WO2021261349A1 - ブレーキ制御装置及びブレーキ制御システム - Google Patents

ブレーキ制御装置及びブレーキ制御システム Download PDF

Info

Publication number
WO2021261349A1
WO2021261349A1 PCT/JP2021/022836 JP2021022836W WO2021261349A1 WO 2021261349 A1 WO2021261349 A1 WO 2021261349A1 JP 2021022836 W JP2021022836 W JP 2021022836W WO 2021261349 A1 WO2021261349 A1 WO 2021261349A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
brake
pressure
target
deceleration
Prior art date
Application number
PCT/JP2021/022836
Other languages
English (en)
French (fr)
Inventor
康永 小林
鋭 張
ハーフィズ アル
統丈 石井
毅史 北村
Original Assignee
ナブテスコ株式会社
ナブテスコオートモーティブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社, ナブテスコオートモーティブ株式会社 filed Critical ナブテスコ株式会社
Priority to JP2022531866A priority Critical patent/JP7362926B2/ja
Publication of WO2021261349A1 publication Critical patent/WO2021261349A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • B60T13/36Compressed-air systems direct, i.e. brakes applied directly by compressed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/14Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated upon collapse of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters

Definitions

  • the present invention relates to a brake control device and a brake control system.
  • EDSS Emergency Driving Stop System
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a brake control device and a brake control system for braking at a deceleration suitable for a vehicle.
  • the brake control device that solves the above problems is a brake control device that controls a brake mechanism that brakes the vehicle to brake and stop the vehicle, and is an actual braking force when the brake mechanism is operating and the actual braking force.
  • An acquisition unit that acquires a correlation with the deceleration of the vehicle when the vehicle is braked by the braking force, and a target for decelerating the vehicle at a desired deceleration based on the correlation and making an emergency stop.
  • An estimation unit that estimates the braking force and a control unit that controls the braking mechanism based on the target braking force estimated by the estimation unit to stop the vehicle when a stop signal for urgently stopping the vehicle is received. And prepare.
  • the control unit of the brake control device when the control unit of the brake control device receives the stop signal, the control unit is based on the target braking force estimated from the correlation between the actual braking force when the brake mechanism is activated and the deceleration of the vehicle.
  • the brake mechanism is controlled to stop the vehicle. Therefore, it is possible to brake at a deceleration suitable for the vehicle.
  • the brake mechanism is an air brake driven by air pressure
  • the estimation unit estimates the target brake pressure for operating the air brake as the target braking force
  • control unit controls the brake mechanism by maintaining the target braking force until the vehicle stops.
  • the acquisition unit acquires the correlation when at least one of the speed and the deceleration of the vehicle is a predetermined value or more.
  • the acquisition unit has the correlation between a plurality of actual braking forces having different sizes and a plurality of decelerations of the vehicle when the vehicle is braked by each of the plurality of actual braking forces. It is preferable to get a relationship.
  • the acquisition unit acquires the correlation when the brake mechanism is operated by the brake operation of the driver.
  • the acquisition unit acquires the traveling condition of the vehicle, acquires the correlation when the vehicle is in a predetermined traveling condition, and the estimation unit corresponds to the predetermined traveling condition.
  • Each of the target braking forces is estimated, and the control unit applies the braking mechanism based on the target braking force when the traveling condition of the vehicle when the stop signal is received is the predetermined traveling condition. It is preferable to control.
  • the acquisition unit acquires the traveling condition of the vehicle, acquires the correlation when the vehicle is in a predetermined traveling condition, and the control unit receives the stop signal.
  • the traveling condition of the vehicle is the predetermined traveling condition, it is preferable to correct the target braking force and control the braking mechanism based on the corrected target braking force.
  • the traveling conditions of the vehicle include the slope of the road surface on which the vehicle is traveling, the weather when the vehicle is traveling, the temperature, humidity, and the timing when the vehicle is traveling. It is preferable that it is at least one of the target conditions.
  • the brake control device is provided with a notification unit that notifies the driver of the vehicle that the acquisition unit has acquired the correlation.
  • the brake control device that solves the above problems is a brake control device that controls a brake mechanism that brakes the vehicle to brake and stop the vehicle, and is an actual brake pressure when an air brake driven by air pressure is operating. And the correlation with the deceleration of the vehicle when the vehicle is braked by the actual braking pressure is acquired when the speed of the vehicle is equal to or higher than a predetermined value and the deceleration of the vehicle is equal to or higher than a predetermined value.
  • the estimation unit that estimates the target brake pressure for decelerating the vehicle at a desired deceleration to make an emergency stop based on the correlation, and the stop signal for making the vehicle an emergency stop are received. It is provided with a control unit that controls the air brake to stop the vehicle while maintaining the target brake pressure estimated by the estimation unit until the vehicle stops.
  • the control unit of the brake control device when the control unit of the brake control device receives the stop signal, the control unit maintains the target brake pressure estimated from the correlation between the actual brake pressure when the air brake is activated and the deceleration of the vehicle. To control the air brake to stop the vehicle. Therefore, it is possible to brake at a deceleration suitable for the vehicle.
  • the brake control system that solves the above problems is a brake control system that controls a brake mechanism that brakes the vehicle to brake and stop the vehicle, and a brake operation is performed on the first port connected to the air tank of the vehicle. It has a second port connected to a brake valve that outputs an air pressure signal in some cases, and a third port connected to a brake mechanism that applies braking force to the wheels by controlling the electromagnetic valve based on the air pressure signal.
  • a pneumatic circuit for switching between a first communication state in which air is supplied from the port to the third port and a second communication state in which air is supplied from the first port to the third port is provided, and the brake mechanism is operated.
  • the acquisition unit that acquires the correlation between the actual braking pressure when the brake is applied and the deceleration of the vehicle when the vehicle is braked by the actual braking pressure, and the vehicle at a desired deceleration based on the correlation.
  • the estimation unit that estimates the target brake pressure for decelerating and making an emergency stop and the stop signal that makes the vehicle make an emergency stop are received
  • the pneumatic circuit is switched from the first communication state to the second communication state.
  • a control unit that controls the electromagnetic valve of the pneumatic circuit to stop the vehicle based on the target brake pressure estimated by the estimation unit is provided.
  • the control unit of the brake control system when the control unit of the brake control system receives the stop signal, the control unit is based on the target brake pressure estimated from the correlation between the actual brake pressure when the air brake is activated and the deceleration of the vehicle. Control the air brake to stop the vehicle. Therefore, it is possible to brake at a deceleration suitable for the vehicle.
  • braking can be performed at a deceleration suitable for the vehicle.
  • the circuit diagram of the first communication state which communicates a brake valve and a brake mechanism in the pneumatic circuit of the same embodiment.
  • the circuit diagram of the 2nd communication state which communicates with the air tank and the brake mechanism in the pneumatic circuit of the same embodiment.
  • the flowchart which shows the release process of the brake control system of the same embodiment The flowchart which shows the target brake pressure correction processing of the brake control system of 2nd Embodiment.
  • the brake control system is a driver abnormality response system, and is retrofitted to a pneumatic brake system mounted on a vehicle such as a bus.
  • the brake control device is retrofitted by adding a control program related to the driver abnormality response system to the existing control device.
  • the pneumatic brake system 11 mounted on the vehicle 10 is a full-air brake system equipped with a pneumatically driven brake mechanism while controlling the command system of the brake mechanism by pneumatic pressure.
  • the pneumatic brake system 11 includes an air tank 12 for storing compressed air generated by a compressor (not shown).
  • the air tank 12 has a first tank 12A, a second tank 12B, and a third tank 12C.
  • the first tank 12A is a tank for storing compressed air for applying a braking force to the front wheels of the vehicle 10.
  • the second tank 12B is a tank for storing compressed air for applying a braking force to the rear wheels.
  • the third tank 12C is a tank for storing compressed air used for other purposes.
  • the first tank 12A and the second tank 12B are connected to the front pressure chamber 13A and the rear pressure chamber 13B of the brake valve 13. Further, the first tank 12A and the second tank 12B are connected to the air horn device 14B via the protection valve 14A.
  • the brake valve 13 is connected to the relay valve 15 via the air pipe 18.
  • a pneumatic signal is output from the brake valve 13 to the relay valve 15.
  • the relay valve 15 is connected to the air tank 12 by an air pipe (not shown).
  • the relay valve 15 receives the air pressure signal from the brake valve 13
  • a large amount of compressed air stored in the air tank 12 is supplied to the relay valve 15 via the air pipe.
  • a large amount of compressed air supplied to the relay valve 15 is supplied to the brake chamber 17 via the ABS (Anti-lock Break System) control valve 16.
  • the brake chamber 17 generates braking force on the wheels by supplying air.
  • the ABS control valve 16 and the brake chamber 17 constitute a pneumatically driven brake mechanism.
  • the operation on the brake pedal 13C corresponds to the brake operation of the driver.
  • a driver abnormality response system (EDSS: Emergency Driving Stop System) that causes an emergency stop of the vehicle 10 by the driver or an occupant other than the driver when an abnormality occurs in the pneumatic brake system 11 of the vehicle (existing vehicle) 10.
  • EDSS Emergency Driving Stop System
  • PCM Pressure Control Module
  • the pressure control module 20 has a first port P1 connected to the air tank 12 (third tank 12C), a second port P2 connected to the brake valve 13, and a third port P3 connected to the brake mechanism including the relay valve 15. ing. Since the pressure control module 20 is provided between the brake valve 13 and the relay valve 15, it can be attached to a pneumatic brake system 11 having a brake mechanism other than the pneumatically driven type.
  • the pneumatic circuit of the pressure control module 20 will be described in detail with reference to FIG.
  • the pressure control module 20 includes a pneumatic circuit 22 and a sub-ECU (electronic control unit: Electronic Control Unit) 32.
  • the pressure control module 20 together with the main ECU 31 constitutes a driver abnormality response system 50.
  • the main ECU 31 and the sub-ECU 32 each include a calculation unit, a communication interface unit, a volatile storage unit, and a non-volatile storage unit.
  • the arithmetic unit is a computer processor and controls the pneumatic brake system 11 according to a control program stored in the non-volatile storage unit (storage medium).
  • the arithmetic unit may realize at least a part of the processing executed by itself by a circuit (cyclery) such as an ASIC.
  • the control program may be executed by one computer processor or may be executed by a plurality of computer processors.
  • the main ECU 31 and the sub ECU 32 are connected to an in-vehicle network such as CAN (Control Area Network) 33, and transmit and receive various information to and from each other.
  • CAN Control Area Network
  • the main ECU 31 receives a stop signal transmitted from the operation switch 51 to make the vehicle 10 an emergency stop when the operation switch 51 is turned on.
  • the main ECU 31 receives a release signal transmitted from the release switch 52 when the release switch 52 is turned on.
  • the operation switch 51 and the release switch 52 are switches that are supposed to be operated by the driver, and are provided near the driver's seat.
  • the release switch 52 is a switch for stopping the operation of the driver abnormality response system 50 when it is erroneously operated.
  • the main ECU 31 controls the pneumatic brake system 11 to perform the main braking when the operation switch 51 is turned on.
  • This braking is braking for decelerating the vehicle 10 at a deceleration having a larger absolute value than slow braking and finally stopping the vehicle 10.
  • Slow braking is braking in which the absolute value of deceleration is relatively small, or braking in which the braking time is short, and it is possible to return to normal running when the release switch 52 is operated immediately afterwards. Braking to do.
  • the audience seat operation switch 53 is a switch that is supposed to be operated by an occupant other than the driver.
  • the passenger seat operation switch 53 is provided at a position other than the driver's seat and can be operated by an occupant other than the driver.
  • the main ECU 31 controls the pneumatic brake system 11 to perform slow braking when the passenger seat operation switch 53 is turned on.
  • the main ECU 31 acquires the correlation between the actual braking pressure when the pneumatic braking system 11 is controlled by the driver's braking operation and the deceleration of the vehicle 10 when the vehicle 10 is braked by the actual braking pressure. To prepare for.
  • the main ECU 31 includes an estimation unit 31B that estimates a target brake pressure for decelerating the vehicle 10 at a desired deceleration and making an emergency stop based on the correlation between the actual braking pressure and the deceleration.
  • the main ECU 31 includes a control unit 31C that controls the pneumatic brake system 11 based on the target brake pressure estimated by the estimation unit 31B to stop the vehicle 10 when the stop signal is received.
  • the acquisition unit 31A acquires speed information from the speed sensor 55 via the CAN 33, and acquires the actual brake pressure from the second pressure sensor 39 via the CAN 33 and the sub ECU 32.
  • the acquisition unit 31A stores the deceleration obtained from the speed and the actual braking pressure at that time in the storage unit 31D, and acquires the correlation between the actual braking pressure and the deceleration.
  • the estimation unit 31B stores the estimated target brake pressure in the storage unit 31D.
  • the storage unit 31D stores the default target brake pressure to be used until the estimation is completed.
  • the main ECU 31 has an air pressure estimated by the estimation unit 31B so that the deceleration obtained from the current traveling speed of the vehicle 10 approaches the target deceleration, which is the target value, when the driver abnormality response system 50 starts operating.
  • the target brake pressure of the brake system 11 is instructed to the sub ECU 32.
  • This target deceleration can be changed by updating the data stored in the storage unit 31D of the main ECU 31.
  • the vehicle 10 is a shared bus
  • the absolute value of the target deceleration is reduced.
  • the absolute value of the target deceleration may be larger than that of the shared bus. It is also possible to change the target deceleration according to the weight and length of the vehicle 10.
  • the main ECU 31 outputs an instruction signal to the vehicle interior device 56 and the vehicle outdoor device 57 when the driver abnormality response system 50 is activated.
  • the vehicle interior device 56 is, for example, an accelerator interlock mechanism that makes it impossible to operate the accelerator pedal.
  • the main ECU 31 activates the accelerator interlock mechanism when an abnormality occurs.
  • a notification buzzer provided in the vehicle interior, a notification lamp provided in the vehicle interior, and the like may be provided.
  • the main ECU 31 outputs a sound from the notification buzzer and turns on or blinks the notification lamp.
  • the vehicle outdoor device 57 is, for example, an air horn device 14B, a hazard lamp, a brake lamp, or the like.
  • the main ECU 31 drives a protection valve 14A or the like to supply air to the air horn device 14B to generate a warning sound, and turns on or blinks a hazard lamp and a brake lamp.
  • the sub ECU 32 is housed in the pressure control module 20 and controls various valves of the pressure control module 20.
  • the pressure control module 20 has a first supply path 23 connected to the air tank 12.
  • the first supply path 23 has a front air supply path 37 connected to the brake chamber 17 provided on the front wheel via a relay valve 15 and a rear air supply path connected to the brake chamber 17 provided on the rear wheel. It is connected to 38.
  • a relay valve 25 is connected in the middle of the first supply path 23.
  • the relay valve 25 has a discharge port 25A, and the discharge port 25A is connected to a discharge portion 58 having a silencer. Further, the relay valve 25 has a pilot port 25B.
  • the pilot port 25B is connected to a branch path 26 branching from the first supply path 23.
  • the air pressure applied from the branch path 26 to the pilot port 25B is a predetermined pressure such as atmospheric pressure
  • the first supply path 23 is cut off by the urging force of the urging spring or the like.
  • the relay valve 25 is in the exhaust state, the air flow from the air tank 12 to the front air supply path 37 and the rear air supply path 38 is cut off.
  • the downstream side of the relay valve 25 in the first supply path 23 and the discharge portion 58 are communicated with each other, and the compressed air on the downstream side of the relay valve 25 in the first supply path 23 is communicated with each other. Is discharged and becomes a predetermined pressure such as atmospheric pressure.
  • the supply state is such that the first supply path 23 communicates with the first supply path 23.
  • the relay valve 25 When the relay valve 25 is in the supply state, air is supplied from the air tank 12 to the front air supply path 37 and the rear air supply path 38.
  • the relay valve 25 When the relay valve 25 is in the supply state, the first supply path 23 is communicated with the front air supply path 37 and the rear air supply path 38. Further, when the pressure on the outlet side (secondary side) becomes excessively high, the relay valve 25 cuts off the communication state of the first supply path 23 and becomes an exhaust state.
  • One end of the branch path 26 is connected to the first supply path 23, and the other end is connected to the discharge section 58.
  • An intake valve 27 and an exhaust valve 28 are provided in the middle of the branch path 26.
  • the intake valve 27 and the exhaust valve 28 are solenoid valves and are driven by the sub ECU 32.
  • the intake valve 27 is provided on the branch path 26 closer to the upstream side (closer to the air tank 12) than the exhaust valve 28.
  • the operation of the intake valve 27 is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 27A.
  • the intake valve 27 is in a closed position that closes the branch path 26 in a non-driven state in which the power is turned off. Further, the intake valve 27 is in an open position that opens the branch path 26 in the driven state where the power is turned on.
  • the exhaust valve 28 is a solenoid valve whose operation is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 28A.
  • the exhaust valve 28 is in an open position that communicates with the branch path 26 in a non-driven state in which the power is turned off. Further, the exhaust valve 28 is in a closed position that closes the branch path 26 in the driven state where the power is turned on. That is, the exhaust valve 28 opens the signal supply path 29 downstream of the intake valve 27 to the atmosphere when the intake valve 27 is not driven and is in the closed position. Further, in the exhaust valve 28, the atmospheric pressure is set to the upstream side of the intake valve 27 in the branch path 26 and the upstream side of the relay valve 25 in the first supply path 23 in the driven state.
  • a signal supply path 29 for supplying an air pressure signal to the relay valve 25 and a first pressure sensor 35 are connected in the middle of the intake valve 27 and the exhaust valve 28.
  • the first pressure sensor 35 detects the pressure between the intake valve 27 and the exhaust valve 28 in the branch path 26 and outputs the pressure to the sub ECU 32.
  • the first supply path 23 is connected to the third supply path 30.
  • the third supply path 30 is connected to a pair of double check valves 36.
  • the double check valve 36A includes a third supply path 30, a front signal supply path 24A connected to the front pressure chamber 13A of the brake valve 13, and a front air supply path 37 for generating braking force on the front wheels. It is connected to the.
  • the double check valve 36A allows the supply of compressed air from the third supply path 30 and the forward signal supply path 24A, whichever has the higher pressure, and cuts off the supply of the compressed air from the lower pressure.
  • a second pressure sensor 39 is connected to the front air supply path 37. The second pressure sensor 39 outputs the detected pressure to the sub ECU 32.
  • the other double check valve 36B is connected to a third supply path 30, a rear signal supply path 24B connected to the rear pressure chamber 13B of the brake valve 13, and a rear air supply path 38 that applies braking force to the rear wheels. ing.
  • the double check valve 36B allows the supply of compressed air from the third supply path 30 and the rear signal supply path 24B, whichever has the higher pressure, and cuts off the supply of the compressed air from the lower pressure.
  • FIG. 3 shows a pneumatic circuit 22 when the operation switch 51 and the audience seat operation switch 53 are not turned on.
  • the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28.
  • the intake valve 27 is in the closed position and the exhaust valve 28 is in the open position.
  • the exhaust valve 28 is in the open position, so that the pressure becomes a predetermined pressure such as atmospheric pressure. Therefore, the air pressure applied to the pilot port 25B also becomes a predetermined pressure, so that the relay valve 25 is in the exhaust state.
  • the relay valve 25 When the relay valve 25 is in the exhaust state, the compressed air downstream of the relay valve 25 in the third supply path 30 and the first supply path 23 is discharged from the discharge portion 58, and the third supply path 30 becomes a predetermined pressure. Further, when the brake pedal 13C is depressed, an air pressure signal is supplied to the front signal supply path 24A and the rear signal supply path 24B. As a result, the pressure in the front signal supply path 24A and the rear signal supply path 24B becomes higher than that in the third supply path 30, so that the double check valves 36A and 36B have the front air supply path 37 and the rear air from the third supply path 30. The air flow to the supply path 38 is cut off.
  • the air pressure signal is supplied from the front signal supply path 24A and the rear signal supply path 24B to the front air supply path 37 and the rear air supply path 38.
  • the air pressure signal is supplied to the relay valve 15, so that a large amount of compressed air is supplied from the air tank 12 to the relay valve 15.
  • the relay valve 15 supplies compressed air to the brake chamber 17, braking force is applied to the wheels.
  • the pneumatic circuit including the front signal supply path 24A and the rear signal supply path 24B corresponds to the brake control circuit.
  • FIG. 4 shows a pneumatic circuit 22 when at least one of the operation switch 51 and the audience seat operation switch 53 is turned on.
  • the sub-ECU 32 receives the pressure instruction transmitted from the main ECU 31.
  • the sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction.
  • the intake valve 27 is in the open position and the exhaust valve 28 is in the closed position.
  • the compressed air of the air tank 12 is supplied to the branch path 26 between the intake valve 27 and the exhaust valve 28 via the first supply path 23.
  • the double check valve 36 allows the flow of air from the third supply path 30 to the front air supply path 37 and the rear air supply path 38, and allows the front air from the front signal supply path 24A and the rear signal supply path 24B.
  • the air flow to the supply path 37 and the rear air supply path 38 is blocked.
  • the pneumatic circuit including the intake valve 27, the exhaust valve 28, the flow path connecting the relay valve 25 (first supply path 23, branch path 26, etc.), and the third supply path 30 is a brake control circuit in case of abnormality. Corresponds to.
  • the pressure control module 20 between the brake valve 13 and the relay valve 15, when the operation switch 51 and the audience seat operation switch 53 are turned on, the pneumatically driven command system brakes.
  • the system is switched from the system via the valve 13 to the system in which air is directly supplied from the air tank 12. Therefore, the brake chamber 17 can be operated to generate the braking force without receiving the air pressure signal from the brake valve 13.
  • the sub ECU 32 acquires the detected pressure from the first pressure sensor 35 and the second pressure sensor 39 at a predetermined timing. For example, when the relay valve 25 is maintained in the supply state, the sub ECU 32 drives or does not drive the intake valve 27 and the exhaust valve 28 so that the pressure detected by the first pressure sensor 35 is within a predetermined range. To. Further, when the main ECU 31 transmits a pressure instruction to the sub-ECU 32 so as to gradually increase the pressure in order to gently stop the vehicle 10, the sub-ECU 32 uses the pressure detected by the second pressure sensor 39. Determines whether or not has reached the first pressure threshold.
  • the sub ECU 32 determines that the detected pressure has not reached the first pressure threshold value, it drives the intake valve 27 and the exhaust valve 28 to maintain the relay valve 25 in the supply state. On the other hand, when the pressure detected by the second pressure sensor 39 reaches the first pressure threshold value, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28 to shut off the relay valve 25. Then, it waits for the next pressure instruction from the main ECU 31.
  • the pressure control module 20 When the pressure control module 20 is attached to the pneumatic brake system 11 of the existing vehicle 10 as a driver abnormality response system 50, it is necessary to perform brake control according to the attached vehicle 10. That is, in the existing vehicle 10, it is necessary to adjust the brake pressure so as to obtain a desired deceleration according to the weight of the vehicle 10, the grip performance of the tire, and the aged deterioration of the brake mechanism.
  • the default value is set for the target brake pressure.
  • the main ECU 31 has an abnormality response application for controlling the pressure control module 20.
  • the anomaly response application has a "normal mode" for responding to anomalies and an "adjustment mode" for adjusting the target braking pressure to achieve the target deceleration.
  • the normal mode the default target brake pressure or the target brake pressure estimated in the adjustment mode is output as the target brake pressure for decelerating in an abnormal situation.
  • the adjustment mode the target brake pressure for achieving the target deceleration stored in the storage unit 31D is adjusted while outputting the target brake pressure at the time of abnormality in the normal mode.
  • the main ECU 31 shifts the abnormality response application from the normal mode to the adjustment mode when a specified operation such as a plurality of switches being operated at the same time is performed.
  • the failure LED or the like of the driver abnormality response system 50 blinks in order to notify that the adjustment mode is in effect.
  • a failure LED or the like that notifies the adjustment process corresponds to the notification unit.
  • “state management” for managing the state of the vehicle 10 such as a running state and a stopped state and “processing” for performing adjustment processing are performed. This makes it possible to adjust the deceleration in each state.
  • the speed of the vehicle 10, the deceleration of the vehicle 10, and the actual braking pressure are simultaneously input as input data.
  • the main ECU 31 can determine whether the vehicle 10 is in the running state or the stopped state based on the speed of the vehicle 10 obtained from the speed sensor 55. Further, in the adjustment mode, the state in the adjustment mode and the correlation between the actual braking pressure and the deceleration are output as output data.
  • the main ECU 31 estimates the target braking pressure for achieving the target deceleration from the correlation between the acquired actual braking pressure and the deceleration.
  • the main ECU 31 collects data (step S11). That is, the acquisition unit 31A acquires data of the actual braking pressure of the pneumatic brake system 11 when the driver depresses the brake pedal 13C and the deceleration when the vehicle 10 is braked by the actual braking pressure. ..
  • the actual brake pressure is the pressure detected by the second pressure sensor 39 and is the pressure acquired from the sub ECU 32.
  • the deceleration is obtained by calculating the deceleration from the speed detected by the speed sensor 55.
  • the acquisition unit 31A repeats acquisition of the actual braking pressure and deceleration at that time each time the vehicle 10 decelerates during the adjustment mode.
  • the acquisition unit 31A collects only data in which the speed of the vehicle 10 is equal to or higher than the predetermined speed and the deceleration is equal to or higher than the predetermined deceleration.
  • the predetermined deceleration is a value for excluding the low deceleration because if the deceleration is too low, the correlation will be dissociated and the estimation accuracy will be lowered.
  • FIG. 7 is a graph in which the collected data of the actual braking pressure and the deceleration are plotted on a graph in which the horizontal axis is the actual braking pressure and the vertical axis is the deceleration.
  • the main ECU 31 calculates an approximate line that is a straight line from the collected data, and estimates the target brake pressure corresponding to the target deceleration from the slope and intercept of the approximate line.
  • the main ECU 31 estimates from these data the target braking pressure at -2.45 m / s 2 , which is the deceleration when performing the main braking accompanied by sudden deceleration when dealing with an abnormality.
  • the target braking pressure at -2.45 m / s 2 is indicated by a star (star).
  • the main ECU 31 estimates the target braking pressure for achieving the target deceleration from the slope of the approximate line and the intercept.
  • the main ECU 31 determines whether or not the number of collected data is equal to or greater than a predetermined number (step S12). That is, since the approximation line cannot be obtained when the number of data is small, the acquisition unit 31A determines whether or not the number of data is a predetermined number or more.
  • the predetermined number of data is preferably at least 3 or more in order to obtain an approximate line.
  • the acquisition unit 31A proceeds to step S11 and continues the data collection.
  • step S12 determines whether or not the number of collected data is equal to or greater than a predetermined number (step S12: YES). That is, if the acquired data is biased, the acquisition unit 31A cannot obtain an accurate approximation line and the estimation accuracy is lowered, so that the acquisition unit 31A determines whether or not the dispersion value is equal to or more than a predetermined value. Then, when the acquisition unit 31A determines that the dispersion value is less than the predetermined value (step S13: NO), the acquisition unit 31A proceeds to step S11 and continues to collect data.
  • the main ECU 31 determines that the dispersion value is equal to or higher than a predetermined value (step S13: YES)
  • the main ECU 31 estimates the target brake pressure (step S14). That is, the estimation unit 31B calculates an approximate line that is a straight line from the collected data, and estimates the target braking pressure for achieving the target deceleration when performing the main braking from the slope of the approximate line and the intercept. The estimation unit 31B can also estimate the target braking pressure for achieving each deceleration.
  • the main ECU 31 determines whether or not the correlation coefficient is equal to or higher than a predetermined value (step S15). That is, the acquisition unit 31A calculates and determines the correlation coefficient between the obtained approximation line and the variance of the collected data. When the main ECU 31 determines that the correlation coefficient is less than a predetermined value (step S15: NO), the main ECU 31 determines that the accuracy of the obtained target brake pressure is low, and proceeds to step S11 to obtain data. Continue collecting.
  • step S15 when the main ECU 31 determines that the correlation coefficient is equal to or higher than a predetermined value (step S15: YES), the main ECU 31 completes the target brake pressure estimation process. That is, the acquisition unit 31A outputs the slope of the approximate line and the intercept as output data. The estimation unit 31B stores the estimated target brake pressure in the storage unit 31D as a new target brake pressure.
  • the process shown in FIG. 8 is a process for controlling the air system, and is started when the operation switch 51 or the audience seat operation switch 53 is operated and the main ECU 31 receives a stop signal transmitted from those switches. It shall be. Further, it is premised that the main ECU 31 acquires vehicle information from the speed sensor 55 at a predetermined timing.
  • step S21 when the main ECU 31 receives the stop signal, it determines whether or not the audience seat operation switch 53 has been operated (step S21). That is, the main ECU 31 determines whether the received stop signal is a signal from the operation switch 51 or a signal from the audience seat operation switch 53. Then, when the main ECU 31 determines that the operation switch 51 has been operated (step S21: NO), the main ECU 31 proceeds to step S24.
  • step S21 determines that the passenger seat operation switch 53 has been operated (step S21: YES)
  • the main ECU 31 instructs the sub-ECU 32 of the target braking pressure required for slow braking (step S22).
  • the main ECU 31 transmits the target braking pressure for achieving the target deceleration for slow braking stored in its own storage unit 31D to the sub ECU 32.
  • the sub ECU 32 drives the intake valve 27 and the exhaust valve 28 as described above based on the instruction of the target brake pressure (see FIG. 4).
  • the main ECU 31 determines whether or not a predetermined time has elapsed from the time when the target brake pressure is transmitted to the sub-ECU 32, the time when the vehicle 10 starts decelerating, or the time when a predetermined response signal is received from the sub-ECU 32 (step S23). ).
  • This predetermined time is the time required for the driver to operate the release switch 52 when the passenger seat operation switch 53 is erroneously operated even though the driver is in a normal state.
  • the main ECU 31 continues slow braking while instructing the sub-ECU 32 of the target braking pressure (step S22).
  • step S23 when the main ECU 31 determines that the predetermined time has elapsed (step S23: YES), the main ECU 31 instructs the sub ECU 32 of the pressure required for the main braking (step S24).
  • the main ECU 31 transmits to the sub-ECU 32 a target braking pressure for achieving the target deceleration for main braking stored in its own storage unit 31D.
  • the control unit 31C maintains the target braking pressure until the vehicle 10 stops.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the instruction of the target brake pressure from the main ECU 31 (see FIG. 4).
  • the main ECU 31 determines whether or not the response to an abnormality has been completed (step S25).
  • the emergency response may be determined to have ended when the vehicle 10 has stopped and the parking brake has been activated, or it may have been determined to have ended when the ignition switch has been turned off, or at other timings. It may be determined that the process has ended.
  • the main ECU 31 determines that the response to an abnormality has not been completed (step S25: NO)
  • the main ECU 31 continues the main braking while instructing the sub-ECU 32 of the target brake pressure (step S24).
  • the main ECU 31 determines that the abnormality response is completed (step S25: YES)
  • the main ECU 31 ends the abnormality response process.
  • the main ECU 31 operates the vehicle interior device 56 and the vehicle outdoor device 57 at a predetermined timing such as the timing at which the main braking is started, in addition to the response to the abnormality of the air system. As a result, it is possible to notify the occupants of the vehicle 10 that an abnormality has occurred and to call attention to other vehicles traveling around the vehicle 10.
  • the main ECU 31 determines whether or not the release switch 52 has been operated (step S31). That is, the main ECU 31 determines whether or not an operation signal has been received from the release switch 52. Then, when the main ECU 31 determines that the operation signal has not been received from the release switch 52 (step S31: NO), the process proceeds to step S33.
  • step S31 determines that the operation signal has been received from the release switch 52 (step S31: YES)
  • the main ECU 31 transmits a braking release instruction to the sub ECU 32 (step S32).
  • the sub ECU 32 Upon receiving the release instruction, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28, and shuts off the supply of air from the air tank 12 to the brake chamber 17 side.
  • step S33 determines whether or not the response to an abnormality has been completed.
  • step S33: NO the main ECU 31 proceeds to step S31.
  • step S33: YES the main ECU 31 ends the release process.
  • the target brake pressure is estimated in advance from the correlation between the actual braking force when the pneumatic brake system 11 is operated and the deceleration of the vehicle 10, and is based on the estimated target brake pressure when the stop signal is received.
  • the pneumatic brake system 11 is controlled to stop the vehicle 10. Therefore, braking can be performed at a deceleration according to the vehicle 10.
  • the existing vehicle 10 having different states is required to perform brake control according to the retrofitted vehicle 10. ..
  • the acquisition unit 31A acquires the correlation between the actual braking pressure and the deceleration when the pneumatic brake system 11 is controlled by the driver's brake operation, and the estimation unit 31B aims to achieve the target deceleration.
  • the brake pressure is estimated, and the pneumatic brake system 11 is controlled by the target brake pressure estimated by the control unit 31C to stop the vehicle 10.
  • the estimation unit 31B estimates the target braking pressure to achieve the target deceleration, and the vehicle It is possible to brake at a deceleration according to. Therefore, any vehicle 10 can be braked at a deceleration according to the vehicle 10, and the driver abnormality response system 50 can be retrofitted.
  • the target braking pressure according to the desired deceleration can be estimated more accurately.
  • the driver blinks the failure LED of the driver abnormality response system 50 to indicate that the adjustment process for estimating the target brake pressure by acquiring the correlation between the brake pressure and the deceleration of the vehicle 10 is being performed. By notifying the driver, the driver can try to properly operate the brake pedal 13C.
  • the traveling condition of the vehicle 10 is at least one of the slope of the road surface on which the vehicle 10 is traveling, the weather when the vehicle 10 is traveling, and the temperature when the vehicle 10 is traveling.
  • the main ECU 31 is initially set to have a sunny and flat running condition.
  • the acquisition unit 31A can determine the slope (flatness, uphill, downhill) of the traveling road surface based on the inclination of the vehicle 10 obtained from the acceleration sensor 61.
  • the acquisition unit 31A can determine the road surface freezing based on the temperature obtained from the temperature sensor 62. Further, the acquisition unit 31A can determine the change in the grip performance of the tire based on the temperature obtained from the temperature sensor 62.
  • the acquisition unit 31A can determine whether or not it is raining and the intensity of the rain depending on the wiper state obtained from the wiper drive device 63.
  • the acquisition unit 31A acquires the traveling condition of the vehicle 10 and acquires the correlation when the vehicle 10 is in a predetermined traveling condition.
  • the estimation unit 31B estimates in advance the correction value of the target brake pressure for the default running condition.
  • the control unit 31C corrects the target brake pressure so as to correspond to the acquired traveling condition, and controls the pneumatic brake system 11 based on the corrected target brake pressure. For example, when the driving condition is uphill, the deceleration becomes larger than when traveling on a flat surface, so the target braking pressure is corrected to 80% with respect to the initial setting so as to decrease. When the driving condition is downhill, the deceleration becomes smaller than when traveling on a flat surface, so the target braking pressure is corrected to 130% with respect to the initial setting so as to increase. When the driving condition is rainy and the road surface is frozen, the deceleration becomes smaller than when the road surface is not frozen or sunny, so the target braking pressure is corrected to 120%, for example, so as to increase.
  • the main ECU 31 is initially set to have a sunny and flat running condition.
  • the main ECU 31 acquires the traveling status (step S41). That is, the main ECU 31 acquires the traveling status from the information from each sensor or the like.
  • the main ECU 31 can acquire a traveling condition such as a flat traveling road surface, a downhill slope, an uphill slope, rainy weather, and an icy road surface.
  • the main ECU 31 determines whether or not the traveling condition has changed (step S42). That is, if the initially set running condition and the acquired running condition match, the main ECU 31 determines that there is no change (step S42: NO), proceeds to step S41, and is sunny and flat.
  • the pneumatic brake system 11 is controlled by the target brake pressure that is initially set in the driving situation.
  • the main ECU 31 determines that the vehicle is flat if the slope of the traveling road surface is less than a predetermined value, and determines that the wiper drive device 63 is not driven, and determines that the vehicle is sunny. It is determined that the acquired driving conditions match.
  • the main ECU 31 may determine the traveling condition by giving a width to the slope of the traveling road surface, the temperature, the driving speed of the wiper driving device 63, and the like.
  • the main ECU 31 determines that there is a change if the initially set driving condition and the acquired driving condition do not match in the sunny and flat driving condition (step S42: YES), and sets the target brake pressure. Correct (step S43). That is, it is corrected to the target brake pressure corresponding to the acquired driving condition. Then, the control unit 31C controls the pneumatic brake system 11 with the corrected target brake pressure.
  • the driving condition can be acquired based on at least one of the slope of the road surface on which the vehicle 10 is traveling, the weather when the vehicle is traveling, and the temperature when the vehicle is traveling, which is a target. Even in these traveling situations where the braking pressure changes, braking can be performed at a deceleration according to the vehicle 10.
  • the traveling condition is at least one of the slope of the road surface on which the vehicle 10 is traveling, the weather when the vehicle 10 is traveling, and the temperature when the vehicle 10 is traveling.
  • the main ECU 31 is initially set to have a sunny and flat running condition. Therefore, the acquisition unit 31A acquires the traveling condition of the vehicle 10 and acquires the correlation when the vehicle 10 is in a predetermined traveling condition.
  • the estimation unit 31B estimates in advance the target brake pressure for each driving condition.
  • the control unit 31C changes the target brake pressure corresponding to the acquired traveling condition, and controls the pneumatic brake system 11 based on the changed target brake pressure. For example, when the driving condition is uphill, the deceleration becomes larger than when traveling on a flat surface, so the target braking pressure is changed to a value lower than the target braking pressure when the vehicle is sunny and flat. When the driving condition is downhill, the deceleration becomes smaller than when driving on a flat surface, so the target braking pressure is changed to a value higher than the target braking pressure when the vehicle is sunny and flat. If the driving condition is rainy or the road surface is frozen, the deceleration will be smaller than when the road surface is not frozen or sunny, so change to the target braking pressure that is higher than the target braking pressure when the road surface is sunny and flat.
  • the acquisition unit 31A can determine the slope (flatness, uphill, downhill) of the traveling road surface based on the inclination of the vehicle 10 obtained from the acceleration sensor 61.
  • the acquisition unit 31A can determine the road surface freezing based on the temperature obtained from the temperature sensor 62.
  • the acquisition unit 31A can determine whether or not it is raining depending on whether or not the wiper obtained from the wiper drive device 63 is operating, and further determine the intensity of rain based on the operating speed of the wiper.
  • the main ECU 31 is initially set to have a sunny and flat running condition.
  • the main ECU 31 acquires the traveling status (step S51). That is, the main ECU 31 acquires the traveling status from the information from each sensor or the like.
  • the main ECU 31 can acquire a traveling condition such as a flat traveling road surface, a downhill slope, an uphill slope, rainy weather, and an icy road surface.
  • step S52 determines whether or not the traveling condition has changed. That is, if the initially set running condition and the acquired running condition match, the main ECU 31 determines that there is no change (step S52: NO), proceeds to step S51, and is sunny and flat.
  • the pneumatic brake system 11 is controlled by the target brake pressure that is initially set in the driving situation.
  • the main ECU 31 determines that the vehicle is flat if the slope of the traveling road surface is less than a predetermined value, and determines that the wiper drive device 63 is not driven, and determines that the vehicle is sunny. It is determined that the acquired driving conditions match.
  • the main ECU 31 determines that there is a change if the initially set sunny and flat running condition and the acquired running condition do not match (step S52: YES), and changes the target brake pressure (step S52: YES). Step S53). That is, the target brake pressure is changed to correspond to the acquired driving condition. Then, the control unit 31C controls the pneumatic brake system 11 with the changed target brake pressure.
  • the target brake pressure corresponding to the traveling condition of the vehicle 10 is estimated in advance, and the pneumatic brake system 11 is controlled based on the estimated target brake pressure when the stop signal is received to stop the vehicle. Therefore, even if the traveling condition of the vehicle 10 changes and the target braking pressure changes, braking can be performed at a deceleration according to the vehicle 10.
  • the failure LED or the like of the driver abnormality response system 50 is blinked to notify that the target brake pressure adjustment process is being performed. It may be omitted.
  • the wiper drive device 63 it was determined whether or not it was raining by the operation of the wiper drive device 63. However, in place of or in addition to the wiper drive device 63, at least one of a water droplet sensor that detects water droplets, a road surface sensor that detects the condition of the road surface, and a camera that captures the outside of the vehicle determines whether or not it is raining. You may.
  • step S11 when the driver depresses the brake pedal 13C, the data of the actual brake pressure and the deceleration are acquired.
  • the data of the actual braking pressure and the deceleration may be acquired when the vehicle 10 is decelerated by braking by the control device regardless of the driver's braking operation.
  • step S11 data of the actual braking pressure and the deceleration were acquired when the deceleration of the vehicle 10 was equal to or higher than the predetermined deceleration.
  • the data of the actual braking pressure and the deceleration may be acquired not only when the deceleration of the vehicle 10 is equal to or higher than the predetermined deceleration.
  • step S11 data of the actual braking pressure and the deceleration were acquired when the speed of the vehicle 10 was equal to or higher than the predetermined speed.
  • the data of the actual braking pressure and the deceleration may be acquired not only when the speed of the vehicle 10 is equal to or higher than the predetermined speed.
  • step S13 it is determined in step S13 whether or not the dispersion value is equal to or greater than a predetermined value, but whether or not the correlation coefficient in step S15 is equal to or greater than a predetermined value by omitting the determination in step S13. You may only judge whether or not.
  • the acquired data was plotted on a graph of the actual braking pressure and the deceleration to obtain an approximate line.
  • the target braking pressure at each deceleration may be obtained by calculation by obtaining an arithmetic expression showing an approximate line from the acquired data.
  • the air tank 12 is divided into three tanks, but one tank may be used, or two or four or more tanks may be used. Further, the connection relationship between the air tank 12 and the pneumatic device can be changed as appropriate.
  • the first port P1 of the pressure control module 20 may be connected to a tank other than the third tank 12C.
  • the main ECU 31 may receive an on signal or the like from the operation switch 51, the release switch 52, and the audience seat operation switch 53 via an in-vehicle network such as CAN 33.
  • the in-vehicle network may use a network such as FlexRay (registered trademark) or Ethernet (registered trademark) in addition to CAN33.
  • the main ECU 31 has acquired speed information from the speed sensor 55, but instead of or in addition to this, acceleration information may be acquired from the acceleration sensor.
  • the driver abnormality response system 50 includes a main ECU 31 and a sub ECU 32.
  • the main ECU 31 and the sub-ECU 32 may be composed of one ECU having the function of the first control unit and the function of the second control unit, or another control circuit. Alternatively, these functions may be distributed and configured in three or more ECUs or other control circuits.
  • the driver abnormality response system 50 may include a main switch (not shown) that can turn on / off the function of the system.
  • a main switch (not shown) that can turn on / off the function of the system.
  • the pneumatic circuit 22 drives the pneumatically driven relay valve 25 by the intake valve 27 and the exhaust valve 28.
  • a solenoid valve may be provided in the first supply path 23, and the first supply path 23 may be opened and closed by this solenoid valve.
  • the pneumatic circuit 22 includes a double check valve 36 that switches the air supply direction according to the pneumatic pressure.
  • a solenoid valve that is driven and not driven by the sub ECU 32 may be provided.
  • the sub ECU 32 drives (or does not drive) the solenoid valve to switch the air supply direction.
  • an abnormality response is executed by turning on the operation switch 51 and the audience seat operation switch 53.
  • a biological detection device that detects the fatigue state or health state of the driver may be used.
  • the biological detection device detects the driving state of the driver using one or a plurality of parameters such as the position of the driver's face and head, posture, eyelids, eye conditions such as the line of sight, pulse rate, heart rate, and body temperature.
  • a stop signal is transmitted.
  • the ECU mounted on the vehicle may compare the vehicle state such as the vehicle speed, the presence / absence of operation of the accelerator pedal or the brake pedal with the road information, and transmit a stop signal when a driving abnormality is detected. good.
  • the traveling condition of the vehicle 10 is determined by the slope of the traveling road surface of the vehicle 10, the temperature, and the driving amount of the wiper drive device 63, but the traveling condition of the vehicle 10 is determined in consideration of humidity. You may judge. For example, if the humidity is higher than a predetermined value (for example, 50% or more), it is determined that it is raining or it is highly likely that it is raining, and the braking distance is extended from the normal time, and the corresponding target brake is applied. Pressure estimation is required. Both weather and humidity may be used to get an accurate picture of the weather. Further, the traveling condition of the vehicle 10 may be determined in consideration of seasonal conditions such as season and time.
  • a predetermined value for example, 50% or more
  • the speed information of the vehicle 10 is acquired from the speed sensor 55, but the speed information of the vehicle 10 may be acquired not only from the speed sensor but also from the axle rotation sensor, GPS, G sensor, image sensor and the like. good.
  • the brake control device has been described as being retrofitted to the in-use vehicle 10 whose brake command system is a pneumatic circuit, but may be retrofitted to a vehicle equipped with EBS. Further, the vehicle may be equipped with a driver abnormality response system in advance instead of being retrofitted.
  • the driver abnormality response system has been described as being mounted on a vehicle 10 such as a bus.
  • vehicle may be a truck, a construction machine, or the like, in addition to a bus.
  • the driver abnormality response system may be mounted on another vehicle such as a passenger car or a railroad vehicle.
  • a driver abnormality response system is applied to the vehicle 10 with a full air brake.
  • the driver abnormality response system is also applicable to vehicles having other types of braking systems.
  • the pressure control module can be applied to vehicles with an air over hydraulic braking mechanism.
  • This brake mechanism connects the pressure control module to a plurality of brake boosters via ABS control valves.
  • the brake booster is a booster for front wheels, rear left wheels, and rear right wheels, and generates braking force on the wheels by increasing the hydraulic pressure of the hydraulic pressure circuit by using air pressure.
  • the pressure control module may be applied to a brake mechanism including a brake booster for front wheels, a brake booster for rear wheels, and an ABS control valve provided in a hydraulic pressure circuit.
  • the pressure control module 20 of each of the above embodiments may be applied to a vehicle in which the command system to the brake mechanism is hydraulically applied.
  • the pressure control module 20 operates in the same manner as in the above embodiment.
  • the brake mechanism to be controlled may be a mechanism other than the brake chamber.
  • the hydraulic circuit and the pneumatic circuit are examples of circuits driven by the pressure of a fluid.
  • Signal supply path 30 ... Third supply path 31 ... Main ECU 31A ... Acquisition unit 31B ... Estimating unit 31C ... Control unit 31D ... Storage unit 32 ... Sub ECU 33 ... CAN 35 ... 1st pressure sensor 36, 36A, 36B ... Double check valve 37 ... Front air supply path 38 ... Front air supply path 39 ... 2nd pressure sensor 50 ... Driver error response system 51 ... Operation switch 52 ... Release switch 53 ... Audience seat operation switch 55 ... Speed sensor 56 ... Vehicle interior device 57 ... Vehicle outdoor device 58 ... Discharge unit 61 ... Acceleration sensor 62 ... Temperature sensor 63 ... Wiper drive device P1 ... 1st port P2 ... 2nd port P3 ... 3rd port

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

本発明の課題は、車両に合わせた減速度で制動するブレーキ制御装置及びブレーキ制御システムを提供することである。メインECU(31)は、車両を制動するブレーキ機構を制御して車両を制動し停止させる。メインECU(31)は、ブレーキ機構が作動しているときの実ブレーキ圧力と実ブレーキ圧力で車両が制動されたときの車両の減速度との相関関係を取得する取得部(31A)と、相関関係に基づいて車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ力を推定する推定部(31B)と、車両を緊急停止させる停止信号を受信した場合に、推定部(31B)が推定した目標ブレーキ圧力に基づいて空気圧ブレーキシステムを制御して車両を停止させる制御部(31C)とを備える。

Description

ブレーキ制御装置及びブレーキ制御システム
 本発明は、ブレーキ制御装置及びブレーキ制御システムに関する。
 ドライバー(運転者)の体調急変等により、運転中に急にドライバーが安全運転を継続できなくなった場合に、緊急措置としてドライバー又はドライバー以外の乗員の操作によりドライバーに代わって車両を停止させるドライバー異常時対応システム(EDSS:Emergency Driving Stop System)のガイドラインが策定されている(例えば、非特許文献1参照)。また、このガイドラインに沿って、各種のブレーキシステム等が提案されている。
ドライバー異常時対応システム(減速停止型)基本設計書、平成28年3月、国土交通省自動車局先進安全自動車推進検討会
 既に提案されているブレーキシステムの多くは、EBS(Electronically controlled Brake System、電子制御ブレーキシステム)を搭載する新車への適用が想定されたものである。このため、既に使用されている使用過程車両(既存車両)等におけるドライバー異常時対応については、適用が遅れているのが実情である。そこで、既存車両にドライバー異常時対応システムを後付けした場合には、状態が同じである新車と異なり、状態がそれぞれ異なる既存車両においては後付けした車両に合わせた減速度での制動が求められている。また、新車であっても重量が変化したり、経年変化したりして車両の状態が変化することがあるため、車両に合わせた減速度での制動が求められている。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、車両に合わせた減速度で制動するブレーキ制御装置及びブレーキ制御システムを提供することにある。
 上記課題を解決するブレーキ制御装置は、車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御装置であって、前記ブレーキ機構が作動しているときの実ブレーキ力と前記実ブレーキ力で前記車両が制動されたときの前記車両の減速度との相関関係を取得する取得部と、前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ力を推定する推定部と、前記車両を緊急停止させる停止信号を受信した場合に、前記推定部が推定した前記目標ブレーキ力に基づいて前記ブレーキ機構を制御して前記車両を停止させる制御部とを備える。
 上記構成によれば、ブレーキ制御装置の制御部は、停止信号を受信した場合、ブレーキ機構が作動したときの実ブレーキ力と車両の減速度との相関関係から推定される目標ブレーキ力に基づいてブレーキ機構を制御して車両を停止させる。このため、車両に合わせた減速度で制動することができる。
 上記ブレーキ制御装置について、前記ブレーキ機構は、空気圧によって駆動する空気ブレーキであって、前記推定部は、前記目標ブレーキ力として前記空気ブレーキを作動させる目標ブレーキ圧力を推定することが好ましい。
 上記ブレーキ制御装置について、前記制御部は、前記車両が停止するまで前記目標ブレーキ力を維持して前記ブレーキ機構を制御することが好ましい。
 上記ブレーキ制御装置について、前記取得部は、前記車両の速度及び減速度の少なくとも一方が所定値以上であるときに前記相関関係を取得することが好ましい。
 上記ブレーキ制御装置について、前記取得部は、大きさが異なる複数の実ブレーキ力と、前記複数の実ブレーキ力のそれぞれで前記車両が制動されたときの複数の前記車両の減速度との前記相関関係を取得することが好ましい。
 上記ブレーキ制御装置について、前記取得部は、ドライバーのブレーキ操作によって前記ブレーキ機構が作動しているときに前記相関関係を取得することが好ましい。
 上記ブレーキ制御装置について、前記取得部は、前記車両の走行状況を取得し、前記車両が所定の走行状況であるときの前記相関関係を取得し、前記推定部は、前記所定の走行状況に対応する前記目標ブレーキ力をそれぞれ推定し、前記制御部は、前記停止信号を受信したときの前記車両の走行状況が前記所定の走行状況である場合に、前記目標ブレーキ力に基づいて前記ブレーキ機構を制御することが好ましい。
 上記ブレーキ制御装置について、前記取得部は、前記車両の走行状況を取得し、前記車両が所定の走行状況であるときの前記相関関係を取得し、前記制御部は、前記停止信号を受信したときの前記車両の走行状況が前記所定の走行状況である場合に、前記目標ブレーキ力を補正し、補正した目標ブレーキ力に基づいて前記ブレーキ機構を制御することが好ましい。
 上記ブレーキ制御装置について、前記車両の走行状況は、前記車両が走行している路面の斜度、前記車両が走行しているときの天気、前記車両が走行しているときの温度、湿度、時期的条件の少なくとも一つであることが好ましい。
 上記ブレーキ制御装置について、前記取得部が前記相関関係を取得していることを前記車両のドライバーに報知する報知部を備えることが好ましい。
 上記課題を解決するブレーキ制御装置は、車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御装置であって、空気圧によって駆動する空気ブレーキが作動しているときの実ブレーキ圧力と前記実ブレーキ圧力で前記車両が制動されたときの前記車両の減速度との相関関係を前記車両の速度が所定値以上であり且つ前記車両の減速度が所定値以上であるときに取得する取得部と、前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ圧力を推定する推定部と、前記車両を緊急停止させる停止信号を受信した場合に、前記車両が停止するまで前記推定部が推定した前記目標ブレーキ圧力に維持して前記空気ブレーキを制御して前記車両を停止させる制御部とを備える。
 上記構成によれば、ブレーキ制御装置の制御部は、停止信号を受信した場合、空気ブレーキが作動したときの実ブレーキ圧力と車両の減速度との相関関係から推定される目標ブレーキ圧力に維持して空気ブレーキを制御して車両を停止させる。このため、車両に合わせた減速度で制動することができる。
 上記課題を解決するブレーキ制御システムは、車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御システムであって、車両のエアタンクに接続する第1ポート、ブレーキ操作が行われた場合に空気圧信号を出力するブレーキバルブに接続する第2ポート、前記空気圧信号に基づき電磁弁が制御されることで車輪に制動力を加えるブレーキ機構に接続する第3ポートを有し、前記第2ポートから前記第3ポートに空気を供給する第1連通状態と、前記第1ポートから前記第3ポートに空気を供給する第2連通状態とを切り替える空気圧回路を備え、前記ブレーキ機構が作動しているときの実ブレーキ圧力と前記実ブレーキ圧力で前記車両が制動されたときの前記車両の減速度との相関関係を取得する取得部と、前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ圧力を推定する推定部と、前記車両を緊急停止させる停止信号を受信した場合に、前記空気圧回路を前記第1連通状態から前記第2連通状態に切り替えて前記推定部が推定した前記目標ブレーキ圧力に基づいて前記空気圧回路の電磁弁を制御して前記車両を停止させる制御部とを備える。
 上記構成によれば、ブレーキ制御システムの制御部は、停止信号を受信した場合、空気ブレーキが作動したときの実ブレーキ圧力と車両の減速度との相関関係から推定される目標ブレーキ圧力に基づいて空気ブレーキを制御して車両を停止させる。このため、車両に合わせた減速度で制動することができる。
 本発明によれば、車両に合わせた減速度で制動することができる。
ブレーキ制御システムの第1実施形態において、空気圧ブレーキシステムの全体構成を示す概略図。 同実施形態のブレーキ制御システムの概略図。 同実施形態の空気圧回路であって、ブレーキバルブとブレーキ機構とを連通する第1連通状態の回路図。 同実施形態の空気圧回路であって、エアタンクとブレーキ機構とを連通する第2連通状態の回路図。 同実施形態のブレーキ制御システムの制御モードを示す図。 同実施形態のブレーキ制御システムの目標ブレーキ圧力推定処理を示すフローチャート。 同実施形態のブレーキ制御システムの実ブレーキ圧力と減速度との関係を示す図。 同実施形態のブレーキ制御応システムの異常時対応処理を示すフローチャート。 同実施形態のブレーキ制御システムの解除処理を示すフローチャート。 第2実施形態のブレーキ制御システムの目標ブレーキ圧力補正処理を示すフローチャート。 第3実施形態のブレーキ制御システムの目標ブレーキ圧力変更処理を示すフローチャート。
 (第1実施形態)
 以下、図1~図9を参照して、ブレーキ制御装置及びブレーキ制御システムの第1実施形態について説明する。なお、ブレーキ制御システムは、ドライバー異常時対応システムであって、バス等の車両に搭載された空気圧ブレーキシステムに後付けされている。ブレーキ制御装置は、既存の制御装置にドライバー異常時対応システムに係る制御プログラムが追加されることで後付けされる。
 図1に示すように、車両10に搭載された空気圧ブレーキシステム11は、ブレーキ機構の命令系統を空気圧で制御するとともに空気圧駆動式のブレーキ機構を備えるフルエアブレーキのシステムである。空気圧ブレーキシステム11は、コンプレッサ(図示略)が生成した圧縮空気を貯留するエアタンク12を備えている。エアタンク12は、第1タンク12Aと、第2タンク12Bと、第3タンク12Cとを有している。例えば、第1タンク12Aは、車両10の前輪に制動力を加えるための圧縮空気を貯留するタンクである。第2タンク12Bは、後輪に制動力を加えるための圧縮空気を貯留するタンクである。また、第3タンク12Cは、その他の用途で用いられる圧縮空気を貯留するタンクである。第1タンク12A及び第2タンク12Bは、ブレーキバルブ13の前方圧力室13A及び後方圧力室13Bに接続されている。また、第1タンク12A及び第2タンク12Bは、プロテクションバルブ14Aを介してエアホーン装置14Bに接続されている。
 また、ブレーキバルブ13は、空気配管18を介して、リレーバルブ15に接続されている。ブレーキバルブ13のブレーキペダル13Cがドライバーによって操作されると、ブレーキバルブ13からリレーバルブ15に空気圧信号が出力される。また、リレーバルブ15は図示しない空気配管によってエアタンク12に接続されている。リレーバルブ15がブレーキバルブ13から空気圧信号を受信すると、エアタンク12に貯留された多量の圧縮空気が、その空気配管を介してリレーバルブ15に供給される。リレーバルブ15に供給された多量の圧縮空気は、ABS(Anti-lock Brake System)コントロールバルブ16を介してブレーキチャンバー17に供給される。ブレーキチャンバー17は、空気が供給されることによって車輪に制動力を発生させる。ABSコントロールバルブ16及びブレーキチャンバー17は、空気圧駆動式のブレーキ機構を構成する。ブレーキペダル13Cへの操作がドライバーのブレーキ操作に相当する。
 使用過程車両(既存車両)10の空気圧ブレーキシステム11に、ドライバーに異常が発生してドライバー又はドライバー以外の乗員の操作により車両10を緊急停止させるドライバー異常時対応システム(EDSS:Emergency Driving Stop System)を搭載する。ドライバー異常時対応システムでは、ブレーキバルブ13とリレーバルブ15とを接続する命令系統の空気配管18の途中に、圧力制御モジュール(PCM:Pressure Control Module)20を設ける。圧力制御モジュール20は、エアタンク12(第3タンク12C)に接続する第1ポートP1、ブレーキバルブ13に接続する第2ポートP2、リレーバルブ15を含むブレーキ機構に接続する第3ポートP3を有している。なお、圧力制御モジュール20は、ブレーキバルブ13とリレーバルブ15との間に設けられるので、空気圧駆動式以外のブレーキ機構を有する空気圧ブレーキシステム11にも取り付けが可能である。
 図2を参照して、圧力制御モジュール20の空気圧回路について詳細に説明する。圧力制御モジュール20は、空気圧回路22及びサブECU(電子制御装置:Electronic Control Unit)32を備えている。圧力制御モジュール20は、メインECU31とともに、ドライバー異常時対応システム50を構成する。
 メインECU31及びサブECU32は、演算部、通信インターフェース部、揮発性記憶部、不揮発性記憶部をそれぞれ備えている。演算部は、コンピュータプロセッサであって、不揮発性記憶部(記憶媒体)に記憶された制御プログラムにしたがって、空気圧ブレーキシステム11を制御する。演算部は、自身が実行する処理の少なくとも一部を、ASIC等の回路(circuitry)により実現してもよい。制御プログラムは、一つのコンピュータプロセッサによって実行されてもよいし、複数のコンピュータプロセッサによって実行されてもよい。また、メインECU31及びサブECU32は、CAN(Controller Area Network)33等の車載ネットワークに接続され、互いに各種情報を送受信する。
 メインECU31は、操作スイッチ51がオン操作された場合に操作スイッチ51から送信されて車両10を緊急停止させる停止信号を受信する。メインECU31は、解除スイッチ52がオン操作された場合に解除スイッチ52から送信される解除信号を受信する。操作スイッチ51及び解除スイッチ52は、ドライバーの操作が想定されたスイッチであって、運転席近傍に設けられている。操作スイッチ51がオン操作された場合には、ドライバー異常時対応システム50が作動する。解除スイッチ52は、ドライバー異常時対応システム50が誤って作動された場合に、その動作を停止するためのスイッチである。メインECU31は、操作スイッチ51がオン操作された場合に、空気圧ブレーキシステム11を制御して本制動を行う。本制動とは、車両10を緩制動よりも絶対値が大きい減速度で減速させ、最終的に停止させるための制動である。緩制動とは、減速度の絶対値が比較的小さい制動、又はブレーキのかかる時間が短い制動であって、直後に解除スイッチ52の操作が行われた場合に通常の走行に戻ることを可能とする制動である。
 また、メインECU31は、客席操作スイッチ53がオン操作された場合に、それらから送信され、車両10を緊急停止させる停止信号を受信する。客席操作スイッチ53は、ドライバー以外の乗員の操作が想定されたスイッチである。客席操作スイッチ53は、運転席以外の位置であって、ドライバー以外の乗員であっても操作可能な位置に設けられている。メインECU31は、客席操作スイッチ53がオン操作された場合に、空気圧ブレーキシステム11を制御して緩制動を行う。
 メインECU31は、空気圧ブレーキシステム11がドライバーのブレーキ操作によって制御されたときの実ブレーキ圧力と実ブレーキ圧力で車両10が制動されたときの車両10の減速度との相関関係を取得する取得部31Aを備える。メインECU31は、実ブレーキ圧力と減速度との相関関係に基づいて車両10を所望の減速度で減速させて緊急停止させるための目標ブレーキ圧力を推定する推定部31Bを備える。メインECU31は、停止信号を受信した場合に、推定部31Bが推定した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御して車両10を停止させる制御部31Cを備える。取得部31Aは、CAN33を介して速度センサ55から速度情報を取得するとともに、CAN33及びサブECU32を介して第2圧力センサ39から実ブレーキ圧力を取得する。取得部31Aは、速度から得られる減速度とそのときの実ブレーキ圧力とを記憶部31Dに記憶し、実ブレーキ圧力と減速度との相関関係を取得する。推定部31Bは、推定した目標ブレーキ圧力を記憶部31Dに記憶する。なお、記憶部31Dには、推定が完了するまでの間に使用する初期設定の目標ブレーキ圧力が記憶されている。
 メインECU31は、ドライバー異常時対応システム50が作動を開始する場合に、車両10の現在の走行速度から得られる減速度を目標値である目標減速度に近づけるように、推定部31Bで推定した空気圧ブレーキシステム11の目標ブレーキ圧力をサブECU32に指示する。この目標減速度は、メインECU31の記憶部31Dに記憶されたデータを更新することによって変更することができる。例えば、車両10が乗合バスである場合には、車内で立つ乗客が存在することが想定されるため、目標減速度の絶対値を小さくする。また、車両10が、乗客全員が着座する高速バスである場合には、乗合バスに比べ、目標減速度の絶対値を大きくしてもよい。また、車両10の重量や車長に応じて、目標減速度を変更することも可能である。
 さらに、メインECU31は、ドライバー異常時対応システム50が作動した場合に、車室内装置56及び車室外装置57に指示信号を出力する。車室内装置56は、例えばアクセルペダルの操作を不能にするアクセルインターロック機構である。メインECU31は、異常が発生した場合にはアクセルインターロック機構を作動させる。他にも、車室内装置56として、車室内に設けられた報知ブザー、車室内に設けられた報知ランプ等を設けてもよい。例えば、メインECU31は、異常が発生した場合には、報知ブザーから音を出力させ、報知ランプを点灯又は点滅させる。車室外装置57は、例えば、エアホーン装置14B、ハザードランプ、ブレーキランプ等である。例えば、メインECU31は、異常が発生した場合には、プロテクションバルブ14A等を駆動して、エアホーン装置14Bに空気を供給して警告音を発生させるとともに、ハザードランプ及びブレーキランプを点灯又は点滅させる。
 サブECU32は、圧力制御モジュール20内に収容され、圧力制御モジュール20の各種バルブを制御する。圧力制御モジュール20は、エアタンク12に接続する第1供給路23を有している。第1供給路23は、前方の車輪に設けられたブレーキチャンバー17にリレーバルブ15を介して接続する前方空気供給路37と、後方の車輪に設けられたブレーキチャンバー17に接続する後方空気供給路38とに接続されている。
 第1供給路23の途中には、リレーバルブ25が接続されている。リレーバルブ25は、排出口25Aを有し、排出口25Aは、サイレンサを有する排出部58に接続されている。また、リレーバルブ25は、パイロットポート25Bを有する。パイロットポート25Bは、第1供給路23から分岐する分岐路26に接続されている。分岐路26からパイロットポート25Bに印加される空気圧が大気圧等の所定圧の場合には、付勢ばね等の付勢力により、第1供給路23が遮断された排気状態となる。リレーバルブ25が排気状態となると、エアタンク12から前方空気供給路37及び後方空気供給路38への空気の流れが遮断される。また、リレーバルブ25が排気状態となると、第1供給路23のうちリレーバルブ25の下流側と排出部58とが連通されて、第1供給路23のうちリレーバルブ25の下流側の圧縮空気が排出され、大気圧等の所定圧になる。
 一方、分岐路26からパイロットポート25Bに印加される空気圧が大気圧等の所定圧よりも大きい駆動圧力に達している場合には、リレーバルブ25は、付勢ばね等の付勢力に抗して、第1供給路23を連通する供給状態となる。リレーバルブ25が供給状態となると、エアタンク12から前方空気供給路37及び後方空気供給路38へ空気が供給される。リレーバルブ25が供給状態となると、第1供給路23と前方空気供給路37及び後方空気供給路38とが連通される。また、リレーバルブ25は、出口側(二次側)の圧力が過度に高くなると、第1供給路23の連通状態を遮断して排気状態となる。
 分岐路26は、一方の端部が第1供給路23に接続され、他方の端部が排出部58に接続されている。この分岐路26の途中には、吸気用バルブ27及び排気用バルブ28が設けられている。吸気用バルブ27及び排気用バルブ28は電磁弁であり、サブECU32によって駆動される。吸気用バルブ27は、分岐路26のうち排気用バルブ28よりも上流寄り(エアタンク12寄り)に設けられている。吸気用バルブ27は、サブECU32から配線27Aを介しての電源の入り切り(駆動/非駆動)で動作が切り換わる。吸気用バルブ27は、電源が切られた非駆動の状態で分岐路26を閉じる閉位置となる。また、吸気用バルブ27は、電源が入れられた駆動の状態で分岐路26を開く開位置となる。
 排気用バルブ28は、サブECU32から配線28Aを介しての電源の入り切り(駆動/非駆動)で動作が切り換わる電磁弁である。排気用バルブ28は、電源が切られた非駆動の状態で分岐路26を連通する開位置となる。また、排気用バルブ28は、電源が入れられた駆動の状態で分岐路26を閉塞する閉位置となる。つまり、排気用バルブ28は、吸気用バルブ27が非駆動の状態で閉位置になると吸気用バルブ27よりも下流及び信号供給路29を大気開放する。また、排気用バルブ28は、駆動状態で分岐路26のうち吸気用バルブ27の上流側及び第1供給路23のうちリレーバルブ25の上流側を大気圧とする。
 また、分岐路26のうち、吸気用バルブ27及び排気用バルブ28の途中には、リレーバルブ25に空気圧信号を供給する信号供給路29と、第1圧力センサ35とが接続されている。第1圧力センサ35は、分岐路26のうち吸気用バルブ27及び排気用バルブ28の間の圧力を検知して、サブECU32に出力する。
 また、第1供給路23は、第3供給路30に接続されている。第3供給路30は、1対のダブルチェックバルブ36に接続されている。一方のダブルチェックバルブ36Aは、第3供給路30と、ブレーキバルブ13の前方圧力室13Aに接続する前方信号供給路24Aと、前方の車輪に制動力を発生させるための前方空気供給路37とに接続されている。このダブルチェックバルブ36Aは、第3供給路30及び前方信号供給路24Aのうち圧力が高い方からの圧縮空気の供給を許容し、低い方からの圧縮空気の供給を遮断する。前方空気供給路37には、第2圧力センサ39が接続されている。第2圧力センサ39は、検知した圧力をサブECU32に出力する。
 他方のダブルチェックバルブ36Bは、第3供給路30と、ブレーキバルブ13の後方圧力室13Bに接続する後方信号供給路24Bと、後方の車輪に制動力を加える後方空気供給路38とに接続されている。このダブルチェックバルブ36Bは、第3供給路30及び後方信号供給路24Bのうち圧力が高い方からの圧縮空気の供給を許容し、低い方からの圧縮空気の供給を遮断する。
 次に図3及び図4を参照して、圧力制御モジュール20の動作について説明する。図3は、操作スイッチ51及び客席操作スイッチ53がオン操作されていない場合の空気圧回路22を示す。
 図3に示すように、操作スイッチ51及び客席操作スイッチ53がオン操作されていない場合、サブECU32は、吸気用バルブ27及び排気用バルブ28を非駆動とする。この場合、吸気用バルブ27は閉位置となり、排気用バルブ28は開位置となる。これにより、分岐路26のうち、吸気用バルブ27よりも下流は、排気用バルブ28が開位置となることにより大気圧等の所定圧となる。このため、パイロットポート25Bに加わる空気圧も所定圧となることから、リレーバルブ25が排気状態になる。リレーバルブ25が排気状態となると、第3供給路30及び第1供給路23のうちリレーバルブ25よりも下流の圧縮空気が排出部58から排出され、第3供給路30が所定圧となる。さらにブレーキペダル13Cに対し踏み込み操作等がなされると、前方信号供給路24A及び後方信号供給路24Bに空気圧信号が供給される。これにより、第3供給路30よりも前方信号供給路24A及び後方信号供給路24Bの圧力が高くなるため、ダブルチェックバルブ36A,36Bは、第3供給路30から前方空気供給路37及び後方空気供給路38への空気の流れをそれぞれ遮断する。そして、前方信号供給路24A及び後方信号供給路24Bから前方空気供給路37及び後方空気供給路38に空気圧信号を供給する。その結果、リレーバルブ15に空気圧信号が供給されることによって、エアタンク12からリレーバルブ15に多量の圧縮空気が供給される。リレーバルブ15がブレーキチャンバー17に圧縮空気を供給すると、車輪に制動力が加わる。なお、前方信号供給路24A及び後方信号供給路24Bを含む空気圧回路がブレーキ制御回路に対応する。
 図4は、操作スイッチ51及び客席操作スイッチ53の少なくとも一方がオン操作された場合の空気圧回路22を示す。操作スイッチ51及び客席操作スイッチ53の少なくとも一方がオン操作された場合、サブECU32は、メインECU31から送信された圧力指示を受信する。サブECU32は、圧力指示に基づいて、吸気用バルブ27及び排気用バルブ28を駆動する。これにより、吸気用バルブ27は開位置、排気用バルブ28は閉位置となる。エアタンク12の圧縮空気は、第1供給路23を介して、吸気用バルブ27と排気用バルブ28の間の分岐路26に供給される。吸気用バルブ27と排気用バルブ28の間の分岐路26の圧力が駆動圧力に到達すると、この圧力がパイロットポート25Bを介してリレーバルブ25に加わることにより、リレーバルブ25は供給状態になる。これにより、第1供給路23、リレーバルブ25を介して第3供給路30に圧縮空気が供給される。
 第3供給路30に圧縮空気が供給されると、第3供給路30の圧力が、前方信号供給路24A及び後方信号供給路24Bよりも高くなる。このため、ダブルチェックバルブ36は、第3供給路30から、前方空気供給路37及び後方空気供給路38への空気の流れを許容し、前方信号供給路24A及び後方信号供給路24Bから前方空気供給路37及び後方空気供給路38への空気の流れを遮断する。なお、吸気用バルブ27、排気用バルブ28、及びリレーバルブ25を接続する流路(第1供給路23、分岐路26等)、第3供給路30を含む空気圧回路が、異常時ブレーキ制御回路に対応する。
 このように、ブレーキバルブ13とリレーバルブ15との間に圧力制御モジュール20を設けることにより、操作スイッチ51及び客席操作スイッチ53がオン操作された場合には、空気圧駆動式の命令系統が、ブレーキバルブ13を介する系統から、エアタンク12から直接的に空気が供給される系統に切り替わる。このため、ブレーキバルブ13からの空気圧信号を受信しなくても、ブレーキチャンバー17を動作させてブレーキ力を発生させることができる。
 また、サブECU32は、第1圧力センサ35及び第2圧力センサ39から所定のタイミングで検知圧力を取得する。例えば、サブECU32は、リレーバルブ25を供給状態に維持する場合には、第1圧力センサ35が検知した圧力が所定範囲となるように、吸気用バルブ27及び排気用バルブ28を駆動又は非駆動にする。また、メインECU31が、車両10を緩やかに停止させるため段階的に圧力を上昇させるようにサブECU32に対して圧力指示を送信する場合には、サブECU32は、第2圧力センサ39が検知した圧力が第1圧力閾値に到達したか否かを判断する。サブECU32が、検知圧力が第1圧力閾値に到達していないと判断した場合には、吸気用バルブ27及び排気用バルブ28を駆動してリレーバルブ25を供給状態に維持する。一方、サブECU32は、第2圧力センサ39が検知した圧力が第1圧力閾値に到達した場合には、吸気用バルブ27及び排気用バルブ28を非駆動にしてリレーバルブ25を遮断状態とする。そして、メインECU31からの次の圧力指示を待機する。
 次に、図5~図7を参照して、メインECU31が行う異常時対応のための目標減速度を達成するための目標ブレーキ圧力推定処理の手順について説明する。
 既存車両10の空気圧ブレーキシステム11にドライバー異常時対応システム50として圧力制御モジュール20を取り付けた場合には、取り付けた車両10に応じたブレーキ制御を行うようにする必要がある。すなわち、既存車両10では、車両10の重さやタイヤのグリップ性能、ブレーキ機構の経年劣化に合わせて、所望の減速度が得られるようにブレーキ圧力を調整する必要がある。なお、目標ブレーキ圧力には初期設定の値が設定されている。
 図5に示すように、メインECU31は、圧力制御モジュール20を制御するための異常時対応アプリケーションを有している。異常時対応アプリケーションは、異常時対応を行う「通常モード」と、目標減速度を達成するための目標ブレーキ圧力を調整する「調整モード」とを備えている。通常モードでは、初期設定の目標ブレーキ圧力又は調整モードで推定された目標ブレーキ圧力を異常時に減速を行うための目標ブレーキ圧力として出力する。調整モードでは、通常モードによる異常時の目標ブレーキ圧力の出力を行いつつ、記憶部31Dに記憶している目標減速度を達成するための目標ブレーキ圧力を調整する。メインECU31は、複数のスイッチが同時に操作される等の規定の操作が行われると異常時対応アプリケーションを通常モードから調整モードに移行する。メインECU31は、調整モードに移行すると、調整モードであることを報知するためにドライバー異常時対応システム50の故障用LED等を点滅させる。調整処理を報知する故障用LED等が報知部に相当する。メインECU31は、調整モード中に複数のスイッチが同時に操作される等の規定の操作が行われると、異常時対応アプリケーションを調整モードから通常モードに移行する。
 調整モードでは、車両10が走行状態、停止状態等の状態を管理する「状態管理」と、調整処理を行う「処理」とを行う。これにより、各状態における減速度の調整を行うことができる。調整モードでは、入力データとして車両10の速度と、車両10の減速度と、実ブレーキ圧力とが同時に入力される。メインECU31は、速度センサ55から得られる車両10の速度によって車両10が走行状態であるか停止状態であるかを判断することができる。また、調整モードでは、出力データとして調整モードにおける状態、実ブレーキ圧力と減速度との相関関係を出力する。
 次に、図6及び図7を参照して、目標ブレーキ圧力を推定する目標ブレーキ圧力推定処理を説明する。メインECU31は、取得した実ブレーキ圧力と減速度との相関関係から目標減速度を達成するための目標ブレーキ圧力を推定する。
 図6に示すように、メインECU31は、データを収集する(ステップS11)。すなわち、取得部31Aは、ドライバーがブレーキペダル13Cに対し踏み込み操作を行ったときにおける空気圧ブレーキシステム11の実ブレーキ圧力と実ブレーキ圧力で車両10が制動されたときの減速度とのデータを取得する。実ブレーキ圧力は、第2圧力センサ39が検知した圧力であってサブECU32から取得した圧力である。減速度は、速度センサ55が検知した速度から減速度を演算して取得する。取得部31Aは、調整モードである間に車両10が減速する度にそのときの実ブレーキ圧力と減速度との取得を繰り返す。
 取得部31Aは、データを収集するときには、車両10の速度が所定速度以上、且つ減速度が所定減速度以上であるデータのみ収集する。所定減速度は、あまりに低い減速度では相関関係に乖離が発生して推定精度が低下するため、低い減速度を除外するための値である。
 図7は、収集した実ブレーキ圧力と減速度とのデータを横軸が実ブレーキ圧力で縦軸が減速度であるグラフにプロットした図である。通常のブレーキ操作では、急減速はほとんど行われないため、減速度が-1.0m/s付近に多くデータがプロットされる。このため、メインECU31は、収集したデータから直線である近似線を算出して、近似線の傾きと切片とから目標減速度に対応する目標ブレーキ圧力を推定する。例えば、メインECU31は、これらのデータから異常対応時に急減速を伴う本制動を行う際の減速度である-2.45m/sでの目標ブレーキ圧力を推定する。図7では、-2.45m/sでの目標ブレーキ圧力を★(星印)で示している。また、メインECU31は、異なる目標減速度で制動させるときには、近似線の傾きと切片とから当該目標減速度を達成するための目標ブレーキ圧力を推定する。
 続いて、図6に示すように、メインECU31は、収集したデータ数が所定数以上であるか否かを判定する(ステップS12)。すなわち、取得部31Aは、データ数が少ないと近似線が得られないため、データ数が所定数以上であるか否かを判定する。なお、データの所定数は、近似線を得るために少なくとも3以上が望ましい。そして、取得部31Aは、収集したデータ数が所定数未満であると判定した場合には(ステップS12:NO)、ステップS11に移行して、データの収集を継続する。
 一方、取得部31Aは、収集したデータ数が所定数以上であると判定した場合には(ステップS12:YES)、分散値が所定値以上であるか否かを判定する(ステップS13)。すなわち、取得部31Aは、取得したデータが偏っていると正確な近似線が得られず、推定精度が低下するため、分散値が所定値以上であるか否かを判定する。そして、取得部31Aは、分散値が所定値未満であると判定した場合には(ステップS13:NO)、ステップS11に移行して、データの収集を継続する。
 一方、メインECU31は、分散値が所定値以上であると判定した場合には(ステップS13:YES)、目標ブレーキ圧力を推定する(ステップS14)。すなわち、推定部31Bは、収集したデータから直線である近似線を算出して、近似線の傾きと切片とから本制動を行う際の目標減速度を達成するための目標ブレーキ圧力を推定する。なお、推定部31Bは、各減速度を達成するための目標ブレーキ圧力も推定可能である。
 続いて、メインECU31は、相関係数が所定値以上であるか否かを判定する(ステップS15)。すなわち、取得部31Aは、得られた近似線と収取したデータの分散との相関係数を算出して判定する。メインECU31は、相関係数が所定値未満であると判定した場合には(ステップS15:NO)、得られた目標ブレーキ圧力の精度が低いと判定して、ステップS11に移行して、データの収集を継続する。
 一方、メインECU31は、相関係数が所定値以上であると判定した場合には(ステップS15:YES)、目標ブレーキ圧力推定処理を完了する。すなわち、取得部31Aは、近似線の傾きと切片とを出力データとして出力する。推定部31Bは、推定した目標ブレーキ圧力を新たな目標ブレーキ圧力として記憶部31Dに記憶する。
 次に、図8及び図9を参照して、メインECU31が行う異常時対応の処理の手順について説明する。図8に示す処理は、空気系統を制御する処理であって、操作スイッチ51又は客席操作スイッチ53が操作され、メインECU31がそれらのスイッチから送信された停止信号を受信することを契機に開始されるものとする。また、メインECU31は、所定のタイミングで速度センサ55から車両情報を取得していることを前提とする。
 図8に示すように、メインECU31は、停止信号を受信すると、客席操作スイッチ53が操作されたか否かを判定する(ステップS21)。すなわち、メインECU31は、受信した停止信号が、操作スイッチ51からの信号であるか又は客席操作スイッチ53からの信号であるかを判定する。そして、メインECU31は、操作スイッチ51が操作されたと判定すると(ステップS21:NO)、ステップS24に移行する。
 一方、メインECU31は、客席操作スイッチ53が操作されたと判定すると(ステップS21:YES)、緩制動に必要な目標ブレーキ圧力をサブECU32に指示する(ステップS22)。メインECU31は、自身の記憶部31Dに記憶された緩制動のための目標減速度を達成するための目標ブレーキ圧力をサブECU32に送信する。サブECU32は、目標ブレーキ圧力の指示に基づき、上述したように吸気用バルブ27及び排気用バルブ28を駆動する(図4参照)。
 メインECU31は、サブECU32に目標ブレーキ圧力を送信した時点、車両10が減速を開始した時点又はサブECU32から所定の応答信号を受信した時点から所定時間が経過したか否かを判定する(ステップS23)。この所定時間は、ドライバーが正常な状態であるにもかかわらず、客席操作スイッチ53が誤操作された場合に、ドライバーが解除スイッチ52を操作するために要する時間である。メインECU31は、所定時間が経過していない場合(ステップS23:NO)、目標ブレーキ圧力をサブECU32に指示しながら緩制動を継続する(ステップS22)。
 一方、メインECU31は、所定時間が経過したと判定すると(ステップS23:YES)、本制動に必要な圧力をサブECU32に指示する(ステップS24)。メインECU31は、自身の記憶部31Dに記憶された本制動のための目標減速度を達成するための目標ブレーキ圧力をサブECU32に送信する。制御部31Cは、車両10が停止するまで目標ブレーキ圧力を維持する。サブECU32は、メインECU31からの目標ブレーキ圧力の指示に基づき、吸気用バルブ27及び排気用バルブ28を駆動する(図4参照)。
 メインECU31は、本制動を実行すると、異常時対応が終了したか否かを判定する(ステップS25)。異常時対応は、車両10が停止しパーキングブレーキが作動した場合等に終了したと判定してもよいし、イグニッションスイッチがオフされた場合に終了したと判定してもよいし、その他のタイミングで終了したと判定してもよい。メインECU31は、異常時対応が終了していないと判定すると(ステップS25:NO)、目標ブレーキ圧力をサブECU32に指示しながら本制動を継続する(ステップS24)。メインECU31は、異常時対応が終了したと判定すると(ステップS25:YES)、異常時対応の処理を終了する。
 また、メインECU31は、空気系統の異常時対応とは別に、本制動を実行開始するタイミング等の所定のタイミングで、車室内装置56及び車室外装置57を作動させる。これにより、車両10の乗員に異常が発生したことを報知するとともに、車両10の周辺を走行する他車両にも注意喚起を促すことができる。
 次に、図9にしたがって、解除スイッチ52が操作された場合の解除処理の手順について説明する。図9に示す処理は、操作スイッチ51又は客席操作スイッチ53が操作され、メインECU31がその停止信号を受信することを契機に開始されるものとする。
 図9に示すように、メインECU31は、解除スイッチ52が操作されたか否かを判定する(ステップS31)。すなわち、メインECU31は、解除スイッチ52から操作信号を受信したか否かを判定する。そして、メインECU31は、解除スイッチ52から操作信号を受信していないと判定すると(ステップS31:NO)、ステップS33に移行する。
 一方、メインECU31は、解除スイッチ52から操作信号を受信したと判定すると(ステップS31:YES)、サブECU32に制動の解除指示を送信する(ステップS32)。解除指示を受信したサブECU32は、吸気用バルブ27及び排気用バルブ28を非駆動として、エアタンク12からブレーキチャンバー17側への空気の供給を遮断する。
 続いて、メインECU31は、異常時対応が終了したか否かを判定する(ステップS33)。メインECU31は、異常時対応が終了していないと判定すると(ステップS33:NO)、ステップS31に移行する。一方、メインECU31は、異常時対応が終了したと判定すると(ステップS33:YES)、解除処理を終了する。
 次に、第1実施形態の効果について説明する。
 (1)空気圧ブレーキシステム11が作動したときの実ブレーキ力と車両10の減速度との相関関係から目標ブレーキ圧力を予め推定しておき、停止信号を受信した場合に推定した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御して車両10を停止させる。このため、車両10に合わせた減速度で制動することができる。
 既存車両10にドライバー異常時対応システム50を後付けした場合には、状態が同じである新車と異なり、状態がそれぞれ異なる既存車両10においては後付けした車両10に応じたブレーキ制御を行うことが求められる。その点、空気圧ブレーキシステム11がドライバーのブレーキ操作によって制御されたときの実ブレーキ圧力と減速度との相関関係を取得部31Aが取得して、推定部31Bが目標減速度を達成するための目標ブレーキ圧力を推定して、制御部31Cが推定した目標ブレーキ圧力にて空気圧ブレーキシステム11を制御して車両10を停止させる。また新車であっても重量が変化したり、経年変化したりして車両の状態が変化することがあるが、推定部31Bが目標減速度を達成するための目標ブレーキ圧力を推定することで車両に合わせた減速度で制動することが可能である。このため、どのような車両10であっても車両10に合わせた減速度で制動することが可能であり、ドライバー異常時対応システム50を後付けすることができる。
 (2)空気圧ブレーキシステム11を作動させる目標ブレーキ圧力を推定することで空気ブレーキであっても車両10に合わせた減速度で制動することができる。
 (3)車両10が停止するまで目標ブレーキ圧力を維持することで緊急時に確実に車両10を停止させることができる。
 (4)車両10の速度が所定速度以上、且つ減速度が所定減速度以上であるデータのみ収集する。このため、空気圧ブレーキシステム11のブレーキ圧力によって車両10が減速しているときの相関関係を取得することができるので、所望の減速度に応じた目標ブレーキ圧力をより正確に推定することができる。
 (5)実ブレーキ圧力と車両10の減速度との複数の相関関係を取得することで、所望の減速度に応じた目標ブレーキ圧力をより正確に推定することができる。
 (6)登り坂や路面状態等の外的要因によって車両が減速しているときではなく、ドライバーのブレーキ操作によって空気圧ブレーキシステム11の実ブレーキ圧力によって車両10が制動されて減速しているときに相関関係を取得するので、所望の減速度に応じた目標ブレーキ圧力をより正確に推定することができる。
 (7)ブレーキ圧力と車両10の減速度との相関関係を取得して目標ブレーキ圧力を推定する調整処理を行っていることを、ドライバー異常時対応システム50の故障用LED等を点滅させてドライバーに報知することで、ドライバーが適切にブレーキペダル13Cの操作を行うよう心掛けることができる。
 (第2実施形態)
 以下、図10を参照して、ドライバー異常時対応システムの第2実施形態について説明する。この実施形態のドライバー異常時対応システムは、走行状況に応じて目標ブレーキ圧力を補正する点が上記第1実施形態と異なっている。以下、第1実施形態との相違点を中心に説明する。
 車両10が減速するときには、走行状況によって同じブレーキ圧力であっても車両10の減速度が異なるため、同じ減速度を得るには走行状況に応じてブレーキ圧力を補正することが望ましい。車両10の走行状況は、車両10が走行している路面の斜度、車両10が走行しているときの天気、車両10が走行しているときの温度の少なくとも一つである。メインECU31は、晴れで平坦である走行状況が初期設定されている。
 図2に示すように、取得部31Aは、加速度センサ61から得られる車両10の傾斜によって走行路面の斜度(平坦、登坂、下り坂)を判断することができる。取得部31Aは、温度センサ62から得られる温度によって路面凍結を判断することができる。また、取得部31Aは、温度センサ62から得られる温度によってタイヤのグリップ性能の変化を判断することができる。取得部31Aは、ワイパー駆動装置63から得られるワイパー状態によって雨が降っているか否か、更に雨の強さを判断することができる。
 取得部31Aは、車両10の走行状況を取得し、車両10が所定の走行状況であるときの相関関係を取得する。推定部31Bは、初期設定の走行状況に対する目標ブレーキ圧力の補正値を予め推定する。制御部31Cは、取得した走行状況に対応するように目標ブレーキ圧力を補正して、補正した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御する。例えば、走行状況が登坂では、平坦の走行時に対して減速が大きくなるので目標ブレーキ圧力が減少するように例えば初期設定に対して80%に補正する。走行状況が下り坂では、平坦の走行時に対して減速が小さくなるので目標ブレーキ圧力が増加するように例えば初期設定に対して130%に補正する。走行状況が雨、路面凍結では、晴れや路面が凍結していない走行時に対して減速が小さくなるので目標ブレーキ圧力が増加するように例えば初期設定に対して120%に補正する。
 図10に示すように、メインECU31は、晴れで平坦である走行状況が初期設定されている。メインECU31は、車両10が走行を開始すると、走行状況を取得する(ステップS41)。すなわち、メインECU31は、各センサ等からの情報から走行状況を取得する。メインECU31は、走行状況として、走行路面が平坦、下り坂、登坂、天気が雨、路面が凍結等を取得可能である。
 続いて、メインECU31は、走行状況が変化したか否かを判定する(ステップS42)。すなわち、メインECU31は、初期設定されている走行状況と取得した走行状況とが一致していれば変化なしと判定して(ステップS42:NO)、ステップS41に移行して、晴れで平坦である走行状況において初期設定されている目標ブレーキ圧力にて空気圧ブレーキシステム11を制御する。なお、メインECU31は、例えば走行路面の斜度が所定値未満であれば平坦であると判定し、且つワイパー駆動装置63が駆動していなければ晴れと判定し、初期設定されている走行状況と取得した走行状況が一致していると判定する。なお、走行路面の斜度や、温度、ワイパー駆動装置63の駆動速度等は、幅を持たせて走行状況をメインECU31が判定してもよい。
 一方、メインECU31は、晴れで平坦である走行状況において初期設定されている走行状況と取得した走行状況とが一致していなければ変化ありと判定して(ステップS42:YES)、目標ブレーキ圧力を補正する(ステップS43)。すなわち、取得した走行状況に対応する目標ブレーキ圧力に補正する。そして、制御部31Cは、補正された目標ブレーキ圧力にて空気圧ブレーキシステム11を制御する。
 次に、第2実施形態の効果について説明する。なお、第1実施形態の(1)~(7)の効果に加え、以下の効果を奏する。
 (8)車両10の走行状況に対応する目標ブレーキ圧力に補正して、補正した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御することができる。このため、車両10の走行状況が変化して目標ブレーキ圧力が変化しても車両10に合わせた減速度で制動することができる。
 (9)車両10が走行している路面の斜度、車両が走行しているときの天気、車両が走行しているときの温度の少なくとも一つによって、走行状況を取得することができ、目標ブレーキ圧力が変化するこれらの走行状況においても車両10に合わせた減速度で制動することができる。
 (第3実施形態)
 以下、図11を参照して、ブレーキ制御装置及びブレーキ制御システムの第3実施形態について説明する。この実施形態のドライバー異常時対応システムは、走行状況に応じて目標ブレーキ圧力を変更する点が上記第1実施形態と異なっている。以下、第1実施形態との相違点を中心に説明する。
 車両10が減速するときには、走行状況によって同じブレーキ圧力であっても車両10の減速度が異なるため、同じ減速度を得るには走行状況に応じてブレーキ圧力を変更することが望ましい。走行状況は、車両10が走行している路面の斜度、車両10が走行しているときの天気、車両10が走行しているときの温度の少なくとも一つである。メインECU31は、晴れで平坦である走行状況が初期設定されている。そこで、取得部31Aは、車両10の走行状況を取得し、車両10が所定の走行状況であるときの相関関係を取得する。推定部31Bは、各走行状況に対する目標ブレーキ圧力をそれぞれ予め推定する。制御部31Cは、取得した走行状況に対応する目標ブレーキ圧力に変更して、変更した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御する。例えば、走行状況が登坂では、平坦の走行時に対して減速が大きくなるので晴れで平坦であるときの目標ブレーキ圧力よりも減少した目標ブレーキ圧力に変更する。走行状況が下り坂では、平坦の走行時に対して減速が小さくなるので晴れで平坦であるときの目標ブレーキ圧力よりも増加した目標ブレーキ圧力に変更する。走行状況が雨、路面凍結では、晴れや路面が凍結していない走行時に対して減速が小さくなるので晴れで平坦であるときの目標ブレーキ圧力よりも増加した目標ブレーキ圧力に変更する。
 図2に示すように、取得部31Aは、加速度センサ61から得られる車両10の傾斜によって走行路面の斜度(平坦、登坂、下り坂)を判断することができる。取得部31Aは、温度センサ62から得られる温度によって路面凍結を判断することができる。取得部31Aは、ワイパー駆動装置63から得られるワイパーが作動しているかによって雨が降っているか否か、更にワイパーの作動速度によって雨の強さを判断することができる。
 図11に示すように、メインECU31は、晴れで平坦である走行状況が初期設定されている。メインECU31は、車両10が走行を開始すると、走行状況を取得する(ステップS51)。すなわち、メインECU31は、各センサ等からの情報から走行状況を取得する。メインECU31は、走行状況として、走行路面が平坦、下り坂、登坂、天気が雨、路面が凍結等を取得可能である。
 続いて、メインECU31は、走行状況が変化したか否かを判定する(ステップS52)。すなわち、メインECU31は、初期設定されている走行状況と取得した走行状況とが一致していれば変化なしと判定して(ステップS52:NO)、ステップS51に移行して、晴れで平坦である走行状況において初期設定されている目標ブレーキ圧力にて空気圧ブレーキシステム11を制御する。なお、メインECU31は、例えば走行路面の斜度が所定値未満であれば平坦であると判定し、且つワイパー駆動装置63が駆動していなければ晴れと判定し、初期設定されている走行状況と取得した走行状況が一致していると判定する。
 一方、メインECU31は、初期設定されている晴れで平坦である走行状況と取得した走行状況とが一致していなければ変化ありと判定して(ステップS52:YES)、目標ブレーキ圧力を変更する(ステップS53)。すなわち、取得した走行状況に対応する目標ブレーキ圧力に変更する。そして、制御部31Cは、変更された目標ブレーキ圧力にて空気圧ブレーキシステム11を制御する。
 次に、第3実施形態の効果について説明する。なお、第1実施形態の(1)~(7)及び第2実施形態の(9)の効果に加え、以下の効果を奏する。
 (10)車両10の走行状況に対応する目標ブレーキ圧力を予め推定しておき、停止信号を受信した場合に推定した目標ブレーキ圧力に基づいて空気圧ブレーキシステム11を制御して車両を停止させる。このため、車両10の走行状況が変化して目標ブレーキ圧力が変化しても車両10に合わせた減速度で制動することができる。
 (他の実施形態)
 上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・上記各実施形態では、目標ブレーキ圧力推定処理を行うときに、ドライバー異常時対応システム50の故障用LED等を点滅させて目標ブレーキ圧力の調整処理を行っていることを報知したが、報知を省略してもよい。
 ・上記各実施形態では、ワイパー駆動装置63の動作によって雨であるか否かを判断した。しかしながら、ワイパー駆動装置63に代えて若しくは加えて、水滴を検知する水滴センサ、路面の状態を検知する路面センサ、車両外部の様子を撮影するカメラの少なくとも1つによって雨であるか否かを判断してもよい。
 ・上記各実施形態では、ステップS11において、ドライバーがブレーキペダル13Cに対し踏み込み操作を行ったときに実ブレーキ圧力と減速度とのデータを取得した。しかしながら、ドライバーのブレーキ操作によらず制御装置によって制動が行われて車両10が減速しているときに実ブレーキ圧力と減速度とのデータを取得してもよい。
 ・上記各実施形態では、ステップS11において、車両10の減速度が所定減速度以上であるときに実ブレーキ圧力と減速度とのデータを取得した。しかしながら、車両10の減速度が所定減速度以上であるときに限らず実ブレーキ圧力と減速度とのデータを取得してもよい。
 ・上記各実施形態では、ステップS11において、車両10の速度が所定速度以上であるときに実ブレーキ圧力と減速度とのデータを取得した。しかしながら、車両10の速度が所定速度以上であるときに限らず実ブレーキ圧力と減速度とのデータを取得してもよい。
 ・上記各実施形態では、ステップS13において、分散値が所定値以上であるか否かを判定したが、ステップS13の判定を省略して、ステップS15における相関係数が所定値以上であるか否かの判定のみでもよい。
 ・上記各実施形態では、実ブレーキ圧力と減速度とのグラフに取得したデータをプロットして近似線を求めた。しかしながら、取得したデータから近似線を示す演算式を求めて各減速度における目標ブレーキ圧力を演算によって求めてもよい。
 ・上各記実施形態では、エアタンク12を3つのタンクに分けたが、1つのタンクでもよく、2つ又は4つ以上のタンクであってもよい。また、エアタンク12と空気圧機器との接続関係は適宜変更可能である。例えば圧力制御モジュール20の第1ポートP1は、第3タンク12C以外のタンクに接続されてもよい。
 ・上記各実施形態において、メインECU31は、操作スイッチ51、解除スイッチ52、客席操作スイッチ53から、CAN33等の車載ネットワークを介してオン信号などを受信してもよい。
 ・上記各実施形態において、車載ネットワークは、CAN33以外に、FlexRay(登録商標)、Ethernet(登録商標)等のネットワークを用いてもよい。
 ・上記各実施形態では、メインECU31は、速度センサ55から速度情報を取得したが、これに代えて若しくは加えて、加速度センサから加速度情報を取得してもよい。
 ・上記各実施形態では、ドライバー異常時対応システム50は、メインECU31及びサブECU32を備えるようにした。これに代えて若しくは加えて、メインECU31及びサブECU32を、第1制御部の機能と第2制御部の機能とを有する1つのECU又はその他の制御回路から構成してもよい。又は、これらの機能を3つ以上のECU又はその他の制御回路に分散させて構成してもよい。
 ・上記各実施形態において、ドライバー異常時対応システム50は、当該システムの機能をオン/オフできる主スイッチ(図示略)を備えていてもよい。主スイッチに対して所定の操作を行うこと、又は主スイッチを所定の制御装置等により制御することで、例えば操作スイッチ51、解除スイッチ52及び客席操作スイッチ53の操作を無効にすることができる。
 ・上記各実施形態では、空気圧回路22は、吸気用バルブ27及び排気用バルブ28によって空気圧駆動式のリレーバルブ25を駆動した。これに代えて、第1供給路23に電磁弁を設け、この電磁弁により、第1供給路23を開閉してもよい。
 ・上記各実施形態では、空気圧回路22は、空気圧によって空気の供給方向を切り替えるダブルチェックバルブ36を備えた。ダブルチェックバルブ36に代えて、サブECU32によって駆動及び非駆動とされる電磁弁を設けてもよい。操作スイッチ51又は客席操作スイッチ53がオン操作されると、サブECU32は、その電磁弁を駆動(又は非駆動)して、空気の供給方向を切り替える。
 ・上記各実施形態では、操作スイッチ51及び客席操作スイッチ53のオン操作により異常時対応を実行した。これに代えて若しくは加えて、ドライバーの疲労状態又は健康状態を検知する生体検知装置を用いてもよい。生体検知装置は、ドライバーの顔や頭部の位置、姿勢、瞼、視線等の目の状態、脈拍数、心拍数、体温等、1又は複数のパラメータを用いてドライバーの運転状態を検知する。この態様においては、生体検知装置がドライバーの異常を検知した場合に停止信号を送信する。或いは、車両に搭載されたECUが、車速、アクセルペダルやブレーキペダルの操作の有無等の車両状態と道路情報とを比較して、運転の異常を検知した場合には停止信号を送信してもよい。
 ・上記第2,3実施形態では、車両10の走行状況を車両10の走行路面の斜度、温度、ワイパー駆動装置63の駆動量によって判定したが、湿度を加味して車両10の走行状況を判定してもよい。例えば、湿度が所定値より高い(例えば50%以上)場合、雨が降った後、又は雨が降っている可能性が高いと判定し、通常時より制動距離が延びて、それに対応した目標ブレーキ圧力の推定が必要となる。天気と湿度の両方を使って、天候を正確に把握してもよい。また、季節や時刻等の時期的条件を加味して車両10の走行状況を判定してもよい。
 ・上記各実施形態では、速度センサ55から車両10の速度情報を取得したが、速度センサに限らず、車軸回転センサ、GPS、Gセンサ、画像センサ等から車両10の速度情報を取得してもよい。
 ・上記各実施形態では、ブレーキ制御装置は、ブレーキの命令系統を空気圧回路とする使用過程車両10に後付けされるものとして説明したが、EBSを搭載した車両に後付けされてもよい。また、後付けではなく、ドライバー異常時対応システムが予め搭載された車両でもよい。
 ・上記各実施形態では、ドライバー異常時対応システムは、バス等の車両10に搭載されるものとして説明した。車両は、バスの他、トラック、建機等でもよい。また、これ以外の態様として、ドライバー異常時対応システムは、乗用車、鉄道車両等、他の車両に搭載されてもよい。
 ・上記各実施形態では、フルエアブレーキの車両10に、ドライバー異常時対応システムを適用した。これに限らず、ドライバー異常時対応システムは、その他の形式のブレーキシステムを有する車両にも適用可能である。圧力制御モジュールをエアオーバーハイドロリック式のブレーキ機構を有する車両に適用することができる。このブレーキ機構は、圧力制御モジュールを、ABSコントロールバルブを介して複数のブレーキブースターに接続する。ブレーキブースターは、前輪用、後方左側の車輪用、後方右側の車輪用のブースターであり、空気圧を利用して液圧回路の液圧を高めることによって車輪に制動力を発生させる。また、圧力制御モジュールを前輪用のブレーキブースターと、後輪用のブレーキブースターと、液圧回路に設けられたABSコントロールバルブとを備えたブレーキ機構に適用してもよい。
 ・上記各実施形態では、空気圧回路でブレーキ機構を制御する車両に適用した。しかしながら、油圧回路でブレーキ機構を制御する新車又は使用過程車両においてもドライバーの異常は発生し得るため、同様な課題が存在する。このため、上記各実施形態の圧力制御モジュール20を、ブレーキ機構への命令系統を油圧で行う車両に適用してもよい。油圧回路においても圧力制御モジュール20は上記実施形態と同様に作動する。この態様において、制御対象となるブレーキ機構は、ブレーキチャンバー以外の機構でもよい。なお、油圧回路及び空気圧回路は、流体の圧力によって駆動する回路としての一例である。
 ・上記各実施形態では、空気圧回路でブレーキ機構を制御する車両に適用した。しかしながら、電動のブレーキ機構を制御する車両に適用してもよい。すなわち、電動のブレーキ機構のブレーキトルクと車両の減速度との相関関係を取得して、相関関係に基づいて所望の減速度を実現するための目標ブレーキトルクを予め推定してもよい。
 10…車両
 11…空気圧ブレーキシステム
 12…エアタンク
 13…ブレーキバルブ
 13A…前方圧力室
 13B…後方圧力室
 13C…ブレーキペダル
 14A…プロテクションバルブ
 14B…エアホーン装置
 15…リレーバルブ
 16…ABSコントロールバルブ
 17…ブレーキチャンバー
 18…空気配管
 20…圧力制御モジュール
 21…ケース
 21A…ポート接続部
 21D…突出部
 22…空気圧回路
 23…第1供給路
 24A…前方信号供給路
 24B…後方信号供給路
 25…リレーバルブ
 25A…排出口
 25B…パイロットポート
 26…分岐路
 27…吸気用バルブ
 27A…配線
 28…排気用バルブ
 28A…配線
 29…信号供給路
 30…第3供給路
 31…メインECU
 31A…取得部
 31B…推定部
 31C…制御部
 31D…記憶部
 32…サブECU
 33…CAN
 35…第1圧力センサ
 36,36A,36B…ダブルチェックバルブ
 37…前方空気供給路
 38…前方空気供給路
 39…第2圧力センサ
 50…ドライバー異常時対応システム
 51…操作スイッチ
 52…解除スイッチ
 53…客席操作スイッチ
 55…速度センサ
 56…車室内装置
 57…車室外装置
 58…排出部
 61…加速度センサ
 62…温度センサ
 63…ワイパー駆動装置
 P1…第1ポート
 P2…第2ポート
 P3…第3ポート

Claims (12)

  1.  車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御装置であって、
     前記ブレーキ機構が作動しているときの実ブレーキ力と前記実ブレーキ力で前記車両が制動されたときの前記車両の減速度との相関関係を取得する取得部と、
     前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ力を推定する推定部と、
     前記車両を緊急停止させる停止信号を受信した場合に、前記推定部が推定した前記目標ブレーキ力に基づいて前記ブレーキ機構を制御して前記車両を停止させる制御部とを備える
     ブレーキ制御装置。
  2.  前記ブレーキ機構は、空気圧によって駆動する空気ブレーキであって、
     前記推定部は、前記目標ブレーキ力として前記空気ブレーキを作動させる目標ブレーキ圧力を推定する
     請求項1に記載のブレーキ制御装置。
  3.  前記制御部は、前記車両が停止するまで前記目標ブレーキ力を維持して前記ブレーキ機構を制御する
     請求項1又は2に記載のブレーキ制御装置。
  4.  前記取得部は、前記車両の速度及び減速度の少なくとも一方が所定値以上であるときに前記相関関係を取得する
     請求項1~3のいずれか一項に記載のブレーキ制御装置。
  5.  前記取得部は、大きさが異なる複数の実ブレーキ力と、前記複数の実ブレーキ力のそれぞれで前記車両が制動されたときの複数の前記車両の減速度との前記相関関係を取得する
     請求項1~4のいずれか一項に記載のブレーキ制御装置。
  6.  前記取得部は、ドライバーのブレーキ操作によって前記ブレーキ機構が作動しているときに前記相関関係を取得する
     請求項1~5のいずれか一項に記載のブレーキ制御装置。
  7.  前記取得部は、前記車両の走行状況を取得し、前記車両が所定の走行状況であるときの前記相関関係を取得し、
     前記推定部は、前記所定の走行状況に対応する前記目標ブレーキ力をそれぞれ推定し、
     前記制御部は、前記停止信号を受信したときの前記車両の走行状況が前記所定の走行状況である場合に、前記目標ブレーキ力に基づいて前記ブレーキ機構を制御する
     請求項1~6のいずれか一項に記載のブレーキ制御装置。
  8.  前記取得部は、前記車両の走行状況を取得し、前記車両が所定の走行状況であるときの前記相関関係を取得し、
     前記制御部は、前記停止信号を受信したときの前記車両の走行状況が前記所定の走行状況である場合に、前記目標ブレーキ力を補正し、補正した目標ブレーキ力に基づいて前記ブレーキ機構を制御する
     請求項1~6のいずれか一項に記載のブレーキ制御装置。
  9.  前記車両の走行状況は、前記車両が走行している路面の斜度、前記車両が走行しているときの天気、前記車両が走行しているときの温度、湿度、時期的条件の少なくとも一つである
     請求項7又は8に記載のブレーキ制御装置。
  10.  前記取得部が前記相関関係を取得していることを前記車両のドライバーに報知する報知部を備える
     請求項1~9のいずれか一項に記載のブレーキ制御装置。
  11.  車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御装置であって、
     空気圧によって駆動する空気ブレーキが作動しているときの実ブレーキ圧力と前記実ブレーキ圧力で前記車両が制動されたときの前記車両の減速度との相関関係を前記車両の速度が所定値以上であり且つ前記車両の減速度が所定値以上であるときに取得する取得部と、
     前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ圧力を推定する推定部と、
     前記車両を緊急停止させる停止信号を受信した場合に、前記車両が停止するまで前記推定部が推定した前記目標ブレーキ圧力に維持して前記空気ブレーキを制御して前記車両を停止させる制御部とを備える
     ブレーキ制御装置。
  12.  車両を制動するブレーキ機構を制御して前記車両を制動し停止させるブレーキ制御システムであって、
     車両のエアタンクに接続する第1ポート、ブレーキ操作が行われた場合に空気圧信号を出力するブレーキバルブに接続する第2ポート、前記空気圧信号に基づき電磁弁が制御されることで車輪に制動力を加えるブレーキ機構に接続する第3ポートを有し、前記第2ポートから前記第3ポートに空気を供給する第1連通状態と、前記第1ポートから前記第3ポートに空気を供給する第2連通状態とを切り替える空気圧回路を備え、
     前記ブレーキ機構が作動しているときの実ブレーキ圧力と前記実ブレーキ圧力で前記車両が制動されたときの前記車両の減速度との相関関係を取得する取得部と、
     前記相関関係に基づいて前記車両を所望の減速度で減速させて緊急停止させるための目標ブレーキ圧力を推定する推定部と、
     前記車両を緊急停止させる停止信号を受信した場合に、前記空気圧回路を前記第1連通状態から前記第2連通状態に切り替えて前記推定部が推定した前記目標ブレーキ圧力に基づいて前記空気圧回路の電磁弁を制御して前記車両を停止させる制御部とを備える
     ブレーキ制御システム。
PCT/JP2021/022836 2020-06-23 2021-06-16 ブレーキ制御装置及びブレーキ制御システム WO2021261349A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531866A JP7362926B2 (ja) 2020-06-23 2021-06-16 ブレーキ制御装置及びブレーキ制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-108219 2020-06-23
JP2020108219 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261349A1 true WO2021261349A1 (ja) 2021-12-30

Family

ID=79281307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022836 WO2021261349A1 (ja) 2020-06-23 2021-06-16 ブレーキ制御装置及びブレーキ制御システム

Country Status (2)

Country Link
JP (1) JP7362926B2 (ja)
WO (1) WO2021261349A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734971A (zh) * 2022-04-29 2022-07-12 三一电动车科技有限公司 车辆制动控制系统、控制方法及车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305767A (ja) * 1997-03-06 1998-11-17 Toyota Motor Corp 制動力制御装置
JP2003160043A (ja) * 2001-11-22 2003-06-03 Nabco Ltd 鉄道車両用ブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305767A (ja) * 1997-03-06 1998-11-17 Toyota Motor Corp 制動力制御装置
JP2003160043A (ja) * 2001-11-22 2003-06-03 Nabco Ltd 鉄道車両用ブレーキ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734971A (zh) * 2022-04-29 2022-07-12 三一电动车科技有限公司 车辆制动控制系统、控制方法及车辆

Also Published As

Publication number Publication date
JP7362926B2 (ja) 2023-10-17
JPWO2021261349A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
US11052892B2 (en) Electronically controllable pneumatic brake system in a utility vehicle and method for electronically controlling a pneumatic brake system
JP6896901B2 (ja) パーキングブレーキシステム
CN107921945B (zh) 商用车辆中的能电子控制的气动的制动系统及用于电子控制气动的制动系统的方法
US9022488B2 (en) Fault-tolerant vehicle brake system
US9896076B2 (en) Traction-slip controlled brake system of a motor vehicle approaching stops
US20100090522A1 (en) Method and devices for operating a motor vehicle brake device
US20020189882A1 (en) School bus door/service brake interlock retrofit system
JP2021529120A (ja) 冗長ブレーキ装置を有する車両の冗長モーション制御
WO2012175927A1 (en) Vehicle braking system
JP2024114874A (ja) 空気圧制御装置、空気圧回路及びブレーキ制御システム
WO2021261349A1 (ja) ブレーキ制御装置及びブレーキ制御システム
JPWO2017221836A1 (ja) 空気供給システム
WO2021054470A1 (ja) ブレーキの空気圧制御装置、空気圧制御方法、及び空気圧制御プログラム
JP6802338B2 (ja) ブレーキシステム及びブレーキシステムの制御方法
WO2022009728A1 (ja) ブレーキ制御装置及びブレーキ制御システム
JP2020006952A (ja) ブレーキシステム
WO2023189934A1 (ja) Abs制御装置及びエアブレーキシステム
US20230219547A1 (en) Method for controlling an electropneumatic ABS brake system in a towing vehicle, function control device and towing vehicle
US20220324424A1 (en) Brake System for Commercial Vehicle
WO2018186443A1 (ja) 空気供給システム
JP2021028224A (ja) ブレーキシステム及びブレーキシステムの制御方法
JPWO2018181948A1 (ja) 空気供給システム
JPH05155332A (ja) 連結車両の電気コントロールブレーキシステム
JPH05155333A (ja) 連結車両の電気コントロールブレーキシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829968

Country of ref document: EP

Kind code of ref document: A1