WO2021259257A1 - 自动换道避撞控制方法、装置、车辆及存储介质 - Google Patents

自动换道避撞控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2021259257A1
WO2021259257A1 PCT/CN2021/101525 CN2021101525W WO2021259257A1 WO 2021259257 A1 WO2021259257 A1 WO 2021259257A1 CN 2021101525 W CN2021101525 W CN 2021101525W WO 2021259257 A1 WO2021259257 A1 WO 2021259257A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
current vehicle
vehicle
safety detection
detection time
Prior art date
Application number
PCT/CN2021/101525
Other languages
English (en)
French (fr)
Inventor
陶沛
孙连明
崔茂源
厉健峰
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP21830010.1A priority Critical patent/EP4063214A4/en
Publication of WO2021259257A1 publication Critical patent/WO2021259257A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0017Planning or execution of driving tasks specially adapted for safety of other traffic participants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Definitions

  • the embodiments of the present application relate to the technical field of automatic driving control, for example, to an automatic lane changing and collision avoidance control method, device, vehicle, and storage medium.
  • Auto-driving functions of vehicles realizes the liberation of the hands and feet of the driver without the need for the driver to look ahead, and once the navigation destination is set, the driver can realize not to take over the vehicle.
  • Autonomous driving vehicles contain a variety of autonomous decision-making and control tasks, including autonomous control alignment, autonomous control of lane changing, autonomous navigation path planning, etc. To ensure the safety of autonomous driving, it is necessary to deal with many types of abnormalities in the process of autonomous driving. Necessary measures shall be taken to minimize risks.
  • the main method is to determine whether the vehicle can change lanes by detecting whether there are targets in adjacent lanes that affect lane changing. For example, setting a threshold for dangerous collision avoidance when changing lanes. When it is detected that the distance between the target and the vehicle in the adjacent lane is less than the threshold, the vehicle stops changing lanes and continues to drive in the original lane.
  • This application provides an automatic lane-changing collision avoidance control method, device, vehicle, and storage medium, so as to realize the collision avoidance control of the vehicle when the vehicle encounters an abnormal lane-changing process during the lane-changing process, and reduce the possibility of collision when the vehicle automatically changes lanes abnormally It also reduces the severity of collisions when the collision cannot be avoided, and improves the safety of vehicle driving.
  • the embodiment of the present application provides an automatic lane-changing collision avoidance control method, which includes: acquiring the driving parameters of the current vehicle, the driving parameters of at least one target vehicle, and road information when the current vehicle is performing a lane-changing operation; The driving parameters of the current vehicle, the driving parameters of the at least one target vehicle, and the road information are used to determine the travel collision safety detection time, the retreat collision safety detection time, and the lane-changing virtual line of action; when abnormal lane-changing is detected, according to The positional relationship between the current vehicle and the lane-changing virtual line of action, the traveling collision safety detection time, and the retreating collision safety detection time determine a collision avoidance strategy, and control the current vehicle to execute the collision avoidance strategy;
  • the at least one target vehicle includes vehicles in front of and behind the current vehicle in the original lane, and vehicles in front of and behind the current vehicle in the target lane.
  • the embodiment of the present application also provides an automatic lane-changing collision avoidance control device.
  • the automatic lane-changing collision avoidance control device includes: an information acquisition module configured to acquire the driving parameters of the current vehicle when the current vehicle performs a lane-changing operation , The driving parameters and road information of at least one target vehicle; an information determination module is configured to determine the travel collision safety detection time and return time according to the current driving parameters of the vehicle, the driving parameters of the at least one target vehicle, and the road information Draft collision safety detection time and lane-changing virtual line of action; the collision avoidance strategy determination module is set to when an abnormal lane-changing is detected, according to the positional relationship between the current vehicle and the lane-changing virtual line of action, and the traveling collision safety The detection time and the safety detection time of the retreat collision determine the collision avoidance strategy, and control the current vehicle to execute the collision avoidance strategy; wherein, the at least one target vehicle includes the vehicle in front of and behind the current vehicle in the original lane Vehicles, and vehicles in front of and behind the current vehicle in the target
  • An embodiment of the present application also provides a vehicle, which includes: one or more controllers; a storage device configured to store one or more programs; when one or more programs are executed by one or more controllers, One or more controllers are allowed to implement the automatic lane changing and collision avoidance control method as provided in any embodiment of the present application.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, which are used to execute the automatic lane changing and collision avoidance control method provided by any embodiment of the present application when the computer-executable instructions are executed by a computer processor.
  • Fig. 1 is a flowchart of a method for automatic lane changing and collision avoidance control in the first embodiment of the present application
  • FIG. 2 is a flowchart of a method for automatic lane changing and collision avoidance control in the second embodiment of the present application
  • Fig. 3 is an example diagram of a virtual line of action for lane changing in the second embodiment of the present application
  • FIG. 4 is a flowchart of a method for controlling collision avoidance when a vehicle changes lanes in the third embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an automatic lane changing and collision avoidance control device in the fourth embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a vehicle in the fifth embodiment of the present application.
  • FIG. 1 is a flowchart of a method for automatic lane changing and collision avoidance control provided by Embodiment 1 of this application. This embodiment is applicable to the situation where the collision avoidance strategy is determined when the vehicle encounters an abnormal situation of the lane change during the automatic lane change.
  • the method can be executed by the automatic lane change collision avoidance control device, which can Realized by software and/or hardware, the automatic lane changing and collision avoidance control device can be configured on a computing device, including the following steps.
  • the driving parameter of the current vehicle can be understood as a characteristic value used to represent the driving state of the current vehicle at the current moment.
  • the driving parameters of the current vehicle may include the longitudinal velocity value of the current vehicle, the longitudinal acceleration value of the current vehicle, the lateral velocity value of the current vehicle, the lateral acceleration value of the current vehicle, the position of the current vehicle, and the like.
  • the above-mentioned current vehicle driving parameters can be collected through the electronic stability program (ESP) of the vehicle body and multiple cameras and radars installed on the vehicle body.
  • ESP electronic stability program
  • the target vehicle can be understood as a vehicle that can threaten the current vehicle in the automatic lane change process.
  • the at least one target vehicle may include vehicles in front of and behind the current vehicle in the original lane when the current vehicle is not changing lanes, and vehicles in front of and behind the current vehicle in the target lane that the current vehicle expects to enter when changing lanes.
  • the driving parameter of the target vehicle can be understood as a characteristic value used to represent the driving state of the target vehicle at the current moment.
  • the driving parameters of the target vehicle may include the longitudinal speed value of the target vehicle, the longitudinal acceleration value of the target vehicle, the lateral speed value of the target vehicle, the lateral acceleration value of the target vehicle, the position of the target vehicle, and the like.
  • the above-mentioned driving parameters of the target vehicle can be collected by multiple cameras and radars installed on the body of the current vehicle.
  • Road information can be understood as the road surface information of the current vehicle's driving lane and the target lane that the vehicle wants to enter.
  • it may include lane line information of the original lane and the target lane.
  • the above road information can be collected by multiple cameras installed on the current vehicle body.
  • the parameters obtained above are used as the driving parameters of the current vehicle; at the same time, multiple cameras and radars installed on the body of the current vehicle are used to obtain the front and rear of the current vehicle in the lane where the current vehicle is located, and the front and rear of the current vehicle in the target lane.
  • S102 Determine the travel collision safety detection time, the retreat collision safety detection time, and the lane-changing virtual line of action according to the current driving parameters of the vehicle, the driving parameters of the at least one target vehicle, and road information.
  • the travel collision safety detection time can be understood as the shortest time for the current vehicle to keep the current travel speed unchanged and the target vehicle in the target lane when changing lanes; the back collision safety detection time can be understood as the current vehicle maintaining the current travel speed unchanged , The shortest time to collide with the target vehicle in the original lane when retreating from the current position to the original lane; the virtual line of action of the lane change can be understood as the lane line based on the overlap of the target lane and the original lane (the lane line shared by the target lane and the original lane) )
  • the virtual lines of action located on both sides of the overlapped lane line, where the position is determined, are used to assist in judging the current position of the current vehicle and the danger of traveling and retreating.
  • the calculation of each target vehicle and The current collision safety detection time between vehicles, and the minimum collision safety detection time among the collision safety detection times corresponding to all target vehicles in the target lane is determined as the traveling collision safety detection time, and the collisions corresponding to all target vehicles in the original lane of the current vehicle are determined
  • the minimum collision safety detection time in the safety detection time is determined as the fallback collision safety detection time.
  • the lane line is offset to the side of the original lane where the vehicle is located by the first preset distance to determine a virtual line of action as the allowable retreat line of action. Offset the second preset distance to the target lane side of the current vehicle's lane-changing operation. Determine a virtual line of action as the line of action forbidden to retreat, and use the above-mentioned allowable and forbidden retreat lines of action as the virtual line of action for lane change .
  • the collision avoidance strategy is determined according to the positional relationship between the current vehicle and the lane change virtual line of action, the travel collision safety detection time, and the retreat collision safety detection time, and the current vehicle is controlled to execute the collision avoidance strategy.
  • An abnormal lane change can be understood as a situation where the current vehicle cannot continue to change lanes according to the pre-calculated lane change trajectory.
  • the lane-changing abnormality may include stopping the lane-changing actively triggered by the driver, stopping the lane-changing when the vehicle detects the risk of collision during the lane-changing process, and stopping the lane-changing caused by the current vehicle's own conditions, etc.
  • the collision avoidance strategy can be understood as a driving strategy plan that allows the current vehicle to avoid collisions during lane changes, and may include a retreat strategy for returning to the original lane and a travel strategy for continuing to change lanes.
  • the current position of the current vehicle When the current vehicle judges that the driver wants to stop changing lanes through the received driver’s operation, or when the vehicle body electronic stability system ESP, camera, radar and other detection equipment determine that there is a risk of collision when changing lanes, the current position of the current vehicle The relative positional relationship between the virtual lines of action of the lanes, determine the relative positional relationship of the current vehicle with the original lane and the target lane during lane changing, and judge according to the travel collision safety detection time and the retreat collision safety detection time under the current position relationship The collision risk of the current vehicle continuing to change lanes and returning to the original lane. According to the judgment result, select the driving strategy with less collision risk as the determined collision avoidance strategy, and control the current vehicle to implement the collision avoidance strategy in a less risky manner Driving.
  • the technical solution of this embodiment obtains the driving parameters of the current vehicle, the driving parameters of the target vehicle, and road information when the current vehicle is performing lane-changing operations; according to the driving parameters of the current vehicle, the driving parameters of the target vehicle, and The road information determines the travel collision safety detection time, the retreat collision safety detection time and the lane-changing virtual line of action; when the lane-changing abnormality is detected, according to the positional relationship between the current vehicle and the lane-changing virtual line of action, the The travel collision safety detection time and the retreat collision safety detection time determine the collision avoidance strategy, and control the current vehicle to execute the collision avoidance strategy; wherein, the target vehicle includes the front and rear of the current vehicle in the original lane , And vehicles in front of and behind the current vehicle in the target lane.
  • the target vehicle's driving parameters and road information can be determined.
  • the lane-changing abnormality can be detected in the current vehicle According to the current position of the current vehicle in the lane at the current moment, as well as the travel collision safety detection time and the retreat collision safety detection time, respectively determine the collision risk of the current vehicle continuing to change lanes and returning to the original lane, and based on the judgment results choose the least risky plan as the collision avoidance strategy, so that the current vehicle drives in accordance with the collision avoidance strategy.
  • This method solves the problem that it is difficult to determine the lowest risk collision avoidance strategy when the vehicle encounters an abnormal situation in the automatic lane changing process, and reduces the possibility of collision when the vehicle automatically changes lanes. Limit the avoidance of responsibility for the vehicle, reduce the severity of the collision when the collision cannot be avoided, and improve the safety of vehicle driving.
  • Fig. 2 is a flowchart of an automatic lane changing control method according to the second embodiment of the application.
  • the technical solution of this embodiment is described on the basis of the above technical solution, and the method includes the following steps.
  • the longitudinal velocity value of the current vehicle the longitudinal acceleration value of the current vehicle, the longitudinal velocity value of each target vehicle, the longitudinal acceleration value of each target vehicle, and the relationship between each target vehicle and the The longitudinal relative distance of the current vehicle is used to determine the collision safety detection time between each target vehicle and the current vehicle.
  • the collision safety detection time can be expressed as:
  • S203 Determine the minimum collision safety detection time among the collision safety detection times between all target vehicles in the target lane and the current vehicle as the traveling collision safety detection time.
  • the acquired collision safety detection time indicates that multiple target vehicles with the possibility of collision with the current vehicle are exchanged at the current speed of the current vehicle.
  • the collision time with the current vehicle is selected, and the smallest collision safety detection time among the obtained collision safety detection times is selected as the traveling collision safety detection time, which clarifies the collision risk of the current vehicle changing lanes to the target lane at the current time.
  • S204 Determine the minimum collision safety detection time among the collision safety detection times between all target vehicles in the original lane and the current vehicle as the fallback collision safety detection time.
  • the acquired collision safety detection time indicates that multiple collision safety detection times have the possibility of collision with the current vehicle
  • the smallest collision safety detection time among the obtained collision safety detection times is selected as the fallback collision safety detection time, which clarifies that the current vehicle is at the current time Abandon the lane change and return to the original lane of collision risk.
  • S205 Determine a lane-changing virtual line of action according to the current vehicle position and the position of the lane line shared by the target lane and the original lane.
  • FIG. 3 is an example diagram of a virtual line of action for lane changing provided in an embodiment of the application.
  • Y is the horizontal distance
  • the left is positive
  • X is the longitudinal distance
  • the forward is positive to construct the vehicle coordinate system.
  • the distance between the center of the current vehicle and the lane line is C 0
  • the lane line is offset to the side of the original lane where the current vehicle is located by the first preset distance offset1
  • a virtual line of action is determined as the allowable retreat line of action
  • the distance C′ 0 between the allowable retreat line of action and the current vehicle center is expressed as:
  • Offset the lane line to the side of the target lane where the current vehicle performs lane-changing operations by a second preset distance offset2 to determine a virtual line of action as the line of action forbidden to retreat, the distance between the line of action forbidden to retreat and the current vehicle center C" 0 means:
  • the line of action allowing retreat and the line of action prohibiting retreat are regarded as virtual lines of action for lane change.
  • Lane-changing abnormalities may include stop-changing lanes triggered by the driver, stop-changing lanes when the current vehicle detects a risk of collision during the lane-changing process, and stop changing lanes caused by the current vehicle's own conditions.
  • the stop of lane change triggered by the driver may include: the driver actively dials the turn signal, the driver turns the steering wheel in the opposite direction, the driver actively decelerates below the lane-changing threshold speed, and the driver actively increases the speed to the lane-changing threshold speed.
  • stop and change lanes by detecting the risk of collision may include: the vehicle in front of the target lane suddenly decelerates, the vehicle behind the target lane suddenly accelerates, the vehicle in the third lane suddenly cuts into the lane (the current lane of the current vehicle), the lane The vehicle in front decelerates suddenly, the vehicle behind in the lane suddenly accelerates, etc.; the stop and change lanes caused by the current vehicle's own conditions may include: the current vehicle follows the preceding vehicle to decelerate below the critical speed, and the current vehicle follows the preceding vehicle to accelerate to above the critical speed.
  • the position relationship between the current vehicle and the virtual line of action of the lane change is determined according to the camera installed on the vehicle body, so as to determine the current vehicle travel and the lane change based on the position relationship. Collision risk of rollback.
  • the relationship between the current vehicle and the virtual line of action for lane change can be divided into: 1) The front wheel of the current vehicle has not crossed the allowable retreat line of action, that is, the lane change behavior of the current vehicle has just begun and has not deviated from the original lane; 2) The current vehicle The front wheel is located between the line of action of allowing retreat and the line of action of prohibiting retreat, that is, the current vehicle’s lane change has been in progress for a period of time, and it is in the process of switching from the original lane to the target lane to cross the lane line; 3) the current vehicle’s When the rear wheel crosses the line of action forbidden to retreat, that is, the current lane change behavior of the vehicle is nearing the end, and the vehicle has almost completely entered the target lane.
  • step S208 is executed at this time; if the traveling collision safety detection time is greater than the first preset threshold, it is considered that the current vehicle continues to change lanes to the target lane and is less likely to collide, and step S209 is executed at this time.
  • the first preset threshold is time data set based on empirical values. When the travel collision safety detection time is less than the first preset threshold, it is considered that the current vehicle is more likely to collide in the longitudinal driving of the target lane.
  • the threshold can be set in advance, and different empirical values can be set for different vehicles, which is not limited in the embodiment of the present application.
  • the current vehicle position is on the lane line shared by the target lane and the original lane, and is in the state of crossing the lane line. If the lane change operation is cancelled, the vehicles in the original lane and the vehicles in the target lane may cause greater danger to the current vehicle. Therefore, it is necessary to comprehensively consider the traveling collision safety detection time and the retreat collision safety detection time according to the traveling collision.
  • the magnitude relationship between the safety detection time, the safety detection time of the retreat collision, the first preset threshold and the second preset threshold determines the collision avoidance strategy.
  • the second preset threshold is similar to the first preset threshold, and both are time data set based on empirical values.
  • the second preset threshold When the retreat collision safety detection time is less than the second preset threshold, it is considered the probability of a collision during longitudinal driving back to the original lane If it is larger, the second preset threshold can be obtained in advance, and different empirical values can be set for different vehicles, which is not limited in the embodiment of the present application.
  • the collision avoidance strategy is determined according to the magnitude relationship between the traveling collision safety detection time, the retreat collision safety detection time, the first preset threshold and the second preset threshold, including the following steps.
  • the travel collision safety detection time is greater than the first preset threshold, it can be considered that the current vehicle continues to change lanes to the target lane and the collision is less likely.
  • the collision avoidance strategy can be determined as the driving strategy to continue the lane change; and
  • the travel collision safety detection time is less than the first preset threshold, it can be considered that the current vehicle continues to change lanes to the target lane and there is a greater possibility of collision.
  • the retreat collision safety detection time is less than the second preset threshold, it can be considered that the current vehicle retreats to the original lane has a greater possibility of collision, and at the same time, changes to the target lane also have a greater possibility of collision At this time, it is difficult to choose a suitable collision avoidance strategy to make the automatic lane change continue, and it is necessary for the driver to intervene and choose a suitable driving style to reduce the possibility of collision.
  • the current vehicle Before the driver takes over the current vehicle, in order to avoid horizontal and vertical loss of control of the current vehicle, the current vehicle is controlled to ride along the lane line where the original lane and the target lane overlap, and an alarm is issued by lighting double flashing warning lights. Optionally, you can exit after 2s riding on the line, or the driver can manually exit the riding mode after taking over the current vehicle.
  • Controlling the current vehicle to drive on a lane includes: controlling the current vehicle to drive on a trajectory with a lateral distance less than a preset deviation value according to the lateral distance between the center line of the current vehicle and the nearest lane line.
  • the nearest lane line is the shared lane line.
  • the lateral distance between the current vehicle center and the lane line can be understood as the distance between the current vehicle and the lane line.
  • the current vehicle is controlled to drive along the lane line with a trajectory with a lateral distance less than the preset deviation value, so as to realize the riding of the lane line.
  • the collision avoidance strategy is a traveling strategy; when the traveling collision safety detection time is less than the retreat collision safety detection time, it can be considered that the current vehicle continues to change lanes to the target lane in the current driving state, and the possibility of collision is greater than that of retreating to the original lane. Therefore, the collision avoidance strategy is determined as a fallback strategy at this time.
  • a "safety responsibility model” can also be constructed.
  • the model uses a certain weighting factor to express the implementation plan for achieving the safe state of changing lanes.
  • the weight setting is expressed as follows:
  • ETTC(mov) is the safety detection time of traveling collision
  • ETTC(ret) is the safety detection time of retreat collision
  • ETTC is the collision time to reach the final lane-changing safety state
  • is the risk factor of lane-changing travel
  • is the risk of lane-changing rollback factor.
  • ETTC can be understood as the vehicle changing lanes at the current speed, and after the lane change is completed, the closest distance to the vehicle on the target lane is the collision time of the safe distance D safe , which can pass the longitudinal distance between the current vehicle and the target vehicle, the safe distance and the vehicle The driving speed is calculated, and it can be considered that this value is a set threshold for the risk determination of lane change.
  • the collision avoidance strategy is determined as the marching strategy at this time.
  • the current vehicle is controlled to follow the target vehicle after the target vehicle decelerates. If the deceleration of the target vehicle causes the current vehicle to trigger the emergency braking function, it will exit the automatic lane change and issue an alarm , And make the driver take over the current vehicle.
  • the collision avoidance strategy is a retreat strategy
  • plan a retreat trajectory for the current vehicle and control the current vehicle to retreat to the original lane along the retreat trajectory
  • plan a new lane change for the current vehicle Trajectory plan a new lane change for the current vehicle Trajectory, and control the current vehicle to continue to change lanes to the target lane along the new lane-changing trajectory.
  • the technical solution of this embodiment determines the lane-changing state according to the lane-changing virtual line of action determined by the lane line shared by the original lane and the target lane and the current position of the vehicle itself when the lane-changing operation encounters a lane-changing abnormality.
  • the current vehicle continues to change lanes and retreat to the original lane to determine the possibility of collision, and choose the driving strategy with less collision probability as collision avoidance Strategy, and control the current vehicle to drive according to the collision avoidance strategy.
  • exit the automatic lane-changing control in time to allow the driver to take over, and to maintain the riding line before taking over to minimize the possibility of collision and improve the safety of current vehicle driving.
  • FIG. 4 is a flowchart of a method for controlling collision avoidance when a vehicle changes lanes according to the third embodiment of the application.
  • the technical solution of this embodiment is described on the basis of the above-mentioned technical solution.
  • the method before the vehicle enters the automatic lane change, the method includes the following steps.
  • the automatic lane changing conditions include that the risk of lateral movement collision time is greater than the third preset threshold, and the current vehicle collision safety detection time is greater than the first preset threshold.
  • the radar installed on the body determines whether there is a vehicle with a lateral overlap with the current vehicle.
  • the vehicle is regarded as the target vehicle And obtain the lateral velocity value, lateral acceleration value, and lateral relative distance of the vehicle relative to the current vehicle, and at the same time obtain the lateral velocity value and lateral acceleration value of the current vehicle, determine the lateral movement risk collision time according to the above-obtained parameters.
  • the mobile risk collision time can be expressed as:
  • V 'TV can be represented as a lateral velocity value of the target vehicle
  • V' SV can be expressed as a current lateral speed value of the vehicle
  • a 'TV may be expressed as the lateral acceleration value of the target vehicle
  • a' SV can be expressed as current vehicle lateral acceleration Value
  • X'c can be expressed as the lateral distance between the target vehicle and the current vehicle.
  • the lateral movement risk collision time is greater than the third preset threshold, it can be considered that the vehicle that has a lateral overlap with the current vehicle will not pose a collision threat to the current vehicle's lane change.
  • the traveling collision safety detection time is greater than the first preset threshold , It can be considered that the vehicle in the target lane to which the current vehicle will change lanes will not pose a collision threat to the current vehicle, so when both conditions are met, the current vehicle is considered to meet the automatic lane changing conditions.
  • step S302 is executed, and when the current vehicle does not meet the automatic lane changing condition, step S303 is executed.
  • the third preset threshold is time data set according to an empirical value, which cannot be limited in the embodiment of the present application.
  • the determination of the lane-changing trajectory includes obtaining the current speed of the current vehicle, the yaw rate, the lateral distance between the center of the vehicle and the lane line shared by the target lane and the original lane, and the angle of the current vehicle relative to the centerline of the target lane. Substitute the above parameters into The lane line equation can obtain the lane-changing trajectory, and control the current vehicle to enter the automatic lane-changing process according to the lane-changing trajectory.
  • lane line equation can be expressed as follows:
  • the coordinate system is the vehicle coordinate system constructed with the vehicle center of the current vehicle as the origin, Y is the lateral distance, left is positive, X is the longitudinal distance, forward is positive, the constructed vehicle coordinate system, ⁇ s is the current vehicle’s yaw rate, V X is the speed of the current vehicle at the current moment, ⁇ is the angle of the current vehicle relative to the center line of the target lane, and C 0 is the lateral distance between the center of the vehicle head and the lane line shared by the original lane in the target lane.
  • S303 Control the current vehicle to decelerate and update the lane-changing trajectory, and determine whether the current vehicle satisfies the automatic lane-changing condition.
  • the current vehicle does not meet the automatic lane changing conditions, it can be considered that the current vehicle has at least one of the two problems of lateral vehicles and excessive speed.
  • the existence of lateral vehicles is not controllable by the current vehicle.
  • Control the deceleration of the current vehicle and recalculate the lane-changing trajectory according to the driving parameters of the current vehicle after deceleration and update the lane-changing trajectory.
  • the current vehicle meets the automatic lane switching conditions
  • the current vehicle is controlled to automatically change lanes according to the updated lane-changing trajectory.
  • the current vehicle does not meet the automatic lane-changing conditions, perform this step again to update the lane-changing trajectory.
  • S306 When an abnormal lane change is detected, determine a collision avoidance strategy according to the positional relationship between the current vehicle and the lane change virtual line of action, the travel collision safety detection time, and the retreat collision safety detection time, and control the current vehicle to execute the collision avoidance strategy.
  • the technical solution of this embodiment before the current vehicle enters the automatic lane change, is calculated by calculating the lateral movement risk collision time of the target vehicle that has a lateral overlap with the current vehicle and the collision safety detection time of the target vehicle in the target lane.
  • the lane-changing trajectory is determined according to the driving parameters of the current vehicle at the current time when the above parameters meet the conditions of automatic lane-changing, and the current vehicle is driven to automatically change lanes according to the lane-changing trajectory, which reduces the collision of the current vehicle during automatic lane-changing. The possibility of improving the safety of current vehicle driving.
  • FIG. 5 is a schematic structural diagram of an automatic lane changing and collision avoidance control device provided in the fourth embodiment of the application.
  • the automatic lane changing and collision avoidance control device includes: an information acquisition module 41, an information determination module 42 and a collision avoidance strategy determination module 43.
  • the information acquiring module 41 is configured to acquire the driving parameters of the current vehicle, the driving parameters of at least one target vehicle, and road information when the current vehicle is performing lane-changing operations;
  • the information determining module 42 is configured to acquire the driving parameters of the current vehicle, The driving parameters of the at least one target vehicle and the road information determine the travel collision safety detection time, the retreat collision safety detection time, and the lane-changing virtual line of action;
  • the collision avoidance strategy determination module 43 is set to when an abnormal lane-changing is detected At the time, the collision avoidance strategy is determined according to the positional relationship between the current vehicle and the lane-changing virtual line of action, the traveling collision safety detection time, and the retreat collision safety detection time, and the current vehicle is controlled to execute the avoidance strategy. Collision strategy.
  • the technical solution of this embodiment solves the problem that it is difficult to determine the lowest risk collision avoidance strategy when the current vehicle encounters an abnormal situation in the automatic lane change process, and reduces the possibility of collision when the current vehicle automatically changes lanes abnormally. It reduces the severity of collisions in the case of unavoidable collisions, and improves the safety of current vehicle driving.
  • the at least one target vehicle includes vehicles in front of and behind the current vehicle in the original lane, and vehicles in front of and behind the current vehicle in the target lane;
  • the driving parameters of the current vehicle include at least the longitudinal speed value of the current vehicle, The longitudinal acceleration value of the current vehicle and the position of the current vehicle;
  • the driving parameter of the at least one target vehicle includes at least the longitudinal velocity value of each target vehicle, the longitudinal acceleration value of each target vehicle and the position of each target vehicle; lane change
  • the virtual line of action includes the line of action that allows rollback and the line of action that prohibits rollback.
  • the information determining module 42 includes: a safety detection time determining unit, configured to determine the current vehicle longitudinal velocity value, the current vehicle longitudinal acceleration value, the longitudinal velocity value of each target vehicle, and the The longitudinal acceleration value of each target vehicle and the longitudinal relative distance between each target vehicle and the current vehicle determine the collision safety detection time between each target vehicle and the current vehicle.
  • the virtual line of action determining unit is configured to determine the lane-changing virtual line of action according to the position of the current vehicle and the position of the lane line shared by the target lane and the original lane.
  • the safety detection time determination unit is configured to determine the minimum collision safety detection time among the collision safety detection times between all target vehicles in the target lane and the current vehicle as the traveling collision safety detection time; The minimum collision safety detection time among the collision safety detection times between all target vehicles in the lane and the current vehicle is determined as the retreat collision safety detection time.
  • the collision avoidance strategy determination module 43 is configured to determine whether the traveling collision safety detection time is less than a first preset threshold when the front wheels of the current vehicle do not cross the allowable retreat line of action, If the traveling collision safety detection time is less than the first preset threshold, the collision avoidance strategy is determined to be a fallback strategy, the traveling collision safety detection time is greater than or equal to the first preset threshold, and the collision avoidance strategy is determined to be Travel strategy; when the front wheels of the current vehicle are located between the line of action allowing retraction and the line of action forbidden to retreat, according to the traveling collision safety detection time, the retraction collision safety detection time, the first The magnitude relationship between a preset threshold and a second preset threshold determines a collision avoidance strategy; when the rear wheel of the current vehicle crosses the line of action forbidden to retreat, it is determined that the collision avoidance strategy is a travel strategy.
  • the collision avoidance strategy is determined according to the magnitude relationship between the traveling collision safety detection time, the retreat collision safety detection time, the first preset threshold and the second preset threshold, including: when the traveling collision safety detection time is greater than all When the first preset threshold value, it is determined that the collision avoidance strategy is a travel strategy; when the travel collision safety detection time is less than or equal to the first preset threshold value, it is determined whether the retreat collision safety detection time is less than The second preset threshold, if the return collision safety detection time is less than the second preset threshold, control the current vehicle to ride a lane and issue an alarm; if the return collision safety detection time is greater than Or equal to the second preset threshold, the collision avoidance strategy is determined according to the traveling collision safety detection time and the retreat collision safety detection time.
  • the determining the collision avoidance strategy according to the traveling collision safety detection time and the retracting collision safety detection time includes: when the traveling collision safety detection time is greater than the retracting collision safety detection time, determining the The collision avoidance strategy is a traveling strategy; when the traveling collision safety detection time is less than the retreat collision safety detection time, it is determined that the collision avoidance strategy is a retreat strategy.
  • the device further includes: a lane-changing trajectory determining module, configured to determine whether the current vehicle meets the automatic lane-changing condition; if the current vehicle meets the automatic lane-changing condition, control the current vehicle to perform automatic lane change according to the determined lane-changing trajectory Lane changing; if the current vehicle does not meet the automatic lane changing conditions, control the current vehicle to slow down and update the lane changing trajectory, and determine whether the current vehicle meets the automatic lane changing conditions.
  • the automatic lane changing conditions include that the lateral movement risk collision time is greater than a third preset threshold, and the current vehicle collision safety detection time is greater than a first preset threshold.
  • the determination of the lane-changing trajectory includes: acquiring the current speed of the current vehicle, the yaw rate, the lateral distance between the center of the vehicle head and the lane line shared with the original lane in the target lane, and the current vehicle relative to the center of the target lane The angle of the line; the current speed of the current vehicle, the yaw rate, the lateral distance between the center of the vehicle head and the lane line shared with the original lane in the target lane, and the angle of the current vehicle relative to the center line of the target lane Substitute into the lane line equation to determine the lane change trajectory.
  • the automatic lane-changing collision avoidance control device provided by the embodiment of the present application can execute the automatic lane-changing collision avoidance control method provided by any embodiment of the present application, and has functional modules corresponding to the execution method.
  • FIG. 6 is a schematic structural diagram of a vehicle provided in Embodiment 5 of this application.
  • the vehicle includes a controller 51, a storage device 52, an input device 53 and an output device 54.
  • the number of controllers 51 in the vehicle may be one or more. In FIG. 6, one controller 51 is taken as an example.
  • the controller 51, the storage device 52, the input device 53, and the output device 54 in the vehicle may be connected by a bus or other methods. In FIG. 6, the connection by a bus is taken as an example.
  • the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules (for example, information Obtaining module 41, information determining module 42, and collision avoidance strategy determining module 43).
  • the controller 51 executes various functional applications and data processing of the vehicle by running the software programs, instructions, and modules stored in the storage device 52, that is, realizes the aforementioned automatic lane changing and collision avoidance control method.
  • the storage device 52 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the storage device 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 52 may include memories remotely provided with respect to the controller 51, and these remote memories may be connected to the vehicle through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 53 may be configured to receive input numeric or character information, and generate key signal inputs related to user settings and function control of the vehicle.
  • the output device 54 may include a display device such as a display screen.
  • the sixth embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute an automatic lane changing and collision avoidance control method, which includes: During the lane change operation, obtain the current driving parameters of the vehicle, the driving parameters of at least one target vehicle, and road information; determine the traveling collision according to the current driving parameters of the current vehicle, the driving parameters of the at least one target vehicle, and the road information Safety detection time, retreat collision safety detection time and lane-changing virtual line of action; when a lane-changing abnormality is detected, according to the positional relationship between the current vehicle and the lane-changing virtual line of action, the traveling collision safety detection time, and the The retreat collision safety detection time determines the collision avoidance strategy, and controls the current vehicle to execute the collision avoidance strategy; wherein the at least one target vehicle includes vehicles in the original lane in front of and behind the current vehicle, and the target lane Vehicles in front of and behind the current vehicle described in.
  • the storage medium containing computer-executable instructions provided by the embodiments of the present application is not limited to the method operations described above, and can also execute the automatic lane changing and collision avoidance provided by any embodiment of the present application. Related operations in the control method.
  • this application can be implemented by software and general-purpose hardware, and of course, it can also be implemented by hardware.
  • the technical solution of this application essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer) , A server, or a network device, etc.) execute the methods described in multiple embodiments of the present application.
  • a computer-readable storage medium such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, more The names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种自动换道避撞控制方法,包括:在当前车辆进行换道操作时,获取当期车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息(S101);根据当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线(S102);当检测到换道异常时,根据当前车辆与换道虚拟作用线的位置关系、行进碰撞安全检测时间以及回退碰撞安全检测时间确定避撞策略,并控制当前车辆执行避撞策略(S103)。还公开了一种自动换到避撞控制装置、一种车辆以及一种存储介质。

Description

自动换道避撞控制方法、装置、车辆及存储介质
本申请要求在2020年06月24日提交中国专利局、申请号为202010591875.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动驾驶控制技术领域,例如涉及一种自动换道避撞控制方法、装置、车辆及存储介质。
背景技术
车辆自动驾驶功能发展如火如荼,车辆自动驾驶功能实现了解放驾驶员双手双脚的同时甚至无需驾驶员眼睛注视前方,且一旦设置了导航目的地,驾驶员可实现不接管车辆。自动驾驶汽车中包含了多种自主决策及控制任务,其中包含自主控制对中,自主控制换道,自主导航路径规划等,为保证自动驾驶的安全性,需要对自动驾驶过程中的多类异常工况采取必要措施以实现风险最小化。
对于车辆自动换道的主动安全防碰撞的处理方法,主要采用的是通过探测相邻车道上是否存在影响换道的目标来判断车辆是否可以换道。例如设置换道危险避撞的阈值,当检测到邻车道上存在的目标与本车距离小于阈值时本车停止换道并继续在原车道上行驶。
然而,在自动换道过程中,驾驶员的操作状态、车辆状态姿态等信息均会对换道决策产生影响,且在换道过程中若本车直接停止换道并返回原行驶车道也可能造成本车与原行驶车道上车辆的碰撞,而可能带来更大的危险。
发明内容
本申请提供一种自动换道避撞控制方法、装置、车辆及存储介质,以实现车辆换道过程中遭遇换道异常时对车辆的避撞控制,减少了车辆自动换道异常时碰撞的可能性,并降低了无法避撞情况下碰撞的严重性,提高了车辆驾驶的安全性。
本申请实施例提供了一种自动换道避撞控制方法,包括:在当前车辆进行换道操作时,获取所述当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息;根据所述当前车辆的行驶参数、所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换 道虚拟作用线;当检测到换道异常时,根据所述当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;其中,所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆。
本申请实施例还提供了一种自动换道避撞控制装置,该自动换道避撞控制装置包括:信息获取模块,设置为在当前车辆进行换道操作时,获取所述当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息;信息确定模块,设置为根据所述当前车辆的行驶参数、所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;避撞策略确定模块,设置为当检测到换道异常时,根据所述当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;其中,所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆。
本申请实施例还提供了一种车辆,所述车辆包括:一个或多个控制器;存储装置,设置为存储一个或多个程序;当一个或多个程序被一个或多个控制器执行,使得一个或多个控制器实现如本申请任意实施例中提供的自动换道避撞控制方法。
本申请实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如本申请任意实施例提供的自动换道避撞控制方法。
附图说明
图1是本申请实施例一中的一种自动换道避撞控制方法的流程图;
图2是本申请实施例二中的一种自动换道避撞控制方法的流程图;
图3是本申请实施例二中的一种换道虚拟作用线的示例图;
图4是本申请实施例三中的一种自车换道避撞控制方法的流程图;
图5是本申请实施例四中的一种自动换道避撞控制装置的结构示意图;
图6是本申请实施例五中的一种车辆的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的 实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构
实施例一
图1为本申请实施例一提供的一种自动换道避撞控制方法的流程图。本实施例可适用于车辆在自动换道过程中遇到换道异常情况时确定避撞策略的情况,该方法可以由自动换道避撞控制装置来执行,该自动换道避撞控制装置可以由软件和/或硬件来实现,该自动换道避撞控制装置可以配置在计算设备上,包括如下步骤。
S101、在当前车辆进行换道操作时,获取当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息。
当前车辆的行驶参数可理解为用于表示当前车辆在当前时刻行驶状态的特征值。可选的,当前车辆的行驶参数可包括当前车辆的纵向速度值、当前车辆的纵向加速度值、当前车辆的横向速度值、当前车辆的横向加速度值、当前车辆的位置等。上述当前车辆的行驶参数可通过车身电子稳定系统(Electronic Stability Program,ESP)以及安装于车身的多个摄像头与雷达采集得到。
目标车辆可理解为能够对当前车辆在自动换道过程中产生碰撞威胁的车辆。可选的,至少一个目标车辆可包括当前车辆未进行换道时的原车道中当前车辆的前方和后方的车辆,以及当前车辆进行换道时期望进入的目标车道中当前车辆的前方和后方的车辆。目标车辆的行驶参数可理解为用于表示目标车辆在当前时刻行驶状态的特征值。可选的,目标车辆的行驶参数可包括目标车辆的纵向速度值、目标车辆的纵向加速度值、目标车辆的横向速度值、目标车辆的横向加速度值、目标车辆的位置等。上述目标车辆的行驶参数可通过安装于当前车辆车身的多个摄像头与雷达采集得到。
道路信息可理解为当前车辆采集的所在行驶车道以及所希望换道进入的目标车道的路面信息。可选的,可包括原车道与目标车道的车道线信息。上述道路信息可由安装于当前车辆车身的多个摄像头采集得到。
通过当前车辆的车身电子稳定系统ESP获取当前车辆进行换道操作时的当前车辆的横纵向速度值、当前车辆的横纵向加速度值,通过安装于车身的多个摄像头与雷达确定当前车辆的位置,并将上述获取的参数作为当前车辆的行驶参数;同时通过安装于当前车辆车身的多个摄像头与雷达获取分别位于当前车辆所处车道中当前车辆的前后方,以及目标车道中当前车辆的前后方的目标车辆的横纵向速度值、目标车辆的横纵向加速度值以及目标车辆的位置,并将上述获取的参数作为目标车辆的行驶参数;通过安装于当前车辆车身的多个摄像 头采集当前车辆所在行驶车道以及所希望换道进入的目标车道的车道线信息,并将上述信息作为道路信息。
S102、根据当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线。
行进碰撞安全检测时间可理解为当前车辆保持当前行进速度不变进行换道操作时与目标车道上目标车辆发生碰撞的最短时间;回退碰撞安全检测时间可理解为当前车辆保持当前行进速度不变,由当前位置回退至原车道时与原车道上目标车辆发生碰撞的最短时间;换道虚拟作用线可理解为根据目标车道与原车道重合的车道线(目标车道与原车道共用的车道线)位置确定的,位于该重合的车道线两侧的虚拟作用线,用以辅助判断当前车辆的当前位置以及行进和回退的危险性。
根据当前车辆的纵向速度值与当前车辆的纵向加速度值,每个目标车辆的纵向速度值与纵向加速度值,以及所述每个目标车辆与当前车辆的纵向相对距离计算所述每个目标车辆与当前车辆间的碰撞安全检测时间,并将目标车道中全部目标车辆对应的碰撞安全检测时间中的最小碰撞安全检测时间确定为行进碰撞安全检测时间,将当前车辆原车道中全部目标车辆对应的碰撞安全检测时间中的最小碰撞安全检测时间确定为回退碰撞安全检测时间。根据道路信息中获取的目标车道与原车道相重合的车道线的位置,该车道线向车辆所在原车道侧偏移第一预设距离确定一条虚拟作用线作为允许回退作用线,该车道线向当前车辆进行换道操作的目标车道侧偏移第二预设距离确定一条虚拟作用线作为禁止回退作用线,并将上述允许回退作用线和禁止回退作用线作为换道虚拟作用线。
S103、当检测到换道异常时,根据当前车辆与换道虚拟作用线的位置关系、行进碰撞安全检测时间以及回退碰撞安全检测时间确定避撞策略,并控制当前车辆执行避撞策略。
换道异常可理解为当前车辆无法继续按预先计算的换道轨迹进行换道的情况。可选的,换道异常可包括由驾驶员主动触发的停止换道,车辆在换道过程中检测到碰撞风险的停止换道以及当前车辆自身条件导致的停止换道等。
避撞策略可理解为使得当前车辆在换道过程中避免碰撞的行驶策略规划,可包括返回原车道的回退策略和继续进行换道行驶的行进策略。
当当前车辆通过接收到的驾驶员的操作判断驾驶员希望停止换道,或通过车身电子稳定系统ESP、摄像、雷达等检测设备确定出换道有碰撞风险时,根据当前车辆的当前位置与换道虚拟作用线间的相对位置关系,确定当前车辆在 换道行驶中与原车道和目标车道的相对位置关系,并在当前位置关系下根据行进碰撞安全检测时间和回退碰撞安全检测时间,判断当前车辆继续进行换道和回到原车道的碰撞风险大小,根据判断结果选取碰撞风险较小的行驶策略作为确定的避撞策略,并控制当前车辆执行该避撞策略以按照风险较小的方式行驶。
本实施例的技术方案,通过在当前车辆进行换道操作时,获取当前车辆的行驶参数、目标车辆的行驶参数及道路信息;根据所述当前车辆的行驶参数、所述目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;当检测到换道异常时,根据当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;其中,所述目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆。根据当前车辆换道时的当前车辆的行驶参数、目标车辆的行驶参数及道路信息确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线,可以在当前车辆检测到换道异常时,根据当前车辆的当前时刻在车道中所处的位置、以及行进碰撞安全检测时间和回退碰撞安全检测时间,分别判断当前车辆继续换道和回到原车道的碰撞风险,并根据判断结果选择风险最小的方案作为避撞策略,使得当前车辆按照避撞策略行驶。该方法解决了车辆在自动换道过程中遇到换道异常情况时难以确定风险最低避撞策略的问题,减小了车辆自动换道异常时发生碰撞的可能性,同时在碰撞不可避免时最大限度为本车进行避责,降低了无法避撞情况下碰撞的严重性,提高了车辆驾驶的安全性。
实施例二
图2为本申请实施例二提供的一种自动换道控制方法的流程图。本实施例的技术方案在上述技术方案的基础上进行说明,该方法包括如下步骤。
S201、在当前车辆进行换道操作时,获取所述当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息。
S202、根据所述当前车辆的纵向速度值、所述当前车辆的纵向加速度值、每个目标车辆的纵向速度值、所述每个目标车辆的纵向加速度值、以及所述每个目标车辆与所述当前车辆的纵向相对距离,确定所述每个目标车辆与所述当前车辆的碰撞安全检测时间。
将当前车辆的纵向速度值表示为V SV,将当前车辆的纵向加速度值表示为a SV,将目标车辆的纵向速度值表示为V TV,将目标车辆的纵向加速度值表示为a TV,将纵向相对距离表示为X c,则碰撞安全检测时间可表示为:
Figure PCTCN2021101525-appb-000001
S203、将目标车道中全部目标车辆与当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为行进碰撞安全检测时间。
获取目标车道中多个具有与当前车辆碰撞可能性的目标车辆对应的碰撞安全检测时间,获取的碰撞安全检测时间表明多个具有与当前车辆碰撞可能性的目标车辆在当前车辆以当前速度进行换道时,与当前车辆发生碰撞的时间,选取获取的碰撞安全检测时间中最小的碰撞安全检测时间作为行进碰撞安全检测时间,明确了当前车辆在当前时刻换道行驶至目标车道的碰撞风险。
S204、将原车道中全部目标车辆与当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为回退碰撞安全检测时间。
获取本车道未进行换道时所处的原车道中多个具有与当前车辆碰撞可能性的目标车辆对应的碰撞安全检测时间,获取的碰撞安全检测时间表明多个具有与当前车辆碰撞可能性的目标车辆在当前车辆以当前速度返回原车道时,与当前车辆发生碰撞的时间,选取获取的碰撞安全检测时间中最小的碰撞安全检测时间作为回退碰撞安全检测时间,明确了当前车辆在当前时刻放弃换道行驶,回退至原车道的碰撞风险。
S205、根据当前车辆的位置及目标车道与原车道共用的车道线的位置确定换道虚拟作用线。
示例性的,图3为本申请实施例提供的一种换道虚拟作用线的示例图。以当前车辆的车辆中心为原点,Y为横向距离,向左为正,X为纵向距离,向前为正,构建车辆坐标系。由图3可知,当前车辆中心与车道线间的距离为C 0,将该车道线向当前车辆所在原车道一侧偏移第一预设距离offset1,确定一条虚拟作用线作为允许回退作用线,该允许回退作用线与当前车辆中心间的距离C′ 0表示为:
C′ 0=C 0-offset1
将该车道线向当前车辆进行换道操作的目标车道侧偏移第二预设距离offset2确定一条虚拟作用线作为禁止回退作用线,该禁止回退作用线与当前车辆中心间的距离C" 0表示为:
C" 0=C 0+offset2
将允许回退作用线与禁止回退作用线作为换道虚拟作用线。
S206、当检测到换道异常时,确定当前车辆与换道虚拟作用线的位置关系。
换道异常可包括由驾驶员主动触发的停止换道、当前车辆在换道过程中检测到碰撞风险的停止换道以及当前车辆自身条件导致的停止换道等。可选的,由驾驶员主动触发的停止换道可包括:驾驶员主动拨回转向灯、驾驶员逆向转动方向盘、驾驶员主动减速到换道临界车速以下、驾驶员主动提速到换道临界车速以上等;由检测到碰撞风险的停止换道可包括:目标车道前车突然急减速、目标车道后车突然急加速、第三车道的车辆突然切入本车道(当前车辆当前所在车道)、本车道前车突然急减速、本车道后车突然急加速等;当前车辆自身条件导致的停止换道可包括:当前车辆跟随前车减速至临界车速以下、当前车辆跟随前车加速至临界车速以上等。
当当前车辆检测到上述任意一种情况时,认为换道发生异常,此时根据安装于车身的摄像头确定当前车辆与换道虚拟作用线间的位置关系,以根据该位置关系确定当前车辆行进和回退的碰撞风险。当前车辆与换道虚拟作用线间的关系可分为:1)当前车辆的前轮未穿越允许回退作用线,即当前车辆的换道行为刚刚开始,尚未偏出原车道;2)当前车辆的前轮位于允许回退作用线和禁止回退作用线之间,即当前车辆的换道行为已进行一段时间,处于由原车道切换至目标车道跨越车道线的过程中;3)当前车辆的后轮穿越禁止回退作用线,即当前车辆的换道行为已接近尾声,整车已基本完全驶入目标车道。
S207、当当前车辆的前轮未穿越允许回退作用线时,判断行进碰撞安全检测时间是否小于第一预设阈值。
当当前车辆的前轮未穿越允许回退作用线时,可认为当前车辆尚未离开原车道,此时若解除换道操作继续在原车道行驶危险性较小,因此无需对回退碰撞安全检测时间进行判断。比较此时计算得到的行进碰撞安全检测时间与第一预设阈值的大小关系,若行进碰撞安全检测时间小于第一预设阈值,则认为当前车辆继续向目标车道进行换道有较大的可能性发生碰撞,此时执行步骤S208;若行进碰撞安全检测时间大于第一预设阈值,则认为当前车辆继续向目标车道进行换道发生碰撞的可能性较小,此时执行步骤S209。
第一预设阈值为根据经验值设定的时间数据,当行进碰撞安全检测时间小于第一预设阈值时认为当前车辆在进入目标车道的纵向行驶中发生碰撞的几率较大,该第一预设阈值可由预先设置得到,对不同车辆可设置不同的经验值,本申请实施例对此不进行限制。
S208、确定避撞策略为回退策略。
S209、确定避撞策略为行进策略。
S210、当当前车辆的前轮位于允许回退作用线与禁止回退作用线之间时,根据行进碰撞安全检测时间、回退碰撞安全检测时间、第一预设阈值以及第二预设阈值间的大小关系确定避撞策略。
当当前车辆的前轮位于允许回退作用线与禁止回退作用线之间时,可认为当前车辆位置处于目标车道与原车道共用的车道线上,处于正在跨域车道线的状态,此时若解除换道操作,原车道上的车辆以及目标车道上的车辆均可能对当前车辆造成较大的危险性,因此需要综合考虑行进碰撞安全检测时间和回退碰撞安全检测时间,以根据行进碰撞安全检测时间、回退碰撞安全检测时间、第一预设阈值以及第二预设阈值间的大小关系确定避撞策略。第二预设阈值与第一预设阈值类似均为根据经验值设定的时间数据,当回退碰撞安全检测时间小于第二预设阈值时认为在退回原车道的纵向行驶中发生碰撞的几率较大,该第二预设阈值可由预先设置得到,对不同车辆可设置不同的经验值,本申请实施例对此不进行限制。
根据行进碰撞安全检测时间、回退碰撞安全检测时间、第一预设阈值以及第二预设阈值间的大小关系确定避撞策略,包括如下步骤。
S2101、当行进碰撞安全检测时间大于第一预设阈值时,确定避撞策略为行驶策略;当行进碰撞安全检测时间小于或等于第一预设阈值时,判断回退碰撞安全检测时间是否小于第二预设阈值。
当行进碰撞安全检测时间大于第一预设阈值时,可认为当前车辆继续向目标车道进行换道发生碰撞的可能性较小,此时可确定避撞策略为行驶策略以继续进行换道;而当行进碰撞安全检测时间小于第一预设阈值时,可认为当前车辆继续向目标车道进行换道有较大的可能性发生碰撞,此时需根据回退碰撞安全检测时间判断当前车辆返回原车道发生碰撞的可能性,并将行进与回退时发生碰撞的可能性进行对比以确定风险较小的避撞策略。
S2102、若回退碰撞安全检测时间小于第二预设阈值,控制当前车辆进行骑线行驶并发出警报。
当回退碰撞安全检测时间小于第二预设阈值时,可认为当前车辆回退至原车道有较大的可能性发生碰撞,与此同时,向目标车道进行换道也有较大可能性发生碰撞,此时难以选择合适的避撞策略使得自动换道继续进行,需要驾驶员进行干预并选择合适的驾驶方式以减少碰撞可能性。在驾驶员接管当前车辆前为避免当前车辆出现横纵向失控,控制当前车辆沿原车道与目标车道重合的车道线进行骑线行驶,并以点亮双闪警报灯等方式发出警报。可选的,可在进行2s骑线行驶后退出,也可由驾驶员在接管当前车辆后手动退出骑线行驶模式。
控制当前车辆进行骑线行驶,包括:根据当前车辆的中心线与最近车道线间的横向距离,控制当前车辆以横向距离小于预设偏差值的轨迹行驶。
由于当前车辆位置处于目标车道与原车道相邻的车道线上,故最近车道线即为该共用的车道线,当前车辆中心与该车道线间的横向距离可理解为当前车辆与车道线间的横向偏差,控制当前车辆沿车道线以横向距离小于预设偏差值的轨迹行驶,实现对该车道线的骑线行驶。
S2103、若回退碰撞安全检测时间大于第二预设阈值,则根据行进碰撞安全检测时间与回退碰撞安全检测时间确定避撞策略。
当行进碰撞安全检测时间大于回退碰撞安全检测时间时,可认为在当前行驶状态下当前车辆回退至原车道发生碰撞的可能性大于继续换道至目标车道发生碰撞的可能性,故此时确定避撞策略为行进策略;当行进碰撞安全检测时间小于回退碰撞安全检测时间时,可认为在当前行驶状态下当前车辆继续换道至目标车道发生碰撞的可能性大于回退至原车道发生碰撞的可能性,故此时确定避撞策略为回退策略。
在确定避撞策略时还可以构建一个“安全责任模型”,该模型通过一定的权重因子来表示对达到换道安全状态的实现方案,分别对行进碰撞安全检测时间和回退碰撞安全检测时间进行权重设置,表示如下:
αETTC(mov)+βETTC(ret)=ETTC
α+β=1
ETTC(mov)为行进碰撞安全检测时间,ETTC(ret)为回退碰撞安全检测时间,ETTC为达到最终换道安全状态的碰撞时间,α为换道行进风险因子,β为换道回退风险因子。
ETTC可理解为车辆以当前速度进行换道操作,并在完成换道后与目标车道上车辆最近距离为安全距离D safe的碰撞时间,可通过当前车辆与目标车辆的纵向距离,安全距离以及车辆行驶速度计算得到,可认为该值为进行换道风险判定时的一个设定阈值。
通过风险因子对行进碰撞安全检测时间与回退碰撞安全检测时间进行归一化,可理解为当ETTC(mov)>ETTC(ret)时,对应安全责任模型中风险因子(权重因子)α<β,表明此时换道行进的风险小于换道回退的风险,可以确定当前车辆继续进行换道更安全;当ETTC(mov)<ETTC(ret)时,对应安全责任模型中风险因子α>β,表明此时换道行进的风险大于换道回退的风险,可以确定当前车辆回退至原车道更安全。
S211、当当前车辆的后轮穿越禁止回退作用线时,确定避撞策略为行进策 略。
当当前车辆的后轮穿越禁止回退作用线时,可认为当前车辆已完全进入目标车道,此时若解除换道操作并返回原车道行驶危险较大,而在目标车道继续行驶危险较小,故此时确定避撞策略为行进策略。
若检测到当前车辆前方的目标车辆有突发碰撞危险,则控制当前车辆在目标车辆减速后进行跟随控制,若目标车辆的减速导致当前车辆触发紧急制动功能,则退出自动换道并发出警报,并使得驾驶员接管当前车辆。
S212、控制当前车辆执行避撞策略。
当避撞策略为回退策略时,为当前车辆规划回退轨迹,并控制当前车辆沿回退轨迹回退至原车道行驶;当避撞策略为行进策略时,为当前车辆规划新的换道轨迹,并控制当前车辆沿新的换道轨迹继续向目标车道进行换道行驶。
本实施例的技术方案,在进行换道操作遇到换道异常时,根据通过原车道与目标车道共用的车道线确定的换道虚拟作用线,以及当前车辆自身所处位置确定换道状态,并在不同换道状态下通过行进碰撞安全检测时间和回退碰撞安全检测时间,判断当前车辆继续换道和回退至原车道发生碰撞的可能性,选择碰撞几率较小的行驶策略作为避撞策略,并根据避撞策略控制当前车辆进行行驶。同时在无法进行避撞情况下,及时退出自动换道控制使得驾驶员接管,并在接管前维持骑线行驶以最大限度降低碰撞可能性,提高了当前车辆驾驶的安全性。
实施例三
图4为本申请实施例三提供的一种自车换道避撞控制方法的流程图。本实施例的技术方案在上述技术方案的基础上进行说明。在本实施例中,对车辆进入自动换道之前进行说明,该方法包括如下步骤。
S301、确定当前车辆是否满足自动换道条件。
自动换道条件包括横向移动风险碰撞时间大于第三预设阈值,且当前车辆的行进碰撞安全检测时间大于第一预设阈值。
在确定当前车辆需要进行自动换道时,通过安装于车身的雷达判断是否有与当前车辆具有横向重叠量的车辆存在,当存在与当前车辆具有横向重叠量的车辆时,将该车辆作为目标车辆并获取该车辆的横向速度值、横向加速度值以及该车辆相对于当前车辆的横向相对距离,同时获取当前车辆的横向速度值以及横向加速度值,根据上述获取的参数确定横向移动风险碰撞时间,横向移动风险碰撞时间可表示为:
Figure PCTCN2021101525-appb-000002
V′ TV可表示为目标车辆的横向速度值,V′ SV可表示为当前车辆的横向速度值,a′ TV可表示为目标车辆的横向加速度值,a′ SV可表示为当前车辆的横向加速度值,X′ c可表示为目标车辆与当前车辆的横向距离。
当横向移动风险碰撞时间大于第三预设阈值时,可认为与当前车辆有横向重叠量的车辆不会对当前车辆的换道造成碰撞威胁,当行进碰撞安全检测时间大于第一预设阈值时,可认为当前车辆将换道行驶至的目标车道上的车辆不会对当前车辆造成碰撞威胁,故当两个条件都满足时认为当前车辆满足自动换道条件。当当前车辆满足自动换道条件时,执行步骤S302,当当前车辆不满足自动换道条件时,执行步骤S303。
第三预设阈值为根据经验值设定的时间数据,本申请实施例对此不能进行限制。
S302、控制当前车辆根据确定的换道轨迹进行自动换道。
换道轨迹的确定包括获取当前车辆当前时刻的速度、横摆角速度、车头中心与目标车道与原车道共用的车道线的横向距离,以及当前车辆相对于目标车道中心线的角度,将上述参数代入车道线方程即可得到换道轨迹,并控制当前车辆按照该换道轨迹进入自动换道过程。
示例性的,车道线方程可表示如下:
Figure PCTCN2021101525-appb-000003
该坐标系为以当前车辆的车辆中心为原点,Y为横向距离,向左为正,X为纵向距离,向前为正,构建的车辆坐标系,ω s为当前车辆的横摆角速度,V X为当前车辆当前时刻的速度,Φ为当前车辆相对于目标车道中心线的角度,C 0为车头中心与目标车道中与原车道共用的车道线的横向距离。
S303、控制当前车辆减速并更新换道轨迹,并判断当前车辆是否满足自动换道条件。
当当前车辆不满足自动换道条件时,可认为当前车辆存在横向有车辆和车速过快两种问题中的至少之一,横向车辆的存在非当前车辆可控,当问题为车速过快时,控制当前车辆减速并根据减速后的当前车辆的行驶参数再次进行换 道轨迹的计算并更新换道轨迹,同时判断当前车辆当前的行驶参数是否满足自动换到条件,当当前车辆满足自动换道条件时,控制当前车辆根据更新后的换道轨迹进行自动换道,当当前车辆不满足自动换道条件时,再次执行本步骤对换道轨迹进行更新。
S304、在当前车辆进行换道操作时,获取当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息。
S305、根据当前车辆的行驶参数,至少一个目标车辆的行驶参数及道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线。
S306、当检测到换道异常时,根据当前车辆与换道虚拟作用线的位置关系、行进碰撞安全检测时间以及回退碰撞安全检测时间确定避撞策略,并控制当前车辆执行避撞策略。
本实施例的技术方案,在当前车辆进入自动换道前,通过对与当前车辆具有横向重叠量目标车辆的横向移动风险碰撞时间,以及目标车道中目标车辆的行进碰撞安全检测时间进行计算,当上述参数均满足自动换道条件时才根据当前车辆当前时刻的行驶参数确定换道轨迹,并使得当前车辆按照该换道轨迹进行自动换道行驶,降低了当前车辆在进行自动换道时发生碰撞的可能性,提高了当前车辆驾驶的安全性。
实施例四
图5为本申请实施例四提供的一种自动换道避撞控制装置的结构示意图。该自动换道避撞控制装置包括:信息获取模块41,信息确定模块42和避撞策略确定模块43。
信息获取模块41,设置为在当前车辆进行换道操作时,获取当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息;信息确定模块42,设置为根据所述当前车辆的行驶参数、所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;避撞策略确定模块43,设置为当检测到换道异常时,根据所述当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略。
本实施例的技术方案,解决了当前车辆在自动换道过程中遇到换道异常情况时难以确定风险最低避撞策略的问题,减小了当前车辆自动换道异常时发生碰撞的可能性,降低了无法避撞情况下碰撞的严重性,提高了当前车辆驾驶的安全性。
所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆, 以及目标车道中所述当前车辆的前方和后方的车辆;当前车辆的行驶参数至少包括当前车辆的纵向速度值、当前车辆的纵向加速度值及当前车辆的位置;所述至少一个目标车辆的行驶参数至少包括每个目标车辆的纵向速度值,每个目标车辆的纵向加速度值及每个目标车辆的位置;换道虚拟作用线包括允许回退作用线和禁止回退作用线。
可选的,信息确定模块42包括:安全检测时间确定单元,设置为根据所述当前车辆的纵向速度值、所述当前车辆的纵向加速度值,所述每个目标车辆的纵向速度值,所述每个目标车辆的纵向加速度值,以及所述每个目标车辆与所述当前车辆的纵向相对距离,确定所述每个目标车辆与所述当前车辆间的碰撞安全检测时间。虚拟作用线确定单元,设置为根据所述当前车辆的位置及所述目标车道与所述原车道共用的车道线的位置确定所述换道虚拟作用线。
安全检测时间确定单元,是设置为将所述目标车道中全部目标车辆与所述当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为所述行进碰撞安全检测时间;将所述原车道中全部目标车辆与所述当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为所述回退碰撞安全检测时间。
可选的,避撞策略确定模块43,是设置为:当所述当前车辆的前轮未穿越所述允许回退作用线时,判断所述行进碰撞安全检测时间是否小于第一预设阈值,若所述行进碰撞安全检测时间小于第一预设阈值,则确定所述避撞策略为回退策略,所述行进碰撞安全检测时间大于或等于第一预设阈值,确定所述避撞策略为行进策略;当所述当前车辆的前轮位于所述允许回退作用线与所述禁止回退作用线之间时,根据所述行进碰撞安全检测时间、所述回退碰撞安全检测时间、第一预设阈值以及第二预设阈值间的大小关系确定避撞策略;当所述当前车辆的后轮穿越所述禁止回退作用线时,确定所述避撞策略为行进策略。
根据所述行进碰撞安全检测时间、所述回退碰撞安全检测时间、第一预设阈值以及第二预设阈值间的大小关系确定避撞策略,包括:当所述行进碰撞安全检测时间大于所述第一预设阈值时,则确定所述避撞策略为行进策略;当所述行进碰撞安全检测时间小于或等于所述第一预设阈值时,判断所述回退碰撞安全检测时间是否小于所述第二预设阈值,若所述回退碰撞安全检测时间小于所述第二预设阈值,则控制所述当前车辆进行骑线行驶并发出警报;若所述回退碰撞安全检测时间大于或等于所述第二预设阈值,则根据所述行进碰撞安全检测时间与所述回退碰撞安全检测时间确定所述避撞策略。所述根据所述行进碰撞安全检测时间与所述回退碰撞安全检测时间确定所述避撞策略,包括:当所述行进碰撞安全检测时间大于所述回退碰撞安全检测时间时,确定所述避撞策略为行进策略;当所述行进碰撞安全检测时间小于所述回退碰撞安全检测时 间时,确定所述避撞策略为回退策略。
可选的,该装置还包括:换道轨迹确定模块,设置为确定当前车辆是否满足自动换道条件;若当前车辆满足自动换道条件,则控制所述当前车辆根据确定的换道轨迹进行自动换道;若当前车辆不满足自动换道条件,则控制所述当前车辆减速并更新换道轨迹,并判断所述当前车辆是否满足自动换道条件。所述自动换道条件包括横向移动风险碰撞时间大于第三预设阈值,且所述当前车辆的行进碰撞安全检测时间大于第一预设阈值。
换道轨迹的确定包括:获取所述当前车辆的当前时刻的速度、横摆角速度、车头中心与目标车道中与原车道共用的车道线的横向距离,及所述当前车辆相对所述目标车道中心线的角度;将所述当前车辆的当前时刻的速度、横摆角速度、车头中心与目标车道中与原车道共用的车道线的横向距离,及所述当前车辆相对所述目标车道中心线的角度代入车道线方程,以确定所述换道轨迹。
本申请实施例所提供的自动换道避撞控制装置可执行本申请任意实施例所提供的自动换道避撞控制方法,具备执行方法相应的功能模块。
实施例五
图6为本申请实施例五提供的一种车辆的结构示意图。如图6所示,该车辆包括控制器51、存储装置52、输入装置53和输出装置54。车辆中控制器51的数量可以是一个或多个,图6中以一个控制器51为例。车辆中的控制器51、存储装置52、输入装置53和输出装置54可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的自动换道避撞控制方法对应的程序指令/模块(例如,信息获取模块41,信息确定模块42和避撞策略确定模块43)。控制器51通过运行存储在存储装置52中的软件程序、指令以及模块,从而执行车辆的多种功能应用以及数据处理,即实现上述的自动换道避撞控制方法。
存储装置52可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可包括相对于控制器51远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置53可设置为接收输入的数字或字符信息,以及产生与车辆的用户设置以及功能控制有关的键信号输入。输出装置54可包括显示屏等显示设备。
实施例六
本申请实施例六还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种自动换道避撞控制方法,该方法包括:在进行换道操作时,获取当前车辆的行驶参数,至少一个目标车辆的行驶参数及道路信息;根据所述当前车辆的行驶参数、所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;当检测到换道异常时,根据当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;其中,所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的自动换道避撞控制方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
值得注意的是,上述搜索装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种自动换道避撞控制方法,包括:
    在当前车辆进行换道操作的情况下,获取所述当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息;
    根据所述当前车辆的行驶参数,所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;
    在检测到换道异常的情况下,根据所述当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;
    其中,所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆;所述行进碰撞安全检测时间表示在所述当前车辆保持所述当前车辆的当前速度不变进行所述换道操作的情况下,所述当前车辆与所述目标车道中的目标车辆发生碰撞的最短时间;所述回退碰撞安全检测时间表示在所述当前车辆保持所述当前车辆的当前速度不变,由所述车辆的当前位置回退至所述原车道的情况下,所述当前车辆与所述原车道中的目标车辆发生碰撞的最短时间;所述换道虚拟作用线为根据所述目标车道与所述原车道共用的车道线的位置确定的,位于所述共用的车道线的第一侧的虚拟作用线和第二侧的虚拟作用线。
  2. 根据权利要求1所述的方法,其中,所述当前车辆的行驶参数至少包括所述当前车辆的纵向速度值,所述当前车辆的纵向加速度值及所述当前车辆的位置;所述至少一个目标车辆的行驶参数至少包括每个目标车辆的纵向速度值,所述每个目标车辆的纵向加速度值及所述每个目标车辆的位置;
    所述根据所述当前车辆的行驶参数,所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线,包括:
    根据所述当前车辆的纵向速度值,所述当前车辆的纵向加速度值,所述每个目标车辆的纵向速度值,所述每个目标车辆的纵向加速度值,以及所述每个目标车辆与所述当前车辆的纵向相对距离,确定所述每个目标车辆与所述当前车辆间的碰撞安全检测时间;
    将所述目标车道中全部目标车辆与所述当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为所述行进碰撞安全检测时间;
    将所述原车道中全部目标车辆与所述当前车辆间的碰撞安全检测时间中的最小碰撞安全检测时间确定为所述回退碰撞安全检测时间;
    根据所述当前车辆的位置及所述目标车道与所述原车道共用的车道线的位置确定所述换道虚拟作用线。
  3. 根据权利要求2所述的方法,其中,所述换道虚拟作用线包括允许回退作用线和禁止回退作用线,所述根据当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,包括:
    在所述当前车辆的前轮未穿越所述允许回退作用线的情况下,判断所述行进碰撞安全检测时间是否小于第一预设阈值,响应于所述行进碰撞安全检测时间小于所述第一预设阈值的判断结果,确定所述避撞策略为回退策略;响应于所述行进碰撞安全检测时间大于或等于所述第一预设阈值的判断结果,确定所述避撞策略为行进策略;
    在所述当前车辆的前轮位于所述允许回退作用线与所述禁止回退作用线之间的情况下,根据所述行进碰撞安全检测时间、所述回退碰撞安全检测时间、所述第一预设阈值以及第二预设阈值间的大小关系确定避撞策略;
    在所述当前车辆的后轮穿越所述禁止回退作用线的情况下,确定所述避撞策略为行进策略。
  4. 根据权利要求3所述的方法,其中,所述根据所述行进碰撞安全检测时间、所述回退碰撞安全检测时间、所述第一预设阈值以及第二预设阈值间的大小关系确定避撞策略,包括:
    在所述行进碰撞安全检测时间大于所述第一预设阈值的情况下,确定所述避撞策略为行进策略;
    在所述行进碰撞安全检测时间小于或等于所述第一预设阈值的情况下,判断所述回退碰撞安全检测时间是否小于所述第二预设阈值,响应于所述回退碰撞安全检测时间小于所述第二预设阈值的判断结果,控制所述车辆进行骑线行驶并发出警报;
    响应于所述回退碰撞安全检测时间大于或等于所述第二预设阈值的判断结果,根据所述行进碰撞安全检测时间与所述回退碰撞安全检测时间确定所述避撞策略;
    其中,所述根据所述行进碰撞安全检测时间与所述回退碰撞安全检测时间确定所述避撞策略,包括:在所述行进碰撞安全检测时间大于所述回退碰撞安全检测时间的情况下,确定所述避撞策略为行进策略;在所述行进碰撞安全检测时间小于所述回退碰撞安全检测时间的情况下,确定所述避撞策略为回退策略。
  5. 根据权利要求4所述的方法,其中,所述控制所述当前车辆进行骑线行驶,包括:
    根据所述当前车辆的中心线与最近车道线间的横向距离,控制所述当前车辆以所述横向距离小于预设偏差值的轨迹行驶。
  6. 根据权利要求1所述的方法,所述进行换道操作之前,还包括:
    确定所述当前车辆是否满足自动换道条件;
    响应于所述当前车辆满足所述自动换道条件的确定结果,控制所述当前车辆根据确定的换道轨迹进行自动换道;
    响应于所述当前车辆不满足所述自动换道条件的确定结果,控制所述当前车辆减速并更新换道轨迹,并判断所述当前车辆是否满足所述自动换道条件。
    其中,所述自动换道条件包括横向移动风险碰撞时间大于第三预设阈值,且所述当前车辆的行进碰撞安全检测时间大于第一预设阈值。
  7. 根据权利要求6所述的方法,其中,所述换道轨迹的确定包括:
    获取所述当前车辆的当前时刻的速度、横摆角速度、车头中心与目标车道中与原车道共用的车道线的横向距离,及所述当前车辆相对所述目标车道的中心线的角度;
    将所述当前车辆的当前时刻的速度、所述横摆角速度、所述车头中心与目标车道中与原车道共用的车道线的横向距离、及所述当前车辆相对所述目标车道的中心线的角度代入车道线方程,以确定所述换道轨迹。
  8. 一种自动换道避撞控制装置,包括:
    信息获取模块,设置为在当前车辆进行换道操作的情况下,获取所述当前车辆的行驶参数、至少一个目标车辆的行驶参数及道路信息;
    信息确定模块,设置为根据所述当前车辆的行驶参数、所述至少一个目标车辆的行驶参数及所述道路信息,确定行进碰撞安全检测时间、回退碰撞安全检测时间以及换道虚拟作用线;
    避撞策略确定模块,设置为在检测到换道异常的情况下,根据所述当前车辆与所述换道虚拟作用线的位置关系、所述行进碰撞安全检测时间以及所述回退碰撞安全检测时间确定避撞策略,并控制所述当前车辆执行所述避撞策略;
    其中,所述至少一个目标车辆包括原车道中所述当前车辆的前方和后方的车辆,以及目标车道中所述当前车辆的前方和后方的车辆。
  9. 一种车辆,包括:
    至少一个控制器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个控制器执行,使得所述至少一个控制器实现如权利要求1-7中任一所述的自动换道避撞控制方法。
  10. 一种包含计算机可执行指令的存储介质,其中,所述计算机可执行指令在由计算机处理器执行时设置为执行如权利要求1-7中任一所述的自动换道避撞控制方法。
PCT/CN2021/101525 2020-06-24 2021-06-22 自动换道避撞控制方法、装置、车辆及存储介质 WO2021259257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21830010.1A EP4063214A4 (en) 2020-06-24 2021-06-22 METHOD AND DEVICE FOR CONTROLLING COLLISION AVOIDANCE DURING AN AUTOMATIC LANE CHANGE, VEHICLE, AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591875.9A CN111717199B (zh) 2020-06-24 2020-06-24 自动换道避撞控制方法、装置、车辆及存储介质
CN202010591875.9 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259257A1 true WO2021259257A1 (zh) 2021-12-30

Family

ID=72568929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101525 WO2021259257A1 (zh) 2020-06-24 2021-06-22 自动换道避撞控制方法、装置、车辆及存储介质

Country Status (3)

Country Link
EP (1) EP4063214A4 (zh)
CN (1) CN111717199B (zh)
WO (1) WO2021259257A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435395A (zh) * 2021-12-31 2022-05-06 赛可智能科技(上海)有限公司 自动驾驶的方法、装置、设备、介质及计算机程序产品
CN114559942A (zh) * 2022-03-21 2022-05-31 合众新能源汽车有限公司 一种车辆变道预警方法、装置和计算机可读介质
CN115071695A (zh) * 2022-05-17 2022-09-20 岚图汽车科技有限公司 一种车辆自动紧急制动控制方法及控制系统
CN115257721A (zh) * 2022-08-30 2022-11-01 重庆长安汽车股份有限公司 智能驾驶场景安全行车方法、装置、电子设备及存储介质
CN115320581A (zh) * 2022-08-15 2022-11-11 中南大学 实时车辆换道风险评估方法、计算机设备及计算机存储介质
CN115320589A (zh) * 2022-10-13 2022-11-11 青岛慧拓智能机器有限公司 跟车速度规划方法、装置、芯片、终端、电子设备及介质
CN115631653A (zh) * 2022-09-30 2023-01-20 中国第一汽车股份有限公司 换道时间区间确定方法、装置、存储介质及电子装置
CN115817460A (zh) * 2022-11-07 2023-03-21 苏州大学 一种混合流条件下智能网联车主动协调避撞方法
CN116504088A (zh) * 2023-05-24 2023-07-28 合肥工业大学 一种网联环境下考虑安全风险的快速路车辆换道决策方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111717199B (zh) * 2020-06-24 2021-09-17 中国第一汽车股份有限公司 自动换道避撞控制方法、装置、车辆及存储介质
CN112606838B (zh) * 2020-12-15 2022-07-01 东风汽车集团有限公司 一种车辆变道防碰撞控制方法及装置
CN113799776A (zh) * 2021-10-14 2021-12-17 苏州挚途科技有限公司 车辆换道方法、装置和电子设备
CN114291076B (zh) * 2021-11-22 2024-04-16 理工雷科智途(泰安)汽车科技有限公司 一种基于商用车单车智能控制的直线道路行人避撞方法
CN114103956B (zh) * 2021-12-02 2023-11-24 腾讯科技(深圳)有限公司 车辆控制方法、装置及计算机程序产品
CN114506317B (zh) * 2022-01-12 2023-07-25 岚图汽车科技有限公司 自动变道的安全处理方法、装置、设备及可读存储介质
CN115230733B (zh) * 2022-06-24 2024-06-04 一汽解放汽车有限公司 车辆自动驾驶方法、装置、计算机设备和存储介质
CN115691220B (zh) * 2022-10-28 2024-06-14 江苏必安仕安防科技有限公司 一种基于物联网的后向来车防撞预警系统及方法
CN116729384B (zh) * 2023-06-27 2024-01-09 广州小鹏自动驾驶科技有限公司 车道保持状态下的绕行规划方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170259819A1 (en) * 2016-03-14 2017-09-14 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and vehicle control program
CN108313054A (zh) * 2018-01-05 2018-07-24 北京智行者科技有限公司 自动驾驶自主换道决策方法和装置及自动驾驶车辆
CN110239550A (zh) * 2019-05-28 2019-09-17 浙江吉利控股集团有限公司 一种车辆自动变道方法
WO2019204053A1 (en) * 2018-04-05 2019-10-24 TuSimple System and method for automated lane change control for autonomous vehicles
CN110614994A (zh) * 2018-12-29 2019-12-27 长城汽车股份有限公司 车辆自动驾驶时换道的控制方法、控制系统及车辆
CN111717199A (zh) * 2020-06-24 2020-09-29 中国第一汽车股份有限公司 自动换道避撞控制方法、装置、车辆及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174672B2 (en) * 2013-10-28 2015-11-03 GM Global Technology Operations LLC Path planning for evasive steering maneuver in presence of target vehicle and surrounding objects
US9457807B2 (en) * 2014-06-05 2016-10-04 GM Global Technology Operations LLC Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
JP5961821B2 (ja) * 2014-07-02 2016-08-02 パナソニックIpマネジメント株式会社 運転支援装置
CN104527638A (zh) * 2014-12-03 2015-04-22 杭州奥腾电子有限公司 汽车主动防撞弯道虚警消除方法及虚警消除装置
JP6470039B2 (ja) * 2014-12-26 2019-02-13 日立オートモティブシステムズ株式会社 車両制御システム
JP6477529B2 (ja) * 2016-02-02 2019-03-06 株式会社デンソー 走行支援装置
US20190016339A1 (en) * 2016-02-16 2019-01-17 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and vehicle control program
DE102016009763A1 (de) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Steuerungssystem und Steuerungsverfahren zum Bestimmen einer Trajektorie und zum Erzeugen von zugehörigen Signalen oder Steuerbefehlen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170259819A1 (en) * 2016-03-14 2017-09-14 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and vehicle control program
CN108313054A (zh) * 2018-01-05 2018-07-24 北京智行者科技有限公司 自动驾驶自主换道决策方法和装置及自动驾驶车辆
WO2019204053A1 (en) * 2018-04-05 2019-10-24 TuSimple System and method for automated lane change control for autonomous vehicles
CN110614994A (zh) * 2018-12-29 2019-12-27 长城汽车股份有限公司 车辆自动驾驶时换道的控制方法、控制系统及车辆
CN110239550A (zh) * 2019-05-28 2019-09-17 浙江吉利控股集团有限公司 一种车辆自动变道方法
CN111717199A (zh) * 2020-06-24 2020-09-29 中国第一汽车股份有限公司 自动换道避撞控制方法、装置、车辆及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063214A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435395A (zh) * 2021-12-31 2022-05-06 赛可智能科技(上海)有限公司 自动驾驶的方法、装置、设备、介质及计算机程序产品
WO2023178922A1 (zh) * 2022-03-21 2023-09-28 合众新能源汽车股份有限公司 一种车辆变道预警方法、装置和计算机可读介质
CN114559942A (zh) * 2022-03-21 2022-05-31 合众新能源汽车有限公司 一种车辆变道预警方法、装置和计算机可读介质
CN114559942B (zh) * 2022-03-21 2024-04-26 合众新能源汽车股份有限公司 一种车辆变道预警方法、装置和计算机可读介质
CN115071695A (zh) * 2022-05-17 2022-09-20 岚图汽车科技有限公司 一种车辆自动紧急制动控制方法及控制系统
CN115071695B (zh) * 2022-05-17 2024-05-28 岚图汽车科技有限公司 一种车辆自动紧急制动控制方法及控制系统
CN115320581A (zh) * 2022-08-15 2022-11-11 中南大学 实时车辆换道风险评估方法、计算机设备及计算机存储介质
CN115257721A (zh) * 2022-08-30 2022-11-01 重庆长安汽车股份有限公司 智能驾驶场景安全行车方法、装置、电子设备及存储介质
CN115631653A (zh) * 2022-09-30 2023-01-20 中国第一汽车股份有限公司 换道时间区间确定方法、装置、存储介质及电子装置
CN115320589B (zh) * 2022-10-13 2023-02-10 青岛慧拓智能机器有限公司 跟车速度规划方法、装置、芯片、终端、电子设备及介质
CN115320589A (zh) * 2022-10-13 2022-11-11 青岛慧拓智能机器有限公司 跟车速度规划方法、装置、芯片、终端、电子设备及介质
CN115817460A (zh) * 2022-11-07 2023-03-21 苏州大学 一种混合流条件下智能网联车主动协调避撞方法
CN115817460B (zh) * 2022-11-07 2024-04-05 苏州大学 一种混合流条件下智能网联车主动协调避撞方法
CN116504088A (zh) * 2023-05-24 2023-07-28 合肥工业大学 一种网联环境下考虑安全风险的快速路车辆换道决策方法
CN116504088B (zh) * 2023-05-24 2024-03-26 合肥工业大学 一种网联环境下考虑安全风险的快速路车辆换道决策方法

Also Published As

Publication number Publication date
EP4063214A1 (en) 2022-09-28
EP4063214A4 (en) 2024-01-10
CN111717199A (zh) 2020-09-29
CN111717199B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2021259257A1 (zh) 自动换道避撞控制方法、装置、车辆及存储介质
WO2021259000A1 (zh) 跟车控制方法、装置、车辆及存储介质
CN107145147B (zh) 一种车辆低速自动驾驶避碰方法及系统
US8930060B1 (en) Post-impact path assist for vehicles
CN112389466B (zh) 车辆自动避让方法、装置、设备及存储介质
US9669760B2 (en) Warning device
US8949018B2 (en) Driving assistance device and driving assistance method
EP3581449A1 (en) Driving assist control device
CN106233159B (zh) 使用位置数据的误警告减少
KR102658055B1 (ko) 조향 회피 경로를 고려한 적응형 aeb 시스템 및 그 제어 방법
US20150329046A1 (en) Driving-assistance device and driving-assistance method
WO2015155874A1 (ja) 経路予測装置
CN106796759A (zh) 车辆控制系统
US20150283999A1 (en) Driving-assistance device and driving-assistance method
CN111400823B (zh) 一种智能车辆vs-lka系统功能安全概念分析方法
CN110007305B (zh) 车辆前方目标确定方法、装置、服务器及存储介质
KR20200130888A (ko) 복합정보 기반 scc시스템 제어 방법 및 장치
JPWO2019073553A1 (ja) 車両制御装置
CN111469835A (zh) 基于拓扑地图的车辆辅助驾驶系统和方法
JP7439911B2 (ja) 走行支援方法、及び、走行支援装置
CN116252817A (zh) 一种自动驾驶换道决策方法、装置、设备及存储介质
JP2012045984A (ja) 衝突軽減装置
KR20170070580A (ko) Ecu, 상기 ecu를 포함하는 무인 자율 주행 차량, 및 이의 차선 변경 제어 방법
CN114735024A (zh) 一种车辆控制方法、装置、设备以及存储介质
CN114103957B (zh) 变道控制方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021830010

Country of ref document: EP

Effective date: 20220620

NENP Non-entry into the national phase

Ref country code: DE