未満
△:絶対値(Z)の平均値が9%以上11%未満
×:絶対値(Z)の平均値が11%以上
結果を下記の表1,2に示す。
なお、(2)各電極上に凝集するはんだ量の均一性の評価は、試験用接続構造体(P)に対して第2の電極(X),(Y)を配置した試験用接続構造体(P2)を用いて行った。接続構造体(Q)を用いた場合でも、各電極上に凝集するはんだ量の均一性の結果は、同様の傾向がある。実施例1~5の接続構造体(Q)は、比較例1~3の接続構造体(Q)と比べて、各電極上に凝集するはんだ量の均一性に優れる傾向がある。
1,1A…第1の接続対象部材
1a…第1の電極
2…第2の接続対象部材
2a…第2の電極
3…導電ペースト
3A…はんだ粒子
3B…熱硬化性成分
4…接続部
4A…はんだ部
4B…硬化物部
5…仕切り部
10,10A,100,100A…メタルマスク
11,11A,101,101A…第1の幅広部
12,12A,102,102A…第2の幅広部
13,13A,103,103A…絞り部
20…接続構造体
1a…第1の電極
2…第2の接続対象部材
2a…第2の電極
3…導電ペースト
3A…はんだ粒子
3B…熱硬化性成分
4…接続部
4A…はんだ部
4B…硬化物部
5…仕切り部
10,10A,100,100A…メタルマスク
11,11A,101,101A…第1の幅広部
12,12A,102,102A…第2の幅広部
13,13A,103,103A…絞り部
20…接続構造体
Claims (5)
- 複数の第1の電極を表面に有する第1の接続対象部材の表面上に、メタルマスクを用いて、複数のはんだ粒子を含む導電ペーストを配置する第1の配置工程と、
前記導電ペーストの前記第1の接続対象部材側とは反対の表面上に、複数の第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する第2の配置工程と、
前記はんだ粒子の融点以上に前記導電ペーストを加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電ペーストにより形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する接続工程とを備え、
前記メタルマスクは、長さ方向と幅方向とを有する開口部を有し、
前記開口部は、前記長さ方向の中央部分に開口幅が小さい絞り部と、前記絞り部の前記長さ方向の一方側に連なっておりかつ前記絞り部よりも開口幅の大きい第1の幅広部と、前記絞り部の前記長さ方向の他方側に連なっておりかつ前記絞り部よりも開口幅の大きい第2の幅広部とを有し、
前記開口部の最大開口幅をAとし、前記絞り部の最小開口幅をBとしたときに、B/Aが0.3以上0.7以下であり、
前記第1の配置工程において、隣り合う前記第1の電極のうち、一方の前記第1の電極が前記第1の幅広部と対向するように、かつ、他方の前記第1の電極が前記第2の幅広部と対向するように、前記メタルマスクを配置する、接続構造体の製造方法。 - 前記開口部の前記長さ方向の両端の輪郭が、曲線を含む、請求項1に記載の接続構造体の製造方法。
- 前記第1の接続対象部材は、前記第1の電極側の表面の前記第1の電極が存在しない部分に、凸状の仕切り部を有し、
前記第1の配置工程において、前記仕切り部の少なくとも一部が前記絞り部と対向するように、前記メタルマスクを配置する、請求項1又は2に記載の接続構造体の製造方法。 - 前記絞り部の輪郭が、曲線を含む、請求項1~3のいずれか1項に記載の接続構造体の製造方法。
- 前記絞り部の輪郭が、直線を含む、請求項1~3のいずれか1項に記載の接続構造体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180044329.6A CN115918276A (zh) | 2020-06-23 | 2021-06-23 | 连接结构体的制造方法 |
JP2022532506A JPWO2021261503A1 (ja) | 2020-06-23 | 2021-06-23 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020107873 | 2020-06-23 | ||
JP2020-107873 | 2020-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261503A1 true WO2021261503A1 (ja) | 2021-12-30 |
Family
ID=79281258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023710 WO2021261503A1 (ja) | 2020-06-23 | 2021-06-23 | 接続構造体の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2021261503A1 (ja) |
CN (1) | CN115918276A (ja) |
TW (1) | TW202205927A (ja) |
WO (1) | WO2021261503A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115255711A (zh) * | 2022-07-15 | 2022-11-01 | 郑州轻工业大学 | 一种Sn基多元低温软钎料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0588973U (ja) * | 1991-05-31 | 1993-12-03 | ミツミ電機株式会社 | クリーム半田塗布用スクリーン |
JPH0621633A (ja) * | 1992-07-06 | 1994-01-28 | Matsushita Electric Ind Co Ltd | 表面実装回路基板装置 |
US20050044702A1 (en) * | 2003-09-03 | 2005-03-03 | Shaeffer Ian P. | Printed circuit board having solder bridges for electronically connecting conducting pads and method of fabricating solder bridges |
JP2006286851A (ja) * | 2005-03-31 | 2006-10-19 | Sanyo Epson Imaging Devices Corp | 電気光学装置、電気光学装置の製造方法、実装構造体及び電子機器 |
JP2008235453A (ja) * | 2007-03-19 | 2008-10-02 | Toyota Motor Corp | はんだ印刷用メタルマスクの開口部構造およびはんだ印刷方法 |
-
2021
- 2021-06-23 TW TW110122973A patent/TW202205927A/zh unknown
- 2021-06-23 JP JP2022532506A patent/JPWO2021261503A1/ja active Pending
- 2021-06-23 WO PCT/JP2021/023710 patent/WO2021261503A1/ja active Application Filing
- 2021-06-23 CN CN202180044329.6A patent/CN115918276A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0588973U (ja) * | 1991-05-31 | 1993-12-03 | ミツミ電機株式会社 | クリーム半田塗布用スクリーン |
JPH0621633A (ja) * | 1992-07-06 | 1994-01-28 | Matsushita Electric Ind Co Ltd | 表面実装回路基板装置 |
US20050044702A1 (en) * | 2003-09-03 | 2005-03-03 | Shaeffer Ian P. | Printed circuit board having solder bridges for electronically connecting conducting pads and method of fabricating solder bridges |
JP2006286851A (ja) * | 2005-03-31 | 2006-10-19 | Sanyo Epson Imaging Devices Corp | 電気光学装置、電気光学装置の製造方法、実装構造体及び電子機器 |
JP2008235453A (ja) * | 2007-03-19 | 2008-10-02 | Toyota Motor Corp | はんだ印刷用メタルマスクの開口部構造およびはんだ印刷方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115255711A (zh) * | 2022-07-15 | 2022-11-01 | 郑州轻工业大学 | 一种Sn基多元低温软钎料及其制备方法 |
CN115255711B (zh) * | 2022-07-15 | 2024-04-26 | 郑州轻工业大学 | 一种Sn基多元低温软钎料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021261503A1 (ja) | 2021-12-30 |
CN115918276A (zh) | 2023-04-04 |
TW202205927A (zh) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6557591B2 (ja) | 導電フィルム、接続構造体及び接続構造体の製造方法 | |
JP7356217B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
WO2016104276A1 (ja) | 導電ペースト、接続構造体及び接続構造体の製造方法 | |
JP6592350B2 (ja) | 異方性導電材料、接続構造体及び接続構造体の製造方法 | |
WO2021261503A1 (ja) | 接続構造体の製造方法 | |
JP2023138947A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP2021028895A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7332458B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
WO2020255874A1 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7277289B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP2019096549A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7271312B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7280758B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
TWI793307B (zh) | 導電材料、連接構造體及連接構造體之製造方法 | |
JP7014576B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP2020119955A (ja) | 接続構造体、接続構造体の製造方法、導電材料及び導電材料の製造方法 | |
JP7267685B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7303675B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7284699B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7372745B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7316109B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP7389657B2 (ja) | 導電ペースト及び接続構造体 | |
JP2021190562A (ja) | 接続構造体の製造方法 | |
JP2020170591A (ja) | 導電材料及び接続構造体 | |
JP2021009774A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022532506 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21829835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21829835 Country of ref document: EP Kind code of ref document: A1 |