WO2021259145A1 - I型三电平变换器和不间断电源模块 - Google Patents

I型三电平变换器和不间断电源模块 Download PDF

Info

Publication number
WO2021259145A1
WO2021259145A1 PCT/CN2021/100768 CN2021100768W WO2021259145A1 WO 2021259145 A1 WO2021259145 A1 WO 2021259145A1 CN 2021100768 W CN2021100768 W CN 2021100768W WO 2021259145 A1 WO2021259145 A1 WO 2021259145A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
type
level converter
terminal
igbt
Prior art date
Application number
PCT/CN2021/100768
Other languages
English (en)
French (fr)
Inventor
曹磊
龙秀山
郑大为
Original Assignee
山特电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山特电子(深圳)有限公司 filed Critical 山特电子(深圳)有限公司
Publication of WO2021259145A1 publication Critical patent/WO2021259145A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the utility model relates to the field of power electronics, in particular to an I-type three-level converter and an uninterruptible power supply module.
  • I-type three-level converters With the development of power electronics technology, the use of I-type three-level converters has become more and more widespread, especially in high-voltage and large-capacity applications.
  • the I-type three-level converter has the following advantages:
  • the switching action can be performed at a lower frequency, with low loss and high efficiency.
  • the switch tube in the prior art I-type three-level converter when controlled to be turned on and off, the switch tube has conduction loss, and the diode in anti-parallel with the switch tube will produce a reverse recovery peak.
  • the current increases the reverse recovery loss of the diode itself and the loss of the anti-parallel switch tube.
  • an I-type three-level converter including:
  • a first switch tube with an anti-parallel first diode, a second switch tube with an anti-parallel second diode, and a third diode with anti-parallel connection are sequentially connected between the positive terminal and the negative terminal.
  • a fifth diode which is connected between the node and the neutral point formed by the connection of the first diode and the second diode;
  • An inductor one end of which is connected to the node formed by the connection of the second diode and the third diode, and the other end of which is used as the AC terminal of the I-type three-level converter;
  • the first to sixth diodes are silicon carbide diodes.
  • the first diode and the fourth diode are silicon carbide diodes; and/or the fifth diode and the sixth diode are silicon carbide diodes.
  • the first, second, third and fourth switch tubes are insulated gate bipolar transistors or metal oxide half field effect transistors.
  • the I-type three-level converter further includes a first bus capacitor and a second bus capacitor connected in series between the positive terminal and the negative terminal, and the first bus capacitor and the second bus capacitor are connected to form a The node is connected to the neutral point.
  • the I-type three-level converter further includes a filter capacitor connected between the AC terminal and the neutral point.
  • the utility model also provides an uninterruptible power supply module.
  • the uninterruptible power supply module includes two aforementioned I-type three-level converters.
  • the positive terminal and negative terminal of the first I-type three-level converter are respectively connected to the first I-type three-level converter.
  • the positive terminal and the negative terminal of the two I-type three-level converter, the AC terminal of the first I-type three-level converter is used as the AC input terminal, and the AC terminal of the second I-type three-level converter is used as the AC The output terminal.
  • the first diode and the fourth diode of the first I-type three-level converter are silicon carbide diodes, and/or the fifth diode and the sixth diode are silicon carbide diodes.
  • the fifth diode and the sixth diode of the second I-type three-level converter are silicon carbide diodes, and/or the first diode and the fourth diode are silicon carbide diodes.
  • the first, second, third and fourth switch tubes of the first I-type three-level converter are insulated gate bipolar transistors or metal oxide half field effect transistors; and/or
  • the first, second, third and fourth switch tubes of the second I-type three-level converter are insulated gate bipolar transistors or metal oxide half field effect transistors.
  • the uninterruptible power supply module further includes a first bus capacitor and a second bus capacitor connected in series between the positive terminal and the negative terminal of the first I-type three-level converter, the first bus capacitor and The node formed by connecting the second bus capacitors is connected to the neutral point.
  • the uninterruptible power supply module includes a first filter capacitor connected between the AC input terminal and the neutral point, and a second filter capacitor connected between the AC output terminal and the neutral point.
  • the I-type three-level converter of the utility model reduces its loss in the working process.
  • the silicon carbide diode has a higher switching speed and a very small reverse recovery current, which can improve the switching speed of the switching tube, and Reduce the volume of the I-type three-level converter.
  • Fig. 1 is a circuit diagram of an I-type three-level converter according to a preferred embodiment of the present invention.
  • Fig. 2 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current provided to the four switching tubes in the I-type three-level converter shown in Fig. 1.
  • FIG. 3 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the first working mode of the I-type three-level converter shown in FIG. 1.
  • Fig. 4 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a first working mode.
  • FIG. 5 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the second working mode of the I-type three-level converter shown in FIG. 1.
  • Fig. 6 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a second working mode.
  • FIG. 7 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the third working mode of the I-type three-level converter shown in FIG. 1.
  • Fig. 8 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a third working mode.
  • FIG. 9 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the fourth working mode of the I-type three-level converter shown in FIG. 1.
  • Fig. 10 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a fourth working mode.
  • Fig. 11 is a circuit diagram of an uninterruptible power supply module according to a preferred embodiment of the present invention.
  • Fig. 1 is a circuit diagram of an I-type three-level converter according to a preferred embodiment of the present invention.
  • the I-type three-level converter 11 includes: a first bus capacitor Cp and a second bus capacitor Cn connected in series between the positive terminal DC+ and the negative terminal DC-, and the positive terminal DC+ and the negative terminal DC -Insulated gate bipolar transistor (IGBT) T1 with anti-parallel first diode D1 connected in sequence between T1, IGBT T2 with anti-parallel second diode D2, and anti-parallel third diode
  • IGBT T3 of the tube D3 and the IGBT T4 with the anti-parallel fourth diode D4; the fifth diode D5, which is connected to the node sum formed by the connection of the first diode D1 and the second diode D2 Between the neutral point N; the sixth diode D6, which is connected between the node formed by the third diode D3 and the fourth diode D4 and the neutral
  • Fig. 2 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current provided to the four switching tubes in the I-type three-level converter shown in Fig. 1. Since the I-type three-level converter 11 includes an inductor L, a first bus capacitor Cp, and a second bus capacitor Cn, the voltage Vac of the AC power source AC shown in FIG. 2 and the inductor current IL in the inductor L have a certain phase difference. .
  • the inductor current IL in the inductor L flows from one end of the inductor L (ie, the AC terminal A) to the other end, the inductor current IL is positive, and the inductor current IL in the opposite direction is negative.
  • IGBT T1 and IGBT T3 are provided with high frequency (for example, kilohertz) and complementary pulse width modulation signals PWM1 and PWM3, respectively, and IGBT T2 is provided with a high level pulse width modulation signal PWM2 to make it Turn on, and provide low-level pulse width modulation signal PWM4 to IGBT T4 to turn it off.
  • high frequency for example, kilohertz
  • PWM1 and PWM3 complementary pulse width modulation signals
  • the four working modes and their losses of the I-type three-level converter 11 in one power frequency cycle are respectively introduced below.
  • FIG. 3 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the first working mode of the I-type three-level converter shown in FIG. 1.
  • the AC voltage Vac is positive
  • the inductor current IL is positive
  • the I-type three-level converter 11 is in the first working mode.
  • IGBT T1 and IGBT T3 are provided with complementary pulse width modulation signals PWM1 and PWM3, so as to work in pulse width modulation mode (that is, turn on and off alternately at the switching frequency of the pulse width modulation signal), IGBT T2
  • the pulse width modulation signal PWM2 is provided with a high level so that it is always turned on
  • the IGBT T4 is provided with a pulse width modulation signal PWM4 of a low level so that it is always turned off.
  • Fig. 4 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a first working mode.
  • IGBT T2 and IGBT T3 are turned on, and IGBT T1 and IGBT T4 are turned off, the current flows from AC terminal A ⁇ inductance L ⁇ IGBT T3 ⁇ sixth diode D6 ⁇ neutral point N. See the dotted arrow in Figure 4 for the current path.
  • the switching frequency of the pulse width modulation signals PWM1 and PWM3 is much greater than the power frequency (for example, 50 or 60 Hz)
  • the voltage of the inductor L can be considered constant during the switching period, and the electrical energy of the AC power supply AC is stored in the inductor L.
  • the I-type three-level converter in the prior art includes four identical insulated gate bipolar transistors and six identical silicon diodes. Since insulated gate bipolar transistors are not ideal switching tubes, they are saturated when they are turned on. Voltage produces conduction loss; during switching, current and voltage exist at the same time, so switching loss occurs. Diodes connected in reverse parallel with insulated gate bipolar transistors also have two losses, namely, conduction loss due to forward conduction voltage drop during forward conduction; and reverse recovery during reverse recovery loss.
  • Table 1 The loss comparison between the I-type three-level converter 11 of the present utility model and the prior art I-type three-level converter in the first working mode
  • FIG. 5 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the second working mode of the I-type three-level converter shown in FIG. 1.
  • the AC voltage Vac is negative, and the inductor current IL is positive, and the I-type three-level converter 11 is in the second working mode.
  • IGBT T2 and IGBT T4 are provided with complementary pulse width modulation signals PWM2 and PWM4, so as to work in pulse width modulation mode (that is, turn on and off alternately at the switching frequency of the pulse width modulation signal), IGBT T1
  • the low-level pulse width modulation signal is provided so that it is always turned off, and the IGBT T3 is provided with a high-level pulse width modulation signal so that it is always turned on.
  • Fig. 6 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a second working mode.
  • IGBT T3 and IGBT T4 are turned on, and IGBT T1 and IGBT T2 are turned off, the current flow at this time is AC terminal A ⁇ inductance L ⁇ IGBT T3 ⁇ IGBT T4 ⁇ negative terminal DC- ⁇ neutral point N, the current path is shown by the dotted arrow in FIG. 6.
  • the I-type three-level converter 11 works in the second working mode, the AC voltage Vac ⁇ 0, the inductor current IL>0, the I-type three-level converter 11 is operated as an inverter, and the I-type three-level The inductance L and the IGBT T3, the sixth diode D6, the IGBT T4, and the second bus capacitance Cn connected in series in the converter 11 are equivalent to a Buck circuit. In this way, the direct current on the second bus capacitor Cn is converted into a step-down alternating current and output to the alternating current power AC.
  • the I-type three-level converter 11 of the present invention and the prior art I-type three-level converter are in the second working mode
  • the loss comparison is shown in Table 2 below.
  • FIG. 7 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the third working mode of the I-type three-level converter shown in FIG. 1.
  • the AC voltage Vac is negative, and the inductor current IL is negative, and the I-type three-level converter 11 is in the third working mode.
  • IGBT T2 and IGBT T4 are provided with complementary pulse width modulation signals PWM2 and PWM4, so as to work in a pulse width modulation mode (that is, turn on and off alternately at the switching frequency of the pulse width modulation signal), IGBT T1
  • the pulse width modulation signal PWM1 is provided with a low level so that it is always turned off
  • the IGBT T3 is provided with a pulse width modulation signal PWM3 of a high level so that it is always turned on.
  • Fig. 8 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a third working mode.
  • IGBT T2 and IGBT T3 are turned on, and IGBT T1 and IGBT T4 are turned off, the current flows from neutral point N ⁇ fifth diode D5 ⁇ IGBT T2 ⁇ inductance L ⁇ AC terminal A. See the dotted arrow in Figure 8 for the current path.
  • the switching frequency of the pulse width modulation signals PWM2 and PWM4 is much greater than the power frequency (for example, 50 or 60 Hz), the voltage of the inductor L can be considered constant during the switching period, and the electrical energy of the AC power supply AC is stored in the inductor L.
  • the I-type three-level converter 11 works in the third working mode, the AC voltage Vac ⁇ 0, the inductor current IL ⁇ 0, the I-type three-level converter 11 is operated as a pulse width modulation rectifier, and the I-type three-level converter
  • the fifth diode D5 and IGBT T2 connected in series in the level converter 11, the third diode D3 and the fourth diode D4 connected in series, the inductor L, and the second bus capacitance Cn are equivalent to a Boost circuit. In this way, the alternating current of the alternating current power supply AC in the negative half cycle is converted into a boosted direct current and the second bus capacitor Cn is charged.
  • the I-type three-level converter 11 of the present invention and the prior art I-type three-level converter are in the third working mode
  • the loss comparison is shown in Table 3 below.
  • FIG. 9 is a waveform diagram of the pulse width modulation signal, the voltage of the AC power supply, and the inductor current received in the fourth working mode of the I-type three-level converter shown in FIG. 1.
  • the AC voltage Vac is positive and the inductor current IL is negative, and the I-type three-level converter 11 is in the fourth working mode.
  • IGBT T1 and IGBT T3 are provided with complementary pulse width modulation signals PWM1 and PWM3, so as to work in pulse width modulation mode (that is, turn on and off alternately at the switching frequency of the pulse width modulation signal), IGBT T2 It is provided with a high-level pulse width modulation signal so as to always remain on, and the IGBT T4 is provided with a low-level pulse width modulation signal so as to always remain off.
  • Fig. 10 is an equivalent circuit diagram of the I-type three-level converter shown in Fig. 1 in a fourth working mode.
  • IGBT T1 and IGBT T2 are turned on, and IGBT T3 and IGBT T4 are turned off, the current flow at this time is the positive terminal DC+ ⁇ IGBT T1 ⁇ IGBT T2 ⁇ inductance L ⁇ AC terminal A ⁇ neutral point N , The current path is shown by the dotted arrow in Figure 10.
  • the I-type three-level converter 11 works in the fourth working mode, the AC voltage Vac>0, the inductor current IL ⁇ 0, the I-type three-level converter 11 is operated as an inverter, and the I-type three-level The IGBT T1, the fifth diode D5, the series-connected IGBT T2, the inductor L, and the first bus capacitance Cp in the converter 11 are equivalent to a Buck circuit. Thereby, the direct current on the first bus capacitor Cp is converted into a step-down alternating current and output to the alternating current power AC.
  • the I-type three-level converter 11 of the present invention and the prior art I-type three-level converter are in the fourth working mode
  • the loss comparison is shown in Table 4 below.
  • Table 5 The sum of losses of the I-type three-level converter 11 and the prior art I-type three-level converter in the first to fourth working modes
  • the first diode and the fourth diode in the type I three-level converter 11 are silicon carbide diodes, and the second diode, the third diode, and the first diode are silicon carbide diodes.
  • the fifth diode and the sixth diode are silicon diodes.
  • the fifth diode and the sixth diode in the I-type three-level converter 11 are silicon carbide diodes, and the first, second, third, and fourth diodes are
  • the pole tube is a silicon diode.
  • the first, second, third, fourth, fifth and sixth diodes in the I-type three-level converter 11 are all silicon carbide diodes.
  • switching tubes such as metal oxide semiconductor (metal oxide semiconductor for short) field effect transistors are used to replace the first, second, third and fourth type I three-level converter 11 Insulated gate bipolar transistor.
  • Fig. 11 is a circuit diagram of an uninterruptible power supply module according to a preferred embodiment of the present invention.
  • the uninterruptible power supply module 2 includes an I-type three-level converter 21 and an I-type three-level converter 22, wherein the positive terminal and the negative terminal of the I-type three-level converter 21 are connected to the I-type three-level converter, respectively.
  • the positive terminal and the negative terminal of the three-level converter 22, the I-type three-level converter 21 and the I-type three-level converter 22 share the first bus capacitor Cp14 and the second bus capacitor Cn14, the I-type three-level converter
  • the AC terminal of 21 is used as an AC input terminal for connecting to an AC power source
  • the AC terminal of the I-type three-level converter 22 is used as an AC output terminal for providing required AC power to a load (not shown in FIG. 11).
  • the first diode D141 and the fourth diode D144 in the I-type three-level converter 21 are silicon carbide diodes
  • the second diode D142, the third diode D143, and the fifth diode D145 and the sixth diode D146 are silicon diodes
  • the fifth diode D145' and the sixth diode D146' in the I-type three-level converter 22 are silicon carbide diodes
  • the first diode D141' , The second diode D142', the third diode D143' and the fourth diode D144' are silicon diodes.
  • the I-type three-level converter 21 is controlled as a pulse width modulation rectifier, and is in the first working mode and the third working mode most of the time within a power frequency cycle, thereby converting the AC power of the AC power supply into DC power and storing it in The first bus capacitance Cp14 and the second bus capacitance Cn14.
  • the I-type three-level converter 22 is controlled as an inverter, and is in the second working mode and the fourth working mode most of the time in a power frequency cycle, so as to combine the first bus capacitor Cp14 and the second bus capacitor Cn14
  • the direct current is converted to alternating current and output.
  • the first diode D141 and the fourth diode D144 in the I-type three-level converter 21 are silicon carbide diodes
  • the fifth diode D145' and the sixth diode in the I-type three-level converter 22 are silicon carbide diodes.
  • the pole tube D146' is a silicon carbide diode.
  • the I-type three-level converter 21 and the I-type three-level converter 22 do not share the bus capacitance, that is, the first bus capacitance of the I-type three-level converter 21 and I
  • the first bus capacitor of the I-type three-level converter 22 is connected in parallel between the positive terminal and the neutral point, and the second bus capacitor of the I-type three-level converter 21 and the second bus capacitor of the I-type three-level converter 22 are connected in parallel.
  • the bus capacitor is connected in parallel between the neutral point and the negative terminal.
  • the first diode, the fourth diode, the fifth diode and the sixth diode of the I-type three-level converter 21 or 22 are silicon carbide diodes, And the second diode and the third diode are silicon diodes.
  • the first to sixth diodes in the I-type three-level converter 21 or 22 are all silicon carbide diodes.
  • switching tubes such as metal oxide half field effect transistors are used to replace the first, second, third and fourth insulated gate bipolar transistors in the I-type three-level converter 21 or 22 .
  • present utility model has been described through preferred embodiments, the present utility model is not limited to the embodiments described here, and includes various changes and changes made without departing from the scope of the present utility model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本实用新型提供了一种I型三电平变换器和不间断电源模块,所述I型三电平变换器包括:在正极端子和负极端子之间依次连接的具有反向并联第一二极管的第一开关管、具有反向并联第二二极管的第二开关管、具有反向并联第三二极管的第三开关管和具有反向并联第四二极管的第四开关管;第五二极管,其连接在所述第一二极管和第二二极管相连接形成的节点和中性点之间;第六二极管,其连接在所述第三二极管和第四二极管相连接形成的节点和中性点之间;以及电感,其一端连接至所述第二二极管和第三二极管相连接形成的节点,其另一端作为交流端子;其中所述第一至第六二极管中的至少一部分是碳化硅二极管。本实用新型的I型三电平变换器降低了损耗。

Description

I型三电平变换器和不间断电源模块 技术领域
本实用新型涉及电力电子领域,具体涉及一种I型三电平变换器和不间断电源模块。
背景技术
随着电力电子技术的发展,I型三电平变换器的使用越来越广泛,特别在高压大容量的应用场合。
与两电平变换器相比较,I型三电平变换器具有如下优点:
(1)每个功率器件承受的关断电压仅为正、负直流母线之间电压的一半,适合应用于高压场合;
(2)可产生3种输出电压,输出波形更接近正弦波,谐波含量小,提高了输出电压波形质量;
(3)开关器件在开关动作中的电压随时间的变化率(dv/dt)只有两电平变换器的1/2,电磁干扰(EMI)大大减轻;
(4)在输出相同功率的情况下,可以较低频率进行开关动作,损耗小,效率高。
但是,现有技术的I型三电平变换器中的开关管被控制为导通和截止的过程中,开关管具有导通损耗,且与开关管反向并联的二极管会产生反向恢复峰值电流,从而增加了二极管自身的反向恢复损耗和反向并联的开关管的损耗。
因此降低I型三电平变换器的损耗是目前亟待解决的技术问题。
实用新型内容
针对现有技术存在的上述技术问题,本实用新型提供了一种I型三电平变换器,包括:
在正极端子和负极端子之间依次连接的具有反向并联第一二极管的第一开关管、具有反向并联第二二极管的第二开关管、具有反向并联第三二极管的第三开关管和具有反向并联第四二极管的第四开关管;
第五二极管,其连接在所述第一二极管和第二二极管相连接形成的节点和中性点之间;
第六二极管,其连接在所述第三二极管和第四二极管相连接形成的节点和中性点之间;以及
电感,其一端连接至所述第二二极管和第三二极管相连接形成的节点,其另一端作为所述I型三电平变换器的交流端子;
其中所述第一至第六二极管中的至少一部分是碳化硅二极管。
优选的,所述第一二极管和第四二极管为碳化硅二极管;和/或所述第五二极管和第六二极管为碳化硅二极管。
优选的,所述第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管。
优选的,所述I型三电平变换器还包括在所述正极端子和负极端子之间串联的第一母线电容和第二母线电容,所述第一母线电容和第二母线电容相连接形成的节点连接至所述中性点。
优选的,所述I型三电平变换器还包括连接在所述交流端子和中性点之间的滤波电容。
本实用新型还提供一种不间断电源模块,所述不间断电源模块包括两个前述的I型三电平变换器,第一I型三电平变换器的正极端子和负极端子分别连接至第二I型三电平变换器的正极端子和负极端子,所述第一I型三电平变换器的交流端子作为交流输入端,所述第二I型三电平变换器的交流端子作为交流输出端。
优选的,所述第一I型三电平变换器的第一二极管和第四二极管为碳化硅二极管,和/或第五二极管和第六二极管为碳化硅二极管。
优选的,所述第二I型三电平变换器的第五二极管和第六二极管为碳化硅二极管,和/或第一二极管和第四二极管为碳化硅二极管。
优选的,所述第一I型三电平变换器的第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管;和/或
所述第二I型三电平变换器的第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管。
优选的,所述不间断电源模块还包括在所述第一I型三电平变换器的正极端子和负极端子之间串联的第一母线电容和第二母线电容,所述第一母线电容和第二母线电容相连接形成的节点连接至所述中性点。
优选的,所述不间断电源模块包括连接在所述交流输入端和中性点之间的第一滤波电容,以及连接在所述交流输出端和中性点之间的第二滤波 电容。
本实用新型的I型三电平变换器减少了其在工作过程中的损耗,其中的碳化硅二极管具有更高的开关速度和极小的反向恢复电流,能够提高开关管的开关速度,且减小I型三电平变换器的体积。
附图说明
以下参照附图对本实用新型实施例作进一步说明,其中:
图1是根据本实用新型较佳实施例的I型三电平变换器的电路图。
图2是给图1所示的I型三电平变换器中的四个开关管提供的脉宽调制信号、交流电源的电压和电感电流的波形图。
图3是图1所示的I型三电平变换器在第一工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
图4是图1所示的I型三电平变换器在第一工作模式下的等效电路图。
图5是图1所示的I型三电平变换器在第二工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
图6是图1所示的I型三电平变换器在第二工作模式下的等效电路图。
图7是图1所示的I型三电平变换器在第三工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
图8是图1所示的I型三电平变换器在第三工作模式下的等效电路图。
图9是图1所示的I型三电平变换器在第四工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
图10是图1所示的I型三电平变换器在第四工作模式下的等效电路图。
图11是根据本实用新型较佳实施例的不间断电源模块的电路图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本实用新型进一步详细说明。
图1是根据本实用新型较佳实施例的I型三电平变换器的电路图。如图1所示,I型三电平变换器11包括:在正极端子DC+和负极端子DC-之间串联连接的第一母线电容Cp和第二母线电容Cn,在正极端子DC+和负极端子DC-之间依次连接的具有反向并联第一二极管D1的绝缘栅双极型晶体管(IGBT)T1、具有反向并联第二二极管D2的IGBT T2、具有 反向并联第三二极管D3的IGBT T3和具有反向并联第四二极管D4的IGBT T4;第五二极管D5,其连接在第一二极管D1和第二二极管D2相连接形成的节点和中性点N之间;第六二极管D6,其连接在第三二极管D3和第四二极管D4相连接形成的节点和中性点N之间;电感L,其一端连接至第二二极管D2和第三二极管D3相连接形成的节点,另一端作为I型三电平变换器11的交流端子A,以及连接在交流端子A和中性点之间的滤波电容Cf;其中第一二极管D1、第四二极管D4、第五二极管D5和第六二极管D6为碳化硅二极管,第二二极管D2和第三二极管D3为硅二极管。
图2是给图1所示的I型三电平变换器中的四个开关管提供的脉宽调制信号、交流电源的电压和电感电流的波形图。由于I型三电平变换器11包括电感L、第一母线电容Cp和第二母线电容Cn,因此图2示出的交流电源AC的电压Vac和电感L中的电感电流IL具有一定的相位差。在此定义电感L中的电感电流IL的方向从电感L的一端(即交流端子A)流向其另一端时,电感电流IL为正,与之相反方向的电感电流IL为负。
在交流电压Vac的正半周内,给IGBT T1和IGBT T3分别提供高频(例如千赫兹)、互补的脉宽调制信号PWM1和PWM3,给IGBT T2提供高电平的脉宽调制信号PWM2使其导通,给IGBT T4提供低电平的脉宽调制信号PWM4使其截止。
在交流电压Vac的负半周内,给IGBT T2和IGBT T4分别提供高频(例如千赫兹)、互补的脉宽调制信号PWM2和PWM4,给IGBT T1提供低电平的脉宽调制信号PWM1使其截止,且给IGBT T3提供高电平的脉宽调制信号PWM3使其导通。
下面分别介绍I型三电平变换器11在一个工频周期内的四种工作模式及其损耗。
图3是图1所示的I型三电平变换器在第一工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
在时刻t1~t2时间段内,交流电压Vac为正,且电感电流IL为正,I型三电平变换器11处于第一工作模式。
如图3所示,IGBT T1和IGBT T3被提供互补的脉宽调制信号PWM1和PWM3,从而以脉宽调制方式工作(即以脉宽调制信号的开关频率交替地导通和截止),IGBT T2被提供高电平的脉宽调制信号PWM2从而一直 保持导通,且IGBT T4被提供低电平的脉宽调制信号PWM4从而一直保持截止。
图4是图1所示的I型三电平变换器在第一工作模式下的等效电路图。如图4所示,当IGBT T2和IGBT T3导通,且IGBT T1和IGBT T4截止时,电流流向为交流端子A→电感L→IGBT T3→第六二极管D6→中性点N,该电流路径参见图4的虚线箭头所示。在此过程中,由于脉宽调制信号PWM1和PWM3的开关频率远大于工频(例如50或60赫兹),在开关周期内可认为电感L的电压恒定,交流电源AC的电能储存至电感L。
当IGBT T1和IGBT T2导通,且IGBT T3和IGBT T4截止时,由于电感L中的电流不能突变,因此电感电流通过第一二极管D1和第二二极管D2续流。电流流向为交流端子A→电感L→第二二极管D2→第一二极管D1→正极端子DC+→中性点N,该电流路径参见图4的点划线箭头所示,电感L释放能量并对第一母线电容Cp进行充电。
当I型三电平变换器11工作在第一工作模式时,交流电压Vac>0,电感电流IL>0,I型三电平变换器11被操作为脉宽调制整流器,并且I型三电平变换器11中的电感L、串联的IGBT T3和第六二极管D6、串联的第二二极管D2和第一二极管D1、第一母线电容Cp等效为Boost电路。从而将交流电源AC的正半周的交流电转换为升压的直流电并对第一母线电容Cp进行充电。
现有技术中的I型三电平变换器包括四个相同的绝缘栅双极型晶体管和六个相同的硅二极管,由于绝缘栅双极型晶体管不是理想的开关管,在导通时由于饱和电压产生导通损耗;在开关时由于其同时存在电流和电压,因此产生开关损耗。与绝缘栅双极型晶体管反向并联的二极管也存在两方面的损耗,即在正向导通时由于正向导通压降产生的导通损耗;以及在反向恢复的过程中产生的反向恢复损耗。假定每一个绝缘栅双极型晶体管的总损耗P loss=开关损耗P sw+导通损耗P cond_T,硅二极管反向恢复电流使得绝缘栅双极型晶体管增加的损耗为P rec_T,硅二极管导通损耗和反向恢复损耗分别为P cond_D、P rec_D
本实用新型的I型三电平变换器11与现有技术的I型三电平变换器中的四个开关管和六个二极管在第一工作模式下的损耗对比参见下面的表一所示。
表一 本实用新型的I型三电平变换器11与现有技术的I型三电平变 换器在第一工作模式下的损耗对比
Figure PCTCN2021100768-appb-000001
从上面的表一可以看出,本实用新型的I型三电平变换器11在第一工作模式下的总损耗减少了P rec_T+P rec_D
图5是图1所示的I型三电平变换器在第二工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
在时刻t2~t3时间段内,交流电压Vac为负,且电感电流IL为正,I型三电平变换器11处于第二工作模式。
如图5所示,IGBT T2和IGBT T4被提供互补的脉宽调制信号PWM2和PWM4,从而以脉宽调制方式工作(即以脉宽调制信号的开关频率交替地导通和截止),IGBT T1被提供低电平的脉宽调制信号从而一直保持截止,且IGBT T3被提供高电平的脉宽调制信号从而一直保持导通。
图6是图1所示的I型三电平变换器在第二工作模式下的等效电路图。如图6所示,当IGBT T3和IGBT T4导通,且IGBT T1和IGBT T2截止时,此时电流流向为交流端子A→电感L→IGBT T3→IGBT T4→负极端子DC-→中性点N,该电流路径参见图6的虚线箭头所示。
当IGBT T2和IGBT T3导通,且IGBT T1和IGBT T4截止时,由于电感L中的电流不能突变,此时电感L中的电流通过第六二极管D6和IGBT T3续流,电流流向为交流端子A→电感L→IGBT T3→第六二极管D6→中性点 N,该电流路径参见图6的点划线箭头所示。
当I型三电平变换器11工作在第二工作模式时,交流电压Vac<0,电感电流IL>0,I型三电平变换器11被操作为逆变器,并且I型三电平变换器11中串联的电感L和IGBT T3、第六二极管D6、IGBT T4以及第二母线电容Cn等效为Buck电路。从而将第二母线电容Cn上的直流电转换成降压的交流电并输出至交流电源AC。
本实用新型的I型三电平变换器11与现有技术的I型三电平变换器(包括四个相同的绝缘栅双极型晶体管和六个相同的硅二极管)在第二工作模式下的损耗对比参见下面的表二所示。
表二 本实用新型的I型三电平变换器11与现有技术的I型三电平变换器在第二工作模式下的损耗对比
Figure PCTCN2021100768-appb-000002
从上面的表二可以看出,本实用新型的I型三电平变换器11在第二工作模式下的总损耗减少了P rec_T+P rec_D
图7是图1所示的I型三电平变换器在第三工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
在时刻t3~t4时间段内,交流电压Vac为负,且电感电流IL为负,I型三电平变换器11处于第三工作模式。
如图7所示,IGBT T2和IGBT T4被提供互补的脉宽调制信号PWM2和PWM4,从而以脉宽调制方式工作(即以脉宽调制信号的开关频率交替地导通和截止),IGBT T1被提供低电平的脉宽调制信号PWM1从而一直 保持截止,IGBT T3被提供高电平的脉宽调制信号PWM3从而一直保持导通。
图8是图1所示的I型三电平变换器在第三工作模式下的等效电路图。如图8所示,当IGBT T2和IGBT T3导通,且IGBT T1和IGBT T4截止时,电流流向为中性点N→第五二极管D5→IGBT T2→电感L→交流端子A,该电流路径参见图8的虚线箭头所示。在此过程中,由于脉宽调制信号PWM2和PWM4的开关频率远大于工频(例如50或60赫兹),在开关周期内可认为电感L的电压恒定,交流电源AC的电能储存至电感L。
当IGBT T3和IGBT T4导通,且IGBT T1和IGBT T2截止时,由于电感L中的电流不能突变,此时将通过第三二极管D3和第四二极管D4续流。电流流向为负极端子DC-→第四二极管D4→第三二极管D3→电感L→交流端子A→中性点N,该电流路径参见图8的点划线箭头所示,电感L释放能量并对第二母线电容Cn进行充电。
当I型三电平变换器11工作在第三工作模式时,交流电压Vac<0,电感电流IL<0,I型三电平变换器11被操作为脉宽调制整流器,并且I型三电平变换器11中串联的第五二极管D5和IGBT T2、串联的第三二极管D3和第四二极管D4、电感L和第二母线电容Cn等效为Boost电路。从而将交流电源AC在负半周的交流电转换为升压的直流电并对第二母线电容Cn进行充电。
本实用新型的I型三电平变换器11与现有技术的I型三电平变换器(包括四个相同的绝缘栅双极型晶体管和六个相同的硅二极管)在第三工作模式下的损耗对比参见下面的表三所示。
表三 本实用新型的I型三电平变换器11与现有技术的I型三电平变换器在第三工作模式下的损耗对比
Figure PCTCN2021100768-appb-000003
Figure PCTCN2021100768-appb-000004
从上面的表三可以看出,本实用新型的I型三电平变换器11在第三工作模式下的总损耗减少了P rec_T+P rec_D
图9是图1所示的I型三电平变换器在第四工作模式下接收的脉宽调制信号、交流电源的电压和电感电流的波形图。
在下个工频周期内的时刻t0~t1时间段内,交流电压Vac为正,且电感电流IL为负,I型三电平变换器11处于第四工作模式。
如图9所示,IGBT T1和IGBT T3被提供互补的脉宽调制信号PWM1和PWM3,从而以脉宽调制方式工作(即以脉宽调制信号的开关频率交替地导通和截止),IGBT T2被提供高电平的脉宽调制信号从而一直保持导通,且IGBT T4被提供低电平的脉宽调制信号从而一直保持截止。
图10是图1所示的I型三电平变换器在第四工作模式下的等效电路图。如图10所示,当IGBT T1和IGBT T2导通,且IGBT T3和IGBT T4截止时,此时电流流向为正极端子DC+→IGBT T1→IGBT T2→电感L→交流端子A→中性点N,该电流路径参见图10的虚线箭头所示。
当IGBT T2和IGBT T3导通,且IGBT T1和IGBT T4截止时,电感L中的电流不能突变,此时电感L中的电流通过第五二极管D5和IGBT T2续流,电流流向为中性点N→第五二极管D5→IGBT T2→电感L→交流端子A,该电流路径参见图10的点划线箭头所示。
当I型三电平变换器11工作在第四工作模式时,交流电压Vac>0,电感电流IL<0,I型三电平变换器11被操作为逆变器,并且I型三电平变换器11中IGBT T1、第五二极管D5、串联的IGBT T2和电感L,以及第一母线电容Cp等效为Buck电路。从而将第一母线电容Cp上的直流电转换成降压的交流电并输出至交流电源AC。
本实用新型的I型三电平变换器11与现有技术的I型三电平变换器(包括四个相同的绝缘栅双极型晶体管和六个相同的硅二极管)在第四工作模式下的损耗对比参见下面的表四所示。
表四 本实用新型的I型三电平变换器11与现有技术的I型三电平变换器在第二工作模式下的损耗对比
Figure PCTCN2021100768-appb-000005
从上面的表四可以看出,本实用新型的I型三电平变换器11在第四工作模式下的总损耗减少了P rec_T+P rec_D
分别计算现有的I型三电平变换器和本实施例的I型三电平变换器11在第一至第四工作模式下的损耗之和,以及在一个工频周期内的总损耗之和,计算出来的损耗之和参见下面的表五所示。
表五 I型三电平变换器11与现有技术的I型三电平变换器在第一至第四工作模式下的损耗之和
Figure PCTCN2021100768-appb-000006
Figure PCTCN2021100768-appb-000007
从上面的表五可以得出如下结论:(1)本实用新型的I型三电平变换器11在任一工作模式下的损耗均小于现有的I型三电平变换器在相同工作模式下的损耗。(2)本实用新型的I型三电平变换器11的总损耗小于现有的I型三电平变换器的总损耗。
在本实用新型的另一个实施例中,I型三电平变换器11中的第一二极管和第四二极管为碳化硅二极管,第二二极管、第三二极管、第五二极管和第六二极管为硅二极管。
在本实用新型的另一个实施例中,I型三电平变换器11中的第五二极管和第六二极管为碳化硅二极管,且第一、第二、第三和第四二极管为硅二极管。
在本实用新型的另一个实施例中,I型三电平变换器11中的第一、第二、第三、第四、第五和第六二极管都为碳化硅二极管。
在本实用新型的另一个实施例中,采用金属氧化物半导体(简称金氧半)场效应晶体管等开关管代替I型三电平变换器11中的第一、第二、第三和第四绝缘栅双极型晶体管。
图11是根据本实用新型较佳实施例的不间断电源模块的电路图。如图11所示,不间断电源模块2包括I型三电平变换器21和I型三电平变换器22,其中I型三电平变换器21的正极端子和负极端子分别连接至I型三电平变换器22的正极端子和负极端子,I型三电平变换器21和I型三电平变换器22共用第一母线电容Cp14和第二母线电容Cn14,I型三电平变换器21的交流端子作为交流输入端,用于连接至交流电源,I型三电平变换器22的交流端子作为交流输出端,用于向负载(图11未示出)提供所需的交流电。
其中,I型三电平变换器21中的第一二极管D141和第四二极管D144为碳化硅二极管,且第二二极管D142、第三二极管D143、第五二极管D145和第六二极管D146为硅二极管,I型三电平变换器22中的第五二极管D145’和第六二极管D146’为碳化硅二极管,且第一二极管D141’、第二二极管D142’、第三二极管D143’和第四二极管D144’为硅二极管。
I型三电平变换器21被控制为脉宽调制整流器,在一个工频周期内的大部分时间内处于第一工作模式和第三工作模式,从而将交流电源的交流电转换为直流电并存储至第一母线电容Cp14和第二母线电容Cn14。I型三电平变换器22被控制为逆变器,在一个工频周期内的大部分时间内处于第二工作模式和第四工作模式,从而将第一母线电容Cp14和第二母线电容Cn14的直流电转换为交流电并输出。
I型三电平变换器21中的第一二极管D141和第四二极管D144为碳化硅二极管,且I型三电平变换器22中的第五二极管D145’和第六二极管D146’为碳化硅二极管,一方面使得不间断电源模块2的成本并未明显增加,另一方面降低了损耗,同时实现了在较低成本下具有较高的效率。
在本实用新型的另一个实施例中,I型三电平变换器21和I型三电平变换器22并不共用母线电容,即I型三电平变换器21的第一母线电容和I型三电平变换器22的第一母线电容并联连接在正极端子和中性点之间,且I型三电平变换器21的第二母线电容和I型三电平变换器22的第二母线电容并联连接在中性点和负极端子之间。
在本实用新型的另一个实施例中,I型三电平变换器21或22的第一二极管、第四二极管、第五二极管和第六二极管为碳化硅二极管,且第二二极管和第三二极管为硅二极管。
在本实用新型的另一个实施例中,I型三电平变换器21或22中的第一至第六二极管都为碳化硅二极管。
在本实用新型的其他实施例中,采用金氧半场效应晶体管等开关管代替I型三电平变换器21或22中的第一、第二、第三和第四绝缘栅双极型晶体管。
虽然本实用新型已经通过优选实施例进行了描述,然而本实用新型并非局限于这里所描述的实施例,在不脱离本实用新型范围的情况下还包括所作出的各种改变以及变化。

Claims (11)

  1. 一种I型三电平变换器,其特征在于,包括:
    在正极端子和负极端子之间依次连接的具有反向并联第一二极管的第一开关管、具有反向并联第二二极管的第二开关管、具有反向并联第三二极管的第三开关管和具有反向并联第四二极管的第四开关管;
    第五二极管,其连接在所述第一二极管和第二二极管相连接形成的节点和中性点之间;
    第六二极管,其连接在所述第三二极管和第四二极管相连接形成的节点和中性点之间;以及
    电感,其一端连接至所述第二二极管和第三二极管相连接形成的节点,其另一端作为所述I型三电平变换器的交流端子;
    其中所述第一至第六二极管中的至少一部分是碳化硅二极管。
  2. 根据权利要求1所述的I型三电平变换器,其特征在于,
    所述第一二极管和第四二极管为碳化硅二极管;和/或
    述第五二极管和第六二极管为碳化硅二极管。
  3. 根据权利要求1所述的I型三电平变换器,其特征在于,所述第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管。
  4. 根据权利要求1至3中任一项所述的I型三电平变换器,其特征在于,所述I型三电平变换器还包括在所述正极端子和负极端子之间串联的第一母线电容和第二母线电容,所述第一母线电容和第二母线电容相连接形成的节点连接至所述中性点。
  5. 根据权利要求1至3中任一项所述的I型三电平变换器,其特征在于,所述I型三电平变换器还包括连接在所述交流端子和中性点之间的滤波电容。
  6. 一种不间断电源模块,其特征在于,所述不间断电源模块包括两个如权利要求1所述的I型三电平变换器,第一I型三电平变换器的正极端子和负极端子分别连接至第二I型三电平变换器的正极端子和负极端子,所述第一I型三电平变换器的交流端子作为交流输入端,所述第二I型三电平变换器的交流端子作为交流输出端。
  7. 根据权利要求6所述的不间断电源模块,其特征在于,所述第一I型三电平变换器的第一二极管和第四二极管为碳化硅二极管,和/或第五二 极管和第六二极管为碳化硅二极管。
  8. 根据权利要求6所述的不间断电源模块,其特征在于,所述第二I型三电平变换器的第五二极管和第六二极管为碳化硅二极管,和/或第一二极管和第四二极管为碳化硅二极管。
  9. 根据权利要求6-8任一项所述的不间断电源模块,其特征在于,
    所述第一I型三电平变换器的第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管;和/或
    所述第二I型三电平变换器的第一、第二、第三和第四开关管为绝缘栅双极型晶体管或金氧半场效应晶体管。
  10. 根据权利要求6-8任一项所述的不间断电源模块,其特征在于,所述不间断电源模块还包括在所述第一I型三电平变换器的正极端子和负极端子之间串联的第一母线电容和第二母线电容,所述第一母线电容和第二母线电容相连接形成的节点连接至所述中性点。
  11. 根据权利要求6-8任一项所述的不间断电源模块,其特征在于,所述不间断电源模块还包括连接在所述交流输入端和中性点之间的第一滤波电容,以及连接在所述交流输出端和中性点之间的第二滤波电容。
PCT/CN2021/100768 2020-06-23 2021-06-18 I型三电平变换器和不间断电源模块 WO2021259145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021180301.4U CN212572416U (zh) 2020-06-23 2020-06-23 I型三电平变换器和不间断电源模块
CN202021180301.4 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021259145A1 true WO2021259145A1 (zh) 2021-12-30

Family

ID=74612916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100768 WO2021259145A1 (zh) 2020-06-23 2021-06-18 I型三电平变换器和不间断电源模块

Country Status (2)

Country Link
CN (1) CN212572416U (zh)
WO (1) WO2021259145A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825703A (zh) * 2023-02-10 2023-03-21 烟台台芯电子科技有限公司 一种1型三电平模块测试方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212572416U (zh) * 2020-06-23 2021-02-19 山特电子(深圳)有限公司 I型三电平变换器和不间断电源模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002332A1 (de) * 2009-04-09 2010-10-14 Infineon Technologies Ag Mehrstufenumrichter mit selbstleitenden Transistoren
CN102946205A (zh) * 2012-10-29 2013-02-27 华为技术有限公司 三电平逆变器和供电设备
CN202818142U (zh) * 2012-06-29 2013-03-20 阳光电源(上海)有限公司 单相半桥三电平电路及变换器
KR20140013863A (ko) * 2012-07-28 2014-02-05 김래영 3-레벨 중성점 클램핑 다이오드 인버터 회로 및 이의 펄스폭 제어 방법
CN206004535U (zh) * 2016-08-30 2017-03-08 成都英格瑞德电气有限公司 一种频率可控的恒流调光器工作电路
CN110323954A (zh) * 2019-08-08 2019-10-11 中车青岛四方车辆研究所有限公司 基于SiC功率器件的三电平牵引功率模块及逆变电路
CN212572416U (zh) * 2020-06-23 2021-02-19 山特电子(深圳)有限公司 I型三电平变换器和不间断电源模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002332A1 (de) * 2009-04-09 2010-10-14 Infineon Technologies Ag Mehrstufenumrichter mit selbstleitenden Transistoren
CN202818142U (zh) * 2012-06-29 2013-03-20 阳光电源(上海)有限公司 单相半桥三电平电路及变换器
KR20140013863A (ko) * 2012-07-28 2014-02-05 김래영 3-레벨 중성점 클램핑 다이오드 인버터 회로 및 이의 펄스폭 제어 방법
CN102946205A (zh) * 2012-10-29 2013-02-27 华为技术有限公司 三电平逆变器和供电设备
CN206004535U (zh) * 2016-08-30 2017-03-08 成都英格瑞德电气有限公司 一种频率可控的恒流调光器工作电路
CN110323954A (zh) * 2019-08-08 2019-10-11 中车青岛四方车辆研究所有限公司 基于SiC功率器件的三电平牵引功率模块及逆变电路
CN212572416U (zh) * 2020-06-23 2021-02-19 山特电子(深圳)有限公司 I型三电平变换器和不间断电源模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825703A (zh) * 2023-02-10 2023-03-21 烟台台芯电子科技有限公司 一种1型三电平模块测试方法及设备
CN115825703B (zh) * 2023-02-10 2023-05-16 烟台台芯电子科技有限公司 一种1型三电平模块测试方法及设备

Also Published As

Publication number Publication date
CN212572416U (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2019128071A1 (zh) 一种dc-dc变换器
CN100461601C (zh) 一种实现隔离高频开关dc-dc变换的系统及方法
WO2017076366A1 (zh) 五电平逆变器拓扑电路及三相五电平逆变器拓扑电路
CN105048490B (zh) 低电流应力的光伏微逆变器及其数字控制装置
CN109639170B (zh) 辅助谐振极有源钳位三电平软开关逆变电路及调制方法
WO2021259145A1 (zh) I型三电平变换器和不间断电源模块
CN107959429B (zh) 一种耦合电感升压逆变器及其控制方法
CN110572069B (zh) 一种双向dc-ac变换器
CN112865560B (zh) 一种多二极管串联型的背对背无桥三电平整流器
CN112865567B (zh) 一种异构二极管钳位式的三电平整流器
CN113746361A (zh) 具高电压增益的交流-直流电源变换系统
CN112910244A (zh) 一种混合桥臂单相三电平功率因数校正电路
CN108988634A (zh) 一种三相交错式双向大变比dcdc变换器及其控制方法
CN111342693B (zh) 一种升降压型光伏并网逆变器
US11632057B2 (en) Three-phase converter and control method thereof
CN107565814A (zh) 一种适用于燃料电池发电的高增益准z源开关升压逆变器
CN107147303B (zh) 一种单相x型互错式三电平交流调压电路
CN209881671U (zh) 单电感双Boost无桥PFC变换器
WO2023131101A1 (zh) 双向直流变换器及系统
CN217388543U (zh) 一种高频恒流驱动器
CN105897024A (zh) 单相Cuk集成式升降压逆变器及控制方法、控制系统
CN115765507A (zh) 一种用于储能逆变一体装置后级的三电平双降压变换电路
TWI488417B (zh) 可應用於再生能源之非隔離單相多階變頻器系統
CN113193768B (zh) 四开关管串联型的背靠背式三电平整流器
CN113489363B (zh) 一种双向h6光伏并网变换器及其调制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828054

Country of ref document: EP

Kind code of ref document: A1