WO2021259154A1 - 一种测量蓄电池的电池储备容量的方法及电池检测设备 - Google Patents

一种测量蓄电池的电池储备容量的方法及电池检测设备 Download PDF

Info

Publication number
WO2021259154A1
WO2021259154A1 PCT/CN2021/100817 CN2021100817W WO2021259154A1 WO 2021259154 A1 WO2021259154 A1 WO 2021259154A1 CN 2021100817 W CN2021100817 W CN 2021100817W WO 2021259154 A1 WO2021259154 A1 WO 2021259154A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
electrically connected
discharge
target
Prior art date
Application number
PCT/CN2021/100817
Other languages
English (en)
French (fr)
Inventor
冯光文
瞿松松
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Priority to EP21830001.0A priority Critical patent/EP4166959A4/en
Publication of WO2021259154A1 publication Critical patent/WO2021259154A1/zh
Priority to US18/069,196 priority patent/US20230124976A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads

Definitions

  • This application relates to the technical field of battery testing, and in particular to a method for measuring the battery reserve capacity of a battery and battery testing equipment.
  • the reserve capacity of a battery refers to the time (in minutes) required for the battery to discharge to 10.5V with a current of 25A, which means that when the car charging system fails, the battery is the only one Energy has the ability to continuously provide 25A of current for electrical equipment such as ignition and lighting.
  • the prior art mostly uses a constant current discharge device to discharge the battery with a constant current of 25A to 10.5V, and the measurement of the battery reserve capacity of the battery is achieved by measuring the time of the above process.
  • the measurement time of the above-mentioned measurement method is relatively long, which reduces the measurement efficiency of the battery reserve capacity of the storage battery.
  • the embodiment of the present invention aims to provide a method for measuring the battery reserve capacity of a battery and a battery detection device, which can reduce the measurement time of the battery reserve capacity of the battery and improve the measurement efficiency.
  • the embodiment of the present invention provides a method for measuring the battery reserve capacity of a battery, which is applied to a battery detection device, and the battery detection device is electrically connected to the battery through a Kelvin connector, and the method includes:
  • the battery capacity table including the corresponding relationship between battery parameters and battery reserve capacity
  • the battery reserve capacity corresponding to the target battery parameter is determined.
  • the sending an input signal to the battery to control the discharge of the battery includes:
  • the input signal is sent to the storage battery at least twice to control the discharge of the storage battery.
  • the sending an input signal to the storage battery at least twice to control the discharge of the storage battery includes:
  • the input signal is sent to the storage battery at least twice at a preset frequency to control the discharge of the storage battery.
  • the transmission interval for at least two transmissions of the input signal is random.
  • the sending an input signal to the battery at least twice to control the discharge of the battery includes:
  • the input durations of the input signals sent at least twice are the same, or at least one of the input durations of the input signals sent at least twice is different from other input durations.
  • the duration unit of the input duration is milliseconds (ms).
  • the input signal is a discharge current discharged by the battery
  • the output signal is an open circuit voltage fed back by the battery with respect to the discharge current during the input time period.
  • the determining the target battery parameter according to the output signal includes:
  • the output signal detect a set of battery parameters each time the battery is discharged
  • the optimal battery parameter is selected from at least two sets of voltage parameters as the target battery parameter.
  • the battery parameters include the maximum voltage, the minimum voltage, and the voltage drop slope of each discharge of the battery.
  • the screening of the optimal voltage parameter from at least two sets of battery parameters as the target battery parameter includes:
  • the target maximum voltage, the target minimum voltage, and the target voltage drop slope corresponding to the target maximum voltage and the target minimum voltage are used as optimal battery parameters.
  • the battery capacity meter includes several types of battery reserve capacities and several groups of voltage parameters under each of the battery reserve capacities, and each group of voltage parameters includes several test voltages and a test voltage at each test voltage.
  • the reserve capacity of the plurality of types of batteries is spaced a preset capacity between each other, and the test voltages are spaced a preset voltage between each of the plurality of test voltages.
  • the determining the battery reserve capacity corresponding to the target battery parameter according to the battery capacity table and the target battery parameter includes:
  • the voltage drop slope of each battery parameter corresponds to a slope matching range
  • the battery capacity table is searched for a battery reserve capacity matching the target voltage drop slope
  • the battery The reserve capacity as the battery reserve capacity of the storage battery, includes:
  • the battery reserve capacity corresponding to the effective voltage drop slope is used as the battery reserve capacity of the battery.
  • An embodiment of the present invention also provides a battery detection device, which is electrically connected to a storage battery through a Kelvin connector, and the battery detection device includes:
  • a discharge circuit electrically connected to the battery through the Kelvin connector, and used to send an input signal to the battery to control the discharge of the battery;
  • a voltage sampling circuit which is electrically connected to the battery through the Kelvin connector, and is used to sample the output signal fed back by the battery to the input signal within the input time period of the input signal to obtain a sampling voltage
  • the controller is respectively electrically connected to the discharge circuit and the voltage sampling circuit, and is used to control the discharge circuit so that the discharge circuit sends an input signal to the battery, and determines target battery parameters according to the sampled voltage, And a battery capacity table is obtained, the battery capacity table includes the correspondence between battery parameters and battery reserve capacity, and the battery reserve capacity corresponding to the target battery parameter is determined according to the battery capacity table and the target battery parameter.
  • the input signal is a discharge current discharged by the battery
  • the output signal is an open circuit voltage fed back by the battery with respect to the discharge current during the input time period.
  • the discharge circuit includes:
  • the switch circuit is electrically connected to the controller, and is electrically connected to the battery through the Kelvin connector, and is used to trigger the sending of a discharge to the battery when the controller controls the switch circuit to be in a conducting state Electric current, and generate trigger signal;
  • the first signal processing circuit is electrically connected to the controller and the switch circuit, respectively, and is used to process the voltage signal sent by the controller and the trigger signal sent by the switch circuit, and output a driving signal to control The magnitude of the discharge current.
  • the switch circuit includes:
  • the first switch is respectively electrically connected to the controller and the first signal processing circuit, and is electrically connected to the negative electrode of the battery through the Kelvin connector, and is used to control the battery according to the control signal sent by the controller Closing or disconnecting the discharge circuit of the controller and the battery, generating a trigger signal, and sending the trigger signal to the first signal processing circuit;
  • the second switch is electrically connected to the first switch and the first signal processing circuit, and is electrically connected to the positive electrode of the battery through the Kelvin connector, and is used to control the discharge according to the drive signal The size of the discharge current of the loop.
  • the first switch includes a first PMOS tube, the gate of the first PMOS tube is electrically connected to the controller, and the source of the first PMOS tube is connected to the controller through the Kelvin connector.
  • the negative electrode of the battery is electrically connected, and the drain of the first PMOS tube is electrically connected to the second switch and the first signal processing circuit.
  • the second switch includes a second PMOS tube
  • the gate of the second PMOS tube is electrically connected to the first signal processing circuit
  • the source of the second PMOS tube is electrically connected to the first signal processing circuit.
  • the drain of a PMOS tube is electrically connected with the first signal processing circuit
  • the drain of the second PMOS tube is electrically connected with the anode of the battery through the Kelvin connector.
  • the first signal processing circuit includes a first operational amplifier, the non-inverting input terminal of the first operational amplifier is electrically connected to the controller, and the inverting input terminal of the first operational amplifier is electrically connected to the controller.
  • the drain of the first PMOS tube is electrically connected to the source of the second PMOS tube, and the output terminal of the first operational amplifier is electrically connected to the gate of the second PMOS tube.
  • the discharge circuit further includes a unidirectional conduction circuit, which is electrically connected between the second switch and the positive electrode of the battery, and is used to prevent the discharge current from flowing back to the battery.
  • the positive electrode of the battery is electrically connected between the second switch and the positive electrode of the battery, and is used to prevent the discharge current from flowing back to the battery.
  • the voltage sampling circuit includes:
  • a second signal processing circuit electrically connected to the battery through the Kelvin connector, for signal processing on the open circuit voltage of the battery
  • the voltage divider circuit is respectively electrically connected to the second signal processing circuit and the controller, and is used to divide the output voltage of the second signal processing circuit to obtain a sampled voltage so that the controller can The sampled voltage determines the target battery parameter.
  • the second signal processing circuit includes a second operational amplifier, the non-inverting input of the second operational amplifier is electrically connected to the positive electrode of the battery through the Kelvin connector, and the second operational amplifier The inverting input end of the second operational amplifier is electrically connected to the negative electrode of the battery through the Kelvin connector, and the output end of the second operational amplifier is electrically connected to the voltage divider circuit.
  • the voltage divider circuit includes a first resistor and a second resistor
  • One end of the first resistor is electrically connected to the output end of the second operational amplifier, and the other end of the first resistor is electrically connected to one end of the controller and the second resistor; The other end is grounded.
  • the embodiment of the present invention provides a method for measuring the battery reserve capacity of a battery and a battery detection device.
  • the input of the battery is obtained.
  • the target battery parameter is determined according to the output signal, and obtain the battery capacity meter.
  • the battery capacity meter includes the correspondence between the battery parameters and the battery reserve capacity, which is determined according to the battery capacity table and the target battery parameters The battery reserve capacity corresponding to the target battery parameter.
  • the target battery parameters are obtained by controlling the battery to discharge at least one time, and the battery reserve capacity of the battery is measured according to the target battery parameter and the battery capacity meter including the corresponding relationship between the battery parameter and the battery reserve capacity, thereby reducing the battery capacity.
  • the measurement time of the battery reserve capacity improves the measurement efficiency.
  • FIG. 1 is a schematic diagram of a circuit structure of a battery detection device provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the circuit structure of the discharging circuit and the voltage sampling circuit shown in FIG. 1;
  • FIG. 3 is a schematic diagram of circuit connection of a battery detection device provided by an embodiment of the present invention.
  • FIG. 4 is a method flowchart of a method for measuring the battery reserve capacity of a battery provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a circuit structure of a battery detection device provided by an embodiment of the present invention.
  • the battery detection device 100 and the storage battery 200 are electrically connected through a Kelvin connector (not shown).
  • the battery detection device 100 includes a discharge circuit 10, a voltage sampling circuit 20 and a controller 30.
  • the Kelvin connector includes B+ connecting wire, B- connecting wire, S+ connecting wire and S- connecting wire.
  • the B+ connection line and the S+ connection line are electrically connected to the positive electrode of the battery 200
  • the B- connection line and the S- connection line are both electrically connected to the negative electrode of the battery 200
  • the B+ connection line and the B- connection line are used to separate the battery 200
  • the discharge current between the two electrodes, the S+ connecting wire and the S- connecting wire are used to separate the open circuit voltage between the two electrodes of the storage battery 200.
  • Kelvin four-wire detection is realized through the Kelvin connector, which eliminates the impedance of wiring and contact resistance. Contact resistance refers to the resistance when the battery detection device 100 and the battery 200 form a discharge circuit when the current flows through the positive electrode of the battery 200 or the negative electrode of the battery 200 .
  • the discharging circuit 10 is electrically connected to the battery 200 through a Kelvin connector, and is used to send an input signal to the battery 200 to control the battery 200 to discharge.
  • the input signal is the discharge current of the battery 200 discharging.
  • the discharging circuit 10 sends a discharging current to the battery 200, the discharging circuit 10 is in a conducting state, and the discharging circuit 10 forms a discharge circuit with the battery 20 to trigger the battery 200 to start discharging, that is, the input signal can be used to control the battery 200 to discharge.
  • the discharge circuit 10 includes a switch circuit 101 and a first signal processing circuit 102.
  • the switch circuit 101 is electrically connected to the controller 30, and is electrically connected to the battery 200 through a Kelvin connector, and is used for triggering the sending of a discharge current to the battery 200 and generating a trigger signal when the controller 30 controls the switch circuit 101 to be in a conducting state.
  • the switch circuit 101 includes a first switch 1011 and a second switch 1012.
  • the first switch 1011 is electrically connected to the controller 30 and the first signal processing circuit 102, and is electrically connected to the negative electrode of the battery 200 through a Kelvin connector, and is used to control the closing or opening of the controller according to the control signal sent by the controller 30
  • the discharge circuit between 30 and the storage battery 200 generates a trigger signal and sends the trigger signal to the first signal processing circuit 102.
  • the first switch 1011 is electrically connected to one end of the B-connection line, and the other end of the B-connection line is electrically connected to the negative electrode of the battery BAT1.
  • the first switch 101 includes a first PMOS tube Q1, the gate of the first PMOS tube Q1 is electrically connected to the controller 30 (I/O port of the single-chip microcomputer U3), and the source of the first PMOS tube Q1 passes through Kelvin.
  • the connector (B-connecting wire) is electrically connected to the negative electrode of the battery BAT1, and the drain of the first PMOS tube Q1 is electrically connected to the second switch 1012 and the first signal processing circuit 102.
  • the drain of the first PMOS transistor Q1 is pulled to a low level, generates a trigger signal, and sends a low level trigger signal to the first signal processing circuit 102.
  • the second switch 1012 is electrically connected to the first switch 1011 and the first signal processing circuit 102, and is electrically connected to the positive electrode of the battery 200 through a Kelvin connector, and is used to control the discharge circuit according to the driving signal output by the first signal processing circuit 102 The size of the discharge current.
  • the second switch 1012 is electrically connected to one end of the B+ connection line, and the other end of the B+ connection line is electrically connected to the positive electrode of the battery BAT1.
  • the second switch 1012 includes a second PMOS tube Q2, the gate of the second PMOS tube Q2 is electrically connected to the first signal processing circuit 102, and the source of the second PMOS tube Q2 is connected to the drain of the first PMOS tube.
  • the electrode is electrically connected to the first signal processing circuit 102, and the drain of the second PMOS transistor Q2 is electrically connected to the positive electrode of the battery BAT1 through a Kelvin connector (B+ connecting wire).
  • B+ connecting wire Kelvin connector
  • the driving signal acts on the gate of the second PMOS transistor Q2 to control the second PMOS transistor Q2 to turn on.
  • the drain current of the second PMOS transistor Q2 depends on the second PMOS transistor Q2.
  • Two PMOS transistor Q2's gate voltage The drain current of the second PMOS tube Q2 is equal to the discharge current of the discharge circuit between the anode of the battery BAT1, the second PMOS tube Q2, the first PMOS tube Q1 and the cathode of the battery BAT1.
  • the first signal processing circuit 102 is electrically connected to the controller 30 and the switch circuit 101, respectively, for signal processing the voltage signal sent by the controller 30 and the trigger signal sent by the switch circuit 101, and output driving signals to control the magnitude of the discharge current .
  • the first signal processing circuit 102 includes a first operational amplifier U1.
  • the non-inverting input terminal of the first operational amplifier U1 is electrically connected to the controller 30 (the DAC port of the single-chip microcomputer U3).
  • the input terminal is electrically connected with the drain of the first PMOS transistor Q1 and the source of the second PMOS transistor Q2, and the output terminal of the first operational amplifier U1 is electrically connected with the gate of the second PMOS transistor Q2.
  • the non-inverting input terminal of the first operational amplifier U1 is used to receive the voltage signal sent by the controller 30, and the inverting input terminal of the first operational amplifier U1 is used to receive the trigger signal output by the first PMOS tube Q1. Signals and trigger signals are processed, and drive signals are output.
  • the size of the drive signal is related to the size of the voltage signal.
  • the voltage signal sent by the controller 30 can be adjusted to adjust the discharge between the positive electrode of the battery BAT1, the second PMOS tube Q2, the first PMOS tube Q1 and the negative electrode of the battery BAT1. The discharge current of the loop.
  • the discharge circuit 10 further includes a unidirectional conduction circuit 103 which is electrically connected between the second switch 1012 and the positive electrode of the battery 200 to prevent the discharge current from flowing back to the positive electrode of the battery 200.
  • One end of the unidirectional conducting circuit 103 is electrically connected to the second switch 1012, and the other end of the unidirectional conducting circuit 103 is electrically connected to one end of the B+ connection line.
  • the unidirectional conduction circuit 103 includes a diode D1, the anode of the diode D1 is electrically connected to the anode of the battery BAT1, and the cathode of the diode D1 is electrically connected to the drain of the second PMOS transistor Q2. Utilizing the unidirectional conductivity of the diode, in the external circuit of the battery BAT1, the discharge current always flows from the positive electrode of the battery BAT1 through the second PMOS tube Q2 and the first PMOS tube Q1, and finally flows back to the negative electrode of the battery BAT1 to prevent current backflow. , Burn the battery BAT1.
  • the voltage sampling circuit 20 is electrically connected to the battery 200 through a Kelvin connector, and is used to sample the output signal fed back from the input signal by the battery 200 within the input time period of the input signal to obtain a sampled voltage.
  • the output signal is the open circuit voltage fed back by the battery 200 to the discharge current during the input time period.
  • the open circuit voltage is the voltage between the positive electrode of the battery 200 and the negative electrode of the battery 200 when the battery 200 is discharged.
  • the voltage sampling circuit 20 samples the open circuit voltage of the battery 200 through the S+ connection line and the S- connection line of the Kelvin connector.
  • the voltage sampling circuit 20 includes a second signal processing circuit 201 and a voltage divider circuit 202.
  • the second signal processing circuit 201 is electrically connected to the battery 200 through a Kelvin connector, and is used for signal processing on the open circuit voltage of the battery 200.
  • the second signal processing circuit 201 is electrically connected to one end of the S+ connection line and one end of the S- connection line, the other end of the S+ connection line is electrically connected to the positive electrode of the battery BAT1, and the other end of the S- connection line is electrically connected to the negative electrode of the battery BAT1. connect.
  • the second signal processing circuit 201 includes a second operational amplifier U2.
  • the non-inverting input end of the second operational amplifier U2 is electrically connected to the positive electrode of the battery BAT1 through a Kelvin connector (S+ connection line).
  • the second operational amplifier U2 The inverting input end of the second operational amplifier U2 is electrically connected to the negative electrode of the battery BAT1 through a Kelvin connector (S-connection line), and the output end of the second operational amplifier U2 is electrically connected to the voltage divider circuit 202.
  • the voltage divider circuit 202 is electrically connected to the second signal processing circuit 201 and the controller 30 respectively, and is used to divide the output voltage of the second signal processing circuit 201 to obtain a sampled voltage, so that the controller 30 can determine the target according to the sampled voltage. Battery parameters.
  • the voltage divider circuit 202 includes a first resistor R1 and a second resistor R2.
  • One end of the first resistor R1 is electrically connected to the output end of the second operational amplifier U2, and the other end of the first resistor R1 is electrically connected to the controller 30 (ADC port of the single-chip microcomputer U3) and one end of the second resistor R2; The other end of the resistor R2 is grounded.
  • the controller 30 is electrically connected to the discharge circuit 10 and the voltage sampling circuit 20, respectively, for controlling the discharging circuit 10 so that the discharging circuit 10 sends an input signal to the battery 200, determines the target battery parameters according to the sampled voltage, and obtains the battery capacity meter.
  • the capacity table includes the corresponding relationship between battery parameters and battery reserve capacity. According to the battery capacity table and target battery parameters, the battery reserve capacity corresponding to the target battery parameters is determined.
  • the controller 30 includes a single-chip microcomputer U3.
  • the single-chip microcomputer U3 can be 51 series, iOS series, STM32 series, etc., and the single-chip microcomputer U3 includes an I/O port, a DAC port, and an ADC port.
  • the I/O port of the single-chip microcomputer U3 is electrically connected to the gate of the first PMOS tube Q1
  • the DAC port of the single-chip microcomputer U3 is electrically connected to the non-inverting input terminal of the first operational amplifier U1
  • the ADC port of the single-chip microcomputer U3 is electrically connected to the first resistor The connection node of R1 and the second resistor R2.
  • the controller 30 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), an ARM (Acorn RISC Machine) or other programmable Logic devices, discrete gates or transistor logic, discrete hardware components, or any combination of these components; it can also be any traditional processor, controller, microcontroller, or state machine; it can also be implemented as a combination of computing devices, for example, A combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • ARM Acorn RISC Machine
  • the working process of the battery testing device 100 is:
  • the high-level signal acts on the gate of the first PMOS tube Q1 to satisfy the conduction of the first PMOS tube Q1 Condition, the first PMOS transistor Q1 is turned on, and the drain voltage of the first PMOS transistor Q1 is pulled down, that is, the inverting input terminal of the first operational amplifier U1 is low, and the first operational amplifier U1 inputs to the non-inverting input terminal.
  • the voltage signal and the low-level signal input from the inverting input terminal are subjected to signal processing to obtain a drive signal.
  • the size of the drive signal is related to the size of the voltage signal.
  • the drive signal acts on the gate of the second PMOS transistor Q2 to satisfy the second The conduction condition of the PMOS tube Q2, the second PMOS tube Q2 is turned on.
  • the anode of the battery BAT1, the diode D1, the second PMOS tube Q2, the first PMOS tube Q1, and the cathode of the battery BAT1 form a discharge circuit.
  • BAT1 discharges with a constant discharge current, where the magnitude of the discharge current is related to the magnitude of the drive signal.
  • the battery BAT1 When the battery BAT1 is discharged with a constant discharge current, the battery BAT1 generates an open-circuit voltage, the non-inverting input terminal of the second operational amplifier U2 is electrically connected to the positive electrode of the battery BAT1, and the inverting input terminal of the second operational amplifier U2 is electrically connected to the negative electrode of the battery BAT1.
  • the second operational amplifier U2 Connected, the second operational amplifier U2 performs signal processing on the open circuit voltage, and then performs voltage division processing through the voltage divider circuit composed of the first resistor R1 and the second resistor R2 to obtain a sampled voltage, and sends the sampled voltage to the microcontroller U3 ADC port.
  • the single-chip microcomputer U3 detects the maximum voltage and the minimum voltage of the open circuit voltage during the discharge process according to the sampled voltage, and calculates the voltage drop slope according to the maximum voltage, the minimum voltage and the discharge time of the battery BAT1, and stores the battery parameters .
  • the I/O port of the single-chip microcomputer U3 outputs a low-level signal, and the low-level signal acts on the gate of the first PMOS transistor Q1, which does not meet the conduction condition of the first PMOS transistor Q1, and the first PMOS transistor Q1 is turned off.
  • the discharge circuit of the battery BAT1 is cut off, and the battery BAT1 stops discharging.
  • the single-chip microcomputer U3 determines the target battery parameters from the several battery parameters according to the preset algorithm, so that the single-chip microcomputer U3 determines the battery reserve capacity corresponding to the target battery parameter according to the target battery parameter and the battery capacity table.
  • FIG. 4 is a method flowchart of a method for measuring the battery reserve capacity of a battery according to an embodiment of the present invention.
  • the method S400 for measuring the battery reserve capacity of a battery is applied to the battery testing device 100 described in any of the above embodiments, and the battery testing device 100 and the battery 200 are electrically connected through a Kelvin connector, and the method includes:
  • Step S41 Send an input signal to the battery to control the discharge of the battery, and obtain an output signal fed back by the battery with respect to the input signal within the input time period of the input signal.
  • the battery detection device can send an input signal to the battery at least once, and each time an input signal is sent to the battery, the battery continues to discharge within the input time of the input signal, and returns an output signal to the battery detection device. After the input time is over, the battery will end its discharge and stop returning an output signal to the battery testing device.
  • the sending an input signal to the battery to control the discharge of the battery includes: sending an input signal to the battery at least twice to control the discharge of the battery.
  • the sending an input signal to the battery at least twice to control the discharge of the battery includes: sending an input signal to the battery at least twice according to a preset frequency to control the discharge of the battery .
  • an input signal with a preset frequency can be generated by means of a timer interrupt, that is, the sending interval of at least two sending of the input signal is the same.
  • the sending interval for sending the input signal at least twice is random, that is, the sending interval is not predetermined in duration, and may be the same or different.
  • a randomly generated input signal can be generated by a preset algorithm.
  • the sending an input signal to the battery at least twice to control the discharge of the battery includes: sending an input signal to the battery at least twice to control the discharge of the battery until a preset number of times .
  • the number of sending input signals to the battery is detected by means of a counter, and it is judged whether the number of discharges of the battery has reached the preset number of times. If so, the input signal to the battery is stopped, so as to achieve at least two input signals to the battery to control The battery discharges up to the preset number of times.
  • the preset times can be set according to the rated parameters of the battery, for example, by pre-setting the mathematical relationship between the rated parameters and the preset times to detect the rated parameters of the battery, and determine the preset according to the rated parameters of the battery and the mathematical relationship between the rated parameters and the preset times frequency.
  • the number of preset times can be reduced to reduce the heat generated by the battery discharge.
  • the preset number of times can also be set artificially based on historical experience values. For example, for a 100RC battery, when an input signal is sent to the battery to control the battery to discharge up to 20 times, the battery reserve capacity measurement result is equal to 100RC, a total of 20 times.
  • the battery reserve capacity measurement result of the battery is equal to 100RC
  • a total of 14 times when the input signal is sent to the battery to control the battery discharge up to 10 times, the battery reserve capacity measurement result of the battery is equal to 100RC
  • the preset times can be set to 20 times.
  • the input durations of the input signals sent at least twice are the same, or at least one of the input durations of the input signals sent at least twice is different from other input durations.
  • the continuous discharge time of the battery is equal to the input duration of the input signal, that is, at the beginning of the input signal, the battery is triggered to start discharging, and at the end of the input signal, the battery is triggered to end discharging.
  • the battery corresponds to at least two discharge processes.
  • Each continuous discharge time of the battery can be the same or different, depending on the input time of the input signal sent to the battery by the battery detection device each time .
  • the duration unit of the input duration is milliseconds, for example, the input duration is 150 ms.
  • the storage capacity of the storage battery can be determined by inputting a signal to the storage battery in a short time and guiding the storage battery to discharge, which saves the measurement time of the storage storage capacity of the storage battery and improves the user experience.
  • the battery detection equipment controls the battery discharge, and the battery discharge generates heat.
  • the input signal is the discharge current of the battery discharge
  • the output signal is the open circuit voltage fed back to the discharge current of the battery during the input time period.
  • the input signal of the battery and the output signal of the battery can also exist in other forms, such as the input signal as a load, or the input signal as a voltage, and the output signal as a current, etc., which are not limited here.
  • the method before sending an input signal to the battery to control the discharge of the battery, the method further includes: initializing the battery detection device.
  • Step S42 Determine the target battery parameter according to the output signal.
  • the determining the target battery parameter according to the output signal includes: detecting a set of battery parameters each time the battery is discharged according to the output signal; selecting the optimal battery parameter from at least two sets of voltage parameters as the target Battery parameters.
  • the battery parameters include the maximum voltage, the minimum voltage and the voltage drop slope of the battery each time it is discharged.
  • the screening the optimal voltage parameter from at least two sets of battery parameters as the target battery parameter includes: selecting the maximum voltage with the largest voltage among the at least two sets of battery parameters as the target maximum voltage; The minimum voltage with the smallest voltage among the two sets of battery parameters is selected as the target minimum voltage; the target maximum voltage, the target minimum voltage, and the target voltage drop slope corresponding to the target maximum voltage and the target minimum voltage are used as the optimal battery parameter.
  • Step S43 Obtain a battery capacity table, where the battery capacity table includes the correspondence between battery parameters and battery reserve capacity.
  • the battery capacity meter includes several types of battery reserve capacities and several sets of voltage parameters under each of the battery reserve capacities, and each set of voltage parameters includes several test voltages and a pair of voltage parameters under each test voltage.
  • the battery parameters obtained by discharging the accumulator, wherein the reserve capacities of the several types of batteries are separated by a preset capacity, and the test voltages are separated by a preset voltage.
  • the battery capacity meter can be pre-built and stored in the battery testing equipment. As shown in Table 1, it shows a way to obtain a battery capacity meter in an experiment.
  • the test battery is selected at intervals of 10RC, and the test voltage is selected at intervals of 0.1V within the preset voltage range of 12.8V-8.0V.
  • Under a test voltage according to step S41 and step S42, measure and record the battery parameters under the test voltage, and then perform constant current discharge to make the battery voltage drop to the next test voltage. Repeat the above operation to record the battery parameters under the test voltage. Battery parameters, complete the construction of the battery capacity meter.
  • a preset time threshold for example, 24h
  • the method of measuring the battery parameters of the battery to be tested is consistent with the method of measuring the battery parameters of the experimental battery in the battery capacity table.
  • the experimental battery performs m1 intermittent discharges at each test voltage, the transmission interval of the input signal sent m1 times is equal to p1, and the input time length of the input signal sent m1 times is equal to
  • the maximum voltage of m1 intermittent discharge is the maximum voltage of m1 intermittent discharge
  • the minimum voltage of m1 intermittent discharge is the minimum voltage of m1 intermittent discharge
  • the maximum voltage of m1 intermittent discharge The voltage drop slope is equal to (maximum voltage of m1 intermittent discharge-minimum voltage of m1 intermittent discharge)/preset time t1, when measuring the battery reserve capacity of the battery under test, send m1 input signals to the battery to control
  • the battery is discharged, and the output signal that the battery feedbacks to the input signal during
  • the transmission interval of the input signal sent for m1 times is equal to p1, and the input time of the input signal sent for m1 times is equal to q1, and m1 times are intermittent.
  • the target battery parameters are determined according to the output signal, and the target battery parameters are the maximum voltage, minimum voltage and voltage drop of m1 intermittent discharges Slope
  • the maximum voltage of m1 intermittent discharge is the maximum value of the maximum voltage of m1 intermittent discharge
  • the minimum voltage of m1 intermittent discharge is the minimum value of the minimum voltage of m1 intermittent discharge
  • the minimum voltage of m1 intermittent discharge The slope of the maximum voltage drop is equal to (maximum voltage of m1 intermittent discharge-minimum voltage of m1 intermittent discharge)/preset duration t1.
  • Step S44 Determine a battery reserve capacity corresponding to the target battery parameter according to the battery capacity table and the target battery parameter.
  • the determining the battery reserve capacity corresponding to the target battery parameter according to the battery capacity table and the target battery parameter includes: inputting the target battery parameter to the battery capacity table; Find the battery reserve capacity matching the target pressure drop slope in the, and use the battery reserve capacity as the battery reserve capacity of the storage battery.
  • the battery capacity table is searched for a battery reserve capacity matching the target voltage drop slope, and the battery reserve capacity is used as The battery reserve capacity of the battery includes: judging whether the target voltage drop slope falls within the slope matching range of the effective voltage drop slope; if so, the battery reserve capacity corresponding to the effective voltage drop slope is used as the battery reserve of the battery capacity.
  • the effective pressure drop slope is the most matching pressure drop slope of the target pressure drop slope.
  • the target voltage drop slope is equal to 0.5V/t
  • the effective voltage drop slope is equal to 0.51V/t
  • the slope matching range is 0.51 ⁇ 0.02V/t
  • the battery reserve capacity corresponding to the effective voltage drop slope is equal to 150RC
  • the target voltage drop slope is 0.5 V/t falls into the effective voltage drop slope 0.51V/t slope matching range 0.51 ⁇ 0.02V/t
  • the effective voltage drop slope 0.51V/t corresponding to the battery reserve capacity 150RC is used as the battery reserve capacity of the battery, so as to realize the storage capacity of the battery Measurement of battery reserve capacity.
  • the determination of the battery reserve capacity corresponding to the target battery parameter according to the battery capacity table and the target battery parameter is not limited to the specific implementation disclosed in the embodiment of the present invention, for example, the target maximum voltage and the target minimum voltage of the target battery parameter can be used.
  • Pressure difference determine the battery reserve capacity corresponding to the target pressure difference.
  • Searching the battery capacity table for the voltage drop slope that matches the target voltage drop slope is not limited to the specific implementation disclosed in the embodiment of the present invention, for example, when the target voltage drop slope and a voltage drop slope in the battery capacity table meet the preset matching condition , The battery reserve capacity corresponding to the voltage drop slope is used as the battery reserve capacity of the battery.
  • the embodiment of the present invention provides a method for measuring the battery reserve capacity of a battery.
  • the output signal of the battery for the input signal feedback during the input signal input time period is obtained, and the target is determined according to the output signal.
  • the battery capacity table is obtained.
  • the battery capacity table includes the corresponding relationship between battery parameters and battery reserve capacity. According to the battery capacity table and the target battery parameters, the battery reserve capacity corresponding to the target battery parameters is determined.
  • the target battery parameters are obtained by controlling the battery to discharge at least one time, and the battery reserve capacity of the battery is measured according to the target battery parameter and the battery capacity meter including the corresponding relationship between the battery parameter and the battery reserve capacity, thereby reducing the battery capacity.
  • the measurement time of the battery reserve capacity improves the measurement efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种测量蓄电池(200)的电池储备容量的方法及电池检测设备(100),测量蓄电池(200)的电池储备容量的方法应用于电池检测设备(100),电池检测设备(100)与蓄电池(200)通过开尔文连接器电连接,方法包括:向蓄电池(200)发送输入信号以控制蓄电池(200)放电,获取蓄电池(200)在输入信号的输入时长内针对输入信号反馈的输出信号(S41);根据输出信号确定目标电池参数(S42);获取电池容量表,电池容量表包括电池参数与电池储备容量的对应关系(S43);根据电池容量表与目标电池参数,确定与目标电池参数对应的电池储备容量(S44)。减少蓄电池(200)的电池储备容量的测量时间,提升测量效率。

Description

一种测量蓄电池的电池储备容量的方法及电池检测设备
本申请要求于2020年6月24日提交中国专利局、申请号为202010592274.X、申请名称为“一种测量蓄电池的电池储备容量的方法及电池检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池检测技术领域,尤其涉及一种测量蓄电池的电池储备容量的方法及电池检测设备。
背景技术
传统汽车上设置有蓄电池,用于为汽车发动机启动和车载用电设备提供电能。蓄电池的电池储备容量(reserve capacity,RC,又称剩余电量或剩余容量)是指蓄电池以25A电流放电到10.5V所需要的时间(单位为分钟),表示当汽车充电系统失效时,蓄电池作为唯一能源为点火和照明等用电设备持续提供25A电流的能力。目前,现有技术多采用恒流放电设备对蓄电池以25A恒定电流放电到10.5V,通过测量上述过程的时间,以实现蓄电池的电池储备容量的测量。然而,上述测量方式的测量时间较长,降低了蓄电池的电池储备容量的测量效率。
发明内容
本发明实施例旨在提供一种测量蓄电池的电池储备容量的方法及电池检测设备,其能够减少蓄电池的电池储备容量的测量时间,提升测量效率。
为解决上述技术问题,本发明实施例提供以下技术方案:
本发明实施例提供了一种测量蓄电池的电池储备容量的方法,应用于电池检测设备,所述电池检测设备与所述蓄电池通过开尔文连接器电连接,所述方法包括:
向所述蓄电池发送输入信号以控制所述蓄电池放电,获取所述蓄电池在所述输入信号的输入时长内针对所述输入信号反馈的输出信号;
根据所述输出信号确定目标电池参数;
获取电池容量表,所述电池容量表包括电池参数与电池储备容量的对应关系;
根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量。
在一些实施例中,所述向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:
至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
在一些实施例中,所述至少两次向所述蓄电池发送输入信号以控制所述蓄 电池放电,包括:
按照预设频率至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
在一些实施例中,至少两次发送输入信号的发送间隔是随机的。
在一些实施例中,所述至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:
至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电直至预设次数。
在一些实施例中,至少两次发送的输入信号的输入时长相同,或者,至少两次发送的输入信号的输入时长中存在至少一个输入时长与其他输入时长不同。
在一些实施例中,所述输入时长的时长单位为毫秒(ms)。
在一些实施例中,所述输入信号是所述蓄电池放电的放电电流,所述输出信号是所述蓄电池在所述输入时长内针对所述放电电流反馈的开路电压。
在一些实施例中,所述根据所述输出信号确定目标电池参数,包括:
根据所述输出信号,检测所述蓄电池每次放电时的一组电池参数;
在至少两组电压参数中筛选最优电池参数作为所述目标电池参数。
在一些实施例中,所述电池参数包括所述蓄电池每次放电时的最大电压、最小电压及压降斜率。
在一些实施例中,所述在至少两组电池参数中筛选最优电压参数作为所述目标电池参数,包括:
在所述至少两组电池参数中选择电压最大的最大电压为目标最大电压;
在所述至少两组电池参数中选择电压最小的最小电压为目标最小电压;
将所述目标最大电压、所述目标最小电压以及所述目标最大电压与所述目标最小电压对应的目标压降斜率作为最优电池参数。
在一些实施例中,所述电池容量表包括若干种电池储备容量及每种所述电池储备容量下的若干组电压参数,每一组电压参数包括若干测试电压以及在每个测试电压下对所述蓄电池进行放电得到的电池参数,其中,所述若干种电池储备容量两两之间间隔预设容量,所述若干测试电压两两之间间隔预设电压。
在一些实施例中,所述根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量,包括:
将所述目标电池参数输入至所述电池容量表;
在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量。
在一些实施例中,每一所述电池参数的压降斜率对应一个斜率匹配范围,所述在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量,包括:
判断所述目标压降斜率是否落入有效压降斜率的斜率匹配范围;
若是,将所述有效压降斜率对应的电池储备容量作为所述蓄电池的电池储备容量。
本发明实施例还提供了一种电池检测设备,所述电池检测设备与蓄电池通过开尔文连接器电连接,所述电池检测设备包括:
放电电路,与所述蓄电池通过所述开尔文连接器电连接,用于向所述蓄电池发送输入信号,以控制所述蓄电池放电;
电压采样电路,与所述蓄电池通过所述开尔文连接器电连接,用于采样所述蓄电池在所述输入信号的输入时长内针对所述输入信号反馈的输出信号,得到采样电压;
控制器,分别与所述放电电路和所述电压采样电路电连接,用于控制所述放电电路,以使所述放电电路向所述蓄电池发送输入信号,根据所述采样电压确定目标电池参数,并且获取电池容量表,所述电池容量表包括电池参数与电池储备容量的对应关系,根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量。
在一些实施例中,所述输入信号是所述蓄电池放电的放电电流,所述输出信号是所述蓄电池在所述输入时长内针对所述放电电流反馈的开路电压。
在一些实施例中,所述放电电路包括:
开关电路,与所述控制器电连接,且通过所述开尔文连接器与所述蓄电池电连接,用于当所述控制器控制所述开关电路处于导通状态时,触发向所述蓄电池发送放电电流,并产生触发信号;
第一信号处理电路,分别与所述控制器和所述开关电路电连接,用于对所述控制器发送的电压信号和所述开关电路发送的触发信号进行信号处理,输出驱动信号,以控制所述放电电流的大小。在一些实施例中,所述开关电路包括:
第一开关,分别与所述控制器和所述第一信号处理电路电连接,且通过所述开尔文连接器与所述蓄电池的负极电连接,用于根据所述控制器发送的控制信号,控制闭合或断开所述控制器与所述蓄电池的放电回路,产生触发信号,并将所述触发信号发送至所述第一信号处理电路;
第二开关,分别与所述第一开关和所述第一信号处理电路电连接,且通过所述开尔文连接器与所述蓄电池的正极电连接,用于根据所述驱动信号,控制所述放电回路的所述放电电流的大小。
在一些实施例中,所述第一开关包括第一PMOS管,所述第一PMOS管的栅极与所述控制器电连接,所述第一PMOS管的源极通过所述开尔文连接器与所述蓄电池的负极电连接,所述第一PMOS管的漏极与所述第二开关和所述第一信号处理电路电连接。
在一些实施例中,所述第二开关包括第二PMOS管,所述第二PMOS管的栅极与所述第一信号处理电路电连接,所述第二PMOS管的源极与所述第一PMOS管的漏极和所述第一信号处理电路电连接,所述第二PMOS管的漏极通过所述开尔文连接器与所述蓄电池的正极电连接。
在一些实施例中,所述第一信号处理电路包括第一运算放大器,所述第一运算放大器的同相输入端与所述控制器电连接,所述第一运算放大器的反相输入端与所述第一PMOS管的漏极和所述第二PMOS管的源极电连接,所述第一运算放大器的输出端与所述第二PMOS管的栅极电连接。
在一些实施例中,所述放电电路还包括单向导通电路,所述单向导通电路电连接在所述第二开关与所述蓄电池的正极之间,用于防止所述放电电流倒灌回所述蓄电池的正极。
在一些实施例中,所述电压采样电路包括:
第二信号处理电路,通过所述开尔文连接器与所述蓄电池电连接,用于对所述蓄电池的开路电压进行信号处理;
分压电路,分别与所述第二信号处理电路和所述控制器电连接,用于对所述第二信号处理电路的输出电压作分压处理,得到采样电压,以使所述控制器根据所述采样电压确定目标电池参数。
在一些实施例中,所述第二信号处理电路包括第二运算放大器,所述第二运算放大器的同相输入端通过所述开尔文连接器与所述蓄电池的正极电连接,所述第二运算放大器的反相输入端通过所述开尔文连接器与所述蓄电池的负极电连接,所述第二运算放大器的输出端与所述分压电路电连接。
在一些实施例中,所述分压电路包括第一电阻和第二电阻;
所述第一电阻的一端与所述第二运算放大器的输出端电连接,所述第一电阻的另一端与所述控制器和所述第二电阻的一端电连接;所述第二电阻的另一端接地。
本发明的有益效果是:与现有技术相比较,本发明实施例提供了一种测量蓄电池的电池储备容量的方法及电池检测设备,通过向蓄电池发送输入信号以控制蓄电池放电,获取蓄电池在输入信号的输入时长内针对输入信号反馈的输出信号,根据输出信号确定目标电池参数,获取电池容量表,电池容量表包括电池参数与电池储备容量的对应关系,根据电池容量表与目标电池参数,确定与目标电池参数对应的电池储备容量。因此,本发明实施例通过控制蓄电池进行至少一次放电得到目标电池参数,根据目标电池参数和包括电池参数与电池储备容量的对应关系的电池容量表,测量该蓄电池的电池储备容量,从而减少了蓄电池的电池储备容量的测量时间,提升了测量效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的一种电池检测设备的电路结构示意图;
图2为图1所示的放电电路和电压采样电路的电路结构示意图;
图3为本发明实施例提供的一种电池检测设备的电路连接示意图;
图4为本发明实施例提供的一种测量蓄电池的电池储备容量的方法的方法流程图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,为本发明实施例提供的一种电池检测设备的电路结构示意图。如图1所示,电池检测设备100与蓄电池200通过开尔文连接器(图未示)电连接,电池检测设备100包括放电电路10、电压采样电路20以及控制器30。
如图2所示,开尔文连接器包括B+连接线、B-连接线、S+连接线以及S-连接线。其中,B+连接线和S+连接线均与蓄电池200的正极电连接,B-连接线和S-连接线均与蓄电池200的负极电连接,B+连接线和B-连接线用于分离蓄电池200的两个电极之间的放电电流,S+连接线和S-连接线用于分离蓄电池200的两个电极之间的开路电压。通过开尔文连接器实现开尔文四线检测,消除了布线和接触电阻的阻抗,接触电阻是指电池检测设备100与蓄电池200形成放电回路时,电流流过蓄电池200的正极或蓄电池200的负极时的电阻。
放电电路10与蓄电池200通过开尔文连接器电连接,用于向蓄电池200发送输入信号,以控制蓄电池200放电。
在本发明实施例中,输入信号是蓄电池200放电的放电电流。当放电电路10向蓄电池200发送放电电流时,放电电路10处于导通状态,放电电路10与蓄电池20形成放电回路,触发蓄电池200开始放电,即输入信号可用于控制蓄电池200放电。
请一并参阅图2,放电电路10包括开关电路101和第一信号处理电路102。
开关电路101与控制器30电连接,且通过开尔文连接器与蓄电池200电连接,用于当控制器30控制开关电路101处于导通状态时,触发向蓄电池200发送放电电流,并产生触发信号。
进一步的,开关电路101包括第一开关1011和第二开关1012。
第一开关1011分别与控制器30和第一信号处理电路102电连接,且通过开尔文连接器与蓄电池200的负极电连接,用于根据控制器30发送的控制信号,控制闭合或断开控制器30与蓄电池200的放电回路,产生触发信号,并 将所述触发信号发送至第一信号处理电路102。
第一开关1011与B-连接线的一端电连接,B-连接线的另一端与蓄电池BAT1的负极电连接。
请参阅图3,第一开关101包括第一PMOS管Q1,第一PMOS管Q1的栅极与控制器30(单片机U3的I/O端口)电连接,第一PMOS管Q1的源极通过开尔文连接器(B-连接线)与蓄电池BAT1的负极电连接,第一PMOS管Q1的漏极与第二开关1012和第一信号处理电路102电连接。当第一PMOS管Q1导通时,第一PMOS管Q1的漏极被拉至低电平,产生触发信号,并将低电平的触发信号发送至第一信号处理电路102。
第二开关1012分别与第一开关1011和第一信号处理电路102电连接,且通过开尔文连接器与蓄电池200的正极电连接,用于根据第一信号处理电路102输出的驱动信号,控制放电回路的放电电流的大小。
第二开关1012与B+连接线的一端电连接,B+连接线的另一端与蓄电池BAT1的正极电连接。
如图3所示,第二开关1012包括第二PMOS管Q2,第二PMOS管Q2的栅极与第一信号处理电路102电连接,第二PMOS管Q2的源极与第一PMOS管的漏极和第一信号处理电路102电连接,第二PMOS管Q2的漏极通过开尔文连接器(B+连接线)与蓄电池BAT1的正极电连接。当第一PMOS管Q1导通时,第一PMOS管Q1的漏极被拉至低电平,产生触发信号,并将低电平的触发信号发送至第一信号处理电路102,第一信号处理电路102产生驱动信号,驱动信号作用于第二PMOS管Q2的栅极,控制第二PMOS管Q2导通,当第二PMOS管Q2导通时,第二PMOS管Q2的漏极电流取决于第二PMOS管Q2的栅极电压。其中,第二PMOS管Q2的漏极电流等于蓄电池BAT1的正极、第二PMOS管Q2、第一PMOS管Q1到蓄电池BAT1的负极之间的放电回路的放电电流。
第一信号处理电路102分别与控制器30和开关电路101电连接,用于对控制器30发送的电压信号和开关电路101发送的触发信号进行信号处理,输出驱动信号,以控制放电电流的大小。
如图3所示,第一信号处理电路102包括第一运算放大器U1,第一运算放大器U1的同相输入端与控制器30(单片机U3的DAC端口)电连接,第一运算放大器U1的反相输入端与第一PMOS管Q1的漏极和第二PMOS管Q2的源极电连接,第一运算放大器U1的输出端与第二PMOS管Q2的栅极电连接。第一运算放大器U1的同相输入端用于接收控制器30发送的电压信号,第一运算放大器U1的反相输入端用于接收第一PMOS管Q1输出的触发信号,第一运算放大器U1对电压信号和触发信号进行信号处理,输出驱动信号。因此,驱动信号的大小与电压信号的大小有关,可通过调节控制器30发送的电压信号,调节蓄电池BAT1的正极、第二PMOS管Q2、第一PMOS管Q1到蓄电池BAT1的负极之间的放电回路的放电电流。
在一些实施例中,放电电路10还包括单向导通电路103,单向导通电路 103电连接在第二开关1012与蓄电池200的正极之间,用于防止放电电流倒灌回蓄电池200的正极。
单向导通电路103的一端与第二开关1012电连接,单向导通电路103的另一端与B+连接线的一端电连接。
如图3所示,单向导通电路103包括二极管D1,二极管D1的阳极与蓄电池BAT1的正极电连接,二极管D1的阴极与第二PMOS管Q2的漏极电连接。利用二极管的单向导电性,使得在蓄电池BAT1的外部电路中,放电电流始终从蓄电池BAT1的正极经过第二PMOS管Q2、第一PMOS管Q1,最后流回到蓄电池BAT1的负极,防止电流倒灌,烧毁蓄电池BAT1。
电压采样电路20与蓄电池200通过开尔文连接器电连接,用于采样蓄电池200在输入信号的输入时长内针对输入信号反馈的输出信号,得到采样电压。
其中,输出信号是蓄电池200在输入时长内针对放电电流反馈的开路电压。开路电压是蓄电池200放电时,蓄电池200的正极与蓄电池200的负极之间的电压,电压采样电路20通过开尔文连接器的S+连接线和S-连接线,采样蓄电池200的开路电压。
请再次参阅图2,电压采样电路20包括第二信号处理电路201和分压电路202。
第二信号处理电路201通过开尔文连接器与蓄电池200电连接,用于对蓄电池200的开路电压进行信号处理。
第二信号处理电路201分别与S+连接线的一端和S-连接线的一端电连接,S+连接线的另一端与蓄电池BAT1的正极电连接,S-连接线的另一端与蓄电池BAT1的负极电连接。
如图3所示,第二信号处理电路201包括第二运算放大器U2,第二运算放大器U2的同相输入端通过开尔文连接器(S+连接线)与蓄电池BAT1的正极电连接,第二运算放大器U2的反相输入端通过开尔文连接器(S-连接线)与蓄电池BAT1的负极电连接,第二运算放大器U2的输出端与分压电路202电连接。
分压电路202分别与第二信号处理电路201和控制器30电连接,用于对第二信号处理电路201的输出电压作分压处理,得到采样电压,以使控制器30根据采样电压确定目标电池参数。
如图3所示,分压电路202包括第一电阻R1和第二电阻R2。其中,第一电阻R1的一端与第二运算放大器U2的输出端电连接,第一电阻R1的另一端与控制器30(单片机U3的ADC端口)和第二电阻R2的一端电连接;第二电阻R2的另一端接地。
控制器30分别与放电电路10和电压采样电路20电连接,用于控制放电电路10,以使放电电路10向蓄电池200发送输入信号,根据采样电压确定目标电池参数,并且获取电池容量表,电池容量表包括电池参数与电池储备容量 的对应关系,根据电池容量表与目标电池参数,确定与目标电池参数对应的电池储备容量。
如图3所示,控制器30包括单片机U3,单片机U3可采用51系列、Arduino系列、STM32系列等,单片机U3包括I/O端口、DAC端口以及ADC端口。其中,单片机U3的I/O端口与第一PMOS管Q1的栅极电连接,单片机U3的DAC端口与第一运算放大器U1的同相输入端电连接,单片机U3的ADC端口电连接至第一电阻R1与第二电阻R2的连接节点。
在一些实施例中,控制器30还可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合;还可以是任何传统处理器、控制器、微控制器或状态机;也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
综上,电池检测设备100的工作过程为:
(1)单片机U3的I/O端口输出高电平信号、单片机U3的DAC端口输出电压信号时,高电平信号作用于第一PMOS管Q1的栅极,满足第一PMOS管Q1的导通条件,第一PMOS管Q1导通,第一PMOS管Q1的漏极电压被拉低,即第一运算放大器U1的反相输入端为低电平,第一运算放大器U1对同相输入端输入的电压信号和反相输入端输入的低电平信号进行信号处理,得到驱动信号,其中,驱动信号的大小与电压信号的大小有关,驱动信号作用于第二PMOS管Q2的栅极,满足第二PMOS管Q2的导通条件,第二PMOS管Q2导通,此时,蓄电池BAT1的正极、二极管D1、第二PMOS管Q2、第一PMOS管Q1以及蓄电池BAT1的负极之间形成放电回路,蓄电池BAT1以恒定放电电流进行放电,其中,放电电流的大小与驱动信号的大小有关。
当蓄电池BAT1以恒定放电电流进行放电时,蓄电池BAT1产生开路电压,第二运算放大器U2的同相输入端与蓄电池BAT1的正极电连接,第二运算放大器U2的反相输入端与蓄电池BAT1的负极电连接,第二运算放大器U2对开路电压进行信号处理,再经第一电阻R1和第二电阻R2组成的分压电路做分压处理,得到采样电压,并将所述采样电压发送至单片机U3的ADC端口。单片机U3根据所述采样电压,检测在此次放电过程中,开路电压的最大电压、最小电压,并根据最大电压、最小电压以及蓄电池BAT1的放电时长,计算压降斜率,并存储该组电池参数。
(2)单片机U3的I/O端口输出低电平信号,低电平信号作用于第一PMOS管Q1的栅极,不满足第一PMOS管Q1的导通条件,第一PMOS管Q1截止,切断蓄电池BAT1的放电回路,蓄电池BAT1停止放电。
(3)重复步骤(1)和步骤(2),控制蓄电池进行间歇性恒流放电,得到若干组电池参数,单片机U3根据预设算法,从若干组电池参数中确定目标电池参数,以使单片机U3根据目标电池参数和电池容量表,确定与目标电池参 数对应的电池储备容量。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
请参阅图4,为本发明实施例提供的一种测量蓄电池的电池储备容量的方法的方法流程图。如图4所示,测量蓄电池的电池储备容量的方法S400应用于上述任一实施例所述的电池检测设备100,电池检测设备100与蓄电池200通过开尔文连接器电连接,所述方法包括:
步骤S41、向所述蓄电池发送输入信号以控制所述蓄电池放电,获取所述蓄电池在所述输入信号的输入时长内针对所述输入信号反馈的输出信号。
可以理解,电池检测设备可向蓄电池发送至少一次输入信号,每向蓄电池发送一次输入信号,蓄电池在所述输入信号的输入时长内持续放电,向电池检测设备返回输出信号,当所述输入信号的输入时长结束后,蓄电池结束放电,停止向电池检测设备返回输出信号。
在一些实施例中,所述向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
作为本发明的其中一个实施方式,所述至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:按照预设频率至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
其中,可通过定时器中断的方式产生预设频率的输入信号,即至少两次发送输入信号的发送间隔是相等的。
作为本发明的其中一个实施方式,至少两次发送输入信号的发送间隔是随机的,即发送间隔时长非预定,可相同,可不同。例如,可通过预设算法产生随机发生的输入信号。
作为本发明的其中一个实施方式,所述至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电直至预设次数。
具体的,通过计数器的方式检测向蓄电池发送输入信号的次数,判断蓄电池放电的放电次数是否达到预设次数,若是,则停止向蓄电池发送输入信号,从而实现至少两次向蓄电池发送输入信号以控制蓄电池放电直至预设次数。
预设次数可根据蓄电池的额定参数设置,例如通过预先设置额定参数与预设次数的数学关系,检测蓄电池的额定参数,根据蓄电池的额定参数以及额定参数与预设次数的数学关系,确定预设次数。当蓄电池的额定电流较大时,可减少预设次数的数值,以降低蓄电池放电产生的热量。预设次数还可根据历史经验值人为设置,例如对于100RC的蓄电池,当向蓄电池发送输入信号以控制蓄电池放电直至20次,蓄电池的电池储备容量测量结果等于100RC的一共有20次,当向蓄电池发送输入信号以控制蓄电池放电直至15次,蓄电池的电池储备容量测量结果等于100RC的一共有14次,当向蓄电池发送输入信号以控 制蓄电池放电直至10次,蓄电池的电池储备容量测量结果等于100RC的一共有8次,则可将预设次数设置为20次。
作为本发明的其中一个实施方式,至少两次发送的输入信号的输入时长相同,或者,至少两次发送的输入信号的输入时长中存在至少一个输入时长与其他输入时长不同。
本申请实施例中,在一次放电过程中,蓄电池的持续放电时间等于输入信号的输入时长,即在输入信号的起点,触发蓄电池开始放电,在输入信号的终点,触发蓄电池结束放电。当至少两次向蓄电池发送输入信号时,蓄电池对应至少两次的放电过程,蓄电池每一次持续放电时间可以相同,也可以不同,均取决于电池检测设备每次向蓄电池发送的输入信号的输入时长。
可选地,所述输入时长的时长单位为毫秒,如输入时长为150ms。
本申请实施例通过较短时间对蓄电池输入信号,引导蓄电池放电即可确定蓄电池的储备容量,节省了对蓄电池的储备容量的测量时长,提升用户体验。
在输入信号的输入时长内,电池检测设备控制蓄电池放电,蓄电池放电产生热量,根据热量公式Q=I^2Rt可知,当蓄电池以恒定大电流进行放电时,输入时长越大,蓄电池放电产生的热量越高。因此,通过设置至少两次发送输入信号之间具有发送间隔,且将输入时长限制在ms级别,控制蓄电池实现间歇性大电流放电,以避免蓄电池持续放电产生的大量热量的问题。
在本发明实施例中,所述输入信号是所述蓄电池放电的放电电流,所述输出信号是所述蓄电池在所述输入时长内针对所述放电电流反馈的开路电压。其中,通过在电池检测设备中设置目标放电电流的值,并根据目标放电电流与预先存储于电池检测设备的电流-电压关系表,输出电压信号,以控制蓄电池的放电电流等于目标放电电流,即电池检测设备与蓄电池的放电回路的电流等于目标放电电流。当然,依据检测需求,对蓄电池的输入信号和蓄电池的输出信号还可以以其他形式存在,如输入信号为负载,或者输入信号为电压,输出信号为电流等,在此不予限定。在一些实施例中,在向所述蓄电池发送输入信号以控制所述蓄电池放电之前,所述方法还包括:初始化所述电池检测设备。
步骤S42、根据所述输出信号确定目标电池参数。
所述根据所述输出信号确定目标电池参数,包括:根据所述输出信号,检测所述蓄电池每次放电时的一组电池参数;在至少两组电压参数中筛选最优电池参数作为所述目标电池参数。其中,所述电池参数包括所述蓄电池每次放电时的最大电压、最小电压及压降斜率。
进一步的,所述在至少两组电池参数中筛选最优电压参数作为所述目标电池参数,包括:在所述至少两组电池参数中选择电压最大的最大电压为目标最大电压;在所述至少两组电池参数中选择电压最小的最小电压为目标最小电压;将所述目标最大电压、所述目标最小电压以及所述目标最大电压与所述目标最小电压对应的目标压降斜率作为最优电池参数。
步骤S43、获取电池容量表,所述电池容量表包括电池参数与电池储备容 量的对应关系。
在本发明实施例中,所述电池容量表包括若干种电池储备容量及每种所述电池储备容量下的若干组电压参数,每一组电压参数包括若干测试电压以及在每个测试电压下对所述蓄电池进行放电得到的电池参数,其中,所述若干种电池储备容量两两之间间隔预设容量,所述若干测试电压两两之间间隔预设电压。
电池容量表可预先构建并存储于电池检测设备中。如表1所示,其示出了实验获取电池容量表的一种方式,以10RC为间隔选取实验蓄电池,在12.8V-8.0V的预设电压范围内,以0.1V为间隔选取测试电压,在一个测试电压下,根据步骤S41和步骤S42,测量该测试电压下的电池参数并记录,然后进行恒流放电,使得蓄电池电压下降到下一个测试电压,重复上述操作,记录该测试电压下的电池参数,完成电池容量表的构建。
Figure PCTCN2021100817-appb-000001
表1
具体的,预先构建电池容量表包括:提供若干不同种已知电池储备容量的实验蓄电池;将每个实验蓄电池充满电并静置预设时长阈值(例如24h);静置预设时长阈值后,控制每个实验蓄电池在预设电压测量范围内,在每个测试电压下进行放电预设时长,记录该测试电压下的最大电压、最小电压及压降斜率,测试电压=预设电压范围的右端点电压-n*预设电压间隔值,或者,测试电压=预设电压范围的左端点电压+n*预设电压间隔值,n为放电测量次数;根据每种已知电池储备容量下每个测试电压的最大电压、最小电压及压降斜率,构 建电池容量表。
需要说明的是,测量待测蓄电池的电池参数的方式与电池容量表中的测量实验蓄电池的电池参数的方式一致。
例如,在预先构建的电池容量表时,实验蓄电池在每个测试电压下进行m1次间歇性放电,m1次发送的输入信号的发送间隔均等于p1,m1次发送的输入信号的输入时长均等于q1,m1次间歇性放电的时长等于预设时长t1,t1=(m1-1)*p1+m1*q1,记录该测试电压下m1次间歇性放电的最大电压、最小电压及压降斜率,m1次间歇性放电的最大电压为m1次间歇性放电的最大电压的最大值,m1次间歇性放电的最小电压为m1次间歇性放电的最小电压的最小值,m1次间歇性放电的最大电压压降斜率等于(m1次间歇性放电的最大电压-m1次间歇性放电的最小电压)/预设时长t1,则在测量待测蓄电池的电池储备容量时,向蓄电池发送m1次输入信号以控制蓄电池放电,获取蓄电池在输入信号的输入时长内针对输入信号反馈的输出信号,m1次发送的输入信号的发送间隔均等于p1,m1次发送的输入信号的输入时长均等于q1,m1次间歇性放电的时长等于预设时长t1,,t1=(m1-1)*p1+m1*q1,根据输出信号确定目标电池参数,目标电池参数为m1次间歇性放电的最大电压、最小电压及压降斜率,m1次间歇性放电的最大电压为m1次间歇性放电的最大电压的最大值,m1次间歇性放电的最小电压为m1次间歇性放电的最小电压的最小值,m1次间歇性放电的最大电压压降斜率等于(m1次间歇性放电的最大电压-m1次间歇性放电的最小电压)/预设时长t1。
步骤S44、根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量。
所述根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量,包括:将所述目标电池参数输入至所述电池容量表;在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量。
进一步的,每一所述电池参数的压降斜率对应一个斜率匹配范围,所述在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量,包括:判断所述目标压降斜率是否落入有效压降斜率的斜率匹配范围;若是,将所述有效压降斜率对应的电池储备容量作为所述蓄电池的电池储备容量。
其中,有效压降斜率为目标压降斜率的最匹配压降斜率。
假设目标压降斜率等于0.5V/t,有效压降斜率等于0.51V/t,斜率匹配范围为0.51±0.02V/t,有效压降斜率对应的电池储备容量等于150RC,则目标压降斜率0.5V/t落入有效压降斜率0.51V/t的斜率匹配范围0.51±0.02V/t,将有效压降斜率0.51V/t对应的电池储备容量150RC作为蓄电池的电池储备容量,从而实现蓄电池的电池储备容量的测量。
可以理解,根据电池容量表和目标电池参数,确定与目标电池参数对应的 电池储备容量不限于本发明实施例公开的具体实施方式,如可利用目标电池参数的目标最大电压与目标最小电压的目标压差,确定与目标压差对应的电池储备容量。在电池容量表查找与目标压降斜率匹配的压降斜率也不限于本发明实施例公开的具体实施方式,如当目标压降斜率与电池容量表中的一个压降斜率满足预设匹配条件时,将所述压降斜率对应的电池储备容量作为蓄电池的电池储备容量,当目标压降斜率与电池容量表中的压降斜率均不满足预设匹配条件时,返回蓄电池放电步骤,以获得新的目标电池参数。
本发明实施例提供了一种测量蓄电池的电池储备容量的方法,通过向蓄电池发送输入信号以控制蓄电池放电,获取蓄电池在输入信号的输入时长内针对输入信号反馈的输出信号,根据输出信号确定目标电池参数,获取电池容量表,电池容量表包括电池参数与电池储备容量的对应关系,根据电池容量表与目标电池参数,确定与目标电池参数对应的电池储备容量。因此,本发明实施例通过控制蓄电池进行至少一次放电得到目标电池参数,根据目标电池参数和包括电池参数与电池储备容量的对应关系的电池容量表,测量该蓄电池的电池储备容量,从而减少了蓄电池的电池储备容量的测量时间,提升了测量效率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种测量蓄电池的电池储备容量的方法,其特征在于,应用于电池检测设备,所述电池检测设备与所述蓄电池通过开尔文连接器电连接,所述方法包括:
    向所述蓄电池发送输入信号以控制所述蓄电池放电,获取所述蓄电池在所述输入信号的输入时长内针对所述输入信号反馈的输出信号;
    根据所述输出信号确定目标电池参数;
    获取电池容量表,所述电池容量表包括电池参数与电池储备容量的对应关系;
    根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量。
  2. 根据权利要求1所述的方法,其特征在于,所述向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:
    至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
  3. 根据权利要求2所述的方法,其特征在于,所述至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:
    按照预设频率至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电。
  4. 根据权利要求2所述的方法,其特征在于,至少两次发送输入信号的发送间隔是随机的。
  5. 根据权利要求2所述的方法,其特征在于,所述至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电,包括:
    至少两次向所述蓄电池发送输入信号以控制所述蓄电池放电直至预设次数。
  6. 根据权利要求2所述的方法,其特征在于,至少两次发送的输入信号的输入时长相同,或者,至少两次发送的输入信号的输入时长中存在至少一个输入时长与其他输入时长不同。
  7. 根据权利要求6所述的方法,其特征在于,所述输入时长的时长单位为毫秒(ms)。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述输入信号是所述蓄电池放电的放电电流,所述输出信号是所述蓄电池在所述输入时长内针对所述放电电流反馈的开路电压。
  9. 根据权利要求2-7任一项所述的方法,其特征在于,所述根据所述输出信号确定目标电池参数,包括:
    根据所述输出信号,检测所述蓄电池每次放电时的一组电池参数;
    在至少两组电压参数中筛选最优电池参数作为所述目标电池参数。
  10. 根据权利要求9所述的方法,其特征在于,所述电池参数包括所述蓄 电池每次放电时的最大电压、最小电压及压降斜率。
  11. 根据权利要求10所述的方法,其特征在于,所述在至少两组电池参数中筛选最优电压参数作为所述目标电池参数,包括:
    在所述至少两组电池参数中选择电压最大的最大电压为目标最大电压;
    在所述至少两组电池参数中选择电压最小的最小电压为目标最小电压;
    将所述目标最大电压、所述目标最小电压以及所述目标最大电压与所述目标最小电压对应的目标压降斜率作为最优电池参数。
  12. 根据权利要求11所述的方法,其特征在于,所述电池容量表包括若干种电池储备容量及每种所述电池储备容量下的若干组电压参数,每一组电压参数包括若干测试电压以及在每个测试电压下对所述蓄电池进行放电得到的电池参数,其中,所述若干种电池储备容量两两之间间隔预设容量,所述若干测试电压两两之间间隔预设电压。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量,包括:
    将所述目标电池参数输入至所述电池容量表;
    在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量。
  14. 根据权利要求13所述的方法,其特征在于,每一所述电池参数的压降斜率对应一个斜率匹配范围,所述在所述电池容量表中查找与所述目标压降斜率匹配的电池储备容量,并将所述电池储备容量作为所述蓄电池的电池储备容量,包括:
    判断所述目标压降斜率是否落入有效压降斜率的斜率匹配范围;
    若是,将所述有效压降斜率对应的电池储备容量作为所述蓄电池的电池储备容量。
  15. 一种电池检测设备,其特征在于,所述电池检测设备与蓄电池通过开尔文连接器电连接,所述电池检测设备包括:
    放电电路,与所述蓄电池通过所述开尔文连接器电连接,用于向所述蓄电池发送输入信号,以控制所述蓄电池放电;
    电压采样电路,与所述蓄电池通过所述开尔文连接器电连接,用于采样所述蓄电池在所述输入信号的输入时长内针对所述输入信号反馈的输出信号,得到采样电压;
    控制器,分别与所述放电电路和所述电压采样电路电连接,用于控制所述放电电路,以使所述放电电路向所述蓄电池发送输入信号,根据所述采样电压确定目标电池参数,并且获取电池容量表,所述电池容量表包括电池参数与电池储备容量的对应关系,根据所述电池容量表与所述目标电池参数,确定与所述目标电池参数对应的电池储备容量。
  16. 根据权利要求15所述的电池检测设备,其特征在于,所述输入信号是所述蓄电池放电的放电电流,所述输出信号是所述蓄电池在所述输入时长内 针对所述放电电流反馈的开路电压。
  17. 根据权利要求16所述的电池检测设备,其特征在于,所述放电电路包括:
    开关电路,与所述控制器电连接,且通过所述开尔文连接器与所述蓄电池电连接,用于当所述控制器控制所述开关电路处于导通状态时,触发向所述蓄电池发送放电电流,并产生触发信号;
    第一信号处理电路,分别与所述控制器和所述开关电路电连接,用于对所述控制器发送的电压信号和所述开关电路发送的触发信号进行信号处理,输出驱动信号,以控制所述放电电流的大小。
  18. 根据权利要求17所述的电池检测设备,其特征在于,所述开关电路包括:
    第一开关,分别与所述控制器和所述第一信号处理电路电连接,且通过所述开尔文连接器与所述蓄电池的负极电连接,用于根据所述控制器发送的控制信号,控制闭合或断开所述控制器与所述蓄电池的放电回路,产生触发信号,并将所述触发信号发送至所述第一信号处理电路;
    第二开关,分别与所述第一开关和所述第一信号处理电路电连接,且通过所述开尔文连接器与所述蓄电池的正极电连接,用于根据所述驱动信号,控制所述放电回路的所述放电电流的大小。
  19. 根据权利要求18所述的电池检测设备,其特征在于,所述第一开关包括第一PMOS管,所述第一PMOS管的栅极与所述控制器电连接,所述第一PMOS管的源极通过所述开尔文连接器与所述蓄电池的负极电连接,所述第一PMOS管的漏极与所述第二开关和所述第一信号处理电路电连接。
  20. 根据权利要求19所述的电池检测设备,其特征在于,所述第二开关包括第二PMOS管,所述第二PMOS管的栅极与所述第一信号处理电路电连接,所述第二PMOS管的源极与所述第一PMOS管的漏极和所述第一信号处理电路电连接,所述第二PMOS管的漏极通过所述开尔文连接器与所述蓄电池的正极电连接。
  21. 根据权利要求20所述的电池检测设备,其特征在于,所述第一信号处理电路包括第一运算放大器,所述第一运算放大器的同相输入端与所述控制器电连接,所述第一运算放大器的反相输入端与所述第一PMOS管的漏极和所述第二PMOS管的源极电连接,所述第一运算放大器的输出端与所述第二PMOS管的栅极电连接。
  22. 根据权利要求18-21任一项所述的电池检测设备,其特征在于,所述放电电路还包括单向导通电路,所述单向导通电路电连接在所述第二开关与所述蓄电池的正极之间,用于防止所述放电电流倒灌回所述蓄电池的正极。
  23. 根据权利要求16-21任一项所述的电池检测设备,其特征在于,所述电压采样电路包括:
    第二信号处理电路,通过所述开尔文连接器与所述蓄电池电连接,用于对 所述蓄电池的开路电压进行信号处理;
    分压电路,分别与所述第二信号处理电路和所述控制器电连接,用于对所述第二信号处理电路的输出电压作分压处理,得到采样电压,以使所述控制器根据所述采样电压确定目标电池参数。
  24. 根据权利要求23所述的电池检测设备,其特征在于,所述第二信号处理电路包括第二运算放大器,所述第二运算放大器的同相输入端通过所述开尔文连接器与所述蓄电池的正极电连接,所述第二运算放大器的反相输入端通过所述开尔文连接器与所述蓄电池的负极电连接,所述第二运算放大器的输出端与所述分压电路电连接。
  25. 根据权利要求24所述的电池检测设备,其特征在于,所述分压电路包括第一电阻和第二电阻;
    所述第一电阻的一端与所述第二运算放大器的输出端电连接,所述第一电阻的另一端与所述控制器和所述第二电阻的一端电连接;所述第二电阻的另一端接地。
PCT/CN2021/100817 2020-06-24 2021-06-18 一种测量蓄电池的电池储备容量的方法及电池检测设备 WO2021259154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21830001.0A EP4166959A4 (en) 2020-06-24 2021-06-18 BATTERY RESERVE CAPACITY MEASUREMENT METHOD OF SECONDARY BATTERY AND BATTERY DETECTION DEVICE
US18/069,196 US20230124976A1 (en) 2020-06-24 2022-12-20 Method for Measuring Battery Reserve Capacity of Storage Battery, and Battery Detection Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010592274.XA CN111596220A (zh) 2020-06-24 2020-06-24 一种测量蓄电池的电池储备容量的方法及电池检测设备
CN202010592274.X 2020-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/069,196 Continuation US20230124976A1 (en) 2020-06-24 2022-12-20 Method for Measuring Battery Reserve Capacity of Storage Battery, and Battery Detection Device

Publications (1)

Publication Number Publication Date
WO2021259154A1 true WO2021259154A1 (zh) 2021-12-30

Family

ID=72186742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100817 WO2021259154A1 (zh) 2020-06-24 2021-06-18 一种测量蓄电池的电池储备容量的方法及电池检测设备

Country Status (4)

Country Link
US (1) US20230124976A1 (zh)
EP (1) EP4166959A4 (zh)
CN (1) CN111596220A (zh)
WO (1) WO2021259154A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596220A (zh) * 2020-06-24 2020-08-28 深圳市道通科技股份有限公司 一种测量蓄电池的电池储备容量的方法及电池检测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656469A (zh) * 2009-10-27 2012-09-05 F.I.A.M.M.股份公司 用于持续测量电池(尤其是安装在机动车内的电池)效率的方法以及利用该方法的设备
CN103176132A (zh) * 2011-12-22 2013-06-26 联芯科技有限公司 电池电量的估算方法及终端设备
CN103969587A (zh) * 2014-01-17 2014-08-06 浙江吉利控股集团有限公司 一种混合动力车用动力电池soc估算方法
CN105807230A (zh) * 2016-03-11 2016-07-27 郑贵林 蓄电池剩余容量及健康状态快速检测方法和装置
JP2018141665A (ja) * 2017-02-27 2018-09-13 学校法人立命館 電池管理方法、電池管理装置、及びコンピュータプログラム
CN109991548A (zh) * 2019-04-19 2019-07-09 中国计量大学 一种ocv-soc标定实验方法、电池等效模型参数辨识方法及soc估算方法
CN111596220A (zh) * 2020-06-24 2020-08-28 深圳市道通科技股份有限公司 一种测量蓄电池的电池储备容量的方法及电池检测设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505856B2 (en) * 1999-04-08 2009-03-17 Midtronics, Inc. Battery test module
US8791669B2 (en) * 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
KR101863036B1 (ko) * 2011-11-30 2018-06-01 주식회사 실리콘웍스 배터리 잔존전하량 추정방법 및 배터리 관리시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656469A (zh) * 2009-10-27 2012-09-05 F.I.A.M.M.股份公司 用于持续测量电池(尤其是安装在机动车内的电池)效率的方法以及利用该方法的设备
CN103176132A (zh) * 2011-12-22 2013-06-26 联芯科技有限公司 电池电量的估算方法及终端设备
CN103969587A (zh) * 2014-01-17 2014-08-06 浙江吉利控股集团有限公司 一种混合动力车用动力电池soc估算方法
CN105807230A (zh) * 2016-03-11 2016-07-27 郑贵林 蓄电池剩余容量及健康状态快速检测方法和装置
JP2018141665A (ja) * 2017-02-27 2018-09-13 学校法人立命館 電池管理方法、電池管理装置、及びコンピュータプログラム
CN109991548A (zh) * 2019-04-19 2019-07-09 中国计量大学 一种ocv-soc标定实验方法、电池等效模型参数辨识方法及soc估算方法
CN111596220A (zh) * 2020-06-24 2020-08-28 深圳市道通科技股份有限公司 一种测量蓄电池的电池储备容量的方法及电池检测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166959A4 *

Also Published As

Publication number Publication date
US20230124976A1 (en) 2023-04-20
EP4166959A4 (en) 2024-01-03
EP4166959A1 (en) 2023-04-19
CN111596220A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
US7605591B2 (en) State of health recognition of secondary batteries
WO2017152479A1 (zh) 蓄电池剩余容量及健康状态快速检测方法和装置
US8427166B2 (en) State of health recognition of secondary batteries
US20140062417A1 (en) Intelligent charge-discharge controller for battery and electronic device having same
CN101140316A (zh) 由电源内阻监测电池效能的预警方法及其装置
WO2019042398A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042355A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042413A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
US10302706B2 (en) Apparatus for calculating state of charge of storage battery
CN107437642B (zh) 一种智能充电方法及装置
WO2019042400A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042410A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2021259154A1 (zh) 一种测量蓄电池的电池储备容量的方法及电池检测设备
TW201734493A (zh) 電池健康狀況偵測方法及其電路
WO2019042399A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
US6020720A (en) Fast charging method and apparatus for secondary cells
WO2022012515A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
WO2022012487A1 (zh) 一种蓄电池检测方法、设备及存储介质
TWI578006B (zh) 電池健康狀態檢測方法
WO2022007709A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
WO2022012500A1 (zh) 一种检测车辆蓄电池坏格类型的方法及电池检测设备
WO2022007712A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
EP3164727A1 (en) A method, a circuit, and a battery charger
WO2022012516A1 (zh) 一种检测蓄电池表面电荷的方法及电池检测设备
WO2023070323A1 (zh) 电化学装置管理方法、系统、电化学装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021830001

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE