WO2021258639A1 - Procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé - Google Patents

Procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé Download PDF

Info

Publication number
WO2021258639A1
WO2021258639A1 PCT/CN2020/132359 CN2020132359W WO2021258639A1 WO 2021258639 A1 WO2021258639 A1 WO 2021258639A1 CN 2020132359 W CN2020132359 W CN 2020132359W WO 2021258639 A1 WO2021258639 A1 WO 2021258639A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
simulated
data
temperature field
temperature
Prior art date
Application number
PCT/CN2020/132359
Other languages
English (en)
Chinese (zh)
Inventor
蔡惠明
钱志余
冯宇
方舟
晋晓飞
Original Assignee
南京诺源医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京诺源医疗器械有限公司 filed Critical 南京诺源医疗器械有限公司
Publication of WO2021258639A1 publication Critical patent/WO2021258639A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations

Definitions

  • the invention relates to the medical field, and in particular to a method for evaluating the therapeutic effect of microwave ablation based on a simulated temperature field.
  • Microwave thermal ablation therapy is considered to be another new and effective treatment method for malignant tumors after surgery, chemotherapy, radiotherapy, immunotherapy, etc., because of its obvious curative effect, minimal invasiveness, less toxic and side effects, and fewer complications. It has played a huge role in tumor treatment and has been widely used in common tumors such as liver cancer, lung cancer, and kidney cancer.
  • One of the most important is the problem of real-time efficacy evaluation in microwave ablation therapy. At present, clinically, the degree of ablation of tumor tissue cannot be accurately reflected.
  • the establishment of an intraoperative synchronous microwave ablation simulation model to achieve real-time evaluation of the efficacy has become a difficult point for precise ablation.
  • the process of tumor hyperthermia involves the process of heat generation and heat dissipation.
  • the size and shape of the temperature field are not only affected by the shape of the heating radiator, emission power, action time and other factors, but also related to the thermal conductivity and blood perfusion rate of the tumor tissue.
  • isothermal properties Due to the high complexity of human tissue and the limitations of measurement methods, the above-mentioned biological visualization indicators are often difficult to accurately measure; also in liver tissue, it is also difficult to understand the distribution of the three-dimensional temperature field through precise temperature measurement at multiple points.
  • Temperature field simulation is an important part of the preoperative planning system of microwave hyperthermia surgery, which can help doctors effectively predict the distribution of thermal field.
  • the current main thermotherapy temperature data are based on body models or animal liver experiments, and the current simulation simulation is simulated before surgery, and doctors cannot effectively evaluate the temperature field during the operation.
  • the purpose of the present invention is to overcome the shortcomings in the prior art and provide a method for evaluating the curative effect of microwave ablation based on a simulated temperature field.
  • the present invention adopts the following technical solutions to solve the above technical problems:
  • a method for evaluating the curative effect of microwave ablation based on simulated temperature field which includes the following steps:
  • the method of drawing the temperature at any point includes: obtaining the mouse position of the user, obtaining the temperature value of the corresponding position and refreshing with time;
  • the ablation length and short path and the change curve include: selecting the ablation area according to the ablation boundary temperature input by the user, and querying the ablation area
  • the maximum and minimum values of the abscissa and ordinate, the long diameter a and short diameter b of the ablation area are estimated according to the maximum and minimum values of the abscissa and ordinate, and the visualization index is refreshed according to time changes;
  • the ablation volume and change curve include: estimation of the ablation area according to the long diameter a and short diameter b Volume, the calculation formula is:
  • Alarming the treatment progress according to the preset treatment end information includes: reading the long diameter and short diameter of the treatment cut-off boundary input by the user, judging the long diameter and short diameter of the current simulated ablation border in real time, and setting the current ablation long and short diameter to the preset cut-off The boundary long diameter and short diameter are compared. If the long diameter or short diameter is greater than the preset value, an automatic alarm will be automatically issued.
  • the missing data filling includes cyclically checking the original simulation data to determine whether it is missing at the original resolution, and automatically filling it with the closest non-missing value if there is a missing value, and filling it row by row.
  • the generating of the linear spacing vector includes generating two vectors with a size of 512, which are respectively used to represent the abscissa x and the ordinate y of the temperature field, and the beginning and the end of the vector respectively read the abscissa and ordinate of the original simulation data.
  • the calculation of the actual distance between the two points includes the calculation of the stretching ratio coefficient of the horizontal and vertical coordinates of the display window, the acquisition of the horizontal and vertical coordinates of the two points and the calculation of the pixel distance, and the actual distance calculation formula is:
  • Y represents the length of the display window
  • X represents the width of the display window
  • x represents the abscissa of the current data
  • y represents the ordinate of the current data.
  • the simulated 3D simulation effect diagram is obtained by rotating a certain temperature line of the 2D simulation image along the central axis for one cycle.
  • the present invention adopts the above technical solutions and has the following technical effects:
  • Figure 1 is a flow chart of a method for evaluating therapeutic effects in microwave ablation based on a simulated temperature field provided by the present invention
  • Figure 2 is a schematic diagram of the lack of value filling of a method for evaluating the therapeutic effect of microwave ablation based on a simulated temperature field provided by the present invention
  • Fig. 3 is a schematic diagram of two-dimensional linear interpolation of a method for evaluating therapeutic effects in microwave ablation based on a simulated temperature field provided by the present invention.
  • Fig. 4 is a visualization interface of a method for evaluating therapeutic effects in microwave ablation based on a simulated temperature field provided by the present invention.
  • FIG. 1 it is a flow chart of a method for evaluating therapeutic effects in microwave ablation based on a simulated temperature field of the present invention. According to the simulation result of the discrete coordinate position of the temperature field, evaluate and visualize the actual curative effect state of the temperature field and various visualization indicators, including the following steps:
  • the missing data filling includes cyclically checking the original simulation data to determine whether it is missing at the original resolution. If there is a missing value, it will be automatically filled with the closest non-missing value and filled line by line; generating linear spacing vectors includes generating separately Two vectors with a size of 512 are used to represent the abscissa (x) and ordinate (y) of the temperature field. The first and end of the vectors read the maximum and minimum values of the abscissa of the original simulation data.
  • the high-resolution simulation temperature field topographic map after the difference is drawn, including: corresponding temperature and color, and plotting points according to pixel coordinates.
  • the corresponding process of temperature and color is to normalize the temperature value of 512*512 points to 0-255, and calculate the RGB value according to the jot topographic map specification.
  • the calculation method of isotherms includes: selecting data points with temperature values of 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, and performing data points with the same temperature value.
  • the drawing point connection; the boundary line drawing process is to read the boundary temperature input by the user, find the temperature data point, and connect the data points to the drawing point;
  • the calculation of the actual distance between the two points includes: the calculation of the stretching ratio coefficient of the horizontal and vertical coordinates of the display window, Obtain the horizontal and vertical coordinates of two points, calculate the pixel distance, and calculate the actual distance.
  • the calculation formula is:
  • the method of drawing the temperature at any point includes: obtaining the user's mouse position, obtaining the temperature value of the corresponding position, and refreshing with time (Resolution is 1s); simulated 3D simulation renderings, obtained by rotating a certain temperature line of the 2D simulation image along the central axis for one circle; ablation length and short diameter and change curve include: according to the ablation boundary temperature input by the user, select the ablation area and query the ablation area The maximum and minimum values of the abscissa and ordinate, the long and short diameters a and b of the ablation area are estimated according to the maximum and minimum values of the abscissa, and the parameters are refreshed according to time changes and the change curve is drawn (time resolution is 1s); the ablation volume and change curve include: Estimating the volume of the ablation area and drawing the change curve according to the
  • Alarming the treatment process according to the preset treatment end information includes: reading the long diameter and short diameter of the treatment cut-off boundary input by the user and judging the long diameter and short diameter of the current simulated ablation border in real time, and comparing the current long diameter and short diameter of ablation with The preset cut-off boundary long diameter and short diameter comparison, if the long diameter or short diameter is greater than the preset value, it will automatically alarm and automatically alarm.
  • 1 is the boundary line display button
  • 2 is the isotherm display button
  • 3 is the measurement button
  • 4 is the single-point temperature measurement button
  • 5 is the 3D/2D rendering conversion button
  • 6 is the clear screen display visualization indicator button
  • 7 is Simulation display screen
  • 9 is the display frame of long and short diameter
  • 10 is the change curve of long and short diameter.
  • microwave ablation when the treatment is started, the simulation display screen 7 will display the treatment simulation animation in synchronization with the treatment process, and the time resolution of the image refresh is 1 second; after the treatment starts, the time progress bar 8 will time according to the real time.
  • the diameter change curve will be drawn at a refresh rate of 1 second.
  • FIG. 3 it is the reading sequence of the simulation data used in the present invention.
  • the data search and missing data filling used in the present invention adopts horizontal data reading.
  • FIG 4 it is a schematic diagram of the difference filling algorithm used in the invention.
  • the present invention adopts two-dimensional linear interpolation, based on the principle of triangulation, that is, the temperature p1, p2, p3 of 3 points in the known plane, u and v exist at any point P in the triangle (because the triangle is a 2D figure , There are only two degrees of freedom, so as long as u and v are enough), so that
  • Point P is in the triangle, so (u,v) must satisfy the conditions u ⁇ 0, v ⁇ 0, u+v ⁇ 1.
  • u and v reflect the weight contribution of each vertex to a specific area, and (1-u-v) is the third weight.
  • (1-u-v) is the third weight.
  • the weighted average of the color values of P1, P2, and P3 can get the temperature value of point P.
  • the present invention obtains low-resolution tumor thermal ablation discrete coordinate position temperature values through simulation, and quickly obtains high-resolution topographic maps of the temperature field and various important visual indicators of the temperature field through simple operations; the simulation results are synchronized with the operation process , The time resolution is high, various visual indicators can be displayed simultaneously in real time, and automatic alarms are set; the evaluation method is low in cost and high in accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Urology & Nephrology (AREA)
  • Robotics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé, consistant à : S1, construire un algorithme d'interpolation de données de champ de température en points discrets; S2, dessiner une carte topographique de champ de température simulé à haute résolution après la différence, comprenant la correspondance de la température aux points de couleur et de dessin en fonction de coordonnées de point de pixel; S3, calculer des indicateurs visuels de données interpolées, comprenant des calculs de : l'isotherme, la ligne de limite, la distance réelle entre deux points, la température de tout point, un graphique d'effet de simulation 3D simulé, des diamètres longs et courts d'ablation et une courbe de changement, et le volume d'ablation et une courbe de changement; S4, visualiser et afficher de manière synchrone le résultat de simulation et la progression de traitement peropératoire; et S5, signaler le processus de traitement conformément à des informations de fin de traitement prédéfinies. Le procédé d'évaluation d'effet thérapeutique dans l'ablation par micro-ondes sur la base d'un champ de température simulé présente un faible coût et une précision élevée.
PCT/CN2020/132359 2020-06-23 2020-11-27 Procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé WO2021258639A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010581773.9A CN111653363A (zh) 2020-06-23 2020-06-23 一种基于仿真温度场的微波消融术中疗效评估方法
CN202010581773.9 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258639A1 true WO2021258639A1 (fr) 2021-12-30

Family

ID=72352431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132359 WO2021258639A1 (fr) 2020-06-23 2020-11-27 Procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé

Country Status (2)

Country Link
CN (1) CN111653363A (fr)
WO (1) WO2021258639A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114861279A (zh) * 2022-05-24 2022-08-05 中国水利水电科学研究院 水工混凝土结构温度仿真一致性检验方法及其检验系统
CN117637173A (zh) * 2023-11-29 2024-03-01 南京诺源医疗器械有限公司 微波消融参数的确定方法、装置及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653363A (zh) * 2020-06-23 2020-09-11 南京诺源医疗器械有限公司 一种基于仿真温度场的微波消融术中疗效评估方法
CN113842210A (zh) * 2021-08-02 2021-12-28 应葵 椎骨肿瘤微波消融手术仿真方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859341A (zh) * 2009-04-13 2010-10-13 盛林 影像引导消融治疗手术规划装置
CN103674324A (zh) * 2013-10-23 2014-03-26 北京工业大学 一种离体组织消融温度场测定及数据处理系统
US20170209218A1 (en) * 2014-03-22 2017-07-27 Endocare, Inc., System And Methods For Ablation Treatment Planning And Intraoperative Position Updates Of Ablation Devices
CN107526928A (zh) * 2017-08-21 2017-12-29 北京工业大学 一种基于特性参数反馈的微波热消融温度场仿真方法
CN110263489A (zh) * 2019-07-04 2019-09-20 南京航空航天大学 基于dicom数据的肝肿瘤微波消融三维温度场仿真方法
CN110882056A (zh) * 2019-12-11 2020-03-17 南京亿高微波系统工程有限公司 Ct下精准肿瘤微波消融系统
CN111653363A (zh) * 2020-06-23 2020-09-11 南京诺源医疗器械有限公司 一种基于仿真温度场的微波消融术中疗效评估方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208957B (zh) * 2013-02-26 2019-01-22 西门子公司 用于射频消融疗法的交互式患者特定仿真的系统和方法
US9468485B2 (en) * 2013-12-12 2016-10-18 Medtronic Cryocath Lp Real-time lesion formation assessment
US11154354B2 (en) * 2016-07-29 2021-10-26 Axon Therapies, Inc. Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation
CN109077804A (zh) * 2018-08-19 2018-12-25 天津大学 一种基于ct图像的微波消融治疗计划方法
CN109498155B (zh) * 2019-01-10 2022-09-30 上海美杰医疗科技有限公司 消融治疗术中快速规划系统及方法
CN111027225B (zh) * 2019-12-25 2023-05-02 南京亿高医疗科技股份有限公司 一种基于数据拟合的消融仿真方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859341A (zh) * 2009-04-13 2010-10-13 盛林 影像引导消融治疗手术规划装置
CN103674324A (zh) * 2013-10-23 2014-03-26 北京工业大学 一种离体组织消融温度场测定及数据处理系统
US20170209218A1 (en) * 2014-03-22 2017-07-27 Endocare, Inc., System And Methods For Ablation Treatment Planning And Intraoperative Position Updates Of Ablation Devices
CN107526928A (zh) * 2017-08-21 2017-12-29 北京工业大学 一种基于特性参数反馈的微波热消融温度场仿真方法
CN110263489A (zh) * 2019-07-04 2019-09-20 南京航空航天大学 基于dicom数据的肝肿瘤微波消融三维温度场仿真方法
CN110882056A (zh) * 2019-12-11 2020-03-17 南京亿高微波系统工程有限公司 Ct下精准肿瘤微波消融系统
CN111653363A (zh) * 2020-06-23 2020-09-11 南京诺源医疗器械有限公司 一种基于仿真温度场的微波消融术中疗效评估方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114861279A (zh) * 2022-05-24 2022-08-05 中国水利水电科学研究院 水工混凝土结构温度仿真一致性检验方法及其检验系统
CN114861279B (zh) * 2022-05-24 2024-03-29 中国水利水电科学研究院 水工混凝土结构温度仿真一致性检验方法及其检验系统
CN117637173A (zh) * 2023-11-29 2024-03-01 南京诺源医疗器械有限公司 微波消融参数的确定方法、装置及电子设备

Also Published As

Publication number Publication date
CN111653363A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2021258639A1 (fr) Procédé d'évaluation d'effet thérapeutique dans une ablation par micro-ondes sur la base d'un champ de température simulé
US11043017B2 (en) High definition coloring of heart chambers
Kanitsar et al. CPR-curved planar reformation
de Agustín et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study
US9460563B2 (en) Differential mapping of a body organ
US20220211293A1 (en) Real-time display of tissue deformation by interactions with an intra-body probe
JP6893775B2 (ja) 3d画像から2d画像へのマッピング
JP2013505778A (ja) 運動情報を用いた医用画像解析のためのコンピュータ可読媒体、システム、および方法
WO2017020281A1 (fr) Système de traitement d'image ultrasonore et procédé et dispositif associés, et dispositif de diagnostic par ultrasons
CN101923607A (zh) 一种血管计算机辅助影像学评估系统
Karim et al. Surface flattening of the human left atrium and proof-of-concept clinical applications
KR20200054093A (ko) 반흔 효과를 포함하는 심장 전기생리학적(ep) 활성화의 반복적 코히런트 매핑
US9491443B2 (en) Image processing method and image processing apparatus
KR20200054094A (ko) 회귀 효과를 포함하는 심장 전기생리학적(ep) 활성화의 반복적 코히런트 매핑
JP2022506985A (ja) 管状構造の切断面表示
CN108510580A (zh) 一种椎骨ct图像三维可视化方法
WO2016054775A1 (fr) Système et méthode d'imagerie endoscopique virtuelle ultrasonore, et appareil associé
Van Burik et al. Estimation of the electric conductivity from scalp measurements: feasibility and application to source localization
Salustri et al. Assessment of left ventricular outflow in hypertrophic cardiomyopathy using anyplane and paraplane analysis of three-dimensional echocardiography
Li et al. Three-dimensional reconstruction of paracentesis approach in transjugular intrahepatic portosystemic shunt
JP7486976B2 (ja) 体腔のマップ
Hombeck et al. Heads up a study of assistive visualizations for localisation guidance in virtual reality
TWI793008B (zh) 內在資訊表面映射的方法
Graves et al. Modeling And Graphic Display System For Cardiolvascular Research Using Random 3-D Data
JP2024028133A (ja) 医療ボリュームデータをレンダリングするためのコンピュータ実施方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941586

Country of ref document: EP

Kind code of ref document: A1