WO2021259095A1 - 通信设备及其信号收发方法、开关电路 - Google Patents

通信设备及其信号收发方法、开关电路 Download PDF

Info

Publication number
WO2021259095A1
WO2021259095A1 PCT/CN2021/100154 CN2021100154W WO2021259095A1 WO 2021259095 A1 WO2021259095 A1 WO 2021259095A1 CN 2021100154 W CN2021100154 W CN 2021100154W WO 2021259095 A1 WO2021259095 A1 WO 2021259095A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
signal processing
processing circuit
frequency signal
circuit
Prior art date
Application number
PCT/CN2021/100154
Other languages
English (en)
French (fr)
Inventor
韩方茂
牛仁朝
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021259095A1 publication Critical patent/WO2021259095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication device and its signal transceiving method and switch circuit.
  • radio frequency signal processing circuits In the wireless local area network (WLAN) service, in order to improve the performance of the access point (access point, AP), a larger number of radio frequency signal processing circuits can be integrated in the AP, and the radio frequency signal processing circuit is used for processing The signal sent and received by the connected antenna.
  • WLAN wireless local area network
  • the radio frequency signal processing circuit connected to an antenna When the radio frequency signal processing circuit connected to an antenna is in transmit (TX) mode, if the signal strength of the radio frequency signal processing circuit is high and the isolation between the antenna and other antennas is poor, then The strength of the signal received by the radio frequency signal processing circuit connected to other antennas is higher. This may cause the radio frequency signal processing circuits connected to other antennas to work in the saturation zone. If things go on like this, it will accelerate the aging of the radio frequency signal processing circuit and affect the life of the radio frequency signal processing circuit.
  • TX transmit
  • the present application provides a communication device, a signal receiving and sending method, and a switch circuit thereof, which can solve the technical problem of accelerated aging of radio frequency signal processing circuits due to long-term reception of high-strength signals.
  • a method for transmitting and receiving signals of a communication device includes a first radio frequency signal processing circuit and a second radio frequency signal processing circuit.
  • the method can turn on the first radio frequency signal processing circuit during the first downlink period.
  • the signal transmission function of the second radio frequency signal processing circuit is turned off; and the signal receiving function of the first radio frequency signal processing circuit can be turned on during the first uplink period, and the signal of the second radio frequency signal processing circuit can be turned off Launch function.
  • the various radio frequency signal processing circuits in the communication device can work cooperatively instead of independently, so that the radio frequency signal processing circuit will not receive signals transmitted by other radio frequency signal processing circuits. Therefore, it is possible to prevent the radio frequency signal processing circuit from affecting its service life due to long-time operation in the saturation region, and to ensure the working performance and service life of the radio frequency signal processing circuit in the communication device.
  • the working frequency bands of the first radio frequency signal processing circuit and the second radio frequency signal processing circuit are the same; in the first downlink period, the method further includes: turning off the signal transmission function of the second radio frequency signal processing circuit.
  • two radio frequency signal processing circuits with the same working frequency band can be prevented from simultaneously transmitting signals and causing interference, thereby ensuring signal transmission performance.
  • the method further includes: enabling the signal receiving function of the second radio frequency signal processing circuit.
  • the efficiency of the radio frequency signal processing circuit receiving signals can be effectively improved.
  • the method further includes: in the second uplink period, turning on the signal receiving function of the second radio frequency signal processing circuit, and turning off the signal transmitting function of the first radio frequency signal processing circuit.
  • the second radio frequency signal processing circuit By turning off the signal transmission function of the first radio frequency signal processing circuit during the time period when the second radio frequency signal processing circuit is receiving signals, it can be ensured that the second radio frequency signal processing circuit will not receive the signal transmitted by the first radio frequency signal processing circuit. It is possible to prevent the second radio frequency signal processing circuit from affecting its life due to working in the saturation region for a long time.
  • the method further includes: in the second downlink period, turning on the signal transmitting function of the second radio frequency signal processing circuit, and turning off the signal receiving function of the first radio frequency signal processing circuit.
  • the first radio frequency signal processing circuit By turning off the signal receiving function of the first radio frequency signal processing circuit during the period when the second radio frequency signal processing circuit is transmitting signals, it can be ensured that the first radio frequency signal processing circuit will not receive the signal transmitted by the second radio frequency signal processing circuit, and thus It can be avoided that the first radio frequency signal processing circuit affects its life due to working in the saturation region for a long time.
  • a signal transceiving method of a communication device including a first radio frequency signal processing circuit and a second radio frequency signal processing circuit; the method includes: allowing the first radio frequency signal processing circuit in a first period of time The signal transceiving function of the second radio frequency signal processing circuit is turned off; in the second period, the signal transceiving function of the first radio frequency signal processing circuit is turned off to allow the signal transceiving function of the second radio frequency signal processing circuit.
  • the mutual interference between the two radio frequency signal processing circuits can be effectively avoided, which not only ensures the life of each radio frequency signal processing circuit, but also ensures the reliability of each radio frequency signal processing circuit to send and receive signals Sex and stability.
  • the interval between the second time period and the first time period is greater than a threshold. Since the radio frequency signal processing circuit needs a certain transient response time when its signal transmission and reception function is turned off, by setting the interval between the two periods to be greater than the threshold, it can be ensured that after the signal transmission and reception function of a radio frequency signal processing circuit is completely closed, Then allow another radio frequency signal processing circuit to send and receive signals. Therefore, the mutual interference of the two radio frequency signal processing circuits can be effectively avoided.
  • a switch circuit in a communication device is provided.
  • the communication device further includes a first radio frequency signal processing circuit and a second radio frequency signal processing circuit; the switch circuit is used to implement the signal transceiving method provided by any of the above aspects .
  • a communication device in yet another aspect, includes a first radio frequency signal processing circuit, a second radio frequency signal processing circuit, and the switch circuit provided in the above-mentioned aspect; the switch circuit and the first radio frequency signal processing circuit are respectively Connected to the second radio frequency signal processing circuit.
  • the communication device further includes a baseband circuit, and the switch circuit may be integrated in the baseband circuit.
  • the switch circuit By integrating the switch circuit in the baseband circuit, the integration level of the circuit in the communication device can be improved, and the volume of the communication device can be avoided.
  • the present application provides a communication device and its signal transceiving method and switch circuit.
  • This solution can turn off the signal of another RF signal processing circuit during the period when a certain RF signal processing circuit in the communication device transmits signals.
  • Receiving function and can turn off the signal transmission function of another radio frequency signal processing circuit during the period when a certain radio frequency signal processing circuit is receiving signals.
  • the radio frequency signal processing circuit in the communication device can be prevented from receiving signals transmitted by other radio frequency signal processing circuits, thereby avoiding the radio frequency signal processing circuit from being caused by a long time.
  • Working in the saturation zone affects its lifespan, ensuring the working performance and lifespan of the radio frequency signal processing circuit in the communication device.
  • FIG. 1 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for transmitting and receiving signals of a communication device according to an embodiment of the present application
  • FIG. 3 is a timing diagram of signals sent by a switch circuit to a radio frequency signal processing circuit according to an embodiment of the present application
  • FIG. 4 is a sequence diagram of an enable signal sent by another switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application
  • FIG. 5 is a timing diagram of another enable signal sent by a switch circuit to a radio frequency signal processing circuit according to an embodiment of the present application.
  • FIG. 6 is a flowchart of another signal receiving and sending method of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a timing diagram of yet another enable signal sent by the switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application.
  • FIG. 8 is a timing diagram of yet another enable signal sent by a switch circuit to a radio frequency signal processing circuit according to an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a timing diagram of yet another enable signal sent by the switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application.
  • the radio frequency signal processing circuit connected to the first type antenna is used to process service signals
  • the radio frequency signal processing circuit connected to the second type antenna is used to implement auxiliary functions.
  • the auxiliary function may include one or more of dynamic frequency selection, spectrum scanning, signal strength positioning, and radio frequency fingerprint identification.
  • the working frequency band of the radio frequency signal processing circuit connected to each type of antenna can be 2.4 gigahertz (GHz) or 5 GHz.
  • the working frequency band of the radio frequency signal processing circuit connected to the two types of antennas can be the same or different, and the same type is different.
  • the working frequency band of the radio frequency signal processing circuit connected to the antenna can be the same or different.
  • this second type of antenna may also be referred to as a third radio frequency antenna or a scanning radio frequency antenna.
  • the radio-frequency signal processing circuit connected to the antenna may include a radio-on chip (ROC) and a radio-frequency front-end module (FEM).
  • the radio frequency chip can also be called a radio frequency integrated circuit (RFIC).
  • the radio frequency signal processing circuit is used to process the transmission and reception signals of the connected antenna.
  • the signal transmitting function and signal receiving function of the radio frequency signal processing circuit in the AP can be turned on in a time-sharing manner. That is, the working period of the radio frequency signal processing circuit can be divided into a downlink period and an uplink period. In the downlink period, the signal transmitting function of the radio frequency signal processing circuit is turned on, the signal receiving function is turned off, and the radio frequency signal processing circuit can transmit the signal to be transmitted to the antenna to which it is connected.
  • the signal receiving function of the radio frequency signal processing circuit is turned on, the signal transmitting function is turned off, and the radio frequency signal processing circuit can process the signal received by the antenna to which it is connected. That is, in the downlink period, the radio frequency signal processing circuit is in the transmitting mode, and in the uplink period, the radio frequency signal processing circuit is in the receiving mode.
  • the radio frequency signal processing circuit of the second type antenna in the AP works independently of the radio frequency signal processing circuit of the first type antenna, that is, the signal transmission and reception mode of the radio frequency signal processing circuit of the second type antenna is not affected by the radio frequency signal of the first type antenna.
  • the influence of the signal transmission and reception mode of the processing circuit Since the signal transmission and reception modes of the radio frequency signal processing circuits connected to the two types of antennas do not affect each other, and the radio frequency signal processing circuit of the second type antenna is usually in the receiving mode for a long time, if the strength of the service signal transmitted by the first type antenna is If it is higher and the isolation between the two types of antennas is poor, the radio frequency signal processing circuit of the second type of antenna will work in the saturation region for a long time. If things go on like this, it will accelerate the aging of the radio frequency signal processing circuit of the second type of antenna, and affect the life of the radio frequency signal processing circuit.
  • the radio frequency signal processing circuit of the second type of antenna will receive a signal with higher intensity for about 2.4 years.
  • the ROC in the radio frequency signal processing circuit can meet the 2.4-year lifetime requirement when the input signal strength is less than -2 decibel milliwatts (dBm). It can be determined by estimating parameters such as the transmitting power of the antenna that the isolation of the two types of antennas in the AP must be greater than 44dB to ensure that the signal strength received by the radio frequency chip is less than -2dBm. However, the 44dB isolation is difficult to achieve in a small-sized AP.
  • an automatic gain control circuit can be added to the AP.
  • the AGC circuit is used to reduce the gain of the amplifier in the radio frequency FEM when a signal with a higher intensity is detected, so that the intensity of the signal received by the ROC can be reduced.
  • this solution has limited attenuation of the strength of the signal input to the ROC, and the added AGC circuit will increase the size and cost of the AP.
  • a logic device can be added to the AP, and a switching device can be added between the ROC of the second type of antenna and the radio frequency FEM.
  • the logic device can control the switching device to turn off, thereby cutting off the path between the ROC and the radio frequency FEM of the second type antenna, thereby avoiding the ROC receiving strength Higher signal.
  • the radio frequency FEM will still receive a signal with higher intensity, that is, the radio frequency FEM will still have the risk of accelerated aging.
  • the additional logic devices and switching devices in this solution will increase the cost of the AP.
  • the embodiments of the present application provide a communication device and its signal transceiving method and switch circuit, which can effectively improve the radio frequency signal processing circuit's long-term reception of high-strength signals while avoiding increasing the size and cost of the communication device.
  • FIG. 1 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a switch circuit 01, a baseband circuit 02, a first radio frequency signal processing circuit 03, and a second radio frequency signal processing circuit 04 .
  • the switch circuit 01 is connected to the baseband circuit 02, the first radio frequency signal processing circuit 03, and the second radio frequency signal processing circuit 04 respectively.
  • the switch circuit 01 is used to control the signal transceiving function of the first radio frequency signal processing circuit 03 in different periods and control the signal transceiving function of the second radio frequency signal processing circuit 04 in different periods under the instruction of the baseband circuit 02.
  • the baseband circuit 02 is connected to the first radio frequency signal processing circuit 03 and the second radio frequency signal processing circuit 04 respectively.
  • the baseband circuit 02 is respectively connected to the first radio frequency signal processing circuit 03 and the second radio frequency signal processing circuit 04 through the switch circuit 01.
  • the baseband circuit 02 is used to process the signals received and transmitted by the first radio frequency signal processing circuit 03 and the signals received and transmitted by the second radio frequency signal processing circuit 04.
  • Fig. 2 is a flowchart of a method for signal transceiving of a communication device according to an embodiment of the present application, and the method can be applied to a switch circuit of the communication device. For example, it can be applied to the switch circuit 01 shown in FIG. 1.
  • the method includes:
  • Step 101 During the first downlink period, the signal transmitting function of the first radio frequency signal processing circuit is turned on, and the signal receiving function of the second radio frequency signal processing circuit is turned off.
  • the first downlink period is a period during which the first radio frequency signal processing circuit transmits a signal. Therefore, during the first downlink period, the switch circuit in the communication device can turn on the signal transmission function of the first radio frequency signal processing circuit and turn off the signal receiving function of the second radio frequency signal processing circuit.
  • the switch circuit may send the first transmission enable signal to the first radio frequency signal processing circuit, and send the first reception disable signal to the second radio frequency signal processing circuit.
  • the first radio frequency signal processing circuit may turn on its signal transmission function in response to the first transmit enable signal
  • the second radio frequency signal processing circuit may turn off its signal receiving function in response to the first receive disable signal.
  • the signal transmission function of the second radio frequency signal processing circuit may be turned on or turned off.
  • the switch circuit can directly turn off the signal receiving function of the second radio frequency signal processing circuit during the period when the first radio frequency signal processing circuit is transmitting signals, the second radio frequency signal processing circuit will not receive the signal transmitted by the first radio frequency signal processing circuit. Signal. As a result, it is possible to prevent the second radio frequency signal processing circuit from affecting its service life due to long-time operation in the saturation region, and to ensure the performance and service life of the second radio frequency signal processing circuit.
  • Step 102 During the first uplink period, the signal receiving function of the first radio frequency signal processing circuit is turned on, and the signal transmitting function of the second radio frequency signal processing circuit is turned off.
  • the first uplink period is a period during which the first radio frequency signal processing circuit receives a signal. Therefore, during the first uplink period, the switch circuit in the communication device can turn on the signal receiving function of the first radio frequency signal processing circuit and turn off the signal transmitting function of the second radio frequency signal processing circuit.
  • the switch circuit may send the first reception enable signal to the first radio frequency signal processing circuit, and send the first transmission disable signal to the second radio frequency signal processing circuit.
  • the first radio frequency signal processing circuit may turn on its signal receiving function in response to the first reception enable signal
  • the second radio frequency signal processing circuit may turn off its signal transmitting function in response to the first transmit disable signal.
  • the signal receiving function of the second radio frequency signal processing circuit may be turned on or turned off.
  • the switch circuit can directly turn off the signal transmission function of the second radio frequency signal processing circuit during the period when the first radio frequency signal processing circuit is receiving signals, the first radio frequency signal processing circuit will not receive the signal transmitted by the second radio frequency signal processing circuit. Signal. In this way, it is possible to prevent the first radio frequency signal processing circuit from affecting its life due to working in the saturation region for a long time, and to ensure the performance and service life of the first radio frequency signal processing circuit.
  • Step 103 During the second uplink period, the signal receiving function of the second radio frequency signal processing circuit is turned on, and the signal transmitting function of the first radio frequency signal processing circuit is turned off.
  • the second uplink period is a period during which the second radio frequency signal processing circuit receives a signal. Therefore, during the second uplink period, the switch circuit in the communication device can turn on the signal receiving function of the second radio frequency signal processing circuit and turn off the signal transmitting function of the first radio frequency signal processing circuit. For example, the switch circuit may send the second reception enable signal to the second radio frequency signal processing circuit, and send the second transmission disable signal to the first radio frequency signal processing circuit.
  • the second radio frequency signal processing circuit can turn on its signal receiving function in response to the second reception enable signal, and the first radio frequency signal processing circuit can turn off its signal transmission function in response to the second transmission deactivation signal.
  • the signal receiving function of the first radio frequency signal processing circuit may be turned on or turned off.
  • the switch circuit can directly turn off the signal transmission function of the first radio frequency signal processing circuit during the period when the second radio frequency signal processing circuit is receiving signals, the second radio frequency signal processing circuit will not receive the signal transmitted by the first radio frequency signal processing circuit. Signal. As a result, it is possible to prevent the second radio frequency signal processing circuit from affecting its service life due to long-time operation in the saturation region, and to ensure the performance and service life of the second radio frequency signal processing circuit.
  • Step 104 During the second downlink period, the signal transmission function of the second radio frequency signal processing circuit is turned on, and the signal receiving function of the first radio frequency signal processing circuit is turned off.
  • the second downlink period is a period during which the second radio frequency signal processing circuit transmits a signal. Therefore, in the second downlink period, the switch circuit in the communication device can turn on the signal transmission function of the second radio frequency signal processing circuit and turn off the signal receiving function of the first radio frequency signal processing circuit.
  • the switch circuit may send the second transmission enable signal to the second radio frequency signal processing circuit, and send the second reception disable signal to the first radio frequency signal processing circuit.
  • the second radio frequency signal processing circuit can turn on its signal transmission function in response to the second transmission enable signal, and the first radio frequency signal processing circuit can turn off its signal receiving function in response to the second reception deactivation signal.
  • the signal transmission function of the first radio frequency signal processing circuit may be turned on or turned off.
  • the switch circuit can directly turn off the signal receiving function of the first radio frequency signal processing circuit during the period when the second radio frequency signal processing circuit is transmitting signals, the first radio frequency signal processing circuit will not receive the signal transmitted by the second radio frequency signal processing circuit. Signal. In this way, it is possible to prevent the first radio frequency signal processing circuit from affecting its life due to working in the saturation region for a long time, and to ensure the performance and service life of the first radio frequency signal processing circuit.
  • the working frequency bands of the first radio frequency signal processing circuit and the second radio frequency signal processing circuit may be the same.
  • the working frequency bands of the first radio frequency signal processing circuit and the second radio frequency signal processing circuit may both be 2.4 GHz, or both may be 5 GHz.
  • the method may further include: turning off the signal transmission function of the second radio frequency signal processing circuit.
  • the switch circuit may send the first transmission deactivation signal to the second radio frequency signal processing circuit.
  • the method may further include: turning off the signal transmission function of the first radio frequency signal processing circuit.
  • the switch circuit may also send the second transmission deactivation signal to the first radio frequency signal processing circuit.
  • the switch circuit turns off the signal transmission function of the second radio frequency signal processing circuit during the period when the first radio frequency signal processing circuit transmits signals, and turns off the second radio frequency signal processing circuit during the period when the second radio frequency signal processing circuit transmits signals.
  • the signal transmission function of a radio frequency signal processing circuit As a result, interference generated when two radio frequency signal processing circuits with the same working frequency band are simultaneously transmitting signals can be avoided, and the performance of signal transmission can be ensured.
  • the first transmit enable signal, the first receive enable signal, the second transmit enable signal, and the second receive enable signal sent by the switch circuit may all be high-level signals.
  • the first transmission deactivation signal, the first reception deactivation signal, the second transmission deactivation signal, and the second reception deactivation signal sent by the switch circuit may all be low-level signals.
  • FIG. 3 is a timing diagram of a signal sent by a switch circuit to a radio frequency signal processing circuit according to an embodiment of the present application.
  • the signal TX1 in FIG. 3 represents the enable signal sent by the switch circuit for controlling the signal transmission function of the first radio frequency signal processing circuit.
  • the signal TX1 is at a high level, which is equivalent to sending a first transmission enable signal, and the signal TX1 is at a low level, which is equivalent to sending a second transmission disable signal.
  • the signal RX1 represents the enable signal sent by the switch circuit for controlling the signal receiving function of the first radio frequency signal processing circuit.
  • the signal RX1 is at a high level, which is equivalent to sending a first reception enable signal, and the signal RX1 is at a low level, which is equivalent to sending a second reception disable signal.
  • the signal TX2 represents the enable signal sent by the switch circuit for controlling the signal transmission function of the second radio frequency signal processing circuit.
  • the signal TX2 is at a high level, which is equivalent to sending the second transmission enable signal, and the signal TX2 is at a low level, which is equivalent to sending the first transmission disable signal.
  • the signal RX2 represents the enable signal sent by the switch circuit for controlling the signal receiving function of the second radio frequency signal processing circuit.
  • the signal RX2 is at a high level, which is equivalent to sending the second reception enable signal, and the signal RX2 is at a low level, which is equivalent to sending the first reception disable signal.
  • the signal TX1 sent by the switch circuit is high, and the signal RX1, the signal TX2, and the signal RX2 are all low.
  • the signal transmitting function of the first radio frequency signal processing circuit is turned on, the signal receiving function is turned off, and the signal transmitting function and signal receiving function of the second radio frequency signal processing circuit are both turned off.
  • the signal RX1 sent by the switch circuit is high, and the signal TX1, the signal TX2, and the signal RX2 are all low.
  • the signal receiving function of the first radio frequency signal processing circuit is turned on, the signal transmitting function is turned off, and the signal transmitting function and signal receiving function of the second radio frequency signal processing circuit are both turned off.
  • the signal TX2 sent by the switch circuit is high, and the signal RX2, the signal TX1, and the signal RX1 are all low.
  • the signal transmitting function of the second radio frequency signal processing circuit is turned on, the signal receiving function is turned off, and the signal transmitting function and signal receiving function of the first radio frequency signal processing circuit are both turned off.
  • the signal RX2 sent by the switch circuit is high, and the signal TX1, the signal RX1, and the signal TX2 are all low.
  • the signal receiving function of the second radio frequency signal processing circuit is turned on, the signal transmitting function is turned off, and the signal transmitting function and signal receiving function of the first radio frequency signal processing circuit are both turned off.
  • step 102 may be performed before step 101; or, step 103 may be performed before step 102; or, step 104 may be performed before step 103.
  • the foregoing step 103 and step 104 may be deleted according to the situation, and in the first uplink period shown in the foregoing step 102, the method may further include: turning on the signal receiving function of the second radio frequency signal processing circuit. That is, in the embodiment of the present application, the switch circuit can also control the signal transmission function of the second radio frequency signal processing circuit to always be in the off state, and can simultaneously turn on the signal receiving functions of the two radio frequency signal processing circuits, that is, the two radio frequency signal processing circuits A radio frequency signal processing circuit can receive signals in the same uplink period. By controlling the two radio frequency signal processing circuits to receive signals in the same uplink period, the efficiency of the radio frequency signal processing circuit receiving signals can be effectively improved.
  • FIG. 4 is a timing diagram of signals sent by another switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application.
  • the switch circuit can control the signal transmission function of the second radio frequency signal processing circuit to always be in the off state, and can simultaneously start the signal receiving function of the two radio frequency signal processing circuits in the first uplink period t12.
  • step 103 can be kept, and step 104 can be deleted according to the situation. That is, the switch circuit can also control the signal transmission function of the second radio frequency signal processing circuit to always be in the off state, and can respectively enable the signal receiving functions of the two radio frequency signal processing circuits in different uplink time periods. That is, the switch circuit can start the signal receiving function of different radio frequency signal processing circuits in time sharing.
  • the switch circuit may enable the signal transmission function of the second radio frequency signal processing circuit. That is, the switch circuit can simultaneously activate the signal transmission functions of the two radio frequency signal processing circuits in the first downlink period, and can respectively activate the signal receiving functions of the two radio frequency signal processing circuits in different uplink periods.
  • FIG. 5 is a timing diagram of another signal sent by a switch circuit to a radio frequency signal processing circuit according to an embodiment of the present application. Referring to the timing shown in FIG. 5, it can be seen that the signal TX1 and the signal TX2 sent by the switch circuit are both high in the first downlink period t11, and the signal RX2 is low in the first uplink period t12, and in the second uplink period t12.
  • the uplink period t22 is high level
  • the signal RX1 is high level in the first uplink period t12
  • the switch circuit can simultaneously turn on the signal transmission functions of the two radio frequency signal processing circuits in a downlink period (for example, the first downlink period t11), and can respectively turn on the signals of the two radio frequency signal processing circuits in different uplink periods.
  • Receiving function for example, the first downlink period t11
  • the embodiments of the present application provide a method for transmitting and receiving signals from a communication device.
  • the method can turn off the signal receiving function of another RF signal processing circuit during the period when a certain RF signal processing circuit in the communication device transmits signals.
  • And can turn off the signal transmission function of another radio frequency signal processing circuit during the period when a certain radio frequency signal processing circuit is receiving signals. Since the various radio frequency signal processing circuits in the communication device can be controlled to work together, the radio frequency signal processing circuit in the communication device can be prevented from receiving signals transmitted by other radio frequency signal processing circuits, thereby avoiding the radio frequency signal processing circuit from being caused by a long time.
  • Working in the saturation zone affects its lifespan, ensuring the working performance and lifespan of the radio frequency signal processing circuit in the communication device.
  • Fig. 6 is a flowchart of another method for signal transceiving of a communication device provided by an embodiment of the present application, and the method can be applied to a switch circuit of the communication device.
  • the switch circuit 01 can control the first radio frequency signal processing circuit and the second radio frequency signal processing circuit in the communication device to work in a time-sharing manner.
  • the method includes:
  • Step 201 In the first time period, the signal transceiving function of the first radio frequency signal processing circuit is allowed, and the signal transceiving function of the second radio frequency signal processing circuit is turned off.
  • the first time period is a time period during which the first radio frequency signal processing circuit transmits and receives signals.
  • the switch circuit can turn off the signal transmitting function and the signal receiving function of the second radio frequency signal processing circuit.
  • the switch circuit can turn on the signal transmission function of the first radio frequency signal processing circuit, or turn on the signal receiving function of the first radio frequency signal processing circuit, or alternately turn on the signal transmission function and the signal receiving function of the first radio frequency signal processing circuit.
  • Step 202 In the second time period, the signal transceiving function of the first radio frequency signal processing circuit is turned off, and the signal transceiving function of the second radio frequency signal processing circuit is allowed.
  • the second time period is a time period during which the second radio frequency signal processing circuit transmits and receives signals.
  • the switch circuit can turn off the signal transmitting function and the signal receiving function of the first radio frequency signal processing circuit.
  • the switch circuit can turn on the signal transmission function of the second radio frequency signal processing circuit, or turn on the signal receiving function of the second radio frequency signal processing circuit, or alternately turn on the signal transmission function and the signal receiving function of the second radio frequency signal processing circuit.
  • the mutual interference between the two RF signal processing circuits during operation can be effectively avoided, which not only ensures the life of each RF signal processing circuit, but also ensures that each RF signal processing circuit sends and receives signals. The reliability and stability.
  • FIG. 7 is a timing diagram of another enable signal sent by the switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application.
  • the switch circuit in the first period T1, the signal TX2 and the signal RX2 sent by the switch circuit Both are low level, and the signal TX1 and the signal RX1 are alternately high.
  • the switch circuit in the first time period T1, can turn off the signal transmitting function and the signal receiving function of the second radio frequency signal processing circuit, and can alternately turn on the signal transmitting function and the signal receiving function of the first radio frequency signal processing circuit.
  • the switch circuit can turn off the signal transmitting function and the signal receiving function of the first radio frequency signal processing circuit, and can alternately turn on the signal transmitting function and the signal receiving function of the second radio frequency signal processing circuit.
  • the switch circuit can turn off the signal transmitting function and signal receiving function of the first radio frequency signal processing circuit, turn off the signal transmitting function of the second radio frequency signal processing circuit, and turn on the second radio frequency signal processing circuit at intervals of time.
  • the signal receiving function of the radio frequency signal processing circuit By enabling the signal receiving function of the second radio frequency signal processing circuit in time intervals in the second time period T2, it is possible to avoid increasing the power consumption of the second radio frequency signal processing circuit.
  • the signal RX2 can also continue to be at a high level, that is, the switch circuit can control the signal receiving function of the second radio frequency signal processing circuit to always remain on during the second time period T2.
  • the switch circuit can alternately perform step 201 and step 202, and the execution order of step 201 and step 202 can be adjusted according to the situation.
  • the interval ⁇ T between the second period T2 and the first period T1 may be greater than a threshold.
  • the magnitude of the threshold may be on the order of milliseconds (ms) or microseconds (us), for example, the threshold may be 5 us.
  • the radio frequency signal processing circuit needs a certain transient response time (also called transient response time) when its signal transceiver function is turned off, the interval ⁇ T between the second time period T2 and the first time period T1 is set to be greater than the threshold , It can be ensured that after the signal transceiving function of one radio frequency signal processing circuit is completely closed, the signal transceiving function of another radio frequency signal processing circuit is allowed. Therefore, the mutual interference of the two radio frequency signal processing circuits can be effectively avoided.
  • transient response time also called transient response time
  • the embodiment of the present application provides a method for transmitting and receiving signals of a communication device.
  • the method can control the time-sharing operation of two radio frequency signal processing circuits, thereby effectively avoiding mutual interference when two radio frequency signal processing circuits work at the same time. .
  • the life span of each radio frequency signal processing circuit is ensured, but also the reliability and stability of the signals sent and received by each radio frequency signal processing circuit are ensured.
  • the embodiment of the present application provides a switch circuit 01 in a communication device.
  • the communication device further includes a first radio frequency signal processing circuit 03 and a second radio frequency signal processing circuit 04; the switch circuit 01 is used for :
  • the first downlink period send a first transmission enable signal to the first radio frequency signal processing circuit 03, and send a first reception disable signal to the second radio frequency signal processing circuit 04; and, in the first uplink period, send a first transmission enable signal to the second radio frequency signal processing circuit 04;
  • the first radio frequency signal processing circuit 03 sends a first reception enable signal, and sends a first transmission disable signal to the second radio frequency signal processing circuit 04.
  • the working frequency bands of the first radio frequency signal processing circuit 03 and the second radio frequency signal processing circuit 04 are the same; the switch circuit 01 can also be used to: send the second radio frequency signal to the second radio frequency signal during the first downlink period The processing circuit 04 sends the first transmission deactivation signal.
  • the switch circuit 01 may also be used to send a second reception enable signal to the second radio frequency signal processing circuit 04 during the first uplink period.
  • the switch circuit 01 is also configured to send a second reception enable signal to the second radio frequency signal processing circuit 04 and send a second transmit disable signal to the first radio frequency signal processing circuit 03 in the second uplink period Signal.
  • step 103 For the functional realization of the switch circuit 01, reference may also be made to the related description of step 103 in the foregoing method embodiment.
  • the switch circuit 01 is further configured to send a second transmission enable signal to the second radio frequency signal processing circuit 04 and send the second reception stop signal to the first radio frequency signal processing circuit 03 during the second downlink period. Use signals.
  • step 104 For the functional realization of the switch circuit 01, reference may also be made to the related description of step 104 in the foregoing method embodiment.
  • the embodiments of the present application provide a switch circuit, which can turn off the signal receiving function of another radio frequency signal processing circuit during the period when a certain radio frequency signal processing circuit in the communication device transmits signals, and can During the period when a certain radio frequency signal processing circuit is receiving signals, the signal transmitting function of another radio frequency signal processing circuit is turned off.
  • the switch circuit can control various radio frequency signal processing circuits in the communication device to work together, it can prevent the radio frequency signal processing circuit in the communication device from receiving signals transmitted by other radio frequency signal processing circuits, thereby avoiding the radio frequency signal processing circuit.
  • the service life of the radio frequency signal processing circuit in the communication device is ensured due to the long-time working in the saturation zone, which affects its life.
  • the embodiment of the present application provides a switch circuit 01 in another communication device.
  • the communication device further includes a first radio frequency signal processing circuit 03 and a second radio frequency signal processing circuit 04; the switch circuit 01 can be Used for:
  • the radio frequency signal processing circuit 03 sends a second transceiving disable signal, and sends a second transceiving enable signal to the second radio frequency signal processing circuit 04.
  • the first transceiving enabling signal may include a first transmitting enabling signal or a first receiving enabling signal.
  • the first radio frequency signal processing circuit 03 can activate its signal transmitting function or signal receiving function in response to the first transceiving enabling signal.
  • the first transceiving deactivation signal includes a first transmission deactivation signal and a first reception deactivation signal.
  • the second radio frequency signal processing circuit 04 can turn off its signal transmitting function and signal receiving function in response to the first transceiving disable signal.
  • the second transceiving enabling signal may include a second transmitting enabling signal or a second receiving enabling signal.
  • the second radio frequency signal processing circuit 04 can activate its signal transmitting function or signal receiving function in response to the second transceiving enabling signal.
  • the second transmission and reception disable signal may include a second transmission disable signal and a second reception disable signal.
  • the first radio frequency signal processing circuit 03 can turn off its signal transmitting function and signal receiving function in response to the second transceiving disable signal.
  • the interval between the second time period and the first time period is greater than a threshold.
  • the embodiments of the present application provide a switch circuit that can control the time-sharing operation of two radio frequency signal processing circuits, thereby effectively avoiding mutual interference when the two radio frequency signal processing circuits work at the same time.
  • a switch circuit that can control the time-sharing operation of two radio frequency signal processing circuits, thereby effectively avoiding mutual interference when the two radio frequency signal processing circuits work at the same time.
  • An embodiment of the present application also provides a communication device, which may be an air interface access device such as an AP or a small base station.
  • the communication device includes a first radio frequency signal processing circuit 03, a second radio frequency signal processing circuit 04, and the switch circuit 01 provided in the above-mentioned embodiment.
  • the switch circuit 01 is connected to the first radio frequency signal processing circuit 03 and the second radio frequency signal processing circuit 04 respectively.
  • the switch circuit 01 is used to control the on or off of the signal transceiving function of each radio frequency signal processing circuit.
  • the communication device further includes a baseband circuit 02, and the baseband circuit 02 may be an integrated circuit (IC).
  • the baseband circuit 02 is used to process the signals received and transmitted by each radio frequency signal processing circuit.
  • the switch circuit 01 can be integrated in the baseband circuit 02. Alternatively, the switch circuit 01 can also be provided independently of the baseband circuit 02. Wherein, the switch circuit 01 is directly integrated into the baseband circuit 02, which can improve the integration level of the circuit in the communication device and avoid increasing the cost and volume of the communication device.
  • the switch circuit 01 includes a timing sub-circuit, and the timing sub-circuit can generate the aforementioned enable signal for turning on or turning off the signal transceiving function of the radio frequency signal processing circuit according to a pre-configured fixed frequency.
  • the enable signal includes the transmit enable signal, the receive enable signal, the transmit disable signal, and the receive disable signal described in the foregoing embodiment. That is, in this implementation manner, the time sequence of the enable signal sent by the switch circuit 01 to the radio frequency signal processing circuit is a fixed time sequence configured in advance.
  • the fixed frequency may be configured by the switch circuit before leaving the factory, or may be pre-configured by the user according to the application scenario of the communication device.
  • the timing sub-circuit can also generate the above mentioned functions under the control of a media access control (MAC) circuit or a physical layer (PHY) circuit in the baseband circuit 02.
  • MAC media access control
  • PHY physical layer
  • the switch circuit 01 since the switch circuit 01 can control the working sequence of the radio frequency signal processing circuit, the switch circuit 01 may also be referred to as a central processing time system (CPTS) circuit.
  • CPTS central processing time system
  • the communication device provided in the embodiment of the present application further includes one or more antennas.
  • Each radio frequency signal processing circuit can be connected to an antenna, and different radio frequency signal processing circuits can be connected to different antennas.
  • the two radio frequency signal processing circuits can work in time sharing, the two radio frequency signal processing circuits can also be connected to the same antenna, that is, the two radio frequency signal processing circuits can share the same antenna.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application. As shown in FIG. 9, the communication device further includes a first antenna 05 and a second antenna 06. The first antenna 05 is connected to the first radio frequency signal processing circuit 03, and the second antenna is connected to the second radio frequency signal processing circuit 04.
  • the communication device further includes: a first analog front end (AFE) 08 connected to the first radio frequency signal processing circuit 03, and a first digital front end (digital front end) connected to the first analog front end 08 front end, DFE) 07, a second AFE 10 connected to the second radio frequency signal processing circuit 04, and a second DFE 09 connected to the second AFE 10.
  • AFE analog front end
  • DFE digital front end
  • the switch circuit 01, the baseband circuit 02, the first DFE 07, the first AFE 08, the second DFE 09, and the second AFE 10 can all be integrated in the system on chip (SOC) of the communication device. )middle.
  • the switch circuit 10 may also be used to: turn off the signal receiving function of the second AFE 10 and turn off the signal receiving function of the second DFE 09 during the first downlink period; and In the first uplink period, the signal transmission function of the second AFE 10 is turned off, and the signal transmission function of the second DFE 09 is turned off.
  • the signal receiving function of the second radio frequency signal processing circuit 04 is turned off during the first downlink period, the signal receiving functions of the second DFE 09 and the second AFE 10 are simultaneously turned off, which can avoid unnecessary waste of power consumption. In the same way, in the first uplink period, the signal transmission functions of the second DFE 09 and the second AFE 10 are simultaneously turned off, which can avoid increasing the power consumption of the SOC.
  • the switch circuit 10 can also be used to: turn off the signal receiving function of the first AFE 08 and turn off the signal receiving function of the first DFE 07 during the second downlink period; and during the second uplink period , Turn off the signal transmission function of the first AFE 08, and turn off the signal transmission function of the first DFE 07.
  • the signal receiving function of the first radio frequency signal processing circuit 03 Since the signal receiving function of the first radio frequency signal processing circuit 03 is turned off during the second downlink period, the signal receiving functions of the first DFE 07 and the first AFE 08 are simultaneously turned off, which can avoid unnecessary waste of power consumption. In the same way, in the second uplink period, the signal transmission functions of the first DFE 07 and the first AFE 08 are simultaneously turned off, which can avoid increasing the power consumption of the SOC.
  • the switch circuit 01 can be turned off by sending a transmission disable signal to the front-end circuit
  • the signal transmission function of the front-end circuit can be turned off by sending a reception disable signal to the front-end circuit.
  • the switch circuit 01 may also be used for:
  • the signal transceiving function of the first DFE 07 and the first AFE 08 is allowed, and the signal transceiving functions of the second DFE 09 and the second AFE 10 are disabled; and in the second time period, the second DFE is allowed The signal transceiving function of the DFE 09 and the second AFE 10, and the signal transceiving function of the first DFE 07 and the first AFE 08 are disabled.
  • the first radio frequency signal processing circuit 03 includes a first ROC 031 and a first radio frequency FEM 032; the second radio frequency signal processing circuit 04 includes a second ROC 041 and a second radio frequency FEM 042.
  • radio frequency FEM can include amplifiers and filters, and ROC can include amplifiers and mixers.
  • turning off the signal transmission function of the first radio frequency signal processing circuit 03 may refer to turning off the signal transmission function of the first ROC 031 and the signal transmission function of the first radio frequency FEM 032; turning off the first radio frequency signal
  • the signal receiving function of the processing circuit 03 may refer to turning off the signal receiving function of the first ROC 031 and the signal receiving function of the first radio frequency FEM 032.
  • turning off the signal transmission function of the second radio frequency signal processing circuit 04 may refer to turning off the signal transmission function of the second ROC 041 and the signal transmission function of the second radio frequency FEM 042; turning off the signal transmission function of the second radio frequency signal processing circuit 04
  • the signal receiving function may refer to turning off the signal receiving function of the second ROC 041 and the signal receiving function of the second radio frequency FEM 042.
  • the power consumption of the RF signal processing circuit can be effectively reduced.
  • the power consumption of the RF signal processing circuit can be reduced, and on the other hand, it can be ensured that neither ROC nor RF FEM receives the transmission of other RF signal processing circuits.
  • the signal with higher intensity ensures the longevity and working performance of ROC and RF FEM.
  • each transceiver control interface 11 is connected to a radio frequency signal processing circuit.
  • the switch circuit 01 can send an enable signal for controlling the signal transceiver function of the radio frequency signal processing circuit to the radio frequency signal processing circuit through the transceiver control interface 11, such as transmit enable signal, receive enable signal, transmit disable signal, and receive disable Signal etc.
  • each transceiver control interface 11 can be connected to an ROC in a radio frequency signal processing circuit.
  • An FEM control interface 12 is also provided in the ROC in each radio frequency signal processing circuit.
  • the enable signal can be forwarded to the radio frequency FEM through the FEM control interface 12. That is, the switch circuit 01 can control the signal transceiving function of the ROC to be turned on or off through the transceiving control interface 11, and can control the signal transceiving function of the radio frequency FEM to be turned on or off through the FEM control interface 12 of the ROC.
  • each transceiver control interface 11 can be respectively connected to an ROC and a radio frequency FEM in a radio frequency signal processing circuit.
  • the switch circuit 01 can directly control the on or off of the signal transceiving function of the ROC through the transceiving control interface 11, and control the on or off of the signal transceiving function of the radio frequency FEM.
  • each transceiver control interface 11 may be connected to the radio frequency signal processing circuit through a hard wire.
  • the enable signal sent by the switch circuit 01 through the transceiver control interface 11 may be a high and low level signal.
  • the radio frequency signal processing circuit After the radio frequency signal processing circuit receives the enable signal, it can directly adjust its signal transceiver state according to the level of the enable signal.
  • the hard wire refers to a physical connection wire or a wire printed on a printed circuit board (PCB).
  • each transceiving control interface 11 is a serial port, and each transceiving control interface 11 may be connected to the radio frequency signal processing circuit through a clock line and a data line.
  • the enable signal sent by the switch circuit 01 through the transceiver control interface 11 may be a control frame. After the radio frequency signal processing circuit receives the control frame, it needs to decode and analyze the control frame, and adjust its signal according to the analysis result. Send and receive status.
  • each circuit through the signal transmission process in the communication device may be turned off in sequence according to the signal transmission sequence.
  • the signal receiving function of the second radio frequency signal processing circuit 04 when the signal receiving function of the second radio frequency signal processing circuit 04 needs to be turned off, the signal receiving function of the second radio frequency FEM 042 and the signal receiving function of the second ROC 041 can be turned off in sequence , The signal receiving function of the second AFE 10 and the signal receiving function of the second DFE 09.
  • the signal transmission function of the second radio frequency signal processing circuit 04 when the signal transmission function of the second radio frequency signal processing circuit 04 needs to be turned off, the signal transmission function of the second DFE 09, the signal transmission function of the second AFE 10, and the second radio frequency signal processing circuit 04 can be turned off in sequence.
  • each circuit needs a certain transient response time when its signal receiving function or signal transmitting function is turned off, when the signal receiving function (or signal transmitting function) of each circuit is turned off, two adjacent circuits close its signal receiving There is a certain delay in the time of the function (or signal transmission function). As a result, it can be ensured that each circuit can turn off its signal receiving function (or signal transmitting function) after processing the received signal, that is, the reliability of the operation of each circuit can be ensured.
  • the time delay for two adjacent circuits to turn off their signal receiving function (or signal transmitting function) may be in the order of nanoseconds (ns), for example, it may be several hundred ns.
  • the switch circuit 01 may sequentially send a reception disable signal to the second ROC 041, the second AFE 10, and the second DFE 09, and the reception is disabled every two consecutive transmissions. There is a certain delay in the transmission of the signal.
  • the second ROC 041 After the second ROC 041 receives the reception deactivation signal, it can first forward the reception deactivation signal to the second radio frequency FEM 042, and the second ROC 041 can forward the reception deactivation signal and then shut down after a period of delay. Its own signal receiving function.
  • the switch circuit 01 can sequentially send a transmission disable signal to the second DFE 09, the second AFE 10, and the second ROC 041, and the transmission is disabled every two consecutive transmissions. There is a certain delay in the transmission of the signal.
  • the second ROC 041 After the second ROC 041 receives the transmission deactivation signal, it can first turn off its own signal receiving function, and then forward the transmission deactivation signal to the second radio frequency FEM 042 after a period of delay.
  • the first radio frequency signal processing circuit 03 may be a radio frequency signal processing circuit for processing service signals
  • the second radio frequency signal processing circuit 04 may be a radio frequency signal processing circuit for implementing auxiliary functions.
  • the auxiliary functions can include dynamic frequency selection, spectrum scanning, signal strength positioning, and radio frequency fingerprint identification.
  • the second radio frequency signal processing circuit 04 may be a radio frequency signal processing circuit dedicated to implement auxiliary functions, that is, the second radio frequency signal processing circuit 04 does not process service signals.
  • the second radio frequency signal processing circuit 04 can be used to implement auxiliary functions and can also process service signals.
  • the baseband circuit 02 can switch the working mode of the second radio frequency signal processing circuit 04 according to the requirements of the application scenario to control the second radio frequency signal processing circuit 04 to process service signals, or control the second radio frequency signal processing circuit 04 to achieve Subsidiary function.
  • the communication device includes n+1 radio frequency signal processing circuits, and n is an integer greater than 1.
  • the baseband circuit 02 can control the n+1 radio frequency signal processing circuits to process service signals.
  • the communication device can respond to the mode switching instruction triggered by the user to switch the working mode of a radio frequency signal processing circuit, so that the radio frequency signal processing circuit realizes the auxiliary function, and the remaining n radio frequency signal processing circuits Then you can continue to process business signals. At this time, the number of antennas in the cell served by the communication device is switched from n+1 to n.
  • the baseband circuit 02 can also configure a bitmap for indicating the operating mode of each radio frequency signal processing circuit according to the result of the switching.
  • the bitmap includes n+1 identification bits (bits), and each identification bit is used to indicate whether a radio frequency signal processing circuit is used to process service signals. If the identification bit is a valid value (for example, 1), it means that the radio frequency signal processing circuit indicated by the identification bit is used to process service signals; if the identification bit is an invalid value (for example, 0), it means the radio frequency signal processing circuit indicated by the identification bit It is not used to process service signals, that is, the radio frequency signal processing circuit is used to implement auxiliary functions.
  • the baseband circuit 02 may include a baseband module for processing service signals and a baseband module for implementing the auxiliary function. After the baseband circuit 02 receives the signal sent by the radio frequency signal processing circuit, it can determine which baseband module the signal should be forwarded to according to the bit mapping.
  • each radio frequency signal processing circuit in the communication device is all the same, for example, all are 2.4 GHz or all are 5 GHz.
  • each radio frequency signal processing circuit is connected to an antenna, and different radio frequency signal processing circuits are connected to different antennas.
  • the communication device may include n first radio frequency signal processing circuits 03 and one second radio frequency signal processing circuit 04. Among them, n can be equal to 3 or 4.
  • the working sequence of the n first radio frequency signal processing circuits 03 may be the same.
  • the working timings of the n first radio frequency signal processing circuits 03 may all be the timings shown by the signal TX1 and the signal RX1 in FIG. 4.
  • the working frequency bands of each radio frequency signal processing circuit in the communication device are different.
  • the communication device may include: n first radio frequency signal processing circuits 03 working in the first frequency band, n first radio frequency signal processing circuits 03 working in the second frequency band, and at least one second radio frequency signal processing circuit 03 working in the first frequency band.
  • n can be equal to 3 or 4.
  • the at least one refers to one or more, and multiple refers to two or more.
  • the first frequency band may be 2.4 GHz
  • the second frequency band may be 5 GHz.
  • the working timings of the n first radio frequency signal processing circuits 03 working in the same frequency band are the same, and the working timings of any two first radio frequency signal processing circuits 03 working in different frequency bands may be the same or different.
  • the switching circuit in the communication device can control the first radio frequency signal processing circuit 03 and the second radio frequency signal processing circuit 04 to receive signals in the same uplink period, that is, the two types of radio frequency signal processing circuits work in a background service scenario.
  • the switch circuit 01 can turn on the signal receiving function of the second radio frequency signal processing circuit 04 operating in the first frequency band during the period when the first radio frequency signal processing circuit 03 operating in the first frequency band receives signals.
  • the switch circuit 01 can turn on the signal receiving function of the second radio frequency signal processing circuit 04 operating in the second frequency band during the period when the first radio frequency signal processing circuit 03 operating in the second frequency band receives signals.
  • FIG. 10 is a timing diagram of another signal sent by a switch circuit to the radio frequency signal processing circuit according to an embodiment of the present application.
  • the signal TX11 and the signal RX11 are the enable signals sent by the switching circuit to the first radio frequency signal processing circuit 03 working in the first frequency band
  • the signals TX12 and the signal RX12 are the switching circuit sent to the first radio frequency working in the second frequency band.
  • Signal TX21 and signal RX21 are the enable signals sent by the switch circuit to the second radio frequency signal processing circuit 04 working in the first frequency band
  • the signal TX22 and signal RX22 are sent by the switch circuit to the second radio frequency signal processing circuit working in the second frequency band 04's enable signal.
  • the switch circuit 01 sends the signal to the second radio frequency signal processing circuit 04 working in the first frequency band.
  • TX21 and signal RX21 are both low level.
  • the signal transmitting function and signal receiving function of the second radio frequency signal processing circuit 04 working in the first frequency band are both turned off.
  • the signal TX21 sent by the switch circuit 01 to the second radio frequency signal processing circuit 04 working in the first frequency band is low, and the signal RX21 is high.
  • the signal transmitting function of the second radio frequency signal processing circuit 04 working in the first frequency band is turned off, and the signal receiving function is turned on.
  • the switch circuit 01 transmits to the second radio frequency signal processing circuit 04 working in the second frequency band.
  • the signal TX22 and the signal RX22 are both low, and the signal transmitting function and signal receiving function of the second radio frequency signal processing circuit 04 working in the second frequency band are both turned off.
  • the signal TX22 sent by the switch circuit 01 to the second radio frequency signal processing circuit 04 working in the second frequency band is low, and the signal RX22 is at a high level, the signal transmitting function of the second radio frequency signal processing circuit 04 working in the second frequency band is turned off, and the signal receiving function is turned on.
  • the time that the signal receiving function of the second radio frequency signal processing circuit 04 is turned on each time can be less than or equal to the first radio frequency signal processing circuit 03 operating in the same frequency band as the second radio frequency signal processing circuit 04 The length of time that the signal receiving function is turned on each time.
  • the switch circuit 01 can also control the second antenna. 2.
  • the signal receiving function of the radio frequency signal processing circuit 04 is always on. For example, the signal RX21 and the signal RX22 sent by the switch circuit 01 to the second radio frequency signal processing circuit 04 may always be at a high level.
  • the switch circuit provided in the embodiment of the present application can at least control each radio frequency signal processing circuit to operate in five different modes.
  • the first mode is: in a background business scenario, the working frequency bands of each radio frequency signal processing circuit are the same, and the switching circuit turns on the signal reception of the second radio frequency signal processing circuit during the first uplink period when the first radio frequency signal processing circuit receives signals.
  • FIG. 4 for the timing sequence of the enable signal sent by the switch circuit in the first mode.
  • the second mode is: in a background service scenario, the working frequency bands of multiple first radio frequency signal processing circuits are different, and the working frequency bands of multiple second radio frequency signal processing circuits are different.
  • the switch circuit turns on the signal receiving function of the first radio frequency signal processing circuit and the second radio frequency signal processing circuit with the same working frequency band in the same uplink time period. For the timing sequence of the enable signal sent by the switch circuit in the second mode, refer to FIG. 10.
  • the third mode is: in a background service scenario, the working frequency bands of the plurality of first radio frequency signal processing circuits are different, the working frequency bands of the plurality of second radio frequency signal processing circuits are different, and the isolation between antennas is relatively high.
  • the switch circuit controls the signal receiving function of the second radio frequency signal processing circuit to be in a normally open state.
  • the fourth mode is: in a time-sharing work scenario, the switch circuit controls the first radio frequency signal processing circuit and the second radio frequency signal processing circuit to work in time sharing. In addition, during the working period of the second radio frequency signal processing circuit, the switch circuit controls the signal transmitting function and the signal receiving function of the second radio frequency signal processing circuit to be turned on alternately.
  • the switch circuit controls the timing sequence of the enable signal sent by the switch circuit in the fourth mode to be turned on alternately.
  • the fifth mode is: in a time-sharing work scenario, the switch circuit controls the first radio frequency signal processing circuit and the second radio frequency signal processing circuit to work in time sharing. In addition, during the working period of the second radio frequency signal processing circuit, the switch circuit controls the signal transmitting function of the second radio frequency signal processing circuit to turn off and the signal receiving function to turn on. Refer to FIG. 8 for the timing sequence of the enable signal sent by the switch circuit in the fifth mode.
  • the switch circuit provided by the embodiments of the present application can not only control each radio frequency signal processing circuit in a communication device to work in different modes, but can also control each radio frequency signal processing circuit to switch between different working modes according to the needs of application scenarios, thereby effectively improving
  • the flexibility in scheduling configuration of the radio frequency signal processing circuit is improved, and the flexibility in working of the communication device is improved.
  • the embodiments of the present application provide a communication device.
  • the switch circuit in the communication device can turn off the signal receiving function of another radio frequency signal processing circuit during the period when a certain radio frequency signal processing circuit is transmitting signals, and can During the period when a certain radio frequency signal processing circuit receives signals, the signal transmission function of another radio frequency signal processing circuit is turned off.
  • the switch circuit can control the cooperation of various radio frequency signal processing circuits in the communication device, the radio frequency signal processing circuit in the communication device can not receive signals transmitted by other radio frequency signal processing circuits, thereby avoiding the radio frequency signal processing circuit.
  • the service life of the radio frequency signal processing circuit in the communication device is ensured because the service life of the radio frequency signal processing circuit in the communication device is ensured due to the long working time in the saturation zone.
  • switch circuit provided in the embodiments of the present application can be implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), and the above-mentioned PLD can be a complex program logic.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • Device complex programmable logical device, CPLD
  • field-programmable gate array field-programmable gate array
  • FPGA field-programmable gate array
  • GAL generic array logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

提供了一种通信设备及其信号收发方法、开关电路。该通信设备包括第一射频信号处理电路和第二射频信号处理电路;该方法可以在第一下行时段,开启第一射频信号处理电路的信号发射功能,并关闭第二射频信号处理电路的信号接收功能;并可以在第一上行时段,开启第一射频信号处理电路的信号接收功能,并关闭第二射频信号处理电路的信号发射功能。由此,通信设备中的射频信号处理电路不会接收到其他射频信号处理电路发射的信号,从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了通信设备中的射频信号处理电路的工作性能和使用寿命。

Description

通信设备及其信号收发方法、开关电路
本申请要求于2020年6月22日提交的申请号为202010574741.6、发明名称为“通信设备及其信号收发方法、开关电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种通信设备及其信号收发方法、开关电路。
背景技术
在无线局域网(wireless local area network,WLAN)业务中,为了提升接入点(access point,AP)的性能,可以在AP中集成更多数量的射频信号处理电路,该射频信号处理电路用于处理其所连接的天线收发的信号。
当某个天线所连接的射频信号处理电路处于发射(transmit,TX)模式时,若该射频信号处理电路发射的信号的强度较高,且该天线与其他天线之间的隔离度较差,则其他天线连接的射频信号处理电路接收到的信号的强度较高。由此可能导致其他天线所连接的射频信号处理电路工作在饱和区。长此以往,会加速射频信号处理电路的老化,影响射频信号处理电路的寿命。
发明内容
本申请提供了一种通信设备及其信号收发方法、开关电路,可以解决射频信号处理电路因长时间接收到强度较高的信号而加速老化的技术问题。
一方面,提供了一种通信设备的信号收发方法,该通信设备包括第一射频信号处理电路和第二射频信号处理电路;该方法可以在第一下行时段,开启该第一射频信号处理电路的信号发射功能,关闭该第二射频信号处理电路的信号接收功能;并且,可以在第一上行时段,开启该第一射频信号处理电路的信号接收功能,关闭该第二射频信号处理电路的信号发射功能。
基于本申请提供的方案,通信设备中的各个射频信号处理电路可以协同工作,而并非独立工作,使得射频信号处理电路不会接收到其他射频信号处理电路发射的信号。从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该通信设备中的射频信号处理电路的工作性能和使用寿命。
可选的,该第一射频信号处理电路和该第二射频信号处理电路的工作频段相同;在该第一下行时段,该方法还包括:关闭该第二射频信号处理电路的信号发射功能。
通过在第一下行时段关闭该第二射频信号处理电路的信号发射功能,可以避免两个工作频段相同的射频信号处理电路同时发射信号而产生干扰,确保了信号发射的性能。
可选的,在该第一上行时段,该方法还包括:开启该第二射频信号处理电路的信号接收功能。
通过控制两个射频信号处理电路在同一上行时段内接收信号,可以有效提高射频信号处理电路接收信号的效率。
可选的,该方法还包括:在第二上行时段,开启该第二射频信号处理电路的信号接收功能,关闭该第一射频信号处理电路的信号发射功能。
通过在第二射频信号处理电路接收信号的时段,关闭该第一射频信号处理电路的信号发射功能,可以确保该第二射频信号处理电路不会接收到第一射频信号处理电路发射的信号,进而可以避免第二射频信号处理电路由于长时间工作在饱和区而影响其寿命。
可选的,该方法还包括:在第二下行时段,开启该第二射频信号处理电路的信号发射功能,关闭该第一射频信号处理电路的信号接收功能。
通过在第二射频信号处理电路发射信号的时段,关闭该第一射频信号处理电路的信号接收功能,可以确保该第一射频信号处理电路不会接收到第二射频信号处理电路发射的信号,进而可以避免第一射频信号处理电路由于长时间工作在饱和区而影响其寿命。
另一方面,提供了一种通信设备的信号收发方法,该通信设备包括第一射频信号处理电路以及第二射频信号处理电路;该方法包括:在第一时段,允许该第一射频信号处理电路的信号收发功能,关闭该第二射频信号处理电路的信号收发功能;在第二时段,关闭该第一射频信号处理电路的信号收发功能,允许该第二射频信号处理电路的信号收发功能。
通过控制两个射频信号处理电路分时工作,可以有效避免两个射频信号处理电路工作时的相互干扰,不仅确保了各个射频信号处理电路的寿命,且确保了各个射频信号处理电路收发信号的可靠性和稳定性。
可选的,该第二时段与该第一时段的间隔大于阈值。由于射频信号处理电路在关闭其信号收发功能时,需要一定的暂态响应时间,因此通过设置该两个时段的间隔大于阈值,可以确保在将一个射频信号处理电路的信号收发功能完全关闭后,再允许另一个射频信号处理电路的信号收发功能。由此,可以有效避免两个射频信号处理电路的相互干扰。
又一方面,提供了一种通信设备中的开关电路,该通信设备还包括第一射频信号处理电路,以及第二射频信号处理电路;该开关电路用于实现上述任一方面提供的信号收发方法。
再一方面,提供了一种通信设备,该通信设备包括第一射频信号处理电路,第二射频信号处理电路,以及如上述方面提供的开关电路;该开关电路分别与该第一射频信号处理电路和该第二射频信号处理电路连接。
可选的,该通信设备还包括基带电路,该开关电路可以集成在该基带电路中。通过将该开关电路集成在基带电路中,可以提高该通信设备中的电路的集成度,避免增加该通信设备的体积。
综上所述,本申请提供了一种通信设备及其信号收发方法、开关电路,该方案可以在通信设备中的某个射频信号处理电路发射信号的时段,关闭另一射频信号处理电路的信号接收功能,并可以在某个射频信号处理电路接收信号的时段,关闭另一射频信号处理电路的信号发射功能。由于可以控制通信设备中的各个射频信号处理电路协同工作,因此可以使得该通信设备中的射频信号处理电路不会接收到其他射频信号处理电路发射的信号,从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该通信设备中的射频信号处理电路的工作性能和使用寿命。
附图说明
图1是本申请实施例提供的一种通信设备的结构示意图;
图2是本申请实施例提供的一种通信设备的信号收发方法的流程图;
图3是本申请实施例提供的一种开关电路向射频信号处理电路发送的信号的时序图;
图4是本申请实施例提供的另一种开关电路向射频信号处理电路发送的使能信号的时序图;
图5是本申请实施例提供的又一种开关电路向射频信号处理电路发送的使能信号的时序图;
图6是本申请实施例提供的另一种通信设备的信号收发方法的流程图;
图7是本申请实施例提供的再一种开关电路向射频信号处理电路发送的使能信号的时序图;
图8是本申请实施例提供的再一种开关电路向射频信号处理电路发送的使能信号的时序图;
图9是本申请实施例提供的另一种通信设备的结构示意图;
图10是本申请实施例提供的再一种开关电路向射频信号处理电路发送的使能信号的时序图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的通信设备及其信号收发方法、开关电路。
为了改善AP的性能,AP中可以集成两种类型的天线。其中第一类天线所连接的射频信号处理电路用于处理业务信号,第二类天线所连接的射频信号处理电路用于实现附属功能。该附属功能可以包括动态频率选择、频谱扫描、信号强度定位和射频指纹识别等功能中的一种或多种。
AP中可以集成多个第一类天线和多个第二类天线。其中每一类天线所连接的射频信号处理电路的工作频段可以为2.4吉赫兹(GHz)或者5GHz,两类天线所连接的射频信号处理电路的工作频段可以相同也可以不同,且同一类的不同天线所连接的射频信号处理电路的工作频段可以相同也可以不同。通常,该第二类天线也可以称为第三射频天线或者扫描射频天线。
天线连接的射频信号处理电路可以包括射频芯片(radio on chip,ROC)和射频前端模组(front-end modules,FEM)。其中射频芯片也可以称为射频集成电路(radio frequency integrated circuit,RFIC)。该射频信号处理电路用于处理其所连接的天线的收发信号。该AP中的射频信号处理电路的信号发射功能和信号接收功能可以分时开启。也即是,射频信号处理电路的工作时段可以划分为下行时段和上行时段。在下行时段中,射频信号处理电路的信号发射功能开启,信号接收功能关闭,射频信号处理电路能够向其所连接的天线传输待发射的信号。在上行时段中,射频信号处理电路的信号接收功能开启,信号发射功能关闭,射频信号处理电路能够处理其所连接的天线接收到的信号。也即是,在下行时段中,射频信号处理电路处于发射模式,在上行时段中,射频信号处理电路处于接收模式。
通常,AP中的第二类天线的射频信号处理电路独立于第一类天线的射频信号处理电路工作,即第二类天线的射频信号处理电路的信号收发模式不受第一类天线的射频信号处理电路的信号收发模式的影响。由于两类天线所连接的射频信号处理电路的信号收发模式互不影响, 且第二类天线的射频信号处理电路处于接收模式的时长通常较长,因此若第一类天线发射的业务信号的强度较高,且两类天线之间的隔离度较差,则第二类天线的射频信号处理电路将长时间工作在饱和区。长此以往,会加速第二类天线的射频信号处理电路的老化,影响射频信号处理电路的寿命。
根据射频信号处理电路的平均使用寿命,以及处于不同信号收发模式的平均时长进行估算,第二类天线的射频信号处理电路会有约2.4年的时间接收到强度较高的信号。根据芯片设计仿真,射频信号处理电路中的ROC在输入的信号强度小于-2分贝毫瓦(dBm)的情况下才能满足2.4年的寿命要求。通过对天线的发射功率等参数进行估算可以确定,AP中两类天线的隔离度需大于44dB,才能保证射频芯片接收到的信号的强度小于-2dBm。但是,该44dB的隔离度在小尺寸AP中较难实现。
为了减小ROC接收到的信号的强度,可以在AP中增加自动增益控制(automatic gain control)电路。该AGC电路用于在检测到强度较大的信号时减小该射频FEM中的放大器的增益,从而可以减小ROC接收到的信号的强度。但是该方案对输入至ROC的信号的强度的衰减较为有限,且增加的AGC电路会增加AP的尺寸和成本。
或者,还可以在AP中增加逻辑器件,并在该第二类天线的ROC和射频FEM之间增加开关器件。在第一类天线的射频信号处理电路处于发射模式时,该逻辑器件可以控制该开关器件关断,从而切断第二类天线的ROC和射频FEM之间的通路,由此可以避免ROC接收到强度较高的信号。但是该方案中射频FEM还是会接收到强度较高的信号,即射频FEM的还是会有加速老化的风险。并且,该方案中增加的逻辑器件和开关器件会增加AP的成本。
本申请实施例提供了一种通信设备及其信号收发方法、开关电路,可以在避免增加通信设备的尺寸和成本的前提下,有效改善射频信号处理电路因长时间接收到强度较高的信号而加速老化的问题。
图1是本申请实施例提供的一种通信设备的结构示意图,如图1所示,该通信设备包括开关电路01、基带电路02、第一射频信号处理电路03和第二射频信号处理电路04。其中,该开关电路01分别与基带电路02、第一射频信号处理电路03和第二射频信号处理电路04连接。该开关电路01用于在基带电路02的指示下,控制第一射频信号处理电路03在不同时段的信号收发功能,以及控制第二射频信号处理电路04在不同时段的信号收发功能。该基带电路02分别与第一射频信号处理电路03和第二射频信号处理电路04连接。例如,该基带电路02通过该开关电路01分别与第一射频信号处理电路03和第二射频信号处理电路04连接。该基带电路02用于处理第一射频信号处理电路03接收和发射的信号,以及处理第二射频信号处理电路04接收和发射的信号。
图2是本申请实施例提供的一种通信设备的信号收发方法的流程图,该方法可以应用于该通信设备的开关电路中。例如,可以应用于如图1所示的开关电路01。参考图2,该方法包括:
步骤101、在第一下行时段,开启该第一射频信号处理电路的信号发射功能,关闭该第二射频信号处理电路的信号接收功能。
在本申请实施例中,该第一下行时段为第一射频信号处理电路发射信号的时段。因此, 在该第一下行时段,通信设备中的开关电路可以开启该第一射频信号处理电路的信号发射功能,并关闭该第二射频信号处理电路的信号接收功能。例如,开关电路可以向第一射频信号处理电路发送第一发射启用信号,并向该第二射频信号处理电路发送第一接收停用信号。第一射频信号处理电路可以响应于该第一发射启用信号开启其信号发射功能,该第二射频信号处理电路可以响应于该第一接收停用信号关闭其信号接收功能。并且,在该第一下行时段中,该第二射频信号处理电路的信号发射功能可以开启,也可以关闭。
由于开关电路可以在第一射频信号处理电路发射信号的时段,直接关闭该第二射频信号处理电路的信号接收功能,因此该第二射频信号处理电路不会接收到第一射频信号处理电路发射的信号。由此,可以避免第二射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该第二射频信号处理电路的性能和使用寿命。
步骤102、在第一上行时段,开启该第一射频信号处理电路的信号接收功能,关闭该第二射频信号处理电路的信号发射功能。
在本申请实施例中,该第一上行时段为第一射频信号处理电路接收信号的时段。因此,在该第一上行时段,通信设备中的开关电路可以开启该第一射频信号处理电路的信号接收功能,并关闭该第二射频信号处理电路的信号发射功能。例如,开关电路可以向第一射频信号处理电路发送第一接收启用信号,并向该第二射频信号处理电路发送第一发射停用信号。第一射频信号处理电路可以响应于该第一接收启用信号开启其信号接收功能,该第二射频信号处理电路可以响应于该第一发射停用信号关闭其信号发射功能。并且,在该第一上行时段中,该第二射频信号处理电路的信号接收功能可以开启,也可以关闭。
由于开关电路可以在第一射频信号处理电路接收信号的时段,直接关闭该第二射频信号处理电路的信号发射功能,因此该第一射频信号处理电路不会接收到第二射频信号处理电路发射的信号。由此,可以避免第一射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该第一射频信号处理电路的性能和使用寿命。
步骤103、在第二上行时段,开启该第二射频信号处理电路的信号接收功能,关闭该第一射频信号处理电路的信号发射功能。
在本申请实施例中,该第二上行时段为第二射频信号处理电路接收信号的时段。因此,在该第二上行时段,通信设备中的开关电路可以开启该第二射频信号处理电路的信号接收功能,并关闭该第一射频信号处理电路的信号发射功能。例如,开关电路可以向第二射频信号处理电路发送第二接收启用信号,并向该第一射频信号处理电路发送第二发射停用信号。第二射频信号处理电路可以响应于该第二接收启用信号开启其信号接收功能,该第一射频信号处理电路可以响应于该第二发射停用信号关闭其信号发射功能。并且,在该第二上行时段中,该第一射频信号处理电路的信号接收功能可以开启,也可以关闭。
由于开关电路可以在第二射频信号处理电路接收信号的时段,直接关闭该第一射频信号处理电路的信号发射功能,因此该第二射频信号处理电路不会接收到第一射频信号处理电路发射的信号。由此,可以避免第二射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该第二射频信号处理电路的性能和使用寿命。
步骤104、在第二下行时段,开启该第二射频信号处理电路的信号发射功能,关闭该第一射频信号处理电路的信号接收功能。
在本申请实施例中,该第二下行时段为第二射频信号处理电路发射信号的时段。因此, 在该第二下行时段,通信设备中的开关电路可以开启该第二射频信号处理电路的信号发射功能,并关闭该第一射频信号处理电路的信号接收功能。例如,开关电路可以向第二射频信号处理电路发送第二发射启用信号,并向该第一射频信号处理电路发送第二接收停用信号。第二射频信号处理电路可以响应于该第二发射启用信号开启其信号发射功能,该第一射频信号处理电路可以响应于该第二接收停用信号关闭其信号接收功能。并且,在该第二下行时段中,该第一射频信号处理电路的信号发射功能可以开启,也可以关闭。
由于开关电路可以在第二射频信号处理电路发射信号的时段,直接关闭该第一射频信号处理电路的信号接收功能,因此该第一射频信号处理电路不会接收到第二射频信号处理电路发射的信号。由此,可以避免第一射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该第一射频信号处理电路的性能和使用寿命。
在本申请实施例中,该第一射频信号处理电路和该第二射频信号处理电路的工作频段可以相同。例如,该第一射频信号处理电路和该第二射频信号处理电路的工作频段可以均为2.4GHz,或者均为5GHz。
相应的,在上述步骤101所示的第一下行时段中,该方法还可以包括:关闭该第二射频信号处理电路的信号发射功能。例如,在该第一下行时段中,该开关电路可以向第二射频信号处理电路发送该第一发射停用信号。
同理,在上述步骤104所示的第二下行时段中,该方法还可以包括:关闭该第一射频信号处理电路的信号发射功能。例如,在该第二下行时段中,该开关电路还可以向第一射频信号处理电路发送该第二发射停用信号。
由于该第一射频信号处理电路和该第二射频信号处理电路的工作频段相同,因此该两个射频信号处理电路同时发射信号时会互相干扰。在本申请实施例中,开关电路在第一射频信号处理电路发射信号的时段,关闭该第二射频信号处理电路的信号发射功能,并在第二射频信号处理电路发射信号的时段,关闭该第一射频信号处理电路的信号发射功能。由此,可以避免两个工作频段相同的射频信号处理电路同时发射信号时产生的干扰,确保信号发射的性能。
在本申请实施例中,该开关电路发送的第一发射启用信号、第一接收启用信号、第二发射启用信号以及第二接收启用信号可以均为高电平的信号。该开关电路发送的第一发射停用信号、第一接收停用信号、第二发射停用信号以及第二接收停用信号可以均为低电平的信号。
图3是本申请实施例提供的一种开关电路向射频信号处理电路发送的信号的时序图。图3中的信号TX1表示开关电路发送的用于控制第一射频信号处理电路的信号发射功能的使能信号。该信号TX1为高电平,即相当于发送第一发射启用信号,信号TX1为低电平,即相当于发送第二发射停用信号。信号RX1表示开关电路发送的用于控制第一射频信号处理电路的信号接收功能的使能信号。该信号RX1为高电平,即相当于发送第一接收启用信号,信号RX1为低电平,即相当于发送第二接收停用信号。
信号TX2表示开关电路发送的用于控制第二射频信号处理电路的信号发射功能的使能信号。信号TX2为高电平,即相当于发送第二发射启用信号,信号TX2为低电平,即相当于发送第一发射停用信号。信号RX2表示开关电路发送的用于控制第二射频信号处理电路的信号接收功能的使能信号。信号RX2为高电平,即相当于发送第二接收启用信号,信号RX2为低电平,即相当于发送第一接收停用信号。
如图3所示,在第一下行时段t11,开关电路发送的信号TX1为高电平,信号RX1、信号TX2和信号RX2均为低电平。此时,第一射频信号处理电路的信号发射功能开启,信号接收功能关闭,第二射频信号处理电路的信号发射功能和信号接收功能均关闭。
在第一上行时段t12,开关电路发送的信号RX1为高电平,信号TX1、信号TX2和信号RX2均为低电平。此时,第一射频信号处理电路的信号接收功能开启,信号发射功能关闭,第二射频信号处理电路的信号发射功能和信号接收功能均关闭。
在第二下行时段t21,开关电路发送的信号TX2为高电平,信号RX2、信号TX1和信号RX1均为低电平。此时,第二射频信号处理电路的信号发射功能开启,信号接收功能关闭,第一射频信号处理电路的信号发射功能和信号接收功能均关闭。
在第二上行时段t22,开关电路发送的信号RX2为高电平,信号TX1、信号RX1和信号TX2均为低电平。此时,第二射频信号处理电路的信号接收功能开启,信号发射功能关闭,第一射频信号处理电路的信号发射功能和信号接收功能均关闭。
在本申请实施例中,上述步骤101至步骤104的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如,步骤102可以在步骤101之前执行;或者,步骤103可以在步骤102之前执行;又或者,步骤104可以在步骤103之前执行。
再或者,上述步骤103和步骤104均可以根据情况删除,且在上述步骤102所示的第一上行时段中,该方法还可以包括:开启该第二射频信号处理电路的信号接收功能。也即是,在本申请实施例中,开关电路也可以控制该第二射频信号处理电路的信号发射功能始终处于关闭状态,并可以同时开启两个射频信号处理电路的信号接收功能,即该两个射频信号处理电路可以在同一上行时段内接收信号。通过控制两个射频信号处理电路在同一上行时段内接收信号,可以有效提高射频信号处理电路接收信号的效率。
图4是本申请实施例提供的另一种开关电路向射频信号处理电路发送的信号的时序图。参考图4所示的时序可以看出,该开关电路发送的信号TX2可以始终为低电平,且该信号RX2在第一上行时段t12为高电平。由此,该开关电路可以控制第二射频信号处理电路的信号发射功能始终处于关闭状态,并且可以在第一上行时段t12同时开启两个射频信号处理电路的信号接收功能。
再或者,上述步骤103可以保留,而步骤104可以根据情况删除。也即是,开关电路也可以控制该第二射频信号处理电路的信号发射功能始终处于关闭状态,并且可以在不同的上行时段分别开启两个射频信号处理电路的信号接收功能。即开关电路可以分时开启不同射频信号处理电路的信号接收功能。
再或者,上述步骤103可以保留,步骤104可以根据情况删除,且在上述步骤101中,开关电路可以开启该第二射频信号处理电路的信号发射功能。也即是,开关电路可以在第一下行时段,同时开启两个射频信号处理电路的信号发射功能,并且可以在不同的上行时段分别开启两个射频信号处理电路的信号接收功能。
图5是本申请实施例提供的又一种开关电路向射频信号处理电路发送的信号的时序图。参考图5所示的时序可以看出,该开关电路发送的信号TX1和信号TX2在第一下行时段t11均为高电平,信号RX2在第一上行时段t12为低电平,在第二上行时段t22为高电平,信号RX1在第一上行时段t12为高电平,在该第二上行时段t22为低电平。由此,该开关电路可以在一个下行时段(例如第一下行时段t11)同时开启两个射频信号处理电路的信号发射功能, 并且可以在不同的上行时段分别开启两个射频信号处理电路的信号接收功能。
综上所述,本申请实施例提供了一种通信设备的信号收发方法,该方法可以在通信设备中的某个射频信号处理电路发射信号的时段,关闭另一射频信号处理电路的信号接收功能,并可以在某个射频信号处理电路接收信号的时段,关闭另一射频信号处理电路的信号发射功能。由于可以控制通信设备中的各个射频信号处理电路协同工作,因此可以使得该通信设备中的射频信号处理电路不会接收到其他射频信号处理电路发射的信号,从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该通信设备中的射频信号处理电路的工作性能和使用寿命。
图6是本申请实施例提供的另一种通信设备的信号收发方法的流程图,该方法可以应用于该通信设备的开关电路。例如,可以应用于如图1所示的开关电路01。该方法中,开关电路01可以控制通信设备中的第一射频信号处理电路和第二射频信号处理电路分时工作。参考图6,该方法包括:
步骤201、在第一时段,允许该第一射频信号处理电路的信号收发功能,关闭该第二射频信号处理电路的信号收发功能。
在本申请实施例中,该第一时段为第一射频信号处理电路收发信号的时段。在该第一时段内,开关电路可以关闭第二射频信号处理电路的信号发射功能和信号接收功能。并且,开关电路可以开启第一射频信号处理电路的信号发射功能,或者开启该第一射频信号处理电路的信号接收功能,或者交替开启该第一射频信号处理电路的信号发射功能和信号接收功能。
步骤202、在第二时段,关闭该第一射频信号处理电路的信号收发功能,允许该第二射频信号处理电路的信号收发功能。
在本申请实施例中,该第二时段为第二射频信号处理电路收发信号的时段。在该第二时段内,开关电路可以关闭第一射频信号处理电路的信号发射功能和信号接收功能。并且,开关电路可以开启第二射频信号处理电路的信号发射功能,或者开启该第二射频信号处理电路的信号接收功能,或者交替开启该第二射频信号处理电路的信号发射功能和信号接收功能。
通过控制两个射频信号处理电路分时工作,可以有效避免两个射频信号处理电路工作时的相互干扰,不仅确保了每个射频信号处理电路的寿命,且确保了每个射频信号处理电路收发信号的可靠性和稳定性。
图7是本申请实施例提供的再一种开关电路向射频信号处理电路发送的使能信号的时序图,如图7所示,在第一时段T1内,开关电路发送的信号TX2和信号RX2均为低电平,信号TX1和信号RX1交替为高电平。则在该第一时段T1内,开关电路可以关闭第二射频信号处理电路的信号发射功能和信号接收功能,并且可以交替开启该第一射频信号处理电路的信号发射功能和信号接收功能。
在第二时段T2内,如图7所示,开关电路发送的信号TX1和信号RX1均为低电平,信号TX2和信号RX2交替为高电平。则在该第二时段T2内,开关电路可以关闭第一射频信号处理电路的信号发射功能和信号接收功能,并且可以交替开启该第二射频信号处理电路的信号发射功能和信号接收功能。
或者,在第二时段T2内,如图8所示,开关电路发送的信号TX1、信号RX1和信号TX2均为低电平,信号RX2每间隔一段时间为高电平。则在该第二时段T2内,开关电路可以关 闭第一射频信号处理电路的信号发射功能和信号接收功能,关闭该第二射频信号处理电路的信号发射功能,并每间隔一段时间开启该第二射频信号处理电路的信号接收功能。通过在第二时段T2内分时段开启该第二射频信号处理电路的信号接收功能,可以避免增加该第二射频信号处理电路的功耗。当然,在该第二时段T2内,信号RX2也可以持续为高电平,即开关电路可以在第二时段T2内控制第二射频信号处理电路的信号接收功能始终保持开启状态。
在本申请实施例中,结合图7和图8可以看出,该开关电路可以交替执行该步骤201和步骤202,且该步骤201和步骤202的执行顺序可以根据情况调整。
可选的,该第二时段T2与该第一时段T1的间隔ΔT可以大于阈值。该阈值的数量级可以为毫秒(ms)级或者微秒(us)级,例如该阈值可以为5us。
由于射频信号处理电路在关闭其信号收发功能时,需要一定的暂态响应时间(也可以称为瞬态响应时间),因此通过设置该第二时段T2与该第一时段T1的间隔ΔT大于阈值,可以确保在将一个射频信号处理电路的信号收发功能完全关闭后,再允许另一个射频信号处理电路的信号收发功能。由此,可以有效避免两个射频信号处理电路的相互干扰。
综上所述,本申请实施例提供了一种通信设备的信号收发方法,该方法可以控制两个射频信号处理电路分时工作,从而可以有效避免两个射频信号处理电路同时工作时的相互干扰。由此,不仅确保了每个射频信号处理电路的寿命,且确保了每个射频信号处理电路收发信号的可靠性和稳定性。
本申请实施例提供了一种通信设备中的开关电路01,如图1所示,该通信设备还包括第一射频信号处理电路03,以及第二射频信号处理电路04;该开关电路01用于:
在第一下行时段,向该第一射频信号处理电路03发送第一发射启用信号,并向该第二射频信号处理电路04发送第一接收停用信号;以及,在第一上行时段,向该第一射频信号处理电路03发送第一接收启用信号,并向该第二射频信号处理电路04发送第一发射停用信号。
其中,该开关电路01的功能实现可以参考上述方法实施例中步骤101和步骤102的相关描述。
可选的,该第一射频信号处理电路03和该第二射频信号处理电路04的工作频段相同;该开关电路01,还可以用于:在该第一下行时段,向该第二射频信号处理电路04发送该第一发射停用信号。
可选的,该开关电路01,还可以用于在该第一上行时段,向该第二射频信号处理电路04发送第二接收启用信号。
可选的,该开关电路01,还用于在第二上行时段,向该第二射频信号处理电路04发送第二接收启用信号,以及向该第一射频信号处理电路03发送第二发射停用信号。
该开关电路01的功能实现还可以参考上述方法实施例中步骤103的相关描述。
可选的,该开关电路01,还用于在第二下行时段,向该第二射频信号处理电路04发送第二发射启用信号,以及向该第一射频信号处理电路03发送该第二接收停用信号。
该开关电路01的功能实现还可以参考上述方法实施例中步骤104的相关描述。
综上所述,本申请实施例提供了一种开关电路,该开关电路可以在通信设备中的某个射频信号处理电路发射信号的时段,关闭另一射频信号处理电路的信号接收功能,并可以在某个射频信号处理电路接收信号的时段,关闭另一射频信号处理电路的信号发射功能。由于该 开关电路可以控制通信设备中的各个射频信号处理电路协同工作,因此可以使得该通信设备中的射频信号处理电路不会接收到其他射频信号处理电路发射的信号,从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该通信设备中的射频信号处理电路的工作性能和使用寿命。
本申请实施例提供了另一种通信设备中的开关电路01,如图1所示,该通信设备还包括第一射频信号处理电路03,以及第二射频信号处理电路04;该开关电路01可以用于:
在第一时段,向该第一射频信号处理电路03发送第一收发启用信号,并向该第二射频信号处理电路04发送第一收发停用信号;以及,在第二时段,向该第一射频信号处理电路03发送第二收发停用信号,并向该第二射频信号处理电路04发送第二收发启用信号。
其中,该第一收发启用信号可以包括第一发射启用信号或者第一接收启用信号。该第一射频信号处理电路03可以响应于该第一收发启用信号开启其信号发射功能或者信号接收功能。该第一收发停用信号包括第一发射停用信号,以及第一接收停用信号。该第二射频信号处理电路04可以响应于该第一收发停用信号关闭其信号发射功能和信号接收功能。
该第二收发启用信号可以包括第二发射启用信号或者第二接收启用信号。该第二射频信号处理电路04可以响应于该第二收发启用信号开启其信号发射功能或者信号接收功能。该第二收发停用信号可以包括第二发射停用信号,以及第二接收停用信号。该第一射频信号处理电路03可以响应于该第二收发停用信号关闭其信号发射功能和信号接收功能。
该开关电路01的功能实现可以参考上述方法实施例中步骤201和步骤202的相关描述。可选的,该第二时段与该第一时段的间隔大于阈值。
综上所述,本申请实施例提供了一种开关电路,该开关电路可以控制两个射频信号处理电路分时工作,从而可以有效避免两个射频信号处理电路同时工作时的相互干扰。由此,不仅确保了每个射频信号处理电路的寿命,且确保了每个射频信号处理电路收发信号的可靠性和稳定性。
本申请实施例还提供了一种通信设备,该通信设备可以为AP或者小基站等空口接入设备。如图1所示,该通信设备包括第一射频信号处理电路03,第二射频信号处理电路04,以及如上述实施例提供的开关电路01。该开关电路01分别与该第一射频信号处理电路03和该第二射频信号处理电路04连接。该开关电路01用于控制每个射频信号处理电路的信号收发功能的开启或者关闭。
如图1所示,该通信设备还包括基带电路02,该基带电路02可以为集成电路(integrated circuit,IC)。该基带电路02用于对每个射频信号处理电路接收和发射的信号进行处理。该开关电路01可以集成在该基带电路02中。或者,该开关电路01也可以独立于该基带电路02设置。其中,直接将该开关电路01集成在基带电路02中,可以提高该通信设备中的电路的集成度,避免增加该通信设备的成本和体积。
作为一种可选的实现方式,该开关电路01包括时序子电路,该时序子电路可以按照预先配置的固定频率,生成上述用于开启或关闭该射频信号处理电路的信号收发功能的使能信号。该使能信号即包括上述实施例中所述的发射启用信号、接收启用信号、发射停用信号和接收停用信号。也即是,在该实现方式中,开关电路01发送至射频信号处理电路的使能信号的时 序均为预先配置的固定时序。其中,该固定频率可以是开关电路出厂前配置的,或者可以是用户根据通信设备的应用场景预先配置的。
作为另一种可选的实现方式,该时序子电路还可以在基带电路02中的介质访问控制(media access control,MAC)电路或者物理层(physical layer,PHY)电路的控制下,生成上述用于开启或关闭该射频信号处理电路的信号收发功能的使能信号。即该使能信号的时序由该MAC电路或者PHY电路控制。
在本申请实施例中,由于该开关电路01可以控制射频信号处理电路的工作时序,因此该开关电路01也可以称为中央处理时钟系统(central processing time system,CPTS)电路。
可选的,本申请实施例提供的通信设备还包括一个或多个天线。每个射频信号处理电路可以与一个天线连接,且不同的射频信号处理电路所连接的天线可以不同。或者,若两个射频信号处理电路能够分时工作,则该两个射频信号处理电路也可以与同一个天线连接,即该两个射频信号处理电路可以共用同一个天线。
本申请实施例以不同的射频信号处理电路连接不同的天线为例进行说明。图9是本申请实施例提供的另一种通信设备的结构示意图,如图9所示,该通信设备还包括第一天线05和第二天线06。该第一天线05与该第一射频信号处理电路03连接,该第二天线与该第二射频信号处理电路04连接。
继续参考图9,该通信设备还包括:与该第一射频信号处理电路03连接的第一模拟前端(analog front end,AFE)08,与该第一模拟前端08连接的第一数字前端(digital front end,DFE)07,与该第二射频信号处理电路04连接的第二AFE 10,以及与该第二AFE 10连接的第二DFE 09。从图9可以看出,该开关电路01、基带电路02、第一DFE 07、第一AFE 08、第二DFE 09以及第二AFE 10可以均集成在通信设备的系统芯片(system on chip,SOC)中。
在本申请实施例中,该开关电路10还可以用于:在该第一下行时段,关闭该第二AFE 10的信号接收功能,并关闭该第二DFE 09的信号接收功能;以及在该第一上行时段,关闭该第二AFE 10的信号发射功能,并关闭该第二DFE 09的信号发射功能。
由于在该第一下行时段中,第二射频信号处理电路04的信号接收功能关闭,因此同步关闭该第二DFE 09和第二AFE 10的信号接收功能,可以避免不必要的功耗浪费。同理,在该第一上行时段中,同步关闭该第二DFE 09和第二AFE 10的信号发射功能,可以避免增加SOC的功耗。
可选的,该开关电路10还可以用于:在该第二下行时段,关闭该第一AFE 08的信号接收功能,并关闭该第一DFE 07的信号接收功能;以及在该第二上行时段,关闭该第一AFE 08的信号发射功能,并关闭该第一DFE 07的信号发射功能。
由于在该第二下行时段中,第一射频信号处理电路03的信号接收功能关闭,因此同步关闭该第一DFE 07和第一AFE 08的信号接收功能,可以避免不必要的功耗浪费。同理,在该第二上行时段中,同步关闭该第一DFE 07和第一AFE 08的信号发射功能,可以避免增加SOC的功耗。
在本申请实施例中,对于第一DFE 07、第一AFE 08、第二DFE 09和第二AFE 10中的每个前端电路,开关电路01可以通过向该前端电路发送发射停用信号来关闭该前端电路的信号发射功能,并可以通过向该前端电路发送接收停用信号来关闭该前端电路的信号接收功能。
可选的,对于该第一射频信号处理电路03和第二射频信号处理电路04分时工作的场景, 该开关电路01还可以用于:
在该第一时段,允许该第一DFE 07和第一AFE 08的信号收发功能,并关闭该第二DFE 09和第二AFE 10的信号收发功能;以及在该第二时段,允许该第二DFE 09和第二AFE 10的信号收发功能,并关闭该第一DFE 07和第一AFE 08的信号收发功能。
可选的,如图9所示,该第一射频信号处理电路03包括第一ROC 031和第一射频FEM 032;该第二射频信号处理电路04包括第二ROC 041和第二射频FEM 042。其中,射频FEM可以包括放大器和滤波器等器件,ROC可以包括放大器和混频器等器件。在本申请实施例中,关闭第一射频信号处理电路03的信号发射功能可以是指关闭该第一ROC 031的信号发射功能,以及该第一射频FEM 032的信号发射功能;关闭第一射频信号处理电路03的信号接收功能可以是指关闭该第一ROC 031的信号接收功能,以及该第一射频FEM 032的信号接收功能。
同理,关闭第二射频信号处理电路04的信号发射功能可以是指关闭该第二ROC 041的信号发射功能,以及该第二射频FEM 042的信号发射功能;关闭第二射频信号处理电路04的信号接收功能可以是指关闭该第二ROC 041的信号接收功能,以及该第二射频FEM 042的信号接收功能。
通过同时关闭射频信号处理电路中ROC和射频FEM的信号发射功能,可以有效降低射频信号处理电路的功耗。通过同时关闭射频信号处理电路中ROC和射频FEM的信号接收功能,一方面可以降低射频信号处理电路的功耗,另一方面可以确保ROC和射频FEM均不会接收到其他射频信号处理电路发射的强度较高的信号,确保ROC和射频FEM的寿命和工作性能。
可选的,如图9所示,该SOC中设置有多个收发控制接口11,每个收发控制接口11与一个射频信号处理电路连接。开关电路01可以通过该收发控制接口11向射频信号处理电路发送用于控制该射频信号处理电路的信号收发功能的使能信号,例如发射启用信号、接收启用信号、发射停用信号和接收停用信号等。
其中,每个收发控制接口11可以与一个射频信号处理电路中的ROC连接。每个射频信号处理电路中的ROC中还设置有FEM控制接口12,ROC接收到开关电路01发送的使能信号后,可以通过该FEM控制接口12将该使能信号转发至射频FEM。也即是,开关电路01可以通过收发控制接口11控制ROC的信号收发功能的开启或关闭,并可以通过ROC的FEM控制接口12控制射频FEM的信号收发功能的开启或关闭。
或者,每个收发控制接口11可以分别与一个射频信号处理电路中的ROC和射频FEM连接。开关电路01可以直接通过该收发控制接口11控制ROC的信号收发功能的开启或关闭,并控制射频FEM的信号收发功能的开启或关闭。
可选的,在本申请实施例中,该每个收发控制接口11可以通过硬线与射频信号处理电路连接。相应的,该开关电路01通过收发控制接口11发送的使能信号可以为高低电平的信号。射频信号处理电路接收到该使能信号后,可以直接根据该使能信号的电平高低调整其信号收发状态。其中,硬线是指实体连接线或者印制在印制电路板(printed circuit board,PCB)上的走线。
或者,每个收发控制接口11为串口,该每个收发控制接口11可以通过时钟线和数据线与射频信号处理电路连接。相应的,该开关电路01通过收发控制接口11发送的使能信号可 以为控制帧,射频信号处理电路接收到该控制帧后,需要对该控制帧进行译码解析,并根据解析结果调整其信号收发状态。
在本申请实施例中,当需要关闭某个射频信号处理电路的信号发射功能或者信号接收功能时,可以按照信号的传输顺序,依次关闭通信设备中信号传输过程中所经过的各个电路。
例如,在该第一下行时段,当需要关闭该第二射频信号处理电路04的信号接收功能时,可以依次关闭该第二射频FEM 042的信号接收功能、该第二ROC 041的信号接收功能、该第二AFE 10的信号接收功能和该第二DFE 09的信号接收功能。
在该第一上行时段,当需要关闭该第二射频信号处理电路04的信号发射功能时,可以依次关闭该第二DFE 09的信号发射功能、该第二AFE 10的信号发射功能、该第二ROC 041的信号发射功能和该第二射频FEM 042的信号发射功能。
由于每个电路在关闭其信号接收功能或者信号发射功能时,需要一定的暂态响应时间,因此在关闭各个电路的信号接收功能(或信号发射功能)时,相邻两个电路关闭其信号接收功能(或信号发射功能)的时间存在一定延迟(delay)。由此,可以确保各个电路能够在处理完成其接收到的信号后再关闭其信号接收功能(或信号发射功能),即可以确保各个电路工作的可靠性。其中,相邻两个电路关闭其信号接收功能(或信号发射功能)的时间的延迟可以为纳秒(ns)级,例如可以为几百ns。
例如,在该第一下行时段,开关电路01可以依次向该第二ROC 041、该第二AFE 10和该第二DFE 09发送接收停用信号,且每相邻两次发送的接收停用信号的发送时刻存在一定延迟。该第二ROC 041接收到接收停用信号后,可以先将该接收停用信号转发至第二射频FEM 042,并且第二ROC 041可以在转发该接收停用信号后,延迟一段时间后再关闭其自身的信号接收功能。
同理,在该第一上行时段,开关电路01可以依次向该第二DFE 09、该第二AFE 10和该第二ROC 041发送发射停用信号,且每相邻两次发送的发射停用信号的发送时刻存在一定延迟。该第二ROC 041接收到发射停用信号后,可以先关闭其自身的信号接收功能,并延迟一段时间后再将该发射停用信号转发至第二射频FEM 042。
在本申请实施例中,该第一射频信号处理电路03可以为用于处理业务信号的射频信号处理电路,该第二射频信号处理电路04可以为用于实现附属功能的射频信号处理电路。该附属功能可以包括动态频率选择、频谱扫描、信号强度定位和射频指纹识别等。
其中,该第二射频信号处理电路04可以为专用于实现附属功能的射频信号处理电路,即第二射频信号处理电路04不进行业务信号的处理。或者,该第二射频信号处理电路04既可以用于实现附属功能,也可以处理业务信号。例如,该基带电路02可以根据应用场景的需求,切换第二射频信号处理电路04的工作模式,以控制该第二射频信号处理电路04处理业务信号,或者控制该第二射频信号处理电路04实现附属功能。
例如,假设该通信设备包括n+1个射频信号处理电路,n为大于1的整数。则该通信设备在初始化时,基带电路02可以控制该n+1个射频信号处理电路均处理业务信号。当需要实现附属功能时,通信设备可以响应于用户触发的模式切换指令,切换1个射频信号处理电路的工作模式,使该1个射频信号处理电路实现附属功能,剩余的n个射频信号处理电路则可以继续处理业务信号。此时,该通信设备所服务的小区的天线个数由n+1切换至n。
并且,该基带电路02在切换射频信号处理电路的工作模式后,还可以根据切换的结果对 用于指示各射频信号处理电路的工作模式的比特映射(bitmap)进行配置。该比特映射包括n+1个标识位(bit),每一个标识位用于指示一个射频信号处理电路是否用于处理业务信号。若标识位为有效值(例如1),则表示该标识位指示的射频信号处理电路用于处理业务信号;若标识位为无效值(例如0),则表示该标识位指示的射频信号处理电路不用于处理业务信号,即该射频信号处理电路用于实现附属功能。
在本申请实施例中,该基带电路02中可以包括用于处理业务信号的基带模块,以及用于实现该附属功能的基带模块。基带电路02接收到射频信号处理电路发送的信号后,可以根据该比特映射确定应该将该信号转发至哪个基带模块。
作为一种可选的实现方式,该通信设备中的各个射频信号处理电路的工作频段均相同,例如均为2.4GHz或者均为5GHz。其中,每个射频信号处理电路与一个天线连接,且不同的射频信号处理电路所连接的天线不同。例如,该通信设备可以包括n个第一射频信号处理电路03和一个第二射频信号处理电路04。其中,n可以等于3或者4。
可选的,该n个第一射频信号处理电路03的工作时序可以相同。例如,该n个第一射频信号处理电路03的工作时序均可以为图4中信号TX1和信号RX1所示的时序。
作为另一种可选的实现方式,该通信设备中的各个射频信号处理电路的工作频段不同。例如,该通信设备可以包括:n个工作在第一频段的第一射频信号处理电路03、n个工作在第二频段的第一射频信号处理电路03、至少一个工作在第一频段的第二射频信号处理电路04以及至少一个工作在第二频段的第二射频信号处理电路04。其中,n可以等于3或者4。该至少一个是指一个或多个,多个是指两个或两个以上。第一频段可以为2.4GHz,第二频段可以为5GHz。
并且,工作在同一频段的n个第一射频信号处理电路03的工作时序相同,工作在不同频段的任意两个第一射频信号处理电路03的工作时序可以相同也可以不同。
假设该通信设备中开关电路能够控制该第一射频信号处理电路03和第二射频信号处理电路04在同一上行时段接收信号,即该两个类型的射频信号处理电路工作在背景业务场景中。则开关电路01可以在工作在第一频段的第一射频信号处理电路03接收信号的时段,开启该工作在第一频段的第二射频信号处理电路04信号接收功能。并且,开关电路01可以在工作在第二频段的第一射频信号处理电路03接收信号的时段,开启该工作在第二频段的第二射频信号处理电路04信号接收功能。
例如,图10是本申请实施例提供的再一种开关电路向射频信号处理电路发送的信号的时序图。图10中信号TX11和信号RX11为开关电路发送至工作在第一频段的第一射频信号处理电路03的使能信号,信号TX12和信号RX12为开关电路发送至工作在第二频段的第一射频信号处理电路03的使能信号。信号TX21和信号RX21为开关电路发送至工作在第一频段的第二射频信号处理电路04的使能信号,信号TX22和信号RX22为开关电路发送至工作在第二频段的第二射频信号处理电路04的使能信号。
参考图10可以看出,在该工作在第一频段的第一射频信号处理电路03发射信号的时段t11a内,开关电路01发送至工作在该第一频段的第二射频信号处理电路04的信号TX21和信号RX21均为低电平。此时工作在该第一频段的第二射频信号处理电路04的信号发射功能和信号接收功能均关闭。在该工作在第一频段的第一射频信号处理电路03接收信号的时段t12a内,开关电路01发送至工作在该第一频段的第二射频信号处理电路04的信号TX21为 低电平,信号RX21为高电平。此时工作在该第一频段的第二射频信号处理电路04的信号发射功能关闭,信号接收功能开启。
参考图10还可以看出,在该工作在第二频段的第一射频信号处理电路03发射信号的时段t11b内,开关电路01发送至工作在该第二频段的第二射频信号处理电路04的信号TX22和信号RX22均为低电平,工作在该第二频段的第二射频信号处理电路04的信号发射功能和信号接收功能均关闭。在该工作在第二频段的第一射频信号处理电路03接收信号的时段t12b内,开关电路01发送至工作在该第二频段的第二射频信号处理电路04的信号TX22为低电平,信号RX22为高电平,工作在该第二频段的第二射频信号处理电路04的信号发射功能关闭,信号接收功能开启。
从图10还可以看出,第二射频信号处理电路04的信号接收功能每次开启的时长,可以小于或等于与该第二射频信号处理电路04工作在同一频段的第一射频信号处理电路03的信号接收功能每次开启的时长。
在本申请实施例中,若该通信设备中各个天线之间的隔离度较高,能够满足射频信号处理电路使用寿命的要求(例如隔离度大于44dB),则该开关电路01还可以控制该第二射频信号处理电路04的信号接收功能始终处于开启状态。例如,该开关电路01发送至第二射频信号处理电路04的信号RX21和信号RX22可以始终为高电平。
基于上述关于各个时序图的相关描述可知,本申请实施例提供的开关电路,至少可以控制各个射频信号处理电路按照5种不同的模式工作。
其中第一种模式为:背景业务场景下,各个射频信号处理电路的工作频段相同,开关电路在第一射频信号处理电路接收信号的第一上行时段,开启该第二射频信号处理电路的信号接收功能。该第一种模式下开关电路发送的使能信号的时序可以参考图4。
第二种模式为:背景业务场景下,多个第一射频信号处理电路的工作频段不同,多个第二射频信号处理电路的工作频段不同。开关电路在同一个上行时段内,开启工作频段相同的第一射频信号处理电路和第二射频信号处理电路的信号接收功能。该第二种模式下开关电路发送的使能信号的时序可以参考图10。
第三种模式为:背景业务场景下,多个第一射频信号处理电路的工作频段不同,多个第二射频信号处理电路的工作频段不同,且天线之间的隔离度较高。开关电路控制第二射频信号处理电路的信号接收功能为常开状态。
第四种模式为:分时工作场景下,开关电路控制第一射频信号处理电路和第二射频信号处理电路分时工作。并且,在该第二射频信号处理电路工作的时段内,开关电路控制该第二射频信号处理电路的信号发射功能和信号接收功能交替开启。该第四种模式下开关电路发送的使能信号的时序可以参考图7。
第五种模式为:分时工作场景下,开关电路控制第一射频信号处理电路和第二射频信号处理电路分时工作。并且,在该第二射频信号处理电路工作的时段内,开关电路控制该第二射频信号处理电路的信号发射功能关闭,信号接收功能开启。该第五种模式下开关电路发送的使能信号的时序可以参考图8。
本申请实施例提供的开关电路不仅可以控制通信设备中的各个射频信号处理电路按照不同的模式工作,并且可以根据应用场景的需求控制各个射频信号处理电路在不同的工作模式间切换,从而有效提高了对射频信号处理电路进行调度配置时的灵活性,提高了通信设备工 作时的灵活性。
综上所述,本申请实施例提供了一种通信设备,该通信设备中的开关电路可以在某个射频信号处理电路发射信号的时段,关闭另一射频信号处理电路的信号接收功能,并可以在某个射频信号处理电路接收信号的时段,关闭另一射频信号处理电路的信号发射功能。由于该开关电路可以控制通信设备中的各个射频信号处理电路协同工作,因此可以使得该通信设备中的射频信号处理电路不会接收到其他射频信号处理电路发射的信号,从而可以避免射频信号处理电路由于长时间工作在饱和区而影响其寿命,确保了该通信设备中的射频信号处理电路的工作性能和使用寿命。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的通信设备及开关电路的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解的是,本申请实施例提供的开关电路可以用专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
以上所述仅为本申请的实施例,并不用以限制本申请。

Claims (16)

  1. 一种通信设备的信号收发方法,其特征在于,所述通信设备包括第一射频信号处理电路以及第二射频信号处理电路;所述方法包括:
    在第一下行时段,开启所述第一射频信号处理电路的信号发射功能,关闭所述第二射频信号处理电路的信号接收功能;
    在第一上行时段,开启所述第一射频信号处理电路的信号接收功能,关闭所述第二射频信号处理电路的信号发射功能。
  2. 根据权利要求1所述的方法,其特征在于,所述第一射频信号处理电路和所述第二射频信号处理电路的工作频段相同;在所述第一下行时段,所述方法还包括:关闭所述第二射频信号处理电路的信号发射功能。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述第一上行时段,所述方法还包括:
    开启所述第二射频信号处理电路的信号接收功能。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    在第二上行时段,开启所述第二射频信号处理电路的信号接收功能,关闭所述第一射频信号处理电路的信号发射功能。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    在第二下行时段,开启所述第二射频信号处理电路的信号发射功能,关闭所述第一射频信号处理电路的信号接收功能。
  6. 一种通信设备的信号收发方法,其特征在于,所述通信设备包括第一射频信号处理电路以及第二射频信号处理电路;所述方法包括:
    在第一时段,允许所述第一射频信号处理电路的信号收发功能,关闭所述第二射频信号处理电路的信号收发功能;
    在第二时段,关闭所述第一射频信号处理电路的信号收发功能,允许所述第二射频信号处理电路的信号收发功能。
  7. 根据权利要求6所述的方法,其特征在于,所述第二时段与所述第一时段的间隔大于阈值。
  8. 一种通信设备中的开关电路,所述通信设备还包括第一射频信号处理电路,以及第二射频信号处理电路;所述开关电路用于:
    在第一下行时段,向所述第一射频信号处理电路发送第一发射启用信号,并向所述第二 射频信号处理电路发送第一接收停用信号;
    在第一上行时段,向所述第一射频信号处理电路发送第一接收启用信号,并向所述第二射频信号处理电路发送第一发射停用信号。
  9. 根据权利要求8所述的开关电路,其特征在于,所述第一射频信号处理电路和所述第二射频信号处理电路的工作频段相同;所述开关电路,还用于:
    在所述第一下行时段,向所述第二射频信号处理电路发送所述第一发射停用信号。
  10. 根据权利要求8或9所述的开关电路,其特征在于,所述开关电路,还用于:
    在所述第一上行时段,向所述第二射频信号处理电路发送第二接收启用信号。
  11. 根据权利要求8至10任一项所述的开关电路,其特征在于,所述开关电路,还用于:
    在第二上行时段,向所述第二射频信号处理电路发送第二接收启用信号,以及向所述第一射频信号处理电路发送第二发射停用信号。
  12. 根据权利要求11所述的开关电路,其特征在于,所述开关电路,还用于:
    在第二下行时段,向所述第二射频信号处理电路发送第二发射启用信号,以及向所述第一射频信号处理电路发送第二接收停用信号。
  13. 一种通信设备的开关电路,其特征在于,所述通信设备还包括第一射频信号处理电路以及第二射频信号处理电路;所述开关电路用于:
    在第一时段,向所述第一射频信号处理电路发送第一收发启用信号,并向所述第二射频信号处理电路发送第一收发停用信号;
    在第二时段,向所述第一射频信号处理电路发送第二收发停用信号,并向所述第二射频信号处理电路发送第二收发启用信号。
  14. 根据权利要求13所述的开关电路,其特征在于,所述第二时段与所述第一时段的间隔大于阈值。
  15. 一种通信设备,其特征在于,所述通信设备包括第一射频信号处理电路,第二射频信号处理电路,以及如权利要求8至14任一项所述的开关电路;
    所述开关电路分别与所述第一射频信号处理电路和所述第二射频信号处理电路连接。
  16. 根据权利要求15所述的设备,其特征在于,所述通信设备还包括基带电路,所述开关电路集成在所述基带电路中。
PCT/CN2021/100154 2020-06-22 2021-06-15 通信设备及其信号收发方法、开关电路 WO2021259095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010574741.6A CN113904698B (zh) 2020-06-22 2020-06-22 通信设备及其信号收发方法、开关电路
CN202010574741.6 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259095A1 true WO2021259095A1 (zh) 2021-12-30

Family

ID=79186487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100154 WO2021259095A1 (zh) 2020-06-22 2021-06-15 通信设备及其信号收发方法、开关电路

Country Status (2)

Country Link
CN (1) CN113904698B (zh)
WO (1) WO2021259095A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097332A2 (en) * 2011-01-14 2012-07-19 Apple Inc. Methods for coordinated signal reception across integrated circuit boundaries
CN103236868A (zh) * 2013-03-28 2013-08-07 惠州Tcl移动通信有限公司 信号收发模组及移动通信终端
CN105471490A (zh) * 2014-09-05 2016-04-06 中国移动通信集团公司 一种直放站及其信号处理方法
CN106774795A (zh) * 2016-11-30 2017-05-31 上海摩软通讯技术有限公司 移动终端及其电源管理系统
CN110224719A (zh) * 2019-06-25 2019-09-10 Oppo广东移动通信有限公司 通信控制方法及相关产品
CN110730017A (zh) * 2019-09-25 2020-01-24 维沃移动通信有限公司 一种射频装置及其控制方法、终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009658A1 (en) * 2007-07-10 2009-01-15 Texas Instruments Incorporated System and method for avoiding interference in a dual-signal device
US10123345B2 (en) * 2010-12-22 2018-11-06 Google Technology Holdings LLC Interference mitigation in a device supporting multiple radio technologies communicating in overlapping time periods
DE102015106201A1 (de) * 2015-04-22 2016-10-27 Intel IP Corporation Schaltung, integrierte schaltung, empfänger, sendeempfänger und verfahren zum empfangen eines signals
EP3264619B1 (en) * 2016-07-01 2019-09-04 Intel IP Corporation Method and device for mitigating interference in collocated transceivers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097332A2 (en) * 2011-01-14 2012-07-19 Apple Inc. Methods for coordinated signal reception across integrated circuit boundaries
CN103236868A (zh) * 2013-03-28 2013-08-07 惠州Tcl移动通信有限公司 信号收发模组及移动通信终端
CN105471490A (zh) * 2014-09-05 2016-04-06 中国移动通信集团公司 一种直放站及其信号处理方法
CN106774795A (zh) * 2016-11-30 2017-05-31 上海摩软通讯技术有限公司 移动终端及其电源管理系统
CN110224719A (zh) * 2019-06-25 2019-09-10 Oppo广东移动通信有限公司 通信控制方法及相关产品
CN110730017A (zh) * 2019-09-25 2020-01-24 维沃移动通信有限公司 一种射频装置及其控制方法、终端设备

Also Published As

Publication number Publication date
CN113904698B (zh) 2023-02-07
CN113904698A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN212588326U (zh) 射频PA Mid器件、射频系统和通信设备
US8331289B1 (en) Bluetooth / Wi-Fi coexistence
CN106160756B (zh) 射频前端发射方法及发射模块、芯片和通信终端
EP2204930B1 (en) Digital interface between a RF and baseband circuit and process for controlling such interface
CN212588327U (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2021238536A1 (zh) 射频PA Mid器件、射频收发装置和通信设备
CN212909519U (zh) 射频前端电路及电子设备
CN103348600A (zh) 在两个相邻频带中工作的同时接入的双频带终端
JP2024501011A (ja) 中継通信方法および装置
EP4254812A1 (en) Radio frequency transceiving system and communication device
WO2023098110A1 (zh) 射频系统及通信设备
CN113726357A (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2022127404A1 (zh) 射频收发系统及通信设备
CN109962721A (zh) 一种用于软件无线电收发机的射频前端电路
EP4220971A1 (en) Radio frequency drx device, radio frequency system, and communication apparatus
WO2021238534A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021259095A1 (zh) 通信设备及其信号收发方法、开关电路
US9380527B2 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
US10374652B2 (en) Antenna switching in a communication circuit
CN114614851B (zh) 信号收发电路、射频系统以及移动终端
US20120115416A1 (en) Wireless device limiting gain of a shared gain element between different wireless protocols
CN115208418A (zh) 一种射频系统以及射频系统的控制方法
CN113489499B (zh) 射频架构和电子设备
EP4142163A1 (en) Radio-frequency l-drx device, radio-frequency transceiving system and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828582

Country of ref document: EP

Kind code of ref document: A1