WO2022007712A1 - 一种车辆蓄电池的检测方法及电池检测设备 - Google Patents

一种车辆蓄电池的检测方法及电池检测设备 Download PDF

Info

Publication number
WO2022007712A1
WO2022007712A1 PCT/CN2021/104102 CN2021104102W WO2022007712A1 WO 2022007712 A1 WO2022007712 A1 WO 2022007712A1 CN 2021104102 W CN2021104102 W CN 2021104102W WO 2022007712 A1 WO2022007712 A1 WO 2022007712A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
tested
voltage
discharge
open
Prior art date
Application number
PCT/CN2021/104102
Other languages
English (en)
French (fr)
Inventor
唐新光
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022007712A1 publication Critical patent/WO2022007712A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present application relates to the field of battery technology, and in particular, to a detection method and battery detection device for a vehicle battery.
  • the battery is a necessary part for the operation of the equipment, such as the most common lead-acid battery used in electric vehicles, etc. It is not only used to start the car, but also to support all the electronic loads on the car, such as ECU. With the use of the battery, the battery may have health problems such as damage, bad cell, insufficient power, etc., which will cause the vehicle to fail to operate normally. Therefore, it is extremely important to be able to judge the health status of the battery in advance, so that the user can clearly understand the status of the battery, so as to avoid Start-up operation risks, for example, during long-distance driving, the battery is damaged halfway, or the ECU of the car cannot be loaded.
  • the health status of the battery can be detected by observation method, discharge method, and specific gravity measurement.
  • the internal condition of the battery cannot be seen by observation, and the specific gravity of the electrolyte cannot be measured.
  • the current power of the battery is detected by the discharge method, so as to determine the state of health of the battery, or the actual state of the battery is tested by the conductance method.
  • the conductance value is compared with the standard conductance value when the battery is in good condition, so as to judge the health status of the battery.
  • the inventors of the present invention found that: at present, when the discharge method detects whether the battery is good or bad, the measurement time is long, a large amount of heat energy is generated during the test process, the measurement cannot be repeated continuously, and the test error is large; When using the method to detect whether the battery is good or bad, there are problems of inaccuracy and troublesome measurement.
  • the main technical problem solved by the embodiments of the present invention is to provide a vehicle battery detection method and battery detection device, which can quickly and accurately determine the health state of the battery.
  • an embodiment of the present invention provides a detection method for a vehicle battery, including:
  • the preset mapping relationship includes a corresponding relationship between battery characteristics, open circuit voltage and a CCA parameter threshold, and the CCA parameter threshold is determined by a CCA parameter obtained from the sampling battery according to the preset discharge condition, and the sampling battery includes New battery, bad battery, critical battery, the critical battery is a battery with a battery capacity of 80% of the rated capacity, and the bad battery is a battery with at least one cell damaged.
  • the battery characteristics include at least one of a battery type and a rated battery capacity, and a rated voltage.
  • the preset discharge condition includes discharging the battery under test for a preset duration according to a preset discharge current.
  • the obtaining the discharge voltage of the battery to be tested when the battery is discharged under a preset discharge condition includes:
  • the discharge voltage is determined to be an average value of the plurality of first voltages.
  • obtaining the open circuit voltage of the battery to be tested includes:
  • the open circuit voltage is determined to be an average value of the plurality of second voltages.
  • the preset discharge condition includes discharging the battery to be tested for a preset duration according to a preset discharge current at least twice;
  • the calculating the voltage drop value of the battery to be tested is the difference between the open-circuit voltage and the discharge voltage, including:
  • the pressure drop value is determined to be an average of the at least two first pressure drop values.
  • determining the state of health of the battery to be tested according to the battery characteristics, the open-circuit voltage, the CCA parameters, and a preset mapping relationship includes:
  • the state of health of the battery to be tested is determined according to the open circuit voltage of the battery to be tested, the CCA parameter of the battery to be tested, and the CCA parameter threshold.
  • determining the state of health of the battery to be tested according to the open-circuit voltage of the battery to be tested, the CCA parameter of the battery to be tested, and the CCA parameter threshold includes:
  • the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the bad cell battery, determine whether the CCA parameter of the battery to be tested is greater than or equal to the CCA parameter threshold corresponding to the bad cell battery. If yes, then determine that the battery to be tested is a bad battery;
  • the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the new battery, determine whether the CCA parameter of the battery to be tested is greater than or equal to the CCA parameter threshold corresponding to the new battery, and if so , then it is determined that the battery to be tested is a good battery;
  • the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the critical battery, determine whether the CCA parameter of the battery to be tested is less than the CCA parameter threshold corresponding to the critical battery, and if so, then Determine that the battery to be tested is a bad battery;
  • the sampling battery further includes an insufficient battery, and the insufficient battery is a battery whose electric power is lower than a preset electric power threshold;
  • the determining the state of health of the battery to be tested according to the open-circuit voltage of the battery to be tested, the CCA parameter of the battery to be tested and the CCA parameter threshold value further includes:
  • the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the battery with insufficient charge, determine whether the CCA parameter of the battery to be tested is greater than or equal to the threshold value of the CCA parameter corresponding to the battery with insufficient charge. If yes, it is determined that the battery to be tested is an insufficient battery.
  • the method further includes:
  • an embodiment of the present invention provides a battery detection device, including:
  • connection end a first connection end, a second connection end, a third connection end and a fourth connection end, wherein the first connection end, the second connection end, the third connection end and the fourth connection end are respectively Used to connect the battery to be tested;
  • a discharge circuit electrically connected to the battery to be tested through the first connection end and the fourth connection end, and used to trigger the battery to be tested to discharge under a preset discharge condition
  • a voltage sampling circuit which is electrically connected to the battery to be tested through the second connection terminal and the third connection terminal, and is used to detect the voltage at both ends of the battery to be tested;
  • a controller is electrically connected to the discharge circuit and the voltage sampling circuit, respectively, and the controller can execute the method described in the first aspect.
  • the discharge circuit includes a switch circuit, a load, and a current sampling circuit:
  • the first end of the switch circuit is connected to the first connection end, the second end of the switch circuit is connected to the controller, and the third end of the switch circuit is connected to the fourth connection end through the load;
  • the first end of the current sampling circuit is connected to the controller, the second end of the current sampling circuit is connected to the load, and the current sampling circuit is used to detect the discharge current of the battery to be tested;
  • the controller is specifically used for:
  • the switch circuit is adjusted according to the magnitude of the discharge current detected by the current sampling circuit, so that the battery to be tested is discharged under the preset discharge condition.
  • the switch circuit includes a MOS transistor and a first operational amplifier
  • the non-inverting input terminal of the first operational amplifier is connected to the controller, the inverting input terminal of the first operational amplifier is connected to the source of the MOS transistor, and the output terminal of the first operational amplifier is connected to the MOS transistor
  • the gate of the MOS transistor is connected to the first terminal of the load, and the drain of the MOS transistor is connected to the first connection terminal.
  • the discharge circuit further includes a diode, a first end of the diode is connected to the first connection end, and a second end of the diode is connected to the drain of the MOS transistor.
  • the current sampling circuit includes a second operational amplifier, the non-inverting input terminal of the second operational amplifier is connected to the first terminal of the load, and the inverting input terminal of the second operational amplifier is connected to the The second end of the load, the output end of the second operational amplifier is connected to the controller.
  • the voltage sampling circuit includes:
  • the third operational amplifier the non-inverting input terminal of the third operational amplifier is connected to the second connection terminal, the inverting input terminal of the third operational amplifier is connected to the third connection terminal, and the output of the third operational amplifier terminal connected to the controller
  • the method for detecting a battery of a vehicle and the battery detecting device provided by the embodiment of the present invention determine the For the CCA parameters of the battery to be tested, according to the battery characteristics, the open circuit voltage, the CCA parameters and the preset mapping relationship, the health status of the battery can be quickly and accurately determined, thereby facilitating timely maintenance by users.
  • FIG. 1 is a schematic diagram of a circuit structure of a battery detection system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for detecting a vehicle battery according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a sub-flow of step 410 shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a sub-flow of step 420 shown in FIG. 2;
  • FIG. 5 is a schematic diagram of a sub-flow of step 430 shown in FIG. 2;
  • FIG. 6 is a detection area diagram provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a sub-flow of step 450 shown in FIG. 2;
  • FIG. 8 is a schematic diagram of a sub-flow of step 452 shown in FIG. 7;
  • FIG. 9 is a schematic diagram of a circuit structure of a battery detection device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the circuit structure of the discharge circuit and the voltage sampling circuit shown in FIG. 1;
  • FIG. 11 is a schematic diagram of circuit connection of a battery detection device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a circuit structure of a battery detection system according to an embodiment of the present invention.
  • the battery detection system 300 includes a battery 200 and a detection device 100 .
  • the detection device 100 is electrically connected to the battery 200 for measuring electrical parameters of the battery 200 and determining the health state of the battery 200 .
  • the storage battery 200 is a device that directly converts chemical energy into electrical energy and realizes recharging through a reversible chemical reaction. That is, during charging, external electrical energy is used to regenerate internal active substances, and electrical energy is stored as chemical energy. Again the chemical energy is converted into electrical output.
  • the storage battery 200 includes one or more cells, generally the rated voltage of one cell is 2V, and the multiple cells can be connected in series or in parallel, so the rated voltage of the storage battery 200 can be 2V, 4V, 6V, 8V , 12V, 24V, etc.
  • a vehicle battery generally consists of 6 lead-acid cells in series to form a battery pack with a rated voltage of 12V for small cars, or 12 lead-acid cells in series to form a battery pack with a rated voltage of 24V for large vehicles. It can be understood that the rated voltage of the vehicle battery can also be designed to other specifications according to the actual situation.
  • the state of health of the battery 200 is an index used to evaluate the working capability of the battery 200. For example, the state of health may include whether it is close to being scrapped (bad battery), whether there is a bad cell (bad battery), whether it is in good condition ( good battery) or whether the power is sufficient (insufficient battery), etc.
  • the health state of the battery 200 will affect the electrical parameters of the battery 200, for example, the voltage will decrease when the battery is damaged.
  • the detection device 100 is electrically connected to the battery 200 , for example, the positive and negative electrodes of the battery 200 can be connected through a Kelvin connector 201 .
  • the detection device 100 is used to measure the electrical parameters of the battery 200 .
  • the electrical parameters include basic parameters such as voltage and current, and may also include parameters derived from voltage and current, such as internal resistance and CCA. Therefore, the detection device 100 can judge the health state of the battery 200 according to the electrical parameters and in combination with a preset algorithm.
  • An embodiment of the present invention provides a detection method for a vehicle battery applied to the detection device 100.
  • the method can be executed by the detection device 100. Please refer to FIG. 2.
  • the method includes:
  • Step 410 Obtain the open circuit voltage of the battery to be tested and the battery characteristics of the battery to be tested.
  • the open-circuit voltage is the voltage at both ends of the battery to be tested when the battery is not discharged, and can be obtained by detecting the voltages at both ends of the positive and negative electrodes of the battery to be tested when the battery is disconnected.
  • the open circuit voltage can be collected before discharge or after discharge. If collected after discharge, it needs to be carried out under the condition of heat dissipation and cooling of the battery under test, for example, collected within 300ms-500ms after discharge.
  • the step 410 specifically includes:
  • Step 411 Collect a plurality of second voltages of the undischarged battery under test according to a preset second sampling rate.
  • Step 412 Determine that the open circuit voltage is an average value of the plurality of second voltages.
  • the plurality of second voltages are obtained by sampling the open circuit voltages when the battery under test is not discharged at a second sampling rate. It can be understood that the second voltage may be collected before the battery to be tested is discharged, or collected after the battery to be tested is discharged. It is worth noting that when collecting the second voltage, the battery to be tested needs to be dissipated and cooled, that is, as long as it is collected when the battery to be tested is cooled and not discharged, for example, when the battery to be tested is discharged. In the first 500ms or within 500ms after discharge, 50 second voltages are collected at the second sampling rate, and the average value Vb of the plurality of second voltages is calculated and used as the open circuit voltage.
  • the second voltage is collected after discharge, a certain period of time is required to allow the battery to be tested to dissipate heat and cool down, for example, the collection is performed within 300ms-500ms after discharge. That is, after the battery to be tested is cooled and dissipated, the second voltage is collected, which may be collected before or after discharge.
  • the risk of errors can be reduced, abnormal data can be discharged, and open circuit can be increased. voltage accuracy.
  • the battery characteristics refer to the unique properties of the battery, such as factory parameters and rated parameters (including rated voltage) of the battery.
  • the battery characteristics include at least one of a battery type and a rated battery capacity, and a rated voltage.
  • the battery characteristics may be AGM type batteries, EFB type batteries or flooded type batteries with a certain rated voltage, for example, 12V AGM type batteries, 12V EFB type batteries or 12V flooded type battery.
  • the battery characteristics may be obtained by classifying batteries with a certain rated voltage according to the rated battery capacity.
  • the battery characteristics include a rated voltage of 24V and a rated battery capacity of 0-50Ah/50-100Ah/100Ah or more. It can be understood that these battery characteristics can be obtained from the nameplate of the battery to be tested, or from the factory data of the battery to be tested.
  • Step 420 Acquire a discharge voltage of the battery to be tested that is discharged under a preset discharge condition.
  • the discharge voltage is the voltage between the positive and negative terminals of the battery to be tested collected during the process of discharging the battery to be tested under a preset discharge condition.
  • the preset discharge condition includes discharging the battery under test for a preset duration according to a preset discharge current.
  • the preset discharge current may be set according to the rated parameters of the battery to be tested, for example, by presetting the corresponding relationship between the rated parameters and the preset discharge current, and combining the rated parameters to determine the preset discharge current.
  • the preset discharge current may be determined according to the rated current of the battery to be tested, for example, the preset discharge current is less than the rated current, accounting for a preset percentage of the rated current. If the rated current is relatively high, the preset percentage can be reduced to reduce the heat generated by the discharge of the battery under test. It can be understood that the preset discharge current can also be manually set according to historical experience values.
  • the preset discharge current is a large current such as 10A, 20A, 30A, 50A or 100A. Different currents have different anti-noise capabilities. Set it according to the anti-noise requirement.
  • a preset value of the preset discharge current is set in the detection device, and the preset discharge current and the current-voltage signal pre-stored in the detection device are used.
  • a relationship table is used to output a voltage signal to control the discharge current of the battery to be tested to be equal to the preset discharge current, that is, the current of the battery detection device and the discharge circuit of the battery to be tested is equal to the preset discharge current.
  • the preset duration refers to the duration that the battery to be tested is discharged at the preset discharge current.
  • the discharge current is a large current, and the preset duration is short.
  • the preset duration is in milliseconds, not exceeding 10ms, for example, the preset duration is 3ms, 5ms, 6ms, or 8ms.
  • the preset duration is related to the discharge current. For example, when the discharge current is relatively large, a shorter preset duration can be selected for discharging.
  • the state of health of the battery to be tested is detected by discharging for a short preset time. On the one hand, the detection time is saved, the health state of the battery to be tested can be quickly determined, and the detection efficiency is improved. Setting the time length to millisecond level and short discharge time can prevent the battery to be tested from generating a large amount of heat, so that no additional heat dissipation device is required during the detection process.
  • the step 420 specifically includes:
  • Step 421 Collect a plurality of first voltages discharged from the battery to be measured according to a preset first sampling rate.
  • Step 422 Determine that the discharge voltage is an average value of the plurality of first voltages.
  • the plurality of first voltages are obtained by sampling the discharge voltages in a preset duration of discharge of the battery to be tested at a first sampling rate. For example, 50 first voltages are collected during the preset discharge duration of 3ms of the battery to be tested, and the average value Va of the plurality of first voltages is calculated and used as the discharge voltage.
  • the preset duration is accumulated by means of a timer, and when the discharge time of the battery to be tested reaches the preset duration, the timer reaches a set stop threshold, triggering the battery to be tested to stop discharge.
  • the preset time period that is, during the discharge process of the battery to be tested
  • counting is performed at the preset first sampling rate by means of a counter.
  • the stop threshold set in the timer data collection is stopped.
  • the method prior to starting the timer and counter, the method further includes initializing the detection device.
  • the risk of errors can be reduced and abnormal data can be eliminated , to increase the accuracy of the discharge voltage.
  • Step 430 Obtain the voltage drop value of the battery to be tested according to the open circuit voltage and the discharge voltage.
  • the preset discharge condition includes discharging the battery to be tested for a preset duration according to the preset discharge current at least twice, so that at least two times can be obtained. pressure drop value.
  • the step 430 specifically includes:
  • Step 431 Obtain at least two of the first voltage drop values according to at least two of the open-circuit voltages and at least two of the discharge voltages.
  • Step 432 Determine the pressure drop value as an average value of the at least two first pressure drop values.
  • Open circuit voltage and discharge voltage can be obtained for each discharge. For example, when the battery to be tested is discharged back and forth 10 times according to the preset discharge current and preset duration, 10 sets of open-circuit voltages and discharge voltages are obtained, and each set of open-circuit voltages and discharge voltages corresponds to a first voltage drop value, thus, 10 first pressure drop values are obtained.
  • data stability can be observed to ensure that there is no abnormal data; on the other hand, the average value of the 10 first pressure drop values can be calculated as the pressure drop value, which can reduce the risk of errors, discharge abnormal data, and increase the pressure drop accuracy of the value.
  • the at least two discharges may be at random intervals, or may be discharged at a preset frequency, for example, at an interval of 500 ms, the discharges are performed 10 times.
  • Step 440 Determine the CCA parameter of the battery to be tested according to the voltage drop value and the preset discharge condition.
  • the CCA parameter can be CCA or CCA percentage, wherein, the CCA (Cold Cranking Ampere) is the cold cranking current of the battery, which means that the battery is in a specified low temperature state (usually specified at 0°F or -17.8°C). The amount of current released for 30 consecutive seconds before the voltage drops to the limit feed voltage. For example, a 12V battery has a CCA of 550, which means that the battery can provide a current of 550A for 30 seconds before the voltage drops to 7.2V after being fully charged and standing at -17.8°C for 24 hours.
  • the percent CCA is the ratio between the measured CCA and the rated CCA.
  • Step 450 Determine the state of health of the battery to be tested according to the battery characteristics, the open-circuit voltage, the CCA parameters, and a preset mapping relationship.
  • the preset mapping relationship is established in advance, and the preset mapping relationship includes the corresponding relationship between battery characteristics, open circuit voltage and CCA parameter thresholds, and the CCA parameter thresholds are CCA obtained by sampling the battery according to the preset discharge conditions.
  • the parameters are determined, the sampling battery includes a new battery, a bad battery, and a critical battery, the critical battery is a battery with a battery capacity of 80% of the rated capacity, and the bad battery is a battery with at least one cell damaged.
  • the new battery refers to a battery that has passed the new factory inspection and can be used as a reference for CCA parameter judgment.
  • the voltage of the new battery can reach the rated voltage.
  • the CCA parameter obtained by the new battery according to the preset discharge condition is used as the CCA parameter threshold of the new battery.
  • the load carrying capacity of the battery refers to the output power when the battery drives the load to work when the battery supplies power to the load. That is, when the battery capacity is lower than 80% of the rated battery capacity, the output power of the battery is not enough to drive the load to work. Therefore, a battery with a battery capacity of 80% of the rated battery capacity is used as a critical battery, and the CCA parameters obtained according to the preset discharge conditions are used as the CCA parameter threshold of the critical battery. It can be understood that although the load capacity of the critical battery is insufficient, the voltage of the critical battery can also reach the rated voltage.
  • the bad cell battery is a battery with at least one cell damaged, so that the voltage of the bad cell battery is lower than the rated voltage.
  • the CCA parameter obtained by the bad cell battery according to the preset discharge condition is used as the CCA parameter threshold of the bad cell battery.
  • the sampling battery further includes an insufficient battery
  • the insufficient battery is a battery whose electric power is lower than a preset electric power threshold, for example, lower than 20% of the rated electric power.
  • the low-charge battery can be obtained by discharging the new battery.
  • Each battery feature has its own corresponding relationship between the open circuit voltage and the CCA parameter threshold.
  • the battery features include rated voltage and battery type
  • the battery is classified according to the rated voltage and battery type. For example, when the rated voltage is 12V, the battery
  • the types include AGM, EFB and Flooded
  • the battery characteristics are divided into three categories: 12V AGM battery, 12V EFB battery or 12V flooded battery, each type has a corresponding relationship between the open circuit voltage and the CCA parameter threshold. Therefore, after the battery characteristics, open circuit voltage and CCA parameters of the battery to be tested are determined, in the preset mapping relationship, the battery characteristics corresponding to the battery characteristics of the battery to be tested can be found, and then the battery characteristics can be obtained.
  • the corresponding relationship between the open-circuit voltage matching the battery to be tested and the CCA parameter threshold are the battery characteristics corresponding to the battery characteristics of the battery to be tested.
  • the voltages of new batteries, critical batteries, bad cells and low-charge cells are not exactly the same.
  • the voltage of a bad cell is lower than the rated voltage, but it will not affect its CCA. parameters; the CCA parameter of the critical battery is lower, but its voltage is not affected; compared with the new battery, the voltage and CCA parameters of the insufficient battery are reduced to a certain extent.
  • the state of health of the battery cannot be determined only based on the CCA parameter threshold, but the state of health of the battery can only be determined by combining the voltage and the CCA parameter threshold, that is, when the open circuit voltage of the battery to be tested meets the voltage characteristics of a certain type of battery in the sampled battery
  • the CCA parameter of the battery to be tested is compared with the corresponding CCA parameter threshold, and further, the state of health of the battery to be tested is judged.
  • the voltages of the new battery, critical battery, bad battery and insufficient battery are not a fixed value, but fluctuate within the interval, that is, there are new battery voltage interval, critical battery voltage interval, bad battery voltage interval and insufficient battery voltage Battery voltage range.
  • the open circuit voltage in the preset mapping relationship includes the new battery voltage interval, the critical battery voltage interval, the bad battery voltage interval, and the insufficient battery voltage interval. It can be understood that the open circuit voltage in the preset mapping relationship may be an empirical value manually set according to the voltage characteristics of the new battery, the critical battery, the bad battery and the battery with insufficient power, or it may be an empirical value for several new batteries. It is obtained by voltage testing of batteries, several critical batteries, several batteries with bad cells and several batteries with insufficient power.
  • the open-circuit voltage interval U1 corresponding to the new batteries can be determined, for example, [12V, 14V].
  • the CCA parameters are obtained according to the above steps 410 to 440 respectively, then the CCA parameter threshold of the new battery is the average value of 50 CCA parameters. Repeat the above operation until all the first sub-intervals are covered.
  • the voltages of several critical batteries are measured for the sampled batteries of each type of battery characteristics, and the open-circuit voltage interval U2 corresponding to the critical batteries can be determined, for example, [12V, 14V].
  • the CCA parameters are obtained according to the above steps 410 to 440 respectively, then the threshold value of the CCA parameters of the critical battery is the average value of 50 CCA parameters. Repeat the above operation until all the second subintervals are covered.
  • the voltages of several batteries with bad cells are measured for each battery characteristic of the sampled battery, and the open-circuit voltage interval U3 corresponding to the bad cells can be determined, for example, [6V, 11V].
  • the voltages of several batteries with insufficient charge are measured, and the open-circuit voltage interval U4 corresponding to the batteries with insufficient charge can be determined, for example, [11, 12V].
  • the open-circuit voltage interval U1 corresponding to the new battery, the open-circuit voltage interval U2 corresponding to the critical battery, the open-circuit voltage interval U3 corresponding to the bad battery, and the open-circuit voltage interval U4 corresponding to the insufficient battery are further divided into sub-sections.
  • the influence of the open circuit voltage of the sampling battery on the CCA parameter threshold can be eliminated, making the CCA parameter threshold result more accurate.
  • the interval of the sub-intervals may also be other values, such as 0.03V, 0.04V, or 0.06V, etc., which may be artificially set according to actual experience.
  • the number of sampling batteries in each subsection can also be 40 or 60, and the specific number can be manually set according to the actual situation.
  • the open-circuit voltage interval U1 corresponding to the new battery the open-circuit voltage interval U2 corresponding to the critical battery
  • the open-circuit voltage interval U3 corresponding to the critical battery
  • the open-circuit voltage corresponding to the insufficient battery The range of the voltage interval U4 is only for illustration, and the specific interval range can be set according to experience, or according to the actual measurement result. It can be understood that, the intervals U1, U2, U3 and U4 also have overlapping areas.
  • a detection area map 500 may be established according to the preset mapping relationship in Table 1. As shown in FIG. 6 , each Each battery feature has a corresponding detection area map, for example, battery feature C1 corresponds to detection area map (a), battery feature C2 corresponds to detection area map (b), and so on, until the detection area maps corresponding to all battery features are established. Finish.
  • the horizontal axis of the detection area map (a) is the voltage interval [X1, Xn], That is, in the first column in Table 1, the vertical axis is the CCA parameter threshold, and the detection area diagram (a) includes a first curve 501 , a second curve 502 , a third curve 503 and a fourth curve 504 .
  • the open-circuit voltage interval U1 corresponding to the new battery and the area Good enclosed by the upper part of the first curve 501 represent that the battery is a good battery (can be used normally).
  • the open-circuit voltage interval U2 corresponding to the critical battery and the area enclosed by the lower part of the second curve 502 Replace represents that the battery is a bad battery (can not be used normally when scrapped).
  • the open circuit voltage U3 corresponding to the bad cell battery and the area BadCell enclosed by the upper part of the third curve 503 represent that the battery is a bad cell battery (at least one cell is damaged).
  • the open-circuit voltage U4 corresponding to the battery with insufficient charge and the area GoodRecharge enclosed by the upper part of the fourth curve 504 represent that the battery is a battery with insufficient charge (the charge is lower than the preset charge threshold), otherwise, in the voltage interval [X1, Other areas within Xn] are the uncertain area ChargeRetest, that is, the battery to be tested that falls into the ChargeRetest area, and its health status cannot be determined.
  • the curve characteristics of the first curve 501, the second curve 502, the third curve 503 and the fourth curve 504 are different, that is, the range of the abscissa and the corresponding function of the ordinate are not the same. same.
  • the curve characteristics of the first curve 501 , the second curve 502 , the third curve 503 and the fourth curve 504 are different from the corresponding curves in the detection area diagram (a) curve characteristics.
  • the state of health of the battery to be tested is determined according to the battery characteristics, the open-circuit voltage, the CCA parameters, and a preset mapping relationship
  • the step 450 specifically includes:
  • Step 451 Determine the CCA parameter threshold corresponding to the battery characteristic and the open circuit voltage in the preset mapping relationship.
  • Step 452 Determine the state of health of the battery to be tested according to the open-circuit voltage of the battery to be tested, the CCA parameter of the battery to be tested, and the CCA parameter threshold.
  • the battery characteristics corresponding to the battery characteristics of the battery to be tested are found in the preset mapping relationship, and the corresponding battery characteristics can be determined according to the preset mapping relationship and the open-circuit voltage of the battery to be tested.
  • the CCA parameter threshold For example, in conjunction with Table 1 or the detection area map 500, the CCA parameter thresholds in Table 1 can be located according to the battery characteristics and the open circuit voltage.
  • the open-circuit voltage of the battery to be tested determine the open-circuit voltage interval to which it belongs, and the CCA parameter threshold that is located. Describe the state of health of the battery to be tested.
  • the step 452 specifically includes:
  • Step 4521 If the open circuit voltage of the battery under test falls within the open circuit voltage range corresponding to the bad cell battery, determine whether the CCA parameter of the battery under test is greater than or equal to the CCA parameter corresponding to the bad cell battery Threshold, if yes, it is determined that the battery to be tested is a bad battery.
  • the rated voltage of the battery to be tested is 12V
  • the open circuit voltage is 6.07V
  • the battery type is AGM
  • the CCA parameter value is P1.
  • Step 4522 If the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the new battery, determine whether the CCA parameter of the battery to be tested is greater than or equal to the CCA parameter threshold corresponding to the new battery, If so, it is determined that the battery to be tested is a good battery.
  • the rated voltage of the battery to be tested is 12V
  • the open circuit voltage is 12.03V
  • the battery type is AGM
  • the CCA parameter value is P2.
  • Step 4523 If the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the critical battery, determine whether the CCA parameter of the battery to be tested is less than the CCA parameter threshold corresponding to the critical battery, and if so If yes, it is determined that the battery to be tested is a bad battery.
  • the rated voltage of the battery to be tested is 12V
  • the open circuit voltage is 12.03V
  • the battery type is AGM
  • the CCA parameter value is P3.
  • the CCA parameter threshold in the ninth row and the third column in Table 1 is obtained, that is, the CCA parameter threshold corresponding to the critical battery. If the CCA parameter of the battery to be tested is smaller than the CCA parameter threshold in the ninth row and the third column of the table 1, it is determined that the battery to be tested is a bad battery.
  • Step 4524 If the open-circuit voltage of the battery to be tested falls within the open-circuit voltage range corresponding to the battery with insufficient charge, determine whether the CCA parameter of the battery to be tested is greater than or equal to the CCA parameter corresponding to the battery with insufficient charge Threshold, if yes, it is determined that the battery to be tested is an insufficient battery.
  • the rated voltage of the battery to be tested is 12V
  • the open circuit voltage is 11.03V
  • the battery type is AGM
  • the CCA parameter value is P4.
  • Step 4525 Otherwise, determine that the battery to be tested is an indeterminate battery.
  • the state of health of the battery to be tested cannot be determined.
  • the corresponding detection area map 500 can also be determined according to the battery characteristics. For example, please refer to FIG. 6 . According to the battery characteristics (rated voltage 12V, battery type AGM), it can be determined that it belongs to the battery characteristic C1, and then the corresponding detection area is determined. Area map (a). In the detection area map (a), the coordinates of the battery to be tested are determined according to the open circuit voltage and CCA parameters of the battery to be tested.
  • the method 400 further includes:
  • Step 460 Prompt to re-determine the state of health after charging the indeterminate battery.
  • the health state is re-determined to eliminate the influence of the electric quantity, and the result is more accurate.
  • the CCA parameter of the battery to be tested is determined by controlling the battery to be tested to discharge under a preset discharge condition, according to the battery characteristics, the open-circuit voltage, the CCA parameter and a preset map The relationship between the battery can be quickly and accurately judged the health status of the battery, so that it is convenient for the user to repair and maintain the battery in time.
  • the method for detecting a vehicle battery in the embodiment of the present invention utilizes the voltage drop value of the detected battery to obtain the CCA parameter of the battery, thereby confirming the health status of the battery, and is applicable to any suitable device that can detect the voltage drop of the battery, for example, The battery detection device in the following embodiments of the present invention.
  • FIG. 9 is a schematic diagram of a circuit structure of a battery detection device according to an embodiment of the present invention.
  • the battery detection device 100 is electrically connected to the battery to be tested 200 , and the battery detection device 100 includes a discharge circuit 10 , a voltage sampling circuit 20 and a controller 30 .
  • the battery detection device 100 includes a first connection end 101 , a second connection end 102 , a third connection end 103 and a fourth connection end 104 , the first connection end 101 , the second connection end 101 , the second connection end 104
  • the terminal 102 , the third connection terminal 103 and the fourth connection terminal 104 are respectively used to connect the battery to be tested.
  • the first connection end 101 and the second connection end 102 are both electrically connected to the positive electrode of the battery under test 200
  • the third connection end 103 and the fourth connection end 104 are both electrically connected It is electrically connected to the negative electrode of the battery to be tested 200 .
  • the first connection end 101 , the second connection end 102 , the third connection end 103 and the fourth connection end 104 can also be Kelvin connectors, that is, the battery testing device 100 passes through the Kelvin connectors.
  • the connector electrically connects the battery under test 200 , which can eliminate wiring, and eliminate resistance generated by contact connection when current flows through the positive or negative electrode of the battery under test 100 .
  • the battery under test 200 is electrically connected through the first connection end 101 and the fourth connection end 104, so as to trigger the battery under test 200 to discharge.
  • the discharge circuit 10 When the discharge circuit 10 is in an on state, the discharge circuit 10 and the battery to be tested 200 form a discharge loop, triggering the battery to be tested 100 to discharge.
  • the discharge circuit 10 includes a switch circuit 11 , a load 12 and a current sampling circuit 13 .
  • the first end of the switch circuit 11 is connected to the first connection end 104 , the second end of the switch circuit 11 is connected to the controller 30 , and the third end of the switch circuit 11 is connected to the controller 30 through the load 12 .
  • the fourth connection terminal 104 is used to close or open the discharge circuit between the switch circuit 11, the load 12 and the battery to be tested 200 according to the voltage signal sent by the controller 30, and to adjust the The degree of conduction of the discharge circuit.
  • the first end of the current sampling circuit 13 is connected to the controller 30 , the second end of the current sampling circuit 13 is connected to the load 12 , and the current sampling circuit 13 is used to detect the switch circuit 11 and the load 12
  • the current in the discharge loop formed with the battery to be tested 200 is the discharge current of the battery to be tested 200 .
  • the controller 30 adjusts the switch circuit 11 according to the magnitude of the discharge current detected by the current sampling circuit 20, so that the battery to be tested 200 is discharged under the preset discharge condition, wherein the preset discharge
  • the condition includes discharging the battery under test 200 for a preset duration according to a preset discharge current.
  • the switch circuit 11 includes a MOS transistor Q and a first operational amplifier U1 , and the non-inverting input end of the first operational amplifier U1 is connected to the controller 30 (the DAC port of the microcontroller U4 ) ), the inverting input terminal of the first operational amplifier U1 is connected to the source of the MOS transistor Q, the output terminal of the first operational amplifier U1 is connected to the gate of the MOS transistor Q, the The source is connected to the first terminal of the load 12 , and the drain of the MOS transistor Q is connected to the first connection terminal 101 .
  • the second end of the load 12 is connected to the fourth connection end 104 , and the fourth connection end 104 is electrically connected to the negative electrode of the battery under test 200 .
  • the voltage of the first terminal of the load 12 and the source voltage of the MOS transistor Q are both the negative voltage of the battery to be tested 200, that is, the first operation
  • the negative voltage is input to the inverting input terminal of the amplifier U1.
  • the controller 30 sends a voltage signal to the non-inverting input terminal of the first operational amplifier U1
  • the first operational amplifier U1 processes the voltage signal and the negative voltage, and outputs a first driving signal until The gate of the MOS transistor Q, so that a voltage difference VGS is formed between the gate and the source of the MOS transistor Q.
  • the magnitude of the first driving signal is related to the magnitude of the voltage signal.
  • the first driving signal is further adjusted, so that when the voltage difference VGS is greater than the turn-on voltage of the MOS transistor Q, the MOS transistor Q is turned on, and the discharge loop generates current, that is, The battery to be tested 200 begins to discharge.
  • the discharge current flows through the load 12 , and the voltage of the first end of the load 12 increases, that is, the voltage of the first end of the load 12 is equivalent to the voltage of the load 12 .
  • the voltage drop value of the load 12 is sent to the inverting input terminal of the first operational amplifier U1 as a voltage drop signal. Due to the negative feedback effect of the first operational amplifier U1, after processing the voltage signal and the voltage drop signal, the first operational amplifier U1 will output a stable second driving signal to the MOS transistor Q's gate. Under the action of the stable second driving signal, the conduction degree of the MOS transistor Q is certain, and the internal resistance of the channel of the MOS transistor Q is stable, so that the discharge current in the discharge loop can be ensured to be stable.
  • the magnitude of the second driving signal is related to the magnitude of the voltage signal sent by the controller 30 , so that a stable discharge current of a corresponding magnitude can be obtained by adjusting the voltage signal sent by the controller 30 .
  • the load 12 includes a resistor, a first terminal of the resistor is electrically connected to the source of the MOS transistor Q, and a second terminal of the resistor is electrically connected to the fourth connection terminal 104 .
  • the resistance value of the resistor can be set according to the actual situation, for example, the resistance value of the resistor is 10m ⁇ , so that the discharge current of the battery to be tested 200 can be a large current.
  • the current sampling circuit 13 includes a second operational amplifier U2, the non-inverting input terminal of the second operational amplifier U2 is connected to the first terminal of the load 12, and the inverting phase of the second operational amplifier U2 The input terminal is connected to the second terminal of the load 12, and the output terminal of the second operational amplifier U2 is connected to the controller. Therefore, the voltage of the first terminal of the load 12 is input to the non-inverting terminal of the second operational amplifier U2, and the voltage of the second terminal of the load 12 is input to the inverting terminal of the second operational amplifier U2. After processing by the operational amplifier U2, the voltage across the load 12 is obtained and sent to the controller 30, and the controller 30 can determine the flow through the The current of the load 12 is the discharge current in the discharge circuit.
  • the discharge circuit 10 further includes a diode D1, a first end of the diode D1 is connected to the first connection end 101, and a second end of the diode D1 is connected to the The drain of the MOS transistor Q, the diode D1 is used to prevent the discharge current from flowing back into the battery under test 200 .
  • the anode of the diode D1 is connected to the first connection terminal 101, and the cathode of the diode D1 is connected to the MOS transistor
  • the drain of Q uses the unidirectional conductivity of the diode D1, so that in the discharge circuit, the discharge current always flows from the positive electrode of the battery to be tested 200 through the MOS transistor Q and the load 12, and finally flows back to
  • the negative electrode of the battery to be tested 200 prevents current from flowing backwards and burns the battery to be tested 200 .
  • the battery under test 200 is electrically connected through the second connection end 102 and the third connection end 103 for detecting the voltage across the battery under test 200 .
  • the voltage at both ends of the battery under test 200 collected by the voltage sampling circuit 20 is an open-circuit voltage; when the discharge circuit 10 is in the connected state, the battery under test is in the open state. 200 is discharged, and the voltage at both ends of the battery to be tested 200 collected by the voltage sampling circuit 20 is the discharge voltage.
  • the voltage sampling circuit 20 includes a third operational amplifier U3, the non-inverting input terminal of the third operational amplifier U3 is connected to the second connection terminal 102, and the inverting input terminal of the third operational amplifier U3 The terminal is connected to the third connection terminal 103 , and the output terminal of the third operational amplifier U3 is connected to the controller 30 .
  • the second connection end 102 is connected to the positive electrode of the battery to be tested 200
  • the third connection end 103 is connected to the negative electrode of the battery to be tested 200
  • the third operational amplifier U3 collects the The voltage is the voltage across the battery 200 to be tested.
  • the above-mentioned controller 30 is electrically connected to the discharge circuit 10 and the voltage sampling circuit 20, respectively, and the controller 30 is configured to execute the method for detecting a vehicle battery in any of the above-mentioned method embodiments.
  • the controller 30 includes a single-chip microcomputer U4, which can be 51 series, iOS series, STM32 series, etc.
  • the single-chip microcomputer U4 includes a DAC port, an ADC1 port, and an ADC2 port.
  • the DAC port of the single-chip microcomputer U4 is electrically connected to the non-inverting input terminal of the first operational amplifier U1, the ADC1 port of the single-chip microcomputer U4 is electrically connected to the output terminal of the second operational amplifier U2, and the ADC2 port of the single-chip microcomputer U4 is electrically connected to the third operational amplifier.
  • the output terminal of the amplifier U3 is electrically connected.
  • the controller 30 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), an ARM (Acorn RISC Machine) or other Programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of these components; can also be any conventional processor, controller, microcontroller, or state machine; can also be implemented as a combination of computing devices, For example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • ARM Acorn RISC Machine
  • the working process of the battery detection device 100 is as follows:
  • the third operational amplifier U3 performs signal processing on the voltage at both ends of the battery to be tested 200 to obtain the battery to be tested 200 open circuit voltage.
  • the DAC port of the single-chip microcomputer U4 outputs a voltage signal to the non-inverting input terminal of the first operational amplifier U1, and the source voltage of the MOS transistor Q is input to the inverting input terminal of the first operational amplifier U1.
  • the source voltage of the MOS transistor Q is the negative electrode voltage of the battery to be tested 200 .
  • the first operational amplifier U1 performs signal processing on the voltage signal input at the non-inverting input terminal and the negative voltage input at the inverting input terminal to obtain a first driving signal, the magnitude of which is related to the magnitude of the voltage signal .
  • the first driving signal acts on the gate of the MOS transistor Q, so that a voltage difference VGS is formed between the gate and the source of the MOS transistor Q.
  • the first driving signal is further adjusted, so that when the voltage difference VGS is greater than or equal to the turn-on voltage of the MOS transistor Q, the MOS transistor Q is turned on, and the discharge loop generates a current , that is, the battery under test 200 starts to discharge.
  • the discharge current flows through the load 12 , and the voltage of the first end of the load 12 increases, that is, the voltage of the first end of the load 12 is equivalent to the voltage of the load 12 .
  • the voltage drop value of the load 12 is sent to the inverting input terminal of the first operational amplifier U1 as a voltage drop signal. Due to the negative feedback effect of the first operational amplifier U1, after processing the voltage signal and the voltage drop signal, the first operational amplifier U1 will output a stable second driving signal to the MOS transistor Q's gate.
  • the battery to be tested 200 Under the action of the stable second drive signal, the battery to be tested 200 is discharged with a stable discharge current, wherein the magnitude of the discharge current is related to the magnitude of the second drive signal, and further, the discharge current The size is related to the voltage signal input by the controller 30 . Therefore, by adjusting the voltage signal, the battery to be tested 200 can be discharged for a preset duration at a preset discharge current.
  • the battery under test 200 When the battery under test 200 is discharged at the preset discharge current, the battery under test 200 generates a discharge voltage.
  • the third operational amplifier U3 performs signal processing on the discharge voltage to obtain the discharge voltage, and sends the discharge voltage to the ADC2 port of the microcontroller U4.
  • the single chip U4 calculates the voltage drop value of the battery to be tested 200 as the difference between the open circuit voltage and the discharge voltage.
  • the single-chip microcomputer U4 determines the CCA parameter of the battery to be tested according to the voltage drop value and the preset discharge condition, and according to the battery characteristics, the open circuit voltage, the CCA parameter and the preset mapping relationship to determine the state of health of the battery to be tested 200 .
  • the battery detection device further includes a memory, or a memory is integrated in the controller, and the memory is a non-volatile computer-readable storage medium, which can be used to store non-volatile software programs, non-volatile computer Programs and modules are executed, such as program instructions corresponding to the vehicle battery detection method in the embodiment of the present invention.
  • the controller executes various functional applications and data processing of the battery detection device by running the nonvolatile software programs and instructions stored in the memory, ie, implements the vehicle battery detection method of the method embodiment.
  • the battery detection device can execute the methods provided by the embodiments of the present invention, such as the detection methods in FIG. 2 to FIG. 8 , and has functional modules and beneficial effects corresponding to the execution methods. For technical details not described in detail in this embodiment, reference may be made to the method provided by the embodiment of the present invention.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program is During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种车辆蓄电池的检测方法及电池检测设备(100),通过获取待测蓄电池的开路电压与待测蓄电池的电池特征(410),获取待测蓄电池以预设放电条件进行放电的放电电压(420),根据开路电压与放电电压获得待测蓄电池的压降值(430),根据压降值和预设放电条件,确定待测蓄电池的CCA参数(440),根据电池特征、开路电压、CCA参数以及预设映射关系,确定待测蓄电池的健康状态(450)。也即,通过控制待测蓄电池以预设放电条件进行放电,获取待测蓄电池的CCA参数,根据电池特征、开路电压、CCA参数以及预设映射关系,即可快速准确地判断出待测蓄电池的健康状态,从而,便于用户及时维修保养。

Description

一种车辆蓄电池的检测方法及电池检测设备
本申请要求于2020年7月7日提交中国专利局、申请号为202010647737.8、申请名称为“一种车辆蓄电池的检测方法及电池检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种车辆蓄电池的检测方法及电池检测设备。
背景技术
电池是设备运行的必要部件,如最常见的用于电动汽车的铅酸蓄电池等,不仅仅用于启动汽车,还用于支持汽车上所有的电子负载,例如ECU等。随着蓄电池的使用,蓄电池可能出现损坏、坏格、电量不足等健康问题,导致车辆无法正常运行,因此,能预先判断蓄电池的健康状态极为重要,能让用户清楚了解到蓄电池的情况,从而避免启动运行风险,例如,长途行驶中,电池半路损坏,或者,无法带载汽车的ECU等。
目前,对于开口式蓄电池,可通过观察法、放电法、测比重等方式检测电池的健康状态。但对于密封式电池,通过观察无法看到电池内部状况,也无法测电解液的比重,通常通过放电法,检测蓄电池当下的电量,从而判定蓄电池的健康状态,或者,通过电导法测试蓄电池的实际电导值,与蓄电池完好时的标准电导值进行比较,从而判断蓄电池的健康状态。
本发明发明人在实现本发明实施例的过程中,发现:目前,放电法检测电池好坏时,测量时间长,测试过程会产生大量的热能,且无法连续重复测量,测试误差较大;电导法检测电池好坏时,存在不准确以及测量麻烦的问题。
发明内容
本发明实施例主要解决的技术问题是提供一种车辆蓄电池的检测方法和电池检测设备,能够快速准确地判断出蓄电池的健康状态。
为解决上述技术问题,第一方面,本发明实施例中提供了一种车辆蓄电池的检测方法,包括:
获取待测蓄电池的开路电压与所述待测蓄电池的电池特征;
获取所述待测蓄电池以预设放电条件进行放电的放电电压;
根据所述开路电压与所述放电电压获得所述待测蓄电池的压降值;
根据所述压降值和所述预设放电条件,确定所述待测蓄电池的CCA参数;
根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态;
其中,所述预设映射关系包括电池特征、开路电压与CCA参数阈值的对应 关系,所述CCA参数阈值是将采样蓄电池按照所述预设放电条件得到的CCA参数确定的,所述采样蓄电池包括新蓄电池、坏格蓄电池、临界蓄电池,所述临界蓄电池为电池容量为80%额定容量的蓄电池,所述坏格蓄电池为至少有一单元格损坏的蓄电池。
在一些实施例中,所述电池特征包括电池类型和额定电池容量中的至少一种,以及额定电压。
在一些实施例中,所述预设放电条件包括按照预设放电电流对所述待测蓄电池放电预设时长。
在一些实施例中,所述获取所述待测蓄电池以预设放电条件进行放电的放电电压,包括:
按照预设第一采样率采集所述待测蓄电池放电的多个第一电压;
确定所述放电电压为所述多个第一电压的平均值。
在一些实施例中,获取所述待测蓄电池的开路电压,包括:
按照预设第二采样率采集所述待测蓄电池未放电的多个第二电压;
确定所述开路电压为所述多个第二电压的平均值。
在一些实施例中,所述预设放电条件包括至少两次按照预设放电电流对所述待测蓄电池放电预设时长;
所述计算所述待测蓄电池的压降值为所述开路电压与所述放电电压的差值,包括:
根据至少两个所述开路电压和至少两个所述放电电压获得至少两个第一压降值;
确定所述压降值为所述至少两个第一压降值的平均值。
在一些实施例中,所述根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态,包括:
确定所述预设映射关系中与所述电池特征、所述开路电压对应的CCA参数阈值;
根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态。
在一些实施例中,所述根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态,包括:
若所述待测蓄电池的开路电压落入所述坏格电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述坏格蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏格蓄电池;
若所述待测蓄电池的开路电压落入所述新蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述新蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为好蓄电池;
若所述待测蓄电池的开路电压落入所述临界蓄电池对应的开路电压区间 内,确定所述待测蓄电池的CCA参数是否小于所述临界蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏蓄电池;
否则,确定所述待测蓄电池为不确定蓄电池。
在一些实施例中,所述采样蓄电池还包括电量不足蓄电池,所述电量不足蓄电池为电量低于预设电量阈值的蓄电池;
所述根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态,还包括:
若所述待测蓄电池的开路电压落入所述电量不足蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述电量不足蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为电量不足蓄电池。
在一些实施例中,所述方法还包括:
提示对所述不确定蓄电池进行充电后重新确定健康状态。
为解决上述技术问题,第二方面,本发明实施例中提供了一种电池检测设备,包括:
第一连接端、第二连接端、第三连接端和第四连接端,其中,所述第一连接端、所述第二连接端、所述第三连接端和所述第四连接端分别用于连接待测蓄电池;
放电电路,通过所述第一连接端和所述第四连接端电连接所述待测蓄电池,用于触发所述待测蓄电池以预设放电条件进行放电;
电压采样电路,通过所述第二连接端和所述第三连接端电连接所述待测蓄电池,用于检测所述待测蓄电池两端的电压;
控制器,分别与所述放电电路和所述电压采样电路电连接,所述控制器可执行如上第一方面所述的方法。
在一些实施例中,所述放电电路包括开关电路、负载和电流采样电路:
所述开关电路的第一端连接所述第一连接端,所述开关电路的第二端连接所述控制器,所述开关电路的第三端通过所述负载连接所述第四连接端;
所述电流采样电路的第一端连接所述控制器,所述电流采样电路的第二端连接所述负载,所述电流采样电路用于检测所述待测蓄电池的放电电流;
所述控制器具体用于:
根据所述电流采样电路检测的放电电流大小调整所述开关电路,以使所述待测蓄电池以所述预设放电条件进行放电。
在一些实施例中,所述开关电路包括MOS管和第一运算放大器;
所述第一运算放大器的同相输入端连接所述控制器,所述第一运算放大器的反相输入端连接所述MOS管的源极,所述第一运算放大器的输出端连接所述MOS管的栅极,所述MOS管的源极连接所述负载的第一端,所述MOS管的漏极连接所述第一连接端。
在一些实施例中,所述放电电路还包括二极管,所述二级管的第一端连接所述第一连接端,所述二级管的第二端连接所述MOS管的漏极。
在一些实施例中,所述电流采样电路包括第二运算放大器,所述第二运算放大器的同相输入端连接所述负载的第一端,所述第二运算放大器的反相输入端连接所述负载的第二端,所述第二运算放大器的输出端连接所述控制器。
在一些实施例中,所述电压采样电路包括:
第三运算放大器,所述第三运算放大器的同相输入端连接所述第二连接端,所述第三运算放大器的反相输入端连接所述第三连接端,所述第三运算放大器的输出端连接所述控制器
本发明实施例的有益效果:区别于现有技术的情况,本发明实施例提供的车辆蓄电池的检测方法和电池检测设备,通过控制所述待测蓄电池以预设放电条件进行放电,确定所述待测蓄电池的CCA参数,根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,即可快速准确地判断出蓄电池的健康状态,从而,便于用户及时维修保养。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的一种电池检测系统的电路结构示意图;
图2为本发明实施例提供的一种车辆蓄电池的检测方法的流程示意图;
图3为图2中所示步骤410的一子流程示意图;
图4为图2中所示步骤420的一子流程示意图;
图5为图2中所示步骤430的一子流程示意图;
图6为本发明实施例提供的检测区域图;
图7为图2中所示步骤450的一子流程示意图;
图8为图7中所示步骤452的一子流程示意图;
图9为本发明实施例提供的一种电池检测设备的电路结构示意图;
图10为图1所示的放电电路和电压采样电路的电路结构示意图;
图11本发明实施例提供的一种电池检测设备的电路连接示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。此外,本文所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,为发明实施例提供的一种电池检测系统的电路结构示意图。如图1所示,电池检测系统300包括蓄电池200及检测设备100,检测设备100与蓄电池200电连接,用于测量蓄电池200的电学参数,确定蓄电池200的健康状态。
所述蓄电池200是将化学能直接转化成电能,并且通过可逆的化学反应实现再充电的一种装置,即充电时利用外部的电能使内部活性物质再生,把电能存储为化学能,需要放电时再次把化学能转换为电能输出。所述蓄电池200包括一个或多个单元格,一般一个单元格的额定电压为2V,所述多个单元格可串联或并联,则所述蓄电池200的额定电压可以为2V,4V、6V、8V、12V、24V等。例如,车辆蓄电池一般是6个铅蓄单元格串联形成额定电压12V的电池组,用于小型车,或,是12个铅蓄单元格串联形成额定电压24V的电池组,用于大型车。可以理解的是,所述车辆蓄电池也可根据实际情况,将额定电压设计成其它规格。
在蓄电池200经历多次充放电后,可能出现损耗、坏格(单元格损坏)、电量不足等健康问题,导致车辆无法正常运行,因此,能预先判断蓄电池200的健康状态极为重要,能让用户清楚了解到蓄电池200的情况,从而避免启动运行风险。所述蓄电池200的健康状态是用于评价所述蓄电池200的工作能力的指标,例如,所述健康状态可以包括是否接近报废(坏蓄电池)、是否出现坏格(坏格蓄电池)、是否完好(好蓄电池)或电量是否充足(电量不足蓄电池)等。蓄电池200的健康状态,会影响蓄电池200的电学参数,例如坏格时电压会降低等。
所述检测设备100与蓄电池200电连接,例如,可通过开尔文连接器201连接蓄电池200的正负极。所述检测设备100用于测量蓄电池200的电学参数,所述电学参数包括电压、电流等基础参数,还可以包括电压、电流衍生出的参数,例如内阻和CCA等。因此,所述检测设备100根据所述电学参数,结合预 设算法,即可判断所述蓄电池200的健康状态。
本发明实施例提供了一种应用于上述检测设备100的车辆蓄电池的检测方法,该方法可被上述检测设备100执行,请参阅图2,该方法包括:
步骤410:获取待测蓄电池的开路电压与所述待测蓄电池的电池特征。
所述开路电压为所述待测蓄电池未放电时两端的电压,可通过检测所述待测蓄电池处于断路时正负极两端的电压得到。所述开路电压可以在放电前采集,也可以在放电后采集,若在放电后采集,需要在所述待测蓄电池散热冷却的情况下进行,例如,在放电结束后的300ms-500ms内采集。
为了使得所述开路电压更为精确,在一些实施例中,请参阅图3,所述步骤410具体包括:
步骤411:按照预设第二采样率采集所述待测蓄电池未放电的多个第二电压。
步骤412:确定所述开路电压为所述多个第二电压的平均值。
所述多个第二电压是按第二采样率,对所述开路电压在所述待测蓄电池未放电时进行采数而得到的。可以理解的是,所述第二电压可以在所述待测蓄电池放电前采集,或者,在所述待测蓄电池放电完成后采集。值得说明的是,在采集所述第二电压时需要所述待测蓄电池散热冷却,即,只要是在所述待测蓄电池冷却未放电时采集的即可,例如,在所述待测蓄电池放电前500ms或放电后500ms内,按第二采样率采集50个第二电压,计算所述多个第二电压的平均值Vb,并作为所述开路电压。值得说明的是,若在放电后采集所述第二电压,需要间隔一定的时间,使得所述待测蓄电池散热冷却,例如,在放电结束后的300ms-500ms内采集。也即,在所述待测蓄电池散热冷却后,采集所述第二电压,可在放电前或放电后采集。
在本实施实施例中,通过采集所述待测蓄电池未放电的多个第二电压,并将所述多个第二电压的平均值作为开路电压,可减少误差风险,排出异常数据,增加开路电压的准确性。
所述电池特征是指电池的特有属性,例如电池的出厂参数、额定参数(包括额定电压)等。在一些实施例中,所述电池特征包括电池类型和额定电池容量中的至少一种,以及额定电压。例如,当所述电池特征包括电池类型和额定电压时,所述电池特征可以是额定电压一定的AGM型电池、EFB型电池或Flooded型电池,例如,12V的AGM型电池、12V的EFB型电池或12V的Flooded型电池。例如,当所述电池特征包括额定电池容量和额定电压时,所述电池特征可以是将额定电压一定的蓄电池按额定电池容量进行分类得到,例如,电池特征包括额定电压为24V,额定电池容量为0-50Ah/50-100Ah/100Ah以上。可以理解的是,这些电池特征可从所述待测蓄电池的铭牌中获取,也可从所述待测蓄电池的出厂资料中获取。
步骤420:获取所述待测蓄电池以预设放电条件进行放电的放电电压。
所述放电电压是在所述待测蓄电池以预设放电条件进行放电的过程中采 集到的所述待测蓄电池的正负极两端电压。
在一些实施例中,所述预设放电条件包括按照预设放电电流对所述待测蓄电池放电预设时长。
其中,所述预设放电电流可根据待测蓄电池的额定参数设置,例如通过预先设置额定参数与预设放电电流的对应关系,结合额定参数,确定所述预设放电电流。在一些实施例中,所述预设放电电流可根据所述待测蓄电池的额定电流而确定,例如所述预设放电电流小于所述额定电流,占所述额定电流的预设百分比。若所述额定电流较大时,则可减小所述预设百分比,以降低待测蓄电池放电产生的热量。可以理解的是,所述预设放电电流也可根据历史经验值人为设置,例如所述预设放电电流为10A、20A、30A、50A或100A等大电流,不同的电流抗噪能力不同,可根据抗噪需求自行设置。此外,为了使所述预设放电电流稳定至预设值,通过在所述检测设备中设置预设放电电流的预设值,并根据预设放电电流与预先存储于检测设备的电流-电压信号关系表,输出电压信号,以控制所述待测蓄电池的放电电流等于所述预设放电电流,即所述电池检测设备与所述待测蓄电池的放电回路的电流等于所述预设放电电流。
所述预设时长是指待测蓄电池以预设放电电流进行放电的持续时间。所述放电电流为大电流,所述预设时长较短。在一些实施例中,所述预设时长为毫秒级,不超过10ms,例如所述预设时长为3ms、5ms、6ms或8ms等。所述预设时长与所述放电电流有关,例如,当所述放电电流较大时,可选用较短的预设时长进行放电。通过较短的预设时长进行放电,检测待测蓄电池的健康状态,一方面,节省了检测时间,可快速确定所述待测蓄电池的健康状态,提高了检测效率,另一方面,所述预设时长为毫秒级,放电时间短,可避免所述待测蓄电池产生大量的热,从而,在检测的过程中,不需要额外的散热装置。
为了使得所述放电电压更为精确,在一些实施例中,请参阅图4,所述步骤420具体包括:
步骤421:按照预设第一采样率采集所述待测蓄电池放电的多个第一电压。
步骤422:确定所述放电电压为所述多个第一电压的平均值。
所述多个第一电压是按第一采样率,对所述放电电压在所述待测蓄电池放电的预设时长中进行采数而得到的。例如,在所述待测蓄电池放电的预设时长3ms中采集50个第一电压,计算所述多个第一电压的平均值Va,并作为所述放电电压。
具体的,通过定时器的方式累计所述预设时长,当所述待测蓄电池的放电时间达到所述预设时长时,所述定时器达到设定的停止阈值,触发所述待测蓄电池停止放电。在所述预设时长内,即所述待测蓄电池放电的过程中,通过计数器的方式按预设第一采样率进行计数,例如,每隔所述预设第一采样率采一次数,直到所述计数器达到所述定时器中设定的停止阈值,则停止采数。在一些实施例中,在开启定时器和计数器之前,所述方法还包括:初始化所述检测 设备。
在本实施实施例中,通过采集所述待测蓄电池放电预设时长内的多个第一电压,并将所述多个第一电压的平均值作为放电电压,可减少误差风险,排出异常数据,增加放电电压的准确性。
步骤430:根据所述开路电压与所述放电电压获得所述待测蓄电池的压降值。
在所述待测蓄电池放电时,所述待测蓄电池两端的电压会降低。在获取所述开路电压和所述放电电压后,计算所述开路电压与所述放电电压的差值即为所述待测蓄电池的压降值Vd,Vd=Vb-Va。
考虑到单次获取的压降值存在误差,在一些实施例中,所述预设放电条件包括至少两次按照预设放电电流对所述待测蓄电池放电预设时长,从而,可以获取至少两个压降值。
如图5所示,在此实施例中,所述步骤430具体包括:
步骤431:根据至少两个所述开路电压和至少两个所述放电电压获得至少两个所述第一压降值。
步骤432:确定所述压降值为所述至少两个第一压降值的平均值。
每次放电均可获取开路电压和放电电压。例如,当所述待测蓄电池按照预设放电电流、预设时长放电来回放电10次时,得到10组开路电压和放电电压,每组开路电压和放电电压对应一第一压降值,从而,得到10个第一压降值。一方面,可以观察数据稳定性,确保无异常数据,另一方面,对所述10个第一压降值求取平均值,作为压降值,可减少误差风险,排出异常数据,增加压降值的准确性。
可以理解的是,所述至少两次放电可以是间隔随机的,也可以是按预设频率进行放电,例如间隔500ms,放电10次。
步骤440:根据所述压降值和所述预设放电条件,确定所述待测蓄电池的CCA参数。
所述CCA参数可以是CCA或CCA百分比,其中,所述CCA(Cold Cranking Ampere)为蓄电池的冷启动电流,指在规定的某一低温状态下(通常规定在0℉或–17.8℃)蓄电池在电压降至极限馈电电压前,连续30秒释放出的电流量。例如一个12V的蓄电池CCA为550,即指蓄电池在充满电并在-17.8℃环境下静置24小时后,在电压降至7.2V之前,能连续30秒提供550A的电流。CCA百分比为测得的CCA与额定CCA之间的比值。
根据所述压降值和所述预设放电条件,结合欧姆定律,可获得所述待测蓄电池的内阻R=压降值/放电电流。本领域技术人员可知,CCA跟内阻R有一定的比例系数α,即CCA=α*R,从而,即可获得所述CCA以及CCA百分比。
步骤450:根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态。
所述预设映射关系是预先建立的,所述预设映射关系包括电池特征、开路 电压与CCA参数阈值的对应关系,所述CCA参数阈值是将采样蓄电池按照所述预设放电条件得到的CCA参数确定的,所述采样蓄电池包括新蓄电池、坏格蓄电池、临界蓄电池,所述临界蓄电池为电池容量为80%额定容量的蓄电池,所述坏格蓄电池为至少有一单元格损坏的蓄电池。
所述新蓄电池是指新出厂检测合格的蓄电池,可作为CCA参数判断的参考。所述新蓄电池的电压能达到所述额定电压。将新蓄电池按照所述预设放电条件得到的CCA参数,作为新蓄电池的CCA参数阈值。
随着蓄电池的使用,蓄电池会逐渐老化,电池容量会降低,CCA参数会下降。当电池容量低于额定电池容量的80%时,电池容量可能呈跳水式下降,导致蓄电池的带负载能力不足,随时可能出现报废。所述蓄电池的带负载能力是指当蓄电池的对负载供电时,带动负载工作时的输出功率。即,当电池容量低于额定电池容量的80%时,蓄电池的输出功率不足以带动负载工作。因此,将电池容量为80%额定电池容量的蓄电池作为临界蓄电池,并按照所述预设放电条件,得到的CCA参数,作为临界蓄电池的CCA参数阈值。可以理解的是,虽然所述临界电池的带负载能力不足,但是所述临界蓄电池的电压也能达到所述额定电压。
所述坏格蓄电池为至少有一单元格损坏的蓄电池,从而,所述坏格蓄电池的电压会低于所述额定电压。将坏格蓄电池按照所述预设放电条件得到的CCA参数,作为坏格蓄电池的CCA参数阈值。
在一些实施例中,所述采样蓄电池还包括电量不足蓄电池,所述电量不足蓄电池为电量低于预设电量阈值的蓄电池,例如低于额定电量的20%等。所述电量不足蓄电池可由所述新蓄电池放电后获得。
每一电池特征均有各自的开路电压与CCA参数阈值的对应关系,当电池特征包括额定电压和电池类型时,是将蓄电池按额定电压和电池类型进行分类,例如,当额定电压为12V,电池类型包括AGM、EFB和Flooded时,电池特征分为3类:12V的AGM型电池、12V的EFB型电池或12V的Flooded型电池,每类均有开路电压与CCA参数阈值的对应关系。从而,当确定所述待测蓄电池的电池特征、开路电压和CCA参数后,在所述预设映射关系中,可查找出与所述待测蓄电池的电池特征对应的电池特征后,即可获取与所述待测蓄电池匹配的开路电压与CCA参数阈值的对应关系。
可以理解的是,在额定电压一定的情况下,新蓄电池、临界蓄电池、坏格蓄电池和电量不足蓄电池的电压并非完全相同,例如,坏格电池的电压低于额定电压,但不会影响其CCA参数;临界蓄电池的CCA参数较低,但其电压不受影响;相比于新蓄电池,所述电量不足蓄电池的电压和CCA参数均有一定程度的降低。因此,不能仅仅根据CCA参数阈值确定蓄电池的健康状态,应结合电压与CCA参数阈值才能确定蓄电池的健康状态,即,在所述待测蓄电池的开路电压满足采样蓄电池中某一类蓄电池的电压特性时,再将所述待测蓄电池的CCA参数与对应的CCA参数阈值进行比较,进而,判断所述待测蓄电池的健康 状态。
所述新蓄电池、临界蓄电池、坏格蓄电池和电量不足蓄电池的电压均不是一个固定值,而是在区间内波动,即存在新蓄电池电压区间、临界蓄电池电压区间、坏格蓄电池电压区间和电量不足蓄电池电压区间。所述预设映射关系中的开路电压包括所述新蓄电池电压区间、临界蓄电池电压区间、坏格蓄电池电压区间和电量不足蓄电池电压区间。可以理解的是,所述预设映射关系中的开路电压可以是根据新蓄电池、临界蓄电池、坏格蓄电池和电量不足蓄电池的电压特性而人为设定的经验值,也可以是,对若干个新蓄电池、若干个临界蓄电池、若干个坏格蓄电池和若干个电量不足蓄电池进行电压测试得到的。
如表1所示,其示出了所述预设映射关系的一种方式,以额定电压12V、电池类型为为AGM/EFB/Flooded的采样蓄电池例,分别针对每种电池特征的采样蓄电池,测量若干个新蓄电池的电压,可确定所述新蓄电池对应的开路电压区间U1,例如[12V,14V]。以0.05V为间隔划分所述新蓄电池对应的开路电压区间U1,得到若干第一子区间,针对每一所述第一子区间,对电压位于所述第一子区间的新蓄电池,数量50个,分别按上述步骤410-步骤440获取CCA参数,则所述新蓄电池的CCA参数阈值为50个CCA参数的平均值。重复上述操作,直到覆盖所有的第一子区间。
分别针对每种电池特征的采样蓄电池,测量若干个临界蓄电池的电压,可确定所述临界蓄电池对应的开路电压区间U2,例如[12V,14V]。以0.05V为间隔划分所述临界蓄电池对应的开路电压区间U2,得到若干第二子区间,针对每一所述第二子区间,对电压位于所述第二子区间的临界蓄电池,数量50个,分别按上述步骤410-步骤440获取CCA参数,则所述临界蓄电池的CCA参数阈值为50个CCA参数的平均值。重复上述操作,直到覆盖所有的第二子区间。
分别针对每种电池特征的采样蓄电池,测量若干个坏格蓄电池的电压,可确定所述坏格蓄电池对应的开路电压区间U3,例如[6V,11V]。以0.05V为间隔划分所述坏格蓄电池对应的开路电压区间U3,得到若干第三子区间,针对每一所述第三子区间,对电压位于所述第三子区间的坏格蓄电池,数量50个,分别按上述步骤410-步骤440获取CCA参数,则所述坏格电池的CCA参数阈值为50个CCA参数的平均值。重复上述操作,直到覆盖所有的第三子区间。
分别针对每种类型的采样蓄电池,测量若干个电量不足蓄电池的电压,可确定所述电量不足蓄电池对应的开路电压区间U4,例如[11,12V]。以0.05V为间隔划分所述电量不足蓄电池对应的开路电压区间U4,得到若干第四子区间,针对每一所述第四子区间,对电压位于所述第四子区间的电量不足蓄电池,数量50个,分别按上述步骤410-步骤440获取CCA参数,则所述电量不足蓄电池的CCA参数阈值为50个CCA参数的平均值。重复上述操作,直到覆盖所有的第四子区间。
在所述新蓄电池对应的开路电压区间U1、所述临界蓄电池对应的开路电压区间U2、所述坏格蓄电池对应的开路电压区间U3和所述电量不足蓄电池对 应的开路电压区间U4中进一步划分子区间,可消除采样蓄电池的开路电压对CCA参数阈值的影响,使得CCA参数阈值结果更加精确。可以理解的是,所述子区间的间隔还可以是其它值,例如0.03V、0.04V或0.06V等,具体可根据实际经验人为设定。每一子区间中的采样蓄电池数量也可以是40个或60个,具体数量可根据实际情况人为设定。
表1预设映射关系
Figure PCTCN2021104102-appb-000001
值得说明的是,表1中,所述新蓄电池对应的开路电压区间U1、所述临 界蓄电池对应的开路电压区间U2、所述临界蓄电池对应的开路电压区间U3和所述电量不足蓄电池对应的开路电压区间U4的范围仅仅是举例说明,其具体区间范围可根据经验设定,或根据实际的测量结果而设定。可以理解的是,所述区间U1、U2、U3和U4也会存在重叠的区域。
为了更直观的表述所述预设映射关系,以方便确定检测结果,在一些实施例中,可根据所述表1中的预设映射关系,建立检测区域图500,如图6所示,每一电池特征均有各自对应一检测区域图,例如电池特征C1对应检测区域图(a),电池特征C2对应检测区域图(b),依次类推,直到将所有的电池特征对应的检测区域图建立完成。
以电池特征C1对应的检测区域图(a)为例,若所述电池特征C1包括额定电压12V、电池类型AGM,所述检测区域图(a)的横轴为电压区间[X1,Xn],即表1中的第一列,纵轴为CCA参数阈值,所述检测区域图(a)中包括第一曲线501、第二曲线502、第三曲线503和第四曲线504。
所述新蓄电池对应的开路电压区间U1和所述第一曲线501的上部合围成的区域Good代表蓄电池为好蓄电池(可正常使用)。所述临界蓄电池对应的开路电压区间U2和所述第二曲线502的下部合围成的区域Replace代表蓄电池为坏蓄电池(报废不能正常使用)。所述坏格蓄电池对应的开路电压U3和所述第三曲线503的上部合围成的区域BadCell代表蓄电池为坏格蓄电池(至少有一单格损坏)。所述电量不足蓄电池对应的开路电压U4和所述第四曲线504的上部合围成的区域GoodRecharge代表蓄电池为电量不足蓄电池(电量低于预设电量阈值),否则,在所述电压区间[X1,Xn]内的其它区域为不确定区域ChargeRetest,即落入所述ChargeRetest区域的待测蓄电池,不能确定其健康状态。
其中,所述第一曲线501为表1中新蓄电池的CCA参数阈值与新蓄电池对应的开路电压区间U1的线性拟合关系,是由电压位于所述开路电压区间U1的各第一子区间中、并与所述电池特征C1对应的新蓄电池的CCA参数阈值构成的曲线。基于所述电池特征C1=(额定电压12V,电池类型AGM),所述第一曲线501中点的纵坐标为表1第二列中的CCA参数阈值。
所述第二曲线502为表1中临界蓄电池的CCA参数阈值与临界蓄电池对应的开路电压区间U2的线性拟合关系,是由电压位于所述开路电压区间U2的各第二子区间中、并与所述电池特征C1对应的临界蓄电池的CCA参数阈值构成的曲线。例如,基于所述电池特征C1=(额定电压12V,电池类型AGM),所述第二曲线502中点的纵坐标为表1第三列中的CCA参数阈值。
所述第三曲线503为表1中坏格蓄电池的CCA参数阈值与坏格蓄电池对应的开路电压区间U3的线性拟合关系,是由电压位于所述开路电压区间U3的各第三子区间中、并与所述电池特征C1对应的坏格蓄电池的CCA参数阈值构成的曲线。例如,基于所述电池特征C1=(额定电压12V,电池类型AGM),所述第三曲线503中点的纵坐标为表1第四列中的CCA参数阈值。
所述第四曲线504为表1中电量不足蓄电池的CCA参数阈值与电量不足蓄电池对应的开路电压区间U4的线性拟合关系,是由电压位于所述开路电压区间U4的各第四子区间中、并与所述电池特征C1对应的电量不足蓄电池的CCA参数阈值构成的曲线。例如,基于所述电池特征C1=(额定电压12V,电池类型AGM),所述第四曲线504中点的纵坐标为表1第五列中的CCA参数阈值。
可以理解的是,对于不同的电池特征,所述第一曲线501、第二曲线502、第三曲线503和第四曲线504的曲线特征不同,即,横坐标范围以及对应的纵坐标函数均不相同。例如,检测区域图(b)中,针对电池特征C2,所述第一曲线501、第二曲线502、第三曲线503和第四曲线504的曲线特征不同于检测区域图(a)中对应曲线的曲线特征。
通过建立与电池特征对应的检测区域图,可直观地进行对比,方便确定所述待测蓄电池是否需要被替换。
本实施例中,根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态
在一些实施例中,请参阅图7,所述步骤450具体包括:
步骤451:确定所述预设映射关系中与所述电池特征、所述开路电压对应的CCA参数阈值。
步骤452:根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态。
通过电池特征匹配,在所述预设映射关系中找出与所述待测蓄电池的电池特征对应的电池特征,根据所述预设映射关系以及所述待测蓄电池的开路电压,即可确定对应的CCA参数阈值。例如,结合表1或检测区域图500,根据所述电池特征、所述开路电压可定位表1中的CCA参数阈值。
根据所述待测蓄电池的开路电压确定其所属的开路电压区间,以及定位到的CCA参数阈值,通过比较所述待测蓄电池的CCA参数与所述CCA参数阈值之间的大小,即可确定所述待测蓄电池的健康状态。
在一些实施例中,请参阅图8,所述步骤452具体包括:
步骤4521:若所述待测蓄电池的开路电压落入所述坏格电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述坏格蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏格蓄电池。
例如,所述待测蓄电池的额定电压12V,开路电压为6.07V,电池类型为AGM,CCA参数值为P1。首先,由开路电压定位到区间[6.05,6.10),即表1中第4行,由于开路电压落入所述坏格蓄电池对应的开路电压区间U1,对应的是坏格蓄电池,再由类型ACM定位到表1中第4列,从而,得到表1中第4行第4列中的CCA参数阈值,即所述坏格蓄电池对应的所述CCA参数阈值。如果所述待测蓄电池的CCA参数大于或等于所述表1中第4行第4列中的CCA参数阈值,则确定所述待测蓄电池为坏格蓄电池。
步骤4522:若所述待测蓄电池的开路电压落入所述新蓄电池对应的开路 电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述新蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为好蓄电池。
例如,所述待测蓄电池的额定电压12V,开路电压为12.03V,电池类型为AGM,CCA参数值为P2。首先,由开路电压定位到区间[12.0,12.05),即表1中第9行,由于开路电压落入所述新蓄电池对应的开路电压区间U2,对应的是新蓄电池,再由类型ACM定位到表1中第2列,从而,得到表1中第9行第2列中的CCA参数阈值,即所述新蓄电池对应的所述CCA参数阈值。如果所述待测蓄电池的CCA参数大于或等于所述表1中第9行第2列中的CCA参数阈值,则确定所述待测蓄电池为好蓄电池。
步骤4523:若所述待测蓄电池的开路电压落入所述临界蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否小于所述临界蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏蓄电池。
例如,所述待测蓄电池的额定电压12V,开路电压为12.03V,电池类型为AGM,CCA参数值为P3。首先,由开路电压定位到区间[12.0,12.05),即表1中第9行,由于开路电压落入所述临界蓄电池对应的开路电压区间U3,对应的是临界蓄电池,再由类型ACM定位到表1中第3列,从而,得到表1中第9行第3列中的CCA参数阈值,即所述临界蓄电池对应的所述CCA参数阈值。如果所述待测蓄电池的CCA参数小于所述表1中第9行第3列中的CCA参数阈值,则确定所述待测蓄电池为坏蓄电池。
步骤4524:若所述待测蓄电池的开路电压落入所述电量不足蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述电量不足蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为电量不足蓄电池。
例如,所述待测蓄电池的额定电压12V,开路电压为11.03V,电池类型为AGM,CCA参数值为P4。首先,由开路电压定位到区间[11.0,11.05),即表1中第7行,由于开路电压落入所述电量不足对应的开路电压区间U4,对应的是电量不足蓄电池,再由类型ACM定位到表1中第5列,从而,得到表1中第7行第5列中的CCA参数阈值,即所述电量不足蓄电池对应的所述CCA参数阈值。如果所述待测蓄电池的CCA参数大于或等于所述表1中第8行第5列中的CCA参数阈值,则确定所述待测蓄电池为电量不足蓄电池。
步骤4525:否则,确定所述待测蓄电池为不确定蓄电池。
当所述待测蓄电池为不确定蓄电池时,无法确定所述待测蓄电池的健康状态。
在一些实施例中,也可通过电池特征确定对应的检测区域图500,例如,请参阅图6,由电池特征(额定电压12V,电池类型AGM)可确定属于电池特征C1,则确定对应的检测区域图(a)。在检测区域图(a)中,根据所述待测蓄电池的开路电压和CCA参数,确定所述待测蓄电池的坐标。当所述待测蓄电池的坐标落入区域Good中,则确定所述待测蓄电池为好蓄电池;当所述待测 蓄电池的坐标落入区域Replace中,则确定所述待测蓄电池为坏蓄电池;当所述待测蓄电池的坐标落入区域Badcell中,则确定所述待测蓄电池为坏格蓄电池;当所述待测蓄电池的坐标落入区域GoodRecharge中,则确定所述待测蓄电池为电量不足蓄电池;当所述待测蓄电池的坐标落入区域ChargeRetest中,确定所述待测蓄电池为不确定蓄电池。
在一些实施例中,所述方法400还包括:
步骤460:提示对所述不确定蓄电池进行充电后重新确定健康状态。
对所述不确定蓄电池进行充电后,进一步,重新确定健康状态,消除电量的影响,结果更加准确。
在本实施例中,通过控制所述待测蓄电池以预设放电条件进行放电,确定所述待测蓄电池的CCA参数,根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,即可快速准确地判断出蓄电池的健康状态,从而,便于用户及时对蓄电池进行维修保养。
本发明实施例中车辆蓄电池的检测方法利用检测蓄电池的压降值,获取所述蓄电池的CCA参数,进而确认所述蓄电池的健康状态,适用于任何合适的可以检测电池压降的设备,例如,以下本发明实施例中的电池检测设备。
请参阅图9,为本发明实施例提供的一种电池检测设备的电路结构示意图。如图9所示,所述电池检测设备100与待测蓄电池200电连接,电池检测设备100包括放电电路10、电压采样电路20以及控制器30。
如图10所示,所述电池检测设备100包括第一连接端101、第二连接端102、第三连接端103和第四连接端104,所述第一连接端101、所述第二连接端102、所述第三连接端103和所述第四连接端104分别用于连接所述待测蓄电池。在本实施例中,所述第一连接端101和所述第二连接端102均与所述待测蓄电池200的正极电连接,所述第三连接端103和所述第四连接端104均与所述待测蓄电池200的负极电连接。在一些实施例中,所述第一连接端101、第二连接端102、第三连接端103和第四连接端104也可为开尔文连接器,即,所述电池检测设备100通过所述开尔文连接器电连接所述待测蓄电池200,可消除布线,以及,消除当电流流过待测蓄电池100的正极或负极时因接触连接而产生的电阻。
对于上述放电电路10,通过所述第一连接端101和所述第四连接端104电连接所述待测蓄电池200,用于触发所述待测蓄电池200进行放电。当放电电路10处于导通状态时,所述放电电路10与所述待测蓄电池200形成放电回路,触发所述待测蓄电池100放电。
在其中一些实施例中,请一并参阅图10,所述放电电路10包括开关电路11、负载12和电流采样电路13。
所述开关电路11的第一端连接所述第一连接端104,所述开关电路11的第二端连接所述控制器30,所述开关电路11的第三端通过所述负载12连接所述第四连接端104,用于根据所述控制器30发送的电压信号,实现闭合或 断开所述开关电路11、负载12和所述待测蓄电池200之间的放电回路,以及调节所述放电回路的导通程度。
所述电流采样电路13的第一端接所述控制器30,所述电流采样电路13的第二端连接所述负载12,所述电流采样电路13用于检测所述开关电路11、负载12和所述待测蓄电池形200成的放电回路中的电流,即所述待测蓄电池200的放电电流。
所述控制器30根据所述电流采样电路20检测的放电电流大小,调整所述开关电路11,以使所述待测蓄电池200以所述预设放电条件进行放电,其中,所述预设放电条件包括按照预设放电电流对所述待测蓄电池200放电预设时长。
在一些实施例中,请参阅图11,所述开关电路11包括MOS管Q和第一运算放大器U1,所述第一运算放大器U1的同相输入端连接所述控制器30(单片机U4的DAC端口),所述第一运算放大器U1的反相输入端连接所述MOS管Q的源极,所述第一运算放大器U1的输出端连接所述MOS管Q的栅极,所述MOS管Q的源极连接所述负载12的第一端,所述MOS管Q的漏极连接所述第一连接端101。所述负载12的第二端连接所述第四连接端104,并且所述第四连接端104与所述待测蓄电池200的负极电连接。
当所述MOS管Q断开时,所述负载12的第一端的电压以及所述MOS管Q的源极电压均为所述待测蓄电池200的负极电压,也即,所述第一运算放大器U1的反相输入端输入所述负极电压。当所述控制器30发送电压信号至所述第一运算放大器U1的同相输入端时,所述第一运算放大器U1对所述电压信号和所述负极电压进行处理,输出第一驱动信号,至所述MOS管Q的栅极,从而所述MOS管Q的栅极和源极之间形成电压差VGS。其中,所述第一驱动信号的大小与所述电压信号的大小有关。通过调节所述电压信号,进一步调节所述第一驱动信号,使得所述电压差VGS大于所述MOS管Q的导通电压时,所述MOS管Q导通,所述放电回路产生电流,即所述待测蓄电池200开始放电。
当所述MOS管Q导通时,放电电流流过所述负载12,所述负载12的第一端的电压升高,即所述负载12的第一端的电压相当于所述负载12的压降值,并将所述负载12的压降值作为压降信号发送至所述第一运算放大器U1的反相输入端。由于所述第一运算放大器U1的负反馈作用,所述第一运算放大器U1对所述电压信号和所述压降信号进行处理后,会输出一个稳定的第二驱动信号,至所述MOS管Q的栅极。在稳定的第二驱动信号的作用下,所述MOS管Q的导通程度一定,所述MOS管Q的通道内阻稳定,从而,可确保所述放电回路中的放电电流稳定。此外,所述第二驱动信号的大小与所述控制器30发出的电压信号的大小有关,从而,可通过调节所述控制器30发出的电压信号,即可得到对应大小的稳定的放电电流。
在一些实施例中,所述负载12包括电阻,所述电阻的第一端电连接所述MOS管Q的源极,所述电阻的第二端电连接所述第四连接端104。所述电阻的 阻值可根据实际情况而设定,例如所述电阻的阻值为10mΩ,从而,可使得所述待测蓄电池200的放电电流为大电流。
在一些实施例中,所述电流采样电路13包括第二运算放大器U2,所述第二运算放大器U2的同相输入端连接所述负载12的第一端,所述第二运算放大器U2的反相输入端连接所述负载12的第二端,所述第二运算放大器U2的输出端连接所述控制器。从而,所述负载12的第一端电压输入所述第二运算放大器U2的同相端,所述负载12的第二端电压输入所述第二运算放大器U2的反相端,经所述第二运算放大器U2处理后,得到所述负载12两端的电压,发送给所述控制器30,所述控制器30根据所述负载12的阻值以及所述负载12两端的电压可确定流过所述负载12的电流,即所述放电回路中的放电电流。
在一些实施例中,所述放电电路10还包括二级管D1,所述二级管D1的第一端连接所述第一连接端101,所述二级管D1的第二端连接所述MOS管Q的漏极,所述二级管D1用于防止所述放电电流倒灌回所述待测蓄电池200。当所述第一连接端101与所述待测蓄电池200的正极连接时,所述二级管D1的阳极连接所述第一连接端101,所述二级管D1的阴极连接所述MOS管Q的漏极,利用二级管D1的单向导电性,使得在所述放电电路中,放电电流始终从所述待测蓄电池200的正极经过所述MOS管Q、负载12,最后流回至所述待测蓄电池200的负极,防止电流倒灌,烧毁所述待测蓄电池200。
对于上述电压采样电路20,通过所述第二连接端102和所述第三连接端103电连接所述待测蓄电池200,用于检测所述待测蓄电池200两端的电压。当所述放电电路10处于断开状态时,所述电压采样电路20采集到的所述待测蓄电池200两端的电压为开路电压,当所述放电电路10处于连通状态时,所述待测蓄电池200放电,所述电压采样电路20采集到的所述待测蓄电池200两端的电压为放电电压。
在一些实施例中,所述电压采样电路20包括第三运算放大器U3,所述第三运算放大器U3的同相输入端连接所述第二连接端102,所述第三运算放大器U3的反相输入端连接所述第三连接端103,所述第三运算放大器U3的输出端连接所述控制器30。在本实施例中,所述第二连接端102连接所述待测蓄电池200的正极,所述第三连接端103连接所述待测蓄电池200的负极,则所述第三运算放大器U3采集到的电压为所述待测蓄电池200两端的电压。
对于上述控制器30,分别与所述放电电路10和所述电压采样电路20电连接,所述控制器30用于执行上述任一方法实施例中车辆蓄电池的检测方法。
如图11所示,所述控制器30包括单片机U4,单片机U4可采用51系列、Arduino系列、STM32系列等,单片机U4包括DAC端口以及ADC1端口、ADC2端口。其中,单片机U4的DAC端口与第一运算放大器U1的同相输入端电连接,单片机U4的ADC1端口与所述第二运算放大器U2的输出端电连接,单片机U4的ADC2端口与所述第三运算放大器U3的输出端电连接。
在其他实施例中,所述控制器30还可以为通用处理器、数字信号处理器 (DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合;还可以是任何传统处理器、控制器、微控制器或状态机;也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
综上,所述电池检测设备100的工作过程为:
(1)当所述放电电路10断开时,所述待测蓄电池200未放电,所述第三运算放放大器U3对所述待测蓄电池200两端的电压进行信号处理,获取所述待测蓄电池200的开路电压。
(2)单片机U4的DAC端口输出电压信号至所述第一运算放大器U1的同相输入端,所述MOS管Q的源极电压输入所述第一运算放大器U1的反相输入端,此时,所述MOS管Q的源极电压为所述待测蓄电池200的负极电压。所述第一运算放大器U1对同相输入端输入的电压信号和反相输入端输入的负极电压进行信号处理,得到第一驱动信号,所述第一驱动信号的大小与所述电压信号的大小有关。所述第一驱动信号作用于所述MOS管Q的栅极,从而所述MOS管Q的栅极和源极之间形成电压差VGS。通过调节所述电压信号,进一步调节所述第一驱动信号,使得所述电压差VGS大于或等于所述MOS管Q的导通电压时,所述MOS管Q导通,所述放电回路产生电流,即所述待测蓄电池200开始放电。
当所述MOS管Q导通时,放电电流流过所述负载12,所述负载12的第一端的电压升高,即所述负载12的第一端的电压相当于所述负载12的压降值,并将所述负载12的压降值作为压降信号发送至所述第一运算放大器U1的反相输入端。由于所述第一运算放大器U1的负反馈作用,所述第一运算放大器U1对所述电压信号和所述压降信号进行处理后,会输出一个稳定的第二驱动信号,至所述MOS管Q的栅极。在稳定的第二驱动信号的作用下,所述待测蓄电池200以稳定的放电电流进行放电,其中,所述放电电流的大小与所述第二驱动信号的大小有关,进而,所述放电电流的大小与所述控制器30输入的电压信号有关。从而,可通过调节所述电压信号,使得所述待测蓄电池200按预设放电电流进行放电预设时长。
当所述待测蓄电池200以所述预设放电电流进行放电时,所述待测蓄电池200产生放电电压。所述第三运算放放大器U3对所述放电电压进行信号处理,得到放电电压,并将所述放电电压发送至单片机U4的ADC2端口。
当放电时间达到所述预设时长后,停止输出所述电压信号或调整所述电压信号,使得所述MOS管Q的栅极和源极之间的电压差VGS小于所述MOS管Q的导通电压,所述MOS管Q截止,切断所述待测蓄电池200的放电回路,所述待测蓄电池200停止放电。
(3)所述单片机U4计算所述待测蓄电池200的压降值为所述开路电压与所述放电电压的差值。
(4)所述单片机U4根据所述压降值和所述预设放电条件,确定所述待测蓄电池的CCA参数,根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池200的健康状态。
所述电池检测设备还包括存储器,或,所述控制器中集成有存储器,存储器作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的车辆蓄电池的检测方法对应的程序指令。控制器通过运行存储在存储器中的非易失性软件程序、指令,从而执行所述电池检测设备的各种功能应用以及数据处理,即实现所述方法实施例的车辆蓄电池的检测方法。
所述电池检测设备可执行本发明实施例所提供的方法,例如图2-图8中的检测方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种车辆蓄电池的检测方法,其特征在于,包括:
    获取待测蓄电池的开路电压与所述待测蓄电池的电池特征;
    获取所述待测蓄电池以预设放电条件进行放电的放电电压;
    根据所述开路电压与所述放电电压获得所述待测蓄电池的压降值;
    根据所述压降值和所述预设放电条件,确定所述待测蓄电池的CCA参数;
    根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态;
    其中,所述预设映射关系包括电池特征、开路电压与CCA参数阈值的对应关系,所述CCA参数阈值是将采样蓄电池按照所述预设放电条件得到的CCA参数确定的,所述采样蓄电池包括新蓄电池、坏格蓄电池、临界蓄电池,所述临界蓄电池为电池容量为80%额定容量的蓄电池,所述坏格蓄电池为至少有一单元格损坏的蓄电池。
  2. 根据权利要求1所述的方法,其特征在于,所述电池特征包括电池类型和额定电池容量中的至少一种,以及额定电压。
  3. 根据权利要求1所述的方法,其特征在于,所述预设放电条件包括按照预设放电电流对所述待测蓄电池放电预设时长。
  4. 根据权利要求3所述的方法,其特征在于,所述获取所述待测蓄电池以预设放电条件进行放电的放电电压,包括:
    按照预设第一采样率采集所述待测蓄电池放电的多个第一电压;
    确定所述放电电压为所述多个第一电压的平均值。
  5. 根据权利要求3所述的方法,其特征在于,获取所述待测蓄电池的开路电压,包括:
    按照预设第二采样率采集所述待测蓄电池未放电的多个第二电压;
    确定所述开路电压为所述多个第二电压的平均值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述预设放电条件包括至少两次按照预设放电电流对所述待测蓄电池放电预设时长;
    所述计算所述待测蓄电池的压降值为所述开路电压与所述放电电压的差值,包括:
    根据至少两个所述开路电压和至少两个所述放电电压获得至少两个第一压降值;
    确定所述压降值为所述至少两个第一压降值的平均值。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述电池特征、所述开路电压、所述CCA参数以及预设映射关系,确定所述待测蓄电池的健康状态,包括:
    确定所述预设映射关系中与所述电池特征、所述开路电压对应的CCA参数阈值;
    根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态,包括:
    若所述待测蓄电池的开路电压落入所述坏格电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述坏格蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏格蓄电池;
    若所述待测蓄电池的开路电压落入所述新蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述新蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为好蓄电池;
    若所述待测蓄电池的开路电压落入所述临界蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否小于所述临界蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为坏蓄电池;
    否则,确定所述待测蓄电池为不确定蓄电池。
  9. 根据权利要求8所述的方法,其特征在于,所述采样蓄电池还包括电量不足蓄电池,所述电量不足蓄电池为电量低于预设电量阈值的蓄电池;
    所述根据所述待测蓄电池的开路电压、所述待测蓄电池的CCA参数以及所述CCA参数阈值,确定所述待测蓄电池的健康状态,还包括:
    若所述待测蓄电池的开路电压落入所述电量不足蓄电池对应的开路电压区间内,确定所述待测蓄电池的CCA参数是否大于或等于所述电量不足蓄电池对应的所述CCA参数阈值,若为是,则确定所述待测蓄电池为电量不足蓄电池。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    提示对所述不确定蓄电池进行充电后重新确定健康状态。
  11. 一种电池检测设备,其特征在于,包括:
    第一连接端、第二连接端、第三连接端和第四连接端,其中,所述第一连接端、所述第二连接端、所述第三连接端和所述第四连接端分别用于连接待测蓄电池;
    放电电路,通过所述第一连接端和所述第四连接端电连接所述待测蓄电池,用于触发所述待测蓄电池以预设放电条件进行放电;
    电压采样电路,通过所述第二连接端和所述第三连接端电连接所述待测蓄电池,用于检测所述待测蓄电池两端的电压;
    控制器,分别与所述放电电路和所述电压采样电路电连接,所述控制器可执行权利要求1-10任一项所述的方法。
  12. 根据权利要求11所述的电池检测设备,其特征在于,所述放电电路包括开关电路、负载和电流采样电路:
    所述开关电路的第一端连接所述第一连接端,所述开关电路的第二端连接所述控制器,所述开关电路的第三端通过所述负载连接所述第四连接端;
    所述电流采样电路的第一端连接所述控制器,所述电流采样电路的第二端连接所述负载,所述电流采样电路用于检测所述待测蓄电池的放电电流;
    所述控制器具体用于:
    根据所述电流采样电路检测的放电电流大小调整所述开关电路,以使所述待测蓄电池以所述预设放电条件进行放电。
  13. 根据权利要求12所述的电池检测设备,其特征在于,所述开关电路包括MOS管和第一运算放大器;
    所述第一运算放大器的同相输入端连接所述控制器,所述第一运算放大器的反相输入端连接所述MOS管的源极,所述第一运算放大器的输出端连接所述MOS管的栅极,所述MOS管的源极连接所述负载的第一端,所述MOS管的漏极连接所述第一连接端。
  14. 根据权利要求13所述的电池检测设备,其特征在于,所述放电电路还包括二极管,所述二级管的第一端连接所述第一连接端,所述二级管的第二端连接所述MOS管的漏极。
  15. 根据权利要求12-14任一项所述的电池检测设备,其特征在于,所述电流采样电路包括第二运算放大器,所述第二运算放大器的同相输入端连接所述负载的第一端,所述第二运算放大器的反相输入端连接所述负载的第二端,所述第二运算放大器的输出端连接所述控制器。
  16. 根据权利要求11-14任一项所述的电池检测设备,其特征在于,所述电压采样电路包括:
    第三运算放大器,所述第三运算放大器的同相输入端连接所述第二连接端,所述第三运算放大器的反相输入端连接所述第三连接端,所述第三运算放大器的输出端连接所述控制器。
PCT/CN2021/104102 2020-07-07 2021-07-01 一种车辆蓄电池的检测方法及电池检测设备 WO2022007712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010647737.8 2020-07-07
CN202010647737.8A CN111751749A (zh) 2020-07-07 2020-07-07 一种车辆蓄电池的检测方法及电池检测设备

Publications (1)

Publication Number Publication Date
WO2022007712A1 true WO2022007712A1 (zh) 2022-01-13

Family

ID=72679959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104102 WO2022007712A1 (zh) 2020-07-07 2021-07-01 一种车辆蓄电池的检测方法及电池检测设备

Country Status (2)

Country Link
CN (1) CN111751749A (zh)
WO (1) WO2022007712A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751749A (zh) * 2020-07-07 2020-10-09 深圳市道通科技股份有限公司 一种车辆蓄电池的检测方法及电池检测设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051947A1 (en) * 2000-01-12 2001-07-19 Honeywell International Inc. System and method for determining battery state-of-health
CN102156265A (zh) * 2011-03-16 2011-08-17 深圳市派司德科技有限公司 一种电池健康状态测试装置及其方法
CN102193068A (zh) * 2010-03-16 2011-09-21 李尔公司 用于确定电池种类的方法和系统
CN202041630U (zh) * 2011-05-23 2011-11-16 成都蓝格尔科技有限公司 汽车电池电导测试系统
CN102944844A (zh) * 2012-11-05 2013-02-27 颜朴苗 一种车用铅酸蓄电池故障诊断、应急点火装置及方法
CN103344921A (zh) * 2013-07-08 2013-10-09 华南师范大学 锂离子动力电池健康状态评估系统及方法
CN108535662A (zh) * 2018-05-22 2018-09-14 华霆(合肥)动力技术有限公司 电池健康状态检测方法及电池管理系统
CN111751749A (zh) * 2020-07-07 2020-10-09 深圳市道通科技股份有限公司 一种车辆蓄电池的检测方法及电池检测设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051947A1 (en) * 2000-01-12 2001-07-19 Honeywell International Inc. System and method for determining battery state-of-health
CN102193068A (zh) * 2010-03-16 2011-09-21 李尔公司 用于确定电池种类的方法和系统
CN102156265A (zh) * 2011-03-16 2011-08-17 深圳市派司德科技有限公司 一种电池健康状态测试装置及其方法
CN202041630U (zh) * 2011-05-23 2011-11-16 成都蓝格尔科技有限公司 汽车电池电导测试系统
CN102944844A (zh) * 2012-11-05 2013-02-27 颜朴苗 一种车用铅酸蓄电池故障诊断、应急点火装置及方法
CN103344921A (zh) * 2013-07-08 2013-10-09 华南师范大学 锂离子动力电池健康状态评估系统及方法
CN108535662A (zh) * 2018-05-22 2018-09-14 华霆(合肥)动力技术有限公司 电池健康状态检测方法及电池管理系统
CN111751749A (zh) * 2020-07-07 2020-10-09 深圳市道通科技股份有限公司 一种车辆蓄电池的检测方法及电池检测设备

Also Published As

Publication number Publication date
CN111751749A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN108663620B (zh) 一种动力电池组荷电状态估算方法及系统
US11283280B2 (en) Battery management apparatus, battery management method, battery pack and electric vehicle
US7663344B2 (en) Method for managing a pool of rechargeable batteries according to priority criteria determined based on a state of health of batteries
US7688075B2 (en) Lithium sulfur rechargeable battery fuel gauge systems and methods
US8138721B2 (en) Battery pack and charging method for the same
US9121909B2 (en) Method for estimating state-of-charge of lithium ion battery
US6504344B1 (en) Monitoring battery packs
US7598706B2 (en) Cell balancing battery pack and method of balancing the cells of a battery
KR101463394B1 (ko) 배터리 관리 시스템, 및 배터리 관리 시스템을 이용하는 배터리 충전상태의 추정방법
KR101825617B1 (ko) 배터리 사용 영역 가변 장치 및 방법
Wahyuddin et al. State of charge (SoC) analysis and modeling battery discharging parameters
EP3913726B1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
WO2022007712A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
WO2022012487A1 (zh) 一种蓄电池检测方法、设备及存储介质
KR101822594B1 (ko) 배터리 사용 영역 가변 장치 및 방법
WO2022012515A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
US11296516B2 (en) Battery management system
JP2004271342A (ja) 充放電制御システム
WO2022007709A1 (zh) 一种车辆蓄电池的检测方法及电池检测设备
WO2022012500A1 (zh) 一种检测车辆蓄电池坏格类型的方法及电池检测设备
JP2010008133A (ja) 携帯型充電器およびそれに用いる二次電池の劣化診断方法
WO2022012516A1 (zh) 一种检测蓄电池表面电荷的方法及电池检测设备
KR20220167847A (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
EP4204830A1 (en) A method for estimating state of charge and state of health of a battery and a system thereof
CN111403830A (zh) 锂电池安全监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838570

Country of ref document: EP

Kind code of ref document: A1