WO2021261303A1 - Polarization film and method for manufacturing same, and display device - Google Patents

Polarization film and method for manufacturing same, and display device Download PDF

Info

Publication number
WO2021261303A1
WO2021261303A1 PCT/JP2021/022410 JP2021022410W WO2021261303A1 WO 2021261303 A1 WO2021261303 A1 WO 2021261303A1 JP 2021022410 W JP2021022410 W JP 2021022410W WO 2021261303 A1 WO2021261303 A1 WO 2021261303A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
resin layer
specific
polarizing film
Prior art date
Application number
PCT/JP2021/022410
Other languages
French (fr)
Japanese (ja)
Inventor
貴道 猪股
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2021261303A1 publication Critical patent/WO2021261303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing film, a method for manufacturing the same, and a display device.
  • the polarizing film includes a polarizing element layer and protective film layers provided on both sides of the polarizing element layer.
  • a protective film layer a film formed of a resin composition containing a cellulose ester has often been used (Patent Document 1).
  • Non-Patent Document 1 is known.
  • the polarizing film may be used in an environment with large temperature changes. Therefore, the polarizing film is required to have excellent resistance to temperature changes. Resistance to temperature changes can be assessed, for example, by heat cycle tests involving repeated heating and cooling. However, when the conventional polarizing film is subjected to a heat cycle test, cracks may occur in the polarizing element layer at the end thereof. Further, in recent years, bezel-free, curved and the like have been adopted for the display body, and the required quality of the end portion of the polarizing film is increasing.
  • the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a polarizing film having excellent resistance to temperature changes and a method for producing the same; and a display device including the above-mentioned polarizing film. ..
  • the present inventor has diligently studied to solve the above-mentioned problems.
  • the polarizing film including the first resin layer, the copolymer layer and the second resin layer in this order at least one of the first resin layer and the second resin layer is a polymer and the reverse of a specific amount.
  • the present invention has been completed by finding that the above-mentioned problems can be solved when the specific resin layer is formed of a thermoplastic resin containing a plasticizer and the specific resin layer satisfies a specific requirement. That is, the present invention includes the following.
  • a first resin layer, a polarizing element layer, and a second resin layer are provided in this order. At least one of the first resin layer and the second resin layer is a specific resin layer formed of a specific thermoplastic resin containing a polymer and a back plasticizer. The amount of the reverse plasticizer is 0.5% by weight or more and 23% by weight or less with respect to 100% by weight of the specific thermoplastic resin.
  • the water vapor transmittance per 100 ⁇ m thickness of the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. is 4 g / (m 2 ⁇ day) or less.
  • CTE (I) represents the average linear expansion coefficient of the first sample resin at 70 ° C to 85 ° C.
  • CTE (II) represents the average linear expansion coefficient of the second sample resin obtained by heating a contrasting resin having a composition obtained by removing the backplasticizer from the specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. .. )
  • the polarizing film according to [1] wherein a first adhesive layer is provided between the first resin layer and the polarizing element layer.
  • the in-plane retardation of the specific resin layer at a measurement wavelength of 550 nm is 5 nm or less.
  • the polarizing film according to any one of [1] to [3], wherein the retardation of the specific resin layer in the thickness direction at a measurement wavelength of 550 nm is -5 nm or more and 5 nm or less.
  • a display device including a display body and the polarizing film according to any one of [1] to [11].
  • the display body is a liquid crystal panel.
  • the display body is an organic electroluminescence panel.
  • a polarizing film having excellent resistance to temperature changes and a method for producing the same; and a display device including the above-mentioned polarizing film.
  • FIG. 1 is a cross-sectional view schematically showing a polarizing film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a polarizing film according to another embodiment of the present invention.
  • long refers to a shape having a length of usually 5 times or more with respect to the width, preferably 10 times or more, and specifically a roll shape.
  • the upper limit of the ratio of the length to the width is not particularly limited, but may be, for example, 100,000 times or less.
  • the adhesive and the adhesive are distinguished by the shear storage elastic modulus unless otherwise specified.
  • the adhesive refers to a material having a shear storage elastic modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment.
  • the pressure-sensitive adhesive refers to a material having a shear storage elastic modulus of less than 1 MPa at 23 ° C.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and in the direction giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and perpendicular to the direction of nx.
  • nz represents the refractive index in the thickness direction of the layer.
  • d represents the thickness of the layer.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • (meth) acrylic resin includes acrylic resin, methacrylic resin, and combinations thereof unless otherwise specified.
  • (meth) acrylic acid includes acrylic acid, methacrylic acid and combinations thereof unless otherwise specified.
  • the "plate”, “layer” and “film” may be a rigid member, and may be a flexible member such as a resin film, unless otherwise specified. May be good.
  • FIG. 1 is a cross-sectional view schematically showing a polarizing film 100 according to an embodiment of the present invention.
  • the polarizing film 100 according to the embodiment of the present invention includes a first resin layer 110, a polarizing element layer 120, and a second resin layer 130 in this order in the thickness direction.
  • At least one of the first resin layer 110 and the second resin layer 130 included in the polarizing film 100 is formed of a specific thermoplastic resin.
  • this specific thermoplastic resin may be referred to as "specific thermoplastic resin”.
  • the layer formed of the specific thermoplastic resin may be referred to as a "specific resin layer”.
  • the specific resin layer functions as a protective film layer of the polarizing element layer 120.
  • the polarizing film 100 provided with the specific resin layer can have excellent resistance to temperature changes. Specifically, it is possible to suppress the occurrence of cracks in the polarizing element layer due to temperature changes.
  • the first resin layer 110 may be a specific resin layer.
  • the second resin layer 130 may be the specific resin layer.
  • both the first resin layer 110 and the second resin layer 130 may be the specific resin layer.
  • the polarizing film 100 is usually provided so that the first resin layer 110, the polarizing element layer 120, and the second resin layer 130 are arranged in this order from the display body side. At this time, when the first resin layer 110 located between the display body and the polarizing element layer 120 is the specific resin layer, the occurrence of cracks in the polarizing element layer 120 can be effectively suppressed.
  • FIG. 2 is a sectional view schematically showing a polarizing film 200 according to another embodiment of the present invention.
  • the polarizing film 200 may further include any layer in combination with the first resin layer 110, the polarizing element layer 120, and the second resin layer 130.
  • the polarizing film 200 may include a first adhesive layer 210 as an arbitrary layer between the first resin layer 110 and the polarizing element layer 120.
  • the polarizing film 200 may include a second adhesive layer 220 as an arbitrary layer between the polarizing element layer 120 and the second resin layer 130.
  • the polarizing film 200 may include the pressure-sensitive adhesive layer 230, the first resin layer 110, the polarizing element layer 120, and the second resin layer 130 as arbitrary layers in this order.
  • a ⁇ / 4 layer 240 may be provided as an arbitrary layer between the pressure-sensitive adhesive layer 230 and the first resin layer 110.
  • Specific resin layer [2.1. Polymer contained in specific thermoplastic resin]
  • the specific thermoplastic resin forming the specific resin layer contains a polymer. Usually, since the polymer has thermoplasticity, the specific thermoplastic resin may also have thermoplasticity.
  • polymers contained in the specific thermoplastic resin examples include polyesters, acrylic polymers, and polymers containing an alicyclic structure. One of these polymers may be used alone, or two or more of these polymers may be used in combination at any ratio. Above all, a polymer containing an alicyclic structure is preferable from the viewpoint of lowering the water vapor permeability of the specific resin layer.
  • the repeating unit of the polymer contains an alicyclic structure.
  • Polymers containing an alicyclic structure usually have a low water vapor permeability. Therefore, when the specific resin layer is formed of the specific thermoplastic resin containing the polymer containing the alicyclic structure, it is possible to effectively suppress the water vapor from reaching the substituent layer.
  • the polymer containing an alicyclic structure may contain an alicyclic structure in the main chain or may contain an alicyclic structure in the side chain, and the alicyclic structure may be contained in both the main chain and the side chain. It may contain a cyclic structure. Above all, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure at least in the main chain is preferable.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable, from the viewpoint of mechanical strength and heat resistance.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably 20 or less, per alicyclic structure. Is in the range of 15 or less. When the number of carbon atoms constituting the alicyclic structure is in this range, the mechanical strength, heat resistance and moldability of the specific thermoplastic resin are highly balanced.
  • the ratio of the repeating unit containing the alicyclic structure can be appropriately selected according to the purpose of use.
  • the proportion of the repeating unit containing the alicyclic structure in the polymer containing the alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the ratio of the repeating unit containing the alicyclic structure in the polymer containing the alicyclic structure is in this range, the transparency and heat resistance of the specific thermoplastic resin are improved.
  • Examples of the polymer containing an alicyclic structure include a norbornene-based polymer, a monocyclic cyclic olefin-based polymer, a cyclic conjugated diene-based polymer, a vinyl alicyclic hydrocarbon polymer, and hydrides thereof. Can be mentioned. Among these, the norbornene-based polymer and its hydride have good transparency and moldability.
  • Examples of the norbornene-based polymer and its hydride include a ring-opening polymer of a monomer having a norbornene structure and a hydride thereof; an addition polymer of a monomer having a norbornene structure and a hydride thereof.
  • Examples of the ring-opening polymer of the monomer having a norbornene structure include a ring-opening copolymer of one kind of monomer having a norbornene structure and ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith.
  • examples of the addition polymer of the monomer having a norbornene structure are an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure.
  • addition copolymers of a monomer having a norbornene structure and any monomer copolymerizable therewith include polymers disclosed in JP-A-2002-321302.
  • norbornene-based polymer and its hydride examples include "Zeonoa” manufactured by Zeon Corporation; “Arton” manufactured by JSR Corporation; “TOPAS” manufactured by TOPAS ADVANCED POLYMERS.
  • the weight average molecular weight Mw of the polymer contained in the specific thermoplastic resin is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably 100,000 or less. It is 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the specific thermoplastic resin are highly balanced.
  • the molecular weight distribution (Mw / Mn) of the polymer contained in the specific thermoplastic resin is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, and preferably 3.5 or less. It is more preferably 3.0 or less, and particularly preferably 2.7 or less.
  • Mn represents a number average molecular weight.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be measured by using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the solvent used in GPC include cyclohexane, toluene, and tetrahydrofuran.
  • the weight average molecular weight can be measured as a relative molecular weight in terms of polyisoprene or polystyrene, for example.
  • the glass transition temperature of the polymer contained in the specific thermoplastic resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, further preferably 120 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower, More preferably, it is 150 ° C. or lower.
  • the glass transition temperature can be measured by raising the temperature at 10 ° C./min using a differential scanning calorimeter (DSC).
  • the amount of the polymer contained in the specific thermoplastic resin is preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 85% by weight or more, and usually, with respect to 100% by weight of the specific thermoplastic resin. It is 99% by weight or less, preferably 96% by weight or less, and more preferably 93% by weight or less. When the amount of the polymer contained in the specific thermoplastic resin is within the above range, the generation of cracks in the polarizing element layer due to temperature changes can be effectively suppressed.
  • the specific thermoplastic resin forming the specific resin layer contains a back plasticizer.
  • the back plasticizer represents a compound in which the specific thermoplastic resin containing the back plasticizer can satisfy the following formula (1).
  • CTE (I) represents the average linear expansion coefficient of the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C.
  • CTE (II) represents the average linear expansion coefficient of the second sample resin obtained by heating a comparative resin having a composition obtained by removing a back plasticizer from a specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. )
  • CTE (I) represents the average coefficient of linear expansion of the first sample resin at 70 ° C to 85 ° C.
  • the first sample resin represents a resin obtained by heating a specific thermoplastic resin to 250 ° C.
  • this first sample resin corresponds to a non-volatile component obtained by removing a volatile component removed by heating at 250 ° C. from a specific thermoplastic resin. Therefore, the average linear expansion coefficient CTE (I) of the first sample resin can represent the average linear expansion coefficient of the non-volatile component of the specific thermoplastic resin including the polymer and the back plasticizer.
  • CTE (II) represents the average linear expansion coefficient of the second sample resin at 70 ° C to 85 ° C.
  • the second sample resin represents a resin obtained by heating the contrast resin to 250 ° C.
  • this second sample resin corresponds to a non-volatile component obtained by removing the volatile component removed by heating at 250 ° C. from the contrast resin.
  • the contrast resin represents a resin having a composition obtained by removing the back plasticizer from the specific thermoplastic resin. Therefore, the linear expansion coefficient CTE (II) of the second sample resin can represent the linear expansion coefficient of the non-volatile component of the contrast resin having the same composition as the specific thermoplastic resin except that it does not contain a back plasticizer.
  • the formula (1) is usually compared with the non-volatile component of the contrast resin having the same composition as the specific thermoplastic resin except that the non-volatile component of the specific thermoplastic resin containing the back plasticizer does not contain the back plasticizer. , 70 ° C to 85 ° C, indicating that it has a small average linear expansion coefficient.
  • the reverse plasticizer can be a component capable of exerting an action of reducing the coefficient of linear expansion of the resin.
  • the ratio CTE (I) / CTE (II) of the linear expansion coefficient is preferably 0.90 or less, more preferably 0.80 or less, and particularly preferably 0.70 or less.
  • the lower limit is not particularly limited, but is usually 0.00 or more.
  • the average linear expansion coefficient CTE of a sample resin obtained by heating a certain thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. can be measured by the following method.
  • the thermoplastic resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 10 ⁇ m, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measuring film having a thickness of 10 ⁇ m formed of the sample resin.
  • the coefficient of linear expansion is measured by heating the temperature from 20 ° C. to 200 ° C. at 5 ° C./min with a thermomechanical analyzer.
  • An average value of 70 ° C to 85 ° C can be obtained as the average linear expansion coefficient CTE of the sample resin.
  • the coefficient of linear expansion ratio CTE (I) / CTE (II) depends, for example, on the type and amount of polymer, the type and amount of reverse plasticizer, and the type and amount of any component used as needed. Can be adjusted.
  • the reverse plasticizer as described above can enter the free volume between the polymer molecules by being mixed with the polymer, and can reduce the fraction of the free volume in the space. Therefore, since the range in which the polymer molecule can move is narrowed, the physical characteristics of the polymer and the resin containing the reverse plasticizer can change from the physical characteristics of the polymer. The change in physical properties can appear not only as the above-mentioned decrease in the coefficient of linear expansion but also as an increase in the elastic modulus in the glass state.
  • the action of such a reverse plasticizer can be the opposite of plasticizing with a plasticizer that can penetrate between the polymer molecules and increase the fraction of free volume. Therefore, the action of the above-mentioned reverse plasticizer is sometimes called "reverse plasticization".
  • reverse plasticizer examples include those described in JP-A-2007-326938, International Publication No. 2018/230122, and the like.
  • a specific backplasticizer it is preferable to select and use one that is effective in suppressing cracks in the polarizing element layer from among those backplasticizers.
  • particularly preferable reverse plasticizers include compounds represented by either the following formula (X1) or (X2).
  • R 11 to R 13 each independently represent a substituent; p1 and r1 each independently represent an integer of 0 to 5, and q1 represents an integer of 0 to 4.
  • n represents an integer of 0 to 5.
  • the bonding positions of the plurality of R 12 , q1 and phenylene groups may be the same or different, respectively.
  • the compound represented by the formula (X1) corresponds to a biphenyl compound.
  • the compound represented by the formula (X1) corresponds to a terphenyl compound.
  • the bond between the benzene rings may be ortho, meta, or para.
  • the substituents R 11 to R 13 include, for example, a halogen atom such as a chlorine atom; an alkyl group having 1 to 3 carbon atoms such as a methyl group; and a carbon atom number 1 to 1 such as a methoxy group. 3 alkoxy groups; Further, these substituents may further have a substituent. When there are a plurality of substituents R 11 to R 13 , they may be the same or different.
  • the plurality of R 12s may be the same or different.
  • the n q1s may be the same or different.
  • the bonding position of n phenylene groups may be any of ortho, para, and meta.
  • R 21 to R 23 each independently represent a substituent; p2 and r2 each independently represent an integer of 0-5; q2 represents an integer of 0-4; m1 and m2 each independently represent an integer of 1 to 5.
  • m1 is 2 or more, the bonding positions of the plurality of R 22 , q2, and phenylene groups may be the same or different, respectively.
  • the bonding order of the methylene group and the phenylene group may be random.
  • R 21 to R 23 may be the same as substituents R 11 to R 13 in formula (X1).
  • the plurality of R 22s may be the same or different.
  • m1 q2 may be the same or different.
  • the bonding position of m1 phenylene group may be any of ortho, para, and meta.
  • the unit enclosed by m1 and the unit enclosed by m2 may be connected in no particular order. For example, there may be a form in which both units are alternately connected, a form in which a unit enclosed in m2 exists between units enclosed in m1, and the like.
  • biphenyl compounds and terphenyl compounds are preferable.
  • the biphenyl compound is a compound in which two benzene rings are bonded, and the benzene ring may have a substituent such as a chlorine atom.
  • the terphenyl compound is a compound in which three benzene rings are bonded, and the benzene ring may have a substituent such as a chlorine atom.
  • the biphenyl compound represented by the following formula (X3), the orthoterphenyl compound represented by the formula (X4), the metaterphenyl compound represented by the formula (X5), and the formula (X6) are represented.
  • the paraterphenyl compound to be used is particularly preferable.
  • R 31 and R 32 each independently represent a substituent; p3 and q3 each independently represent an integer of 0-5.
  • the substituents R 31 and 32 can be the same as the substituents R 11 to R 13 of the formula (X1). Of these, the substituents R 31 and 32 are preferably chlorine atoms. Further, p3 and q3 are preferably 0.
  • R 41 to R 43 each independently represent a substituent; p4 and q4 each independently represent an integer of 0 to 5, and r4 represents an integer of 0 to 4.
  • the substituents R 41 to R 43 may be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 41 to R 43 are preferably chlorine atoms. Further, 0 is preferable for p4, q4 and r4.
  • R 51 to R 53 each independently represent a substituent; p5 and r5 each independently represent an integer of 0 to 5, and q5 represents an integer of 0 to 4.
  • the substituents R 51 to R 53 may be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 51 to R 53 are preferably chlorine atoms. Further, 0 is preferable for p5, q5 and r5.
  • R 61 to R 63 each independently represent a substituent; p6 and r6 each independently represent an integer of 0 to 5, and q6 represents an integer of 0 to 4.
  • the substituents R 61 to R 63 can be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 61 to R 63 are preferably chlorine atoms. Further, 0 is preferable for p6, q6 and r6.
  • the unsubstituted terphenyl shown below is preferable, and meta-terphenyl is particularly preferable.
  • reverse plasticizer one type may be used alone, or two or more types may be used in combination at any ratio.
  • the back plasticizer has a molecular weight smaller than the weight average molecular weight of the polymer contained in the specific thermoplastic resin.
  • the specific molecular weight of the backplasticizer is usually less than 10,000, preferably 1000 or less, more preferably 800 or less, particularly preferably 600 or less, and usually 150 or more.
  • the amount of the backplasticizer contained in the specific thermoplastic resin is usually 0.5% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, based on 100% by weight of the specific thermoplastic resin. It is usually 23% by weight or less, preferably 20% by weight or less, and more preferably 17% by weight or less.
  • the amount of the back plasticizer contained in the specific thermoplastic resin is within the above range, the cracking of the polarizing element layer due to the temperature change can be suppressed, so that the polarizing film can have excellent resistance to the temperature change.
  • the amount of the backplasticizer contained in the specific thermoplastic resin is preferably 0.5 parts by weight or more, more preferably 1.0 part by weight or more, particularly, with respect to 100 parts by weight of the polymer contained in the specific thermoplastic resin. It is preferably 2 parts by weight or more, preferably 30 parts by weight or less, more preferably 25 parts by weight or less, and particularly preferably 20 parts by weight or less.
  • the amount of the back plasticizer contained in the specific thermoplastic resin is within the above range, the occurrence of cracks in the polarizing element layer due to temperature changes can be effectively suppressed.
  • the specific thermoplastic resin may further contain a solvent in combination with the polymer and the back plasticizer.
  • This solvent may be a residual solvent that remains without being removed by drying among the solvents contained in the resin liquid used in the step of forming the specific resin layer. Therefore, as an example of the solvent, the same example as the solvent that can be contained in the resin liquid can be mentioned. Further, the solvent may be one kind or two or more kinds.
  • the amount of the solvent contained in the specific thermoplastic resin is preferably within a specific range.
  • the amount of the solvent contained in the specific thermoplastic resin is preferably 0.010% by weight or more, more preferably 0.10% by weight or more, and particularly preferably 0.10% by weight or more, based on 100% by weight of the specific thermoplastic resin. It is 1.0% by weight or more, preferably 10.0% by weight or less, more preferably 8.0% by weight or less, and particularly preferably 5.0% by weight or less.
  • the specific resin layer formed of the specific thermoplastic resin containing the solvent in the specific range is excellent in transferability. "Transferability" represents a property that can suppress breakage due to transfer.
  • transfer of a certain layer means to move the layer from one member to the other member, and after peeling the layer from one member, the layer is attached to the other member. And, after attaching the layer on one member to the other member, removing one member.
  • the specific resin layer has excellent transferability, it is possible to suppress breakage of the specific resin layer due to operations such as bonding of the specific resin layer and the polarizing element layer and peeling of the temporary base material. Therefore, the polarizing film can be easily manufactured.
  • the amount of the solvent contained in the specific thermoplastic resin can be measured by the following measuring method.
  • the specific thermoplastic resin is weighed and mixed with a diluting solvent to prepare a sample solution.
  • This sample solution is analyzed using a gas chromatograph mass spectrometer (“GC-2010Plus” manufactured by Shimadzu Corporation; the column is “DB-5HT” manufactured by Agilent technologies, 30 m ⁇ 0.25 mm, film thickness 0.1 ⁇ m).
  • the amount of the solvent is measured based on the detection peak of the obtained solvent.
  • the amount of the solvent contained in the specific thermoplastic resin can be adjusted, for example, by the drying conditions of the resin liquid in the method for producing a polarizing film.
  • the type of the solvent contained in the specific thermoplastic resin is known in advance, a solvent of a type different from the solvent contained in the specific thermoplastic resin is used as the diluting solvent for preparing the sample solution.
  • the type of the solvent contained in the specific thermoplastic resin is not known in advance, the measurement using only one type of diluting solvent is sufficient for the specific thermoplastic resin of the same type of solvent as the diluted solvent. It may not be possible to measure the amount. Therefore, in that case, the amount of the solvent contained in the specific thermoplastic resin can be measured by changing the type of the diluting solvent and performing the measurement a plurality of times.
  • thermoplastic resin may further contain any component in combination with the above-mentioned polymer, backplasticizer and solvent.
  • Optional components include, for example, hygroscopic agents; dispersants; organometallic compounds; stabilizers such as antioxidants, UV absorbers, light stabilizers; resin modifiers such as lubricants; colorants such as dyes and pigments; Antistatic agents; etc. Any component may be used alone or in combination of two or more at any ratio.
  • the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. usually has a water vapor permeability in a specific range.
  • the water vapor transmittance per 100 ⁇ m of the thickness of the first sample resin is usually 4.0 g / (m 2 ⁇ day) or less, preferably 3.0 g / (m 2 ⁇ day) or less, and particularly preferably 1. It is 0.0 g / (m 2 ⁇ day) or less.
  • the lower limit is ideally 0 g / (m 2 ⁇ day) or more, and may be 0.1 g / (m 2 ⁇ day) or more.
  • the first sample resin corresponds to the non-volatile component obtained by removing the volatile component removed by heating at 250 ° C. from the specific thermoplastic resin. Therefore, the fact that the first sample resin has a small water vapor permeability as described above means that the polymer contained in the non-volatile component of the specific thermoplastic resin has an attribute suitable for achieving a small water vapor permeability. show. For example, it represents that the molecule of the polymer has a small polarity. Then, since the specific resin layer formed of the specific thermoplastic resin containing the polymer having such an attribute in combination with the above-mentioned reverse plasticizer can suppress the cracking of the polarizing element layer due to the temperature change, the polarizing film can be heated. Can have excellent resistance to change.
  • the first sample resin corresponds to the non-volatile component of the specific thermoplastic resin
  • the first sample resin corresponds to the component that can be contained in the specific thermoplastic resin for a long period of time.
  • the specific thermoplastic resin can usually have a high water vapor blocking ability for a long period of time. Therefore, the specific resin layer can stably suppress the infiltration of water into the polarizing element layer, and can effectively suppress the decrease in the degree of polarization of the polarizing element layer due to the water content.
  • the water vapor transmittance per 100 ⁇ m thickness of the sample resin obtained by heating a certain thermoplastic resin to 250 ° C. can be measured by the following method.
  • the thermoplastic resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 100 ⁇ m, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measuring film having a thickness of 100 ⁇ m formed of the sample resin.
  • the thickness of the sample resin is 100 ⁇ m under the conditions of temperature 40 ° C. and humidity 90% RH according to the JIS K 7129 B method by a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON).
  • the water vapor transmission rate per hit can be measured.
  • the water vapor permeability of the first sample resin can be adjusted, for example, by the type and amount of the polymer contained in the specific thermoplastic resin.
  • the polymer molecules contained in the specific resin layer preferably have a small degree of orientation, and more preferably not oriented.
  • the specific thermoplastic resin composition contains a polymer having a small degree of orientation in combination with a back plasticizer, the specific resin layer formed of the specific thermoplastic resin composition cracks in the polarizing element layer due to a temperature change. Can be effectively suppressed.
  • the degree of orientation of the polymer molecules contained in the specific resin layer can be expressed by the optical anisotropy of the specific resin layer.
  • the optical anisotropy of the specific resin layer is small. Therefore, the specific resin layer preferably has low optical anisotropy in both the in-plane direction and the thickness direction, and more preferably has optical anisotropy.
  • the in-plane retardation of the specific resin layer is preferably small.
  • the in-plane retardation of the specific resin layer at a measurement wavelength of 550 nm is preferably 5 nm or less, more preferably 4 nm or less, still more preferably 3 nm or less, and particularly preferably 2 nm or less.
  • the retardation of the specific resin layer in the thickness direction is preferably zero or close to zero.
  • the retardation in the thickness direction of the specific resin layer at the measurement wavelength of 550 nm is preferably -5 nm or more, more preferably -4 nm or more, still more preferably -3 nm or more, and particularly preferably -2 nm or more. Is 5 nm or less, more preferably 4 nm or less, still more preferably 3 nm or less, and particularly preferably 2 nm or less.
  • the specific resin layer is preferably transparent from the viewpoint of functioning as a polarizing plate protective film layer as an optical film. Therefore, it is preferable that the total light transmittance of the specific resin layer is high.
  • the specific total light transmittance of the specific resin layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
  • the haze of the specific resin layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
  • the specific resin layer is preferably thin.
  • the specific thickness of the specific resin layer is usually larger than 0 ⁇ m, preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, preferably 9 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less. Even if the specific resin layer is thin as described above, the polarizing element layer can be effectively protected, so that a thin polarizing film can be obtained.
  • the polarizing layer a film capable of transmitting one of two linearly polarized light whose vibration directions intersect at right angles and absorbing or reflecting the other can be used.
  • the vibration direction of linearly polarized light represents the vibration direction of an electric field of linearly polarized light.
  • Such a film usually has a polarization transmission axis, can transmit linearly polarized light having a vibration direction parallel to the polarization transmission axis, and can absorb or reflect linearly polarized light having a vibration direction perpendicular to the polarization transmission axis.
  • the polarizing layer is formed on a film of a polyvinyl alcohol resin containing a vinyl alcohol-based polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, which is subjected to dyeing treatment, stretching treatment, cross-linking treatment or the like with a dichroic substance such as iodine. Examples thereof include those subjected to appropriate processing in an appropriate order and method.
  • the polarizing layer preferably contains a polyvinyl alcohol resin.
  • the thickness of the polarizing element layer is preferably larger than 1 ⁇ m, more preferably 2 ⁇ m or more, particularly preferably 3 ⁇ m or more, preferably 19 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • the thickness of the polarizing element layer is larger than the lower limit of the above range, the optical performance of the polarizing film can be sufficiently enhanced.
  • the thickness of the polarizing element layer is not more than the upper limit of the above range, the warp of the display body can be reduced and the bending stability of the polarizing film can be effectively improved.
  • the first resin layer is a layer formed of a thermoplastic resin and can function as a protective layer for protecting the polarizing element layer.
  • the first resin layer is the above-mentioned specific resin layer.
  • the first resin layer does not have to be the specific resin layer.
  • the first resin layer may be formed of a transparent thermoplastic resin other than the specific thermoplastic resin.
  • the thermoplastic resin other than such a specific thermoplastic resin include a resin having the same composition as the specific thermoplastic resin except that it does not contain a back plasticizer.
  • the thickness of the first resin layer may be preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 9 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the second resin layer is a layer formed of a thermoplastic resin and can function as a protective layer for protecting the polarizing element layer.
  • the second resin layer is the above-mentioned specific resin layer.
  • the second resin layer does not have to be the specific resin layer.
  • the second resin layer may be formed of a transparent thermoplastic resin other than the specific thermoplastic resin.
  • thermoplastic resins other than such specific thermoplastic resins include acetate resins such as triacetyl cellulose, polyester resins, and polyether sulfone resins, which are excellent in transparency, mechanical strength, thermal stability, and moisture shielding properties.
  • examples thereof include polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, cyclic olefin resin, (meth) acrylic resin and the like. Of these, a (meth) acrylic resin is preferable because a second resin layer having high hardness and low water vapor transmittance can be obtained.
  • the second resin layer is not a specific resin layer, there is no limit to the thickness of the second resin layer.
  • the thickness of the second resin layer can be 20 ⁇ m to 100 ⁇ m.
  • the polarizing film may be provided with a first adhesive layer as an arbitrary layer between the first resin layer and the polarizing element layer.
  • a first adhesive layer By using the first adhesive layer, the first resin layer and the polarizing element layer can be strongly adhered to each other.
  • the first adhesive layer is formed of a first adhesive that adheres the first resin layer and the polarizing element layer.
  • the first adhesive include acrylic adhesives, epoxy adhesives, urethane adhesives, polyester adhesives, polyvinyl alcohol adhesives, polyolefin adhesives, modified polyolefin adhesives, and polyvinyl alkyl ether adhesives.
  • Adhesives rubber adhesives, vinyl chloride-vinyl acetate adhesives, SEBS (styrene-ethylene-butylene-styrene copolymer) adhesives, ethylene-styrene copolymers and other ethylene adhesives, ethylene- ( Examples thereof include acrylic acid ester-based adhesives such as a methyl acrylate copolymer and an ethylene-ethyl ethyl acrylate copolymer. Further, as the first adhesive, an ultraviolet curable type adhesive is preferable because the first adhesive can be cured in a short time.
  • the thickness of the first adhesive layer is usually larger than 0 ⁇ m, preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • a good appearance can be obtained, and the first resin layer and the polarizing element layer can be strongly adhered to each other.
  • the polarizing film may be provided with a second adhesive layer as an arbitrary layer between the polarizing element layer and the second resin layer.
  • a second adhesive layer By using the second adhesive layer, the polarizing element layer and the second resin layer can be strongly adhered to each other.
  • the second adhesive layer is formed of a second adhesive that adheres the polarizing element layer and the second resin layer.
  • a second adhesive an adhesive in the range described as the first adhesive can be used.
  • an ultraviolet curable type adhesive is preferable because the second adhesive can be cured in a short time.
  • the range of the thickness of the second adhesive layer can be the same as the range of the thickness of the first adhesive layer.
  • the thickness of the first adhesive layer and the thickness of the second adhesive layer may be the same or different.
  • the polarizing film may include an adhesive layer as any layer.
  • the polarizing film includes an adhesive layer as the outermost layer of the multilayer film.
  • the polarizing film is provided with the pressure-sensitive adhesive layer as the outermost layer on the first resin layer side. Therefore, the polarizing film preferably includes an adhesive layer, a first resin layer, a polarizing element layer, and a second resin layer in this order in the thickness direction.
  • the adhesive layer is formed by the adhesive, it can exert adhesive strength. Due to the adhesive force of this pressure-sensitive adhesive layer, the polarizing film can be bonded to other members.
  • a polarizing film is incorporated into a display device including a display body such as a liquid crystal panel and an organic electroluminescence panel (hereinafter, may be appropriately referred to as “organic EL panel”), the pressure-sensitive adhesive layer and the display body are attached. By matching, a polarizing film can be provided on the display body.
  • the adhesive examples include rubber adhesives, acrylic adhesives, polyvinyl ether adhesives, urethane adhesives, silicone adhesives, and polyolefin adhesives.
  • an acrylic pressure-sensitive adhesive and a polyolefin-based pressure-sensitive adhesive are preferable from the viewpoint of heat resistance and productivity, and an acrylic-based pressure-sensitive adhesive is particularly preferable.
  • one type of pressure-sensitive adhesive may be used alone, or two or more types may be used in combination at any ratio.
  • the thickness of the pressure-sensitive adhesive layer is preferably 2.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, preferably 30.0 ⁇ m or less, more preferably 25.0 ⁇ m or less, and particularly preferably 20.0 ⁇ m or less.
  • the thickness of the pressure-sensitive adhesive layer is at least the lower limit of the above range, the adhesive strength of the pressure-sensitive adhesive layer can be increased, and the entrainment of air bubbles during bonding can be suppressed.
  • the thickness of the pressure-sensitive adhesive layer is not more than the upper limit of the above range, the expansion and contraction behavior of the polarizing film can be suppressed, and the bezel-free can be achieved.
  • the polarizing film may include a ⁇ / 4 layer as any layer. Normally, the ⁇ / 4 layer is provided between the pressure-sensitive adhesive layer and the first resin layer.
  • the ⁇ / 4 layer has an in-plane retardation in a specific range at a wavelength of 550 nm.
  • the in-plane retardation of the ⁇ / 4 layer at a wavelength of 550 nm is preferably 110 nm or more, more preferably 120 nm or more, particularly preferably 125 nm or more, preferably 165 nm or less, more preferably 155 nm or less, particularly. It is preferably 150 nm or less.
  • the slow axis of the ⁇ / 4 layer is preferably at an angle of 40 ° to 50 °, more preferably 42 ° to 48 °, and particularly preferably 44 ° to 46 ° with respect to the polarization transmission axis of the polarizing element layer. ..
  • a circularly polarizing plate can be obtained by combining the polarizing element layer and the ⁇ / 4 layer. Therefore, the polarizing film provided with the ⁇ / 4 layer can function as a reflection suppression film when it is provided in the display device.
  • the ⁇ / 4 layer preferably has a reverse wavelength dispersion characteristic.
  • the reverse wavelength dispersion characteristic means the property that the in-plane retardations Re (450) and Re (550) at the measurement wavelengths of 450 nm and 550 nm satisfy Re (450) ⁇ Re (550).
  • the ⁇ / 4 layer having the reverse wavelength dispersion characteristic can exhibit its optical function in a wide wavelength range.
  • the ⁇ / 4 layer may be produced as a stretched film obtained by stretching a pre-stretched film formed of an appropriate resin, for example.
  • the ⁇ / 4 layer is, for example, a liquid crystal curing layer obtained by forming a layer of a liquid crystal composition containing an appropriate liquid crystal compound, orienting the molecules of the liquid crystal compound, and then curing the liquid crystal composition. It may be manufactured.
  • the ⁇ / 4 layer is preferably a liquid crystal curing layer.
  • the ⁇ / 4 layer as such a liquid crystal curing layer can be manufactured, for example, by the method described in International Publication No. 2016/121602.
  • any other layer is a clear hard coat layer, an anti-glare hard coat layer, an antireflection layer, an antistatic layer, an antifouling layer and the like.
  • a clear hard coat layer As the above-mentioned arbitrary layer, only one type may be used, or two or more types may be used in combination. Further, the number of arbitrary layers may be one layer or two or more layers. Moreover, the position of any layer is not limited as long as it does not significantly impair the effectiveness of the invention.
  • the above-mentioned polarizing film can have excellent resistance to temperature changes. Specifically, it is possible to suppress the occurrence of cracks in the polarizing element layer due to temperature changes.
  • the number of cracks generated in the polarizing element layer can be reduced when the following polarizing element crack test is performed.
  • the number of cracks can be preferably 600 or less, more preferably 500 or less, still more preferably 400 or less, and particularly preferably 300 or less.
  • the average length of cracks generated in the polarizing element layer can be shortened when the following polarizing element crack test is performed.
  • the average length of cracks can be preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • the polarizing film is cut into 10 cm squares to obtain a square polarizing film piece. The cut is performed so that the absorption axis of the polarizing element layer contained in the polarizing film is parallel or perpendicular to the side of the obtained polarizing film piece.
  • This polarizing film piece is pressure-bonded to a glass substrate. When the polarizing film piece does not have the pressure-sensitive adhesive layer, the glass substrate and the polarizing film piece are pressure-bonded via the pressure-sensitive adhesive. Then, autoclave treatment is performed at 50 ° C., 5 atm, and 10 minutes to obtain an evaluation sample. This evaluation sample is subjected to 20 heat cycles consisting of cooling at ⁇ 40 ° C. for 30 minutes and heating at 70 ° C. for 30 minutes. After performing the heat cycle, the end of the evaluation sample is observed with an optical microscope to measure the number of cracks and their length.
  • the thickness of the polarizing film is preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, particularly preferably 60 ⁇ m or more, preferably 110 ⁇ m or less, more preferably 90 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
  • the method for producing the polarizing film is not limited. For example, even if a polarizing film is manufactured by a manufacturing method including a step of molding a specific thermoplastic resin by a melt extrusion method to obtain a specific resin layer and a step of laminating the specific resin layer and a polarizing element layer. good.
  • the polarizing film is a polymer or reverse plastic on a temporary substrate.
  • this manufacturing method will be described in detail.
  • the resin liquid is a liquid material for forming a specific resin layer. Therefore, the resin liquid usually contains each component that can be contained in the specific thermoplastic resin. Specifically, the resin liquid may contain a polymer, a back plasticizer, a solvent, and optionally any component contained in the specific thermoplastic resin. Some or all of the non-volatile components such as polymers, reverse plasticizers and optional components may be dissolved in the solvent. Further, a part or all of the non-volatile component may be dispersed in a solvent.
  • an organic solvent is preferable, and an organic solvent capable of dissolving a polymer and a back plasticizer that can be contained in the specific thermoplastic resin is particularly preferable.
  • the solvent include hydrocarbon solvents such as cyclohexane and toluene; cyclic ether solvents such as tetrahydrofuran; and the like.
  • hydrocarbon solvents such as cyclohexane and toluene
  • cyclic ether solvents such as tetrahydrofuran
  • one type may be used alone, or two or more types may be used in combination at any ratio. Normally, a part of the solvent contained in the resin liquid can remain in the specific thermoplastic resin contained in the specific resin layer.
  • the concentration of the non-volatile component in the resin liquid can be arbitrarily set as long as the resin liquid has a viscosity suitable for coating.
  • the specific concentration range is preferably 5% by weight or more, more preferably 10% by weight or more, particularly preferably 13% by weight or more, preferably 35% by weight or less, more preferably 30% by weight or less, and particularly preferably. It is 25% by weight or less.
  • the temporary base material a member having a surface on which the resin liquid can be applied and the specific resin layer formed on the surface can be peeled off can be used.
  • a resin film made of a resin such as polyethylene terephthalate, polyethylene, or polypropylene is used as the temporary base material.
  • an ultraviolet curable adhesive is used in the bonding step between the polarizing layer and the specific resin layer, a resin film having a small absorption of UV-B is preferable.
  • UV-B refers to light having a wavelength of 280 nm or more and 315 nm or less, unless otherwise specified.
  • the surface of the temporary base material may be subjected to a mold release treatment in order to facilitate peeling of the specific resin layer.
  • the mold release treatment examples include a treatment of forming a release agent layer on the surface of the temporary base material.
  • a silicone-based release agent such as polydimethylsiloxane, a fluorine-based release agent such as alkyl fluoride, a long-chain alkyl-based release agent, and the like are used.
  • a silicone-based mold release agent is preferable because of its good mold release and processability.
  • Examples of the method for applying the resin liquid to the temporary substrate include curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, and printing coating.
  • Examples include a method, a gravure coating method, a die coating method, a gap coating method, and a dipping method.
  • the conditions for drying the resin liquid are preferably set so that the amount of the solvent contained in the specific thermoplastic resin contained in the specific resin layer obtained after drying falls within the above-mentioned specific range.
  • the amount of the solvent contained in the specific thermoplastic resin can be adjusted to a preferable range by appropriately setting the drying conditions such as the drying temperature and the drying time.
  • the specific drying temperature may vary depending on the type and amount of the polymer, the reverse plasticizer and the solvent, but is generally preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher. It is preferably 140 ° C. or lower, more preferably 135 ° C. or lower, and particularly preferably 130 ° C. or lower.
  • the specific drying time may vary depending on the type and amount of the polymer, the reverse plasticizer and the solvent, but is generally preferably 30 seconds or longer, more preferably 60 seconds or longer, and particularly preferably 90 seconds or longer. It is preferably 5 minutes or less, more preferably 4 minutes or less, and particularly preferably 3 minutes or less.
  • Step of bonding the specific resin layer and the polarizing element layer After forming the specific resin layer on the temporary base material, a step of bonding the specific resin layer and the polarizing element layer is performed.
  • the bonding of the specific resin layer and the polarizing element layer may be performed via an adhesive, if necessary.
  • a bonding tool such as a pinch roller via an adhesive, if necessary.
  • the amount of the solvent contained in the specific thermoplastic resin forming the specific resin layer is within the above-mentioned specific range, the breakage of the specific resin layer at the time of the above-mentioned bonding is suppressed. Therefore, the polarizing film can be manufactured with a high yield.
  • Step of peeling off the temporary base material After the specific resin layer and the polarizing element layer are bonded together, a step of peeling off the temporary base material is performed.
  • the amount of the solvent contained in the specific thermoplastic resin forming the specific resin layer is within the above-mentioned specific range, the breakage of the specific resin layer at the time of peeling of the temporary base material is suppressed. Therefore, the polarizing film can be manufactured with a high yield.
  • the temporary base material is peeled off continuously.
  • the peeling speed is appropriately set within a range in which the breakage of the specific resin layer can be suppressed.
  • the specific peeling speed of the temporary substrate is preferably 10 m / min or more, more preferably 15 m / min or more, particularly preferably 20 m / min or more, preferably 70 m / min or less, and more preferably 60 m / min or less. Particularly preferably, it is 50 m / min or less.
  • the specific resin layer can be formed directly on the polarizing element layer or indirectly via arbitrary layers such as the first adhesive layer and the second adhesive layer. Therefore, for example, in the multilayer film provided with the specific resin layer as both the first resin layer and the second resin layer, the specific resin layer as the first resin layer and the specific resin layer as the second resin layer are used in the above-mentioned steps. It can be manufactured by a manufacturing method including forming on a polarizing layer.
  • the second resin layer may be formed after the first resin layer is formed, or the first resin layer may be formed after the second resin layer is formed, and the first resin layer and the second resin layer may be formed.
  • the resin layer may be formed at the same time.
  • “directly” forming another layer on one layer means that there is no other layer between the two layers.
  • “indirectly” providing another layer on one layer means that there is another layer between the two layers.
  • the method for producing the multilayer film is to form a second resin layer. May include steps to be performed. There are no restrictions on the method of forming the second resin layer.
  • the second resin layer can be formed by a method including laminating a second resin layer prepared in advance to the polarizing element layer via an adhesive, if necessary. This bonding usually includes bonding a long second resin layer and a long polarizing element layer using a bonding tool such as a pinch roller via an adhesive, if necessary.
  • the method for producing the multilayer film is to form the first resin layer. May include steps to be performed. There are no restrictions on the method of forming the first resin layer.
  • the first resin layer can be formed by a method including laminating a first resin layer prepared in advance to a polarizing element layer via an adhesive, if necessary. This bonding usually includes bonding a long first resin layer and a long polarizing element layer using a bonding tool such as a pinch roller via an adhesive, if necessary.
  • the timing of forming the first resin layer or the second resin layer other than the specific resin layer.
  • the first resin layer or the second resin layer may be formed before the specific resin layer and the polarizing element layer are bonded together.
  • the first resin layer or the second resin layer may be formed after the specific resin layer and the polarizing element layer are bonded together.
  • the first resin layer or the second resin layer may be formed at the same time as the specific resin layer and the polarizing element layer are bonded to each other.
  • the method for producing a polarizing film described above may include a step of forming an adhesive layer.
  • the pressure-sensitive adhesive layer may be formed by applying a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer may be formed by bonding the pressure-sensitive adhesive layers prepared in advance.
  • the adhesive layer is formed.
  • the adhesive layer is formed.
  • the above-mentioned method for producing a polarizing film may further include an arbitrary step, if necessary.
  • the method for producing the polarizing film may include a step of curing the adhesive.
  • the step of curing the adhesive is performed after the layers are bonded to each other using the above-mentioned adhesive.
  • an appropriate method can be adopted depending on the type of the adhesive. For example, when an ultraviolet curable adhesive is used, the adhesive can be cured by irradiation with ultraviolet rays.
  • the method for manufacturing a polarizing film may include, for example, a step of providing an arbitrary layer such as a ⁇ / 4 layer.
  • the method for manufacturing a polarizing film may include a step of trimming the polarizing film. For example, after producing a long polarizing film using a long polarizing element layer, a first resin layer, and a second resin layer, the polarizing film may be trimmed to a desired size.
  • the above-mentioned polarizing film may be provided in a display device, for example.
  • a display device including a polarizing film usually includes a display body in combination with the polarizing film.
  • the polarizing film may be provided so as to include the first resin layer, the polarizing element layer, and the second resin layer in this order from the display body side.
  • This display device can be manufactured, for example, by a manufacturing method including laminating a display body and an adhesive layer of a polarizing film.
  • the manufacturing method of the display device is not limited to this.
  • the polarizing element layer of the polarizing film is protected by the first resin layer and the second resin layer. Therefore, it is possible to suppress a decrease in the degree of polarization of the polarizing element layer, suppress damage to the polarizing element layer, and suppress damage to the polarizing element layer due to an external force. Further, in particular, since the specific resin layer is used as at least one of the first resin layer and the second resin layer, it is possible to suppress the generation of cracks in the polarizing element layer due to temperature changes.
  • Examples of the display body include a liquid crystal panel as a display body for a liquid crystal display device and an organic EL panel as a display body for an organic electroluminescence display device (hereinafter, may be appropriately referred to as an “organic EL display device”). Can be mentioned. Usually, a polarizing film is provided on the visual side of these displays.
  • a liquid crystal panel usually includes a liquid crystal cell and an electrode capable of applying a voltage to the liquid crystal.
  • the liquid crystal cell has, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic.
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • the liquid crystal cell of any mode such as (TN) mode, super twisted nematic (STN) mode, optical compensated bend (OCB) mode can be used.
  • the organic EL panel usually includes an organic EL element including a transparent electrode layer, a light emitting layer, and an electrode layer in this order.
  • the light emitting layer can generate light by applying a voltage from the transparent electrode layer and the electrode layer.
  • the material constituting the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials.
  • the light emitting layer may have a laminate of a plurality of layers having different emission colors, or a mixed layer in which a layer of a certain dye is doped with different dyes.
  • the organic EL element may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • a comparative resin having a composition obtained by removing the back plasticizer from the first resin prepared in Examples and Comparative Examples was prepared. Specifically, a resin solution was prepared, coated, and dried by the same method as in each Example and Comparative Example except that a reverse plasticizer was not used, to produce a layer of a comparative resin having a thickness of 2 ⁇ m. A part of the layer of the contrast resin was peeled off from the temporary base material to obtain a sample formed of the contrast resin.
  • This contrast resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 10 ⁇ m, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measurement film having a thickness of 10 ⁇ m formed of the second sample resin.
  • rice field Using this measuring film, the coefficient of linear expansion was measured by raising the temperature from 20 ° C. to 200 ° C. at 5 ° C./min using a thermomechanical analyzer. The average value from 70 ° C. to 85 ° C. was defined as the average linear expansion coefficient CTE (II) of the second sample resin.
  • the average linear expansion coefficient CTE (I) of the first sample resin was divided by the average linear expansion coefficient CTE (II) of the second sample resin to obtain the ratio CTE (I) / CTE (II) of the linear expansion coefficient.
  • the first sample resin corresponds to a non-volatile component excluding the volatile component that can volatilize at 250 ° C. from the first resin.
  • the second sample resin corresponds to a non-volatile component excluding the volatile component that can volatilize at 250 ° C. from the contrast resin.
  • the first resin and the contrast resin have the same composition except for the reverse plasticizer.
  • the difference between the average linear expansion coefficient CTE (I) of the first sample resin and the average linear expansion coefficient CTE (II) of the second sample resin can be caused by the back plasticizer.
  • the fact that their ratio CTE (I) / CTE (II) is smaller than 1.00 indicates that the reverse plasticizer has an effect of reducing the linear expansion coefficient of the resin.
  • the first resin collected in Examples and Comparative Examples was formed from the first sample resin by hot melting and molding using a heat melting press machine under the conditions of a clearance of 100 ⁇ m, a temperature of 250 ° C., and a pressure of 30 MPa. A measuring film having a thickness of 100 ⁇ m was obtained. Using this measuring film, the first sample resin was prepared by a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON) under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to the JIS K 7129B method. The water vapor transmission rate per 100 ⁇ m thickness was measured.
  • PERMATRAN-W manufactured by MOCON
  • Cyclohexane which is the residual solvent of the first resin collected in Examples and Comparative Examples, was quantified by the following GC / MS. After weighing the first resin in a screw tube, xylene was added, and ultrasonic treatment was performed for 30 minutes to completely dissolve the sample solution. The sample solution was analyzed using a gas chromatograph mass spectrometer (“GC-2010Plus” manufactured by Shimadzu Corporation; the column was “DB-5HT” manufactured by Agilent technologies, 30 m ⁇ 0.25 mm, film thickness 0.1 ⁇ m).
  • GC-2010Plus gas chromatograph mass spectrometer
  • Cyclohexane was quantified using the obtained cyclohexane detection peak and the calibration curve obtained in advance from the cyclohexane standard solution. From the measurement results, the ratio of cyclohexane as a residual solvent in the first resin was determined.
  • a glass substrate (“Eagle XG” manufactured by Corning Inc .; thickness 0.5 mm) was prepared, and the glass surface was subjected to corona treatment.
  • the polarizing films produced in Examples and Comparative Examples were cut into 10 cm squares to obtain polarizing film pieces. The cut was made so that the absorption axis of the polarizing element layer contained in the polarizing film was parallel to or perpendicular to the side of the obtained polarizing film piece.
  • the adhesive layer of this polarizing film piece was pressure-bonded to the corona-treated surface of the glass substrate using a pinch roller. Then, autoclave treatment was performed at 50 ° C., 5 atm, and 10 minutes to obtain an evaluation sample.
  • This evaluation sample was subjected to a heat cycle test in which a heat cycle consisting of cooling at -40 ° C for 30 minutes and heating at 70 ° C for 30 minutes was performed 20 times. The end of the evaluation sample after the test was observed with an optical microscope, and the number of cracks and their length were measured.
  • an unstretched polyvinyl alcohol film having a thickness of 45 ⁇ m (vinylon film, average degree of polymerization of about 2400, saponification degree of 99.9 mol%) was prepared. While continuously transporting this film in the longitudinal direction via a guide roll, the film was immersed in pure water at 30 ° C. for 1 minute and stretched twice. Then, this film was subjected to a dyeing treatment by immersing it in a dyeing solution (a dyeing solution containing iodine and potassium iodide at a weight ratio of 1:23, a dyeing agent concentration of 1.2 mmol / L) at 32 ° C. for 2 minutes.
  • a dyeing solution a dyeing solution containing iodine and potassium iodide at a weight ratio of 1:23, a dyeing agent concentration of 1.2 mmol / L
  • Iodine was adsorbed on the film. Then, the film was immersed in a 3 wt% boric acid aqueous solution at 35 ° C. for 30 seconds for cross-linking and washing. Then, at 57 ° C., the film was stretched 3.0 times in an aqueous solution containing 3% by weight boric acid and 5% by weight of potassium iodide. Then, the film was subjected to complementary color treatment at 35 ° C. in an aqueous solution containing 5% potassium iodide and 1.0% boric acid. Then, the film was dried at 70 ° C. for 2 minutes to obtain a long polarizing element layer having a thickness of 18 ⁇ m. The degree of polarization of this polarizing element layer was measured with an ultraviolet-visible spectrophotometer (“V-7100” manufactured by JASCO Corporation) and found to be 99.996%, which was sufficient polarization ability.
  • V-7100 ultraviolet-visible spectrophotometer
  • Example 1 (1-1. Manufacture of the first resin layer) A norbornene-based polymer as a first polymer (“ZEONOR” manufactured by Nippon Zeon Co., Ltd .; glass transition temperature 138 ° C.) and orthoterphenyl as a back plasticizer are mixed with cyclohexane as a solvent to obtain a non-volatile component concentration of 15. A resin solution contained in% by weight was obtained. The amount of the backplasticizer was adjusted to 1% by weight based on 100% by weight of the total of the first polymer and the backplasticizer.
  • ZONOR manufactured by Nippon Zeon Co., Ltd .
  • orthoterphenyl as a back plasticizer
  • a long polypropylene film (“Trefan BO40-2500” manufactured by Toray Industries, Inc.) was prepared as a temporary base material.
  • the above resin solution was applied onto this temporary substrate to form a layer of the resin solution.
  • the layer of the resin solution was dried at 120 ° C. under the drying condition for 2 minutes to obtain a long first resin layer having a thickness of 2 ⁇ m formed of the first resin.
  • a part of this first resin layer was peeled off from the temporary base material to obtain a sample formed of the first resin. Using this sample, the ratio of linear expansion coefficient CTE (I) / CTE (II), water vapor permeability, retardation Re and Rth, and the amount of residual solvent of the first resin were measured by the above-mentioned method.
  • Acrylic resin (“Sumipex HT55X” manufactured by Sumitomo Chemical Co., Ltd.) was supplied to a heat-melt extrusion film forming machine equipped with a T-die. The acrylic resin was extruded from the T-die, and the acrylic resin was formed into a film. As a result, a long second resin layer having a thickness of 40 ⁇ m formed of acrylic resin was obtained.
  • the surface of the second resin layer was treated with corona. Then, an ultraviolet curable adhesive (“Arkles KRX-7007” manufactured by ADEKA Corporation) was applied to the corona-treated surface of the second resin layer to form an adhesive layer.
  • an ultraviolet curable adhesive (“Arkles KRX-7007” manufactured by ADEKA Corporation) was applied to the corona-treated surface of the second resin layer to form an adhesive layer.
  • the first resin layer and the polarizing element layer are bonded via the adhesive, and the second resin layer and the polarizing element layer are bonded via the adhesive, using a pinch roller. , Goed at the same time.
  • an ultraviolet irradiation device was used to irradiate 750 mJ / cm 2 of ultraviolet rays from the temporary substrate side to cure the adhesive.
  • the temporary base material is peeled off to form a long intermediate film having a layer structure of a first resin layer / an adhesive layer (thickness 2 ⁇ m) / a polarizing element layer / an adhesive layer (thickness 2 ⁇ m) / a second resin layer. Obtained.
  • An optical pressure-sensitive adhesive sheet (“LUCIACS CS9861US” manufactured by Nitto Denko) having a pressure-sensitive adhesive layer and a light release liner layer was prepared.
  • the light release liner was peeled off, and the adhesive surface of the pressure-sensitive adhesive layer exposed by this peeling was subjected to corona treatment.
  • the surface of the first resin layer of the intermediate film was subjected to corona treatment.
  • the corona-treated surface of the pressure-sensitive adhesive layer and the corona-treated surface of the first resin layer of the intermediate film are pressure-bonded by using a pinch roller to press the pressure-sensitive adhesive layer / first resin layer / adhesive layer / polarizing element layer /.
  • a polarizing film having a layer structure of an adhesive layer / a second resin layer was obtained. The obtained polarizing film was evaluated by the method described above.
  • Example 2 to 4 The polarizing film was produced and evaluated by the same method as in Example 1 except that the amount of the reverse plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. ..
  • Example 5 A polarizing film was produced and evaluated by the same method as in Example 1 except that the type of the reverse plasticizer was changed to metaterphenyl.
  • Example 6 and 7 The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 8 The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Further, the drying condition of the layer of the resin solution was set to 5 minutes by adding IR irradiation with an IR heater at the same time as hot air drying at 120 ° C. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 9 The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 10 A polarizing film was produced and evaluated by the same method as in Example 1 except that the type of the reverse plasticizer was changed to paraterphenyl.
  • Example 11 to 13 The type of backplasticizer was changed to paraterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 2. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 14 The type of the first polymer was changed to a norbornene-based polymer (“ZEONOR” manufactured by Nippon Zeon Corporation; glass transition temperature 163 ° C.). In addition, the type of reverse plasticizer was changed to metaterphenyl. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 15 to 17 The type of the first polymer was changed to a norbornene-based polymer (“ZEONOR” manufactured by Nippon Zeon Corporation; glass transition temperature 163 ° C.). In addition, the type of reverse plasticizer was changed to metaterphenyl. Furthermore, the amount of the backplasticizer with respect to the total 100% by weight of the first polymer and the backplasticizer was changed to the value shown in Table 2. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Example 1 No backplasticizer was used. That is, the amount of the backplasticizer was changed to 0% by weight with respect to the total of 100% by weight of the first polymer and the backplasticizer. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
  • Polarizing film 110 First resin layer 120 Polarizer layer 130 Second resin layer 200 Polarizing film 210 First adhesive layer 220 Second adhesive layer 230 Adhesive layer 240 ⁇ / 4 layer

Abstract

This polarization film is configured such that: a first resin layer, a polarizer layer, and a second resin layer are provided in this order; the first resin layer and/or the second resin layer is a specific resin layer formed from a specific thermoplastic resin containing an antiplasticizer of 0.5-23% by weight and a polymer; the moisture vapor permeability per 100 μm in the thickness of a first sample resin obtained by heating the specific thermoplastic resin to 250 °C, is within a specific range; and the average linear expansion coefficient at 70-85 °C of the first sample resin is smaller than the average linear expansion coefficient at 70-85 °C of a second sample resin obtained by heating to 250 °C a comparison resin having a composition excluding the antiplasticizer from the specific thermoplastic resin.

Description

偏光フィルム及びその製造方法、並びに表示装置Polarizing film, its manufacturing method, and display device
 本発明は、偏光フィルム及びその製造方法、並びに表示装置に関する。 The present invention relates to a polarizing film, a method for manufacturing the same, and a display device.
 一般に、偏光フィルムは、偏光子層と、この偏光子層の両側に設けられた保護フィルム層とを備える。このような保護フィルム層としては、セルロースエステルを含む樹脂組成物で形成されたフィルムが、しばしば用いられていた(特許文献1)。 Generally, the polarizing film includes a polarizing element layer and protective film layers provided on both sides of the polarizing element layer. As such a protective film layer, a film formed of a resin composition containing a cellulose ester has often been used (Patent Document 1).
 他方、非特許文献1が知られている。 On the other hand, Non-Patent Document 1 is known.
国際公開第2018/230122号International Publication No. 2018/230122
 偏光フィルムは、温度変化の大きい環境において使用されることがありうる。そこで、偏光フィルムには、温度変化に対する耐性に優れることが求められる。温度変化に対する耐性は、例えば、加熱及び冷却の繰り返しを含むヒートサイクルテストによって評価できる。しかし、従来の偏光フィルムは、ヒートサイクルテストを行った場合に、その端部の偏光子層にクラックが生じることがあった。また、近年の表示体は、ベゼルフリー、カーブド等が採用され、偏光フィルム端部の要求品質が高まっている。 The polarizing film may be used in an environment with large temperature changes. Therefore, the polarizing film is required to have excellent resistance to temperature changes. Resistance to temperature changes can be assessed, for example, by heat cycle tests involving repeated heating and cooling. However, when the conventional polarizing film is subjected to a heat cycle test, cracks may occur in the polarizing element layer at the end thereof. Further, in recent years, bezel-free, curved and the like have been adopted for the display body, and the required quality of the end portion of the polarizing film is increasing.
 本発明は、前記の課題に鑑みて創案されたものであって、温度変化に対する耐性に優れる偏光フィルム及びその製造方法;並びに、前記の偏光フィルムを備える表示装置;を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a polarizing film having excellent resistance to temperature changes and a method for producing the same; and a display device including the above-mentioned polarizing film. ..
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、第一樹脂層、偏光子層及び第二樹脂層を、この順に備える偏光フィルムにおいて、第一樹脂層及び第二樹脂層の少なくとも一方が重合体及び特定量の逆可塑剤を含む熱可塑性樹脂で形成された特定樹脂層であり、且つ、前記の特定樹脂層が特定の要件を満たす場合、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has diligently studied to solve the above-mentioned problems. As a result, in the polarizing film including the first resin layer, the copolymer layer and the second resin layer in this order, at least one of the first resin layer and the second resin layer is a polymer and the reverse of a specific amount. The present invention has been completed by finding that the above-mentioned problems can be solved when the specific resin layer is formed of a thermoplastic resin containing a plasticizer and the specific resin layer satisfies a specific requirement.
That is, the present invention includes the following.
 〔1〕 第一樹脂層、偏光子層及び第二樹脂層を、この順に備え、
 前記第一樹脂層及び第二樹脂層の少なくとも一方が、重合体及び逆可塑剤を含む特定熱可塑性樹脂で形成された特定樹脂層であり、
 前記逆可塑剤の量が、前記特定熱可塑性樹脂100重量%に対して、0.5重量%以上23重量%以下であり、
 前記特定熱可塑性樹脂を250℃に加熱して得られる第一試料樹脂の、厚み100μm当たりの水蒸気透過率が、4g/(m・day)以下であり、
 下記式(1)を満たす、偏光フィルム。
  CTE(I)/CTE(II)<1   (1)
(式(1)において、
 CTE(I)は、前記第一試料樹脂の70℃~85℃における平均線膨張係数を表し、
 CTE(II)は、前記特定熱可塑性樹脂から前記逆可塑剤を除いた組成を有する対比樹脂を250℃に加熱して得られる第二試料樹脂の70℃~85℃における平均線膨張係数を表す。)
 〔2〕 前記第一樹脂層と前記偏光子層との間に、第一接着層を備える、〔1〕に記載の偏光フィルム。
 〔3〕 前記偏光子層と前記第二樹脂層との間に、第二接着層を備える、〔1〕又は〔2〕に記載の偏光フィルム。
 〔4〕 前記特定樹脂層の測定波長550nmにおける面内レターデーションが、5nm以下であり、
 前記特定樹脂層の測定波長550nmにおける厚み方向のレターデーションが、-5nm以上5nm以下である、〔1〕~〔3〕のいずれか一項に記載の偏光フィルム。
 〔5〕 前記特定熱可塑性樹脂が、脂環式構造を含有する重合体を含む、〔1〕~〔4〕のいずれか一項に記載の偏光フィルム。
 〔6〕 前記特定樹脂層の厚みが、9μm以下である、〔1〕~〔5〕のいずれか一項に記載の偏光フィルム。
 〔7〕 前記偏光子層の厚みが、19μm以下である、〔1〕~〔6〕のいずれか一項に記載の偏光フィルム。
 〔8〕 前記特定熱可塑性樹脂が、溶媒を0.010重量%以上10.0重量%以下含む、〔1〕~〔7〕のいずれか一項に記載の偏光フィルム。
 〔9〕 前記逆可塑剤が、ターフェニル化合物である、〔1〕~〔8〕のいずれか一項に記載の偏光フィルム。
 〔10〕 粘着剤層、前記第一樹脂層、前記偏光子層及び前記第二樹脂層を、この順で備える、〔1〕~〔9〕のいずれか一項に記載の偏光フィルム。
 〔11〕 前記粘着剤層と前記第一樹脂層との間に、λ/4層を備える、〔10〕に記載の偏光フィルム。
 〔12〕 〔1〕~〔11〕のいずれか一項に記載の偏光フィルムの製造方法であって、
 仮基材上に、重合体、逆可塑剤及び溶媒を含む樹脂液を塗工する工程と、
 前記樹脂液を乾燥させて、特定熱可塑性樹脂で形成された特定樹脂層を得る工程と、
 前記特定樹脂層と偏光子層とを貼合する工程と、
 前記仮基材を剥離する工程と、をこの順で含む、偏光フィルムの製造方法。
 〔13〕 粘着剤層を形成する工程を含む、〔12〕に記載の偏光フィルムの製造方法。
 〔14〕 表示体と、〔1〕~〔11〕のいずれか一項に記載の偏光フィルムと、を備える表示装置であって、
 前記偏光フィルムが、第一樹脂層、偏光子層及び第二樹脂層を、前記表示体側からこの順に備える、表示装置。
 〔15〕 前記表示体が、液晶パネルである、〔14〕に記載の表示装置。
 〔16〕 前記表示体が、有機エレクトロルミネッセンスパネルである、〔14〕に記載の表示装置。
[1] A first resin layer, a polarizing element layer, and a second resin layer are provided in this order.
At least one of the first resin layer and the second resin layer is a specific resin layer formed of a specific thermoplastic resin containing a polymer and a back plasticizer.
The amount of the reverse plasticizer is 0.5% by weight or more and 23% by weight or less with respect to 100% by weight of the specific thermoplastic resin.
The water vapor transmittance per 100 μm thickness of the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. is 4 g / (m 2 · day) or less.
A polarizing film satisfying the following formula (1).
CTE (I) / CTE (II) <1 (1)
(In equation (1)
CTE (I) represents the average linear expansion coefficient of the first sample resin at 70 ° C to 85 ° C.
CTE (II) represents the average linear expansion coefficient of the second sample resin obtained by heating a contrasting resin having a composition obtained by removing the backplasticizer from the specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. .. )
[2] The polarizing film according to [1], wherein a first adhesive layer is provided between the first resin layer and the polarizing element layer.
[3] The polarizing film according to [1] or [2], wherein a second adhesive layer is provided between the polarizing element layer and the second resin layer.
[4] The in-plane retardation of the specific resin layer at a measurement wavelength of 550 nm is 5 nm or less.
The polarizing film according to any one of [1] to [3], wherein the retardation of the specific resin layer in the thickness direction at a measurement wavelength of 550 nm is -5 nm or more and 5 nm or less.
[5] The polarizing film according to any one of [1] to [4], wherein the specific thermoplastic resin contains a polymer containing an alicyclic structure.
[6] The polarizing film according to any one of [1] to [5], wherein the specific resin layer has a thickness of 9 μm or less.
[7] The polarizing film according to any one of [1] to [6], wherein the polarizing element layer has a thickness of 19 μm or less.
[8] The polarizing film according to any one of [1] to [7], wherein the specific thermoplastic resin contains 0.010% by weight or more and 10.0% by weight or less of a solvent.
[9] The polarizing film according to any one of [1] to [8], wherein the reverse plasticizer is a terphenyl compound.
[10] The polarizing film according to any one of [1] to [9], wherein the pressure-sensitive adhesive layer, the first resin layer, the polarizing element layer, and the second resin layer are provided in this order.
[11] The polarizing film according to [10], wherein a λ / 4 layer is provided between the pressure-sensitive adhesive layer and the first resin layer.
[12] The method for producing a polarizing film according to any one of [1] to [11].
A step of applying a resin solution containing a polymer, a reverse plasticizer and a solvent on a temporary substrate, and
A step of drying the resin liquid to obtain a specific resin layer formed of the specific thermoplastic resin, and a step of obtaining the specific resin layer.
The step of bonding the specific resin layer and the polarizing element layer, and
A method for producing a polarizing film, comprising the step of peeling off the temporary substrate in this order.
[13] The method for producing a polarizing film according to [12], which comprises a step of forming an adhesive layer.
[14] A display device including a display body and the polarizing film according to any one of [1] to [11].
A display device in which the polarizing film includes a first resin layer, a polarizing element layer, and a second resin layer in this order from the display body side.
[15] The display device according to [14], wherein the display body is a liquid crystal panel.
[16] The display device according to [14], wherein the display body is an organic electroluminescence panel.
 本発明によれば、温度変化に対する耐性に優れる偏光フィルム及びその製造方法;並びに、前記の偏光フィルムを備える表示装置;を提供できる。 According to the present invention, it is possible to provide a polarizing film having excellent resistance to temperature changes and a method for producing the same; and a display device including the above-mentioned polarizing film.
図1は、本発明の一実施形態に係る偏光フィルムを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a polarizing film according to an embodiment of the present invention. 図2は、本発明の別の一実施形態に係る偏光フィルムを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a polarizing film according to another embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、「長尺」とは、幅に対して、通常5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有する形状をいう。幅に対する長さの割合の上限は、特に限定されないが、例えば10万倍以下でありうる。 In the following description, "long" refers to a shape having a length of usually 5 times or more with respect to the width, preferably 10 times or more, and specifically a roll shape. A shape that has a length that allows it to be wound up and stored or transported. The upper limit of the ratio of the length to the width is not particularly limited, but may be, for example, 100,000 times or less.
 以下の説明において、接着剤と粘着剤とは、別に断らない限り、剪断貯蔵弾性率によって区別される。具体的には、別に断らない限り、接着剤とは、エネルギー線照射後、あるいは加熱処理後に、23℃における剪断貯蔵弾性率が1MPa~500MPaである材料を示す。また、別に断らない限り、粘着剤とは、23℃における剪断貯蔵弾性率が1MPa未満である材料を示す。 In the following description, the adhesive and the adhesive are distinguished by the shear storage elastic modulus unless otherwise specified. Specifically, unless otherwise specified, the adhesive refers to a material having a shear storage elastic modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment. Unless otherwise specified, the pressure-sensitive adhesive refers to a material having a shear storage elastic modulus of less than 1 MPa at 23 ° C.
 以下の説明において、ある層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、ある層の厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、前記層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記層の面内方向であってnxの方向に垂直な方向の屈折率を表す。nzは、層の厚み方向の屈折率を表す。dは、前記層の厚みを表す。測定波長は、別に断らない限り、550nmである。 In the following description, the in-plane retardation Re of a certain layer is a value represented by Re = (nx-ny) × d unless otherwise specified. Further, the retardation Rth in the thickness direction of a certain layer is a value represented by Rth = [{(nx + ny) / 2} -nz] × d unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and in the direction giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer and perpendicular to the direction of nx. nz represents the refractive index in the thickness direction of the layer. d represents the thickness of the layer. The measurement wavelength is 550 nm unless otherwise specified.
 以下の説明において、(メタ)アクリル樹脂とは、別に断らない限り、アクリル樹脂、メタクリル樹脂及びこれらの組み合わせを包含する。また、(メタ)アクリル酸とは、別に断らない限り、アクリル酸、メタクリル酸及びこれらの組み合わせを包含する。 In the following description, (meth) acrylic resin includes acrylic resin, methacrylic resin, and combinations thereof unless otherwise specified. Further, (meth) acrylic acid includes acrylic acid, methacrylic acid and combinations thereof unless otherwise specified.
 以下の説明において、「板」、「層」及び「フィルム」とは、別に断らない限り、剛直な部材であってもよく、例えば樹脂製のフィルムのように可撓性を有する部材であってもよい。 In the following description, the "plate", "layer" and "film" may be a rigid member, and may be a flexible member such as a resin film, unless otherwise specified. May be good.
[1.偏光フィルムの概要]
 図1は、本発明の一実施形態に係る偏光フィルム100を模式的に示す断面図である。図1に示すように、本発明の一実施形態に係る偏光フィルム100は、第一樹脂層110、偏光子層120及び第二樹脂層130を、厚み方向においてこの順に備える。
[1. Overview of polarizing film]
FIG. 1 is a cross-sectional view schematically showing a polarizing film 100 according to an embodiment of the present invention. As shown in FIG. 1, the polarizing film 100 according to the embodiment of the present invention includes a first resin layer 110, a polarizing element layer 120, and a second resin layer 130 in this order in the thickness direction.
 偏光フィルム100が備える第一樹脂層110及び第二樹脂層130の少なくとも一方は、特定の熱可塑性樹脂で形成されている。以下、この特定の熱可塑性樹脂を「特定熱可塑性樹脂」ということがある。また、この特定熱可塑性樹脂で形成された層を、「特定樹脂層」ということがある。 At least one of the first resin layer 110 and the second resin layer 130 included in the polarizing film 100 is formed of a specific thermoplastic resin. Hereinafter, this specific thermoplastic resin may be referred to as "specific thermoplastic resin". Further, the layer formed of the specific thermoplastic resin may be referred to as a "specific resin layer".
 通常、特定樹脂層は、偏光子層120の保護フィルム層として機能する。そして、このように特定樹脂層を備える偏光フィルム100は、温度変化に対する優れた耐性を有することができる。具体的には、温度変化による偏光子層でのクラック発生を抑制できる。 Normally, the specific resin layer functions as a protective film layer of the polarizing element layer 120. As described above, the polarizing film 100 provided with the specific resin layer can have excellent resistance to temperature changes. Specifically, it is possible to suppress the occurrence of cracks in the polarizing element layer due to temperature changes.
 例えば、第一樹脂層110のみが、特定樹脂層であってもよい。また、例えば、第二樹脂層130のみが、特定樹脂層であってもよい。さらに、第一樹脂層110及び第二樹脂層130の両方が、特定樹脂層であってもよい。中でも、少なくとも第一樹脂層110が特定樹脂層であることが好ましい。偏光フィルムを表示装置に設ける場合、通常、偏光フィルム100は、第一樹脂層110、偏光子層120及び第二樹脂層130が表示体側からこの順に並ぶように設けられる。この際、表示体と偏光子層120との間に位置する第一樹脂層110が特定樹脂層である場合に、偏光子層120におけるクラックの発生を効果的に抑制できる。 For example, only the first resin layer 110 may be a specific resin layer. Further, for example, only the second resin layer 130 may be the specific resin layer. Further, both the first resin layer 110 and the second resin layer 130 may be the specific resin layer. Above all, it is preferable that at least the first resin layer 110 is a specific resin layer. When the polarizing film is provided in the display device, the polarizing film 100 is usually provided so that the first resin layer 110, the polarizing element layer 120, and the second resin layer 130 are arranged in this order from the display body side. At this time, when the first resin layer 110 located between the display body and the polarizing element layer 120 is the specific resin layer, the occurrence of cracks in the polarizing element layer 120 can be effectively suppressed.
 図2は、本発明の別の一実施形態に係る偏光フィルム200を模式的に示す断面図である。図2に示すように、偏光フィルム200は、第一樹脂層110、偏光子層120及び第二樹脂層130に組み合わせて、更に任意の層を備えていてもよい。例えば、偏光フィルム200は、第一樹脂層110と偏光子層120との間に、任意の層として、第一接着層210を備えていてもよい。また、例えば、偏光フィルム200は、偏光子層120と第二樹脂層130との間に、任意の層として、第二接着層220を備えていてもよい。さらに、例えば、偏光フィルム200は、任意の層としての粘着剤層230、第一樹脂層110、偏光子層120及び第二樹脂層130を、この順で備えていてもよい。また、例えば、粘着剤層230と第一樹脂層110との間に、任意の層として、λ/4層240を備えていてもよい。 FIG. 2 is a sectional view schematically showing a polarizing film 200 according to another embodiment of the present invention. As shown in FIG. 2, the polarizing film 200 may further include any layer in combination with the first resin layer 110, the polarizing element layer 120, and the second resin layer 130. For example, the polarizing film 200 may include a first adhesive layer 210 as an arbitrary layer between the first resin layer 110 and the polarizing element layer 120. Further, for example, the polarizing film 200 may include a second adhesive layer 220 as an arbitrary layer between the polarizing element layer 120 and the second resin layer 130. Further, for example, the polarizing film 200 may include the pressure-sensitive adhesive layer 230, the first resin layer 110, the polarizing element layer 120, and the second resin layer 130 as arbitrary layers in this order. Further, for example, a λ / 4 layer 240 may be provided as an arbitrary layer between the pressure-sensitive adhesive layer 230 and the first resin layer 110.
[2.特定樹脂層]
 〔2.1.特定熱可塑性樹脂が含む重合体〕
 特定樹脂層を形成する特定熱可塑性樹脂は、重合体を含む。通常、前記の重合体が熱可塑性を有することにより、特定熱可塑性樹脂も熱可塑性を有しうる。
[2. Specific resin layer]
[2.1. Polymer contained in specific thermoplastic resin]
The specific thermoplastic resin forming the specific resin layer contains a polymer. Usually, since the polymer has thermoplasticity, the specific thermoplastic resin may also have thermoplasticity.
 特定熱可塑性樹脂が含む重合体としては、例えば、ポリエステル、アクリル重合体、脂環式構造を含有する重合体などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、特定樹脂層の水蒸気透過率を低くする観点から、脂環式構造を含有する重合体が好ましい。 Examples of the polymer contained in the specific thermoplastic resin include polyesters, acrylic polymers, and polymers containing an alicyclic structure. One of these polymers may be used alone, or two or more of these polymers may be used in combination at any ratio. Above all, a polymer containing an alicyclic structure is preferable from the viewpoint of lowering the water vapor permeability of the specific resin layer.
 脂環式構造を含有する重合体は、その重合体の繰り返し単位が脂環式構造を含有する。脂環式構造を含有する重合体は、通常、水蒸気透過率が低い。そのため、脂環式構造を含有する重合体を含む特定熱可塑性樹脂で特定樹脂層を形成した場合、偏光子層まで水蒸気が到達することを効果的に抑制できる。 In a polymer containing an alicyclic structure, the repeating unit of the polymer contains an alicyclic structure. Polymers containing an alicyclic structure usually have a low water vapor permeability. Therefore, when the specific resin layer is formed of the specific thermoplastic resin containing the polymer containing the alicyclic structure, it is possible to effectively suppress the water vapor from reaching the substituent layer.
 脂環式構造を含有する重合体は、主鎖に脂環式構造を含有していてもよく、側鎖に脂環式構造を含有していてもよく、主鎖及び側鎖の双方に脂環式構造を含有していてもよい。中でも、機械的強度及び耐熱性の観点からは、少なくとも主鎖に脂環式構造を含有する重合体が好ましい。 The polymer containing an alicyclic structure may contain an alicyclic structure in the main chain or may contain an alicyclic structure in the side chain, and the alicyclic structure may be contained in both the main chain and the side chain. It may contain a cyclic structure. Above all, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure at least in the main chain is preferable.
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械的強度及び耐熱性の観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。 Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure. Among them, a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable, from the viewpoint of mechanical strength and heat resistance.
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。脂環式構造を構成する炭素原子数がこの範囲にある場合に、特定熱可塑性樹脂の機械的強度、耐熱性及び成形性が高度にバランスされる。 The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably 20 or less, per alicyclic structure. Is in the range of 15 or less. When the number of carbon atoms constituting the alicyclic structure is in this range, the mechanical strength, heat resistance and moldability of the specific thermoplastic resin are highly balanced.
 脂環式構造を含有する重合体において、脂環式構造を含有する繰り返し単位の割合は、使用目的に応じて適宜選択しうる。脂環式構造を含有する重合体における脂環式構造を含有する繰り返し単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を含有する重合体における脂環式構造を含有する繰り返し単位の割合がこの範囲にあると、特定熱可塑性樹脂の透明性及び耐熱性が良好となる。 In the polymer containing an alicyclic structure, the ratio of the repeating unit containing the alicyclic structure can be appropriately selected according to the purpose of use. The proportion of the repeating unit containing the alicyclic structure in the polymer containing the alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the ratio of the repeating unit containing the alicyclic structure in the polymer containing the alicyclic structure is in this range, the transparency and heat resistance of the specific thermoplastic resin are improved.
 脂環式構造を含有する重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。これらの中でも、ノルボルネン系重合体及びその水素化物は、透明性と成形性が良好である。 Examples of the polymer containing an alicyclic structure include a norbornene-based polymer, a monocyclic cyclic olefin-based polymer, a cyclic conjugated diene-based polymer, a vinyl alicyclic hydrocarbon polymer, and hydrides thereof. Can be mentioned. Among these, the norbornene-based polymer and its hydride have good transparency and moldability.
 ノルボルネン系重合体及びその水素化物の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素化物;ノルボルネン構造を有する単量体の付加重合体及びその水素化物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体の開環共重合体が挙げられる。さらに、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体の付加共重合体が挙げられる。これらの重合体としては、例えば、特開2002-321302号公報等に開示されている重合体が挙げられる。 Examples of the norbornene-based polymer and its hydride include a ring-opening polymer of a monomer having a norbornene structure and a hydride thereof; an addition polymer of a monomer having a norbornene structure and a hydride thereof. Examples of the ring-opening polymer of the monomer having a norbornene structure include a ring-opening copolymer of one kind of monomer having a norbornene structure and ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith. Further, examples of the addition polymer of the monomer having a norbornene structure are an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure. , And addition copolymers of a monomer having a norbornene structure and any monomer copolymerizable therewith. Examples of these polymers include polymers disclosed in JP-A-2002-321302.
 ノルボルネン系重合体及びその水素化物の具体例としては、日本ゼオン社製「ゼオノア」;JSR社製「アートン」;TOPAS ADVANCED POLYMERS社製「TOPAS」が挙げられる。 Specific examples of the norbornene-based polymer and its hydride include "Zeonoa" manufactured by Zeon Corporation; "Arton" manufactured by JSR Corporation; "TOPAS" manufactured by TOPAS ADVANCED POLYMERS.
 特定熱可塑性樹脂が含む重合体の重量平均分子量Mwは、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量がこのような範囲にあるときに、特定熱可塑性樹脂の機械的強度及び成形性が高度にバランスされる。 The weight average molecular weight Mw of the polymer contained in the specific thermoplastic resin is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably 100,000 or less. It is 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the specific thermoplastic resin are highly balanced.
 特定熱可塑性樹脂が含む重合体の分子量分布(Mw/Mn)は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.7以下である。ここで、Mnは、数平均分子量を表す。分子量分布が前記範囲の下限値以上である場合、重合体の生産性を高め、製造コストを抑制できる。また、分子量分布が前記範囲の上限値以下である場合、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、特定樹脂層の安定性を高めることができる。 The molecular weight distribution (Mw / Mn) of the polymer contained in the specific thermoplastic resin is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, and preferably 3.5 or less. It is more preferably 3.0 or less, and particularly preferably 2.7 or less. Here, Mn represents a number average molecular weight. When the molecular weight distribution is at least the lower limit of the above range, the productivity of the polymer can be increased and the production cost can be suppressed. Further, when the molecular weight distribution is not more than the upper limit of the above range, the amount of the small molecule component becomes small, so that relaxation during high temperature exposure can be suppressed and the stability of the specific resin layer can be enhanced.
 前記の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて測定できる。GPCで用いる溶媒としては、シクロヘキサン、トルエン、テトラヒドロフランが挙げられる。GPCを用いた場合、重量平均分子量は、例えばポリイソプレン換算またはポリスチレン換算の相対分子量として測定しうる。 The weight average molecular weight (Mw) and the number average molecular weight (Mn) can be measured by using gel permeation chromatography (GPC). Examples of the solvent used in GPC include cyclohexane, toluene, and tetrahydrofuran. When GPC is used, the weight average molecular weight can be measured as a relative molecular weight in terms of polyisoprene or polystyrene, for example.
 特定熱可塑性樹脂に含まれる重合体のガラス転移温度は、好ましくは100℃以上、より好ましくは110℃以上、更に好ましくは120℃以上であり、好ましくは170℃以下、より好ましくは160℃以下、更に好ましくは150℃以下である。重合体のガラス転移温度が前記範囲にある場合、高温環境下における偏光フィルムの耐久性を高めることができる。ガラス転移温度は、示差走査熱量計(DSC)を用いて、10℃/分で昇温して測定しうる。 The glass transition temperature of the polymer contained in the specific thermoplastic resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, further preferably 120 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower, More preferably, it is 150 ° C. or lower. When the glass transition temperature of the polymer is in the above range, the durability of the polarizing film in a high temperature environment can be enhanced. The glass transition temperature can be measured by raising the temperature at 10 ° C./min using a differential scanning calorimeter (DSC).
 特定熱可塑性樹脂に含まれる重合体の量は、特定熱可塑性樹脂100重量%に対して、好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは85重量%以上であり、通常99重量%以下、好ましくは96重量%以下、より好ましくは93重量%以下である。特定熱可塑性樹脂に含まれる重合体の量が前記範囲にある場合、温度変化による偏光子層のクラックの発生を効果的に抑制できる。 The amount of the polymer contained in the specific thermoplastic resin is preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 85% by weight or more, and usually, with respect to 100% by weight of the specific thermoplastic resin. It is 99% by weight or less, preferably 96% by weight or less, and more preferably 93% by weight or less. When the amount of the polymer contained in the specific thermoplastic resin is within the above range, the generation of cracks in the polarizing element layer due to temperature changes can be effectively suppressed.
 〔2.2.特定熱可塑性樹脂が含む逆可塑剤〕
 特定樹脂層を形成する特定熱可塑性樹脂は、逆可塑剤を含む。逆可塑剤は、当該逆可塑剤を含む特定熱可塑性樹脂が下記式(1)を満たすことができる化合物を表す。
[2.2. Reverse plasticizer contained in specific thermoplastic resin]
The specific thermoplastic resin forming the specific resin layer contains a back plasticizer. The back plasticizer represents a compound in which the specific thermoplastic resin containing the back plasticizer can satisfy the following formula (1).
  CTE(I)/CTE(II)<1   (1)
(式(1)において、
 CTE(I)は、特定熱可塑性樹脂を250℃に加熱して得られる第一試料樹脂の70℃~85℃における平均線膨張係数を表し、
 CTE(II)は、特定熱可塑性樹脂から逆可塑剤を除いた組成を有する対比樹脂を250℃に加熱して得られる第二試料樹脂の70℃~85℃における平均線膨張係数を表す。)
CTE (I) / CTE (II) <1 (1)
(In equation (1)
CTE (I) represents the average linear expansion coefficient of the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C.
CTE (II) represents the average linear expansion coefficient of the second sample resin obtained by heating a comparative resin having a composition obtained by removing a back plasticizer from a specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. )
 式(1)について詳細に説明する。
 CTE(I)は、第一試料樹脂の70℃~85℃における平均線膨張係数を表す。第一試料樹脂とは、特定熱可塑性樹脂を250℃に加熱して得られる樹脂を表す。通常、この第一試料樹脂は、250℃の加熱によって除去される揮発成分を、特定熱可塑性樹脂から除去して得られる不揮発成分に相当する。よって、第一試料樹脂の平均線膨張係数CTE(I)は、重合体及び逆可塑剤を含む特定熱可塑性樹脂の不揮発成分の平均線膨張係数を表しうる。
Equation (1) will be described in detail.
CTE (I) represents the average coefficient of linear expansion of the first sample resin at 70 ° C to 85 ° C. The first sample resin represents a resin obtained by heating a specific thermoplastic resin to 250 ° C. Usually, this first sample resin corresponds to a non-volatile component obtained by removing a volatile component removed by heating at 250 ° C. from a specific thermoplastic resin. Therefore, the average linear expansion coefficient CTE (I) of the first sample resin can represent the average linear expansion coefficient of the non-volatile component of the specific thermoplastic resin including the polymer and the back plasticizer.
 CTE(II)は、第二試料樹脂の70℃~85℃における平均線膨張係数を表す。第二試料樹脂とは、対比樹脂を250℃に加熱して得られる樹脂を表す。通常、この第二試料樹脂は、250℃の加熱によって除去される揮発成分を、対比樹脂から除去して得られる不揮発成分に相当する。また、対比樹脂とは、特定熱可塑性樹脂から逆可塑剤を除いた組成を有する樹脂を表す。よって、第二試料樹脂の線膨張係数CTE(II)は、逆可塑剤を含まないこと以外は特定熱可塑性樹脂と同じ組成を有する対比樹脂の不揮発成分の線膨張係数を表しうる。 CTE (II) represents the average linear expansion coefficient of the second sample resin at 70 ° C to 85 ° C. The second sample resin represents a resin obtained by heating the contrast resin to 250 ° C. Usually, this second sample resin corresponds to a non-volatile component obtained by removing the volatile component removed by heating at 250 ° C. from the contrast resin. Further, the contrast resin represents a resin having a composition obtained by removing the back plasticizer from the specific thermoplastic resin. Therefore, the linear expansion coefficient CTE (II) of the second sample resin can represent the linear expansion coefficient of the non-volatile component of the contrast resin having the same composition as the specific thermoplastic resin except that it does not contain a back plasticizer.
 したがって、式(1)は、通常、逆可塑剤を含む特定熱可塑性樹脂の不揮発成分が、逆可塑剤を含まないこと以外は特定熱可塑性樹脂と同じ組成を有する対比樹脂の不揮発成分に比べて、70℃~85℃において小さい平均線膨張係数を有することを表す。この式(1)から分かるように、逆可塑剤は、樹脂の線膨張係数を小さくする作用を発揮できる成分でありうる。 Therefore, the formula (1) is usually compared with the non-volatile component of the contrast resin having the same composition as the specific thermoplastic resin except that the non-volatile component of the specific thermoplastic resin containing the back plasticizer does not contain the back plasticizer. , 70 ° C to 85 ° C, indicating that it has a small average linear expansion coefficient. As can be seen from this equation (1), the reverse plasticizer can be a component capable of exerting an action of reducing the coefficient of linear expansion of the resin.
 前記の線膨張係数の比CTE(I)/CTE(II)は、好ましくは0.90以下、より好ましくは0.80以下、特に好ましくは0.70以下である。下限は、特段の制限はないが、通常は0.00以上である。線膨張係数の比CTE(I)/CTE(II)が前記範囲にある場合、温度変化による偏光子層のクラックの発生を効果的に抑制できる。 The ratio CTE (I) / CTE (II) of the linear expansion coefficient is preferably 0.90 or less, more preferably 0.80 or less, and particularly preferably 0.70 or less. The lower limit is not particularly limited, but is usually 0.00 or more. When the ratio CTE (I) / CTE (II) of the linear expansion coefficient is in the above range, the generation of cracks in the polarizing element layer due to the temperature change can be effectively suppressed.
 ある熱可塑性樹脂を250℃に加熱して得られる試料樹脂の70℃~85℃における平均線膨張係数CTEは、下記の方法で測定しうる。
 熱可塑性樹脂を、クリアランス10μm、温度250℃、圧力30MPaの条件で、熱溶融プレス機を用いて熱溶融して成形することにより、試料樹脂で形成された厚み10μmの測定用フィルムを得る。この測定用フィルムを用いて、熱機械分析装置により、20℃~200℃まで5℃/minで昇温して、線膨張係数を測定する。70℃~85℃の平均値を、試料樹脂の平均線膨張係数CTEとして得ることができる。
The average linear expansion coefficient CTE of a sample resin obtained by heating a certain thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. can be measured by the following method.
The thermoplastic resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 10 μm, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measuring film having a thickness of 10 μm formed of the sample resin. Using this measuring film, the coefficient of linear expansion is measured by heating the temperature from 20 ° C. to 200 ° C. at 5 ° C./min with a thermomechanical analyzer. An average value of 70 ° C to 85 ° C can be obtained as the average linear expansion coefficient CTE of the sample resin.
 線膨張係数の比CTE(I)/CTE(II)は、例えば、重合体の種類及び量、逆可塑剤の種類及び量、並びに、必要に応じて用いられる任意の成分の種類及び量によって、調整できる。 The coefficient of linear expansion ratio CTE (I) / CTE (II) depends, for example, on the type and amount of polymer, the type and amount of reverse plasticizer, and the type and amount of any component used as needed. Can be adjusted.
 上記のような逆可塑剤は、一般に、重合体と混合されることによって重合体分子の間の自由体積に入り込み、空間に占める自由体積の分率を減少させうる。よって、重合体分子が動くことができる範囲が狭まるので、当該重合体及び逆可塑剤を含む樹脂の物性が、重合体の物性から変化しうる。物性の変化は、前記の線膨張係数の減少だけでなく、ガラス状態での弾性率の増加としても現れうる。このような逆可塑剤の作用は、重合体分子の間に入り込んで自由体積の分率を増加させうる可塑剤による可塑化とは逆でありうる。そのため、前記の逆可塑剤の作用は「逆可塑化」と呼ばれることがある。 In general, the reverse plasticizer as described above can enter the free volume between the polymer molecules by being mixed with the polymer, and can reduce the fraction of the free volume in the space. Therefore, since the range in which the polymer molecule can move is narrowed, the physical characteristics of the polymer and the resin containing the reverse plasticizer can change from the physical characteristics of the polymer. The change in physical properties can appear not only as the above-mentioned decrease in the coefficient of linear expansion but also as an increase in the elastic modulus in the glass state. The action of such a reverse plasticizer can be the opposite of plasticizing with a plasticizer that can penetrate between the polymer molecules and increase the fraction of free volume. Therefore, the action of the above-mentioned reverse plasticizer is sometimes called "reverse plasticization".
 逆可塑剤としては、例えば、特開2007-326938号公報、国際公開第2018/230122号などに記載されたものが挙げられる。具体的な逆可塑剤は、それらの逆可塑剤の中から、偏光子層のクラックの抑制に効果的なものを選択して用いることが好ましい。中でも、特に好ましい逆可塑剤としては、下記式(X1)又は(X2)のいずれかで表される化合物が挙げられる。 Examples of the reverse plasticizer include those described in JP-A-2007-326938, International Publication No. 2018/230122, and the like. As a specific backplasticizer, it is preferable to select and use one that is effective in suppressing cracks in the polarizing element layer from among those backplasticizers. Among them, particularly preferable reverse plasticizers include compounds represented by either the following formula (X1) or (X2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(X1)において、R11~R13は、それぞれ独立に、置換基を示し;p1及びr1は、それぞれ独立に、0~5の整数を示し;q1は、0~4の整数を示し;nは、0~5の整数を示す。nが2以上の場合、複数のR12、q1、及び、フェニレン基の結合位置は、それぞれ、同じでもよく、異なっていてもよい。 In formula (X1), R 11 to R 13 each independently represent a substituent; p1 and r1 each independently represent an integer of 0 to 5, and q1 represents an integer of 0 to 4. n represents an integer of 0 to 5. When n is 2 or more, the bonding positions of the plurality of R 12 , q1 and phenylene groups may be the same or different, respectively.
 式(X1)において、nが0の場合、式(X1)で表される化合物は、ビフェニル化合物に相当する。nが1の場合、式(X1)で表される化合物は、ターフェニル化合物に相当する。nが1以上の場合、ベンゼン環同士の結合は、オルト、メタ、パラの何れであってもよい。 When n is 0 in the formula (X1), the compound represented by the formula (X1) corresponds to a biphenyl compound. When n is 1, the compound represented by the formula (X1) corresponds to a terphenyl compound. When n is 1 or more, the bond between the benzene rings may be ortho, meta, or para.
 式(X1)において、置換基R11~R13としては、例えば、塩素原子等のハロゲン原子;メチル基等の、炭素原子数1~3のアルキル基;メトキシ基等の、炭素原子数1~3のアルコキシ基;が挙げられる。また、これらの置換基は、更に置換基を有していてもよい。置換基R11~R13が複数ある場合、それらは、同じでもよく、異なっていてもよい。 In the formula (X1), the substituents R 11 to R 13 include, for example, a halogen atom such as a chlorine atom; an alkyl group having 1 to 3 carbon atoms such as a methyl group; and a carbon atom number 1 to 1 such as a methoxy group. 3 alkoxy groups; Further, these substituents may further have a substituent. When there are a plurality of substituents R 11 to R 13 , they may be the same or different.
 式(X1)において、nが2以上の場合、複数のR12は、同じでもよく、異なっていてもよい。また、n個のq1は、同じでもよく、異なっていてもよい。さらに、n個のフェニレン基の結合位置は、オルト、パラ、メタの何れであってもよい。 In the formula (X1), when n is 2 or more, the plurality of R 12s may be the same or different. Further, the n q1s may be the same or different. Further, the bonding position of n phenylene groups may be any of ortho, para, and meta.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(X2)において、R21~R23は、それぞれ独立に、置換基を示し;p2及びr2は、それぞれ独立に、0~5の整数を示し;q2は、0~4の整数を示し;m1及びm2は、それぞれ独立に、1~5の整数を示す。m1が2以上の場合、複数のR22、q2、及び、フェニレン基の結合位置は、それぞれ、同じでもよく、異なっていてもよい。m1及びm2の一方又は両方が2以上の場合、メチレン基及びフェニレン基の結合順は、順不同でありうる。 In formula (X2), R 21 to R 23 each independently represent a substituent; p2 and r2 each independently represent an integer of 0-5; q2 represents an integer of 0-4; m1 and m2 each independently represent an integer of 1 to 5. When m1 is 2 or more, the bonding positions of the plurality of R 22 , q2, and phenylene groups may be the same or different, respectively. When one or both of m1 and m2 are 2 or more, the bonding order of the methylene group and the phenylene group may be random.
 式(X2)において、R21~R23は、式(X1)の置換基R11~R13と同じでありうる。
 式(X2)において、m1が2以上の場合、複数のR22は、同じでもよく、異なっていてもよい。また、m1個のq2は、同じでもよく、異なっていてもよい。さらに、m1個のフェニレン基の結合位置は、オルト、パラ、メタの何れであってもよい。
 式(X2)において、m1で括られる単位と、m2で括られる単位とは、順不同に連結していてもよい。例えば、両単位が交互に連結する形態、m1で括られる単位同士の間に、m2で括られる単位が存在する形態、などでありうる。
In formula (X2), R 21 to R 23 may be the same as substituents R 11 to R 13 in formula (X1).
In the formula (X2), when m1 is 2 or more, the plurality of R 22s may be the same or different. Further, m1 q2 may be the same or different. Further, the bonding position of m1 phenylene group may be any of ortho, para, and meta.
In the formula (X2), the unit enclosed by m1 and the unit enclosed by m2 may be connected in no particular order. For example, there may be a form in which both units are alternately connected, a form in which a unit enclosed in m2 exists between units enclosed in m1, and the like.
 これらの中でも、ビフェニル化合物及びターフェニル化合物が好ましい。ビフェニル化合物は、2つのベンゼン環が結合した化合物であり、ベンゼン環には塩素原子等の置換基を有していてもよい。また、ターフェニル化合物は、3つのベンゼン環が結合した化合物であり、ベンゼン環には塩素原子等の置換基を有していてもよい。それらの中でも、下記式(X3)で表されるビフェニル化合物、式(X4)で表されれるオルトターフェニル化合物、式(X5)で表されるメタターフェニル化合物、及び、式(X6)で表されるパラターフェニル化合物が特に好ましい。 Among these, biphenyl compounds and terphenyl compounds are preferable. The biphenyl compound is a compound in which two benzene rings are bonded, and the benzene ring may have a substituent such as a chlorine atom. Further, the terphenyl compound is a compound in which three benzene rings are bonded, and the benzene ring may have a substituent such as a chlorine atom. Among them, the biphenyl compound represented by the following formula (X3), the orthoterphenyl compound represented by the formula (X4), the metaterphenyl compound represented by the formula (X5), and the formula (X6) are represented. The paraterphenyl compound to be used is particularly preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(X3)において、R31及びR32は、それぞれ独立に、置換基を示し;p3及びq3は、それぞれ独立に、0~5の整数を示す。式(X3)において、置換基R31及び32は、式(X1)の置換基R11~R13と同じでありうる。中でも、置換基R31及び32は、塩素原子が好ましい。また、p3及びq3は、0が好ましい。 In formula (X3), R 31 and R 32 each independently represent a substituent; p3 and q3 each independently represent an integer of 0-5. In the formula (X3), the substituents R 31 and 32 can be the same as the substituents R 11 to R 13 of the formula (X1). Of these, the substituents R 31 and 32 are preferably chlorine atoms. Further, p3 and q3 are preferably 0.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(X4)において、R41~R43は、それぞれ独立に、置換基を示し;p4及びq4は、それぞれ独立に、0~5の整数を示し;r4は、0~4の整数を示す。式(X4)において、置換基R41~R43は、式(X1)の置換基R11~R13と同じでありうる。中でも、置換基R41~R43は、塩素原子が好ましい。また、p4、q4及びr4は、0が好ましい。 In formula (X4), R 41 to R 43 each independently represent a substituent; p4 and q4 each independently represent an integer of 0 to 5, and r4 represents an integer of 0 to 4. In the formula (X4), the substituents R 41 to R 43 may be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 41 to R 43 are preferably chlorine atoms. Further, 0 is preferable for p4, q4 and r4.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(X5)において、R51~R53は、それぞれ独立に、置換基を示し;p5及びr5は、それぞれ独立に、0~5の整数を示し;q5は、0~4の整数を示す。式(X5)において、置換基R51~R53は、式(X1)の置換基R11~R13と同じでありうる。中でも、置換基R51~R53は、塩素原子が好ましい。また、p5、q5及びr5は、0が好ましい。 In formula (X5), R 51 to R 53 each independently represent a substituent; p5 and r5 each independently represent an integer of 0 to 5, and q5 represents an integer of 0 to 4. In the formula (X5), the substituents R 51 to R 53 may be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 51 to R 53 are preferably chlorine atoms. Further, 0 is preferable for p5, q5 and r5.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(X6)において、R61~R63は、それぞれ独立に、置換基を示し;p6及びr6は、それぞれ独立に、0~5の整数を示し;q6は、0~4の整数を示す。式(X6)において、置換基R61~R63は、式(X1)の置換基R11~R13と同じでありうる。中でも、置換基R61~R63は、塩素原子が好ましい。また、p6、q6及びr6は、0が好ましい。 In formula (X6), R 61 to R 63 each independently represent a substituent; p6 and r6 each independently represent an integer of 0 to 5, and q6 represents an integer of 0 to 4. In the formula (X6), the substituents R 61 to R 63 can be the same as the substituents R 11 to R 13 in the formula (X1). Of these, the substituents R 61 to R 63 are preferably chlorine atoms. Further, 0 is preferable for p6, q6 and r6.
 これらの中でも、下記に示す無置換のターフェニルが好ましく、メタターフェニルが特に好ましい。 Among these, the unsubstituted terphenyl shown below is preferable, and meta-terphenyl is particularly preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 逆可塑剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the reverse plasticizer, one type may be used alone, or two or more types may be used in combination at any ratio.
 通常、逆可塑剤は、特定熱可塑性樹脂に含まれる重合体の重量平均分子量よりも小さい分子量を有する。逆可塑剤の具体的な分子量は、通常10,000未満、好ましくは1000以下、より好ましくは800以下、特に好ましくは600以下であり、通常150以上である。 Normally, the back plasticizer has a molecular weight smaller than the weight average molecular weight of the polymer contained in the specific thermoplastic resin. The specific molecular weight of the backplasticizer is usually less than 10,000, preferably 1000 or less, more preferably 800 or less, particularly preferably 600 or less, and usually 150 or more.
 特定熱可塑性樹脂に含まれる逆可塑剤の量は、特定熱可塑性樹脂100重量%に対して、通常0.5重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、通常23重量%以下、好ましくは20重量%以下、より好ましくは17重量%以下である。特定熱可塑性樹脂に含まれる逆可塑剤の量が前記範囲にある場合に、温度変化による偏光子層のクラックを抑制できるので、偏光フィルムは温度変化に対する優れた耐性を有することができる。 The amount of the backplasticizer contained in the specific thermoplastic resin is usually 0.5% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, based on 100% by weight of the specific thermoplastic resin. It is usually 23% by weight or less, preferably 20% by weight or less, and more preferably 17% by weight or less. When the amount of the back plasticizer contained in the specific thermoplastic resin is within the above range, the cracking of the polarizing element layer due to the temperature change can be suppressed, so that the polarizing film can have excellent resistance to the temperature change.
 特定熱可塑性樹脂に含まれる逆可塑剤の量は、特定熱可塑性樹脂に含まれる重合体100重量部に対して、好ましくは0.5重量部以上、より好ましくは1.0重量部以上、特に好ましくは2重量部以上であり、好ましくは30重量部以下、より好ましくは25重量部以下、特に好ましくは20重量部以下である。特定熱可塑性樹脂に含まれる逆可塑剤の量が前記範囲にある場合、温度変化による偏光子層のクラックの発生を効果的に抑制できる。 The amount of the backplasticizer contained in the specific thermoplastic resin is preferably 0.5 parts by weight or more, more preferably 1.0 part by weight or more, particularly, with respect to 100 parts by weight of the polymer contained in the specific thermoplastic resin. It is preferably 2 parts by weight or more, preferably 30 parts by weight or less, more preferably 25 parts by weight or less, and particularly preferably 20 parts by weight or less. When the amount of the back plasticizer contained in the specific thermoplastic resin is within the above range, the occurrence of cracks in the polarizing element layer due to temperature changes can be effectively suppressed.
 〔2.3.特定熱可塑性樹脂が含みうる溶媒〕
 特定熱可塑性樹脂は、重合体及び逆可塑剤に組み合わせて、更に溶媒を含んでいてもよい。この溶媒は、特定樹脂層を形成する工程で用いる樹脂液に含まれていた溶媒のうち、乾燥によっても除去されずに残った残量溶媒でありうる。よって、溶媒の例としては、樹脂液に含まれうる溶媒と同じ例が挙げられる。また、溶媒は、1種類であってもよく、2種類以上であってもよい。
[2.3. Solvents that can be contained in specific thermoplastic resins]
The specific thermoplastic resin may further contain a solvent in combination with the polymer and the back plasticizer. This solvent may be a residual solvent that remains without being removed by drying among the solvents contained in the resin liquid used in the step of forming the specific resin layer. Therefore, as an example of the solvent, the same example as the solvent that can be contained in the resin liquid can be mentioned. Further, the solvent may be one kind or two or more kinds.
 特定熱可塑性樹脂に含まれる溶媒の量は、特定の範囲に収まることが好ましい。具体的には、特定熱可塑性樹脂に含まれる溶媒の量は、特定熱可塑性樹脂100重量%に対して、好ましくは0.010重量%以上、より好ましくは0.10重量%以上、特に好ましくは1.0重量%以上であり、好ましくは10.0重量%以下、より好ましくは8.0重量%以下、特に好ましくは5.0重量%以下である。前記特定の範囲の量の溶媒を含む特定熱可塑性樹脂で形成された特定樹脂層は、転写性に優れる。「転写性」とは、転写による破断を抑制できる性質を表す。また、ある層の「転写」とは、その層を一方の部材から他方の部材へと移動させることをいい、一方の部材から層を剥がした後でその層を他方の部材に貼り合わせること、及び、一方の部材上の層を他方の部材に貼り合わせた後で一方の部材を除くこと、の両方を包含する。特定樹脂層が転写性に優れる場合、特定樹脂層と偏光子層との貼合、仮基材の剥離などの操作による特定樹脂層の破断を抑制できる。したがって、偏光フィルムの製造を容易にできる。 The amount of the solvent contained in the specific thermoplastic resin is preferably within a specific range. Specifically, the amount of the solvent contained in the specific thermoplastic resin is preferably 0.010% by weight or more, more preferably 0.10% by weight or more, and particularly preferably 0.10% by weight or more, based on 100% by weight of the specific thermoplastic resin. It is 1.0% by weight or more, preferably 10.0% by weight or less, more preferably 8.0% by weight or less, and particularly preferably 5.0% by weight or less. The specific resin layer formed of the specific thermoplastic resin containing the solvent in the specific range is excellent in transferability. "Transferability" represents a property that can suppress breakage due to transfer. Further, "transfer" of a certain layer means to move the layer from one member to the other member, and after peeling the layer from one member, the layer is attached to the other member. And, after attaching the layer on one member to the other member, removing one member. When the specific resin layer has excellent transferability, it is possible to suppress breakage of the specific resin layer due to operations such as bonding of the specific resin layer and the polarizing element layer and peeling of the temporary base material. Therefore, the polarizing film can be easily manufactured.
 特定熱可塑性樹脂に含まれる溶媒の量は、下記の測定方法によって測定できる。
 特定熱可塑性樹脂を秤量し、希釈溶媒と混合して、試料溶液を調製する。この試料溶液を、ガスクロマトグラフ質量分析計(島津製作所製「GC-2010Plus」;カラムはAgilent techologies製「DB-5HT」30m×0.25mm、膜厚0.1μm)を用いて、分析する。得られた溶媒の検出ピークに基づいて、その溶媒の量を測定する。
The amount of the solvent contained in the specific thermoplastic resin can be measured by the following measuring method.
The specific thermoplastic resin is weighed and mixed with a diluting solvent to prepare a sample solution. This sample solution is analyzed using a gas chromatograph mass spectrometer (“GC-2010Plus” manufactured by Shimadzu Corporation; the column is “DB-5HT” manufactured by Agilent technologies, 30 m × 0.25 mm, film thickness 0.1 μm). The amount of the solvent is measured based on the detection peak of the obtained solvent.
 特定熱可塑性樹脂に含まれる溶媒の量は、例えば、偏光フィルムの製造方法における樹脂液の乾燥条件によって調整できる。 The amount of the solvent contained in the specific thermoplastic resin can be adjusted, for example, by the drying conditions of the resin liquid in the method for producing a polarizing film.
 特定熱可塑性樹脂に含まれる溶媒の種類が予め判明している場合には、試料溶液を調整するための希釈溶媒として、その特定熱可塑性樹脂に含まれる溶媒とは異なる種類の溶媒を用いる。
 他方、特定熱可塑性樹脂に含まれる溶媒の種類が予め判明していない場合には、一種類の希釈溶媒を用いた測定を行うだけでは、当該希釈溶媒と同じ種類の溶媒の特定熱可塑性樹脂における量を測定できないことがありえる。よって、その場合には、希釈溶媒の種類を変更して複数回の測定を行うことにより、特定熱可塑性樹脂に含まれる溶媒の量を測定できる。
When the type of the solvent contained in the specific thermoplastic resin is known in advance, a solvent of a type different from the solvent contained in the specific thermoplastic resin is used as the diluting solvent for preparing the sample solution.
On the other hand, when the type of the solvent contained in the specific thermoplastic resin is not known in advance, the measurement using only one type of diluting solvent is sufficient for the specific thermoplastic resin of the same type of solvent as the diluted solvent. It may not be possible to measure the amount. Therefore, in that case, the amount of the solvent contained in the specific thermoplastic resin can be measured by changing the type of the diluting solvent and performing the measurement a plurality of times.
 〔2.4.特定熱可塑性樹脂が含みうる任意の成分〕
 特定熱可塑性樹脂は、上述した重合体、逆可塑剤及び溶媒に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、吸湿剤;分散剤;有機金属化合物;酸化防止剤、紫外線吸収剤、光安定剤などの安定剤;滑剤などの樹脂改質剤;染料、顔料などの着色剤;帯電防止剤;などが挙げられる。任意の成分は、1種を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[2.4. Any component that can be contained in the specified thermoplastic resin]
The specific thermoplastic resin may further contain any component in combination with the above-mentioned polymer, backplasticizer and solvent. Optional components include, for example, hygroscopic agents; dispersants; organometallic compounds; stabilizers such as antioxidants, UV absorbers, light stabilizers; resin modifiers such as lubricants; colorants such as dyes and pigments; Antistatic agents; etc. Any component may be used alone or in combination of two or more at any ratio.
 〔2.5.特定熱可塑性樹脂から得られる第一試料樹脂の水蒸気透過率〕
 特定熱可塑性樹脂を250℃に加熱して得られる第一試料樹脂は、通常、特定の範囲の水蒸気透過率を有する。具体的には、第一試料樹脂の厚み100μm当たりの水蒸気透過率は、通常4.0g/(m・day)以下、好ましくは3.0g/(m・day)以下、特に好ましくは1.0g/(m・day)以下である。下限値は、理想的には0g/(m・day)以上であり、0.1g/(m・day)以上であってもよい。
[2.5. Water vapor permeability of the first sample resin obtained from the specified thermoplastic resin]
The first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. usually has a water vapor permeability in a specific range. Specifically, the water vapor transmittance per 100 μm of the thickness of the first sample resin is usually 4.0 g / (m 2 · day) or less, preferably 3.0 g / (m 2 · day) or less, and particularly preferably 1. It is 0.0 g / (m 2 · day) or less. The lower limit is ideally 0 g / (m 2 · day) or more, and may be 0.1 g / (m 2 · day) or more.
 第一試料樹脂は、上述したように、250℃の加熱によって除去される揮発成分を、特定熱可塑性樹脂から除去して得られる不揮発成分に相当する。よって、第一試料樹脂が前記のように小さい水蒸気透過率を有することは、特定熱可塑性樹脂の不揮発成分に含まれる重合体が、小さい水蒸気透過率を達成するのに適した属性を有することを表す。例えば、重合体の分子が、小さい極性を有することを表す。そして、このような属性を有する重合体を前記の逆可塑剤と組み合わせて含む特定熱可塑性樹脂で形成された特定樹脂層が、温度変化による偏光子層のクラックを抑制できるので、偏光フィルムは温度変化に対する優れた耐性を有することができる。 As described above, the first sample resin corresponds to the non-volatile component obtained by removing the volatile component removed by heating at 250 ° C. from the specific thermoplastic resin. Therefore, the fact that the first sample resin has a small water vapor permeability as described above means that the polymer contained in the non-volatile component of the specific thermoplastic resin has an attribute suitable for achieving a small water vapor permeability. show. For example, it represents that the molecule of the polymer has a small polarity. Then, since the specific resin layer formed of the specific thermoplastic resin containing the polymer having such an attribute in combination with the above-mentioned reverse plasticizer can suppress the cracking of the polarizing element layer due to the temperature change, the polarizing film can be heated. Can have excellent resistance to change.
 また、第一試料樹脂は、特定熱可塑性樹脂の不揮発成分に相当するから、その第一試料樹脂は、特定熱可塑性樹脂に長期間にわたって含まれうる成分に相当する。この第一試料樹脂が、前記上限値以下の水蒸気透過率を有する場合、通常、特定熱可塑性樹脂は、長期間にわたって高い水蒸気遮断能力を有することができる。よって、特定樹脂層が、偏光子層への水分の浸入を安定して抑制し、水分による偏光子層の偏光度の低下を効果的に抑制できる。 Further, since the first sample resin corresponds to the non-volatile component of the specific thermoplastic resin, the first sample resin corresponds to the component that can be contained in the specific thermoplastic resin for a long period of time. When the first sample resin has a water vapor permeability of not more than the upper limit value, the specific thermoplastic resin can usually have a high water vapor blocking ability for a long period of time. Therefore, the specific resin layer can stably suppress the infiltration of water into the polarizing element layer, and can effectively suppress the decrease in the degree of polarization of the polarizing element layer due to the water content.
 ある熱可塑性樹脂を250℃に加熱して得られる試料樹脂の厚み100μm当たりの水蒸気透過率は、下記の方法で測定できる。
 熱可塑性樹脂を、クリアランス100μm、温度250℃、圧力30MPaの条件で、熱溶融プレス機を用いて熱溶融して成形することにより、試料樹脂で形成された厚み100μmの測定用フィルムを得る。この測定用フィルムを用いて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)により、JIS K 7129 B法に従って、温度40℃、湿度90%RHの条件にて、試料樹脂の厚み100μm当たりの水蒸気透過率を測定しうる。
The water vapor transmittance per 100 μm thickness of the sample resin obtained by heating a certain thermoplastic resin to 250 ° C. can be measured by the following method.
The thermoplastic resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 100 μm, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measuring film having a thickness of 100 μm formed of the sample resin. Using this measuring film, the thickness of the sample resin is 100 μm under the conditions of temperature 40 ° C. and humidity 90% RH according to the JIS K 7129 B method by a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON). The water vapor transmission rate per hit can be measured.
 第一試料樹脂の水蒸気透過率は、例えば、特定熱可塑性樹脂に含まれる重合体の種類及び量によって、調整できる。 The water vapor permeability of the first sample resin can be adjusted, for example, by the type and amount of the polymer contained in the specific thermoplastic resin.
 〔2.6.特定樹脂層の物性及び寸法〕
 特定樹脂層に含まれる重合体の分子は、配向の程度が小さいことが好ましく、配向していないことがより好ましい。特定熱可塑性樹脂組成物が配向の程度が小さい重合体と逆可塑剤とを組み合わせて含む場合に、その特定熱可塑性樹脂組成物で形成された特定樹脂層は、温度変化による偏光子層のクラックの発生を効果的に抑制できる。
[2.6. Physical properties and dimensions of specific resin layer]
The polymer molecules contained in the specific resin layer preferably have a small degree of orientation, and more preferably not oriented. When the specific thermoplastic resin composition contains a polymer having a small degree of orientation in combination with a back plasticizer, the specific resin layer formed of the specific thermoplastic resin composition cracks in the polarizing element layer due to a temperature change. Can be effectively suppressed.
 特定樹脂層に含まれる重合体の分子の配向の程度は、特定樹脂層の光学異方性によって表すことができる。通常、重合体の分子の配向の程度が小さい場合、特定樹脂層の光学異方性は小さい。よって、特定樹脂層は、面内方向及び厚み方向の両方において、光学異方性が小さいことが好ましく、光学等方性を有することが更に好ましい。 The degree of orientation of the polymer molecules contained in the specific resin layer can be expressed by the optical anisotropy of the specific resin layer. Usually, when the degree of orientation of the molecules of the polymer is small, the optical anisotropy of the specific resin layer is small. Therefore, the specific resin layer preferably has low optical anisotropy in both the in-plane direction and the thickness direction, and more preferably has optical anisotropy.
 したがって、特定樹脂層の面内レターデーションは、小さいことが好ましい。具体的には、特定樹脂層の測定波長550nmにおける面内レターデーションは、好ましくは5nm以下、より好ましくは4nm以下、更に好ましくは3nm以下、特に好ましくは2nm以下である。
 また、特定樹脂層の厚み方向のレターデーションは、ゼロ又はゼロに近いことが好ましい。具体的には、特定樹脂層の測定波長550nmにおける厚み方向のレターデーションは、好ましくは-5nm以上、より好ましくは-4nm以上、更に好ましくは-3nm以上、特に好ましくは-2nm以上であり、好ましくは5nm以下、より好ましくは4nnm以下、更に好ましくは3nm以下、特に好ましくは2nm以下である。
Therefore, the in-plane retardation of the specific resin layer is preferably small. Specifically, the in-plane retardation of the specific resin layer at a measurement wavelength of 550 nm is preferably 5 nm or less, more preferably 4 nm or less, still more preferably 3 nm or less, and particularly preferably 2 nm or less.
Further, the retardation of the specific resin layer in the thickness direction is preferably zero or close to zero. Specifically, the retardation in the thickness direction of the specific resin layer at the measurement wavelength of 550 nm is preferably -5 nm or more, more preferably -4 nm or more, still more preferably -3 nm or more, and particularly preferably -2 nm or more. Is 5 nm or less, more preferably 4 nm or less, still more preferably 3 nm or less, and particularly preferably 2 nm or less.
 特定樹脂層は、光学フィルムとしての偏光板保護フィルム層として機能する観点から、透明であることが好ましい。よって、特定樹脂層の全光線透過率は、高いことが好ましい。特定樹脂層の具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。 The specific resin layer is preferably transparent from the viewpoint of functioning as a polarizing plate protective film layer as an optical film. Therefore, it is preferable that the total light transmittance of the specific resin layer is high. The specific total light transmittance of the specific resin layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
 特定樹脂層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ヘイズは、JIS K7361-1997に準拠して、ヘイズメーターを用いて測定できる。 The haze of the specific resin layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
 特定樹脂層は、薄いことが好ましい。特定樹脂層の具体的な厚みは、通常0μmより大きく、好ましくは1μm以上、より好ましくは1.5μm以上であり、好ましくは9μm以下、より好ましくは6μm以下、特に好ましくは5μm以下である。特定樹脂層は、このように薄くても、偏光子層を効果的に保護できるので、薄い偏光フィルムを得ることができる。 The specific resin layer is preferably thin. The specific thickness of the specific resin layer is usually larger than 0 μm, preferably 1 μm or more, more preferably 1.5 μm or more, preferably 9 μm or less, more preferably 6 μm or less, and particularly preferably 5 μm or less. Even if the specific resin layer is thin as described above, the polarizing element layer can be effectively protected, so that a thin polarizing film can be obtained.
[3.偏光子層]
 偏光子層としては、振動方向が直角に交わる二つの直線偏光のうち、一方を透過させ、他方を吸収又は反射できるフィルムを用いることができる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を表す。このようなフィルムは、通常、偏光透過軸を有し、当該偏光透過軸と平行な振動方向を有する直線偏光を透過でき、偏光透過軸と垂直な振動方向を有する直線偏光を吸収又は反射できる。
[3. Polarizer layer]
As the polarizing layer, a film capable of transmitting one of two linearly polarized light whose vibration directions intersect at right angles and absorbing or reflecting the other can be used. Here, the vibration direction of linearly polarized light represents the vibration direction of an electric field of linearly polarized light. Such a film usually has a polarization transmission axis, can transmit linearly polarized light having a vibration direction parallel to the polarization transmission axis, and can absorb or reflect linearly polarized light having a vibration direction perpendicular to the polarization transmission axis.
 偏光子層は、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等のビニルアルコール系重合体を含む、ポリビニルアルコール樹脂のフィルムに、ヨウ素等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したものが挙げられる。偏光子層は、ポリビニルアルコール樹脂を含むことが好ましい。 The polarizing layer is formed on a film of a polyvinyl alcohol resin containing a vinyl alcohol-based polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, which is subjected to dyeing treatment, stretching treatment, cross-linking treatment or the like with a dichroic substance such as iodine. Examples thereof include those subjected to appropriate processing in an appropriate order and method. The polarizing layer preferably contains a polyvinyl alcohol resin.
 偏光子層の厚みは、好ましくは1μmより大きく、より好ましくは2μm以上、特に好ましくは3μm以上であり、好ましくは19μm以下、より好ましくは18μm以下である。偏光子層の厚みが前記範囲の下限値より大きい場合、偏光フィルムの光学性能を十分に高めることができる。また、偏光子層の厚みが前記範囲の上限値以下である場合、表示体の反りを軽減し偏光フィルムの屈曲復元性を効果的に高めることができる。 The thickness of the polarizing element layer is preferably larger than 1 μm, more preferably 2 μm or more, particularly preferably 3 μm or more, preferably 19 μm or less, and more preferably 18 μm or less. When the thickness of the polarizing element layer is larger than the lower limit of the above range, the optical performance of the polarizing film can be sufficiently enhanced. Further, when the thickness of the polarizing element layer is not more than the upper limit of the above range, the warp of the display body can be reduced and the bending stability of the polarizing film can be effectively improved.
[4.第一樹脂層]
 第一樹脂層は、熱可塑性樹脂によって形成された層であり、偏光子層を保護する保護層として機能できる。偏光フィルムにおいては、この第一樹脂層が上述した特定樹脂層であることが好ましい。
[4. First resin layer]
The first resin layer is a layer formed of a thermoplastic resin and can function as a protective layer for protecting the polarizing element layer. In the polarizing film, it is preferable that the first resin layer is the above-mentioned specific resin layer.
 偏光フィルムが備える第二樹脂層が上述した特定樹脂層である場合、第一樹脂層は、特定樹脂層でなくてもよい。この場合、第一樹脂層は、特定熱可塑性樹脂以外の透明な熱可塑性樹脂で形成されうる。そのような特定熱可塑性樹脂以外の熱可塑性樹脂としては、例えば、逆可塑剤を含まないこと以外は特定熱可塑性樹脂と同じ組成を有する樹脂が挙げられる。 When the second resin layer included in the polarizing film is the above-mentioned specific resin layer, the first resin layer does not have to be the specific resin layer. In this case, the first resin layer may be formed of a transparent thermoplastic resin other than the specific thermoplastic resin. Examples of the thermoplastic resin other than such a specific thermoplastic resin include a resin having the same composition as the specific thermoplastic resin except that it does not contain a back plasticizer.
 第一樹脂層が特定樹脂層でない場合、その第一樹脂層の厚みに制限は無い。例えば、第一樹脂層の厚みは、好ましくは1μm以上、より好ましくは1.5μm以上であり、好ましくは20μm以下、より好ましくは9μm以下、特に好ましくは5μm以下でありうる。 If the first resin layer is not a specific resin layer, there is no limit to the thickness of the first resin layer. For example, the thickness of the first resin layer may be preferably 1 μm or more, more preferably 1.5 μm or more, preferably 20 μm or less, more preferably 9 μm or less, and particularly preferably 5 μm or less.
[5.第二樹脂層]
 第二樹脂層は、熱可塑性樹脂によって形成された層であり、偏光子層を保護する保護層として機能できる。偏光フィルムにおいては、この第二樹脂層が上述した特定樹脂層であることが好ましい。
[5. Second resin layer]
The second resin layer is a layer formed of a thermoplastic resin and can function as a protective layer for protecting the polarizing element layer. In the polarizing film, it is preferable that the second resin layer is the above-mentioned specific resin layer.
 偏光フィルムが備える第一樹脂層が上述した特定樹脂層である場合、第二樹脂層は、特定樹脂層でなくてもよい。この場合、第二樹脂層は、特定熱可塑性樹脂以外の透明な熱可塑性樹脂で形成されうる。そのような特定熱可塑性樹脂以外の熱可塑性樹脂としては、透明性、機械的強度、熱安定性及び水分遮蔽性に優れる例として、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、(メタ)アクリル樹脂等が挙げられる。中でも、硬度が高く、水蒸気透過率が低い第二樹脂層が得られることから、(メタ)アクリル樹脂が好ましい。 When the first resin layer included in the polarizing film is the above-mentioned specific resin layer, the second resin layer does not have to be the specific resin layer. In this case, the second resin layer may be formed of a transparent thermoplastic resin other than the specific thermoplastic resin. Examples of thermoplastic resins other than such specific thermoplastic resins include acetate resins such as triacetyl cellulose, polyester resins, and polyether sulfone resins, which are excellent in transparency, mechanical strength, thermal stability, and moisture shielding properties. Examples thereof include polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, cyclic olefin resin, (meth) acrylic resin and the like. Of these, a (meth) acrylic resin is preferable because a second resin layer having high hardness and low water vapor transmittance can be obtained.
 第二樹脂層が特定樹脂層でない場合、その第二樹脂層の厚みに制限は無い。例えば、第二樹脂層の厚みは、20μm~100μmでありうる。 If the second resin layer is not a specific resin layer, there is no limit to the thickness of the second resin layer. For example, the thickness of the second resin layer can be 20 μm to 100 μm.
[6.第一接着層]
 偏光フィルムは、第一樹脂層と偏光子層との間に、任意の層として、第一接着層を備えていてもよい。第一接着層を用いることにより、第一樹脂層と偏光子層とを強力に接着できる。
[6. First adhesive layer]
The polarizing film may be provided with a first adhesive layer as an arbitrary layer between the first resin layer and the polarizing element layer. By using the first adhesive layer, the first resin layer and the polarizing element layer can be strongly adhered to each other.
 第一接着層は、第一樹脂層と偏光子層とを接着する第一接着剤で形成されている。第一接着剤としては、例えば、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤、ポリエステル系接着剤、ポリビニルアルコール系接着剤、ポリオレフィン系接着剤、変性ポリオレフィン系接着剤、ポリビニルアルキルエーテル系接着剤、ゴム系接着剤、塩化ビニル-酢酸ビニル系接着剤、SEBS(スチレン-エチレン-ブチレン-スチレン共重合体)系接着剤、エチレン-スチレン共重合体などのエチレン系接着剤、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体などのアクリル酸エステル系接着剤などが挙げられる。また、第一接着剤としては、当該第一接着剤の硬化を短時間で行うことができるので、紫外線硬化型の接着剤が好ましい。 The first adhesive layer is formed of a first adhesive that adheres the first resin layer and the polarizing element layer. Examples of the first adhesive include acrylic adhesives, epoxy adhesives, urethane adhesives, polyester adhesives, polyvinyl alcohol adhesives, polyolefin adhesives, modified polyolefin adhesives, and polyvinyl alkyl ether adhesives. Adhesives, rubber adhesives, vinyl chloride-vinyl acetate adhesives, SEBS (styrene-ethylene-butylene-styrene copolymer) adhesives, ethylene-styrene copolymers and other ethylene adhesives, ethylene- ( Examples thereof include acrylic acid ester-based adhesives such as a methyl acrylate copolymer and an ethylene-ethyl ethyl acrylate copolymer. Further, as the first adhesive, an ultraviolet curable type adhesive is preferable because the first adhesive can be cured in a short time.
 第一接着剤層の厚みは、通常0μmより大きく、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。第一接着剤層の厚みが上記範囲にある場合、良好な外観を得ることができ、また、第一樹脂層と偏光子層とを強く接着することができる。 The thickness of the first adhesive layer is usually larger than 0 μm, preferably 0.1 μm or more, more preferably 1 μm or more, preferably 5 μm or less, and more preferably 3 μm or less. When the thickness of the first adhesive layer is within the above range, a good appearance can be obtained, and the first resin layer and the polarizing element layer can be strongly adhered to each other.
[7.第二接着層]
 偏光フィルムは、偏光子層と第二樹脂層との間に、任意の層として、第二接着層を備えていてもよい。第二接着層を用いることにより、偏光子層と第二樹脂層とを強力に接着できる。
[7. Second adhesive layer]
The polarizing film may be provided with a second adhesive layer as an arbitrary layer between the polarizing element layer and the second resin layer. By using the second adhesive layer, the polarizing element layer and the second resin layer can be strongly adhered to each other.
 第二接着剤層は、偏光子層と第二樹脂層とを接着する第二接着剤で形成されている。第二接着剤としては、第一接着剤として説明した範囲の接着剤を用いうる。第二接着剤としては、当該第二接着剤の硬化を短時間で行うことができるので、紫外線硬化型の接着剤が好ましい。 The second adhesive layer is formed of a second adhesive that adheres the polarizing element layer and the second resin layer. As the second adhesive, an adhesive in the range described as the first adhesive can be used. As the second adhesive, an ultraviolet curable type adhesive is preferable because the second adhesive can be cured in a short time.
 第二接着層の厚みの範囲は、第一接着層の厚みの範囲と同じでありうる。第一接着層の厚みと第二接着層の厚みとは、一致していてもよく、異なっていてもよい。 The range of the thickness of the second adhesive layer can be the same as the range of the thickness of the first adhesive layer. The thickness of the first adhesive layer and the thickness of the second adhesive layer may be the same or different.
[8.粘着剤層]
 偏光フィルムは、任意の層として、粘着剤層を備えうる。通常、偏光フィルムは、粘着剤層を、当該複層フィルムの最外層として備える。中でも、偏光フィルムは、粘着剤層を、第一樹脂層側の最外層として備えることが好ましい。よって、偏光フィルムは、好ましくは、粘着剤層、第一樹脂層、偏光子層及び第二樹脂層を、厚み方向においてこの順で備える。
[8. Adhesive layer]
The polarizing film may include an adhesive layer as any layer. Usually, the polarizing film includes an adhesive layer as the outermost layer of the multilayer film. Above all, it is preferable that the polarizing film is provided with the pressure-sensitive adhesive layer as the outermost layer on the first resin layer side. Therefore, the polarizing film preferably includes an adhesive layer, a first resin layer, a polarizing element layer, and a second resin layer in this order in the thickness direction.
 粘着剤層は、粘着剤によって形成されているので、粘着力を発揮できる。この粘着剤層の粘着力によって、偏光フィルムは、他の部材に貼り合わせられることができる。例えば、液晶パネル及び有機エレクトロルミネッセンスパネル(以下、適宜「有機ELパネル」ということがある。)等の表示体を備える表示装置に偏光フィルムを組み込む場合には、粘着剤層と表示体とを貼り合わせることにより、表示体上に偏光フィルムを設けることができる。 Since the adhesive layer is formed by the adhesive, it can exert adhesive strength. Due to the adhesive force of this pressure-sensitive adhesive layer, the polarizing film can be bonded to other members. For example, when a polarizing film is incorporated into a display device including a display body such as a liquid crystal panel and an organic electroluminescence panel (hereinafter, may be appropriately referred to as “organic EL panel”), the pressure-sensitive adhesive layer and the display body are attached. By matching, a polarizing film can be provided on the display body.
 粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、ポリビニルエーテル系粘着剤、ウレタン系粘着剤、シリコーン系、ポリオレフィン系粘着剤等の粘着剤が挙げられる。中でも、耐熱性及び生産性の観点からアクリル系粘着剤及びポリオレフィン系粘着剤が好ましく、アクリル系粘着剤が特に好ましい。また、粘着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the adhesive include rubber adhesives, acrylic adhesives, polyvinyl ether adhesives, urethane adhesives, silicone adhesives, and polyolefin adhesives. Among them, an acrylic pressure-sensitive adhesive and a polyolefin-based pressure-sensitive adhesive are preferable from the viewpoint of heat resistance and productivity, and an acrylic-based pressure-sensitive adhesive is particularly preferable. In addition, one type of pressure-sensitive adhesive may be used alone, or two or more types may be used in combination at any ratio.
 粘着剤層の厚みは、好ましくは2.0μm以上、より好ましくは5.0μm以上であり、好ましくは30.0μm以下、より好ましくは25.0μm以下、特に好ましくは20.0μm以下である。粘着剤層の厚みが前記範囲の下限値以上である場合、粘着剤層の粘着力を高めることができ、貼り合わせ時の気泡の巻き込みを抑制できる。また、粘着剤層の厚みが前記範囲の上限値以下である場合、偏光フィルムの膨張、収縮挙動を抑え込むことができ、ベゼルフリー化が可能となる。 The thickness of the pressure-sensitive adhesive layer is preferably 2.0 μm or more, more preferably 5.0 μm or more, preferably 30.0 μm or less, more preferably 25.0 μm or less, and particularly preferably 20.0 μm or less. When the thickness of the pressure-sensitive adhesive layer is at least the lower limit of the above range, the adhesive strength of the pressure-sensitive adhesive layer can be increased, and the entrainment of air bubbles during bonding can be suppressed. Further, when the thickness of the pressure-sensitive adhesive layer is not more than the upper limit of the above range, the expansion and contraction behavior of the polarizing film can be suppressed, and the bezel-free can be achieved.
[9.λ/4層]
 偏光フィルムは、任意の層として、λ/4層を備えうる。通常、λ/4層は、粘着剤層と第一樹脂層との間に設けられる。
[9. λ / 4 layer]
The polarizing film may include a λ / 4 layer as any layer. Normally, the λ / 4 layer is provided between the pressure-sensitive adhesive layer and the first resin layer.
 λ/4層は、波長550nmにおいて特定の範囲の面内レターデーションを有する。具体的には、λ/4層の波長550nmにおける面内レターデーションは、好ましくは110nm以上、より好ましくは120nm以上、特に好ましくは125nm以上であり、好ましくは165nm以下、より好ましくは155nm以下、特に好ましくは150nm以下である。 The λ / 4 layer has an in-plane retardation in a specific range at a wavelength of 550 nm. Specifically, the in-plane retardation of the λ / 4 layer at a wavelength of 550 nm is preferably 110 nm or more, more preferably 120 nm or more, particularly preferably 125 nm or more, preferably 165 nm or less, more preferably 155 nm or less, particularly. It is preferably 150 nm or less.
 λ/4層の遅相軸は、偏光子層の偏光透過軸に対して、好ましくは40°~50°、より好ましくは42°~48°、特に好ましくは44°~46°の角度をなす。この場合、偏光子層とλ/4層との組み合わせにより、円偏光板を得ることができる。よって、λ/4層を備える偏光フィルムは、表示装置に設けられた場合に、反射抑制フィルムとして機能できる。 The slow axis of the λ / 4 layer is preferably at an angle of 40 ° to 50 °, more preferably 42 ° to 48 °, and particularly preferably 44 ° to 46 ° with respect to the polarization transmission axis of the polarizing element layer. .. In this case, a circularly polarizing plate can be obtained by combining the polarizing element layer and the λ / 4 layer. Therefore, the polarizing film provided with the λ / 4 layer can function as a reflection suppression film when it is provided in the display device.
 λ/4層は、逆波長分散特性を有することが好ましい。逆波長分散特性とは、測定波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)がRe(450)<Re(550)を満たす性質をいう。逆波長分散特性を有するλ/4層は、広い波長範囲においてその光学的機能を発揮できる。 The λ / 4 layer preferably has a reverse wavelength dispersion characteristic. The reverse wavelength dispersion characteristic means the property that the in-plane retardations Re (450) and Re (550) at the measurement wavelengths of 450 nm and 550 nm satisfy Re (450) <Re (550). The λ / 4 layer having the reverse wavelength dispersion characteristic can exhibit its optical function in a wide wavelength range.
 λ/4層は、例えば、適切な樹脂で形成された延伸前フィルムを延伸した延伸フィルムとして製造してもよい。また、λ/4層は、例えば、適切な液晶性化合物を含む液晶組成物の層を形成し、液晶性化合物の分子を配向させた後で、その液晶組成物を硬化させた液晶硬化層として製造してもよい。中でも、薄くフレキシブルな偏光フィルムを得る観点では、λ/4層は液晶硬化層であることが好ましい。このような液晶硬化層としてのλ/4層は、例えば、国際公開第2016/121602号に記載の方法によって製造できる。 The λ / 4 layer may be produced as a stretched film obtained by stretching a pre-stretched film formed of an appropriate resin, for example. Further, the λ / 4 layer is, for example, a liquid crystal curing layer obtained by forming a layer of a liquid crystal composition containing an appropriate liquid crystal compound, orienting the molecules of the liquid crystal compound, and then curing the liquid crystal composition. It may be manufactured. Above all, from the viewpoint of obtaining a thin and flexible polarizing film, the λ / 4 layer is preferably a liquid crystal curing layer. The λ / 4 layer as such a liquid crystal curing layer can be manufactured, for example, by the method described in International Publication No. 2016/121602.
[10.その他の任意の層]
 偏光フィルムが備えうる任意の層の更に別の例としては、クリアハードコート層、アンチグレアハードコート層、反射防止層、帯電防止層、防汚層などが挙げられる。上述した任意の層は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。また、任意の層の数は、1層でもよく、2層以上でもよい。さらに、任意の層の位置は、本発明の効果を著しく損なわない限り、制限されない。
[10. Any other layer]
Yet another example of any layer that the polarizing film may include is a clear hard coat layer, an anti-glare hard coat layer, an antireflection layer, an antistatic layer, an antifouling layer and the like. As the above-mentioned arbitrary layer, only one type may be used, or two or more types may be used in combination. Further, the number of arbitrary layers may be one layer or two or more layers. Moreover, the position of any layer is not limited as long as it does not significantly impair the effectiveness of the invention.
[11.偏光フィルムの特性]
 上述した偏光フィルムは、温度変化に対する優れた耐性を有することができる。具体的には、温度変化による偏光子層でのクラック発生を抑制できる。
[11. Characteristics of polarizing film]
The above-mentioned polarizing film can have excellent resistance to temperature changes. Specifically, it is possible to suppress the occurrence of cracks in the polarizing element layer due to temperature changes.
 例えば、上述した偏光フィルムは、下記の偏光子クラック試験を行った場合に、偏光子層に発生するクラックの数を、少なくできる。例えば、クラックの数を、好ましくは600以下、より好ましくは500以下、更に好ましくは400以下、特に好ましくは300以下にできる。 For example, in the above-mentioned polarizing film, the number of cracks generated in the polarizing element layer can be reduced when the following polarizing element crack test is performed. For example, the number of cracks can be preferably 600 or less, more preferably 500 or less, still more preferably 400 or less, and particularly preferably 300 or less.
 また、例えば、上述した偏光フィルムは、下記の偏光子クラック試験を行った場合に、偏光子層に発生するクラックの平均長さを、短くできる。例えば、クラックの平均長さを、好ましくは80μm以下、より好ましくは70μm以下、特に好ましくは60μm以下にできる。 Further, for example, in the above-mentioned polarizing film, the average length of cracks generated in the polarizing element layer can be shortened when the following polarizing element crack test is performed. For example, the average length of cracks can be preferably 80 μm or less, more preferably 70 μm or less, and particularly preferably 60 μm or less.
 (偏光子クラック試験)
 偏光フィルムを、10cm角にカットして、正方形の偏光フィルム片を得る。前記のカットは、偏光フィルムに含まれる偏光子層の吸収軸が、得られる偏光フィルム片の辺と平行又は垂直となるように行う。この偏光フィルム片を、ガラス基板に圧着する。偏光フィルム片が粘着剤層を備えない場合、ガラス基板と偏光フィルム片とは、粘着剤を介して圧着する。その後、50℃、5気圧、10分のオートクレーブ処置を施して、評価用サンプルを得る。この評価用サンプルに、-40℃で30分の冷却と70℃で30分の加熱とからなるヒートサイクルを20回行う。ヒートサイクルを行った後で、評価用サンプルの端部を光学顕微鏡で観察して、クラックの本数とその長さを計測する。
(Polarizer crack test)
The polarizing film is cut into 10 cm squares to obtain a square polarizing film piece. The cut is performed so that the absorption axis of the polarizing element layer contained in the polarizing film is parallel or perpendicular to the side of the obtained polarizing film piece. This polarizing film piece is pressure-bonded to a glass substrate. When the polarizing film piece does not have the pressure-sensitive adhesive layer, the glass substrate and the polarizing film piece are pressure-bonded via the pressure-sensitive adhesive. Then, autoclave treatment is performed at 50 ° C., 5 atm, and 10 minutes to obtain an evaluation sample. This evaluation sample is subjected to 20 heat cycles consisting of cooling at −40 ° C. for 30 minutes and heating at 70 ° C. for 30 minutes. After performing the heat cycle, the end of the evaluation sample is observed with an optical microscope to measure the number of cracks and their length.
 特定樹脂層が薄くても偏光子層を効果的に保護できるので、通常は、偏光フィルム全体を薄くすることが可能である。偏光フィルムの厚みは、好ましくは40μm以上、より好ましくは50μm以上、特に好ましくは60μm以上であり、好ましくは110μm以下、より好ましくは90μm以下、特に好ましくは70μm以下である。 Since the polarizing element layer can be effectively protected even if the specific resin layer is thin, it is usually possible to make the entire polarizing film thin. The thickness of the polarizing film is preferably 40 μm or more, more preferably 50 μm or more, particularly preferably 60 μm or more, preferably 110 μm or less, more preferably 90 μm or less, and particularly preferably 70 μm or less.
[12.偏光フィルムの製造方法]
 上述した偏光フィルムが得られる限り、偏光フィルムの製造方法は限定されない。例えば、特定熱可塑性樹脂を溶融押出法で成型して特定樹脂層を得る工程と、この特定樹脂層及び偏光子層を貼合する工程と、を含む製造方法により、偏光フィルムを製造してもよい。
[12. Method for manufacturing polarizing film]
As long as the above-mentioned polarizing film can be obtained, the method for producing the polarizing film is not limited. For example, even if a polarizing film is manufactured by a manufacturing method including a step of molding a specific thermoplastic resin by a melt extrusion method to obtain a specific resin layer and a step of laminating the specific resin layer and a polarizing element layer. good.
 また、特定の範囲の量の溶媒を含む特定熱可塑性樹脂で形成された特定樹脂層を備える複層フィルムを容易に製造する観点では、偏光フィルムは、仮基材上に、重合体、逆可塑剤及び溶媒を含む樹脂液を塗工する工程と;樹脂液を乾燥させて、特定熱可塑性樹脂で形成された特定樹脂層を得る工程と;特定樹脂層と偏光子層とを貼合する工程と;仮基材を剥離する工程と;をこの順で含む製造方法により、製造することが好ましい。この製造方法によれば、長尺の偏光子層及び長尺の仮基材を用いて、長尺の偏光フィルムを連続的に製造できる。以下、この製造方法について詳細に説明する。 Further, from the viewpoint of easily producing a multi-layer film including a specific resin layer formed of a specific thermoplastic resin containing a specific range of solvent, the polarizing film is a polymer or reverse plastic on a temporary substrate. A step of applying a resin solution containing an agent and a solvent; a step of drying the resin solution to obtain a specific resin layer formed of a specific thermoplastic resin; and a step of bonding a specific resin layer and a polarizing element layer. And; It is preferable to manufacture by a manufacturing method including the step of peeling off the temporary base material and; in this order. According to this manufacturing method, a long polarizing film can be continuously manufactured by using a long polarizing layer and a long temporary base material. Hereinafter, this manufacturing method will be described in detail.
 〔12.1.仮基材上に樹脂液を塗工する工程〕
 前記の偏光フィルムの製造方法では、仮基材上に樹脂液を塗工して、樹脂液の層を形成する工程を行う。樹脂液は、特定樹脂層を形成するための液体材料である。よって、樹脂液は、通常、特定熱可塑性樹脂に含まれうる各成分を含む。具体的には、樹脂液は、重合体と、逆可塑剤と、溶媒と、必要に応じて特定熱可塑性樹脂が含む任意の成分とを含みうる。重合体、逆可塑剤及び任意の成分等の不揮発成分の一部又は全部は、溶媒に溶解していてもよい。また、前記不揮発成分の一部又は全部は、溶媒に分散していてもよい。
[12.1. Process of applying resin liquid on temporary base material]
In the above-mentioned method for manufacturing a polarizing film, a step of applying a resin liquid on a temporary base material to form a layer of the resin liquid is performed. The resin liquid is a liquid material for forming a specific resin layer. Therefore, the resin liquid usually contains each component that can be contained in the specific thermoplastic resin. Specifically, the resin liquid may contain a polymer, a back plasticizer, a solvent, and optionally any component contained in the specific thermoplastic resin. Some or all of the non-volatile components such as polymers, reverse plasticizers and optional components may be dissolved in the solvent. Further, a part or all of the non-volatile component may be dispersed in a solvent.
 溶媒としては、有機溶媒が好ましく、特定熱可塑性樹脂に含まれうる重合体及び逆可塑剤を溶解可能な有機溶媒が特に好ましい。溶媒としては、例えば、シクロヘキサン、トルエン等の炭化水素溶媒;テトラヒドロフラン等の環状エーテル溶媒;等が挙げられる。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、このように樹脂液に含まれる溶媒の一部が、特定樹脂層に含まれる特定熱可塑性樹脂に残留しうる。 As the solvent, an organic solvent is preferable, and an organic solvent capable of dissolving a polymer and a back plasticizer that can be contained in the specific thermoplastic resin is particularly preferable. Examples of the solvent include hydrocarbon solvents such as cyclohexane and toluene; cyclic ether solvents such as tetrahydrofuran; and the like. As the solvent, one type may be used alone, or two or more types may be used in combination at any ratio. Normally, a part of the solvent contained in the resin liquid can remain in the specific thermoplastic resin contained in the specific resin layer.
 樹脂液における不揮発成分の濃度は、樹脂液が塗工に適した粘度となる範囲で、任意に設定しうる。具体的な濃度範囲は、好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは13重量%以上であり、好ましくは35重量%以下、より好ましくは30重量%以下、特に好ましくは25重量%以下である。 The concentration of the non-volatile component in the resin liquid can be arbitrarily set as long as the resin liquid has a viscosity suitable for coating. The specific concentration range is preferably 5% by weight or more, more preferably 10% by weight or more, particularly preferably 13% by weight or more, preferably 35% by weight or less, more preferably 30% by weight or less, and particularly preferably. It is 25% by weight or less.
 仮基材としては、樹脂液を塗工可能な面を有し、且つ、その面に形成された特定樹脂層を剥離可能な部材を用いうる。通常は、仮基材として、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン等の樹脂で形成された樹脂フィルムを用いる。偏光子層と特定樹脂層との貼合工程で紫外線硬化型接着剤を用いる場合は、UV-Bの吸収が小さい樹脂フィルムが好ましい。「UV-B」とは、別に断らない限り、280nm以上315nm以下の波長の光を表す。この仮基材の表面には、特定樹脂層の剥離を容易にするため、離型処理が施されていてもよい。 As the temporary base material, a member having a surface on which the resin liquid can be applied and the specific resin layer formed on the surface can be peeled off can be used. Usually, a resin film made of a resin such as polyethylene terephthalate, polyethylene, or polypropylene is used as the temporary base material. When an ultraviolet curable adhesive is used in the bonding step between the polarizing layer and the specific resin layer, a resin film having a small absorption of UV-B is preferable. “UV-B” refers to light having a wavelength of 280 nm or more and 315 nm or less, unless otherwise specified. The surface of the temporary base material may be subjected to a mold release treatment in order to facilitate peeling of the specific resin layer.
 離型処理としては、例えば、仮基材の表面に離型剤の層を形成する処理が挙げられる。離型剤としては、例えば、ポリジメチルシロキサンなどのシリコーン系離型剤、フッ化アルキルなどのフッ素系離型剤、長鎖アルキル系離型剤などが用いられる。その中でも、離型性及び加工性が良好である理由で、シリコーン系離型剤が好ましい。 Examples of the mold release treatment include a treatment of forming a release agent layer on the surface of the temporary base material. As the release agent, for example, a silicone-based release agent such as polydimethylsiloxane, a fluorine-based release agent such as alkyl fluoride, a long-chain alkyl-based release agent, and the like are used. Among them, a silicone-based mold release agent is preferable because of its good mold release and processability.
 仮基材への樹脂液の塗工方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法などが挙げられる。 Examples of the method for applying the resin liquid to the temporary substrate include curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, and printing coating. Examples include a method, a gravure coating method, a die coating method, a gap coating method, and a dipping method.
 〔12.2.樹脂液を乾燥させて特定樹脂層を得る工程〕
 仮基材に樹脂液を塗工することにより、その仮基材上に樹脂液の層が形成される。よって、仮基材への樹脂液の塗工の後で、仮基材上の樹脂液を乾燥させる。この乾燥により、樹脂液の層から溶媒等の揮発成分が除去されるので、特定熱可塑性樹脂で形成された特定樹脂層が得られる。
[12.2. Step of drying the resin liquid to obtain a specific resin layer]
By applying the resin liquid to the temporary base material, a layer of the resin liquid is formed on the temporary base material. Therefore, after applying the resin liquid to the temporary base material, the resin liquid on the temporary base material is dried. By this drying, volatile components such as a solvent are removed from the layer of the resin liquid, so that a specific resin layer formed of the specific thermoplastic resin can be obtained.
 樹脂液の乾燥の条件は、乾燥後に得られる特定樹脂層に含まれる特定熱可塑性樹脂が含む溶媒の量が上述した特定の範囲に収まるように設定することが好ましい。例えば、乾燥温度及び乾燥時間等の乾燥条件を適切に設定することで、特定熱可塑性樹脂に含まれる溶媒の量を、好ましい範囲に調整できる。 The conditions for drying the resin liquid are preferably set so that the amount of the solvent contained in the specific thermoplastic resin contained in the specific resin layer obtained after drying falls within the above-mentioned specific range. For example, the amount of the solvent contained in the specific thermoplastic resin can be adjusted to a preferable range by appropriately setting the drying conditions such as the drying temperature and the drying time.
 具体的な乾燥温度は、重合体、逆可塑剤及び溶媒の種類及び量によって異なりうるが、一般的には、好ましくは90℃以上、より好ましくは100℃以上、特に好ましくは110℃以上であり、好ましくは140℃以下、より好ましくは135℃以下、特に好ましくは130℃以下である。 The specific drying temperature may vary depending on the type and amount of the polymer, the reverse plasticizer and the solvent, but is generally preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher. It is preferably 140 ° C. or lower, more preferably 135 ° C. or lower, and particularly preferably 130 ° C. or lower.
 具体的な乾燥時間は、重合体、逆可塑剤及び溶媒の種類及び量によって異なりうるが、一般的には、好ましくは30秒以上、より好ましくは60秒以上、特に好ましくは90秒以上であり、好ましくは5分以下、より好ましくは4分以下、特に好ましくは3分以下である。 The specific drying time may vary depending on the type and amount of the polymer, the reverse plasticizer and the solvent, but is generally preferably 30 seconds or longer, more preferably 60 seconds or longer, and particularly preferably 90 seconds or longer. It is preferably 5 minutes or less, more preferably 4 minutes or less, and particularly preferably 3 minutes or less.
 〔12.3.特定樹脂層と偏光子層とを貼合する工程〕
 仮基材上に特定樹脂層を形成した後で、この特定樹脂層と偏光子層とを貼合する工程を行う。特定樹脂層と偏光子層との貼合は、必要に応じて、接着剤を介して行ってもよい。通常は、長尺の特定樹脂層及び長尺の偏光子層を、必要に応じて接着剤を介して、ピンチローラー等の貼合具を用いて貼合する。
[12.3. Step of bonding the specific resin layer and the polarizing element layer]
After forming the specific resin layer on the temporary base material, a step of bonding the specific resin layer and the polarizing element layer is performed. The bonding of the specific resin layer and the polarizing element layer may be performed via an adhesive, if necessary. Usually, a long specific resin layer and a long polarizing element layer are bonded together using a bonding tool such as a pinch roller via an adhesive, if necessary.
 特定樹脂層を形成する特定熱可塑性樹脂に含まれる溶媒の量が上述した特定の範囲にある場合、前記の貼合時における特定樹脂層の破断が抑制される。したがって、偏光フィルムを高い歩留りで製造できる。 When the amount of the solvent contained in the specific thermoplastic resin forming the specific resin layer is within the above-mentioned specific range, the breakage of the specific resin layer at the time of the above-mentioned bonding is suppressed. Therefore, the polarizing film can be manufactured with a high yield.
 〔12.4.仮基材を剥離する工程〕
 特定樹脂層と偏光子層とを貼合した後で、仮基材を剥離する工程を行う。特定樹脂層を形成する特定熱可塑性樹脂に含まれる溶媒の量が上述した特定の範囲にある場合、仮基材の剥離時における特定樹脂層の破断が抑制される。したがって、偏光フィルムを高い歩留りで製造できる。
[12.4. Step of peeling off the temporary base material]
After the specific resin layer and the polarizing element layer are bonded together, a step of peeling off the temporary base material is performed. When the amount of the solvent contained in the specific thermoplastic resin forming the specific resin layer is within the above-mentioned specific range, the breakage of the specific resin layer at the time of peeling of the temporary base material is suppressed. Therefore, the polarizing film can be manufactured with a high yield.
 通常、仮基材の剥離は、連続的に行われる。この際、剥離速度は、特定樹脂層の破断を抑制できる範囲に適切に設定することが好ましい。仮基材の具体的な剥離速度は、好ましくは10m/分以上、より好ましくは15m/分以上、特に好ましくは20m/分以上であり、好ましくは70m/分以下、より好ましくは60m/分以下、特に好ましくは50m/分以下である。 Normally, the temporary base material is peeled off continuously. At this time, it is preferable that the peeling speed is appropriately set within a range in which the breakage of the specific resin layer can be suppressed. The specific peeling speed of the temporary substrate is preferably 10 m / min or more, more preferably 15 m / min or more, particularly preferably 20 m / min or more, preferably 70 m / min or less, and more preferably 60 m / min or less. Particularly preferably, it is 50 m / min or less.
 〔12.5.第一樹脂層又は第二樹脂層を形成する工程〕
 上述した工程により、偏光子層上に、直接、又は、第一接着層及び第二接着層等の任意の層を介して間接的に、特定樹脂層を形成できる。よって、例えば、第一樹脂層及び第二樹脂層の両方として特定樹脂層を備える複層フィルムは、第一樹脂層としての特定樹脂層及び第二樹脂層としての特定樹脂層を、上述した工程によって偏光子層上に形成することを含む製造方法により、製造できる。この際、第一樹脂層を形成した後で第二樹脂層を形成してもよく、第二樹脂層を形成した後で第一樹脂層を形成してもよく、第一樹脂層と第二樹脂層とを同時に形成してもよい。ここで、ある層上に別の層が「直接」形成される、とは、それら2層の間に他の層が無いことを言う。また、ある層上に別の層が「間接的に」設けられる、とは、それら2層の間に他の層があることをいう。
[12.5. Step of forming the first resin layer or the second resin layer]
By the above-mentioned steps, the specific resin layer can be formed directly on the polarizing element layer or indirectly via arbitrary layers such as the first adhesive layer and the second adhesive layer. Therefore, for example, in the multilayer film provided with the specific resin layer as both the first resin layer and the second resin layer, the specific resin layer as the first resin layer and the specific resin layer as the second resin layer are used in the above-mentioned steps. It can be manufactured by a manufacturing method including forming on a polarizing layer. At this time, the second resin layer may be formed after the first resin layer is formed, or the first resin layer may be formed after the second resin layer is formed, and the first resin layer and the second resin layer may be formed. The resin layer may be formed at the same time. Here, "directly" forming another layer on one layer means that there is no other layer between the two layers. Also, "indirectly" providing another layer on one layer means that there is another layer between the two layers.
 また、特定樹脂層としての第一樹脂層と、特定樹脂層以外の第二樹脂層とを組み合わせて備える複層フィルムを製造する場合、その複層フィルムの製造方法は、第二樹脂層を形成する工程を含みうる。第二樹脂層の形成方法に、制限は無い。例えば、第二樹脂層は、予め用意した第二樹脂層を、必要に応じて接着剤を介して偏光子層に貼合することを含む方法によって、形成できる。この貼合は、通常は、長尺の第二樹脂層及び長尺の偏光子層を、必要に応じて接着剤を介して、ピンチローラー等の貼合具を用いて貼り合わせることを含む。 Further, in the case of producing a multilayer film including a first resin layer as a specific resin layer and a second resin layer other than the specific resin layer in combination, the method for producing the multilayer film is to form a second resin layer. May include steps to be performed. There are no restrictions on the method of forming the second resin layer. For example, the second resin layer can be formed by a method including laminating a second resin layer prepared in advance to the polarizing element layer via an adhesive, if necessary. This bonding usually includes bonding a long second resin layer and a long polarizing element layer using a bonding tool such as a pinch roller via an adhesive, if necessary.
 さらに、特定樹脂層としての第二樹脂層と、特定樹脂層以外の第一樹脂層とを組み合わせて備える複層フィルムを製造する場合、その複層フィルムの製造方法は、第一樹脂層を形成する工程を含みうる。第一樹脂層の形成方法に、制限は無い。例えば、第一樹脂層は、予め用意した第一樹脂層を、必要に応じて接着剤を介して偏光子層に貼合することを含む方法によって、形成できる。この貼合は、通常は、長尺の第一樹脂層及び長尺の偏光子層を、必要に応じて接着剤を介して、ピンチローラー等の貼合具を用いて貼り合わせることを含む。 Further, in the case of producing a multilayer film including a second resin layer as a specific resin layer and a first resin layer other than the specific resin layer in combination, the method for producing the multilayer film is to form the first resin layer. May include steps to be performed. There are no restrictions on the method of forming the first resin layer. For example, the first resin layer can be formed by a method including laminating a first resin layer prepared in advance to a polarizing element layer via an adhesive, if necessary. This bonding usually includes bonding a long first resin layer and a long polarizing element layer using a bonding tool such as a pinch roller via an adhesive, if necessary.
 前記のように特定樹脂層以外の第一樹脂層又は第二樹脂層を形成する時期に制限はない。例えば、特定樹脂層と偏光子層とを貼合する前に、第一樹脂層又は第二樹脂層を形成してもよい。また、例えば、特定樹脂層と偏光子層とを貼合した後に、第一樹脂層又は第二樹脂層を形成してもよい。さらに、例えば、特定樹脂層と偏光子層とを貼合するのと同時に、第一樹脂層又は第二樹脂層を形成してもよい。 As described above, there is no limitation on the timing of forming the first resin layer or the second resin layer other than the specific resin layer. For example, the first resin layer or the second resin layer may be formed before the specific resin layer and the polarizing element layer are bonded together. Further, for example, the first resin layer or the second resin layer may be formed after the specific resin layer and the polarizing element layer are bonded together. Further, for example, the first resin layer or the second resin layer may be formed at the same time as the specific resin layer and the polarizing element layer are bonded to each other.
 〔12.6.粘着剤層を形成する工程〕
 上述した偏光フィルムの製造方法は、粘着剤層を形成する工程を含みうる。粘着剤層の形成方法に、制限は無い。例えば、粘着剤の塗工により粘着剤層を形成してもよい。また、例えば、予め用意した粘着剤層の貼り合わせにより粘着剤層を形成してもよい。
[12.6. Step of forming the adhesive layer]
The method for producing a polarizing film described above may include a step of forming an adhesive layer. There are no restrictions on the method of forming the pressure-sensitive adhesive layer. For example, the pressure-sensitive adhesive layer may be formed by applying a pressure-sensitive adhesive. Further, for example, the pressure-sensitive adhesive layer may be formed by bonding the pressure-sensitive adhesive layers prepared in advance.
 粘着剤層を形成する時期に制限はない。例えば、粘着剤層、第一樹脂層及び偏光子層をこの順に備える複層フィルムを製造する場合、通常は、偏光子層上に第一樹脂層を形成した後で、粘着剤層を形成しうる。 There is no limit to the time when the adhesive layer is formed. For example, in the case of producing a multilayer film including an adhesive layer, a first resin layer and a polarizing element layer in this order, usually, after forming the first resin layer on the polarizing element layer, the adhesive layer is formed. sell.
 〔12.7.任意の工程〕
 上述した偏光フィルムの製造方法は、必要に応じて、更に任意の工程を含んでいてもよい。例えば、第一接着層及び第二接着層等の接着層を偏光フィルムに設ける場合、偏光フィルムの製造方法は、接着剤を硬化させる工程を含んでいてもよい。通常、接着剤を硬化させる工程は、前記の接着剤を用いて層同士を貼り合わせた後に行われる。接着剤の硬化方法は、接着剤の種類に応じて適切な方法を採用できる。例えば、紫外線硬化型の接着剤を用いる場合には、紫外線の照射によって接着剤を硬化させることができる。
[12.7. Arbitrary process]
The above-mentioned method for producing a polarizing film may further include an arbitrary step, if necessary. For example, when an adhesive layer such as a first adhesive layer and a second adhesive layer is provided on the polarizing film, the method for producing the polarizing film may include a step of curing the adhesive. Usually, the step of curing the adhesive is performed after the layers are bonded to each other using the above-mentioned adhesive. As the method for curing the adhesive, an appropriate method can be adopted depending on the type of the adhesive. For example, when an ultraviolet curable adhesive is used, the adhesive can be cured by irradiation with ultraviolet rays.
 また、偏光フィルムの製造方法は、例えば、λ/4層等の任意の層を設ける工程を含んでいてもよい。 Further, the method for manufacturing a polarizing film may include, for example, a step of providing an arbitrary layer such as a λ / 4 layer.
 さらに、偏光フィルムの製造方法は、当該偏光フィルムをトリミングする工程を含んでいてもよい。例えば、長尺の偏光子層、第一樹脂層及び第二樹脂層を用いて長尺の偏光フィルムを製造した後で、当該偏光フィルムを所望の寸法にトリミングしてもよい。 Further, the method for manufacturing a polarizing film may include a step of trimming the polarizing film. For example, after producing a long polarizing film using a long polarizing element layer, a first resin layer, and a second resin layer, the polarizing film may be trimmed to a desired size.
[13.表示装置]
 上述した偏光フィルムは、例えば、表示装置に設けてもよい。偏光フィルムを備える表示装置は、通常、偏光フィルムに組み合わせて表示体を備える。この際、偏光フィルムは、第一樹脂層、偏光子層及び第二樹脂層を表示体側からこの順に備えるように設けられうる。この表示装置は、例えば、表示体と、偏光フィルムの粘着剤層とを貼り合わせることを含む製造方法によって製造できる。ただし、表示装置の製造方法は、これに限定されない。
[13. Display device]
The above-mentioned polarizing film may be provided in a display device, for example. A display device including a polarizing film usually includes a display body in combination with the polarizing film. At this time, the polarizing film may be provided so as to include the first resin layer, the polarizing element layer, and the second resin layer in this order from the display body side. This display device can be manufactured, for example, by a manufacturing method including laminating a display body and an adhesive layer of a polarizing film. However, the manufacturing method of the display device is not limited to this.
 前記の表示装置では、偏光フィルムの偏光子層が、第一樹脂層及び第二樹脂層によって保護されている。よって、偏光子層の偏光度の低下を抑制したり、偏光子層の傷付きを抑制したり、外力による偏光子層の破損を抑制したりできる。また特に、第一樹脂層及び第二樹脂層の少なくとも一方として特定樹脂層が用いられていることにより、温度変化による偏光子層でのクラック発生を抑制できる。 In the above display device, the polarizing element layer of the polarizing film is protected by the first resin layer and the second resin layer. Therefore, it is possible to suppress a decrease in the degree of polarization of the polarizing element layer, suppress damage to the polarizing element layer, and suppress damage to the polarizing element layer due to an external force. Further, in particular, since the specific resin layer is used as at least one of the first resin layer and the second resin layer, it is possible to suppress the generation of cracks in the polarizing element layer due to temperature changes.
 表示体としては、例えば、液晶表示装置用の表示体としての液晶パネル、有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)用の表示体としての有機ELパネルが挙げられる。通常は、これらの表示体の視認側に、偏光フィルムが設けられる。 Examples of the display body include a liquid crystal panel as a display body for a liquid crystal display device and an organic EL panel as a display body for an organic electroluminescence display device (hereinafter, may be appropriately referred to as an “organic EL display device”). Can be mentioned. Usually, a polarizing film is provided on the visual side of these displays.
 液晶パネルは、通常、液晶と、この液晶に電圧を印加しうる電極と、を備える液晶セルを備える。液晶セルは、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。 A liquid crystal panel usually includes a liquid crystal cell and an electrode capable of applying a voltage to the liquid crystal. The liquid crystal cell has, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic. The liquid crystal cell of any mode such as (TN) mode, super twisted nematic (STN) mode, optical compensated bend (OCB) mode can be used.
 有機ELパネルは、通常、通常、透明電極層、発光層及び電極層をこの順に備える有機EL素子を備える。この有機EL素子では、透明電極層及び電極層から電圧を印加されることにより、発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 The organic EL panel usually includes an organic EL element including a transparent electrode layer, a light emitting layer, and an electrode layer in this order. In this organic EL element, the light emitting layer can generate light by applying a voltage from the transparent electrode layer and the electrode layer. Examples of the material constituting the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials. Further, the light emitting layer may have a laminate of a plurality of layers having different emission colors, or a mixed layer in which a layer of a certain dye is doped with different dyes. Further, the organic EL element may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。 In the following explanation, "%" and "part" indicating the amount are based on weight unless otherwise specified. Further, the operations described below were performed in the air at normal temperature and pressure unless otherwise specified.
[評価方法]
(線膨張係数の比の測定)
 実施例及び比較例で採取した第一樹脂を、クリアランス10μm、温度250℃、圧力30MPaの条件で、熱溶融プレス機を用いて熱溶融して成形することにより、第一試料樹脂で形成された厚み10μmの測定用フィルムを得た。この測定用フィルムを用いて、熱機械分析装置(TMA;SII社製「SS7100」)により、20℃~200℃まで5℃/minで昇温して、線膨張係数を測定した。70℃~85℃の平均値を、第一試料樹脂の平均線膨張係数CTE(I)とした。
[Evaluation method]
(Measurement of coefficient of linear expansion ratio)
The first resin collected in Examples and Comparative Examples was formed from the first sample resin by hot melting and molding using a heat melting press machine under the conditions of a clearance of 10 μm, a temperature of 250 ° C., and a pressure of 30 MPa. A measuring film having a thickness of 10 μm was obtained. Using this measuring film, the coefficient of linear expansion was measured by raising the temperature from 20 ° C. to 200 ° C. at 5 ° C./min using a thermomechanical analyzer (TMA; “SS7100” manufactured by SII). The average value of 70 ° C. to 85 ° C. was defined as the average linear expansion coefficient CTE (I) of the first sample resin.
 別途、実施例及び比較例で用意した第一樹脂から逆可塑剤を除いた組成を有する対比樹脂を用意した。具体的には、逆可塑剤を用いないこと以外は各実施例及び比較例と同じ方法により、樹脂溶液の調製、塗工及び乾燥を行って、厚み2μmの対比樹脂の層を製造した。この対比樹脂の層の一部を仮基材から剥がして、対比樹脂で形成されたサンプルを得た。この対比樹脂を、クリアランス10μm、温度250℃、圧力30MPaの条件で、熱溶融プレス機を用いて熱溶融して成形することにより、第二試料樹脂で形成された厚み10μmの測定用フィルムを得た。この測定用フィルムを用いて、熱機械分析装置により、20℃~200℃まで5℃/minで昇温して、線膨張係数を測定した。70℃~85℃の平均値を、第二試料樹脂の平均線膨張係数CTE(II)とした。 Separately, a comparative resin having a composition obtained by removing the back plasticizer from the first resin prepared in Examples and Comparative Examples was prepared. Specifically, a resin solution was prepared, coated, and dried by the same method as in each Example and Comparative Example except that a reverse plasticizer was not used, to produce a layer of a comparative resin having a thickness of 2 μm. A part of the layer of the contrast resin was peeled off from the temporary base material to obtain a sample formed of the contrast resin. This contrast resin is thermally melted and molded using a heat melting press machine under the conditions of a clearance of 10 μm, a temperature of 250 ° C., and a pressure of 30 MPa to obtain a measurement film having a thickness of 10 μm formed of the second sample resin. rice field. Using this measuring film, the coefficient of linear expansion was measured by raising the temperature from 20 ° C. to 200 ° C. at 5 ° C./min using a thermomechanical analyzer. The average value from 70 ° C. to 85 ° C. was defined as the average linear expansion coefficient CTE (II) of the second sample resin.
 第一試料樹脂の平均線膨張係数CTE(I)を第二試料樹脂の平均線膨張係数CTE(II)によって割り算して、線膨張係数の比CTE(I)/CTE(II)を求めた。第一試料樹脂は、第一樹脂から250℃で揮発しうる揮発成分を除いた不揮発成分に相当する。また、第二試料樹脂は、対比樹脂から250℃で揮発しうる揮発成分を除いた不揮発成分に相当する。さらに、第一樹脂と対比樹脂とは、逆可塑剤以外の組成は、同じである。よって、第一試料樹脂の平均線膨張係数CTE(I)と第二試料樹脂の平均線膨張係数CTE(II)との違いは、逆可塑剤によって生じうる。そして、それらの比CTE(I)/CTE(II)が1.00より小さいことは、逆可塑剤が樹脂の線膨張係数を小さくする作用を有することを表す。 The average linear expansion coefficient CTE (I) of the first sample resin was divided by the average linear expansion coefficient CTE (II) of the second sample resin to obtain the ratio CTE (I) / CTE (II) of the linear expansion coefficient. The first sample resin corresponds to a non-volatile component excluding the volatile component that can volatilize at 250 ° C. from the first resin. Further, the second sample resin corresponds to a non-volatile component excluding the volatile component that can volatilize at 250 ° C. from the contrast resin. Further, the first resin and the contrast resin have the same composition except for the reverse plasticizer. Therefore, the difference between the average linear expansion coefficient CTE (I) of the first sample resin and the average linear expansion coefficient CTE (II) of the second sample resin can be caused by the back plasticizer. The fact that their ratio CTE (I) / CTE (II) is smaller than 1.00 indicates that the reverse plasticizer has an effect of reducing the linear expansion coefficient of the resin.
(水蒸気透過率の測定)
 実施例及び比較例で採取した第一樹脂を、クリアランス100μm、温度250℃、圧力30MPaの条件で、熱溶融プレス機を用いて熱溶融して成形することにより、第一試料樹脂で形成された厚み100μmの測定用フィルムを得た。この測定用フィルムを用いて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)により、JIS K 7129 B法に従って、温度40℃、湿度90%RHの条件にて、第一試料樹脂の厚み100μm当たりの水蒸気透過率を測定した。
(Measurement of water vapor permeability)
The first resin collected in Examples and Comparative Examples was formed from the first sample resin by hot melting and molding using a heat melting press machine under the conditions of a clearance of 100 μm, a temperature of 250 ° C., and a pressure of 30 MPa. A measuring film having a thickness of 100 μm was obtained. Using this measuring film, the first sample resin was prepared by a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON) under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to the JIS K 7129B method. The water vapor transmission rate per 100 μm thickness was measured.
(レターデーションの測定)
 実施例及び比較例で採取した第一樹脂層の一部の面内レターデーションRe及び厚み方向のレターデーションRthを、測定波長550nmにおいて、位相差計(AXOMETRICS社製「Axo Scan」)を用いて測定した。
(Measurement of letteration)
A part of the in-plane retardation Re and the thickness direction retardation Rth of the first resin layer collected in Examples and Comparative Examples were measured at a measurement wavelength of 550 nm using a phase difference meter (“Axo Scan” manufactured by AXOMETRICS). It was measured.
(第一樹脂に含まれる溶媒の量の測定)
 実施例及び比較例で採取した第一樹脂の残留溶媒であるシクロヘキサンを、以下のGC/MSにより定量した。
 第一樹脂をスクリュー管に秤量後、キシレンを加え、超音波処理を30分間行って完全に溶解させて、試料溶液を得た。その試料溶液を、ガスクロマトグラフ質量分析計(島津製作所製「GC-2010Plus」;カラムはAgilent techologies製「DB-5HT」30m×0.25mm、膜厚0.1μm)を用いて、分析した。得られたシクロヘキサンの検出ピークと、予めシクロヘキサン標準液から得た検量線とを用いて、シクロヘキサンの定量を行った。測定結果から、第一樹脂における残留溶媒としてのシクロヘキサンの割合を求めた。
(Measurement of the amount of solvent contained in the first resin)
Cyclohexane, which is the residual solvent of the first resin collected in Examples and Comparative Examples, was quantified by the following GC / MS.
After weighing the first resin in a screw tube, xylene was added, and ultrasonic treatment was performed for 30 minutes to completely dissolve the sample solution. The sample solution was analyzed using a gas chromatograph mass spectrometer (“GC-2010Plus” manufactured by Shimadzu Corporation; the column was “DB-5HT” manufactured by Agilent technologies, 30 m × 0.25 mm, film thickness 0.1 μm). Cyclohexane was quantified using the obtained cyclohexane detection peak and the calibration curve obtained in advance from the cyclohexane standard solution. From the measurement results, the ratio of cyclohexane as a residual solvent in the first resin was determined.
(第一樹脂層の転写性の評価)
 仮基材上に形成された第一樹脂層を偏光子層に貼り合わせる工程から、仮基材を剥離する工程までを観察した。観察の結果から、第一樹脂層の転写性を、下記の基準で評価した。
 「良」:第一樹脂層の破断が発生しない。
 「可」:時折、第一樹脂層の破断が発生する。
(Evaluation of transferability of the first resin layer)
From the step of attaching the first resin layer formed on the temporary base material to the polarizing element layer to the step of peeling off the temporary base material were observed. From the observation results, the transferability of the first resin layer was evaluated according to the following criteria.
"Good": No breakage of the first resin layer occurs.
"OK": Occasionally, the first resin layer breaks.
(偏光子層のクラック試験)
 ガラス基板(コーニング社製「イーグルXG」;厚さ0.5mm)を用意し、そのガラス面にコロナ処理を施した。
 実施例及び比較例で製造した偏光フィルムを、10cm角にカットして、偏光フィルム片を得た。前記のカットは、偏光フィルムに含まれる偏光子層の吸収軸が、得られる偏光フィルム片の辺と平行又は垂直となるように行った。この偏光フィルム片の粘着剤層を、ガラス基板のコロナ処理面に、ピンチローラーを用いて圧着した。その後、50℃、5気圧、10分のオートクレーブ処置を施して、評価用サンプルを得た。
(Crack test of polarizing layer)
A glass substrate (“Eagle XG” manufactured by Corning Inc .; thickness 0.5 mm) was prepared, and the glass surface was subjected to corona treatment.
The polarizing films produced in Examples and Comparative Examples were cut into 10 cm squares to obtain polarizing film pieces. The cut was made so that the absorption axis of the polarizing element layer contained in the polarizing film was parallel to or perpendicular to the side of the obtained polarizing film piece. The adhesive layer of this polarizing film piece was pressure-bonded to the corona-treated surface of the glass substrate using a pinch roller. Then, autoclave treatment was performed at 50 ° C., 5 atm, and 10 minutes to obtain an evaluation sample.
 この評価用サンプルに、-40℃で30分の冷却と70℃で30分の加熱とからなるヒートサイクルを20回行うヒートサイクル試験を施した。試験後の評価用サンプルの端部を光学顕微鏡で観察し、クラックの本数とその長さを計測した。 This evaluation sample was subjected to a heat cycle test in which a heat cycle consisting of cooling at -40 ° C for 30 minutes and heating at 70 ° C for 30 minutes was performed 20 times. The end of the evaluation sample after the test was observed with an optical microscope, and the number of cracks and their length were measured.
(総合判定)
 転写性の評価及びクラック試験の結果から、各実施例及び比較例の結果を下記の基準で判定した。
 「A」:第一樹脂層の転写性、及び、クラック抑制効果ともに、優れている。
 「B」:第一樹脂層の転写性がわずかに劣るが、クラック抑制効果が認められる。
 「C」:クラック抑制効果が不十分である。
(Comprehensive judgment)
From the results of the transferability evaluation and the crack test, the results of each Example and Comparative Example were judged according to the following criteria.
"A": Both the transferability of the first resin layer and the crack suppressing effect are excellent.
"B": The transferability of the first resin layer is slightly inferior, but the crack suppressing effect is recognized.
"C": The crack suppressing effect is insufficient.
[製造例1]
 長尺の原反フィルムとして、厚み45μmの未延伸ポリビニルアルコールフィルム(ビニロンフィルム、平均重合度約2400、ケン化度99.9モル%)を用意した。ガイドロールを介してこのフィルムを長手方向に連続搬送しながら、当該フィルムに対して、30℃で1分間純水に浸漬し2倍に延伸する処理を行った。その後、このフィルムに対して、染色溶液(ヨウ素及びヨウ化カリウムを重量比1:23で含む染色剤溶液、染色剤濃度1.2mmol/L)に32℃で2分間浸漬する染色処理を行い、フィルムにヨウ素を吸着させた。その後、フィルムを35℃で30秒間、ホウ酸3重量%水溶液に浸漬して、架橋及び洗浄を行った。その後、57℃で、フィルムを、ホウ酸3重量%及びヨウ化カリウム5重量%を含む水溶液中で、3.0倍に延伸した。その後、フィルムに対して、35℃で、ヨウ化カリウム5%及びホウ酸1.0%を含む水溶液中で、補色処理を行った。その後、フィルムを70℃で2分間乾燥させて、厚み18μmの長尺の偏光子層を得た。この偏光子層の偏光度を紫外可視分光光度計(日本分光社製「V-7100」)で測定したところ、99.996%であり、十分な偏光能を有していた。
[Manufacturing Example 1]
As a long raw film, an unstretched polyvinyl alcohol film having a thickness of 45 μm (vinylon film, average degree of polymerization of about 2400, saponification degree of 99.9 mol%) was prepared. While continuously transporting this film in the longitudinal direction via a guide roll, the film was immersed in pure water at 30 ° C. for 1 minute and stretched twice. Then, this film was subjected to a dyeing treatment by immersing it in a dyeing solution (a dyeing solution containing iodine and potassium iodide at a weight ratio of 1:23, a dyeing agent concentration of 1.2 mmol / L) at 32 ° C. for 2 minutes. Iodine was adsorbed on the film. Then, the film was immersed in a 3 wt% boric acid aqueous solution at 35 ° C. for 30 seconds for cross-linking and washing. Then, at 57 ° C., the film was stretched 3.0 times in an aqueous solution containing 3% by weight boric acid and 5% by weight of potassium iodide. Then, the film was subjected to complementary color treatment at 35 ° C. in an aqueous solution containing 5% potassium iodide and 1.0% boric acid. Then, the film was dried at 70 ° C. for 2 minutes to obtain a long polarizing element layer having a thickness of 18 μm. The degree of polarization of this polarizing element layer was measured with an ultraviolet-visible spectrophotometer (“V-7100” manufactured by JASCO Corporation) and found to be 99.996%, which was sufficient polarization ability.
[実施例1]
(1-1.第一樹脂層の製造)
 第一重合体としてのノルボルネン系重合体(日本ゼオン社製「ZEONOR」;ガラス転移温度138℃)、及び、逆可塑剤としてのオルトターフェニルを、溶媒としてシクロヘキサンと混合して、不揮発成分濃度15重量%で含む樹脂溶液を得た。第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量は、1重量%に調整した。
[Example 1]
(1-1. Manufacture of the first resin layer)
A norbornene-based polymer as a first polymer (“ZEONOR” manufactured by Nippon Zeon Co., Ltd .; glass transition temperature 138 ° C.) and orthoterphenyl as a back plasticizer are mixed with cyclohexane as a solvent to obtain a non-volatile component concentration of 15. A resin solution contained in% by weight was obtained. The amount of the backplasticizer was adjusted to 1% by weight based on 100% by weight of the total of the first polymer and the backplasticizer.
 仮基材として、長尺のポリプロピレンフィルム(東レ社製「トレファン BO40-2500」)を用意した。この仮基材上に、前記の樹脂溶液を塗工して、樹脂溶液の層を形成した。その後、樹脂溶液の層を、120℃で2分間の乾燥条件で乾燥して、第一樹脂で形成された厚み2μmの長尺の第一樹脂層を得た。この第一樹脂層の一部を仮基材から剥がして、第一樹脂で形成されたサンプルを得た。このサンプルを用いて、上述した方法によって、線膨張係数の比CTE(I)/CTE(II)、水蒸気透過率、レターデーションRe及びRth、並びに、第一樹脂の残留溶媒量を測定した。 A long polypropylene film ("Trefan BO40-2500" manufactured by Toray Industries, Inc.) was prepared as a temporary base material. The above resin solution was applied onto this temporary substrate to form a layer of the resin solution. Then, the layer of the resin solution was dried at 120 ° C. under the drying condition for 2 minutes to obtain a long first resin layer having a thickness of 2 μm formed of the first resin. A part of this first resin layer was peeled off from the temporary base material to obtain a sample formed of the first resin. Using this sample, the ratio of linear expansion coefficient CTE (I) / CTE (II), water vapor permeability, retardation Re and Rth, and the amount of residual solvent of the first resin were measured by the above-mentioned method.
(1-2.第二樹脂層の製造)
 アクリル樹脂(住友化学社製「スミペックスHT55X」)を、Tダイを備える熱溶融押出フィルム成形機に供給した。Tダイからアクリル樹脂を押し出し、アクリル樹脂をフィルム状に成形した。これにより、アクリル樹脂で形成された厚み40μmの長尺の第二樹脂層を得た。
(1-2. Manufacture of second resin layer)
Acrylic resin (“Sumipex HT55X” manufactured by Sumitomo Chemical Co., Ltd.) was supplied to a heat-melt extrusion film forming machine equipped with a T-die. The acrylic resin was extruded from the T-die, and the acrylic resin was formed into a film. As a result, a long second resin layer having a thickness of 40 μm formed of acrylic resin was obtained.
(1-3.貼り合わせ)
 第一樹脂層の表面に、コロナ処理を施した。その後、その第一樹脂層のコロナ処理面に、紫外線硬化型の接着剤(ADEKA社製「アークルズKRX-7007」)を塗工して、接着剤の層を形成した。
(1-3. Laminating)
The surface of the first resin layer was subjected to corona treatment. Then, an ultraviolet curable adhesive (“Arkles KRX-7007” manufactured by ADEKA Corporation) was applied to the corona-treated surface of the first resin layer to form an adhesive layer.
 第二樹脂層の表面に、コロナ処理を施した。その後、その第二樹脂層のコロナ処理面に、紫外線硬化型の接着剤(ADEKA社製「アークルズKRX-7007」)を塗工して、接着剤の層を形成した。 The surface of the second resin layer was treated with corona. Then, an ultraviolet curable adhesive (“Arkles KRX-7007” manufactured by ADEKA Corporation) was applied to the corona-treated surface of the second resin layer to form an adhesive layer.
 その後、前記の接着剤を介した第一樹脂層と偏光子層との貼り合わせ、並びに、前記の接着剤を介した第二樹脂層と偏光子層との貼り合わせを、ピンチローラーを用いて、同時に行った。貼り合わせの直後に、紫外線照射装置を用いて、仮基材側から750mJ/cmの紫外線照射を行って、接着剤を硬化させた。その後、仮基材を剥離して、第一樹脂層/接着剤層(厚み2μm)/偏光子層/接着剤層(厚み2μm)/第二樹脂層の層構成を有する長尺の中間フィルムを得た。 After that, the first resin layer and the polarizing element layer are bonded via the adhesive, and the second resin layer and the polarizing element layer are bonded via the adhesive, using a pinch roller. , Goed at the same time. Immediately after the bonding, an ultraviolet irradiation device was used to irradiate 750 mJ / cm 2 of ultraviolet rays from the temporary substrate side to cure the adhesive. Then, the temporary base material is peeled off to form a long intermediate film having a layer structure of a first resin layer / an adhesive layer (thickness 2 μm) / a polarizing element layer / an adhesive layer (thickness 2 μm) / a second resin layer. Obtained.
 粘着剤層と軽剥離ライナー層とを備える光学用粘着シート(日東電工製「LUCIACS CS9861US」)を用意した。軽剥離ライナーを剥離し、この剥離によって露出した粘着剤層の粘着面にコロナ処理を施した。また、前記の中間フィルムの第一樹脂層の表面に、コロナ処理を施した。その後、粘着剤層のコロナ処理面と中間フィルムの第一樹脂層のコロナ処理面とを、ピンチローラーを用いて圧着して、粘着剤層/第一樹脂層/接着剤層/偏光子層/接着剤層/第二樹脂層の層構成を有する偏光フィルムを得た。
 得られた偏光フィルムを、上述した方法によって評価した。
An optical pressure-sensitive adhesive sheet (“LUCIACS CS9861US” manufactured by Nitto Denko) having a pressure-sensitive adhesive layer and a light release liner layer was prepared. The light release liner was peeled off, and the adhesive surface of the pressure-sensitive adhesive layer exposed by this peeling was subjected to corona treatment. Further, the surface of the first resin layer of the intermediate film was subjected to corona treatment. After that, the corona-treated surface of the pressure-sensitive adhesive layer and the corona-treated surface of the first resin layer of the intermediate film are pressure-bonded by using a pinch roller to press the pressure-sensitive adhesive layer / first resin layer / adhesive layer / polarizing element layer /. A polarizing film having a layer structure of an adhesive layer / a second resin layer was obtained.
The obtained polarizing film was evaluated by the method described above.
[実施例2~4]
 第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表1に示す値に変更したこと以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Examples 2 to 4]
The polarizing film was produced and evaluated by the same method as in Example 1 except that the amount of the reverse plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. ..
[実施例5]
 逆可塑剤の種類をメタターフェニルに変更したこと以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Example 5]
A polarizing film was produced and evaluated by the same method as in Example 1 except that the type of the reverse plasticizer was changed to metaterphenyl.
[実施例6及び7]
 逆可塑剤の種類をメタターフェニルに変更した。また、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表1に示す値に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Examples 6 and 7]
The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[実施例8]
 逆可塑剤の種類をメタターフェニルに変更した。また、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表1に示す値に変更した。さらに、樹脂溶液の層の乾燥条件を、熱風乾燥120℃と同時にIRヒーターによるIR照射を加え5分とした。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Example 8]
The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Further, the drying condition of the layer of the resin solution was set to 5 minutes by adding IR irradiation with an IR heater at the same time as hot air drying at 120 ° C. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[実施例9]
 逆可塑剤の種類をメタターフェニルに変更した。また、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表1に示す値に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Example 9]
The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 1. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[実施例10]
 逆可塑剤の種類をパラターフェニルに変更したこと以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Example 10]
A polarizing film was produced and evaluated by the same method as in Example 1 except that the type of the reverse plasticizer was changed to paraterphenyl.
[実施例11~13]
 逆可塑剤の種類をパラターフェニルに変更した。また、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表2に示す値に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Examples 11 to 13]
The type of backplasticizer was changed to paraterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 2. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[実施例14]
 第一重合体の種類を、ノルボルネン系重合体(日本ゼオン社製「ZEONOR」;ガラス転移温度163℃)に変更した。また、逆可塑剤の種類をメタターフェニルに変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Example 14]
The type of the first polymer was changed to a norbornene-based polymer (“ZEONOR” manufactured by Nippon Zeon Corporation; glass transition temperature 163 ° C.). In addition, the type of reverse plasticizer was changed to metaterphenyl. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[実施例15~17]
 第一重合体の種類を、ノルボルネン系重合体(日本ゼオン社製「ZEONOR」;ガラス転移温度163℃)に変更した。また、逆可塑剤の種類をメタターフェニルに変更した。さらに、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表2に示す値に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Examples 15 to 17]
The type of the first polymer was changed to a norbornene-based polymer (“ZEONOR” manufactured by Nippon Zeon Corporation; glass transition temperature 163 ° C.). In addition, the type of reverse plasticizer was changed to metaterphenyl. Furthermore, the amount of the backplasticizer with respect to the total 100% by weight of the first polymer and the backplasticizer was changed to the value shown in Table 2. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[比較例1]
 逆可塑剤を用いなかった。すなわち、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を0重量%に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Comparative Example 1]
No backplasticizer was used. That is, the amount of the backplasticizer was changed to 0% by weight with respect to the total of 100% by weight of the first polymer and the backplasticizer. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[比較例2]
 逆可塑剤の種類をメタターフェニルに変更した。また、第一重合体及び逆可塑剤の合計100重量%に対する逆可塑剤の量を、表2に示す値に変更した。以上の事項以外は、実施例1と同じ方法により、偏光フィルムの製造及び評価を行った。
[Comparative Example 2]
The type of backplasticizer was changed to metaterphenyl. Moreover, the amount of the back plasticizer with respect to the total 100% by weight of the first polymer and the back plasticizer was changed to the value shown in Table 2. Except for the above items, the polarizing film was manufactured and evaluated by the same method as in Example 1.
[結果]
 前記の実施例及び比較例の結果を、下記の表に示す。下記の表において、略称の意味は、以下の通りである。
 第一重合体の欄で「I」:ノルボルネン系重合体(日本ゼオン社製「ZEONOR」;ガラス転移温度138℃)。
 第一重合体の欄で「II」:ノルボルネン系重合体(日本ゼオン社製「ZEONOR」;ガラス転移温度163℃)。
 逆可塑剤の欄で「A」:オルトターフェニル。
 逆可塑剤の欄で「B」:メタターフェニル。
 逆可塑剤の欄で「C」:パラターフェニル
 水蒸気透過率:第一樹脂を250℃に加熱して得られる試料樹脂の、厚み100μm当たりの水蒸気透過率。
 Re:第一樹脂層の面内レターデーション。
 Rth:第一樹脂層の厚み方向のレターデーション。
 含有量倍量:第一樹脂に含まれる溶媒の量。
[result]
The results of the above-mentioned Examples and Comparative Examples are shown in the table below. In the table below, the meanings of the abbreviations are as follows.
In the column of the first polymer, "I": norbornene-based polymer ("ZEONOR" manufactured by Nippon Zeon Corporation; glass transition temperature 138 ° C.).
In the column of the first polymer, "II": norbornene-based polymer ("ZEONOR" manufactured by Nippon Zeon Corporation; glass transition temperature 163 ° C.).
"A" in the column of reverse plasticizer: orthoterphenyl.
"B" in the column of reverse plasticizer: metaterphenyl.
In the column of reverse plasticizer, "C": Paraterphenyl Water vapor permeability: Water vapor permeability per 100 μm thickness of the sample resin obtained by heating the first resin to 250 ° C.
Re: In-plane lettering of the first resin layer.
Rth: Lettering in the thickness direction of the first resin layer.
Content double amount: Amount of solvent contained in the first resin.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 100 偏光フィルム
 110 第一樹脂層
 120 偏光子層
 130 第二樹脂層
 200 偏光フィルム
 210 第一接着層
 220 第二接着層
 230 粘着剤層
 240 λ/4層
100 Polarizing film 110 First resin layer 120 Polarizer layer 130 Second resin layer 200 Polarizing film 210 First adhesive layer 220 Second adhesive layer 230 Adhesive layer 240 λ / 4 layer

Claims (16)

  1.  第一樹脂層、偏光子層及び第二樹脂層を、この順に備え、
     前記第一樹脂層及び第二樹脂層の少なくとも一方が、重合体及び逆可塑剤を含む特定熱可塑性樹脂で形成された特定樹脂層であり、
     前記逆可塑剤の量が、前記特定熱可塑性樹脂100重量%に対して、0.5重量%以上23重量%以下であり、
     前記特定熱可塑性樹脂を250℃に加熱して得られる第一試料樹脂の、厚み100μm当たりの水蒸気透過率が、4g/(m・day)以下であり、
     下記式(1)を満たす、偏光フィルム。
      CTE(I)/CTE(II)<1   (1)
    (式(1)において、
     CTE(I)は、前記第一試料樹脂の70℃~85℃における平均線膨張係数を表し、
     CTE(II)は、前記特定熱可塑性樹脂から前記逆可塑剤を除いた組成を有する対比樹脂を250℃に加熱して得られる第二試料樹脂の70℃~85℃における平均線膨張係数を表す。)
    The first resin layer, the polarizing element layer and the second resin layer are provided in this order.
    At least one of the first resin layer and the second resin layer is a specific resin layer formed of a specific thermoplastic resin containing a polymer and a back plasticizer.
    The amount of the reverse plasticizer is 0.5% by weight or more and 23% by weight or less with respect to 100% by weight of the specific thermoplastic resin.
    The water vapor transmittance per 100 μm thickness of the first sample resin obtained by heating the specific thermoplastic resin to 250 ° C. is 4 g / (m 2 · day) or less.
    A polarizing film satisfying the following formula (1).
    CTE (I) / CTE (II) <1 (1)
    (In equation (1)
    CTE (I) represents the average linear expansion coefficient of the first sample resin at 70 ° C to 85 ° C.
    CTE (II) represents the average linear expansion coefficient of the second sample resin obtained by heating a contrasting resin having a composition obtained by removing the backplasticizer from the specific thermoplastic resin to 250 ° C. at 70 ° C. to 85 ° C. .. )
  2.  前記第一樹脂層と前記偏光子層との間に、第一接着層を備える、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein a first adhesive layer is provided between the first resin layer and the polarizing element layer.
  3.  前記偏光子層と前記第二樹脂層との間に、第二接着層を備える、請求項1又は2に記載の偏光フィルム。 The polarizing film according to claim 1 or 2, wherein a second adhesive layer is provided between the polarizing element layer and the second resin layer.
  4.  前記特定樹脂層の測定波長550nmにおける面内レターデーションが、5nm以下であり、
     前記特定樹脂層の測定波長550nmにおける厚み方向のレターデーションが、-5nm以上5nm以下である、請求項1~3のいずれか一項に記載の偏光フィルム。
    The in-plane retardation of the specific resin layer at a measurement wavelength of 550 nm is 5 nm or less.
    The polarizing film according to any one of claims 1 to 3, wherein the retardation of the specific resin layer in the thickness direction at a measurement wavelength of 550 nm is -5 nm or more and 5 nm or less.
  5.  前記特定熱可塑性樹脂が、脂環式構造を含有する重合体を含む、請求項1~4のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 4, wherein the specific thermoplastic resin contains a polymer containing an alicyclic structure.
  6.  前記特定樹脂層の厚みが、9μm以下である、請求項1~5のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 5, wherein the specific resin layer has a thickness of 9 μm or less.
  7.  前記偏光子層の厚みが、19μm以下である、請求項1~6のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 6, wherein the polarizing element layer has a thickness of 19 μm or less.
  8.  前記特定熱可塑性樹脂が、溶媒を0.010重量%以上10.0重量%以下含む、請求項1~7のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 7, wherein the specific thermoplastic resin contains 0.010% by weight or more and 10.0% by weight or less of a solvent.
  9.  前記逆可塑剤が、ターフェニル化合物である、請求項1~8のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 8, wherein the reverse plasticizer is a terphenyl compound.
  10.  粘着剤層、前記第一樹脂層、前記偏光子層及び前記第二樹脂層を、この順で備える、請求項1~9のいずれか一項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 9, further comprising a pressure-sensitive adhesive layer, the first resin layer, the polarizing element layer, and the second resin layer in this order.
  11.  前記粘着剤層と前記第一樹脂層との間に、λ/4層を備える、請求項10に記載の偏光フィルム。 The polarizing film according to claim 10, further comprising a λ / 4 layer between the pressure-sensitive adhesive layer and the first resin layer.
  12.  請求項1~11のいずれか一項に記載の偏光フィルムの製造方法であって、
     仮基材上に、重合体、逆可塑剤及び溶媒を含む樹脂液を塗工する工程と、
     前記樹脂液を乾燥させて、特定熱可塑性樹脂で形成された特定樹脂層を得る工程と、
     前記特定樹脂層と偏光子層とを貼合する工程と、
     前記仮基材を剥離する工程と、をこの順で含む、偏光フィルムの製造方法。
    The method for manufacturing a polarizing film according to any one of claims 1 to 11.
    A step of applying a resin solution containing a polymer, a reverse plasticizer and a solvent on a temporary substrate, and
    A step of drying the resin liquid to obtain a specific resin layer formed of the specific thermoplastic resin, and a step of obtaining the specific resin layer.
    The step of bonding the specific resin layer and the polarizing element layer, and
    A method for producing a polarizing film, comprising the step of peeling off the temporary substrate in this order.
  13.  粘着剤層を形成する工程を含む、請求項12に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to claim 12, which comprises a step of forming a pressure-sensitive adhesive layer.
  14.  表示体と、請求項1~11のいずれか一項に記載の偏光フィルムと、を備える表示装置であって、
     前記偏光フィルムが、第一樹脂層、偏光子層及び第二樹脂層を、前記表示体側からこの順に備える、表示装置。
    A display device comprising a display body and the polarizing film according to any one of claims 1 to 11.
    A display device in which the polarizing film includes a first resin layer, a polarizing element layer, and a second resin layer in this order from the display body side.
  15.  前記表示体が、液晶パネルである、請求項14に記載の表示装置。 The display device according to claim 14, wherein the display body is a liquid crystal panel.
  16.  前記表示体が、有機エレクトロルミネッセンスパネルである、請求項14に記載の表示装置。 The display device according to claim 14, wherein the display body is an organic electroluminescence panel.
PCT/JP2021/022410 2020-06-24 2021-06-11 Polarization film and method for manufacturing same, and display device WO2021261303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109139 2020-06-24
JP2020109139 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261303A1 true WO2021261303A1 (en) 2021-12-30

Family

ID=79281173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022410 WO2021261303A1 (en) 2020-06-24 2021-06-11 Polarization film and method for manufacturing same, and display device

Country Status (2)

Country Link
TW (1) TW202200697A (en)
WO (1) WO2021261303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043117A1 (en) * 2022-08-22 2024-02-29 日本ゼオン株式会社 Layered product and composite layered product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326938A (en) * 2006-06-07 2007-12-20 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and resin molded product
JP2014119539A (en) * 2012-12-14 2014-06-30 Fujifilm Corp Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2014119538A (en) * 2012-12-14 2014-06-30 Fujifilm Corp Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2015111245A (en) * 2013-11-06 2015-06-18 富士フイルム株式会社 Method for manufacturing polarizing plate
JP2016039025A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Resin composition for sealing organic electroluminescent display element, resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
WO2019066043A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Polarizing plate protection film, polarizing plate, and liquid crystal display device
WO2019107462A1 (en) * 2017-11-30 2019-06-06 株式会社クラレ Thermoforming laminated plate and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326938A (en) * 2006-06-07 2007-12-20 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and resin molded product
JP2014119539A (en) * 2012-12-14 2014-06-30 Fujifilm Corp Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2014119538A (en) * 2012-12-14 2014-06-30 Fujifilm Corp Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2015111245A (en) * 2013-11-06 2015-06-18 富士フイルム株式会社 Method for manufacturing polarizing plate
JP2016039025A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Resin composition for sealing organic electroluminescent display element, resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
WO2019066043A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Polarizing plate protection film, polarizing plate, and liquid crystal display device
WO2019107462A1 (en) * 2017-11-30 2019-06-06 株式会社クラレ Thermoforming laminated plate and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043117A1 (en) * 2022-08-22 2024-02-29 日本ゼオン株式会社 Layered product and composite layered product

Also Published As

Publication number Publication date
TW202200697A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
TWI282027B (en) Optical compensation plate and polarization plate using the same
TWI715691B (en) Circular polarizing plate and flexible image display device using the same
WO2016043124A1 (en) Circular polarizing plate, wideband λ/4 plate, and organic electroluminescence display device
US10302828B2 (en) Optical film and display device
TW200303437A (en) Polarizing plate with optical compensation function, and liquid crystal display device using the same
JP2017142492A (en) Optical laminate and image display device using the optical laminate
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
TW202020031A (en) Polarizing plate with phase difference layer, and image display device using this
TW202018339A (en) Polarizing plate with phase difference layers and image display device using the same capable of thinning the protective layer of the polarizer
TW202017989A (en) Polarizing plate with phase difference layer and image display device using the same wherein the polarizing plate is thin, excellent in handling ability, and excellent in optical characteristics
WO2021261303A1 (en) Polarization film and method for manufacturing same, and display device
JP6689031B2 (en) Optical stack
WO2005026795A1 (en) Method for producing anisotropic film
WO2005116700A1 (en) Elliptical polarizing plate and image display
TWI816868B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2020115226A (en) Polarizing plate with retardation layer, and image display device using the same
TW202017988A (en) Polarizing plate with phase difference layer and image display device using the same wherein the polarizing plate is thin, excellent in handling capability, and excellent in optical characteristics
JP7242884B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2021261344A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
TWI827658B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2021177230A (en) Polarizing plate and polarizing plate with retardation layer
JP2020115227A (en) Polarizing plate with retardation layer and image display using the same
TW202020030A (en) Polarizing plate with phase difference layer, and image display device using this

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP