WO2021258521A1 - 推料机器人、推料系统以及推料管理方法 - Google Patents
推料机器人、推料系统以及推料管理方法 Download PDFInfo
- Publication number
- WO2021258521A1 WO2021258521A1 PCT/CN2020/108920 CN2020108920W WO2021258521A1 WO 2021258521 A1 WO2021258521 A1 WO 2021258521A1 CN 2020108920 W CN2020108920 W CN 2020108920W WO 2021258521 A1 WO2021258521 A1 WO 2021258521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pushing
- robot
- charging device
- charging
- visual
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims abstract description 49
- 239000000463 material Substances 0.000 title claims abstract description 37
- 230000000007 visual effect Effects 0.000 claims abstract description 81
- 238000001514 detection method Methods 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 18
- 230000004438 eyesight Effects 0.000 claims description 10
- 230000007613 environmental effect Effects 0.000 claims description 8
- 230000000153 supplemental effect Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 description 98
- 238000010586 diagram Methods 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 15
- 230000008569 process Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 7
- 230000005484 gravity Effects 0.000 description 7
- 239000013589 supplement Substances 0.000 description 7
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 239000004459 forage Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000010902 straw Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/008—Manipulators for service tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K1/00—Housing animals; Equipment therefor
- A01K1/10—Feed racks
- A01K1/105—Movable feed barriers, slides or fences
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K39/00—Feeding or drinking appliances for poultry or other birds
- A01K39/01—Feeding devices, e.g. chainfeeders
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K5/00—Feeding devices for stock or game ; Feeding wagons; Feeding stacks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/088—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
- B25J13/089—Determining the position of the robot with reference to its environment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
- G05D1/0297—Fleet control by controlling means in a control room
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
Definitions
- the invention relates to the field of agriculture, in particular to a pushing robot, a pushing system and a pushing management method.
- Feeding robots can use automatic navigation technology to automatically push feed to animals.
- the pushing robot In order to facilitate the operation, the pushing robot has its own energy storage device, and when the electricity is exhausted, it can return to the charging pile for charging.
- the pushing robot can automatically return to the charging pile for charging.
- magnetic navigation elements such as magnetic strips or magnetic nails, are usually laid on the work area of the pushing robot.
- the pushing robot is provided with a magnetic sensor. With the magnetic sensor and the magnetic navigation member, the pushing robot can return to the charging pile to supplement energy.
- the use of the magnetic sensor and the magnetic navigation device for navigation has a higher construction cost and a higher maintenance cost in the later period, especially when the distance between the operation area of the farm and the charging pile is relatively long. , The cost of charging in this way is more expensive.
- An advantage of the present invention is to provide a pushing robot, a pushing system and a pushing management method, wherein the pushing robot can automatically return to a charging device for charging, and the pushing robot can automatically move based on visual navigation.
- An advantage of the present invention is to provide a pushing robot, a pushing system and a pushing management method, wherein the pushing robot can collect visual signs laid in the direction of travel to realize automatic navigation from a working area to the charging device .
- An advantage of the present invention is to provide a pushing robot, a pushing system and a pushing management method, wherein the pushing robot can continuously operate unmanned and complete the actions of automatic pushing, automatic charging and/or automatic return.
- An advantage of the present invention is to provide a pushing robot, a pushing system, and a pushing management method, wherein the pushing robot can go to the charging device for charging in advance before the power consumption is exhausted, so as to avoid looking for the charging device.
- the power is cut off for the distance, so that the reliability of the pushing robot in the operation process can be ensured.
- An advantage of the present invention is to provide a pushing robot, a pushing system and a pushing management method, wherein the pushing robot can automatically return to the working position before charging for continuous operation.
- An advantage of the present invention is to provide a pushing robot, a pushing system, and a pushing management method, wherein the pushing robot can be automatically charged while working, and a charging robot can automatically find the pushing robot that needs to be charged. And then charge the pushing robot.
- An advantage of the present invention is to provide a pushing robot, a pushing system and a pushing management method, wherein when one of the pushing robots is exhausted, the other pushing robot can replace the work, so that the animal can continue Eating.
- the two pushing robots can perform successive operations to ensure the pushing efficiency and allow the animals to continue to eat.
- the present invention provides a push management method, which includes the following steps:
- At least one visual mark in the surrounding environment is acquired by at least one visual sensor to generate a navigation instruction
- the pushing robot is controlled to meet with a charging device, so as to charge the pushing robot through the charging device.
- the present invention provides a pushing robot adapted to be powered by a charging device, wherein the pushing robot includes:
- a pusher body and
- a rechargeable navigation device wherein the rechargeable navigation device includes at least one vision sensor, a processor, and a controller, wherein the vision sensor is disposed on the pushing body, and the vision sensor is communicably connected
- the processor is communicably connected to the controller, and when the pushing body needs to be charged, the visual sensor collects the surrounding environment information of the traveling direction of the pushing body, The surrounding environment information includes at least one visual identifier, and the processor generates a navigation instruction based on the visual identifier acquired by the processor and sends the navigation instruction to the controller, which is based on the visual identifier.
- the navigation instruction controls the pushing body to guide the pushing body to move to the charging device.
- the present invention provides a pushing system, which includes:
- At least one pushing robot At least one pushing robot
- At least one charging device At least one charging device
- a management unit wherein the management unit includes a detection module, a processing module, and a control module, wherein the processing module and the detection module are communicably connected, and the processing module and the control module are communicable Ground connection, wherein the pushing robot and the charging device are respectively controllably connected to the management unit, and when the pushing robot needs to be charged, the detection module detects the surrounding environment information to obtain at least one Visual identification, the processing module generates a navigation instruction based on the visual identification and sends the navigation instruction to the control module, and the control module controls the pushing robot and the charging device to meet based on the navigation instruction To charge the pushing robot.
- Fig. 1 is a perspective schematic view of a pushing robot according to a preferred embodiment of the present invention.
- Fig. 2A is an exploded schematic diagram of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 2B is a schematic block diagram of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 3A is a schematic diagram of the application of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 3B is a schematic diagram of the application of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 3C is a schematic diagram of the application of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 4 is a schematic diagram of a work flow of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 5 is a schematic diagram of a work flow of the pushing robot according to the above-mentioned preferred embodiment of the present invention.
- Fig. 6 is a schematic diagram of a pushing system according to a preferred embodiment of the present invention.
- Fig. 7A is a schematic diagram of the application of the pushing system according to the above-mentioned preferred embodiment of the present invention.
- Fig. 7B is a schematic diagram of the application of the pushing system according to the above-mentioned preferred embodiment of the present invention.
- Fig. 8A is a schematic diagram of the application of the pushing system according to the above-mentioned preferred embodiment of the present invention.
- Fig. 8B is a schematic diagram of the application of the pushing system according to the above-mentioned preferred embodiment of the present invention.
- Fig. 9 is a schematic diagram of the application of the pushing system according to the above-mentioned preferred embodiment of the present invention.
- Fig. 10 is a perspective schematic view of a pushing device according to a preferred embodiment of the present invention.
- 11A and 11B are schematic diagrams of different states of the pushing device according to the above preferred embodiment of the present invention, respectively, which illustrate the relationship between a pushing device and a charging device of the pushing device.
- 12A and 12B are respectively three-dimensional schematic diagrams of the pushing machine of the pushing device according to the above-mentioned preferred embodiment of the present invention from different viewing angles.
- FIG. 13 is an overall exploded schematic diagram of the pusher of the pusher device according to the above preferred embodiment of the present invention, which illustrates the structure between a walking device and a pushing device of the pusher relation.
- FIG. 14 is a partial three-dimensional schematic diagram of the pusher of the pusher device according to the above-mentioned preferred embodiment of the present invention, which illustrates one of the walking device and the pushing device of the pusher The structural relationship between the pusher walls.
- 15 is a partial exploded schematic diagram of the pusher of the pusher device according to the above preferred embodiment of the present invention, which illustrates the structural relationship between the various components of the pusher wall.
- Fig. 16 is a partial three-dimensional schematic diagram of the pusher of the pusher device according to the above-mentioned preferred embodiment of the present invention, which illustrates the structural relationship between the various components of the walking device.
- 17A and 17B are schematic diagrams of different viewing angles of the pushing machine of the pushing device according to the above-mentioned preferred embodiment of the present invention, respectively, which respectively illustrate the structural relationship between the various components of the walking device .
- the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element The number can be more than one, and the term “one” cannot be understood as a restriction on the number.
- FIG. 1 to FIG. 3C a pushing robot 1 according to a preferred embodiment of the present invention is illustrated.
- the pushing robot 1 can automatically push the feed in a working area, so that the animal can continue to eat.
- the pushing robot 1 needs to be supplemented with electric energy, the pushing robot 1 can be automatically charged. Therefore, in the entire pushing operation process, very little manual intervention is required, which improves production efficiency.
- the pushing robot 1 includes a pushing body 10 and a charged navigation device 20, wherein the charged navigation device 20 is disposed on the pushing body 10, and the pushing body 10 is used for pushing
- the charging navigation device 20 is suitable for supplying energy for the pushing body 10.
- the pushing body 10 includes a pushing device 11 and a moving device 12, wherein the moving device 12 is provided on the pushing device 11 to drive the pushing device 11 to move.
- the pushing device 11 is used to push the feed, and the moving device 12 is adapted to move along a working surface.
- the charged navigation device 20 can provide navigation for the mobile device 12.
- the mobile device 12 may include a movable member 121, a mobile drive motor 122, and a mobile energy supply part 123, wherein the mobile energy supply part 123 is used for the mobile drive motor 122 is powered, wherein the movable member 121 is drivably connected to the mobile driving motor 122.
- the movable member 121 can be moved in various ways.
- the movable member 121 can be a roller, a turntable, or a crawler.
- the pushing device 11 may include a pushing member 111, a pushing driving motor 112, and a pushing energy supply part 113, and the pushing member 111 is used for pushing feed.
- the pushing energy supply part 113 is used for supplying energy to the pushing driving motor 112.
- the pushing member 111 is drivably connected to the pushing driving motor 112.
- the moving device 12 and the pushing device 11 may share a motor or share an energy supply component.
- the pushing energy supply part 113 of the pushing device 11 and the mobile energy supply part 123 of the mobile device 12 are the same energy supply component. .
- the charged navigation device 20 of the pushing robot 1 includes at least one vision sensor 21, a processor 22, and a controller 23, wherein the moving device 12 and the pushing device 11 are controllably connected respectively In the controller 23, the processor 22 is communicably connected to the controller 23.
- the visual sensor 21 is arranged on the pushing body 10 to obtain the surrounding environment information of the pushing body 10 during the traveling process.
- the processor 22 acquires a navigation route based on the information acquired by the visual sensor 21 and sends the navigation route to the controller 23.
- the controller 23 controls the pushing body 10 based on the navigation route so that the pushing body 10 travels along the navigation route.
- the pushing body 10 is guided to a charging device 2 under the guidance of the charging navigation device 20, wherein the charging device 2 can be implemented as a charging pile, a charging stand or a charging box.
- the charging device 2 may be a fixed device or a movable device.
- the charging device 2 can supply power to the pushing robot 1. It is worth noting that the charging method of the charging device 2 may be wireless charging or wired charging.
- the pushing robot 1 is located in the working area.
- a fence is set around the work area or in the work area, the animals are located on one side of the fence, and the feed is located on the other side of the fence.
- the pushing robot 1 and the feed are located on the same side.
- the multi-headed animals are arranged along the fence.
- the shape of the fence can be various, it can be linear or curved. In this embodiment, a linear fence is taken as an example for description.
- the feed is arranged along the fence so that the animals in the fence can get the feed outside the fence by sticking their heads out of the fence.
- the pushing robot 1 is on the outside of the fence, and can also push the feed along the fence to the original position or a position where the animal can reach.
- the pushing robot 1 can navigate in various ways during the pushing process, and it can work along a paved path, or it can automatically explore the path to perform the work. In other words, the pushing robot 1 may perform line-following navigation or non-line-following navigation during the pushing operation.
- the processor 22 of the charged navigation device 20 can generate the navigation route based on the surrounding signs detected by the visual sensor 21.
- the controller 23 controls the pushing body 10 to move toward the charging device 2 along the navigation route based on the processor 22.
- the charged navigation device 20 may receive a signal and then start to work, or it may be that the charged navigation device 20 is always working state.
- a preset route is arranged between the working area and the charging device 2, and the preset route may be a physical route , Can be formed by spraying and adhering the visual mark S on the working surface.
- the preset route can be visually captured by the visual sensor 21 of the charged navigation device 20.
- the preset route may be a continuous route or a discontinuous route.
- a plurality of the visual signs may be set between the operation area and the charging device 2. S.
- the pushing robot 1 can move from a working position in the working area to a position where the charging device 2 is located.
- the preset route may be set as a solid yellow line.
- the user does not need to specifically charge the pushing robot 1 with the original magnetic track.
- the laying of the visual sign S is very simple, and the cost is very low, and the user can dye the specific area.
- the pushing robot 1 can find the charging device 2 very conveniently through the visual sensor 21, without the need for complicated visual calculations.
- the pushing robot 1 when the pushing robot 1 moves to the vicinity of the charging device 2 and the charging is completed, the pushing robot 1 can automatically reset to the original position and continue the pushing operation.
- the charged navigation device 20 of the pushing robot 1 further includes a position sensor 24 and a memory 25, wherein the position sensor 24 and the memory 25 are respectively communicably connected to the processing ⁇ 22.
- the position sensor 24 is used to obtain position information of the pushing body 10
- the memory 25 is communicably connected to the position sensor 24.
- the memory 25 can be used to store the position information of the pushing body 10.
- the visual sensor 21 of the charging navigation device 20 can be rotated to recognize the visual mark S, and then the processor 22 is based on the information obtained by the visual sensor 21 To plan a route, the controller 23 controls the pushing body 10 so that the pushing body 10 returns to the original working position and restarts the operation.
- the visual sensor 21 is rotatably connected to the pushing body 10 to facilitate the visual sensor 21 to obtain information about the surrounding environment of the pushing body 10, so as to recognize The visual mark S around the main body 10 of the material.
- the visual sensor 21 may be arranged to be movable around the X axis, the Y axis, or the Z axis.
- the visual sensor 21 may be installed on the pushing body 10 through a pan-tilt.
- the pusher body 10 itself may be rotatable, and the visual sensor 21 installed on the pusher body 10 expands the detectable range through the rotation or movement of the pusher body 10.
- the visual identifier S may be multiple and different, for example, a stop identifier may be set at a position close to the charging device 2.
- the processor 22 When the rechargeable navigation device 20 recognizes the stop mark, the processor 22 generates a signal and sends it to the controller 23, and the controller 23 controls the pushing body 10 to stop moving.
- the area where the visual indicator S is set is called the line-following area.
- the visual sensor 21 of the charged navigation device 20 can collect road condition information of the traveling direction of the pushing body 10 in real time.
- the non-tracking area may be provided with the stop mark, so that the pushing robot 1 can stop moving or switch to another navigation mode .
- the pushing robot 1 moves based on the visual mark S in the line patrol area to move to the vicinity of the charging device 2 for charging.
- FIG. 4 For a specific work flow, refer to FIG. 4.
- a solid yellow line may be laid between the work area and the charging device 2 as a navigation route, and the width of the solid yellow line may be 10 cm to 20 cm.
- the color and shape of the solid line can be selected according to requirements.
- the visual sensor 21 of the charged navigation device 20 detects the environmental information around the pushing body 10 in real time, obtains image data Img, and transmits the image to
- the processor 22 can extract the visual identifier S according to factors such as color, variance, aspect ratio, and area in the number of images. In this embodiment, it is a yellow solid line.
- a navigation instruction is generated based on the visual identifier S.
- the navigation instruction may include fitting to obtain the navigation route, and may also include a steering angle, so as to control the pushing robot 1 in real time.
- the vision sensor 21 acquires images in real time, and the processor 22 generates a lane line equation in real time.
- the processor 22 obtains a new lane line based on each of the lane line equations and can fit the lane line, for example, calculate The lateral offset distance L and offset angle ⁇ from the center of gravity of the pushing robot 1 to the center of the area where the yellow solid line is located.
- the line-following navigation of the pushing robot 1 ends.
- the pushing robot 1 can perform non-line-following related tasks, such as stopping near the charging device 2 for charging. If the pushing robot 1 does not detect the stop mark, the pushing robot 1 continues to patrol the line until the stop mark is recognized or the charging device 2 is detected.
- FIG. 5 another work flow of the pushing robot 1 according to the present invention is illustrated.
- the visual mark S may be laid, and the visual mark S may be a yellow solid line on the ground. It is understandable that the visual mark S may be lying on the ground or standing on the ground.
- the visual sensor 21 obtains real-time environmental information around the traveling direction to obtain the image data Img.
- disCompute according to the erection height H of the vision sensor 21, the angle between the optical axis of the vision sensor 21 and the ground, and the parameters of the vision sensor 21 itself, calculate the center of gravity of the pushing robot 1 to the yellow
- the lateral offset distance L and the offset angle ⁇ of the center of the area are realized.
- the line patrol steering angle ⁇ is calculated.
- the control algorithm uses the angle deviation PID controller and the lateral distance deviation PID controller to control the steering and walking of the pusher robot 1 in real time.
- the line-following navigation of the pushing robot 1 ends.
- the pushing robot 1 can perform non-line-following related tasks, such as stopping near the charging device 2 for charging. If the pushing robot 1 does not detect the visual sensor 21, the pushing robot 1 continues to patrol the line until the stop mark is recognized or the charging device 2 is detected.
- FIG. 6 a pushing system 1000 according to another preferred embodiment of the present invention is illustrated.
- the pushing system 1000 includes at least one pushing robot 1, at least one charging device 2, and a management unit 3.
- the pushing robot 1 and the charging device 2 can be controlled by the management unit 3, respectively. manage.
- the management unit 3 may include a detection module 301, a processing module 302, and a control module 303, wherein the detection module 301 is communicably connected to the processing module 302, and the processing module 302 is controllably connected In the control module 303.
- the detection module 301 may be provided in the pushing robot 1 to obtain image information of the surrounding environment during the traveling of the pushing robot 1.
- the detection module 301 may also be provided in the charging device 2 to obtain the surrounding environment information of the charging device 2.
- the pushing robot 1 and the charging device 2 may be controllably connected to the control module 303, respectively.
- the detection module 301 may be implemented as a detector or a sensor, and the detection module 301 may also be implemented as a plurality of the detectors or sensors.
- the detection module 301 may be a camera. It is understandable that the detection module 301 does not necessarily need to be configured as the camera, and may be an infrared sensor or other types of wave sensors.
- the detection module 301 is used to detect the visual identifier S in the surrounding environment.
- the processing module 302 Based on the data acquired by the detection module 301, the processing module 302 generates a navigation route. For a specific processing method, refer to the above-mentioned flowcharts in FIG. 4 and FIG. 5.
- the first optional working process of the pushing system 1000 is:
- a solid yellow line may be laid between the work area and the charging device 2 as a navigation route, and the width of the solid yellow line may be 10 cm to 20 cm.
- the color and shape of the solid line can be selected according to requirements.
- the detection module 301 of the management unit 3 detects the environmental information around the pushing body 10 in real time, obtains image data Img, and transmits the image to the A processing module 302, the processing module 302 can refer to the visual identifier S according to factors such as color, variance, aspect ratio, and area in the number of images. In this embodiment, it is a yellow solid line.
- the navigation route is obtained by fitting based on the visual indicator S.
- the detection module 301 acquires images in real time, and the processing module 302 generates a lane line equation in real time.
- the processing module 302 obtains a new lane line based on each of the lane line equations and can fit the lane line, for example, calculate The lateral offset distance L and the offset angle ⁇ from the center of gravity of the pushing robot 1 to the center of the area where the yellow solid line is located.
- the detection module 301 recognizes the stop mark, the line-following navigation of the pushing robot 1 ends.
- the pushing robot 1 can perform non-line-following related tasks, such as stopping near the charging device 2 for charging. If the detection module 301 does not detect the stop mark, the pushing robot 1 continues to patrol the line until the stop mark is recognized or the charging device 2 is detected.
- the second optional working process of the pushing system 1000 is:
- the visual mark S may be laid, and the visual mark S may be a yellow solid line on the ground. It is understandable that the visual mark S may be lying on the ground or standing on the ground.
- the detection module 301 obtains real-time environmental information around the traveling direction to obtain the image data Img.
- disCompute Based on a calculation module disCompute, according to the erection height H of the detection module 301, the angle between the optical axis of the detection module 301 and the ground, and the parameters of the detection module 301 itself, calculate the center of gravity of the pushing robot 1 to The lateral offset distance L and the offset angle ⁇ from the center of the yellow realization area.
- the line patrol steering angle ⁇ is calculated.
- the control algorithm uses the angle deviation PID controller and the lateral distance deviation PID controller to control the steering and walking of the pusher robot 1 in real time.
- the line-following navigation of the pushing robot 1 ends.
- the pushing robot 1 can perform non-line-following related tasks, such as stopping near the charging device 2 for charging. If the pushing robot 1 does not detect the detection module 301, the pushing robot 1 continues to patrol the line until the stop mark is recognized or the charging device 2 is detected.
- FIGS. 7A and 7B an application mode of the pushing system 1000 according to the above-mentioned preferred embodiment of the present invention is illustrated.
- the detection module 301 of the management unit 3 of the pushing system 1000 is provided in the pushing robot 1.
- the detection module 301 of the management unit 3 of the pushing system 1000 is provided in the charging device 2.
- the charging device 2 is configured to be movable.
- the management unit 3 controls one of the charging devices 2 to move to the vicinity of the pushing robot 1 that needs power, so that the The pushing robot 1 can be powered.
- the pushing robot 1 does not need to move toward the charging device 2, but the charging device 2 moves toward the pushing robot 1.
- the detection module 301 provided in the charging device 2 detects the surrounding environment of the charging device 2 to obtain the visual identifier S.
- the processing module 302 generates the navigation route based on the visual identifier S and sends the navigation route to the control module 303.
- the control module 303 controls the charging device 2 to move to the position of the pushing robot 1 along the navigation route.
- the detection module 301 performs data acquisition in real time, and the processing module 302 generates the navigation route in real time.
- FIG. 8A and 8B As well as Fig. 2 and Fig. 6, another application mode of the pushing system 1000 according to the above-mentioned preferred embodiment of the present invention is illustrated.
- the number of the pushing robots 1 of the pushing system 1000 is two or more.
- the management unit 3 of the pushing system 1000 includes a search module 304, and the search module 304 is communicably connected to the processing module 302.
- the search module 304 is used to search for the pushing robot 1.
- the search module 304 of the pushing system 1000 searches for other working pushing robots 1 around, and the processing module 302 is based on the search
- the search result of the module 304 determines one of the pushing robots 1 and sends a signal to the control module 303.
- the control module 303 controls the selected pushing robot 1 to move to the original position where the pushing robot 1 is located to continue working.
- the pushing operation of the feed by the pushing system 1000 can be as continuous as possible.
- FIG. 9 another application method of the pushing system 1000 according to the above-mentioned preferred embodiment of the present invention is illustrated.
- the management unit 3 of the pushing system 1000 can obtain the distance between the pushing robot 1 and the charging device 2 that are working, and the remaining distance between the pushing robot 1 Before the charging robot 1 can move to the charging range of the charging device 2 in the shortest distance, the charging robot 1 is controlled to move toward the charging device 2 to avoid as much as possible.
- the pushing robot 1 that needs to be charged may be powered off in the middle.
- the management unit 3 includes a position acquisition module 305 and a power acquisition module 306, wherein the position acquisition module 305 is used to acquire the position of the pushing robot 1 and the position of the charging device 2.
- the power acquisition module 306 is used to acquire the remaining power of the pushing robot 1.
- the location acquisition module 305 and the power acquisition module 306 are respectively communicably connected to the processing unit.
- the processing module 302 determines that the distance s1 available for the electric power to travel is greater than the distance s2 between the current position of the pushing robot 1 and the charging device 2 and is less than a preset range ⁇ s, that is, When s1-s2 ⁇ s, the control module 303 of the management unit 3 controls the pushing robot 1 to stop working and move toward the charging device 2 to be powered.
- the detection module 301 can detect the surrounding environment of the pushing robot 1, and the processing module 302 obtains the visual identifier S based on the data detected by the detection module 301 and generates the navigation route to determine The pushing robot 1 performs real-time navigation.
- the control module 303 controls the pushing robot 1 based on the navigation route.
- the present invention provides a push management method, wherein the push management method includes the following steps:
- the navigation instruction is generated by the information obtained by a visual sensor 21;
- the pushing robot 1 is guided to move toward the charging device 2 to the charging range of the charging device 2 along the navigation instruction .
- the charging device 2 in the pushing management method, is guided to move toward the pushing robot 1 along the navigation instruction until the pushing robot 1 is located in the charging robot 1 The charging range of the device 2.
- the push management method further includes the following steps:
- the pushing robot 1 performing the pushing operation in the work area needs supplemental energy, and acquiring the position of the pushing robot 1;
- the other pushing robot 1 is driven to replace the original pushing robot 1 in operation, wherein the original pushing robot 1 can be guided to the charging device 2 for charging.
- the visual sensor 21 acquires at least one visual mark S in the surrounding environment of the pushing robot 1 to form the navigation route.
- the visual mark S is a mark line laid on the ground.
- the pushing robot includes a A pusher 9100 and a charger 9200, wherein the charger 9200 can be electrically connected to a mains power supply, and the charger 9200 can automatically supplement electric energy for the pusher 9100.
- the charger 9200 can adjust the voltage of the mains power supply to a voltage suitable for the pusher 9100, and when the pusher 9100 is close to the charger 9200, the pusher 9100 It can be automatically matched to the charger 9200, so that the charger 9200 can supplement electric power to the pusher 9100.
- the pushing machine 9100 of the pushing robot includes a walking device 910 and a pushing device 920 arranged on the walking device 910.
- the walking device 910 includes a supporting mechanism 911, a power supply mechanism 912, two walking driving motors 913, two driving wheels 914, and a supporting wheel 915.
- the carrying mechanism 911 further includes a chassis 9111, wherein the power supply mechanism 912 is disposed on the chassis 9111 to be carried by the chassis 9111, wherein the charger 9200 can automatically supplement electric power for the power supply mechanism 912 .
- Each of the walking drive motors 913 is respectively arranged on both sides of one end of the chassis 9111, and each of the walking drive motors 913 is connected to the power supply mechanism 912, respectively.
- Each of the driving wheels 914 is drivably connected to each of the walking driving motors 913, so that each of the driving wheels 914 is held on both sides of one end of the chassis 9111.
- the supporting wheel 915 is installed in the middle of the other end of the chassis 9111, so that the two driving wheels 914 and the supporting wheel 915 are arranged in a "pin" structure, and the two driving wheels The 914 and the supporting wheels 915 cooperate with each other so that the chassis 9111 is carried away from the ground.
- the driving wheel 914 is installed on the output shaft of the walking driving motor 913 so that the driving wheel 914 is drivably connected to the walking driving motor 913.
- the supporting wheel 915 is preferably a universal wheel to facilitate the steering of the pusher 9100.
- the shape of the chassis 9111 of the carrying mechanism 911 is not limited in the pusher 9100 of the present invention, for example, the pusher 9100 shown in FIGS. 12A to 17B
- the chassis 9111 is square, and the center of gravity of the power supply mechanism 912 coincides with the center of gravity of the chassis 9111 in the height direction, which can prevent the center of gravity of the pusher 9100 from deflection, To ensure the reliability and stability of the pusher 9100.
- the chassis 9111 may, but is not limited to, a circular shape, an oval shape, or a polygon shape.
- the pushing device 920 includes a pushing wall 921, wherein the pushing wall 921 includes an annular wall main body 9211 and a connection extending from the high end of the annular wall main body 9211 to the middle of the annular wall main body 9211 Arm 9212, wherein the connecting arm 9212 of the pushing wall 921 is rotatably mounted on the supporting mechanism 911, and the annular wall main body 9211 of the pushing wall 921 surrounds the pushing wall 921 in a rotatable manner.
- the periphery of the carrying mechanism 911 so that the pushing wall 921 forms the approximate appearance of the periphery of the pushing machine 9100, so that when the pushing machine 9100 pushes the material, food such as forage will not enter the pushing material
- food such as forage is usually straw or a mixture of straw and feed.
- the straw is characterized by a slender shape.
- the pusher 9100 of the present invention is covered by the pusher wall 921 of the pusher 920.
- the outside of the supporting mechanism 911 of the walking device 910 forms a general appearance of the surroundings of the pusher 9100, which can prevent food such as forage from being inserted into the inside of the pusher 9100 and affect the walking device.
- the work of 910 helps to ensure the reliability and stability of the pusher 9100.
- each of the walking drive motors 913 can convert electrical energy into kinetic energy to drive each The driving wheel 914 rotates, so that the walking device 910 can walk. It is understandable that if the rotational speeds of the two walking drive motors 913 are the same, the walking device 910 is set to walk along a straight path. If the rotational speeds of the two walking drive motors 913 are different, the walking The device 910 is configured to walk along a curved path. For example, when one of the walking drive motors 913 rotates and the other of the walking drive motors 913 does not work, the walking device 910 can make a turn.
- the type of the power supply mechanism 912 is not limited in the pusher 9100 of the present invention.
- the power supply mechanism 912 may be a storage battery (such as but not limited to a lithium battery), and is After the electric energy stored by the power supply mechanism 912 is consumed, the power supply mechanism 912 is allowed to supplement the electric energy.
- the power supply mechanism 912 may include a storage battery (such as but not limited to a lithium battery), and when the electrical energy stored by the power supply mechanism 912 is consumed, the power supply mechanism 912 is allowed to supplement the electrical energy.
- the walking device 910 of the pusher 9100 of the present invention includes a controller 916, wherein the power supply mechanism 912 and each of the walking driving motors 913 are respectively connected to the controller 916 to The manner in which the power supply mechanism 912 supplies power to the walking drive motor 913 is controlled by the controller 916.
- the controller 916 is disposed on the chassis 9111 to be carried by the chassis 9111.
- the controller 916 is provided in the power supply mechanism 912, or the controller 916 and the power supply mechanism 912 are integrated.
- the type of the controller 916 is not limited in the pusher 9100 of the present invention, as long as it has a calculation function and a control function.
- the controller 916 may control the power supply state of the power supply mechanism 912 to each of the walking driving motors 913 according to the real-time status of the pusher 9100 to adjust the walking path of the pusher 9100.
- the supporting mechanism 911 includes at least two supporting columns 9112, a lower supporting platform 9113, and an upper supporting platform 9114, wherein the low end of each supporting column 9112 is respectively disposed on the The edge of the chassis 9111, and extends upward from the edge of the chassis 9111 to an appropriate height position, wherein the peripheral edge of the lower bearing platform 9113 is set in the middle of each support column 9112 to support each support
- the column 9112 supports and holds the lower bearing platform 9113 on the upper part of the chassis 9111 and forms a first accommodating space 91101 of the bearing mechanism 911 between the chassis 9111 and the lower bearing platform 9113, wherein the The periphery of the upper bearing platform 9114 is set at the high end of each of the support columns 9112, so that the upper bearing platform 9114 is supported and held on the upper part of the lower bearing platform 9113 by each of the support columns 9112.
- a second accommodating space 91102 of the supporting mechanism 911 is formed between the lower supporting platform 9113 and the upper supporting platform 9114.
- the carrying mechanism 911 has the first accommodating space 91101 and the second accommodating space 91102, wherein the first accommodating space 91101 is formed between the chassis 9111 and the lower carrying platform 9113 for The power supply mechanism 912 installed on the chassis 9111 is accommodated, wherein the second accommodation space 91102 is formed between the lower bearing platform 9113 and the upper bearing platform 9114 for accommodating being installed on the lower part
- other electrical units of the walking device 910 such as but not limited to a fuse, a power manager, and a communication module
- the bearing mechanism 911 has only one bearing platform, and the bearing platform is set at the high end of each support column 9112 to facilitate An accommodating space is formed between the chassis 9111 and the carrying platform, wherein the power supply mechanism 912 and the controller 916 provided on the chassis 9111 are respectively accommodated in the accommodating space of the carrying mechanism 911 .
- the bearing mechanism 911 of the pusher 9100 includes four support columns 9112, each of which is The lower ends of the support columns 9112 are respectively set at each corner of the chassis 9111, and each corner of the lower bearing platform 9113 is respectively set at the middle of each support column 9112, so as Each of the support columns 9112 holds the lower bearing platform 9113 on the upper part of the chassis 9111 and forms the first receiving space 91101 between the chassis 9111 and the lower bearing platform 9113, wherein the upper bearing platform 9111 is Each corner of the platform 9114 is respectively set at the high end of each supporting column 9112, so that the upper supporting platform 9114 is held on the upper part of the lower supporting platform 9113 by each supporting column 9112.
- the second accommodating space 91102 is formed between the lower bearing platform 9113 and the upper bearing platform 9114.
- the carrying mechanism 911 further includes a mounting post 9115 and a drive ring 9116, wherein the mounting post 9115 is arranged to extend upward from the center of the upper carrying platform 9114 to form a free
- the drive ring 9116 is rotatably sleeved in the middle of the mounting post 9115.
- the manner in which the mounting post 9115 is arranged on the upper bearing platform 9114 is not limited in the pusher 9100 of the present invention, for example, the mounting post 9115 and the upper bearing platform 9114 It may be integrally formed, or the mounting post 9115 is screwed to the upper bearing platform 9114, or the mounting post 9115 is welded to the upper bearing platform 9114.
- the manner in which the drive ring 9116 is rotatably sleeved on the mounting post 9115 is not limited in the pusher 9100 of the present invention.
- the drive ring 9116 is rotatable through a bearing.
- the ground is sleeved on the mounting post 9115.
- the walking device 910 further includes a material pushing drive motor 917, wherein the material pushing drive motor 917 is arranged on the upper bearing platform 9114, and the material pushing drive motor 917 is electrically connected to the power supply mechanism 912, Therefore, when the power supply mechanism 912 supplies power to the material pushing drive motor 917, the material pushing drive motor 917 can convert electrical energy into kinetic energy.
- the material pushing drive motor 917 is connected to the controller 916 so that the power supply mechanism 912 is controlled by the controller 916 to supply power to the material pushing drive motor 917.
- the driving ring 9116 of the carrying mechanism 911 is drivably connected to the pushing drive motor 917, and the connecting arm 9212 of the pushing wall 921 of the pushing device 920 extends to and is fixedly connected The drive ring 9116 installed on the carrying mechanism 911.
- the pushing drive motor 917 can drive the drive ring 9116 of the carrying mechanism 911 to rotate, thereby driving the pushing wall 921
- the ring-shaped wall main body 9211 rotates relative to the walking device 910 in a manner of surrounding the circumference of the supporting mechanism 911.
- the walking device 910 further includes a transmission belt 918, wherein both ends of the transmission belt 918 are respectively sleeved on the output shaft of the pushing drive motor 917 and the drive ring 9116 of the carrying mechanism 911, so that The driving ring 9116 is drivably connected to the pushing driving motor 917.
- the output shaft of the pusher drive motor 917 is provided with a gear structure
- the drive ring 9116 is provided with a gear structure, so that the drive ring 9116 is drivably connected to the material pushing drive motor 917 in such a manner that the gear structure of the drive ring 9116 meshes with the gear structure of the material pushing drive motor 917.
- the pushing device 920 further includes at least two pulley mechanisms 922, wherein each of the pulley mechanisms 922 includes a mounting body 9221 and a mounting body 9221 rotatably mounted on the mounting body 9221.
- a pulley body 9222 wherein the pulley mechanism 922 is held between the annular wall body 9211 of the pushing wall 921 and the carrying mechanism 911, and the pulley mechanism 922 is supported by the pulley body 9222
- the annular wall main body 9211 of the pushing wall 921 is installed on the carrying mechanism 911 through the mounting main body 9221, so that during the pushing process of the pushing machine 9100, when the pushing When a force is applied to one side of the annular wall main body 9211 of the wall 921, each of the pulley mechanisms 922 can prevent the annular wall main body 9211 from shaking, thereby avoiding the undesirable phenomenon of eccentricity and shaking of the pusher 9100. Ensure the reliability and stability of the pusher 9100.
- each pulley mechanism 922 is installed on the lower end of each support column 9112 of the supporting mechanism 911, so that the pulley mechanism 922 can be mounted on the pushing wall
- the lower end of the annular wall main body 9211 of the 921 bears against the annular wall main body 9211, so that in the process of using the pusher 9100 to push materials, when the annular wall main body 9211 of the pushing wall 921 is When a force is applied to one side, each of the pulley mechanisms 922 can prevent the ring-shaped wall main body 9211 from shaking.
- each pulley mechanism 922 is respectively mounted on the chassis 9111 of the carrying mechanism 911, so that the pulley mechanism 922 can be mounted on the ring of the pushing wall 921
- the lower end of the wall main body 9211 bears against the annular wall main body 9211, so that during the process of using the pusher 9100 to push materials, when one side of the annular wall main body 9211 of the pusher wall 921 is stressed
- Each of the pulley mechanisms 922 can prevent the ring-shaped wall main body 9211 from shaking.
- the number of the pulley mechanisms 922 of the pushing device 920 is the same as the number of the supporting columns 9112 of the carrying mechanism 911, for example, the pushing machine 9100 shown in FIGS. 12A to 17B
- the number of the pulley mechanisms 922 of the pushing device 920 and the number of the support columns 9112 of the bearing mechanism 911 are both four, wherein the lower end of each support column 9112 One pulley mechanism 922 is provided.
- the pushing device 920 further includes an annular track 923, wherein the annular track 923 is attached to the annular wall main body 9211 of the pushing wall 921 by the annular track 923
- the inner wall is arranged on the annular wall main body 9211, so that the annular track 923 can enhance the strength of the annular wall main body 9211 of the pushing wall 921 and prevent the annular wall main body 9211 from being out of round.
- the pulley main body 9222 of each pulley mechanism 922 of the pushing device 920 respectively presses against the annular wall main body 9211 of the pushing wall 921 in a manner of being attached to the smooth surface of the annular rail 923 In this way, when the annular wall main body 9211 of the pushing wall 921 is driven to rotate relative to the carrying mechanism 911, the pulley main body 9222 of each pulley mechanism 922 can respectively follow the annular The smooth surface of the rail 923 rolls, so that the noise generated when the pulley mechanism 922 and the circular rail 923 rub against each other can be reduced, thereby making the pusher 9100 quieter.
- the pushing wall 921 of the pushing device 920 includes at least two roller half bodies 9210, wherein each of the roller half bodies 9210 includes a roller wall 92101 and extends over the An extension arm 92102 at the high end of the drum wall 92101, wherein the drum walls 92101 adjacent to the drum half 9210 can be installed with each other, so that after the drum half 9210 is installed, each of the drum half
- the drum wall 92101 of the body 9210 forms the annular wall main body 9211 of the pushing wall 921, and the extension arm 92102 of each of the drum half bodies 9210 forms the connecting arm of the pushing wall 921 9212.
- the pushing wall 921 includes two roller half bodies 9210, one of the roller half bodies 9210 is defined as a first roller half body 9210a, and the other roller half body 9210 is defined as a first roller half body 9210a.
- the second roller half 9210b wherein the first roller half 9210a and the second roller half 9210b respectively include a roller wall 92101 and an extension arm 92102, wherein the first roller half 9210a
- the drum wall 92101 and the drum wall 92101 of the second drum half 9210b are mutually mounted to form the annular wall main body 9211, and the extension arm 92102 of the first drum half 9210a and the The extending arm 92102 of the second roller half 9210b forms the connecting arm 9212.
- the annular track 923 includes a first annular track 923a and a second annular track 923b, wherein the first annular track 923a is disposed on the drum wall 92101 of the first drum half 9210a, so The second circular track 923b is provided on the drum wall 92101 of the second drum half 9210b, wherein the drum wall 92101 of the first drum half 9210a and the second drum half 9210b After the drum walls 92101 are mutually installed to form the annular wall main body 9211, the first annular track 923a and the second annular track 923b form a complete annular track 923.
- the pusher 9100 further includes a magnetic sensor 30, wherein the magnetic sensor 30 is disposed at the lower part of the chassis 9111 of the carrying mechanism 911 of the walking device 910,
- the magnetic sensor 30 can communicate with the magnetic navigation path laid on the outside of the bullpen to guide the walking device 910 of the pusher 9100 to walk along a route.
- the pusher 9100 further includes a cover device 940, wherein the cover device 940 includes a cover 941, the center of the cover 941 is installed on the carrier The free end 91150 of the mounting post 9115 of the mechanism 911, so that the cover body 941 is carried by the carrying mechanism 911, and the peripheral edges of the cover body 941 respectively extend to the outside of the cover body 941
- the diameter is larger than the circumference of the annular wall main body 9211 of the pushing wall 921 of the pushing device 920, so that the cover 941 can prevent the upper opening of the annular wall main body 9211 from being exposed.
- the cover device 940 further includes a holding rod 942 and a distance sensor 943 arranged on one end of the holding rod 942, and the other end of the holding rod 942 is arranged on the cover 941,
- the distance sensor 943 can obtain the distance between the pusher 9100 and the bullpen, so as to adjust the pusher 9100 in time when the distance between the pusher 9100 and the bullpen is not suitable.
- the distance from the bullpen Preferably, the holding rod 942 is rotatably installed on the cover 941, so that the angle between the holding rod 942 and the cover 941 can be adjusted.
- the holding rod 942 can be driven to rotate relative to the cover 941, so that there is a larger gap between the holding rod 942 and the cover 941.
- the holding rod 942 is a telescopic rod, that is, the length of the holding rod 942 can be adjusted, so by adjusting the length of the holding rod 942 and the relationship between the holding rod 942 and the cover 941 The angle between the two can be conveniently and flexibly adjusted to the distance between the distance sensor 943 and the bullpen.
- the cover 941 has a holding groove 9411 for receiving the holding rod 942.
- the mounting post 9115 of the carrying mechanism 911 is a tubular mounting post, that is, the mounting post 9115 has a communication channel 91151 for communicating the second accommodating space 91102 of the carrying mechanism 911 and In the outer space of the upper bearing platform 9114, the wires connected to the distance sensor 943 can extend from the outer space of the second bearing platform 9114 to the bearing through the communication channel 91151 of the mounting post 9115 The second accommodating space 91102 of the mechanism 911.
- the pusher 9100 further includes a charging port 950, wherein the charging port 950 is provided on the cover 941 of the cover device 940 and is electrically connected to the The power supply mechanism 912, so that the pusher 9100 allows electric energy to be supplemented to the power supply mechanism through the charging port 950.
- the electric wire connected to the charging port 950 can extend from the outer side of the upper bearing platform 9114 to all of the bearing mechanism 911 through the communication channel 91151 of the mounting post 9115 of the bearing mechanism 911.
- the first accommodating space 91101 is connected to the power supply mechanism 912.
- the charger 9200 includes a charging adapter 960 and a charging mechanism 970.
- the charging mechanism 970 has a connecting terminal 971, a charging terminal 972 corresponding to the connecting terminal 971, and a pair of charging electrodes 973 arranged on the charging terminal 972, wherein the connecting terminal of the charging mechanism 970
- the 971 is movably installed on the charging adapter 960, and the charging mechanism 970 can be driven to move the charging end 972 of the charging mechanism 970 close to or away from the charging adapter 960.
- the connecting end 971 of the charging mechanism 970 is drivably mounted on the charging adapter 960, so that the charging adapter 960 can drive the charging mechanism 970 to enable the charging of the charging mechanism 970
- the terminal 972 is close to or far away from the charging adapter 960.
- the charging adapter 960 may be provided with a driving motor and an installation channel, and the connecting end 971 of the charging mechanism 970 extends to the charging adapter 960 through the installation channel of the charging adapter 960
- the inner part of the charging mechanism 970 and the charging adapter 960 can be driveably installed in the driving motor, wherein the driving motor can drive the connecting end 971 of the charging mechanism 970, so that the relative position of the charging mechanism 970 and the charging adapter 960 can be It is changed so that the charging end 972 of the charging mechanism 970 is close to or away from the charging adapter 960.
- the charging adapter 960 of the charger 9200 can drive the charging mechanism 970 to keep the charging end 972 of the charging mechanism 970 away from the charging adapter 960 , So that the charging end 972 of the charging mechanism 970 is close to and plugged into the charging port 950 of the pusher 9100, so that the charging electrode 973 and the charging port of the charging mechanism 970 are 950 is electrically connected, so that the charging adapter 960 can supplement electrical energy to the power supply mechanism 912 of the pusher 9100.
- the charging adapter 960 of the charger 9200 can drive the charging mechanism 970 so that the charging end 972 of the charging mechanism 970 is separated from the pusher 9100
- the charging port 950 is close to the charging adapter 960.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Environmental Sciences (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Animal Husbandry (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Biodiversity & Conservation Biology (AREA)
- Birds (AREA)
- Human Computer Interaction (AREA)
- Zoology (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Toys (AREA)
Abstract
公开了推料机器人(1)、推料系统以及推料管理方法,其中推料系统包括至少一个推料机器人(1)、至少一个充能装置(2)以及管理单元(3),其中管理单元(3)包括检测模块(301)、处理模块(302)以及控制模块(303),处理模块(302)与检测模块(301)、控制模块(303)可通信地连接,推料机器人(1)和充能装置(2)被分别可控制地连接于管理单元(3),在推料机器人(1)需要充能时,检测模块(301)检测周围环境信息以获取至少一视觉标识(S),处理模块(302)基于视觉标识(S)生成一导航指令并且发送导航指令至控制模块(303),控制模块(303)基于导航指令控制推料机器人(1)和充能装置(2)相遇以便为推料机器人(1)充能。
Description
本发明涉及到农业领域,尤其涉及到一推料机器人、推料系统以及推料管理方法。
目前在农业领域,规模化和自动化是重要的发展趋势。被养殖的动物在进食时,通常将饲料放置在栏杆外,动物位于栏杆内侧,一方面避免动物的排泄物对饲料造成污染,另一方面有利于保持养殖栏内的清洁。
动物在进食过程中,通过移动头部不断拱起饲料来进食。在这个过程中,其他饲料会被推离而远离养殖栏。也就是说,动物在进食一段时间后,会发现饲料被推远,从而无法继续进食。
在传统养殖过程中,养殖户需要人工将饲料不断移动回原来的位置,以使得动物能够持续获得食物。在自动化养殖的背景下,养殖户采用推料机器人来完成这项工作。推料机器人能够利用自动导航技术,自动将饲料推送给动物。
为了方便作业,所述推料机器人自带有储能装置,当电能耗尽时,可以回到充电桩进行充能。所述推料机器人能够自动回到充电桩充电。在目前的技术中,通常在所述推料机器人的作业区铺设磁性导航件,比如说磁条或者是磁钉。所述推料机器人被设置有磁性传感器,藉由所述磁性传感器和所述磁性导航件,所述推料机器人能够回到充电桩进行补能。然而,采用此所述磁性传感器和所述磁吸导航件导航的方式施工成本较高,并且后期维护成本较高,尤其是当养殖场的所述作业区和充电桩之间的距离较远时,利用这种方式进行充能的成本较为昂贵。
发明内容
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料机器人能够自动回到一充电装置充电,并且所述推料机器人能够基于视觉导航自动移动。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料机器人能够采集铺设在行进方向的视觉标识而实现自一作业区至所述充电装置的自动导航。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料机器人能够连续无人作业,完成自动推料、自动充电和/或自动返回的动作。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料机器人能够在电能耗尽之前提前前往所述充电装置进行充电,以避免在寻找所述充电装置的路程中断电,如此能够保证所述推料机器人在作业过程中的可靠性。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料机器人能够自动返回到充电前作业位置以连续作业。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中所述推料 机器人能够在作业的同时被自动充电,藉由一个充电机器人自动找到需要的充电的所述推料机器人,然后对于所述推料机器人进行充电。
本发明的一个优势在于提供一推料机器人、推料系统以及推料管理方法,其中在一个所述推料机器人电量耗尽时,另一个所述推料机器人能够替代作业,以使得动物能够持续进食。换言之,两个所述推料机器人能够进行接续作业,以保证推料效率和允许动物能够持续进食。
根据本发明的一方面,本发明提供了一推料管理方法,其包括如下步骤:
当在一作业区推料作业的一推料机器人需要补能,藉由至少一视觉传感器获取周围环境中的至少一视觉标识以生成一导航指令;和
基于所述导航指令控制所述推料机器人和一充能装置相遇,以通过所述充能装置为所述推料机器人充能。
根据本发明的另一方面,本发明提供了一推料机器人,适于通过一充能装置被供能,其中所述推料机器人包括:
一推料主体;和
一充能导航装置,其中所述充能导航装置包括至少一视觉传感器、一处理器以及一控制器,其中所述视觉传感器被设置于所述推料主体,所述视觉传感器被可通信地连接于所述处理器,所述处理器被可通信地连接于所述控制器,在所述推料主体需要被充能时,所述视觉传感器采集所述推料主体行进方向的周围环境信息,所述周围环境信息包括至少一视觉标识,所述处理器基于所述处理器获取的所所述视觉标识生成一导航指令并且将所述导航指令发送至所述控制器,所述控制器基于所述导航指令控制所述推料主体以引导所述推料主体移动至该充能装置。
根据本发明的另一方面,本发明提供了一推料系统,其包括:
至少一推料机器人;
至少一充能装置;以及
一管理单元,其中所述管理单元包括一检测模块、一处理模块以及一控制模块,其中所述处理模块和所述检测模块被可通信地连接,所述处理模块和所述控制模块被可通信地连接,其中所述推料机器人和所述充能装置被分别可控制地连接于所述管理单元,在所述推料机器人需要充能时,所述检测模块检测周围环境信息以获取至少一视觉标识,所述处理模块基于所述视觉标识生成一导航指令并且发送所述导航指令至所述控制模块,所述控制模块基于所述导航指令控制所述推料机器人和所述充能装置相遇以为所述推料机器人充能。
图1是根据本发明的一较佳实施例的一推料机器人的立体示意图。
图2A是根据本发明的上述较佳实施例的所述推料机器人的分解示意图。
图2B是根据本发明的上述较佳实施例的所述推料机器人的框图示意图。
图3A是根据本发明的上述较佳实施例的所述推料机器人的应用示意图。
图3B是根据本发明的上述较佳实施例的所述推料机器人的应用示意图。
图3C是根据本发明的上述较佳实施例的所述推料机器人的应用示意图。
图4是根据本发明的上述较佳实施例的所述推料机器人的一工作流程示意图。
图5是根据本发明的上述较佳实施例的所述推料机器人的一工作流程示意图。
图6是根据本发明的一较佳实施例的一推料系统的示意图。
图7A是根据本发明的上述佳实施例的所述推料系统的应用示意图。
图7B是根据本发明的上述佳实施例的所述推料系统的应用示意图。
图8A是根据本发明的上述佳实施例的所述推料系统的应用示意图。
图8B是根据本发明的上述佳实施例的所述推料系统的应用示意图。
图9是根据本发明的上述较佳实施例的所述推料系统的应用示意图。
图10是依本发明的一较佳实施例的一推料设备的立体示意图。
图11A和图11B分别是依本发明的上述较佳实施例的所述推料设备的不同状态的示意图,其示意了所述推料设备的一推料机和一充电机之间的关系。
图12A和图12B分别是依本发明的上述较佳实施例的所述推料设备的所述推料机的不同视角的立体示意图。
图13是依本发明的上述较佳实施例的所述推料设备的所述推料机的整体分解示意图,其示意了所述推料机的一行走装置和一推料装置之间的结构关系。
图14是依本发明的上述较佳实施例的所述推料设备的所述推料机的局部立体示意图,其示意了所述推料机的所述行走装置和所述推料装置的一推料壁之间的结构关系。
图15是依本发明的上述较佳实施例的所述推料设备的所述推料机的局部分解示意图,其示意了所述推料壁的各个部件之间的结构关系。
图16是依本发明的上述较佳实施例的所述推料设备的所述推料机的局部立体示意图,其示意了所述行走装置的各个部件之间的结构关系。
图17A和图17B分别是依本发明的上述较佳实施例的所述推料设备的所述推料机的不同视角的示意图,其分别示意了所述行走装置的各个部件之间的结构关系。
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考附图1至附图3C所示,根据本发明的一较佳实施例的一推料机器人1被阐明。
所述推料机器人1能够自动在一作业区域内对于饲料进行推料,以使得动物能够持续进 食。当所述推料机器人1需要补充电能时,所述推料机器人1能够被自动充能。因此,在整个推料作业过程中,极少需要人工干预,提高了生产效率。
具体地,所述推料机器人1包括一推料主体10和一充能导航装置20,其中所述充能导航装置20被设置于所述推料主体10,所述推料主体10用于推料,所述充能导航装置20适于为所述推料主体10进行能源补充。
详细地说,所述推料主体10包括一推料装置11和一移动装置12,其中所述移动装置12被设置于所述推料装置11,以带动所述推料装置11运动。所述推料装置11用于推动饲料,所述移动装置12适于沿着一工作面移动。所述充能导航装置20能够为所述移动装置12提供导航。
参考附图2A和图2B,所述移动装置12可以包括一可移动件121、一移动驱动电机122以及一移动供能部123,其中所述移动供能部123用于为所述移动驱动电机122供能,其中所述可移动件121被可驱动地连接于所述移动驱动电机122。所述可移动件121的移动方式可以是多样的,比如所述可移动件121可以是一滚轮、一转盘或者是一履带。
所述推料装置11可以包括一推料件111、一推料驱动电机112以及一推料供能部113,所述推料件111用于推移饲料。所述推料供能部113用于为所述推料驱动电机112供能。所述推料件111被可驱动地连接于所述推料驱动电机112。
可以理解的是,所述移动装置12和所述推料装置11可以共用一个电机或者是共用一个供能部件。例如,在附图2A和图2B的这个具体示例中,所述推料装置11的所述推料供能部113和所述移动装置12的所述移动供能部123是同一个供能部件。
所述推料机器人1的所述充能导航装置20包括至少一视觉传感器21、一处理器22以及一控制器23,其中所述移动装置12和所述推料装置11被分别可控制地连接于所述控制器23,所述处理器22被可通信地连接于所述控制器23。所述视觉传感器21被设置于所述推料主体10,以获取所述推料主体10在行进过程中的周围环境信息。所述处理器22基于所述视觉传感器21获取的信息获取一导航路线并且将所述导航路线发送至所述控制器23。所述控制器23基于所述导航路线控制所述推料主体10,以使得所述推料主体10沿着所述导航路线行进。
所述推料主体10在所述充能导航装置20的引导下被引导至一充能装置2,其中所述充能装置2可以被实施为一充电桩、充电座或者充电箱。所述充能装置2可以是一固定装置,也可以是一可移动装置。
所述推料机器人1移动至所述充能装置2的一可充电范围内时,所述充能装置2就可以为所述推料机器人1供电。值得注意的是,所述充能装置2的充电方式可以是无线充电,也可以是有线充电的方式。
详细地说,在一养殖场或者是牧场的一作业区域,所述推料机器人1位于所述作业区域。所述作业区域的周围或者是在所述作业区域设置有围栏,动物位于围栏的一侧,饲料位于围栏的另一侧。所述推料机器人1和饲料位于同一侧。
多头动物沿着围栏被排列,围栏的形状可以是多样的,可以是直线形状,也可以是曲形的,在本实施例中,以直线状围栏为例进行说明。饲料沿着围栏被排列,以使得围栏内的动物将头部自围栏探出就可以获取到位于围栏外侧的饲料。
随着时间的推移,动物的头部不断将饲料朝向围栏外侧拱动,以使得饲料和围栏之间的距离更远。所述推料机器人1在围栏外侧,也可以沿着围栏推动饲料至原先的位置或者是动物可触及的位置。
可以理解的是,所述推料机器人1在推料过程中导航方式是多种的,可以是沿着铺设好的路径进行作业,也可以是自动探索路径以进行作业的。换句话说,所述推料机器人1在推料作业过程中可以是巡线导航的,也可以是非巡线导航的。
当所述推料主体10的能源将要耗尽时,所述充能导航装置20的所述处理器22能够基于所述视觉传感器21检测到的周围标识,以生成所述导航路线。所述控制器23基于所述处理器22控制所述推料主体10沿着所述导航路线朝向所述充能装置2移动。
可以理解的是,当所述推料主体10的能源将要耗尽后,所述充能导航装置20可以接收到一个信号,然后开始工作,也可以是,所述充能导航装置20一直处于工作状态。
所述作业区域和所述充能装置2之间存在一定的距离,并且所述作业区域和所述充能装置2之间被布置有预设线路,所述预设路线可以是一实体的路线,可以通过在所述工作面喷涂、粘附视觉标识S的方式形成。所述预设路线在视觉上能够被所述充能导航装置20的所述视觉传感器21捕捉。
可以理解的是,所述预设路线可以是连续的路线,也可以是一不连续的路线,比如说可以在所述作业区域和所述充能装置2之间设置有多个所述视觉标识S。沿着多个所述视觉标识S,所述推料机器人1可以从所述作业区域的一作业位置移动至所充能装置2所在位置。
在本实施例中,所述预设路线可以被设置为一黄色实线。通过这样方式,用户不需要特意为所述推料机器人1充电而设置有原先的磁性轨道。所述视觉标识S的铺设非常简单,成本很低,用户对于特定区域进行染色即可。另外,所述推料机器人1在所述视觉标识S的作用下,藉由所述视觉传感器21,可以十分方便地找到所述充能装置2,不需要借助复杂的视觉计算。
进一步地,当所述推料机器人1移动至所述充能装置2附近并且完成充电之后,所述推料机器人1能够自动复位到原先的位置,继续推料作业。
详细地说,所述推料机器人1的所述充能导航装置20进一步包括一位置传感器24和一存储器25,其中所述位置传感器24和所述存储器25被分别可通信地连接于所述处理器22。所述位置传感器24用于获取所述推料主体10的位置信息,所述存储器25被可通信地连接于所述位置传感器24。所述存储器25能够用于存储所述推料主体10的位置信息。
在所述推料机器人1完成充电后,所述充能导航装置20的所述视觉传感器21能够转动至识别到所述视觉标识S,然后所述处理器22基于所述视觉传感器21获取的信息规划路线,所述控制器23控制所述推料主体10,以使得所述推料主体10回到原先的作业位置,重新开始作业。
值得注意的是,所述视觉传感器21被可转动地连接于所述推料主体10,以方便所述视觉传感器21获取所述推料主体10周围环境的信息,以识别到布置在所述推料主体10周围的所述视觉标识S。举例说明,所述视觉传感器21可以被布置为可绕X轴、Y轴或者Z轴运动的。所述视觉传感器21可以通过一云台被安装于所述推料主体10。也可以是,所述推料主体10本身可以是可转动的,被安装于所述推料主体10的所述视觉传感器21通过所述 推料主体10的转动或者移动来扩大可探测范围。
进一步地,所述视觉标识S可以是多个,并且可以是不同的,比如说在靠近所述充能装置2位置可以被设置一停止标识。当所述充能导航装置20识别到所述停止标识,所述处理器22生成一信号并且发送至所述控制器23,所述控制器23控制所述推料主体10停止运动。
被设置有所述视觉标识S的区域被称为巡线区域。在所述推料主体10的运动过程中,所述充能导航装置20的所述视觉传感器21能够实时地采集所述推料主体10行进方向的路况信息。当所述推料主体10要进入到非巡线区域时,所述非巡线区域可以被设置有所述停止标识,以使得所述推料机器人1可以停止运动或者是切换到另外的导航模式。
所述推料机器人1在所述巡线区域内基于所述视觉标识S进行移动,以移动至所述充能装置2附近进行充电,其具体的一种工作流程可参考附图4所示。
首先,在所述作业区域到所述充能装置2之间可以被铺设有黄色实线作为导航路线,黄色实线的宽度可以是10cm~20cm。本领域技术人员可以理解的是,实线的颜色和形状可以根据需求被选择。
其次,当所述推料机器人1需要充电时,所述充能导航装置20的所述视觉传感器21实时探测所述推料主体10周围的环境信息,获取到图像数据Img,并且将图像传输到所述处理器22,所述处理器22能够根据所述图像数目中的颜色、方差、长宽比和面积等因素提取到所述视觉标识S。在本实施例中,就是黄色实线。基于所述视觉标识S生成一导航指令,比如说所述导航指令可以包括拟合获得所述导航路线,也可以包括转向角度,以供实时地控制所述推料机器人1。
详细地说,所述视觉传感器21实时地获取图像,所述处理器22实时地生成一车道线方程。随着所述推料主体10的移动,多个车道线方程被生成,所述处理器22基于各个所述车道线方程获得新的车道线并且可以对于所述车道线进行拟合,比如说计算推料机器人1重心到黄色实线所在区域中心的横向偏移距离L和偏移角度θ。
最后,当所述推料机器人1的所述视觉传感器21识别到所述停止标识,所述推料机器人1的巡线导航结束。所述推料机器人1可以进行非巡线相关的工作,比如说停靠在所述充能装置2附近以进行充电。如果所述推料机器人1没有检测到所述停止标识,那么所述推料机器人1继续巡线前进,至识别到所述停止标识或者是探测到所述充能装置2。
参考附图5所示,是根据本发明的所述推料机器人1的另一种工作流程被示意。
首先,在所述作业区域到所述充能装置2之间,可以被铺设有所述视觉标识S,所述视觉标识S可以是位于地面的黄色实线。可以理解的是,所述视觉标识S可以被躺于地面,也可以是立于地面。
其次,当所述推料机器人1需要充能时,所述视觉传感器21实时获取行进方向周围的环境信息,以获得所述图像数据Img。根据图像分割模型segmentation Model,计算黄色实线区域S=segmentation Model(Img)。基于一计算模块dis Compute,根据所述视觉传感器21的架设高度H,所述视觉传感器21的光轴与地面的夹角及所述视觉传感器21自身的参数,计算推料机器人1重心到与黄色实现区域中心的横向偏移距离L和偏移角度θ。
然后,基于所述推料机器人1控制模型driveControl,计算出巡线行驶转角β,其中控制算法采用角度偏差PID控制器和横向距离偏差PID控制器实时控制所述推料机器人1的 转向和行走,实现所述推料机器人1的巡线导航。
最后,当所述推料机器人1的所述视觉传感器21识别到所述停止标识,所述推料机器人1的巡线导航结束。所述推料机器人1可以进行非巡线相关的工作,比如说停靠在所述充能装置2附近以进行充电。如果所述推料机器人1没有检测到所述视觉传感器21,那么所述推料机器人1继续巡线前进,至识别到所述停止标识或者是探测到所述充能装置2。
参考附图6所示,根据本发明的另一较佳实施例的一推料系统1000被阐明。
所述推料系统1000包括至少一所述推料机器人1、至少一充能装置2以及一管理单元3,其中所述推料机器人1和所述充能装置2分别可以被所述管理单元3管理。
所述管理单元3可以包括一检测模块301、一处理模块302以及一控制模块303,其中所述检测模块301被可通信地连接于所述处理模块302,所述处理模块302被可控制地连接于所述控制模块303。所述检测模块301可以被设置于所述推料机器人1,以用于获取所述推料机器人1行进过程中的周围环境图像信息。所述检测模块301也可以被设置于所述充能装置2,以用于获取所述充能装置2的周围环境信息。所述推料机器人1和所述充能装置2可以被分别可控制地连接于所述控制模块303。
所述检测模块301可以被实施为一检测器或者是传感器,所述检测模块301也可以被实施为多个所述检测器或者是传感器。当所述检测模块301被实施为视觉传感器21,所述检测模块301可以是一摄像头。可以理解的是,所述检测模块301不一定需要被设置为所述摄像头,可以是一红外传感器或者是其他类型的波传感器。所述检测模块301用于检测周围环境中的所述视觉标识S。
基于所述检测模块301获取的数据,所述处理模块302生成导航路线,具体的处理方式可参考上述的附图4和附图5中示意的流程。
第一种可选的所述推料系统1000的工作流程为:
首先,在所述作业区域到所述充能装置2之间可以被铺设有黄色实线作为导航路线,黄色实线的宽度可以是10cm~20cm。本领域技术人员可以理解的是,实线的颜色和形状可以根据需求被选择。
其次,当所述推料机器人1需要充电时,所述管理单元3的所述检测模块301实时探测所述推料主体10周围的环境信息,获取到图像数据Img,并且将图像传输到所述处理模块302,所述处理模块302能够根据所述图像数目中的颜色、方差、长宽比和面积等因素提到所述视觉标识S。在本实施例中,就是黄色实线。基于所述视觉标识S拟合获得所述导航路线。
详细地说,所述检测模块301实时地获取图像,所述处理模块302实时地生成一车道线方程。随着所述推料机器人1的移动,多个车道线方程被生成,所述处理模块302基于各个所述车道线方程获得新的车道线并且可以对于所述车道线进行拟合,比如说计算所述推料机器人1重心到黄色实线所在区域中心的横向偏移距离L和偏移角度θ。
最后,当所述检测模块301识别到所述停止标识,所述推料机器人1的巡线导航结束。所述推料机器人1可以进行非巡线相关的工作,比如说停靠在所述充能装置2附近以进行充电。如果所述检测模块301没有检测到所述停止标识,那么所述推料机器人1继续巡线前进,至识别到所述停止标识或者是探测到所述充能装置2。
第二种可选的所述推料系统1000的工作流程为:
首先,在所述作业区域到所述充能装置2之间,可以被铺设有所述视觉标识S,所述视觉标识S可以是位于地面的黄色实线。可以理解的是,所述视觉标识S可以被躺于地面,也可以是立于地面。
其次,当所述推料机器人1需要充能时,所述检测模块301实时获取行进方向周围的环境信息,以获得所述图像数据Img。根据图像分割模型segmentation Model,计算黄色实线区域S=segmentation Model(Img)。基于一计算模块dis Compute,根据所述检测模块301的架设高度H,所述检测模块301的光轴与地面的夹角及所述检测模块301自身的参数,计算所述推料机器人1重心到与黄色实现区域中心的横向偏移距离L和偏移角度θ。
然后,基于所述推料机器人1控制模型driveControl,计算出巡线行驶转角β,其中控制算法采用角度偏差PID控制器和横向距离偏差PID控制器实时控制所述推料机器人1的转向和行走,实现所述推料机器人1的巡线导航。
最后,当所述推料机器人1的所述检测模块301识别到所述停止标识,所述推料机器人1的巡线导航结束。所述推料机器人1可以进行非巡线相关的工作,比如说停靠在所述充能装置2附近以进行充电。如果所述推料机器人1没有检测到所述检测模块301,那么所述推料机器人1继续巡线前进,至识别到所述停止标识或者是探测到所述充能装置2。
参考附图7A和7B所示,同时可参考附图2和附图6,是根据本发明的上述较佳实施例的所述推料系统1000的一种应用方式被阐明。
在上述实施例中,所述推料系统1000的所述管理单元3的所述检测模块301被设置于所述推料机器人1。
在本实施例中,所述推料系统1000的所述管理单元3的所述检测模块301被设置于所述充能装置2。所述充能装置2被设置为可移动的。
当所述推料系统1000的一个所述推料机器人1需要被供电时,所述管理单元3控制一个所述充能装置2移动至需要供电的所述推料机器人1附近,以使得所述推料机器人1能够被供电。
换句话说,在本实施例中,所述推料机器人1不需要朝向所述充能装置2移动,而是所述充能装置2朝向所述推料机器人1移动。
详细地说,当所述推料机器人1需要被供电时,被设置于所述充能装置2的所述检测模块301检测所述充能装置2周围环境,以获得所述视觉标识S。所述处理模块302基于所述视觉标识S生成所述导航路线并且将所述导航路线发送至所述控制模块303。所述控制模块303控制所述充能装置2沿着所述导航路线移动至所述推料机器人1所在位置。
可以理解的是,所述检测模块301实时进行数据获取,所述处理模块302实时生成所述导航路线。
参考附图8A和8B所示,同时可参考附图2和附图6,是根据本发明的上述较佳实施例的所述推料系统1000的另一种应用方式被阐明。
在本实施例中,所述推料系统1000的所述推料机器人1的数目是两个,或者是更多。所述推料系统1000的所述管理单元3包括一搜索模块304,所述搜索模块304被可通信地连接于所述处理模块302。所述搜索模块304用于搜索所述推料机器人1。
当一个正在作业的所述推料机器人1需要充电时,所述推料系统1000的所述搜索模块304搜索周围的可工作的其他所述推料机器人1,所述处理模块302基于所述搜索模块304的搜索结果确定一个所述推料机器人1并且发送一信号至所述控制模块303。所述控制模块303控制选定的所述推料机器人1移动至原先的所述推料机器人1所在的位置继续工作。
通过这样的方式,所述推料系统1000对于饲料的推料作业可以尽可能做到连续化。
参考附图9所示,是根据本发明的上述较佳实施例的所述推料系统1000的另一种应用方式被阐明。
在本实施例中,所述推料系统1000的所述管理单元3能够获取正在工作的所述推料机器人1和所述充能装置2之间的距离,并且在所述推料机器人1剩余的电量无法支撑所述推料机器人1以最短距离运动到所述充能装置2的所述可充电范围内之前,控制所述推料机器人1朝向所述充能装置2移动,以尽可能避免需要充电的所述推料机器人1在中途断电的情况出现。
详细地说,所述管理单元3包括一位置获取模块305和一电量获取模块306,其中所述位置获取模块305用于获取所述推料机器人1的位置和所述充能装置2的位置。所述电量获取模块306用于获取所述推料机器人1的剩余电量。
所述位置获取模块305和所述电量获取模块306被分别可通信地连接于所述处理单元。在所述处理模块302判断所述电量可供行驶的距离s1大于所述推料机器人1目前位置和所述充能装置2之间的距离s2小于一预设范围△s时,也就是说,s1-s2<△s时,所述管理单元3的所述控制模块303控制所述推料机器人1停止工作并且朝向所述充能装置2移动以被供电。所述检测模块301可以对于所述推料机器人1的周围环境进行检测,所述处理模块302基于所述检测模块301检测到的数据获取所述视觉标识S并且生成所述导航路线,以对于所述推料机器人1进行实时导航。所述控制模块303基于所述导航路线控制所述推料机器人1。
根据本发明的另一方面,本发明提供了一推料管理方法,其中所述推料管理方法包括如下步骤:
当在所述作业区域的所述推料机器人1需要补能,藉由一视觉传感器21获取的信息生成所述导航指令;和
沿着所述导航路径引导所述推料机器人1和所述充能装置2相遇,以通过所述充能装置2为所述推料机器人1充能。
根据本发明的一个实施例,在所述推料管理方法中,沿着所述导航指令引导所述推料机器人1朝所述充能装置2移动至所述充能装置2的所述充电范围。
根据本发明的一个实施例,在所述推料管理方法中,沿着所述导航指令引导所述充能装置2朝向所述推料机器人1移动至所述推料机器人1位于所述充能装置2的所述充电范围。
根据本发明的一个实施例,所述推料管理方法进一步包括如下步骤:
在所述作业区域推料作业的所述推料机器人1需要补能,获取所述推料机器人1所在位置;和
驱动另一所述推料机器人1前往以替代原先的所述推料机器人1作业,其中原先的所述推料机器人1能够被引导至所述充能装置2以充电。
根据本发明的一个实施例,在所述推料管理方法中,藉由所述视觉传感器21获取所述推料机器人1周围环境中的至少一视觉标识S以形成所述导航路线。
根据本发明的一个实施例,在所述推料管理方法中,所述视觉标识S为铺设在地面的标识线。
根据本发明的说明书附图之附图10至图17B,依本发明的一较佳实施例的一推料机器人在接下来的描述中将被揭露和被阐述,其中所述推料机器人包括一推料机9100和一充电机9200,其中所述充电机9200能够被电连接于市电电源,并且所述充电机9200能够自动地为所述推料机9100补充电能。例如,所述充电机9200能够将市电电源的电压调整到适配于所述推料机9100的电压,并且当所述推料机9100靠近所述充电机9200时,所述推料机9100能够自动地匹配于所述充电机9200,以藉由所述充电机9200为所述推料机9100补充电能。
参考附图12A至图17B,所述推料机器人的所述推料机9100包括一行走装置910和被设置于所述行走装置910的一推料装置920。
具体地,所述行走装置910包括一承载机构911、一供电机构912、两行走驱动电机913、两驱动轮914以及一支撑轮915。所述承载机构911进一步包括一底盘9111,其中所述供电机构912被设置于所述底盘9111,以被所述底盘9111承载,其中所述充电机9200能够自动地为所述供电机构912补充电能。每个所述行走驱动电机913分别被设置于所述底盘9111的一个端部的两侧,并且每个所述行走驱动电机913分别被连接于所述供电机构912。每个所述驱动轮914分别被可驱动地连接于每个所述行走驱动电机913,如此使得每个所述驱动轮914分别被保持在所述底盘9111的一个端部的两侧。所述支撑轮915被安装于所述底盘9111的另一个端部的中部,如此两个所述驱动轮914和所述支撑轮915呈“品”字形结构被布置,并且两个所述驱动轮914和所述支撑轮915相互配合使所述底盘9111被承载而远离地面。
优选地,所述驱动轮914被安装于所述行走驱动电机913的输出轴,如此使得所述驱动轮914被可驱动地连接于所述行走驱动电机913。所述支撑轮915优选地万向轮,以便于所述推料机9100转向。
值得一提的是,所述承载机构911的所述底盘9111的形状在本发明的所述推料机9100中不受限制,例如在附图12A至图17B示出的所述推料机9100的这个较佳示例中,所述底盘9111呈方形,并且所述供电机构912的重心和所述底盘9111的重心在高度方向上重合,如此能够避免所述推料机9100的重心产生偏斜,以保证所述推料机9100的可靠性和稳定性。可选地,在本发明的所述推料机9100的其他示例中,所述底盘9111可以但不限于呈圆形、椭圆形、多边形。
所述推料装置920包括一推料壁921,其中所述推料壁921包括一环形壁主体9211和自所述环形壁主体9211的高端向所述环形壁主体9211的中部方向延伸的一连接臂9212,其中所述推料壁921的所述连接臂9212被可转动地安装于所述承载机构911,并且所述推料壁921的所述环形壁主体9211以可转动的方式环绕于所述承载机构911的四周,以使所述推料壁921形成所述推料机9100的四周的大致外观,如此在所述推料机9100推料时,草料等食物不会进入所述推料机9100的内部,以避免所述行走装置910被影响。例如,草料 等食物通常是秸秆或者秸秆与饲料的混合物,秸秆的特点是呈细长状,本发明的所述推料机9100通过所述推料装置920的所述推料壁921罩设在所述行走装置910的所述承载机构911的外部并形成所述推料机9100的四周的大致外观的方式,能够避免草料等食物插入到所述推料机9100的内部而影响所述行走装置910的工作,从而有利于保证所述推料机9100的可靠性和稳定性。
在本发明的所述推料机9100中,当所述供电机构912被控制向每个所述行走驱动电机913供电时,每个所述行走驱动电机913能够将电能转换为动能而驱动每个所述驱动轮914转动,如此所述行走装置910能够行走。可以理解的是,若两个所述行走驱动电机913的转速相同,则所述行走装置910被设置沿着直线路径行走,若两个所述行走驱动电机913的转速存在差异,则所述行走装置910被设置沿着曲线路径行走。例如当一个所述行走驱动电机913转动而另一个所述行走驱动电机913不工作时,所述行走装置910能够进行转弯。
值得一提的是,所述供电机构912的类型在本发明的所述推料机9100中不受限制,例如所述供电机构912可以是一个蓄电池(例如但不限于锂电池),并且当所述供电机构912存储的电能被消耗后,所述供电机构912被允许补充电能。或者所述供电机构912可以包含一个蓄电池(例如但不限于锂电池),并且当所述供电机构912存储的电能被消耗后,所述供电机构912被允许补充电能。
进一步地,本发明的所述推料机9100的所述行走装置910包括一控制器916,其中所述供电机构912和每个所述行走驱动电机913分别被连接于所述控制器916,以藉由所述控制器916控制所述供电机构912向所述行走驱动电机913供电的方式。优选地,所述控制器916被设置于所述底盘9111,以被所述底盘9111承载。可选地,所述控制器916被设置于所述供电机构912,或者所述控制器916和所述供电机构912被集成。
值得一提的是,所述控制器916的类型在本发明的所述推料机9100中不受限制,其只要具有计算功能和控制功能即可。例如,所述控制器916可以根据所述推料机9100的实时状态控制所述供电机构912向每个所述行走驱动电机913供电的状态从而调整所述推料机9100的行走路径。
继续参考附图12A至图17B,所述承载机构911包括至少两支撑柱9112、一下部承载平台9113以及一上部承载平台9114,其中每个所述支撑柱9112的低端分别被设置于所述底盘9111的边缘,并且自所述底盘9111的边缘向上延伸至适当高度位置,其中所述下部承载平台9113的周缘被设置于每个所述支撑柱9112的中部,以藉由每个所述支撑柱9112支撑和保持所述下部承载平台9113于所述底盘9111的上部而于所述底盘9111和所述下部承载平台9113之间形成所述承载机构911的一第一容纳空间91101,其中所述上部承载平台9114的周缘被设置于每个所述支撑柱9112的高端,以藉由每个所述支撑柱9112支撑和保持所述上部承载平台9114于所述下部承载平台9113的上部而于所述下部承载平台9113和所述上部承载平台9114之间形成所述承载机构911的一第二容纳空间91102。
换言之,所述承载机构911具有所述第一容纳空间91101和所述第二容纳空间91102,其中所述第一容纳空间91101形成于所述底盘9111和所述下部承载平台9113之间,以供容纳被安装于所述底盘9111的所述供电机构912,其中所述第二容纳空间91102形成于所述下部承载平台9113和所述上部承载平台9114之间,以供容纳被安装于所述下部承载平台 9113的所述控制器916。可以理解的是,所述行走装置910的其他电气单元(例如但不限于保险丝、电源管理器、通信模块)也可以以被容纳于所述第二容纳空间91102的方式被承载于所述下部承载平台9113。
可选地,在本发明的所述推料机9100的其他示例中,所述承载机构911仅具有一个承载平台,并且所述承载平台被设置于每个所述支撑柱9112的高端,以于所述底盘9111和所述承载平台之间形成一个容纳空间,其中被设置于所述底盘9111的所述供电机构912和所述控制器916分别被容纳于所述承载机构911的所述容纳空间。
具体地,在附图12A至图17B示出的所述推料机9100的这个具体示例中,所述推料机9100的所述承载机构911包括四个所述支撑柱9112,其中每个所述支撑柱9112的低端分别被设置于所述底盘9111的每个转角处,其中所述下部承载平台9113的每个转角处分别被设置于每个所述支撑柱9112的中部,以藉由每个所述支撑柱9112保持所述下部承载平台9113于所述底盘9111的上部而于所述底盘9111和所述下部承载平台9113之间形成所述第一容纳空间91101,其中所述上部承载平台9114的每个转角处分别被设置于每个所述支撑柱9112的高端,以藉由每个所述支撑柱9112保持所述上部承载平台9114于所述下部承载平台9113的上部而于所述下部承载平台9113和所述上部承载平台9114之间形成所述第二容纳空间91102。
继续参考附图12A至图17B,所述承载机构911进一步包括一安装柱9115和一驱动环9116,其中所述安装柱9115被设置自所述上部承载平台9114的中心位置向上延伸而形成一自由端91150,所述驱动环9116被可转动地套装于所述安装柱9115的中部。
值得一提的是,所述安装柱9115被设置于所述上部承载平台9114的方式在本发明的所述推料机9100中不受限制,例如所述安装柱9115和所述上部承载平台9114可以一体地形成,或者所述安装柱9115被螺接于所述上部承载平台9114,或者所述安装柱9115被焊接于所述上部承载平台9114。
值得一提的是,所述驱动环9116被可转动地套装于所述安装柱9115的方式在本发明的所述推料机9100中不受限制,例如所述驱动环9116通过轴承被可转动地套装于所述安装柱9115。
所述行走装置910进一步包括一推料驱动电机917,其中所述推料驱动电机917被设置于所述上部承载平台9114,并且所述推料驱动电机917被电连接于所述供电机构912,以在所述供电机构912向所述推料驱动电机917供电时,所述推料驱动电机917能够将电能转换为动能。优选地,所述推料驱动电机917被连接于所述控制器916,以藉由所述控制器916控制所述供电机构912向所述推料驱动电机917供电的方式。所述承载机构911的所述驱动环9116被可驱动地连接于所述推料驱动电机917,所述推料装置920的所述推料壁921的所述连接臂9212延伸至和被固定地安装于所述承载机构911的所述驱动环9116。当所述供电机构912向所述推料驱动电机917供电时,所述推料驱动电机917能够驱动所述承载机构911的所述驱动环9116转动,从而带动所述推料壁921的所述环形壁主体9211以环绕所述承载机构911的四周的方式做相对于所述行走装置910的转动。
所述行走装置910进一步包括一传动皮带918,其中所述传动皮带918的两端分别套装于所述推料驱动电机917的输出轴和所述承载机构911的所述驱动环9116,以使所述驱动 环9116被可驱动地连接于所述推料驱动电机917。可选地,在本发明的所述推料机9100的另外一些示例中,所述推料驱动电机917的输出轴设有齿轮结构,所述驱动环9116设有齿轮结构,从而所述驱动环9116以所述驱动环9116的齿轮结构啮合于所述推料驱动电机917的齿轮结构的方式被可驱动地连接于所述推料驱动电机917。
继续参考附图12A至图17B,所述推料装置920进一步包括至少两滑轮机构922,其中每个所述滑轮机构922分别包括一安装主体9221和被可转动地安装于所述安装主体9221的一滑轮主体9222,其中所述滑轮机构922被保持在所述推料壁921的所述环形壁主体9211和所述承载机构911之间,并且所述滑轮机构922以所述滑轮主体9222顶住所述推料壁921的所述环形壁主体9211的方式通过所述安装主体9221被安装于所述承载机构911,如此在使用所述推料机9100推料的过程中,当所述推料壁921的所述环形壁主体9211的单侧受力时,每个所述滑轮机构922能够避免所述环形壁主体9211晃动,从而避免所述推料机9100出现偏心和晃动的不良现象,以保证所述推料机9100的可靠性和稳定性。
优选地,每个所述滑轮机构922的所述安装主体9221分别被安装于所述承载机构911的每个所述支撑柱9112的低端,如此所述滑轮机构922能够于所述推料壁921的所述环形壁主体9211的低端顶住所述环形壁主体9211,从而在使用所述推料机9100推料的过程中,当所述推料壁921的所述环形壁主体9211的单侧受力时,每个所述滑轮机构922能够避免所述环形壁主体9211晃动。
可选地,每个所述滑轮机构922的所述安装主体9221分别被安装于所述承载机构911的所述底盘9111,如此所述滑轮机构922能够于所述推料壁921的所述环形壁主体9211的低端顶住所述环形壁主体9211,从而在使用所述推料机9100推料的过程中,当所述推料壁921的所述环形壁主体9211的单侧受力时,每个所述滑轮机构922能够避免所述环形壁主体9211晃动。
优选地,所述推料装置920的所述滑轮机构922的数量和所述承载机构911的所述支撑柱9112的数量一致,例如在附图12A至图17B示出的所述推料机9100的这个具体示例中,所述推料装置920的所述滑轮机构922的数量和所述承载机构911的所述支撑柱9112的数量均是四个,其中每个所述支撑柱9112的低端被设置有一个所述滑轮机构922。
继续参考附图12A至图17B,所述推料装置920进一步包括一环形轨道923,其中所述环形轨道923以所述环形轨道923贴合于所述推料壁921的所述环形壁主体9211的内壁的方式被设置于所述环形壁主体9211,如此所述环形轨道923能够增强所述推料壁921的所述环形壁主体9211的强度而避免所述环形壁主体9211失圆。所述推料装置920的每个所述滑轮机构922的所述滑轮主体9222分别以贴合于所述环形轨道923的光滑表面的方式顶住所述推料壁921的所述环形壁主体9211,如此当所述推料壁921的所述环形壁主体9211被驱动做相对于所述承载机构911的转动时,每个所述滑轮机构922的所述滑轮主体9222能够分别沿着所述环形轨道923的光滑表面滚动,如此能够减少所述滑轮机构922和所述环形轨道923相互摩擦时产生的噪音,从而使得所述推料机9100更静音。
继续参考附图12A至图17B,所述推料装置920的所述推料壁921包括至少两滚筒半体9210,其中每个所述滚筒半体9210分别包括一滚筒壁92101和延伸于所述滚筒壁92101的高端的一延伸臂92102,其中相邻所述滚筒半体9210的所述滚筒壁92101能够被相互安 装,以在这些所述滚筒半体9210被安装后,每个所述滚筒半体9210的所述滚筒壁92101形成所述推料壁921的所述环形壁主体9211,和每个所述滚筒半体9210的所述延伸臂92102形成所述推料壁921的所述连接臂9212。
具体地,所述推料壁921包括两个所述滚筒半体9210,其中一个所述滚筒半体9210被定义为一第一滚筒半体9210a,另一个所述滚筒半体9210被定义为一第二滚筒半体9210b,其中所述第一滚筒半体9210a和所述第二滚筒半体9210b分别包括一个所述滚筒壁92101和一个所述延伸臂92102,其中所述第一滚筒半体9210a的所述滚筒壁92101和所述第二滚筒半体9210b的所述滚筒壁92101被相互安装而形成所述环形壁主体9211,并且所述第一滚筒半体9210a的所述延伸臂92102和所述第二滚筒半体9210b的所述延伸臂92102形成所述连接臂9212。相应地,所述环形轨道923包括一第一环形轨道923a和一第二环形轨道923b,其中所述第一环形轨道923a被设置于所述第一滚筒半体9210a的所述滚筒壁92101,所述第二环形轨道923b被设置于所述第二滚筒半体9210b的所述滚筒壁92101,其中在所述第一滚筒半体9210a的所述滚筒壁92101和所述第二滚筒半体9210b的所述滚筒壁92101被相互安装而形成所述环形壁主体9211后,所述第一环形轨道923a和所述第二环形轨道923b形成一个完整的所述环形轨道923。
继续参考附图12A至图17B,所述推料机9100进一步包括一磁性传感器30,其中所述磁性传感器30被设置于所述行走装置910的所述承载机构911的所述底盘9111的下部,其中所述磁性传感器30能够与被铺设于牛栏外侧的磁性导航路径相互交流,以供引导所述推料机9100的所述行走装置910按照一个路线行走。
继续参考附图12A至图17B,所述推料机9100进一步包括一盖体装置940,其中所述盖体装置940包括一盖体941,所述盖体941的中心位置被安装于所述承载机构911的所述安装柱9115的所述自由端91150,以使所述盖体941被所述承载机构911承载,并且所述盖体941的四周边缘分别向外侧延伸至所述盖体941的直径大于所述推料装置920的所述推料壁921的所述环形壁主体9211的四周,如此所述盖体941能够避免所述环形壁主体9211的上部开口外露。
所述盖体装置940进一步包括一保持杆942和被设置于所述保持杆942的一个端部的一距离传感器943,所述保持杆942的另一个端部被设置于所述盖体941,其中所述距离传感器943能够获取所述推料机9100与牛栏之间的间距,以供在所述推料机9100与牛栏之间的间距不适合时及时地调整所述推料机9100与牛栏之间的间距。优选地,所述保持杆942被可转动地安装于所述盖体941,如此能够调整所述保持杆942与所述盖体941之间的夹角。例如,当所述推料机9100处于工作状态时,所述保持杆942能够被驱动做相对于所述盖体941的转动而使所述保持杆942和所述盖体941之间具有较大的夹角,如此调整被设置于所述保持杆942的端部的所述距离传感器943与牛栏之间的距离。更优选地,所述保持杆942是一个伸缩杆,即,所述保持杆942的长度能够被调整,如此通过调整所述保持杆942的长度以及所述保持杆942与所述盖体941之间的夹角的方式能够方便地、灵活地调整所述距离传感器943与牛栏之间的距离。更优选地,所述盖体941具有一保持槽9411,以供容纳所述保持杆942。
进一步地,所述承载机构911的所述安装柱9115是一个管状安装柱,即,所述安装柱 9115具有一连通通道91151,以供连通所述承载机构911的所述第二容纳空间91102和所述上部承载平台9114的外侧空间,其中被连接于所述距离传感器943的电线能够经所述安装柱9115的所述连通通道91151自所述第二承载平台9114的外侧空间延伸至所述承载机构911的所述第二容纳空间91102。
继续参考附图12A至图17B,所述推料机9100进一步包括一充电口950,其中所述充电口950被设置于所述盖体装置940的所述盖体941和被电连接于所述供电机构912,从而所述推料机9100允许电能经所述充电口950被补充至所述供电机构。优选地,被连接于所述充电口950的电线能够经所述承载机构911的所述安装柱9115的所述连通通道91151自所述上部承载平台9114的外侧延伸至所述承载机构911的所述第一容纳空间91101,以被连接于所述供电机构912。
参考附图10至图11B,所述充电机9200包括一充电适配器960和一充电机构970。所述充电机构970具有一连接端971、对应于所述连接端971的一充电端972以及被设置于所述充电端972的一对充电电极973,其中所述充电机构970的所述连接端971被可移动地安装于所述充电适配器960,并且所述充电机构970能够被驱动使所述充电机构970的所述充电端972靠近或者远离所述充电适配器960。优选地,所述充电机构970的所述连接端971被可驱动地安装于所述充电适配器960,如此所述充电适配器960能够驱动所述充电机构970以使所述充电机构970的所述充电端972靠近或者远离所述充电适配器960。例如,所述充电适配器960内部可以被设置有一个驱动电机并且具有一个安装通道,所述充电机构970的所述连接端971经所述充电适配器960的所述安装通道延伸至所述充电适配器960的内部并被可驱动地安装于所述驱动电机,其中所述驱动电机能够驱动所述充电机构970的所述连接端971,以使所述充电机构970和所述充电适配器960的相对位置能够被改变,从而使得所述充电机构970的所述充电端972靠近或者远离所述充电适配器960。
在所述推料机9100需要被补充电能时,所述充电机9200的所述充电适配器960能够驱动所述充电机构970以使所述充电机构970的所述充电端972远离所述充电适配器960,从而使得所述充电机构970的所述充电端972靠近和插接于所述推料机9100的所述充电口950,从而使得所述充电机构970的所述充电电极973和所述充电口950电连接,如此所述充电适配器960能够将电能补充至所述推料机9100的所述供电机构912。在所述推料机9100被补充电能后,所述充电机9200的所述充电适配器960能够驱动所述充电机构970以使所述充电机构970的所述充电端972脱离所述推料机9100的所述充电口950并靠近所述充电适配器960。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。
Claims (20)
- 一推料管理方法,其特征在于,包括如下步骤:当在一作业区推料作业的一推料机器人需要补能,藉由至少一视觉传感器获取周围环境中的至少一视觉标识以生成一导航指令;和基于所述导航指令控制所述推料机器人和一充能装置相遇,以通过所述充能装置为所述推料机器人充能。
- 根据权利要求1所述的推料管理方法,其中在上述方法中,沿着所述导航指令控制所述推料机器人朝向所述充能装置移动至所述充能装置的一充能范围,所述视觉传感器被设置于所述推料机器人,并且能够实时获取所述推料机器人行进方向的周围环境信息。
- 根据权利要求1所述的推料管理方法,其中在上述方法中,沿着所述导航指令控制所述充能装置朝向所述推料机器人移动至所述推料机器人位于所述充能装置的一充能范围,所述视觉传感器被设置于所述充能装置,并且能够实时获取所述充能装置进行方向的周围环境信息。
- 根据权利要求1所述的推料管理方法,进一步包括如下步骤:当在所述作业区域推料作业的所述推料机器人需要补能,获取所述推料机器人所在位置;和驱动另一所述推料机器人前往以替代原先的所述推料机器人作业。
- 根据权利要求1至4任一所述的推料管理方法,其中所述视觉标识为铺设在地面的标识线。
- 根据权利要求2所述的推料管理方法,其中所述生成所述导航指令步骤包括如下步骤:被设置于所述推料机器人的所述视觉传感器获取行进方向的环境图像数据;基于所述环境图像数据读取所述视觉标识以构建一导航路线;以及计算所述推料机器人到所述导航路线的偏移距离L和偏移角度θ以生成所述导航指令。
- 根据权利要求2所述的推料管理方法,其中所述生成所述导航指令步骤包括如下步骤:被设置于所述推料机器人的所述视觉传感器获取行进方向的环境图像数据;基于所述环境图像数据读取所述视觉标识;计算所述推料机器人到所述视觉标识的偏移距离L和偏移角度θ;以及基于偏移距离L和偏移角度得出行驶转向角β以生成所述导航指令。
- 根据权利要求2所述的推料管理方法,其中在上述方法中,当所述视觉传感器捕捉到一停止标识,所述推料机器人停止运动。
- 一推料机器人,适于通过一充能装置被供能,其特征在于,包括:一推料主体;和一充能导航装置,其中所述充能导航装置包括:至少一视觉传感器;一处理器;以及一控制器,其中所述视觉传感器被设置于所述推料主体,所述视觉传感器被可通信地连接于所述处理器,所述处理器被可通信地连接于所述控制器,在所述推料主体需要被充能时,所述视觉传感器采集所述推料主体行进方向的周围环境信息,所述周围环境信息包括至少一视觉标识,所述处理器基于所述处理器获取的所所述视觉标识生成一导航指令并且将所述导航指令发送至所述控制器,所述控制器基于所述导航指令控制所述推料主体以引导所述推料主体移动至该充能装置。
- 根据权利要求9所述的推料机器人,其中所述视觉传感器被设置于所述推料主体的顶部。
- 根据权利要求9或10所述的推料机器人,其中所述视觉传感器被可转动地设置于所述推料主体。
- 根据权利要求9或10所述的推料机器人,其中所述视觉传感器被可绕所述X轴、Y轴或者是Z轴转动地安装于所述推料主体。
- 根据权利要求9或10所述的推料机器人,其中所述推料机器人包括一位置传感器,其中所述位置传感器被可通信地连接于所述处理器,所述位置传感器用于获取所述推料主体的位置信息,在所述推料机器人充能完毕后,基于所述位置传感器获取的位置信息,所述控制器控制所述推料主体返回原先的位置。
- 根据权利要求9或10所述的推料机器人,其中所述推料主体包括一推料装置和一移动装置,其中所述移动装置被设置于所述推料装置并且能够带动所述推料装置移动,其中所述视觉传感器被设置于所述推料装置。
- 一推料系统,其特征在于,包括:至少一推料机器人;至少一充能装置;以及一管理单元,其中所述管理单元包括一检测模块、一处理模块以及一控制模块,其中所述处理模块和所述检测模块被可通信地连接,所述处理模块和所述控制模块被可通信地连接,其中所述推料机器人和所述充能装置被分别可控制地连接于所述管理单元,在所述推料机器人需要充能时,所述检测模块检测周围环境信息以获取至少一视觉标识,所述处理模块基于所述视觉标识生成一导航指令并且发送所述导航指令至所述控制模块,所述控制模块基于所述导航指令控制所述推料机器人和所述充能装置相遇以为所述推料机器人充能。
- 根据权利要求15所述的推料系统,其中所述检测模块被设置于所述推料机器人,所述控制模块引导所述推料机器人朝向所述充能装置移动。
- 根据权利要求15所述的推料系统,其中所述检测模块被设置于所述充能装置,所述控制模块引导所述充能装置朝向所述推料机器人移动。
- 根据权利要求15所述的推料系统,其中在当前的所述推料机器人需要充能时,所述管理单元的所述控制模块发送指令至另一个所述推料机器人,藉由另一个所述推料机器人替代当前的所述推料机器人。
- 根据权利要求15所述的推料系统,其中所述管理单元进一步包括一位置获取模块和一电量获取模块,其中所述位置获取模块和所述电量获取模块被分别可通信地连接于所述 处理模块,所述位置获取模块用于获取所述推料机器人和所述充能装置的位置,所述电量获取模块用于获取所述推料机器人的剩余电量,基于所述位置获取模块和所述电量获取模块的信息,所述处理模块确定前往所述充能装置充能的一时机。
- 根据权利要求18所述的推料系统,其中所述管理单元进一步包括一搜索模块,其中所述搜索模块被可通信地连接于所述处理模块,所述搜索模块用于基于预设条件搜索所述推料机器人周围的其他的可用的所述推料机器人。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/928,574 US20230234237A1 (en) | 2020-06-23 | 2020-08-13 | Material pushing robot, material pushing system, and material pushing management method |
EP20942408.4A EP4166284A4 (en) | 2020-06-23 | 2020-08-13 | MATERIAL PUSHING ROBOT, MATERIAL PUSHING SYSTEM, AND MATERIAL PUSHING MANAGEMENT METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010581049.6A CN111805553A (zh) | 2020-06-23 | 2020-06-23 | 推料机器人、推料系统以及推料管理方法 |
CN202010581049.6 | 2020-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021258521A1 true WO2021258521A1 (zh) | 2021-12-30 |
Family
ID=72846485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/108920 WO2021258521A1 (zh) | 2020-06-23 | 2020-08-13 | 推料机器人、推料系统以及推料管理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230234237A1 (zh) |
EP (1) | EP4166284A4 (zh) |
CN (1) | CN111805553A (zh) |
WO (1) | WO2021258521A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7469195B2 (ja) * | 2020-09-09 | 2024-04-16 | シャープ株式会社 | 走行パラメータ最適化システムおよび走行パラメータ最適化方法 |
CN113973734B (zh) * | 2021-10-29 | 2024-09-06 | 山东农业大学 | 一种多功能螺旋推送式奶牛推料补饲机 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1853552A (zh) * | 2005-04-20 | 2006-11-01 | Lg电子株式会社 | 具有自动返回充电座功能的清洁机器人及其使用方法 |
CN102545275A (zh) * | 2010-12-07 | 2012-07-04 | 上海新世纪机器人有限公司 | 机器人自动充电装置及其自动充电方法 |
CN206369965U (zh) * | 2016-12-26 | 2017-08-01 | 旗瀚科技有限公司 | 一种基于机器视觉识别的自动寻找充电桩机器人 |
CN108293895A (zh) * | 2018-03-28 | 2018-07-20 | 天津聚源科电科技有限公司 | 牧场自动推料机器人 |
CN208601533U (zh) * | 2018-07-06 | 2019-03-15 | 甘肃金科峰农业装备工程有限责任公司 | 一种圈舍饲喂道槽智能推料机器人 |
CN109623816A (zh) * | 2018-12-19 | 2019-04-16 | 中新智擎科技有限公司 | 一种机器人回充方法、装置、存储介质及机器人 |
CN109683605A (zh) * | 2018-09-25 | 2019-04-26 | 上海肇观电子科技有限公司 | 机器人及其自动回充方法、系统、电子设备、存储介质 |
CN110515383A (zh) * | 2019-08-30 | 2019-11-29 | 深圳飞科机器人有限公司 | 自主充电的方法以及移动机器人 |
CN111061280A (zh) * | 2020-03-13 | 2020-04-24 | 广州赛特智能科技有限公司 | 机器人自动充电方法、装置、系统、终端设备及存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103416316B (zh) * | 2013-09-10 | 2015-06-10 | 毛海超 | 宠物喂食器、喂食系统及喂食器控制方法 |
CN106026288A (zh) * | 2016-07-18 | 2016-10-12 | 旗瀚科技有限公司 | 一种机器人自动充电系统及其充电方法 |
CN106805856A (zh) * | 2016-12-31 | 2017-06-09 | 鸿奇机器人股份有限公司 | 控制清洁机器人的方法 |
CN107736260B (zh) * | 2017-09-30 | 2019-11-12 | 华智高科(苏州)汽车科技有限公司 | 一种饲草推送机器人 |
US20210405646A1 (en) * | 2019-07-03 | 2021-12-30 | Lg Electronics Inc. | Marker, method of moving in marker following mode, and cart-robot implementing method |
CN110605718A (zh) * | 2019-09-20 | 2019-12-24 | 国网湖北省电力有限公司电力科学研究院 | 一种变电站巡检机器人系统及巡检方法 |
-
2020
- 2020-06-23 CN CN202010581049.6A patent/CN111805553A/zh active Pending
- 2020-08-13 WO PCT/CN2020/108920 patent/WO2021258521A1/zh unknown
- 2020-08-13 EP EP20942408.4A patent/EP4166284A4/en active Pending
- 2020-08-13 US US17/928,574 patent/US20230234237A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1853552A (zh) * | 2005-04-20 | 2006-11-01 | Lg电子株式会社 | 具有自动返回充电座功能的清洁机器人及其使用方法 |
CN102545275A (zh) * | 2010-12-07 | 2012-07-04 | 上海新世纪机器人有限公司 | 机器人自动充电装置及其自动充电方法 |
CN206369965U (zh) * | 2016-12-26 | 2017-08-01 | 旗瀚科技有限公司 | 一种基于机器视觉识别的自动寻找充电桩机器人 |
CN108293895A (zh) * | 2018-03-28 | 2018-07-20 | 天津聚源科电科技有限公司 | 牧场自动推料机器人 |
CN208601533U (zh) * | 2018-07-06 | 2019-03-15 | 甘肃金科峰农业装备工程有限责任公司 | 一种圈舍饲喂道槽智能推料机器人 |
CN109683605A (zh) * | 2018-09-25 | 2019-04-26 | 上海肇观电子科技有限公司 | 机器人及其自动回充方法、系统、电子设备、存储介质 |
CN109623816A (zh) * | 2018-12-19 | 2019-04-16 | 中新智擎科技有限公司 | 一种机器人回充方法、装置、存储介质及机器人 |
CN110515383A (zh) * | 2019-08-30 | 2019-11-29 | 深圳飞科机器人有限公司 | 自主充电的方法以及移动机器人 |
CN111061280A (zh) * | 2020-03-13 | 2020-04-24 | 广州赛特智能科技有限公司 | 机器人自动充电方法、装置、系统、终端设备及存储介质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4166284A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN111805553A (zh) | 2020-10-23 |
EP4166284A1 (en) | 2023-04-19 |
US20230234237A1 (en) | 2023-07-27 |
EP4166284A4 (en) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021258521A1 (zh) | 推料机器人、推料系统以及推料管理方法 | |
US9204594B2 (en) | Lawn mower robot and method of programming a lawn presence region into memory | |
CN103891464B (zh) | 自动割草系统 | |
WO2017004944A1 (zh) | 一种温室自动巡检平台的充电装置 | |
JP6815538B2 (ja) | 自動芝生トリマーおよび自動芝生トリミング方法 | |
WO2016104640A1 (ja) | 電気掃除機 | |
CN104055462A (zh) | 机器人清洁器及其操作方法 | |
CN104483969B (zh) | 道路自动巡逻机器人 | |
CN208601533U (zh) | 一种圈舍饲喂道槽智能推料机器人 | |
US20050236021A1 (en) | Self-propelled cleaner | |
CN205067744U (zh) | 一种范围可调式移动终端控制型障碍物探测系统 | |
EP3093728B1 (en) | Self-propelled device | |
US20070234502A1 (en) | Automatic tennis court drying machine | |
CN212522923U (zh) | 拾球机器人系统 | |
CN218698992U (zh) | 一种智能电源机器人装置 | |
JP6382634B2 (ja) | 自律走行体装置 | |
CN213276369U (zh) | 传感器高度可调节的移动式机器人 | |
CN112859832A (zh) | 传感器高度可调节的移动式机器人和传感器高度调节方法 | |
WO2021189627A1 (zh) | 基于视觉的室内导航系统和室内导航方法 | |
CN112450100B (zh) | 推料设备及其充电方法 | |
CN212378902U (zh) | 一种基于激光导航的商用安全防疫智能机器人 | |
WO2021135043A1 (zh) | 推料设备及其充电方法和推料机及其推料方法 | |
CN212279362U (zh) | 推料设备 | |
CN220446474U (zh) | 温室生产巡检机器人 | |
CN221489846U (zh) | 扫地机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942408 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020942408 Country of ref document: EP Effective date: 20230113 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |