WO2021258455A1 - 自容式触控基板及显示装置 - Google Patents

自容式触控基板及显示装置 Download PDF

Info

Publication number
WO2021258455A1
WO2021258455A1 PCT/CN2020/103027 CN2020103027W WO2021258455A1 WO 2021258455 A1 WO2021258455 A1 WO 2021258455A1 CN 2020103027 W CN2020103027 W CN 2020103027W WO 2021258455 A1 WO2021258455 A1 WO 2021258455A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
capacitive touch
thin film
film transistor
touch electrode
Prior art date
Application number
PCT/CN2020/103027
Other languages
English (en)
French (fr)
Inventor
李远航
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/047,461 priority Critical patent/US11360628B2/en
Publication of WO2021258455A1 publication Critical patent/WO2021258455A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • This application relates to the field of display technology, and in particular to a self-capacitive touch substrate and a display device.
  • the capacitive touch screen works by using the current induction of the human body. It is a touch screen that senses touch signals through the combination of electrodes and the characteristics of the human body.
  • a coupling capacitor will be formed between the finger and the conductive layer of the touch screen.
  • the current generated by the electrode on the touch screen will flow to the contacts, so that accurate calculations can be made Draw out the location of the touch point.
  • OLED Organic Light-Emitting Diode Diode
  • DOT Organic Light-Emitting Diode Diode
  • the OLED external in-cell touch solution on the market is a mutual capacitive electrode, from bottom to top, there are an inorganic layer, a metal bridging layer, a via inorganic layer, a touch metal mesh layer, and an organic flat layer, a total of five layers of film, four Road lithography mask.
  • This kind of mutual capacitance touch structure requires that the insulating layer of the via inorganic layer is etched through holes to realize the bridging and routing of the driving electrode and the sensing electrode, and the binding area and the operable area are in the via inorganic layer. The etching depth is different and the process is complicated.
  • the self-capacitive DOT touch only has a single-layer metal touch electrode, and the process is simpler.
  • the self-capacitive touch structure since each touch electrode needs to be led out by a separate electrode lead, there are many lead channels.
  • Figure 1 shows a common single-layer self-capacitive touch structure.
  • the flexible circuit board Flexible Printed Circuit, FPC for short
  • the area of the touch electrode area from the far end to the near end in the Y direction of the long end of the binding is designed to be reduced in order.
  • embodiments of the present application provide a self-capacitive touch substrate and a display device.
  • the self-capacitive touch substrate reduces the touch by changing the wiring position and direction in the touch substrate.
  • the control electrode leads enhance the touch effect.
  • An embodiment of the present invention provides a self-capacitive touch substrate, including: a display area, a peripheral area, a plurality of self-capacitive touch electrodes arranged in the display area, and a plurality of touch electrode leads connected to the self-capacitive Touch electrode
  • Each of the self-capacitive touch electrodes is respectively connected to one of the touch electrode leads, a plurality of the self-capacitive touch electrodes are arranged in a matrix of multiple rows and multiple columns, and a plurality of the self-capacitive touch electrodes are arranged in a matrix with multiple rows and multiple columns.
  • the control electrodes are arranged in regional groups;
  • the self-capacitive touch substrate further includes a thin film transistor switch circuit and a self-capacitive touch electrode peripheral lead arranged in the peripheral area;
  • a plurality of the self-capacitive touch electrodes are connected to the thin film transistor switching circuit in a grouping manner; wherein the thin film transistor switching circuit is a multi-stage thin film transistor switching circuit; the self-capacitive touch substrate includes a long terminal And short end
  • the thin film transistor switch circuit is a one-stage thin film transistor switch circuit, a two-stage thin film transistor switch circuit, a three-stage thin film transistor switch circuit, or an N-stage thin film transistor switch circuit, where N is a positive integer; a plurality of the touch electrodes
  • the lead wire is a metal grid wiring, the channel width of the metal grid of the metal grid wiring is greater than 3 grid units, and the metal grid has multiple fractures.
  • the self-capacitive touch substrate at least includes a laminated flexible substrate, an array driving circuit, an organic light-emitting layer, a thin-film encapsulation layer, an interlayer insulating layer, and a self-capacitive touch substrate.
  • Type touch electrode layer and flat layer are examples of the self-capacitive touch substrate.
  • the self-capacitive touch electrode layer has a single-layer metal mesh structure.
  • a plurality of the self-capacitive touch electrodes are arranged in two symmetrical regions in the direction of the long end, corresponding to those of the symmetrical two regions
  • a plurality of the touch electrode leads are drawn along the short end direction and connected to the thin film transistor switch circuit; and the area of the touch electrode area of the self-capacitive touch electrode is sequentially reduced along the short end direction .
  • a plurality of the touch electrode leads corresponding to the symmetrical two-part area are drawn along the same direction of the short end direction or correspond to the symmetrical two parts
  • the multiple touch electrode leads of the area are led out along the direction opposite to the direction of the short end.
  • a plurality of the self-capacitive touch electrodes are arranged in two symmetrical areas in the direction of the short end, corresponding to those of the symmetrical two-part areas
  • a plurality of the touch electrode leads are drawn along the short end direction and connected to the thin film transistor switch circuit; and the area of the touch electrode area of the self-capacitive touch electrode is sequentially reduced along the short end direction .
  • a plurality of the touch electrode leads corresponding to the symmetrical two partial areas are led out in the opposite direction of the short end direction.
  • An embodiment of the present invention provides a self-capacitive touch substrate, including: a display area, a peripheral area, a plurality of self-capacitive touch electrodes arranged in the display area, and a plurality of touch electrode leads connected to the self-capacitive Touch electrode
  • Each of the self-capacitive touch electrodes is respectively connected to one of the touch electrode leads, a plurality of the self-capacitive touch electrodes are arranged in a matrix of multiple rows and multiple columns, and a plurality of the self-capacitive touch electrodes are arranged in a matrix with multiple rows and multiple columns.
  • the control electrodes are arranged in regional groups;
  • the self-capacitive touch substrate further includes a thin film transistor switch circuit and a self-capacitive touch electrode peripheral lead arranged in the peripheral area;
  • a plurality of the self-capacitive touch electrodes are connected to the thin film transistor switching circuit in a grouping manner; wherein the thin film transistor switching circuit is a multi-stage thin film transistor switching circuit; the self-capacitive touch substrate includes a long terminal And short end.
  • the self-capacitive touch substrate at least includes a laminated flexible substrate, an array driving circuit, an organic light-emitting layer, a thin-film encapsulation layer, an interlayer insulating layer, and a self-capacitive touch substrate.
  • Type touch electrode layer and flat layer are examples of the self-capacitive touch substrate.
  • the self-capacitive touch electrode layer has a single-layer metal mesh structure.
  • a plurality of the self-capacitive touch electrodes are arranged in two symmetrical regions in the direction of the long end, corresponding to those of the symmetrical two regions
  • a plurality of the touch electrode leads are drawn along the short end direction and connected to the thin film transistor switch circuit; and the area of the touch electrode area of the self-capacitive touch electrode is sequentially reduced along the short end direction .
  • a plurality of the touch electrode leads corresponding to the symmetrical two-part area are drawn along the same direction of the short end direction or correspond to the symmetrical two parts
  • the multiple touch electrode leads of the area are led out along the direction opposite to the direction of the short end.
  • a plurality of the self-capacitive touch electrodes are arranged in two symmetrical areas in the direction of the short end, corresponding to those of the symmetrical two-part areas
  • a plurality of the touch electrode leads are drawn along the short end direction and connected to the thin film transistor switch circuit; and the area of the touch electrode area of the self-capacitive touch electrode is sequentially reduced along the short end direction .
  • a plurality of the touch electrode leads corresponding to the symmetrical two partial areas are led out in the opposite direction of the short end direction.
  • the thin film transistor switching circuit is a first-level thin film transistor switching circuit or a second-level thin film transistor switching circuit or a third-level thin film transistor switching circuit or an N-level thin film transistor switching circuit, Where N is a positive integer.
  • a plurality of the touch electrode leads are metal mesh traces, and the channel width of the metal mesh of the metal mesh traces is greater than 3 mesh units , And the metal grid has multiple fractures.
  • the embodiment of the present invention provides a display device including a self-capacitive touch substrate
  • the self-capacitive touch substrate includes: a display area, a peripheral area, a plurality of self-capacitive touch electrodes arranged in the display area, and a plurality of touch electrode leads connected to the self-capacitive touch electrodes;
  • Each of the self-capacitive touch electrodes is respectively connected to one of the touch electrode leads, a plurality of the self-capacitive touch electrodes are arranged in a matrix of multiple rows and multiple columns, and a plurality of the self-capacitive touch electrodes are arranged in a matrix with multiple rows and multiple columns.
  • the control electrodes are arranged in regional groups;
  • the self-capacitive touch substrate further includes a thin film transistor switch circuit and a self-capacitive touch electrode peripheral lead arranged in the peripheral area;
  • a plurality of the self-capacitive touch electrodes are connected to the thin film transistor switching circuit in a grouping manner; wherein the thin film transistor switching circuit is a multi-stage thin film transistor switching circuit; the self-capacitive touch substrate includes a long terminal And short end.
  • the plurality of self-capacitive touch electrodes are arranged in two symmetrical two-part areas in the direction of the long end, corresponding to the plurality of the symmetrical two-part areas.
  • the touch electrode lead is drawn along the short end direction and connected to the thin film transistor switch circuit; and the touch electrode area of the self-capacitive touch electrode decreases in order along the short end direction; corresponding to the The plurality of touch electrode leads in the symmetrical two-part area are led out in the same direction of the short end direction or correspond to the multiple touch electrode leads in the symmetrical two-part area that are opposite in the direction of the short end The direction leads.
  • the plurality of self-capacitive touch electrodes are arranged in two symmetrical regions in the direction of the short end, corresponding to the plurality of symmetrical two-part regions.
  • the touch electrode lead is drawn along the short end direction and connected to the thin film transistor switch circuit; and the touch electrode area of the self-capacitive touch electrode decreases in order along the short end direction; corresponding to the The multiple touch electrode leads in the two symmetrical regions are led out along the opposite direction of the short end direction.
  • the present invention provides a self-contained touch substrate and display device, which adopts a new self-contained DOT structure wiring design, which reduces touch control by changing the position and direction of the electrode wiring in the plane, and adopts a thin film transistor switch selection circuit design
  • the electrode leads can realize the balanced and self-capacitive DOT far and near end capacitance effect and the narrow frame design of the panel at the same time.
  • the wiring is designed in the form of a metal grid, which guarantees the impedance and bending resistance of the touch electrode leads, and improves the self-capacitive DOT structure of the metal signal wiring. Bending resistance, and improve the life of the flexible OLED screen and user experience.
  • FIG. 1 is a schematic diagram of the structure of a self-capacitive touch substrate in the prior art.
  • FIG. 2 is a schematic diagram of a structural film layer of a self-capacitive touch substrate provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a self-capacitive touch substrate provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another self-capacitive touch substrate provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a thin film transistor switch circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another self-capacitive touch substrate provided by an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of another thin film transistor switch circuit provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a two-stage TFT selection switch circuit provided by an embodiment of the present invention.
  • FIG. 9 is a signal timing diagram of a two-level TFT selection switch circuit provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a touch substrate structure of a three-level TFT selection switch circuit provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a single-layer metal mesh structure of a self-capacitive touch electrode layer provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, "a plurality of" means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be mechanically connected, it can be electrical connection or it can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relation.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be mechanically connected, it can be electrical connection or it can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relation.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or merely indicating that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the number of touch electrodes along the long end Y direction is much larger than that of the short end X direction.
  • the number of electrodes, the area of the touch electrode area from the far end to the near end will decrease in turn, resulting in an increase in the capacitance difference between the far and near ends, which will affect the touch effect.
  • An embodiment of the present invention provides a self-capacitive touch substrate
  • the self-capacitive touch substrate includes: a display area, a peripheral area, a plurality of self-capacitive touch electrodes are arranged in the display area and a plurality of touch
  • the control electrode lead is connected to the self-capacitive touch electrode; wherein each of the self-capacitive touch electrodes is respectively connected to one of the touch electrode leads; the plurality of self-capacitive touch electrodes are in multiple rows and multiple A matrix distribution of columns; wherein a plurality of the self-capacitive touch electrodes are arranged in groups in regions;
  • the self-capacitive touch substrate further includes a thin film transistor switch circuit and a self-capacitive touch device arranged in the peripheral area
  • the electrode peripheral lead; a plurality of the self-capacitive touch electrodes are connected to the thin film transistor switching circuit in a grouping manner; wherein the thin film transistor switching circuit is a multi-level thin film transistor switching circuit; the self-capacitive touch
  • the self-capacitive touch substrate includes a long end Y direction and a short end X direction, wherein the length of the self-capacitive touch substrate in the long end Y direction is greater than that of the self-capacitive touch substrate at the short end. The length in the X direction.
  • the self-capacitive touch substrate at least includes: a flexible substrate 01, an array driving circuit 02, an organic light-emitting layer 03, a thin film encapsulation layer 04, an interlayer insulating layer 05, a self-capacitive touch electrode layer 06, and a flat layer 07.
  • the flexible substrate 01 is a polyimide film substrate
  • the Array array drive circuit 02 is a low temperature polysilicon (Low Temperature Poly-silicon, LTPS), thin film transistor (Thin Film Transistor, TFT), indium gallium zinc oxide (Indium Gallium Zinc Oxide, abbreviated as: IGZO), low temperature polycrystalline oxide (Low Temperature Polycrystalline Oxide, abbreviated as LTPO);
  • the interlayer insulating layer 05 is a transparent organic layer or a transparent inorganic layer, so The material of the interlayer insulating layer 05 is SINx, SiOx, high-transmittance organic photoresist and other materials;
  • the self-capacitive touch electrode layer 06 is a single-layer metal mesh structure, and the self-capacitive touch electrode layer
  • the metal material of 06 is TiAlTi, Mo, Cu, AgNW, ITO or other low-impedance conductive materials.
  • FIG. 3 it is a schematic structural diagram of a self-capacitive touch substrate provided by an embodiment of the present invention.
  • the plurality of self-capacitive touch electrodes 11 are arranged in two symmetrical areas in the Y direction of the long end, and the plurality of touch electrode leads 12 corresponding to the symmetrical two-part areas are arranged along the short
  • the terminal X is led out and connected to the thin film transistor switch circuit 13; and the area of the touch electrode area of the self-capacitive touch electrode 11 decreases along the short terminal X direction.
  • the plurality of touch electrode leads 12 corresponding to the two symmetrical regions are drawn along the same direction of the short end X direction or corresponding to the plurality of touch electrode leads 12 of the symmetrical two regions Lead out in the opposite direction to the X direction of the short end.
  • a plurality of the touch electrode leads 12 corresponding to the two symmetrical regions are led out in the opposite direction of the short end X direction, and the left and right ends are connected by changing wires to connect the left and right ends of the preset film on the lower array layer.
  • the transistor switch circuit 13 is used to reduce the number of the touch electrode leads 12.
  • the thin film transistor switch circuit 13 is connected to a flexible printed circuit (Flexible Printed Circuit, FPC for short) through the peripheral lead 14 of the touch electrode.
  • FPC Flexible Printed Circuit
  • the thin film transistor switch circuit 13 is a one-stage thin film transistor switch circuit, a two-stage thin film transistor switch circuit, a three-stage thin film transistor switch circuit, or an N-stage thin film transistor switch circuit, where N is a positive integer.
  • a two-stage thin film transistor switch circuit is used, and a flexible circuit board (Flexible
  • the number of touch electrode leads at the Printed Circuit (FPC) end is reduced to a quarter of the original number of touch electrodes.
  • the touch electrode leads 12 By using the touch electrode leads 12 to run in the X direction along the short end in the plane, the length of the in-plane touch electrode leads 12 and the area occupied by the visible area can be shortened, which can reduce the difference in the area of the touch electrodes at the far and near ends, and balance the touch at the far and near ends. The difference in electrode capacitance.
  • the multiple touch electrode leads 12 corresponding to the two symmetrical regions are led out in the same direction of the short end X direction, and the same direction is from left to right or from right to left, as shown in FIG. 4 As shown, this embodiment takes the right-to-left direction as an example for description.
  • the multiple touch electrode leads 12 corresponding to the two symmetrical regions are led out in the same direction of the short end X direction, and are connected to the left and right ends on the thin film transistor switch circuit 13 preset in the lower array layer through wire change. Therefore, the number of the touch electrode leads 12 is reduced.
  • the thin film transistor switch circuit 13 is connected to a flexible printed circuit (Flexible Printed Circuit, FPC for short) through the peripheral lead 14 of the touch electrode.
  • FPC Flexible Printed Circuit
  • the thin film transistor switch circuit 13 is a one-stage thin film transistor switch circuit, a two-stage thin film transistor switch circuit, a three-stage thin film transistor switch circuit, or an N-stage thin film transistor switch circuit, where N is a positive integer.
  • the use of a two-stage thin film transistor switch circuit can reduce the number of touch electrode leads at the FPC terminal to a quarter of the original number of touch electrodes.
  • the touch electrode leads 12 By using the touch electrode leads 12 to run in the X direction along the short end in the plane, the length of the in-plane touch electrode leads 12 and the area occupied by the visible area can be shortened, which can reduce the difference in the area of the touch electrodes at the far and near ends, and balance the touch at the far and near ends. The difference in electrode capacitance.
  • the thin film transistor switch circuit is a two-stage thin film transistor switch circuit, and the two-stage thin film transistor switch circuit includes a first thin film transistor 21 and a second thin film transistor 22.
  • the first thin film transistor 21 includes a touch electrode lead 211 connected to the FPC terminal touch electrode lead 212, a source 213, a drain 214, and a gate 215 of the underlying array substrate.
  • the touch electrode lead 211 and the touch electrode lead 212 connected to the FPC terminal are respectively connected to the source electrode 213 and the drain electrode 214 of the underlying array substrate through via holes.
  • the structure of the second thin film transistor 22 is the same as the structure of the first thin film transistor 21.
  • the touch electrode lead 211 and the touch electrode lead 212 connected to the FPC terminal are turned on and off by the first thin film transistor 21 switching circuit, and two adjacent touch electrode leads correspond to one thin film transistor switch to form one
  • the data selection circuit sends adjacent clock signals through the gate 215 circuit to sequentially drive the two thin film transistor switches at a high speed.
  • the switches of the first thin film transistor 21 and the second thin film transistor 22 are adjacent in turn-on timing, that is, the first thin film transistor 21 is turned on and the second thin film transistor 22 is turned off at the same time, thereby completing a data
  • the selection command can reduce the electrode leads by half.
  • the present embodiment proposes to adopt a two-level TFT selection switch circuit, which can reduce the number of electrode leads to a quarter to complete the high-speed scanning and driving of the touch electrodes.
  • FIG. 6 it is a schematic structural diagram of another self-capacitive touch substrate provided by an embodiment of the present invention.
  • the plurality of self-capacitive touch electrodes 31 are arranged in two symmetrical regions in the X direction of the short end, and the plurality of touch electrode leads 32 corresponding to the symmetrical two-part regions are arranged along the short
  • the terminal X is led out and connected to the thin film transistor switch circuit 33; and the area of the touch electrode area of the self-capacitive touch electrode 31 decreases along the short terminal X direction.
  • a plurality of the touch electrode leads 32 corresponding to the two symmetrical regions are led out along the opposite direction of the short end X direction.
  • the plurality of self-capacitive touch electrodes 31 are divided into left and right parts from the middle in the direction of the short end X, and the plurality of touch electrode leads 32 in each part are along the short end X.
  • the opposite direction of the direction that is, the multiple touch electrode leads 32 of each part are respectively drawn from the left and the right, and the left and right ends are connected to the thin film transistor switch circuit 33 preset in the lower array layer by changing the wires, thereby reducing the touch electrodes.
  • the thin film transistor switch circuit 33 is connected to the flexible circuit board through the peripheral lead 34 of the touch electrode.
  • the thin film transistor switch circuit 33 is a one-stage thin film transistor switch circuit, a two-stage thin film transistor switch circuit, a three-stage thin film transistor switch circuit, or an N-stage thin film transistor switch circuit, where N is a positive integer.
  • a two-stage thin film transistor switch circuit is used, which can reduce the number of touch electrode leads at the end of the flexible circuit board to a quarter of the original number of touch electrodes.
  • the touch electrode leads 32 By using the touch electrode leads 32 to run in the direction along the short end X in the plane, the length of the in-plane touch electrode leads 32 and the area occupied by the visible area can be shortened, which can reduce the difference in the area of the touch electrodes at the far and near ends, and balance the touch at the far and near ends.
  • the difference in electrode capacitance value improves touch accuracy.
  • the thin film transistor switch circuit is a two-stage thin film transistor switch circuit, and the two-stage thin film transistor switch circuit includes a first thin film transistor 41 and a second thin film transistor 42.
  • the first thin film transistor 41 includes a touch electrode lead 411 connected to the FPC end touch electrode lead 412, a source 413, a drain 414, and a gate 415 of the underlying array substrate.
  • the touch electrode lead 411 and the touch electrode lead 412 connected to the FPC terminal are respectively connected to the source electrode 413 and the drain electrode 414 of the underlying array substrate through via holes.
  • the structure of the second thin film transistor 42 is the same as the structure of the first thin film transistor 41.
  • the touch electrode lead 411 and the touch electrode lead 412 connected to the FPC terminal are turned on and off by the first thin film transistor 41 switch circuit, and two adjacent touch electrode leads correspond to one thin film transistor switch to form one
  • the data selection circuit sends adjacent clock signals through the gate 415 circuit to sequentially drive the two thin film transistor switches at a high speed.
  • the switches of the first thin film transistor 41 and the second thin film transistor 42 are adjacent in turn-on timing, that is, the first thin film transistor 41 is turned on and the second thin film transistor 42 is turned off at the same time, thereby completing a data
  • the selection command can reduce the electrode leads by half.
  • the present embodiment proposes to adopt a two-level TFT selection switch circuit, which can reduce the number of electrode leads to a quarter to complete the high-speed scanning and driving of the touch electrodes.
  • Fig. 8 is a schematic diagram of a two-stage TFT selection switch circuit
  • Fig. 9 is a signal timing diagram of a two-stage TFT selection switch circuit.
  • the TFT switches corresponding to the touch electrode leads t1 and t2 are driven by Gate signals G2 and G1, respectively, and the gate signals drive the turn-on timing of the two TFT switches.
  • t1 is turned on and t2 is turned off, to complete a data selection command, which can reduce 1/2 electrode leads.
  • This patent proposes to adopt a two-stage TFT selection switch circuit, which can reduce the number of electrode leads to 1/4 to complete the alignment.
  • the touch electrodes perform high-speed scanning and driving.
  • multiplexing the gate signals of the TFT selection switch circuit of the same switching sequence of the adjacent level to reduce the gate line and signal arrangement.
  • G1 drives t2 and t4 at the same time
  • G2 simultaneously drives t1 and t3.
  • G3 and G4 also simultaneously drive other TFT switches except T1.
  • the gate drive signal of the TFT selection switch can be provided by a display IC or a touch IC. Within the range allowed by the touch IC, a three-level or more TFT selection circuit can be used, which can greatly reduce the arrangement of the touch electrode leads. In the scope of patent protection, the third-level or fourth-level TFT selection circuit can be designed at the left and right lower borders, as shown in FIG. 10 for the thin film transistor selection circuit 35.
  • FIG. 11 it is a schematic diagram of a single-layer metal mesh structure of a self-capacitive touch electrode layer provided by an embodiment of the present invention.
  • the route is designed in the form of a metal grid, and the width of the metal grid channel is greater than 3 grid units.
  • multiple fractures are designed to form an optical aspect Compensation, and at the same time, ensure that there are more than two node channel paths for each metal mesh wire on the cross section perpendicular to the wire routing direction, so as to reduce the impedance of the touch electrode wire and improve the bending resistance.
  • the region grouping setting of the plurality of self-capacitive touch electrodes 11 in the Y direction of the long end or the X direction of the short end may also be set to an asymmetric grouping setting.
  • asymmetric grouping setting corresponding to the A plurality of the touch electrode leads grouped in asymmetric regions are connected to the thin film transistor switch circuit.
  • An embodiment of the present invention also provides a display device that uses the self-capacitive touch substrate provided in the above-mentioned embodiment.
  • the present invention provides a self-contained touch substrate and display device, which adopts a new self-contained DOT structure wiring design, which reduces touch control by changing the position and direction of the electrode wiring in the plane, and adopts a thin film transistor switch selection circuit design
  • the electrode leads can realize the balanced and self-capacitive DOT far and near end capacitance effect and the narrow frame design of the panel at the same time.
  • the wiring is designed in the form of a metal grid, which guarantees the impedance and bending resistance of the touch electrode leads, and improves the self-capacitive DOT structure of the metal signal wiring. Bending resistance, and improve the life of the flexible OLED screen and user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种自容式触控基板及显示装置,包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;多个所述自容式触控电极呈区域分组设置;所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线。

Description

自容式触控基板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种自容式触控基板及显示装置。
背景技术
近年来,电容式触控式屏幕在电子产品上的应用日益普及。电容式触控式屏幕是利用人体的电流感应进行工作的,是一种通过电极和人体特性结合来感应触摸信号的触控式屏幕。在人体(手指)触控式屏幕时,由于人体电场作用,手指与触控式屏幕的导体层间会形成一个耦合电容,触控式屏幕上电极产生的电流会流向触点,从而能够准确计算出触摸点的位置。
有机发光二极管(OrganicLight-Emitting Diode,简称OLED)外嵌式触控(On-cell Touch)显示面板,称DOT技术,集成OLED及触控结构,相较外挂触控结构具有更好的透过率、耐弯折性、及轻薄等特点,将成为柔性OLED显示未来趋势。
目前市场上的OLED外嵌式触控方案为互容式电极,从下至上为无机层、金属桥接层、过孔无机层、触控金属网格层以及有机平坦层,共五层膜,四道光刻罩。此种互容触控结构需在所述过孔无机层的绝缘层通过刻蚀过孔实现驱动电极与感应电极的架桥走线,且绑定区与可操作区在所述过孔无机层刻蚀深度不一样,工艺复杂。
相较于互容触控方案,自容式DOT触控只有单层金属触控电极,工艺较简单。然而,自容式触控结构由于每个触控电极需要单独电极引线引出,引线通道数较多,如图1为一种常见的单层自容式触控结构,触控电极引线在可视区进行走线,为避免占用大量可视区面积,在离柔性电路板(Flexible Printed Circuit,简称FPC)绑定的长端Y方向远端到近端的触控电极区域面积采用依次减小设计。这种设计虽然优化了触控电极引线的布局,但是随着触控电极数量增多,特别是柔性卷曲屏(长宽比较大,长端Y方向触控电极较多),从远端到近端(长端Y方向离FPC绑定区远的称为远端,离FPC绑定区近的称为近端)触控电极区域面积会依次减小,导致远近端电容值差异会增大,影响触控效果。
技术问题
为了克服现有技术的不足,本申请实施例提供一种自容式触控基板及显示装置,所述自容式触控基板通过改变触控基板内的走线位置及方向,减小了触控电极引线,增强了触控效果。
技术解决方案
本发明提供的技术方案如下:
本发明实施例提供一种自容式触控基板,包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端;
其中,所述薄膜晶体管开关电路为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数;多根所述触控电极引线为金属网格走线,所述金属网格走线的金属网格的通道宽度大于3个网格单元,且所述金属网格具有多处断口。
根据本发明实施例所提供的自容式触控基板,所述自容式触控基板至少包含层叠设置的柔性基板、阵列驱动电路、有机发光层、薄膜封装层、层间绝缘层、自容式触控电极层以及平坦层。
根据本发明实施例所提供的自容式触控基板,所述自容式触控电极层为单层金属网格结构。
根据本发明实施例所提供的自容式触控基板,多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
根据本发明实施例所提供的自容式触控基板,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
根据本发明实施例所提供的自容式触控基板,多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
根据本发明实施例所提供的自容式触控基板,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
本发明实施例提供一种自容式触控基板,包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端。
根据本发明实施例所提供的自容式触控基板,所述自容式触控基板至少包含层叠设置的柔性基板、阵列驱动电路、有机发光层、薄膜封装层、层间绝缘层、自容式触控电极层以及平坦层。
根据本发明实施例所提供的自容式触控基板,所述自容式触控电极层为单层金属网格结构。
根据本发明实施例所提供的自容式触控基板,多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
根据本发明实施例所提供的自容式触控基板,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
根据本发明实施例所提供的自容式触控基板,多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
根据本发明实施例所提供的自容式触控基板,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
根据本发明实施例所提供的自容式触控基板,所述薄膜晶体管开关电路为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数。
根据本发明实施例所提供的自容式触控基板,多根所述触控电极引线为金属网格走线,所述金属网格走线的金属网格的通道宽度大于3个网格单元,且所述金属网格具有多处断口。
本发明实施例提供一种显示装置,所述显示装置包括一种自容式触控基板;
所述自容式触控基板包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端。
根据本发明实施例所提供的显示装置,多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小;对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
根据本发明实施例所提供的显示装置,多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小;对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
有益效果
本发明提供的一种自容式触控基板及显示装置,采用了新型自容式DOT结构走线设计,通过改变面内电极走线位置及方向,并采用薄膜晶体管开关选择电路设计减少触控电极引线,同时实现平衡自容式DOT远近端容值效果及面板窄边框设计。同时,在触控电极引线在可视区进行走线时,走线采用金属网格形式设计,保障了触控电极引线阻抗及抗弯折性能,提高了自容式DOT结构金属信号走线的耐弯折性能,以及提高了柔性OLED屏寿命及用户体验。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的自容式触控基板结构示意图。
图2为本发明实施例所提供的自容式触控基板的结构膜层示意图。
图3为本发明实施例所提供的自容式触控基板结构示意图。
图4为本发明实施例所提供的另一自容式触控基板结构示意图。
图5为本发明实施例所提供的薄膜晶体管开关电路的剖面结构示意图。
图6为本发明实施例所提供的另一自容式触控基板结构示意图。
图7为本发明实施例所提供的另一薄膜晶体管开关电路的剖面结构示意图。
图8为本发明实施例所提供的两级TFT选择开关电路示意图。
图9为本发明实施例所提供的两级TFT选择开关电路信号时序图。
图10为本发明实施例所提供的三级TFT选择开关电路的触控基板结构示意图。
图11为本发明实施例所提供的自容式触控电极层的单层金属网格结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
由于柔性卷曲屏幕长端Y方向长度远大于短端X方向长度,而自容式触控电极需要大量金属引线进行单独驱动,所以沿长端Y方向触控电极数量远大于短端X方向触控电极数量,从远端到近端触控电极区域面积会依次减小,导致远近端电容值差异会增大,影响触控效果。
本发明实施例提供了一种自容式触控基板,所述自容式触控基板包括:显示区域、外围区域,多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;其中每个所述自容式触控电极分别连接一根所述触控电极引线;多个所述自容式触控电极呈多行和多列的矩阵分布;其中,多个所述自容式触控电极呈区域分组设置;所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端。所述自容式触控基板包含长端Y方向和短端X方向,其中,所述自容式触控基板在所述长端Y方向的长度大于所述自容式触控基板在短端X方向的长度。
如图2所示,为本实施例所提供的自容式触控基板的结构膜层示意图。所述自容式触控基板至少包含:柔性基板01、阵列驱动电路02、有机发光层03、薄膜封装层04、层间绝缘层05、自容式触控电极层06以及平坦层07。其中,所述柔性基板01为聚酰亚胺薄膜基板;所述Array阵列驱动电路02为低温多晶硅(LowTemperature Poly-silicon,简称LTPS)、薄膜晶体管(Thin Film Transistor,简称TFT)、氧化铟镓锌(Indium Gallium Zinc Oxide,简称:IGZO)、低温多晶氧化物(Low Temperature Polycrystalline Oxide,简称LTPO)中的任意一种电路;所述层间绝缘层05为透明有机层或者为透明无机层,所述层间绝缘层05的材质为SINx、SiOx、高透过率有机光阻等材料;所述自容式触控电极层06为单层金属网格结构,所述自容式触控电极层06的金属材料为TiAlTi、Mo、Cu、AgNW、ITO或者其他低阻抗导电材料等。
如图3所示,为本发明实施例所提供的自容式触控基板结构示意图。多个所述自容式触控电极11在所述长端Y方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向引出,连接到所述薄膜晶体管开关电路13上;且所述自容式触控电极11的触控电极区域面积沿所述短端X方向依次减小。其中,对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向的相反方向引出。
如图3所示,对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向的相反方向引出,经过换线连接左右端位于下层array层预设的薄膜晶体管开关电路13上,从而减少所述触控电极引线12的数量。所述薄膜晶体管开关电路13经过触控电极外围引线14连接在柔性电路板(Flexible Printed Circuit,简称FPC)上。其中,所述薄膜晶体管开关电路13为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数。在本实施例中,采用二级薄膜晶体管开关电路,可以将柔性电路板(Flexible Printed Circuit,简称FPC)端触控电极引线数量减少为原来触控电极数量的四分之一。通过采用触控电极引线12在面内沿短端X方向走线,缩短面内触控电极引线12长度及占用可视区面积,可减小远近端触控电极面积差异,平衡远近端触控电极电容值差异。
对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向的相同方向引出,所述相同方向为从左至右方向或从右至左方向,如图4所示,本实施例以从右至左方向为例说明。对应所述对称的两部分区域的多根所述触控电极引线12沿所述短端X方向的相同方向引出,经过换线连接左右端位于下层array层预设的薄膜晶体管开关电路13上,从而减少所述触控电极引线12的数量。所述薄膜晶体管开关电路13经过触控电极外围引线14连接在柔性电路板(Flexible Printed Circuit,简称FPC)上。其中,所述薄膜晶体管开关电路13为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数。在本实施例中,采用二级薄膜晶体管开关电路,可以将FPC端触控电极引线数量减少为原触控电极数量的四分之一。通过采用触控电极引线12在面内沿短端X方向走线,缩短面内触控电极引线12长度及占用可视区面积,可减小远近端触控电极面积差异,平衡远近端触控电极电容值差异。
如图5所示,为图3中所述薄膜晶体管开关电路的剖面结构示意图。所述薄膜晶体管开关电路为二级薄膜晶体管开关电路,所述二级薄膜晶体管开关电路包含第一薄膜晶体管21和第二薄膜晶体管22。其中所述第一薄膜晶体管21包括触控电极引线211,连接FPC端触控电极引线212,下层array阵列基板的源极213,漏极214,栅极215。所述触控电极引线211和所述连接FPC端触控电极引线212分别通过过孔与所述下层array阵列基板的所述源极213和所述漏极214连接。所述第二薄膜晶体管22的结构与所述第一薄膜晶体管21的结构相同。所述触控电极引线211和所述连接FPC端触控电极引线212通过所述第一薄膜晶体管21开关电路进行导通与断开,相邻两条触控电极引线对应一个薄膜晶体管开关构成一个数据选择电路,通过所述栅极215电路发送相邻的时钟信号依次对两个薄膜晶体管开关进行高速驱动。所述第一薄膜晶体管21和所述第二薄膜晶体管22开关在导通时序上相邻,即同一时间所述第一薄膜晶体管21开且所述第二薄膜晶体管22关,以此完成一次数据选择指令,可减少一半的电极引线,本实施例提出采用两级TFT选择开关电路,可减少为四分之一的数量电极引线,完成对触控电极进行高速扫描驱动。
如图6所示,为本发明实施例所提供的另一自容式触控基板结构示意图。多个所述自容式触控电极31在所述短端X方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线32沿所述短端X方向引出,连接到所述薄膜晶体管开关电路33上;且所述自容式触控电极31的触控电极区域面积沿所述短端X方向依次减小。其中,对应所述对称的两部分区域的多根所述触控电极引线32沿所述短端X方向的相反方向引出。
如图6所示,多个所述自容式触控电极31在所述短端X方向从中间分为左右两部分,每部分的多根所述触控电极引线32沿所述短端X方向的相反方向,即每部分的多根所述触控电极引线32分别从左右引出,经过换线连接左右端位于下层array层预设的薄膜晶体管开关电路33上,从而减少所述触控电极引线32的数量。所述薄膜晶体管开关电路33经过触控电极外围引线34连接在柔性电路板上。其中,所述薄膜晶体管开关电路33为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数。在本实施例中,采用二级薄膜晶体管开关电路,可以将柔性电路板端触控电极引线数量减少为原触控电极数量的四分之一。通过采用触控电极引线32在面内沿短端X方向走线,缩短面内触控电极引线32长度及占用可视区面积,可减小远近端触控电极面积差异,平衡远近端触控电极电容值差异,提高触控精度。
如图7所示,为图6中所述薄膜晶体管开关电路的剖面结构示意图。所述薄膜晶体管开关电路为二级薄膜晶体管开关电路,所述二级薄膜晶体管开关电路包含第一薄膜晶体管41和第二薄膜晶体管42。其中所述第一薄膜晶体管41包括触控电极引线411,连接FPC端触控电极引线412,下层array阵列基板的源极413,漏极414,栅极415。所述触控电极引线411和所述连接FPC端触控电极引线412分别通过过孔与所述下层array阵列基板的所述源极413和漏极414连接。所述第二薄膜晶体管42的结构与所述第一薄膜晶体管41的结构相同。所述触控电极引线411和所述连接FPC端触控电极引线412通过所述第一薄膜晶体管41开关电路进行导通与断开,相邻两条触控电极引线对应一个薄膜晶体管开关构成一个数据选择电路,通过所述栅极415电路发送相邻的时钟信号依次对两个薄膜晶体管开关进行高速驱动。所述第一薄膜晶体管41和所述第二薄膜晶体管42开关在导通时序上相邻,即同一时间所述第一薄膜晶体管41开且所述第二薄膜晶体管42关,以此完成一次数据选择指令,可减少一半的电极引线,本实施例提出采用两级TFT选择开关电路,可减少为四分之一的数量电极引线,完成对触控电极进行高速扫描驱动。
如图8所示为两级TFT选择开关电路示意图,图9为两级TFT选择开关电路信号时序图。参阅图8和图9,其中,包括一级TFT选择开关13,触控电极引线t1与t2对应的TFT开关分别由Gate信号G2和G1驱动,Gate信号驱动两个TFT开关的导通时序上相邻,即同一时间t1开且t2关,以此完成一次数据选择指令,可减少1/2电极引线,本专利提出采用两级TFT选择开关电路,可减少为1/4数量电极引线,完成对触控电极进行高速扫描驱动。同时,对于相邻一级相同开关时序的TFT选择开关电路Gate信号进行复用,以减少Gate线及信号排布。如在第一级TFT选择开关中,G1同时驱动t2和t4,G2同时驱动t1和t3,在第二级TFT选择开关中,G3和G4也同时驱动除T1外的其他TFT开关。
TFT选择开关Gate驱动信号,可以由显示IC或者触控IC提供,在触控IC能力允许范围内,可采用三级或以上TFT选择电路,可以极大减少触控电极引线排布,亦属于本专利保护范围,第三级或第四级TFT选择电路,可以设计在左右下边框处,如图10所示薄膜晶体管选择电路35。
如图11所示,为本发明实施例所提供的自容式触控电极层的单层金属网格结构示意图。多根所述触控电极引线在可视区进行走线时,走线采用金属网格形式设计,金属网格通道宽度大于3个网格单元,依据光学均一性设计多处断口,形成光学方面补偿,同时确保在每个垂直于引线走线方向横截面上金属网格引线有两个以上节点通道通路,以降低触控电极引线阻抗及提高抗弯折性能。
多个所述自容式触控电极11在所述长端Y方向上或所述短端X方向上的区域分组设置还可以设置成不对称分组设置,在不对称分组设置中,对应所述不对称的区域分组的多根所述触控电极引线与所述薄膜晶体管开关电路相连接。
本发明实施例还提供了一种显示装置,所述显示装置使用了上述实施例所提供的自容式触控基板。
本发明提供的一种自容式触控基板及显示装置,采用了新型自容式DOT结构走线设计,通过改变面内电极走线位置及方向,并采用薄膜晶体管开关选择电路设计减少触控电极引线,同时实现平衡自容式DOT远近端容值效果及面板窄边框设计。同时,在触控电极引线在可视区进行走线时,走线采用金属网格形式设计,保障了触控电极引线阻抗及抗弯折性能,提高了自容式DOT结构金属信号走线的耐弯折性能,以及提高了柔性OLED屏寿命及用户体验。
以上对本申请实施例所提供的一种自容式触控基板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (19)

  1. 一种自容式触控基板,包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
    其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
    其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
    多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端;
    其中,所述薄膜晶体管开关电路为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数;多根所述触控电极引线为金属网格走线,所述金属网格走线的金属网格的通道宽度大于3个网格单元,且所述金属网格具有多处断口。
  2. 根据权利要求1所述的自容式触控基板,其中所述自容式触控基板至少包含层叠设置的柔性基板、阵列驱动电路、有机发光层、薄膜封装层、层间绝缘层、自容式触控电极层以及平坦层。
  3. 根据权利要求2所述的自容式触控基板,其中所述自容式触控电极层为单层金属网格结构。
  4. 根据权利要求1所述的自容式触控基板,其中多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
  5. 根据权利要求4所述的自容式触控基板,其中对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
  6. 根据权利要求1所述的自容式触控基板,其中多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
  7. 根据权利要求6所述的自容式触控基板,其中对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
  8. 一种自容式触控基板,包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
    其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
    其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
    多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端。
  9. 根据权利要求8所述的自容式触控基板,其中所述自容式触控基板至少包含层叠设置的柔性基板、阵列驱动电路、有机发光层、薄膜封装层、层间绝缘层、自容式触控电极层以及平坦层。
  10. 根据权利要求9所述的自容式触控基板,其中所述自容式触控电极层为单层金属网格结构。
  11. 根据权利要求8所述的自容式触控基板,其中多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
  12. 根据权利要求11所述的自容式触控基板,其中对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
  13. 根据权利要求8所述的自容式触控基板,其中多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小。
  14. 根据权利要求13所述的自容式触控基板,其中对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
  15. 根据权利要求8所述的自容式触控基板,其中所述薄膜晶体管开关电路为一级薄膜晶体管开关电路或二级薄膜晶体管开关电路或三级薄膜晶体管开关电路或N级薄膜晶体管开关电路,其中N为正整数。
  16. 根据权利要求8所述的自容式触控基板,其中多根所述触控电极引线为金属网格走线,所述金属网格走线的金属网格的通道宽度大于3个网格单元,且所述金属网格具有多处断口。
  17. 一种显示装置,所述显示装置包括一种自容式触控基板;
    所述自容式触控基板包括:显示区域、外围区域、多个自容式触控电极设置在所述显示区域内以及多根触控电极引线连接所述自容式触控电极;
    其中每个所述自容式触控电极分别连接一根所述触控电极引线,多个所述自容式触控电极呈多行和多列的矩阵分布,多个所述自容式触控电极呈区域分组设置;
    其中所述自容式触控基板还包括设置在所述外围区域中的薄膜晶体管开关电路和自容式触控电极外围引线;
    多个所述自容式触控电极按照分组的方式与所述薄膜晶体管开关电路相连接;其中所述薄膜晶体管开关电路为多级薄膜晶体管开关电路;所述自容式触控基板包括长端和短端。
  18. 根据权利要求17所述的显示装置,其中多个所述自容式触控电极在所述长端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小;对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相同方向引出或对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
  19. 根据权利要求17所述的显示装置,其中多个所述自容式触控电极在所述短端方向上分为对称的两部分区域设置,对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向引出,连接到所述薄膜晶体管开关电路上;且所述自容式触控电极的触控电极区域面积沿所述短端方向依次减小;对应所述对称的两部分区域的多根所述触控电极引线沿所述短端方向的相反方向引出。
PCT/CN2020/103027 2020-06-23 2020-07-20 自容式触控基板及显示装置 WO2021258455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,461 US11360628B2 (en) 2020-06-23 2020-07-20 Self-capacitive touch substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010582014.4 2020-06-23
CN202010582014.4A CN111665995B (zh) 2020-06-23 2020-06-23 自容式触控基板及显示装置

Publications (1)

Publication Number Publication Date
WO2021258455A1 true WO2021258455A1 (zh) 2021-12-30

Family

ID=72389595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103027 WO2021258455A1 (zh) 2020-06-23 2020-07-20 自容式触控基板及显示装置

Country Status (2)

Country Link
CN (1) CN111665995B (zh)
WO (1) WO2021258455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113282200B (zh) * 2021-05-17 2022-12-23 武汉华星光电半导体显示技术有限公司 显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198267A1 (en) * 2013-01-17 2014-07-17 Samsung Display Co., Ltd. Display device integrated with touch screen panel
CN104898890A (zh) * 2015-06-30 2015-09-09 上海天马微电子有限公司 一种用于触控装置的金属网格、触控装置及触控显示装置
CN105159513A (zh) * 2015-09-15 2015-12-16 武汉华星光电技术有限公司 阵列基板、自容式触控显示面板及电子装置
CN107728863A (zh) * 2016-08-12 2018-02-23 鸿富锦精密工业(深圳)有限公司 触控显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382557B1 (ko) * 2007-06-28 2014-04-08 삼성디스플레이 주식회사 표시 장치
CN107918235A (zh) * 2013-12-31 2018-04-17 上海天马微电子有限公司 一种阵列基板及显示装置
CN107608577B (zh) * 2015-05-29 2019-11-15 上海天马微电子有限公司 一种触摸屏、触控显示面板及触控设备
CN106708325B (zh) * 2017-01-10 2019-08-02 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN107422903A (zh) * 2017-05-12 2017-12-01 京东方科技集团股份有限公司 一种触控基板、触控显示面板和触控显示装置
CN110568950B (zh) * 2018-06-05 2023-08-01 鸿富锦精密工业(深圳)有限公司 Tft基板及触控显示面板
CN109375839B (zh) * 2018-12-03 2020-06-30 武汉华星光电半导体显示技术有限公司 一种触控屏、显示装置
CN110888553B (zh) * 2019-11-28 2023-10-27 京东方科技集团股份有限公司 触控显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198267A1 (en) * 2013-01-17 2014-07-17 Samsung Display Co., Ltd. Display device integrated with touch screen panel
CN104898890A (zh) * 2015-06-30 2015-09-09 上海天马微电子有限公司 一种用于触控装置的金属网格、触控装置及触控显示装置
CN105159513A (zh) * 2015-09-15 2015-12-16 武汉华星光电技术有限公司 阵列基板、自容式触控显示面板及电子装置
CN107728863A (zh) * 2016-08-12 2018-02-23 鸿富锦精密工业(深圳)有限公司 触控显示面板

Also Published As

Publication number Publication date
CN111665995A (zh) 2020-09-15
CN111665995B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
KR101946419B1 (ko) 터치 컨트롤 디스플레이 장치 및 그 제조 방법
CN108008862B (zh) 触控膜层、触控面板及其触控显示装置
TWI509490B (zh) 具有觸控感應功能之顯示裝置
CN107527938B (zh) 内嵌式触控amoled面板结构
US20200333918A1 (en) Flexible touch display panel
US20150199055A1 (en) Single layer touch sensor
CN102799332B (zh) 一种嵌入式单层电容触摸屏
KR102056464B1 (ko) 터치 스크린 패널
WO2015032139A1 (zh) 触控显示屏及触控显示装置
KR20110093069A (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR101814656B1 (ko) 전기 장치 및 그에 따른 단일 층 상호 정전용량 터치 스크린
KR20130121713A (ko) 터치 디바이스
US9323295B2 (en) Touch panel
CN211479089U (zh) 一种触控显示面板
WO2019169882A1 (zh) 触控基板及其制造方法和显示装置
CN105702701A (zh) 压电触控式有机发光显示面板及制造方法、有机发光显示器
WO2021017414A1 (zh) 触控面板及其显示装置
JP2022518086A (ja) 自己容量式タッチディスプレイパネル
TW201443719A (zh) 觸控面板及觸控顯示面板
CN113064513A (zh) 触控面板及显示装置
CN112162661A (zh) 触控显示面板
WO2021258455A1 (zh) 自容式触控基板及显示装置
CN108807715B (zh) 触控显示面板
US11360628B2 (en) Self-capacitive touch substrate and display device
WO2023108671A1 (zh) 显示面板与移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942015

Country of ref document: EP

Kind code of ref document: A1