WO2021261381A1 - Device for forming plasma, device for processing substrate, and method for forming plasma - Google Patents

Device for forming plasma, device for processing substrate, and method for forming plasma Download PDF

Info

Publication number
WO2021261381A1
WO2021261381A1 PCT/JP2021/023102 JP2021023102W WO2021261381A1 WO 2021261381 A1 WO2021261381 A1 WO 2021261381A1 JP 2021023102 W JP2021023102 W JP 2021023102W WO 2021261381 A1 WO2021261381 A1 WO 2021261381A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
forming
current
annular space
Prior art date
Application number
PCT/JP2021/023102
Other languages
French (fr)
Japanese (ja)
Inventor
純 山涌
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021261381A1 publication Critical patent/WO2021261381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to an apparatus for forming plasma, an apparatus for processing a substrate, and a method for forming plasma.
  • processing may be performed by plasma excited with gas.
  • a method of exciting the supplied gas in the processing chamber or plasma before supplying the gas to the processing chamber is performed to process the activated gas ions and radicals.
  • Patent Document 1 describes a toroidal plasma generator having a gas inlet and a gas outlet, and having a coil wound around a part of a gas passage forming a peripheral circuit. Then, a technique is described in which a rare gas such as Ar gas introduced from a gas inlet is circulated in a circumferential circuit, and at that time, a coil is driven by high frequency power to induce plasma in the rare gas.
  • the present disclosure provides a technique for uniformly forming a high-density plasma over a wide range.
  • the apparatus of the present disclosure is an apparatus that excites a gas for plasma formation to form plasma.
  • a coil that is supplied with power from a high frequency power source to generate a magnetic field is included, and the magnetic field excites the gas to generate a plasma current so as to orbit the annular space.
  • It has a provided plasma current generator and A plurality of plasma forming units having the plasma current generating unit and the conduit member are installed side by side, and the flow directions of the plasma current generated by the plurality of plasma current generating units are aligned with each other in each of the annular spaces.
  • the part that is included is included.
  • high-density plasma can be uniformly formed over a wide range.
  • a device for forming plasma according to the first embodiment of the present disclosure and a device for processing a substrate provided with the device (hereinafter, these devices are collectively referred to as “plasma processing device”) will be described.
  • the plasma processing apparatus according to the present disclosure supplies plasma excited by a mixed gas of nitrogen trifluoride (NF 3 ) gas and argon (Ar) gas to a wafer W, which is a substrate, and silicon formed on the wafer W.
  • NF 3 nitrogen trifluoride
  • Ar argon
  • the plasma processing apparatus includes a processing chamber 10 that constitutes a processing space for processing the wafer W.
  • An carry-in / exit 11 for carrying in or out the wafer W is formed on the side wall of the processing chamber 10 by a gate valve 12 so as to be openable / closable.
  • An exhaust port 14a is opened on the bottom surface of the processing chamber 10, and an exhaust passage 14 is connected to the exhaust port 14a.
  • the exhaust passage 14 is connected to the exhaust mechanism 16 and is configured to be able to reduce the pressure in the processing chamber 10 to a predetermined pressure.
  • the exhaust passage 14 is provided with an on-off valve 17 and a flow rate adjusting valve 18 from the processing chamber 10 side.
  • a mounting table 13 on which the wafer W is mounted is provided inside the processing chamber 10.
  • a heater 15 for heating the wafer W to a processing temperature is embedded in the mounting table 13.
  • the mounting table 13 is provided with an elevating mechanism (not shown) for the wafer W.
  • the top plate portion of the processing chamber 10 is provided with a plasma forming portion 2 that excites a gas for plasma formation to form plasma and supplies it into the processing chamber 10.
  • the plasma forming unit 2 has a basic configuration of a plasma forming unit (hereinafter, referred to as “plasma unit”) 20 for forming plasma, and is configured by combining a plurality of the plasma units 20.
  • plasma unit 20 As a basic configuration will be described.
  • a conduit member 21 constituting an annular space for forming plasma and a plasma current flowing due to plasma conversion of gas are transferred into the conduit member 21 (annular space). It has a plasma current generation unit 3 for generating so as to orbit.
  • the conduit member 21 is a metal member obtained by bending a conduit in a rectangular annular shape, and the inside of the conduit member 21 constitutes an annular space.
  • An inlet 22 for supplying a plasma forming gas to an annular space is formed on the outer peripheral surface of the conduit member 21. Further, the conduit member 21 is provided at a position away from the inlet 22, and is formed in an annular space, and is formed with an outlet 23 for discharging the gas activated by the plasma.
  • the gas activated by plasma includes ions in a state where the gas is turned into plasma, radicals formed by plasma, and the like.
  • the conduit member 21 is provided with a dielectric 24 for preventing the plasma current formed in the annular space from being dissipated along the tube wall.
  • the dielectric 24 is formed in an annular shape, and is interposed on the upper and lower sides of the rectangular annular conduit member 21 so as to divide the conduit member 21 to the left and right toward the figure.
  • the plasma current generation unit 3 includes an annular magnetic core (yoke) 31 provided so as to surround the conduit member 21, and a coil 32 formed by spirally winding a copper wire around a part of the yoke 31. ,have. That is, the plasma current generation unit 3 is provided so as to surround a part of the conduit member 21.
  • the plasma unit 20 configured in this way, when power (1) is supplied to the coil 32 from the high frequency power supply 34 described later, the current (1) flowing through the coil 32 surrounds the inside of the yoke 31, that is, the periphery of the conduit. An annular yoke magnetic field (2) is generated as described above. Further, when the gas for plasma formation is supplied into the conduit member 21 from the inlet 22, the gas is turned into plasma by the yoke magnetic field (2), and a toroidal type plasma current (3) orbiting the annular space in the conduit member 21 is generated. Generated. Then, it is turned into plasma and the activated gas is discharged from the outlet 23.
  • the plasma forming unit 2 which includes the plasma unit 20 described with reference to FIG. 2 as a basic configuration, will be described.
  • the plasma forming unit 2 has a structure in which a plurality of plasma units 20 are arranged side by side in a row and connected so as to share a part of an annular space between the conduit members 21 arranged adjacent to each other. It has become. It was
  • FIGS. 3 and 4 additional identification codes A to D are added to distinguish the plasma units 20 according to the order of arrangement. Further, the same identification codes A to D are added to distinguish the conduit member 21, the plasma current generation unit 3, the yoke 31, and the coil 32. When it is not necessary to separately explain the plasma unit 20, the conduit member 21, the plasma current generation unit 3, the yoke 31, and the coil 32, A to D may not be added to the additional identification codes. ..
  • the conduit members 21A to 21D are arranged in such a posture that the surfaces including the annular space are oriented orthogonal to the horizontal direction, and the annular spaces are further connected so as to be arranged side by side in the horizontal direction.
  • a common conduit portion 4 in the adjacent plasma units 20 and 20, the portions of the conduit members 21 and 21 that share a part of the annular space will be referred to as a common conduit portion 4.
  • four common conduit portions 4A to 4D are formed by five plasma units 20 including plasma units 20 at both left and right ends, which are omitted, and plasma currents are generated in each common conduit portion 4A to 4D. Parts 3A to 3D are provided.
  • the coils 32A to 32D of each plasma current generating unit 3A to 3D are configured by, for example, winding copper wires of the same thickness with the same length in the same direction.
  • Each coil 32A to 32D is configured to be supplied with high frequency power of, for example, 450 kHz from a common high frequency power supply 34.
  • the end portion to which the feeding line 33 for supplying high frequency power from the high frequency power supply 34 is connected is along the winding direction.
  • the one end side and the other end side of the seen copper wire are configured to be different from each other.
  • the coils 32A to 32D arranged in a row have the same shape, but the coils 32A and 32C to which the high frequency power supply 34 is connected to one end side and the coils 32B and 32D to which the high frequency power supply 34 is connected to the other end side are. They are arranged side by side alternately.
  • Reference numeral 35 in FIG. 3 is a matching unit, and each coil 32A to 32D is configured so that high-frequency power is supplied from a common high-frequency power supply 34 in the same phase.
  • an inlet 22 for plasma forming gas is formed above the common conduit portions 4A to 4B on the upper surfaces of the conduit members 21A to 21D, and a gas supply pipe 25 is connected to each inlet 22.
  • Each gas supply pipe 25 is connected to an NF 3 gas supply pipe 27 and an Ar gas supply pipe 29 for supplying the NF 3 gas and the Ar gas, which are gases for forming plasma.
  • a valve V27 and a flow rate adjusting unit M27 are interposed in this order from the inlet 22 side to the upstream in the NF 3 gas supply pipe 27, and the NF 3 gas supply source 26 is connected to the NF 3 gas supply pipe 27.
  • a valve V29 and a flow rate adjusting unit M29 are interposed in this order from the inlet 22 side to the upstream in the Ar gas supply pipe 29, and the Ar gas supply source 28 is connected to the Ar gas supply pipe 29.
  • the NF 3 gas and Ar gas correspond to the processing gas for processing the wafer W.
  • each outlet 23 is configured to open inside the processing chamber 10 and supply plasma toward the wafer W mounted on the mounting table 13 in the processing chamber 10. Since the inlet 22 and the outlet 23 are provided above and below the common conduit portions 4A to 4D, respectively, the plasma forming gas supplied from the inlet 22 is common to the above. It passes through the conduits 4A to 4D and reaches the outlet 23.
  • the outlet 23 corresponds to a discharge hole for discharging plasma into the processing space in the processing chamber 10.
  • the number of inlets 22 on the upper surfaces of the conduit members 21A to 21D may be increased, or the number of outlets 23 provided on the lower surface may be increased. Further, by arranging the inlet 22 and the outlet 23 as far apart as possible, for example, by arranging them at positions symmetrical with respect to the centers of the conduit members 21A to 21D, the time for the plasma forming gas to stay in the annular space is lengthened. It is possible to obtain a higher density plasma.
  • the directions in which the currents of the coils 32A and 32B of the plasma current generation units 3A and the plasma current generation units 3B arranged adjacent to each other are supplied. are opposite to each other. Therefore, for example, the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3A and the direction of the yoke magnetic field (2) formed in the adjacent plasma current generation unit 3B are opposite to each other.
  • a mixed gas of NF 3 gas and Ar gas is supplied from each gas supply pipe 25 to the conduit members 21A to 21C.
  • the mixed gas is turned into plasma by the yoke magnetic field (2), and a plasma current (3) is generated in the conduit members 21A to 21C.
  • the directions in which the current is supplied to the coils 32A and 32C of the plasma current generation unit 3A arranged so as to sandwich the plasma current generation unit 3B and the plasma current generation unit 3C coincide with each other. Therefore, for example, the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3A and the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3C arranged one apart are in the same direction. Become.
  • the plasma current (3) is generated so as to flow downward through the common conduit portion 4A by the yoke magnetic field (2) of the plasma current generating portion 3A at a certain point in time.
  • This plasma current (3) flows into the common conduit portion 4B from below and flows through the annular space so as to escape from the upper side.
  • the yoke magnetic field (2) is also formed in the same direction as the yoke magnetic field (2) of the plasma current generation unit 3A in the plasma current generation unit 3C opposite to the plasma current generation unit 3A when viewed from the plasma current generation unit 3B. Ru. Therefore, the plasma current (3) formed in the plasma current generation unit 3C flows into the common conduit portion 4B from below and flows in the annular space so as to escape from the upper side.
  • the plasma current (3) is generated so as to flow upward through the common conduit portion 4B. Will be done. Therefore, focusing on the common conduit portion 4B shown in the center of FIG. 4, the plasma currents generated by the common conduit portion 4B and the plasma current generation portions 3A to 3C provided in the adjacent common conduit portions 4A and 4C, respectively. All of (3) are aligned in the direction of flowing from the bottom to the top.
  • each common conduit portion 4A to 4C the plasma current (3) generated by the common conduit portion 4A to 4C, for example, the plasma current generation portion 3B provided in the common conduit portion 4B, and the adjacent common conduit portion 4A.
  • the directions of the plasma currents (3) generated by the plasma current generation units 3A and 3C provided in 4C are aligned with each other.
  • the annular space formed by each conduit member 21 includes a portion (common conduit portion 4) in which the flow directions of the plasma currents generated by the plurality of plasma current generation units 3 are aligned with each other. ..
  • the plasma current (3) strengthen each other, and as shown in FIG. 2, the plasma current (3) is generated by one plasma current generating portion 3.
  • a large plasma current (3) is obtained due to the synergistic effect as compared with the case where the above is generated.
  • a strong plasma current (3) is formed, so that the mixed gas is easily excited and a high-density plasma is formed. Then, the gas activated by the high-density plasma formed in the plasma forming unit 2 is supplied into the processing chamber 10 via the outlet 23.
  • the wafer W on which the silicon oxide film as the film to be processed is formed is carried into the processing chamber 10 and placed on the mounting table 13. Further, the temperature of the wafer W is adjusted to a predetermined temperature, and a mixed gas of Ar gas activated by plasma and NF 3 gas is supplied from the plasma forming unit 2 toward the inside of the processing chamber 10. As a result, the silicon oxide film to be treated reacts with the active species in the mixed gas, and etching proceeds.
  • the conduit members 21 are connected in a row so as to share a part of the annular space, and are generated by each plasma current generating unit 3 to form a shared portion of the annular space.
  • the directions of the plasma currents flowing through the common conduit portion 4 are aligned. Therefore, when the plasma current of the common conduit portion 4 is strengthened and the plasma forming gas flowing through the common conduit portion 4 is excited, plasma can be formed at a high density.
  • the plasma forming unit 2 arranges a plurality of plasma units 20 side by side, plasma can be supplied over a wide range in the horizontal direction. Therefore, in the processing chamber 10, high-density plasma is uniformly supplied over a wide range.
  • the wafer W is uniformly treated in-plane with a gas activated by a uniform and dense plasma.
  • the plasma current generation unit 3a is provided with a dielectric unit 205 formed of a tube wall made of a dielectric material in a part of the conduit member 21.
  • a coil 32 is wound around the dielectric portion 205, and a plasma unit 20 provided with an ICP-type plasma current generation portion 3a is configured.
  • the plasma current (3) can be generated so as to orbit the annular space formed by the conduit member 21. .. Therefore, even when the plasma unit 20 provided with the ICP type plasma current generation unit 3a is applied to the described plasma forming unit 2, the same operation and effect as the example described with reference to FIG. 4 can be obtained. ..
  • the lower surface (the surface on which the outlet 23 is formed) of the conduit member 21 constituting the annular space may be opened to serve as an open surface.
  • the open surface corresponds to the outlet of the plasma.
  • a discharge hole for discharging plasma is formed in the processing space while closing the open surface, and an insulator made of, for example, a dielectric is provided.
  • the plasma forming unit 2 may have a configuration in which a plurality of rows in which a plurality of plasma units 20 are arranged in a linear direction are arranged.
  • the plasma forming unit 2 may have a configuration in which a plurality of plasma units 20 are arranged in a ring shape.
  • a plurality of sets of plasma units 20 arranged in a ring shape may be arranged concentrically with each other to form the plasma forming unit 2.
  • the plasma forming unit 2 is not limited to the case where the etching gas for etching the wafer W is provided to turn into plasma.
  • a film forming gas for forming a film on the wafer W may be provided for plasma conversion, or a cleaning gas for cleaning the inside of the processing chamber 10 may be provided in the processing chamber 10 for plasma conversion. ..
  • the gas activated by the plasma formed in the plasma forming unit 2 may be supplied to the processing chamber 10 arranged at a distant position via a pipe.
  • FIG. 8 shows a configuration example of a high-frequency power feeding system for the plasma unit 20 (plasma current generation unit 3).
  • power is supplied to each plasma unit 20 from a common high frequency power supply 34.
  • the length of the feeder line 330 for supplying electric power to each coil 32 may be equal among the plurality of plasma units 20.
  • a circuit for adjusting the phase may be provided in each feeder line 330 to adjust the phase of the electric power supplied to each coil 32.
  • the electric power supplied from the high frequency power supply 34 may be configured to be supplied to each plasma unit 20 via the feeder line 330 branched from the high frequency power supply 34 in a tournament format. ..
  • the end of the copper wire constituting each coil 32 is used instead of the method described with reference to FIG. 3 in which the supply position of high-frequency power for each coil 32 is changed to change the direction of the yoke magnetic field (2). It is also possible to align the positions and supply high frequency power.
  • phase inversion devices may be provided on the feeder lines 33 and 330 so that electric power shifted by 180 ° in phase is alternately supplied to the plasma current generation units 3 arranged adjacent to each other. Also in this example, the directions of the plasma currents generated by the adjacent plasma current generation units 3 can be opposite to each other.
  • the plasma forming portion 200 shown in FIG. 9 is provided with an annular gas ring 201 having a hollow inside, and plasma units 20 are arranged side by side at equal intervals on the outer peripheral surface of the gas ring 201 over the entire circumference. ..
  • Each plasma unit 20 is connected to the side surface of the gas ring 201 via a dielectric 24 in a posture in which the surface including the annular space is oriented orthogonal to the horizontal direction.
  • the space inside the conduit member 21 and the space inside the gas ring 201 communicate with each other to form an annular space.
  • the space inside the gas ring 201 corresponds to a common space, and the gas ring 201 constitutes a common space, and a confluence portion where plasma-activated gas flows from a plurality of plasma units 20 (conduit members 21). Corresponds to.
  • each conduit member 21 is provided with a plasma current generating unit 3 having the same configuration as each other.
  • the copper wires constituting the coil 32 of each plasma current generation unit 3 have the same configuration.
  • the high frequency power supply 34 is located at an end portion having a common orientation when viewed from each coil 32 (for example, an end portion on the upper side toward FIG. 9). Is connected. As a result, high frequency power is supplied to each coil 32 in the same direction as each other.
  • the plasma current (3) flows so as to pass through the space in the gas ring 201 which forms a part of the annular space.
  • the plasma current (3) having the same phase in the common space passes through the gas ring 201.
  • the plasma units 20 are arranged so that the annular space becomes a ring in the vertical direction, and these plasma units 20 are arranged along the outer peripheral surface of the gas ring 201. From this, the directions in which the plasma current (3) orbits are aligned in the direction orthogonal to the plane (for example, the horizontal plane) formed by the gas ring 201.
  • each conduit member 21 is provided with an inlet (not shown) so as to supply the plasma forming gas to the gas ring 201.
  • outlets (not shown) of gas activated by plasma are provided at equal intervals along the circumferential direction.
  • the gas for plasma formation passes through the common space in the gas ring 201, becomes plasma, and is discharged from the outlet.
  • plasma can be formed in a wide range along the circumferential direction of the gas ring 201.
  • a uniform plasma can be formed.
  • a plurality of plasma units 20 are arranged in a row so as to be side by side on the side surface of the merging portion formed by a linearly extending pipeline. May be good.
  • FIGS. 10 and 11 show a state in which the annularly configured pipeline 211 is developed in a plane.
  • Each plasma unit 20 is arranged so that the surface including the annular space faces the extending direction of the pipeline 211.
  • the pipeline 211 corresponds to a confluence that forms a common space.
  • Each plasma unit 20 forms an annular space in which the space inside the conduit member 21 and the space inside the pipeline 211 communicate with each other.
  • the plasma current (3) generated by the plasma current generation unit 3 flows along the extending direction of the pipeline 211 and passes through the pipeline 211.
  • a gas inlet 22 for plasma formation is formed in each conduit member 21.
  • a plasma outlet 23 is formed on the surface of the pipeline 211 opposite to the surface on which the plasma units 20 are lined up so as to correspond to each plasma unit 20.
  • each plasma current generation unit 3 has the same configuration as each other, and a high frequency power supply 34 is connected to each coil 32 so as to allow a high frequency current to flow in the same direction. Further, a current having the same phase is supplied to each coil 32. Therefore, the plasma current (3) generated by each plasma unit 20 flows so that the direction circulating in the pipeline 211 is aligned with the alignment direction of the plasma units 20. When the plasma currents (3) flow together in the pipeline 211 in this way, the plasma currents (3) strengthen each other in the pipeline 211, forming a strong current (3)'flowing along the pipeline 211. can do.
  • each conduit member 21 and the pipeline 211 the direction in which the plasma current generated by each plasma current generation unit 3 flows is the same. Therefore, focusing on the inside of the pipeline 211, which is a common space through which these plasma currents flow, it can be said that they form a portion in which the directions in which the plurality of plasma currents flow are aligned with each other.
  • the pipeline 211 may be configured to extend linearly.
  • the gas for plasma formation is supplied from the inlet 22 formed in the conduit member 21, passed through the pipeline 211, turned into plasma, and then activated. Is configured to be discharged from the outlet 23.
  • the gas activated by the plasma is discharged in a state where higher activity is maintained by the increased current (3)'.
  • the side where the outlet of the pipeline 211 is formed is the open surface
  • the insulator 10 side of the processing chamber is made of, for example, a dielectric having a discharge hole for closing the open surface and discharging plasma. May be provided.
  • an auxiliary current generating unit 300 for further increasing the increased current (3)'flowing in the pipeline 211 may be provided.
  • the auxiliary current generation unit 300 includes, for example, a yoke 31 provided so as to surround the circumference of the pipeline 211 and a coil 32 wound around the yoke 31, similarly to the plasma current generation unit 3. Then, a current is passed through the coil 32 so as to form an auxiliary current (4) along the flow direction of the current (3)'enhanced by the plasma current (3). With such a configuration, the current (3)'can be further strengthened, and a plasma having a higher density can be formed.
  • Electric field generator 20 Plasma unit 22 Inlet 23 Outlet 30 Conduit member 32 Coil 34 High frequency power supply

Abstract

According to the present invention, high-density plasma is formed uniformly over a wide range. This device for forming plasma includes a conduit member for configuring an annular space in which the plasma is to be formed, an inlet which is provided in the conduit member and through which gas is supplied toward the annular space, an outlet which is provided in a position separated from the inlet, and through which the gas, which has been activated by means of the plasma formed in the annular space, is discharged, and a plasma current generating portion which includes a coil that is supplied with electric power from a high-frequency power source to generate a magnetic field, and which is provided in a partial region of the conduit member in order to excite the gas by means of the magnetic field, to generate a plasma current in such a way as to circulate through the annular space, wherein: a plurality of plasma forming units comprising the plasma current generating portion and the conduit member are installed side-by-side; and each annular space contains a part in which the flow directions of the plasma currents generated by the plurality of plasma current generating portions are aligned with one another.

Description

プラズマを形成する装置、基板を処理する装置、及びプラズマを形成する方法A device for forming plasma, a device for processing a substrate, and a method for forming plasma.
 本開示は、プラズマを形成する装置、基板を処理する装置、及びプラズマを形成する方法に関する。 The present disclosure relates to an apparatus for forming plasma, an apparatus for processing a substrate, and a method for forming plasma.
 半導体製造工程では、例えば基板に成膜やエッチングなどの処理や、処理チャンバ内のクリーニング処理を行うにあたって、ガスを励起したプラズマにより処理を行うことがある。プラズマを形成するにあたっては、例えば処理チャンバ内にて、供給されたガスを励起する手法や、処理チャンバに供給する前のガスを予めプラズマ化して、活性化されたガスであるイオンやラジカルを処理チャンバに供給する手法がある。 In the semiconductor manufacturing process, for example, when processing such as film formation or etching on a substrate or performing cleaning processing in a processing chamber, processing may be performed by plasma excited with gas. In forming the plasma, for example, a method of exciting the supplied gas in the processing chamber or plasma before supplying the gas to the processing chamber is performed to process the activated gas ions and radicals. There is a method of supplying to the chamber.
 処理チャンバに供給する前のガスを予めプラズマ化するにあたっては、例えばガスが流れる導管内に、電磁誘導によりプラズマ電流を生成し、当該導管内を通過するガスをプラズマ電流により励起してプラズマ化し、処理チャンバに供給する手法がある。
 特許文献1には、ガス入口と、ガス出口と、を備え、周回路を形成するガス通路の一部に巻回されたコイルを有する、トロイダル型プラズマ発生装置が記載されている。そしてガス入口から導入されたArガスなどの希ガスを、周回路を周回させ、その際にコイルを高周波電力により駆動して、希ガス中にプラズマを誘起する技術が記載されている。
When the gas before being supplied to the processing chamber is turned into plasma in advance, for example, a plasma current is generated by electromagnetic induction in a conduit through which the gas flows, and the gas passing through the conduit is excited by the plasma current to be turned into plasma. There is a method of supplying to the processing chamber.
Patent Document 1 describes a toroidal plasma generator having a gas inlet and a gas outlet, and having a coil wound around a part of a gas passage forming a peripheral circuit. Then, a technique is described in which a rare gas such as Ar gas introduced from a gas inlet is circulated in a circumferential circuit, and at that time, a coil is driven by high frequency power to induce plasma in the rare gas.
特開2005-19852号公報Japanese Unexamined Patent Publication No. 2005-19852
 本開示は、高密度のプラズマを広い範囲に均一に形成する技術を提供する。 The present disclosure provides a technique for uniformly forming a high-density plasma over a wide range.
 本開示の装置は、プラズマ形成用のガスを励起してプラズマを形成する装置であって、
 前記プラズマが形成される環状の空間を構成するための導管部材と、
 前記導管部材に設けられ、前記環状の空間に向けて前記ガスが供給される入口と、
 前記入口と離れた位置に設けられ、前記環状の空間にて形成されたプラズマにより活性化された前記ガスが排出される出口と、
 高周波電源から電力が供給されて磁場を生成させるコイルを含み、前記磁場により、前記ガスを励起して前記環状の空間を周回するようにプラズマ電流を生成するため、前記導管部材の一部領域に設けられたプラズマ電流生成部と、を有し、
 前記プラズマ電流生成部と前記導管部材とを有するプラズマ形成ユニットが複数並べて設置され、各々の前記環状の空間には、前記複数のプラズマ電流生成部により生成されるプラズマ電流の流れる方向が互いに揃っている部分が含まれる。
The apparatus of the present disclosure is an apparatus that excites a gas for plasma formation to form plasma.
A conduit member for forming the annular space in which the plasma is formed, and
An inlet provided in the conduit member and to which the gas is supplied toward the annular space,
An outlet provided at a position away from the inlet and discharged from the plasma activated by the plasma formed in the annular space.
A coil that is supplied with power from a high frequency power source to generate a magnetic field is included, and the magnetic field excites the gas to generate a plasma current so as to orbit the annular space. It has a provided plasma current generator and
A plurality of plasma forming units having the plasma current generating unit and the conduit member are installed side by side, and the flow directions of the plasma current generated by the plurality of plasma current generating units are aligned with each other in each of the annular spaces. The part that is included is included.
 本開示によれば、高密度のプラズマを広い範囲に均一に形成することができる。 According to the present disclosure, high-density plasma can be uniformly formed over a wide range.
本開示に係るプラズマ処理装置の縦断側面図である。It is a vertical sectional side view of the plasma processing apparatus which concerns on this disclosure. プラズマ形成部を構成するプラズマユニットの説明図である。It is explanatory drawing of the plasma unit which constitutes the plasma forming part. プラズマ形成部の一部破断斜視図である。It is a partially cutaway perspective view of a plasma forming part. プラズマ形成部の作用を説明する説明図である。It is explanatory drawing explaining the operation of the plasma forming part. プラズマユニットの他の例を示す説明図である。It is explanatory drawing which shows the other example of a plasma unit. プラズマ形成部の設置状態の第1の例を示す斜視図である。It is a perspective view which shows the 1st example of the installation state of the plasma forming part. プラズマ形成部の設置状態の第2の例を示す斜視図である。It is a perspective view which shows the 2nd example of the installation state of the plasma forming part. 各プラズマユニットに電流を供給する給電線の構成例である。This is a configuration example of a feeder line that supplies current to each plasma unit. 第2の実施形態に係るプラズマ形成部を示す斜視図である。It is a perspective view which shows the plasma forming part which concerns on 2nd Embodiment. 第3の実施形態に係るプラズマ形成部の縦断側面図である。It is a vertical sectional side view of the plasma forming part which concerns on 3rd Embodiment. 第3の実施形態に係るプラズマ形成部の他の例を示す縦断側面図である。It is a longitudinal side view which shows the other example of the plasma forming part which concerns on 3rd Embodiment.
[第1の実施形態] [First Embodiment]
 本開示の第1の実施形態に係るプラズマを形成する装置、及び当該装置が設けられた基板を処理する装置(以下、これらの装置をまとめて「プラズマ処理装置」という)について説明する。本開示に係るプラズマ処理装置は、例えば基板であるウエハWに三フッ化窒素(NF)ガスとアルゴン(Ar)ガスとの混合ガスを励起したプラズマを供給し、ウエハWに形成されたシリコン酸化膜のエッチングを行う。 A device for forming plasma according to the first embodiment of the present disclosure and a device for processing a substrate provided with the device (hereinafter, these devices are collectively referred to as “plasma processing device”) will be described. The plasma processing apparatus according to the present disclosure supplies plasma excited by a mixed gas of nitrogen trifluoride (NF 3 ) gas and argon (Ar) gas to a wafer W, which is a substrate, and silicon formed on the wafer W. The oxide film is etched.
 プラズマ処理装置は、ウエハWを処理する処理空間を構成する処理チャンバ10を備えている。処理チャンバ10の側壁にはウエハWを搬入又は搬出するための搬入出口11が、ゲートバルブ12により開閉自在に形成される。また処理チャンバ10の底面には、排気口14aが開口し、排気口14aには、排気路14が接続されている。この排気路14は、排気機構16に接続され、処理チャンバ10内を所定の圧力まで減圧できるように構成されている。排気路14には、処理チャンバ10側から開閉バルブ17及び流量調節バルブ18が設けられている。 The plasma processing apparatus includes a processing chamber 10 that constitutes a processing space for processing the wafer W. An carry-in / exit 11 for carrying in or out the wafer W is formed on the side wall of the processing chamber 10 by a gate valve 12 so as to be openable / closable. An exhaust port 14a is opened on the bottom surface of the processing chamber 10, and an exhaust passage 14 is connected to the exhaust port 14a. The exhaust passage 14 is connected to the exhaust mechanism 16 and is configured to be able to reduce the pressure in the processing chamber 10 to a predetermined pressure. The exhaust passage 14 is provided with an on-off valve 17 and a flow rate adjusting valve 18 from the processing chamber 10 side.
 また処理チャンバ10の内部には、ウエハWが載置される載置台13が設けられている。載置台13には、ウエハWを処理温度に加熱するヒータ15が埋設されている。また載置台13にはウエハWの昇降機構(不図示)が設けられている。 Further, inside the processing chamber 10, a mounting table 13 on which the wafer W is mounted is provided. A heater 15 for heating the wafer W to a processing temperature is embedded in the mounting table 13. Further, the mounting table 13 is provided with an elevating mechanism (not shown) for the wafer W.
 また処理チャンバ10の天板部には、プラズマ形成用のガスを励起してプラズマを形成し、処理チャンバ10内に供給するプラズマ形成部2が設けられている。本開示に係るプラズマ形成部2は、プラズマを形成するプラズマ形成ユニット(以下、「プラズマユニット」という)20を基本構成とし、このプラズマユニット20を複数組み合わせて構成される。本開示に係るプラズマ形成部2の説明の前に基本構成となるプラズマユニット20の一例について説明する。 Further, the top plate portion of the processing chamber 10 is provided with a plasma forming portion 2 that excites a gas for plasma formation to form plasma and supplies it into the processing chamber 10. The plasma forming unit 2 according to the present disclosure has a basic configuration of a plasma forming unit (hereinafter, referred to as “plasma unit”) 20 for forming plasma, and is configured by combining a plurality of the plasma units 20. Before the description of the plasma forming unit 2 according to the present disclosure, an example of the plasma unit 20 as a basic configuration will be described.
 図2に示すようにプラズマユニット20は、例えばプラズマを形成するための環状の空間を構成する導管部材21と、ガスがプラズマ化することにより流れるプラズマ電流を、導管部材21(環状の空間)内を周回するように生成するためのプラズマ電流生成部3と、を有する。 
 導管部材21は、導管を矩形環状に屈曲させた金属製の部材であり、導管部材21の内部は、環状の空間を構成する。導管部材21の外周面には、環状の空間にプラズマ形成用ガスを供給する入口22が形成される。また導管部材21には、入口22と離れた位置に設けられ、環状の空間にて形成され、プラズマにより活性化されたガスを排出する出口23が形成されている。プラズマにより活性化されたガスには、ガスがプラズマ化した状態のイオンの他、プラズマにより形成されたラジカルなどが含まれる。導管部材21には、環状の空間に形成されたプラズマ電流が管壁を伝って散逸することを防ぐための誘電体24が設けられている。図2に示す例においては、誘電体24は環状に構成され、図に向かって導管部材21を左右に分割するように、矩形環状の導管部材21の上下の辺にそれぞれ介設されている。
As shown in FIG. 2, in the plasma unit 20, for example, a conduit member 21 constituting an annular space for forming plasma and a plasma current flowing due to plasma conversion of gas are transferred into the conduit member 21 (annular space). It has a plasma current generation unit 3 for generating so as to orbit.
The conduit member 21 is a metal member obtained by bending a conduit in a rectangular annular shape, and the inside of the conduit member 21 constitutes an annular space. An inlet 22 for supplying a plasma forming gas to an annular space is formed on the outer peripheral surface of the conduit member 21. Further, the conduit member 21 is provided at a position away from the inlet 22, and is formed in an annular space, and is formed with an outlet 23 for discharging the gas activated by the plasma. The gas activated by plasma includes ions in a state where the gas is turned into plasma, radicals formed by plasma, and the like. The conduit member 21 is provided with a dielectric 24 for preventing the plasma current formed in the annular space from being dissipated along the tube wall. In the example shown in FIG. 2, the dielectric 24 is formed in an annular shape, and is interposed on the upper and lower sides of the rectangular annular conduit member 21 so as to divide the conduit member 21 to the left and right toward the figure.
 またプラズマ電流生成部3は、当該導管部材21を囲むように設けられた環状の磁性体コア(ヨーク)31と、ヨーク31の一部にらせん状に銅線を巻き付けて形成されたコイル32と、を有している。即ちプラズマ電流生成部3は、導管部材21の一部領域を囲むように設けられている。 Further, the plasma current generation unit 3 includes an annular magnetic core (yoke) 31 provided so as to surround the conduit member 21, and a coil 32 formed by spirally winding a copper wire around a part of the yoke 31. ,have. That is, the plasma current generation unit 3 is provided so as to surround a part of the conduit member 21.
 このように構成されたプラズマユニット20によれば、コイル32に後述の高周波電源34から電力(1)を供給するとコイル32を流れる電流(1)により、ヨーク31の内部、即ち導管の周囲を囲むように環状のヨーク磁場(2)が生成される。さらにプラズマ形成用のガスを入口22から導管部材21内に供給すると、このヨーク磁場(2)によってガスがプラズマ化し、導管部材21内の環状の空間を周回するトロイダル型のプラズマ電流(3)が生成される。そしてプラズマ化し、活性化したガスが出口23から排出される。 According to the plasma unit 20 configured in this way, when power (1) is supplied to the coil 32 from the high frequency power supply 34 described later, the current (1) flowing through the coil 32 surrounds the inside of the yoke 31, that is, the periphery of the conduit. An annular yoke magnetic field (2) is generated as described above. Further, when the gas for plasma formation is supplied into the conduit member 21 from the inlet 22, the gas is turned into plasma by the yoke magnetic field (2), and a toroidal type plasma current (3) orbiting the annular space in the conduit member 21 is generated. Generated. Then, it is turned into plasma and the activated gas is discharged from the outlet 23.
 次に、図2を用いて説明したプラズマユニット20を基本構成として備えた本開示に係るプラズマ形成部2について説明する。プラズマ形成部2は、図3に示すようにプラズマユニット20を複数一列に並べて設置し、隣り合って配置される導管部材21の間で環状の空間の一部を互いに共有するように連結した構造となっている。  Next, the plasma forming unit 2 according to the present disclosure, which includes the plasma unit 20 described with reference to FIG. 2 as a basic configuration, will be described. As shown in FIG. 3, the plasma forming unit 2 has a structure in which a plurality of plasma units 20 are arranged side by side in a row and connected so as to share a part of an annular space between the conduit members 21 arranged adjacent to each other. It has become. It was
 なお図3、図4では、複数のプラズマユニット20の並び順に従い、追加の識別符号A~Dを付し区別している。また導管部材21、プラズマ電流生成部3、ヨーク31、コイル32についても同様の識別符号A~Dを追加して区別している。なおこれらプラズマユニット20、導管部材21、プラズマ電流生成部3、ヨーク31、コイル32を個々に区別して説明する必要がない場合には、追加の識別符号にA~Dを付さない場合もある。 Note that in FIGS. 3 and 4, additional identification codes A to D are added to distinguish the plasma units 20 according to the order of arrangement. Further, the same identification codes A to D are added to distinguish the conduit member 21, the plasma current generation unit 3, the yoke 31, and the coil 32. When it is not necessary to separately explain the plasma unit 20, the conduit member 21, the plasma current generation unit 3, the yoke 31, and the coil 32, A to D may not be added to the additional identification codes. ..
 本例では、各導管部材21A~21Dは、環状の空間を含む面が水平方向と直交する向きとなるとなる姿勢で配置され、さらにこれら環状の空間が水平方向に横並びとなるように連結されている。以下、隣り合うプラズマユニット20、20において、環状の空間の一部を共有する導管部材21、21の部分を共通導管部4と呼ぶものとする。図3においては、記載が省略されている左右両端のプラズマユニット20を含めた5つのプラズマユニット20によって4つの共通導管部4A~4Dが形成され、各々の共通導管部4A~4Dにプラズマ電流生成部3A~3Dが設けられている。 In this example, the conduit members 21A to 21D are arranged in such a posture that the surfaces including the annular space are oriented orthogonal to the horizontal direction, and the annular spaces are further connected so as to be arranged side by side in the horizontal direction. There is. Hereinafter, in the adjacent plasma units 20 and 20, the portions of the conduit members 21 and 21 that share a part of the annular space will be referred to as a common conduit portion 4. In FIG. 3, four common conduit portions 4A to 4D are formed by five plasma units 20 including plasma units 20 at both left and right ends, which are omitted, and plasma currents are generated in each common conduit portion 4A to 4D. Parts 3A to 3D are provided.
 各プラズマ電流生成部3A~3Dのコイル32A~32Dは、例えば同じ太さの銅線を同じ長さで同じ方向に巻き付けて構成されている。各コイル32A~32Dには、共通の高周波電源34から例えば450kHzの高周波電力が供給されるように構成される。このとき隣り合って配置されるコイル32A~32D、例えばコイル32Cと、コイル32B及び32Dとでは、高周波電源34から高周波電力を供給する給電線33が接続される端部が、巻き方向に沿って見た銅線の一端側と、他端側と、で互いに相違するように構成されている。即ち、一列に並ぶコイル32A~32Dは同じ形状であるが、一端側に高周波電源34が接続されるコイル32A、32Cと、他端側に高周波電源34が接続されるコイル32B、32Dと、が交互に並んで配置されている。なお図3中の符号35は、整合器であり、各コイル32A~32Dには、共通の高周波電源34から高周波電力が同じ位相で供給されるように構成されている。 The coils 32A to 32D of each plasma current generating unit 3A to 3D are configured by, for example, winding copper wires of the same thickness with the same length in the same direction. Each coil 32A to 32D is configured to be supplied with high frequency power of, for example, 450 kHz from a common high frequency power supply 34. At this time, in the coils 32A to 32D arranged adjacent to each other, for example, the coils 32C and the coils 32B and 32D, the end portion to which the feeding line 33 for supplying high frequency power from the high frequency power supply 34 is connected is along the winding direction. The one end side and the other end side of the seen copper wire are configured to be different from each other. That is, the coils 32A to 32D arranged in a row have the same shape, but the coils 32A and 32C to which the high frequency power supply 34 is connected to one end side and the coils 32B and 32D to which the high frequency power supply 34 is connected to the other end side are. They are arranged side by side alternately. Reference numeral 35 in FIG. 3 is a matching unit, and each coil 32A to 32D is configured so that high-frequency power is supplied from a common high-frequency power supply 34 in the same phase.
 また導管部材21A~21Dの上面における共通導管部4A~4Bの上方には、各々プラズマ形成用ガスの入口22が形成され、各入口22には、ガス供給管25が接続されている。各ガス供給管25には、プラズマ形成用のガスである、NFガス及びArガスを供給するためのNFガス供給管27及びArガス供給管29が接続されている。NFガス供給管27には、入口22側から上流に向けてバルブV27及び流量調節部M27がこの順で介設され、NFガス供給源26が接続されている。Arガス供給管29には、入口22側から上流に向けてバルブV29及び流量調節部M29がこの順で介設され、Arガス供給源28が接続されている。NFガス及びArガスは、ウエハWを処理する処理ガスに相当する。 Further, an inlet 22 for plasma forming gas is formed above the common conduit portions 4A to 4B on the upper surfaces of the conduit members 21A to 21D, and a gas supply pipe 25 is connected to each inlet 22. Each gas supply pipe 25 is connected to an NF 3 gas supply pipe 27 and an Ar gas supply pipe 29 for supplying the NF 3 gas and the Ar gas, which are gases for forming plasma. A valve V27 and a flow rate adjusting unit M27 are interposed in this order from the inlet 22 side to the upstream in the NF 3 gas supply pipe 27, and the NF 3 gas supply source 26 is connected to the NF 3 gas supply pipe 27. A valve V29 and a flow rate adjusting unit M29 are interposed in this order from the inlet 22 side to the upstream in the Ar gas supply pipe 29, and the Ar gas supply source 28 is connected to the Ar gas supply pipe 29. The NF 3 gas and Ar gas correspond to the processing gas for processing the wafer W.
 また導管部材21A~21Dの下面における共通導管部4A~4Bの下方には、各々プラズマにより活性化されたガスの出口23が形成されている。本例では、各出口23は、処理チャンバ10の内部に開口し、処理チャンバ10内における載置台13に載置されたウエハWに向けてプラズマを供給するように構成されている。 
 このように入口22と、出口23と、は、共通導管部4A~4Dの上方と、下方と、に夫々設けられていることから、入口22から供給されるプラズマ形成用のガスは、前記共通導管部4A~4Dを通過して出口23に到達する。本例では、出口23は、処理チャンバ10内の処理空間にプラズマを吐出する吐出孔に相当する。なお導管部材21A~21Dの上面における入口22の数を増やしてもよく、下面に設ける出口23の数を増やしてもよい。また入口22と出口23とをできるだけ離して配置、例えば導管部材21A~21Dの中心に対して対称な位置に配置することで、プラズマ形成用のガスが環状の空間内に滞在する時間が長くすることができ、より高密度のプラズマを得ることができる。
Further, below the common conduit portions 4A to 4B on the lower surfaces of the conduit members 21A to 21D, plasma-activated gas outlets 23 are formed. In this example, each outlet 23 is configured to open inside the processing chamber 10 and supply plasma toward the wafer W mounted on the mounting table 13 in the processing chamber 10.
Since the inlet 22 and the outlet 23 are provided above and below the common conduit portions 4A to 4D, respectively, the plasma forming gas supplied from the inlet 22 is common to the above. It passes through the conduits 4A to 4D and reaches the outlet 23. In this example, the outlet 23 corresponds to a discharge hole for discharging plasma into the processing space in the processing chamber 10. The number of inlets 22 on the upper surfaces of the conduit members 21A to 21D may be increased, or the number of outlets 23 provided on the lower surface may be increased. Further, by arranging the inlet 22 and the outlet 23 as far apart as possible, for example, by arranging them at positions symmetrical with respect to the centers of the conduit members 21A to 21D, the time for the plasma forming gas to stay in the annular space is lengthened. It is possible to obtain a higher density plasma.
 続いてプラズマ処理装置の作用について説明する。まずプラズマ形成部2におけるプラズマの形成について説明する。高周波電源34をオンにすると、図4に示すようにプラズマ形成部2の各コイル32A~32Cに高周波電力が供給される。既述のように各コイル32A~32Cには、共通の高周波電源34が接続され、同じ位相の電力が供給される。 Next, the operation of the plasma processing device will be explained. First, the formation of plasma in the plasma forming unit 2 will be described. When the high frequency power supply 34 is turned on, high frequency power is supplied to the coils 32A to 32C of the plasma forming unit 2 as shown in FIG. As described above, a common high frequency power supply 34 is connected to each of the coils 32A to 32C, and electric power having the same phase is supplied.
 ここでプラズマ形成部2のプラズマ電流生成部3A~3Cにおいては、例えば隣り合って配置されたプラズマ電流生成部3Aと、プラズマ電流生成部3Bと、のコイル32A、32Bの電流の供給される方向を互いに反対にしている。そのため例えばプラズマ電流生成部3Aにおいて形成されるヨーク磁場(2)の向きと、隣のプラズマ電流生成部3Bにおいて形成されるヨーク磁場(2)の向きと、が互いに反対方向になる。 Here, in the plasma current generation units 3A to 3C of the plasma forming unit 2, for example, the directions in which the currents of the coils 32A and 32B of the plasma current generation units 3A and the plasma current generation units 3B arranged adjacent to each other are supplied. Are opposite to each other. Therefore, for example, the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3A and the direction of the yoke magnetic field (2) formed in the adjacent plasma current generation unit 3B are opposite to each other.
 そして各ガス供給管25からNFガス、及びArガスの混合ガスが導管部材21A~21Cに供給される。混合ガスは、ヨーク磁場(2)によりプラズマ化し、導管部材21A~21C内にプラズマ電流(3)が発生する。一方、プラズマ電流生成部3Bを挟んで配置されたプラズマ電流生成部3Aと、プラズマ電流生成部3Cとのコイル32A、32Cに電流の供給される方向は互いに一致している。そのため例えばプラズマ電流生成部3Aにおいて形成されるヨーク磁場(2)の向きと、1つ開けて配置されたプラズマ電流生成部3Cにおいて形成されるヨーク磁場(2)の向きと、が互いに同じ方向になる。 Then, a mixed gas of NF 3 gas and Ar gas is supplied from each gas supply pipe 25 to the conduit members 21A to 21C. The mixed gas is turned into plasma by the yoke magnetic field (2), and a plasma current (3) is generated in the conduit members 21A to 21C. On the other hand, the directions in which the current is supplied to the coils 32A and 32C of the plasma current generation unit 3A arranged so as to sandwich the plasma current generation unit 3B and the plasma current generation unit 3C coincide with each other. Therefore, for example, the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3A and the direction of the yoke magnetic field (2) formed in the plasma current generation unit 3C arranged one apart are in the same direction. Become.
 上述の構成において、ある時点にて、プラズマ電流生成部3Aのヨーク磁場(2)によって、共通導管部4Aを下向きに流れるようにプラズマ電流(3)が生成されたとする。このプラズマ電流(3)は、共通導管部4Bに下方から流れ込み上方側から抜けるように環状の空間内を流れる。 In the above configuration, it is assumed that the plasma current (3) is generated so as to flow downward through the common conduit portion 4A by the yoke magnetic field (2) of the plasma current generating portion 3A at a certain point in time. This plasma current (3) flows into the common conduit portion 4B from below and flows through the annular space so as to escape from the upper side.
 またプラズマ電流生成部3Bから見てプラズマ電流生成部3Aとは反対側のプラズマ電流生成部3Cについても、プラズマ電流生成部3Aのヨーク磁場(2)と同じ方向にヨーク磁場(2)が形成される。そのためプラズマ電流生成部3Cにおいて形成されたプラズマ電流(3)は、共通導管部4Bに下方から流れ込み上方側から抜けるように環状の空間内を流れる。 Further, the yoke magnetic field (2) is also formed in the same direction as the yoke magnetic field (2) of the plasma current generation unit 3A in the plasma current generation unit 3C opposite to the plasma current generation unit 3A when viewed from the plasma current generation unit 3B. Ru. Therefore, the plasma current (3) formed in the plasma current generation unit 3C flows into the common conduit portion 4B from below and flows in the annular space so as to escape from the upper side.
 さらにプラズマ電流生成部3Bにおいては、ヨーク磁場(2)の向きがプラズマ電流生成部3A、3Cとは反対方向であることから、共通導管部4Bを上向きに流れるようにプラズマ電流(3)が生成される。 
 従って図4の中央に記載されている共通導管部4Bに着目すると、共通導管部4B、及び隣の共通導管部4A、4Cに設けられたプラズマ電流生成部3A~3Cによって夫々生成されるプラズマ電流(3)が下方から上方に向かって流れる方向にすべて揃う。
Further, in the plasma current generation unit 3B, since the direction of the yoke magnetic field (2) is opposite to that of the plasma current generation units 3A and 3C, the plasma current (3) is generated so as to flow upward through the common conduit portion 4B. Will be done.
Therefore, focusing on the common conduit portion 4B shown in the center of FIG. 4, the plasma currents generated by the common conduit portion 4B and the plasma current generation portions 3A to 3C provided in the adjacent common conduit portions 4A and 4C, respectively. All of (3) are aligned in the direction of flowing from the bottom to the top.
 以上に説明した関係は、プラズマ形成部2に設けられた他の共通導管部4A、4Cにおいても成り立つ。図4に示す時点にて、これらの共通導管部4A、4Cにおいては、プラズマ電流(3)が上方から下方に向かって流れる方向にすべて揃っている。 
 そして、高周波電源から供給される電力の位相が経時的に変化しても、各共通導管部4においては、プラズマ電流の流れる方向が揃っている状態が保たれる。
The relationship described above also holds for the other common conduit portions 4A and 4C provided in the plasma forming portion 2. At the time shown in FIG. 4, in these common conduit portions 4A and 4C, all the plasma currents (3) are aligned in the direction of flowing from the upper side to the lower side.
Even if the phase of the electric power supplied from the high-frequency power source changes with time, the state in which the plasma currents flow is aligned is maintained in each common conduit portion 4.
 このように各共通導管部4A~4Cにおいては、当該共通導管部4A~4C、例えば共通導管部4Bに設けたプラズマ電流生成部3Bにより生成するプラズマ電流(3)と、隣の共通導管部4A、4Cに設けたプラズマ電流生成部3A、3Cにより生成するプラズマ電流(3)と、の方向が揃う。言い替えると、各導管部材21により形成される環状の空間には、複数のプラズマ電流生成部3により生成されるプラズマ電流の流れる方向が互いに揃っている部分(共通導管部4)が含まれている。
 そして各共通導管部4A~4Cにおいて同じ方向にプラズマ電流(3)が流れると、プラズマ電流(3)が互いに強めあい、図2に示すように一つのプラズマ電流生成部3によりプラズマ電流(3)を生成させた場合と比較して、相乗効果により、大きなプラズマ電流(3)が得られる。
In this way, in each common conduit portion 4A to 4C, the plasma current (3) generated by the common conduit portion 4A to 4C, for example, the plasma current generation portion 3B provided in the common conduit portion 4B, and the adjacent common conduit portion 4A. The directions of the plasma currents (3) generated by the plasma current generation units 3A and 3C provided in 4C are aligned with each other. In other words, the annular space formed by each conduit member 21 includes a portion (common conduit portion 4) in which the flow directions of the plasma currents generated by the plurality of plasma current generation units 3 are aligned with each other. ..
When the plasma current (3) flows in the same direction in the common conduit portions 4A to 4C, the plasma currents (3) strengthen each other, and as shown in FIG. 2, the plasma current (3) is generated by one plasma current generating portion 3. A large plasma current (3) is obtained due to the synergistic effect as compared with the case where the above is generated.
特に各共通導管部4A~4Cにおいては、強いプラズマ電流(3)が形成されているため、混合ガスが励起されやすく、高い密度のプラズマが形成される。そしてプラズマ形成部2にて形成された高い密度のプラズマにより活性化されたガスは、出口23を介して処理チャンバ10内に供給される。 In particular, in each of the common conduit portions 4A to 4C, a strong plasma current (3) is formed, so that the mixed gas is easily excited and a high-density plasma is formed. Then, the gas activated by the high-density plasma formed in the plasma forming unit 2 is supplied into the processing chamber 10 via the outlet 23.
 本開示に係るプラズマ処理装置の作用について説明する。例えば被処理膜であるシリコン酸化膜が形成されたウエハWが処理チャンバ10内に搬入されて、載置台13に載置される。さらにウエハWを所定の温度に温調し、プラズマ形成部2より処理チャンバ10内に向けてプラズマにより活性化されたArガスとNFガスとの混合ガスを供給する。これにより処理対象のシリコン酸化膜が混合ガス中の活性種と反応してエッチングが進行する。 The operation of the plasma processing apparatus according to the present disclosure will be described. For example, the wafer W on which the silicon oxide film as the film to be processed is formed is carried into the processing chamber 10 and placed on the mounting table 13. Further, the temperature of the wafer W is adjusted to a predetermined temperature, and a mixed gas of Ar gas activated by plasma and NF 3 gas is supplied from the plasma forming unit 2 toward the inside of the processing chamber 10. As a result, the silicon oxide film to be treated reacts with the active species in the mixed gas, and etching proceeds.
 上述のようにプラズマ形成部2では、環状の空間の一部を共有するように導管部材21を一列に連結し、各プラズマ電流生成部3により生成されて、環状の空間の共有部分を構成する共通導管部4を流れるプラズマ電流の方向を揃えている。そのため、共通導管部4のプラズマ電流が強められ、当該共通導管部4を流れるプラズマ形成用ガスを励起したときに、高い密度でプラズマを形成することができる。またプラズマ形成部2は、複数のプラズマユニット20を並べて配置しているため水平方向の広い範囲に亘ってプラズマを供給することができる。従って処理チャンバ10内においては、密度の高いプラズマが広い範囲に均一に供給される。ウエハWは、均一で密度の高いプラズマによって活性化されたガスにより、面内で均一に処理される。 As described above, in the plasma forming unit 2, the conduit members 21 are connected in a row so as to share a part of the annular space, and are generated by each plasma current generating unit 3 to form a shared portion of the annular space. The directions of the plasma currents flowing through the common conduit portion 4 are aligned. Therefore, when the plasma current of the common conduit portion 4 is strengthened and the plasma forming gas flowing through the common conduit portion 4 is excited, plasma can be formed at a high density. Further, since the plasma forming unit 2 arranges a plurality of plasma units 20 side by side, plasma can be supplied over a wide range in the horizontal direction. Therefore, in the processing chamber 10, high-density plasma is uniformly supplied over a wide range. The wafer W is uniformly treated in-plane with a gas activated by a uniform and dense plasma.
 次に図5を参照し、プラズマユニット20の他の構成例を説明する。この例では、プラズマ電流生成部3aには、導管部材21の一部領域において、誘電体からなる管壁で構成された誘電体部205が設けられている。この誘電体部205にはコイル32が巻き付けられ、ICP型のプラズマ電流生成部3aを備えたプラズマユニット20が構成されている。この例では、コイル32を流れる電流(1)によって生じる磁場を打ち消すように電流が流れるため、導管部材21により形成される環状の空間を周回するようにプラズマ電流(3)を生成させることができる。そのため、説明したプラズマ形成部2において、ICP型のプラズマ電流生成部3aを備えたプラズマユニット20を適用した場合においても、図4を用いて説明した例と同様の作用・効果を得ることができる。 Next, with reference to FIG. 5, another configuration example of the plasma unit 20 will be described. In this example, the plasma current generation unit 3a is provided with a dielectric unit 205 formed of a tube wall made of a dielectric material in a part of the conduit member 21. A coil 32 is wound around the dielectric portion 205, and a plasma unit 20 provided with an ICP-type plasma current generation portion 3a is configured. In this example, since the current flows so as to cancel the magnetic field generated by the current (1) flowing through the coil 32, the plasma current (3) can be generated so as to orbit the annular space formed by the conduit member 21. .. Therefore, even when the plasma unit 20 provided with the ICP type plasma current generation unit 3a is applied to the described plasma forming unit 2, the same operation and effect as the example described with reference to FIG. 4 can be obtained. ..
 また図3、図4などに示すプラズマ形成部2において、環状の空間を構成する導管部材21の下面(出口23が形成されている面)を開放し開放面としてもよい。この例では、開放面がプラズマの出口に相当する。一方、プラズマ処理装置の処理チャンバ10側には、当該開放面を塞ぐと共に、前記処理空間にプラズマを吐出する吐出孔が形成され、例えば誘電体で構成されたインシュレーターが設けられる。このような構成とすることで出口23を通過するとき活性化されたガスが導管部材21の壁部と接触することに伴う失活を抑制でき、処理チャンバ10内に、より活性化した状態を維持してガスを供給することができる。 Further, in the plasma forming portion 2 shown in FIGS. 3 and 4, the lower surface (the surface on which the outlet 23 is formed) of the conduit member 21 constituting the annular space may be opened to serve as an open surface. In this example, the open surface corresponds to the outlet of the plasma. On the other hand, on the processing chamber 10 side of the plasma processing apparatus, a discharge hole for discharging plasma is formed in the processing space while closing the open surface, and an insulator made of, for example, a dielectric is provided. With such a configuration, inactivation due to contact of the activated gas with the wall portion of the conduit member 21 when passing through the outlet 23 can be suppressed, and a more activated state is provided in the processing chamber 10. Can be maintained and supplied with gas.
 次いで、プラズマユニット20の配置のバリエーションを示す。例えば図6に示すようにプラズマ形成部2は、複数のプラズマユニット20が直線方向に並べられた列を複数配置した構成としてもよい。また図7に示すようにプラズマ形成部2は、複数のプラズマユニット20を環状に並べて配置した構成としてもよい。さらに環状に並べられたえプラズマユニット20の組を複数、互いに同心円状に配置してプラズマ形成部2を構成してもよい。このように複数のプラズマユニット20の組を複数列、複数組配置することで、より広い範囲に亘って均一にプラズマを供給することができる。 Next, the variation of the arrangement of the plasma unit 20 is shown. For example, as shown in FIG. 6, the plasma forming unit 2 may have a configuration in which a plurality of rows in which a plurality of plasma units 20 are arranged in a linear direction are arranged. Further, as shown in FIG. 7, the plasma forming unit 2 may have a configuration in which a plurality of plasma units 20 are arranged in a ring shape. Further, a plurality of sets of plasma units 20 arranged in a ring shape may be arranged concentrically with each other to form the plasma forming unit 2. By arranging a plurality of sets of the plurality of plasma units 20 in a plurality of rows in this way, plasma can be uniformly supplied over a wider range.
 またプラズマ形成部2を構成する複数のプラズマユニット20設けられたガスの出口23を処理チャンバ10内に向けて直接、開口するように設けることで、プラズマにより活性化されたガスの失活を抑えつつ、速やかに処理チャンバ10に供給することができる。
 ここでプラズマ形成部2は、ウエハWのエッチングを行うエッチングガスをプラズマ化するために設けられる場合に限定されない。例えばウエハWに膜を成膜するための成膜用ガスをプラズマ化するために設けてもよく、処理チャンバ10内に処理チャンバ10内をクリーニングするクリーニングガスをプラズマ化するために設けてもよい。またプラズマ形成部2にて形成されたプラズマにより活性化されたガスは、離れた位置に配置された処理チャンバ10に対して配管を介して供給してもよい。
Further, by providing the gas outlets 23 provided with the plurality of plasma units 20 constituting the plasma forming unit 2 so as to open directly into the processing chamber 10, the deactivation of the gas activated by the plasma is suppressed. At the same time, it can be quickly supplied to the processing chamber 10.
Here, the plasma forming unit 2 is not limited to the case where the etching gas for etching the wafer W is provided to turn into plasma. For example, a film forming gas for forming a film on the wafer W may be provided for plasma conversion, or a cleaning gas for cleaning the inside of the processing chamber 10 may be provided in the processing chamber 10 for plasma conversion. .. Further, the gas activated by the plasma formed in the plasma forming unit 2 may be supplied to the processing chamber 10 arranged at a distant position via a pipe.
 次いで図8は、プラズマユニット20(プラズマ電流生成部3)に対する高周波電力の給電系統の構成例を示している。図8に示す例において各プラズマユニット20には共通の高周波電源34から電力が供給される。このとき、複数のプラズマユニット20の間で、各コイル32に電力を供給する給電線330の長さを等しくしてもよい。このように構成することで、給電線330の長さの違いにより高周波電源34から供給される電力の位相が各コイル32間でずれることを抑制できる。また各給電線330に位相を調節する回路を設けて各コイル32に供給される電力の位相を調節してもよい。 
 また図8に示す例に替えて、高周波電源34から供給される電力は、高周波電源34からトーナメント形式で分岐した給電線330を介して各プラズマユニット20に供給されるように構成してもよい。
Next, FIG. 8 shows a configuration example of a high-frequency power feeding system for the plasma unit 20 (plasma current generation unit 3). In the example shown in FIG. 8, power is supplied to each plasma unit 20 from a common high frequency power supply 34. At this time, the length of the feeder line 330 for supplying electric power to each coil 32 may be equal among the plurality of plasma units 20. With this configuration, it is possible to prevent the phase of the power supplied from the high frequency power supply 34 from shifting between the coils 32 due to the difference in the length of the feeder line 330. Further, a circuit for adjusting the phase may be provided in each feeder line 330 to adjust the phase of the electric power supplied to each coil 32.
Further, instead of the example shown in FIG. 8, the electric power supplied from the high frequency power supply 34 may be configured to be supplied to each plasma unit 20 via the feeder line 330 branched from the high frequency power supply 34 in a tournament format. ..
 この他、図3を用いて説明した各コイル32に対する高周波電力の供給位置を相違させてヨーク磁場(2)の向きを変化させる手法に替えて、各コイル32を構成する銅線の端部の位置を揃えて高周波電力を供給することも可能である。この場合には、隣り合って配置されたプラズマ電流生成部3に対し、位相が180°ずれた電力が交互に供給されるように、給電線33、330に位相反転器を設けてもよい。この例においても隣り合うプラズマ電流生成部3により生成するプラズマ電流の向きが互いに逆方向にとなるようにすることができる。 In addition, instead of the method described with reference to FIG. 3 in which the supply position of high-frequency power for each coil 32 is changed to change the direction of the yoke magnetic field (2), the end of the copper wire constituting each coil 32 is used. It is also possible to align the positions and supply high frequency power. In this case, phase inversion devices may be provided on the feeder lines 33 and 330 so that electric power shifted by 180 ° in phase is alternately supplied to the plasma current generation units 3 arranged adjacent to each other. Also in this example, the directions of the plasma currents generated by the adjacent plasma current generation units 3 can be opposite to each other.
[第2の実施の形態]
 続いて第2の実施形態に係るプラズマ形成部200の構成例について説明する。図9に示すプラズマ形成部200は、内部が中空の円環状のガスリング201を備え、ガスリング201の外周面に全周に亘って、プラズマユニット20が、等間隔に並んで配置されている。
[Second Embodiment]
Subsequently, a configuration example of the plasma forming unit 200 according to the second embodiment will be described. The plasma forming portion 200 shown in FIG. 9 is provided with an annular gas ring 201 having a hollow inside, and plasma units 20 are arranged side by side at equal intervals on the outer peripheral surface of the gas ring 201 over the entire circumference. ..
 各プラズマユニット20は、環状の空間を含む面が水平方向と直交する向きとなる姿勢でガスリング201の側面に誘電体24を介して接続されている。これらのプラズマユニット20は、導管部材21の内部の空間と、ガスリング201の内部の空間とが連通して環状の空間を構成している。ガスリング201内の空間は、共通の空間に相当し、ガスリング201は共通の空間を構成すると共に、複数のプラズマユニット20(導管部材21)から、プラズマにより活性化されたガスが流れ込む合流部に相当する。 Each plasma unit 20 is connected to the side surface of the gas ring 201 via a dielectric 24 in a posture in which the surface including the annular space is oriented orthogonal to the horizontal direction. In these plasma units 20, the space inside the conduit member 21 and the space inside the gas ring 201 communicate with each other to form an annular space. The space inside the gas ring 201 corresponds to a common space, and the gas ring 201 constitutes a common space, and a confluence portion where plasma-activated gas flows from a plurality of plasma units 20 (conduit members 21). Corresponds to.
 図9では記載を省略したが、各導管部材21にはプラズマ電流生成部3が互いに同じ構成で設けられている。各プラズマ電流生成部3のコイル32を構成する銅線には、互い同じ構成となっている。そして、図3を用いて説明した第1の実施の形態の場合とは異なり、各コイル32から見て向きが共通する端部(例えば図9に向かって上部側の端部)に高周波電源34が接続されている。この結果、各コイル32には互いに同じ方向に高周波電力が供給される。 Although the description is omitted in FIG. 9, each conduit member 21 is provided with a plasma current generating unit 3 having the same configuration as each other. The copper wires constituting the coil 32 of each plasma current generation unit 3 have the same configuration. Then, unlike the case of the first embodiment described with reference to FIG. 3, the high frequency power supply 34 is located at an end portion having a common orientation when viewed from each coil 32 (for example, an end portion on the upper side toward FIG. 9). Is connected. As a result, high frequency power is supplied to each coil 32 in the same direction as each other.
 そして各コイル32に電流を供給してプラズマ電流を形成させるとプラズマ電流(3)は、各々環状の空間の一部をなすガスリング201内の空間を通過するように流れる。このとき、各コイル32に供給する電流の位相を揃えることで、共通の空間に位相の揃ったプラズマ電流(3)がガスリング201内を通過する。既述のように本例では、環状の空間が縦方向の環となるようにプラズマユニット20を配置し、これらのプラズマユニット20をガスリング201の外周面に沿って並べている。このことから、プラズマ電流(3)が周回する方向は、ガスリング201が構成する面(例えば水平面)に対して直交する方向に揃う。 
 言い替えると、各導管部材21とガスリング201とにより形成される環状の空間において、各プラズマ電流生成部3により生成形成されるプラズマ電流の流れる方向が同じである。従って、これらのプラズマ電流が流れる共通の空間であるガスリング201の内部に着目すると、複数のプラズマ電流の流れる方向が互いに揃っている部分を構成しているといえる。
Then, when a current is supplied to each coil 32 to form a plasma current, the plasma current (3) flows so as to pass through the space in the gas ring 201 which forms a part of the annular space. At this time, by aligning the phases of the currents supplied to each coil 32, the plasma current (3) having the same phase in the common space passes through the gas ring 201. As described above, in this example, the plasma units 20 are arranged so that the annular space becomes a ring in the vertical direction, and these plasma units 20 are arranged along the outer peripheral surface of the gas ring 201. From this, the directions in which the plasma current (3) orbits are aligned in the direction orthogonal to the plane (for example, the horizontal plane) formed by the gas ring 201.
In other words, in the annular space formed by each conduit member 21 and the gas ring 201, the flow direction of the plasma current generated and formed by each plasma current generating unit 3 is the same. Therefore, focusing on the inside of the gas ring 201, which is a common space through which these plasma currents flow, it can be said that they form a portion in which the directions in which the plurality of plasma currents flow are aligned with each other.
 上述のプラズマ形成部200について、各導管部材21に不図示の入口を設け、ガスリング201にプラズマ形成用ガスを供給するように構成する。またガスリング201の下面に、例えば周方向に沿って等間隔にプラズマにより活性化されたガスの出口(不図示)を設ける。 
 これらの構成により、プラズマ形成用のガスは、ガスリング201内の共通の空間を通過してプラズマ化し出口から排出される。この際、ガスリング201の周方向に沿った広い範囲でプラズマを形成することができる。また、各プラズマユニット20にて生成するプラズマ電流の方向を揃えることで、均一なプラズマを形成することができる。ここで第2の実施形態に示したプラズマ形成部200において、例えば直線状に伸びる管路により構成される合流部の側面に、互いに横並びとなるように一列に複数のプラズマユニット20を配置してもよい。
Regarding the above-mentioned plasma forming portion 200, each conduit member 21 is provided with an inlet (not shown) so as to supply the plasma forming gas to the gas ring 201. Further, on the lower surface of the gas ring 201, for example, outlets (not shown) of gas activated by plasma are provided at equal intervals along the circumferential direction.
With these configurations, the gas for plasma formation passes through the common space in the gas ring 201, becomes plasma, and is discharged from the outlet. At this time, plasma can be formed in a wide range along the circumferential direction of the gas ring 201. Further, by aligning the directions of the plasma currents generated by each plasma unit 20, a uniform plasma can be formed. Here, in the plasma forming portion 200 shown in the second embodiment, for example, a plurality of plasma units 20 are arranged in a row so as to be side by side on the side surface of the merging portion formed by a linearly extending pipeline. May be good.
[第3の実施形態]
 続いて、図10、図11を参照しながら第3の実施形態に係るプラズマ形成部210、210aについて説明する。図10に示す例は、環状に構成された管路211を備え、管路211の延びる方向に沿ってプラズマユニット20を並べて配置している。なお、説明の便宜上、図10、図11には、環状構成された管路211を平面に展開した状態を示してある。 
 各プラズマユニット20は、環状の空間を含む面が管路211の延伸方向を向くように配置される。この例では、管路211は、共通の空間を形成する合流部に相当する。
[Third Embodiment]
Subsequently, the plasma forming portions 210 and 210a according to the third embodiment will be described with reference to FIGS. 10 and 11. In the example shown in FIG. 10, a pipe line 211 configured in an annular shape is provided, and plasma units 20 are arranged side by side along the extending direction of the pipe line 211. For convenience of explanation, FIGS. 10 and 11 show a state in which the annularly configured pipeline 211 is developed in a plane.
Each plasma unit 20 is arranged so that the surface including the annular space faces the extending direction of the pipeline 211. In this example, the pipeline 211 corresponds to a confluence that forms a common space.
 そして各プラズマユニット20は、導管部材21の内部の空間と、管路211の内部の空間とが連通して環状の空間を構成している。上述の構成により、プラズマ電流生成部3により生成するプラズマ電流(3)は、管路211の延びる方向に沿って流れて管路211内を通過する。また本例では、各導管部材21にプラズマ形成用のガスの入口22が形成されている。他方、管路211におけるプラズマユニット20が並ぶ面とは反対側の面に、各プラズマユニット20に対応するようにプラズマの出口23が形成されている。 Each plasma unit 20 forms an annular space in which the space inside the conduit member 21 and the space inside the pipeline 211 communicate with each other. With the above configuration, the plasma current (3) generated by the plasma current generation unit 3 flows along the extending direction of the pipeline 211 and passes through the pipeline 211. Further, in this example, a gas inlet 22 for plasma formation is formed in each conduit member 21. On the other hand, a plasma outlet 23 is formed on the surface of the pipeline 211 opposite to the surface on which the plasma units 20 are lined up so as to correspond to each plasma unit 20.
 また各プラズマ電流生成部3のコイル32は、互いに同じ構成となっており、各コイル32には、互いに同じ方向に高周波電流を流すように高周波電源34が接続されている。さらに各コイル32には、位相が揃った電流が供給される。従って各プラズマユニット20にて生成するプラズマ電流(3)は、管路211内を周回する方向が、プラズマユニット20の並び方向に揃うように流れる。このように管路211内にてプラズマ電流(3)が揃って流れることで、管路211においてプラズマ電流(3)が互いに強めあい、管路211に沿って流れる強い電流(3)´を形成することができる。 Further, the coils 32 of each plasma current generation unit 3 have the same configuration as each other, and a high frequency power supply 34 is connected to each coil 32 so as to allow a high frequency current to flow in the same direction. Further, a current having the same phase is supplied to each coil 32. Therefore, the plasma current (3) generated by each plasma unit 20 flows so that the direction circulating in the pipeline 211 is aligned with the alignment direction of the plasma units 20. When the plasma currents (3) flow together in the pipeline 211 in this way, the plasma currents (3) strengthen each other in the pipeline 211, forming a strong current (3)'flowing along the pipeline 211. can do.
 言い替えると、各導管部材21と管路211とにより形成される環状の空間において、各プラズマ電流生成部3により生成されるプラズマ電流の流れる方向が同じである。従って、これらのプラズマ電流が流れる共通の空間である管路211の内部に着目すると、複数のプラズマ電流の流れる方向が互いに揃っている部分を構成しているといえる。なお管路211は、直線状に延びる構成としてもよい。 In other words, in the annular space formed by each conduit member 21 and the pipeline 211, the direction in which the plasma current generated by each plasma current generation unit 3 flows is the same. Therefore, focusing on the inside of the pipeline 211, which is a common space through which these plasma currents flow, it can be said that they form a portion in which the directions in which the plurality of plasma currents flow are aligned with each other. The pipeline 211 may be configured to extend linearly.
 上述の構成を備えるプラズマ形成部210によれば、導管部材21に形成された入口22からプラズマ形成用のガスを供給し、管路211を通過させて、プラズマ化した後、活性化されたガスを出口23から排出するように構成する。これによりプラズマにより活性化されたガスは、強められた電流(3)´によって、より高い活性が保たれた状態で排出される。このようにプラズマユニット20を並べて配置し、プラズマ電流(3)の方向を揃えることで、広い範囲に均一なプラズマを形成することができる。また管路211内に強められた電流(3)´を形成することができるため、形成されるプラズマの密度を高くすることができる。
 さらに本例においても管路211の出口が形成される側を開放面とする一方、処理チャンバ10側に、前記開放面を塞ぎ、プラズマを吐出する吐出孔を有する例えば誘電体で構成されたインシュレーターを設けてもよい。
According to the plasma forming unit 210 having the above-described configuration, the gas for plasma formation is supplied from the inlet 22 formed in the conduit member 21, passed through the pipeline 211, turned into plasma, and then activated. Is configured to be discharged from the outlet 23. As a result, the gas activated by the plasma is discharged in a state where higher activity is maintained by the increased current (3)'. By arranging the plasma units 20 side by side in this way and aligning the directions of the plasma currents (3), it is possible to form a uniform plasma in a wide range. Further, since the enhanced current (3)'can be formed in the pipeline 211, the density of the formed plasma can be increased.
Further, also in this example, the side where the outlet of the pipeline 211 is formed is the open surface, while the insulator 10 side of the processing chamber is made of, for example, a dielectric having a discharge hole for closing the open surface and discharging plasma. May be provided.
 また第3の実施形態に係るプラズマ形成部210において、図11に示すように管路211に流れる強められた電流(3)´をさらに強めるための補助電流生成部300を設けてもよい。補助電流生成部300は、例えばプラズマ電流生成部3と同様に管路211の周囲を囲むように設けたヨーク31とヨーク31に巻き付けられたコイル32とを備えている。そしてプラズマ電流(3)によって強められる電流(3)´の流れる方向に沿って補助電流(4)を形成させるようにコイル32に電流を流す。このように構成することで、電流(3)´をさらに強めることができ、さらに密度を高めたプラズマを形成することができる。 Further, in the plasma forming unit 210 according to the third embodiment, as shown in FIG. 11, an auxiliary current generating unit 300 for further increasing the increased current (3)'flowing in the pipeline 211 may be provided. The auxiliary current generation unit 300 includes, for example, a yoke 31 provided so as to surround the circumference of the pipeline 211 and a coil 32 wound around the yoke 31, similarly to the plasma current generation unit 3. Then, a current is passed through the coil 32 so as to form an auxiliary current (4) along the flow direction of the current (3)'enhanced by the plasma current (3). With such a configuration, the current (3)'can be further strengthened, and a plasma having a higher density can be formed.
3             電場生成部
20            プラズマユニット
22            入口
23            出口
30            導管部材
32            コイル
34            高周波電源

 
3 Electric field generator 20 Plasma unit 22 Inlet 23 Outlet 30 Conduit member 32 Coil 34 High frequency power supply

Claims (16)

  1.  プラズマ形成用のガスを励起してプラズマを形成する装置であって、
     前記プラズマが形成される環状の空間を構成するための導管部材と、
     前記導管部材に設けられ、前記環状の空間に向けて前記ガスが供給される入口と、
     前記入口と離れた位置に設けられ、前記環状の空間にて形成されたプラズマにより活性化された前記ガスが排出される出口と、
     高周波電源から電力が供給されて磁場を生成させるコイルを含み、前記磁場により、前記ガスを励起して前記環状の空間を周回するようにプラズマ電流を生成するため、前記導管部材の一部領域に設けられたプラズマ電流生成部と、を有し、
     前記プラズマ電流生成部と前記導管部材とを有するプラズマ形成ユニットが複数並べて設置され、各々の前記環状の空間には、前記複数のプラズマ電流生成部により生成されるプラズマ電流の流れる方向が互いに揃っている部分が含まれる、プラズマを形成する装置。
    A device that excites a gas for plasma formation to form plasma.
    A conduit member for forming the annular space in which the plasma is formed, and
    An inlet provided in the conduit member and to which the gas is supplied toward the annular space,
    An outlet provided at a position away from the inlet and discharged from the plasma activated by the plasma formed in the annular space.
    A coil that is supplied with power from a high frequency power source to generate a magnetic field is included, and the magnetic field excites the gas to generate a plasma current so as to orbit the annular space. It has a provided plasma current generator and
    A plurality of plasma forming units having the plasma current generating unit and the conduit member are installed side by side, and the flow directions of the plasma current generated by the plurality of plasma current generating units are aligned with each other in each of the annular spaces. A device that forms a plasma that contains an electric current.
  2.  前記プラズマ電流生成部は、前記導管部材の前記一部領域の管壁を囲むように設けられた環状の磁性体コアを備え、
     前記コイルは、前記磁性体コアに巻き付けられている、請求項1に記載のプラズマを形成する装置。
    The plasma current generating unit includes an annular magnetic core provided so as to surround the tube wall of the partial region of the conduit member.
    The device for forming plasma according to claim 1, wherein the coil is wound around the magnetic core.
  3.  前記プラズマ電流生成部は、前記導管部材の一部領域を構成する誘電体からなる管壁である誘電体部を有し、
     前記コイルは、前記誘電体部に巻き付けられている、請求項1に記載のプラズマを形成する装置。
    The plasma current generation portion has a dielectric portion which is a tube wall made of a dielectric material constituting a part of the conduit member.
    The device for forming plasma according to claim 1, wherein the coil is wound around the dielectric portion.
  4.  前記複数のプラズマ形成ユニットは、互いに隣り合って配置され、前記導管部材の間で前記環状の空間の一部を共有する複数の共通導管部を有し、
     前記プラズマ電流生成部は、前記複数の共通導管部に夫々設けられることと、
     前記入口から供給される前記プラズマ形成用のガスが前記共通導管部を通過して前記出口に到達することと、
     前記複数の共通導管部に設けられた前記プラズマ電流生成部は、各々、前記複数の共通導管部に含まれる一の共通導管部と、その隣の共通導管部とに夫々生成されるプラズマ電流の流れる方向が、互いに揃って強めあう関係となるように設けられていることと、を有する、請求項1に記載のプラズマを形成する装置。
    The plurality of plasma forming units are arranged next to each other and have a plurality of common conduit portions sharing a part of the annular space between the conduit members.
    The plasma current generation section is provided in each of the plurality of common conduit sections, and the plasma current generation section is provided in each of the plurality of common conduit sections.
    The plasma forming gas supplied from the inlet passes through the common conduit portion and reaches the outlet.
    The plasma current generating section provided in the plurality of common conduit sections is a plasma current generating section for plasma current generated in one common conduit section included in the plurality of common conduit sections and a common conduit section adjacent to the common conduit section, respectively. The device for forming plasma according to claim 1, wherein the flow directions are provided so as to be aligned with each other and strengthen each other.
  5.  前記複数のプラズマ形成ユニットにより夫々形成されるプラズマ電流が通過する共通の空間を形成すると共に、前記複数のプラズマ形成ユニットが並べて接続され、前記出口を備えた合流部を有することと、
     前記複数のプラズマ形成ユニットの各プラズマ電流生成部は、前記共通の空間を通過する前記プラズマ電流の流れる方向が、前記プラズマ形成ユニットの並び方向に対して直交する方向に互いに揃うように設けられていることと、
     前記プラズマにより活性化された前記ガスは、前記共通の空間を通過して前記出口から排出されることと、を有する、請求項1に記載のプラズマを形成する装置。
    In addition to forming a common space through which the plasma current formed by each of the plurality of plasma forming units passes, the plurality of plasma forming units are connected side by side and have a confluence portion provided with the outlet.
    Each plasma current generation unit of the plurality of plasma forming units is provided so that the direction in which the plasma current flowing through the common space flows is aligned with each other in a direction orthogonal to the arrangement direction of the plasma forming units. Being and
    The apparatus for forming plasma according to claim 1, wherein the gas activated by the plasma passes through the common space and is discharged from the outlet.
  6.  前記複数のプラズマ形成ユニットにより夫々形成されるプラズマ電流が通過する共通の空間を形成すると共に、前記複数のプラズマ形成ユニットが並べて設置され、前記出口を備えた合流部を有することと、
     前記複数のプラズマ形成ユニットの各プラズマ電流生成部は、前記共通の空間を通過するプラズマ電流の流れる方向が、前記プラズマ形成ユニットの並び方向に沿って形成されることにより、これらのプラズマ電流が互いに強め合うように設けられていることと、
     前記プラズマにより活性化された前記ガスは、前記共通の空間を通過して前記出口から排出されることと、を有する、請求項1に記載のプラズマを形成する装置。
    In addition to forming a common space through which the plasma currents formed by the plurality of plasma forming units pass, the plurality of plasma forming units are installed side by side and have a confluence portion provided with the outlet.
    In each plasma current generation unit of the plurality of plasma forming units, the direction in which the plasma current flowing through the common space flows is formed along the arrangement direction of the plasma forming units, so that these plasma currents are formed with each other. It is provided to strengthen each other, and
    The apparatus for forming plasma according to claim 1, wherein the gas activated by the plasma passes through the common space and is discharged from the outlet.
  7.  前記合流部は、管路であり、
     前記管路には、コイルを含みコイルを流れる電流によって生成する磁場により、前記プラズマ電流生成部により生成され、前記環状の空間の一部である前記管路を流れる前記プラズマ電流と互いに強め合って流れる方向に、他のプラズマ電流を流すための補助電流生成部が設けられた、請求項6に記載のプラズマを形成する装置。
    The confluence is a pipeline and
    The pipeline contains a coil and is generated by the plasma current generation unit by a magnetic field generated by a current flowing through the coil, and mutually strengthens with the plasma current flowing through the pipeline which is a part of the annular space. The apparatus for forming plasma according to claim 6, wherein an auxiliary current generating unit for flowing another plasma current is provided in the flow direction.
  8.  前記プラズマ形成ユニットを直線方向に並べた列を複数列有する、請求項1に記載のプラズマを形成する装置。 The apparatus for forming plasma according to claim 1, which has a plurality of rows in which the plasma forming units are arranged in a linear direction.
  9.  前記プラズマ形成ユニットを環状に並べて配置した、請求項1に記載のプラズマを形成する装置。 The device for forming plasma according to claim 1, wherein the plasma forming units are arranged side by side in a ring shape.
  10.  前記環状に並べて配置したプラズマ形成ユニットの組を複数有し、
     各プラズマ形成ユニットの組は、互いに同心円状に配置された、請求項9に記載のプラズマを形成する装置。
    It has a plurality of sets of plasma forming units arranged side by side in an annular shape.
    The device for forming plasma according to claim 9, wherein each set of plasma forming units is arranged concentrically with each other.
  11.  前記複数のプラズマ形成ユニットには、共通の高周波電源から電力が供給され、
     前記電力は、前記高周波電源から互いに同じ長さの給電線を介して前記各プラズマ形成ユニットに供給される、請求項1に記載のプラズマを形成する装置。
    Power is supplied to the plurality of plasma forming units from a common high-frequency power source.
    The device for forming plasma according to claim 1, wherein the electric power is supplied from the high frequency power source to each plasma forming unit via a feeder line having the same length as each other.
  12.  請求項1ないし11のいずれか一項に記載のプラズマを形成する装置と、
     内部に基板が載置されて当該基板を処理する処理空間を構成し、前記処理空間に前記出口から排出されたガスが供給される処理チャンバと、を備えた、基板を処理する装置。
    The apparatus for forming plasma according to any one of claims 1 to 11.
    A device for processing a substrate, comprising a processing space in which a substrate is placed and processing the substrate, and a processing chamber in which the gas discharged from the outlet is supplied to the processing space.
  13.  前記プラズマ形成用のガスは、前記基板を処理する処理ガスである、請求項12に記載の基板を処理する装置。 The apparatus for processing a substrate according to claim 12, wherein the gas for forming the plasma is a processing gas for processing the substrate.
  14.  前記出口は、前記処理空間に前記ガスを吐出する吐出孔である、請求項12に記載の基板を処理する装置。 The device for processing a substrate according to claim 12, wherein the outlet is a discharge hole for discharging the gas into the processing space.
  15.  前記出口は、前記環状の空間の一面に形成された開放面であって、
     前記処理チャンバは、前記開放面を塞ぎ、前記処理空間にプラズマを吐出する吐出孔を有するインシュレーターを有する、請求項12に記載の基板を処理する装置。
    The outlet is an open surface formed on one surface of the annular space.
    The apparatus for processing a substrate according to claim 12, wherein the processing chamber has an insulator that closes the open surface and has a discharge hole for discharging plasma into the processing space.
  16.  プラズマ形成用のガスを励起してプラズマを形成する方法であって、
     導管部材により構成される環状の空間に、前記ガスを供給する工程と、
     前記導管部材の一部領域に設けられたプラズマ電流生成部が有するコイルに、高周波電源から電力を供給して磁場を生成させ、前記磁場により、前記ガスを励起して、前記環状の空間を周回するようにプラズマ電流を生成する工程と、
     前記環状の空間にて形成されたプラズマにより活性化された前記ガスを前記導管部材の外部に排出する工程と、有し、
     前記ガスを励起する工程では、前記プラズマ電流生成部と前記導管部材とを有する複数のプラズマ形成ユニットが並べて設置された状態で、前記環状の空間に、前記複数のプラズマ電流生成部により生成するプラズマ電流の流れる方向が互いに揃えられた部分を形成する、プラズマを形成する方法。

     
    It is a method of exciting plasma formation gas to form plasma.
    The process of supplying the gas to the annular space composed of the conduit members, and
    A magnetic field is generated by supplying electric power from a high-frequency power source to a coil of a plasma current generating unit provided in a partial region of the conduit member, and the gas is excited by the magnetic field to orbit the annular space. And the process of generating plasma current
    It has a step of discharging the gas activated by the plasma formed in the annular space to the outside of the conduit member.
    In the step of exciting the gas, plasma generated by the plurality of plasma current generating units is generated in the annular space in a state where a plurality of plasma forming units having the plasma current generating unit and the conduit member are installed side by side. A method of forming a plasma that forms parts in which the directions of current flow are aligned with each other.

PCT/JP2021/023102 2020-06-26 2021-06-17 Device for forming plasma, device for processing substrate, and method for forming plasma WO2021261381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110684A JP2022007611A (en) 2020-06-26 2020-06-26 Device for forming plasma, device for processing substrate, and method for forming plasma
JP2020-110684 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021261381A1 true WO2021261381A1 (en) 2021-12-30

Family

ID=79281368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023102 WO2021261381A1 (en) 2020-06-26 2021-06-17 Device for forming plasma, device for processing substrate, and method for forming plasma

Country Status (2)

Country Link
JP (1) JP2022007611A (en)
WO (1) WO2021261381A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506339A (en) * 2000-08-11 2004-02-26 アプライド マテリアルズ インコーポレイテッド Externally excited toroidal plasma source
US20040226512A1 (en) * 2001-04-20 2004-11-18 Applied Materials, Inc. Multi-core transformer plasma source
JP2007294414A (en) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd Inductively coupled plasma reactor coupled with multiplex magnetic core
JP2009283435A (en) * 2008-05-20 2009-12-03 New Power Plasma Co Ltd Plasma reactor with built-in transformer
US20120211466A1 (en) * 2011-02-22 2012-08-23 Dae-Kyu Choi Plasma processing apparatus and method thereof
US20130307414A1 (en) * 2011-11-09 2013-11-21 Dae-Kyu Choi Hybrid plasma reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506339A (en) * 2000-08-11 2004-02-26 アプライド マテリアルズ インコーポレイテッド Externally excited toroidal plasma source
US20040226512A1 (en) * 2001-04-20 2004-11-18 Applied Materials, Inc. Multi-core transformer plasma source
JP2007294414A (en) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd Inductively coupled plasma reactor coupled with multiplex magnetic core
JP2009283435A (en) * 2008-05-20 2009-12-03 New Power Plasma Co Ltd Plasma reactor with built-in transformer
US20120211466A1 (en) * 2011-02-22 2012-08-23 Dae-Kyu Choi Plasma processing apparatus and method thereof
US20130307414A1 (en) * 2011-11-09 2013-11-21 Dae-Kyu Choi Hybrid plasma reactor

Also Published As

Publication number Publication date
JP2022007611A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US7952048B2 (en) Plasma source with discharge inducing bridge and plasma processing system using the same
KR101920842B1 (en) Plasma source design
JP6752205B2 (en) Plasma processing system with toroidal plasma source and method of plasma processing
EP1089319B1 (en) Uniform gas distribution in large area plasma treatment device
US8771538B2 (en) Plasma source design
JP6754765B2 (en) Equipment and methods for supplying plasma products
KR100785164B1 (en) Multi output remote plasma generator and substrate processing system having the same
US8409400B2 (en) Inductive plasma chamber having multi discharge tube bridge
US5591268A (en) Plasma process with radicals
TW201203307A (en) Plasma processing apparatus and plasma processing method
CA2376059A1 (en) Method and apparatus to produce large inductive plasma for plasma processing
KR101496841B1 (en) Compound plasma reactor
KR20110059797A (en) Plasma processing apparatus
US6850012B2 (en) Plasma processing apparatus
US20080236491A1 (en) Multiflow integrated icp source
KR100798352B1 (en) Plasma reactor with multi-arrayed discharging chamber and plasma processing system using the same
WO2021067160A1 (en) Radio frequency distribution circuits including transformers and/or transformer coupled combiners
KR20100129370A (en) Consecutive substrate processing system using large-area plasma
WO2021261381A1 (en) Device for forming plasma, device for processing substrate, and method for forming plasma
US20230290611A1 (en) Distributed plasma source array
TWI398926B (en) Plasma reactor having plasma chamber coupled with magnetic flux channel
KR100862685B1 (en) Plasma reactor with multi-arrayed discharging chamber and plasma processing system using the same
KR20150040757A (en) Plasma cvd apparatus
KR20110131834A (en) Linear plasma generator and plasma process system
KR20180040957A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828506

Country of ref document: EP

Kind code of ref document: A1