WO2021258443A1 - 隔离病房的负压控制方法及装置、存储介质及隔离病房 - Google Patents

隔离病房的负压控制方法及装置、存储介质及隔离病房 Download PDF

Info

Publication number
WO2021258443A1
WO2021258443A1 PCT/CN2020/102956 CN2020102956W WO2021258443A1 WO 2021258443 A1 WO2021258443 A1 WO 2021258443A1 CN 2020102956 W CN2020102956 W CN 2020102956W WO 2021258443 A1 WO2021258443 A1 WO 2021258443A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure value
negative pressure
exhaust device
isolation ward
value
Prior art date
Application number
PCT/CN2020/102956
Other languages
English (en)
French (fr)
Inventor
何伟
朱国远
黄愉太
饶涛
Original Assignee
深圳市巨鼎医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010595793.1A external-priority patent/CN111750476B/zh
Priority claimed from CN202010595792.7A external-priority patent/CN111765579B/zh
Application filed by 深圳市巨鼎医疗股份有限公司 filed Critical 深圳市巨鼎医疗股份有限公司
Publication of WO2021258443A1 publication Critical patent/WO2021258443A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of negative pressure control, in particular to a negative pressure control method and device for an isolation ward, a storage medium and an isolation ward.
  • Isolation wards usually adopt negative pressure isolation technology, which means that the internal and external spaces of the ward are kept under negative pressure so as not to make the ward
  • the pollution control inside leaks to the outside.
  • an embodiment of the present application provides a negative pressure control method for an isolation ward, and the method includes:
  • the backup exhaust device When a failure of the main exhaust device is detected, the backup exhaust device is activated, and after the backup exhaust device is started normally, the second exhaust device in the isolation ward detected by the differential pressure sensor is obtained in real time. Static pressure
  • the fan speed of the standby exhaust device is adjusted so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • acquiring the first static pressure value in the isolation ward detected by the pressure difference sensor in real time before further including:
  • the activating the main exhaust device according to the third static pressure value includes:
  • the exhaust device is activated according to the wind speed of the fan corresponding to the third static pressure value.
  • the method further includes:
  • the fan speed of the standby exhaust device is adjusted so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the isolation ward further includes an air inlet device
  • the method further includes:
  • the first fan speed preset by the air intake device is acquired at an interval of a preset time length, and the air intake device is activated according to the first fan speed.
  • the method further includes:
  • the fan rotation speed of the air inlet device is increased from the second fan rotation speed to the first fan rotation speed.
  • the rotation speed of the fan of the main exhaust device is adjusted according to the first static pressure value and a preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at the Target negative pressure value, including:
  • the wind speed of the fan of the main exhaust device is adjusted according to the wind speed adjustment value of the fan, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the determining the fan wind speed adjustment value required for the negative pressure value in the isolation ward to reach the target negative pressure value according to the first static pressure value and a preset target negative pressure value includes:
  • the fan speed of the main exhaust fan device is adjusted according to the increase value or the decrease value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the determining an increase or decrease value of the fan speed of the main exhaust fan device according to the difference value includes:
  • the mapping relationship between the preset static pressure difference value and the fan wind speed adjustment value is searched, and the fan wind speed adjustment value corresponding to the difference value is determined, and the fan wind speed adjustment value is the increase value or the decrease value.
  • the method further includes:
  • the currently operating exhaust device is controlled to run at the fan speed under the preset failure state, and a failure warning is output.
  • an embodiment of the present application also provides a negative pressure control device for an isolation ward, the isolation ward includes a main exhaust device, a backup exhaust device, and a differential pressure sensor, and the negative pressure control device includes:
  • An acquiring module configured to acquire the first static pressure value in the isolation ward detected by the differential pressure sensor in real time when the main exhaust device is operating normally;
  • the first adjustment module is configured to adjust the fan speed of the main exhaust device according to the first static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at all The target negative pressure value;
  • the activation acquisition module is used to activate the backup ventilation device when a failure of the main ventilation device is detected, and after the backup ventilation device is normally started, obtain the real-time information detected by the differential pressure sensor The second static pressure value in the isolation ward;
  • the second adjustment module is configured to adjust the fan speed of the standby exhaust device according to the second static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is kept at the same level.
  • the target negative pressure value is configured to adjust the fan speed of the standby exhaust device according to the second static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is kept at the same level.
  • the embodiments of the present application also provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the processor causes the processor to perform the steps described in the first aspect.
  • an embodiment of the present application also provides an isolation ward, including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes Steps in one aspect.
  • the isolation ward includes a main exhaust device, a backup exhaust device and a differential pressure sensor.
  • the first in the isolation ward detected by the differential pressure sensor is obtained in real time.
  • Static pressure value according to the first static pressure value and the preset target negative pressure value, adjust the fan speed of the main exhaust device so that the negative pressure value in the isolation ward is maintained at the target negative pressure value; when the main negative pressure value is detected
  • the backup exhaust device is activated, and after the backup exhaust device starts normally, the second static pressure value in the isolation ward detected by the differential pressure sensor is obtained in real time; according to the second static pressure value and preset
  • the target negative pressure value is to adjust the fan speed of the backup exhaust device to keep the negative pressure value in the isolation ward at the target negative pressure value.
  • the fan speed of the currently operating exhaust device can be adjusted according to the static pressure value detected by the differential pressure sensor and the preset target negative pressure value, so that the negative pressure value in the isolation ward can be adjusted Maintain the target negative pressure value to ensure that the negative pressure value in the isolation ward is stable, and a backup exhaust device is also provided on the basis of the main exhaust device, so that the backup exhaust device can be used in the event of a failure of the main exhaust device
  • the device enhances the reliability of the isolation ward.
  • FIG. 1 is a schematic flowchart of a negative pressure control method for an isolation ward in an embodiment of the application
  • FIG. 2 is a schematic diagram of another flow chart of the negative pressure control method of the isolation ward in the embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a negative pressure control device in an isolation ward in an embodiment of the application
  • Fig. 4 is a schematic structural diagram of a control component of an isolation ward in an embodiment of the application.
  • the isolation ward may be a movable and expandable device for isolation and treatment of patients, and the isolation ward includes an exhaust device and a differential pressure sensor, and the exhaust device and the differential pressure sensor are both set in On the structure of the isolation ward.
  • the air exhaust device can transmit the air in the isolation ward to outside the isolation ward during operation, and the pressure difference sensor is used to detect the air pressure in the isolation ward and the air pressure outside the isolation ward, so that the air pressure in the isolation ward can be used to subtract
  • the air pressure outside the isolation ward obtains the pressure difference, which is the static pressure value in the isolation ward, and when the pressure difference is negative, it indicates that the static pressure value is specifically a negative pressure value, and when the pressure difference is positive When, it indicates that the static pressure value is a positive pressure value.
  • the isolation ward includes a main exhaust device, a backup exhaust device, and a differential pressure sensor, and the main exhaust device, the backup exhaust device, and the differential pressure sensor are all arranged on the structure of the isolation ward.
  • the main exhaust device can transmit the air in the isolation ward to outside the isolation ward during operation
  • the backup exhaust device can also transmit the air in the isolation ward to the outside of the isolation ward during operation
  • the main exhaust is given priority
  • the standby exhaust device is used to replace the main exhaust device.
  • the pressure difference sensor is used to detect the air pressure in the isolation ward and the air pressure outside the isolation ward, so that the air pressure in the isolation ward can be used to subtract the air pressure outside the isolation ward to obtain the pressure difference, which is the static pressure in the isolation ward value.
  • the aforementioned isolation ward may also include an air inlet device which is arranged on the structural body of the isolation ward, and in a feasible implementation manner, the air inlet device and the aforementioned main exhaust device and backup exhaust device The wind installations are arranged diagonally.
  • FIG. 1 is a schematic flowchart of a negative pressure control method for an isolation ward in an embodiment of this application.
  • the method includes:
  • Step 101 When the main exhaust device is operating normally, obtain the first static pressure value in the isolation ward detected by the differential pressure sensor in real time;
  • Step 102 Adjust the fan speed of the main exhaust device according to the first static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value;
  • Step 103 When a failure of the main exhaust device is detected, the backup exhaust device is activated, and after the backup exhaust device is normally started, the second static pressure value in the isolation ward detected by the differential pressure sensor is obtained in real time;
  • Step 104 Adjust the fan speed of the standby exhaust device according to the second static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the above-mentioned negative pressure control method of the isolation ward can be implemented by the negative pressure control device of the isolation ward.
  • the negative pressure control device is a program module and is stored in the storage medium of the isolation ward, and the isolation ward also includes The controller can call and execute the negative pressure control device in the storage medium to realize the above-mentioned negative pressure control method.
  • the main exhaust device is activated first, and during the normal operation of the main exhaust device, the negative pressure value in the isolation ward can be controlled to make the isolation
  • the negative pressure value in the ward is maintained at the preset target negative pressure value, so that the negative pressure can be kept stable.
  • the first static pressure value in the isolation ward detected by the differential pressure sensor can be obtained in real time.
  • the first static pressure value and the first static pressure value The second static pressure value, the third static pressure value, the fourth static pressure value and the fifth static pressure value, of which "first”, “second”, “third”, “fourth” and “fifth” are It is used to distinguish the static pressure value at different times or in different scenarios, and does not limit the static pressure value itself.
  • the fan speed of the main exhaust device is adjusted in real time, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the operation of the main exhaust device will also be monitored.
  • the backup exhaust device When it is monitored that the main exhaust device fails, the backup exhaust device will be activated, and after the backup exhaust device starts normally, the pressure will be obtained in real time.
  • the second static pressure value in the isolation ward detected by the differential sensor, and according to the second static pressure value and the preset target negative pressure value, the fan speed of the standby exhaust device is adjusted to make the negative pressure in the isolation ward The value remains at the target negative pressure value.
  • the adjustment method of the fan speed of the exhaust device is the same, and the purpose is to keep the negative pressure value in the isolation ward at the target negative value. ⁇ Pressure value.
  • the speed of the fan of the currently operating exhaust device can be adjusted according to the static pressure value detected by the differential pressure sensor and the preset target negative pressure value, so as to isolate
  • the negative pressure value in the ward can be maintained at the target negative pressure value to ensure that the negative pressure value in the isolation ward is stable
  • a backup exhaust device is also set on the basis of the main exhaust device, so that the main exhaust device fails Bottom, can use the spare exhaust device, strengthen the reliability of the isolation ward.
  • Fig. 2 is a schematic flowchart of a negative pressure control method for an isolation ward in an embodiment of this application. The method includes:
  • Step 201 Receive the negative pressure system start instruction, and obtain the third static pressure value in the isolation ward detected by the differential pressure sensor;
  • Step 202 Start the main exhaust device according to the third static pressure value
  • Step 203 Determine whether the main exhaust device is started normally, if it starts normally, go to step 204, if it does not start normally, go to step 211;
  • Step 204 After the preset time interval, obtain the first fan speed preset by the air intake device, and start the air intake device according to the first fan speed;
  • Step 205 Acquire the first static pressure value in the isolation ward detected by the differential pressure sensor in real time
  • Step 206 Adjust the fan speed of the main exhaust device according to the first static pressure value and the preset target negative pressure value
  • Step 207 Detect whether the main exhaust device is malfunctioning; when the main exhaust device fails, continue to perform step 208, if the main exhaust device does not malfunction, continue to perform step 205;
  • Step 208 Start the standby exhaust device, and after the standby exhaust device is normally started, obtain the second static pressure value in the isolation ward detected by the differential pressure sensor in real time;
  • Step 209 Adjust the fan speed of the standby exhaust device according to the second static pressure value and the preset target negative pressure value
  • Step 210 Start a backup air exhaust device according to the third static pressure value
  • Step 211 Obtain the first fan speed preset by the air intake device at a preset time interval, and start the air intake device according to the first fan speed;
  • Step 212 Acquire the fourth static pressure value in the isolation ward detected by the differential pressure sensor in real time
  • Step 213 Adjust the speed of the fan of the standby exhaust device according to the fourth static pressure value and the preset target negative pressure value.
  • the negative pressure system of the isolation ward includes but is not limited to the main exhaust device, the backup exhaust device, the differential pressure sensor and the air inlet device. If the negative pressure system start instruction is received, the differential pressure will be obtained The sensor detects the third static pressure value in the isolation ward, and starts the main exhaust device according to the third static pressure value.
  • the method of starting the main exhaust device according to the third static pressure value may specifically be: using the third static pressure value to find the mapping relationship between the preset static pressure value and the fan speed, and determine the third static pressure value Corresponding to the fan speed, and start the main exhaust device according to the fan speed corresponding to the third static pressure value, that is, the fan speed corresponding to the third static pressure value is the initial fan speed of the main exhaust device.
  • the mapping relationship may be a mapping relationship determined through a large number of experiments, or may also be a model trained through a machine learning algorithm.
  • the starting method may be sending a starting command to the main exhaust device, and the starting command includes the above-mentioned initial fan speed. And it will further determine whether the main exhaust device starts normally.
  • the normal start of the main exhaust device means that the main exhaust device can start and reach the initial fan speed within a preset period of time.
  • the air intake device When it is judged that the main exhaust device can be started normally, the air intake device will be further activated, and because negative pressure needs to be formed, it is necessary to obtain the preset time interval of the main exhaust device after the main exhaust device is activated. A fan speed, and start the air inlet device according to the first fan speed. And after the start of the air intake device is completed, it indicates that the start of the negative pressure system has been completed.
  • the above is the process of starting the negative pressure system by starting the main exhaust device and the air intake device under the condition that the main exhaust device can start normally.
  • the main exhaust device cannot start normally, that is, the main exhaust device.
  • the device cannot be started due to a fault, the start-up process of the negative pressure system.
  • the backup exhaust device When the main exhaust device fails to start normally, the backup exhaust device will be activated according to the third static pressure value.
  • the way to start the backup exhaust device according to the third static pressure value may specifically be: use the third static pressure value to search for Set the mapping relationship between the static pressure value and the fan speed, determine the fan speed corresponding to the third static pressure value, and start the standby exhaust device according to the fan speed, that is, the fan speed corresponding to the third static pressure value is The initial fan speed of the standby exhaust device.
  • the interval is preset to obtain the first fan speed preset by the air intake device, and the air intake device is activated according to the first fan speed.
  • the standby exhaust device and the air intake device are activated, the startup of the negative pressure system is completed.
  • the negative pressure system after the negative pressure system is started, it will enter the operation process of the negative pressure system, and there are also two situations in the operation process of the negative pressure system.
  • One is that the main exhaust device and the air inlet device are operating, and the other
  • the standby exhaust device and the air intake device are in operation, which will be introduced separately below.
  • the first static pressure value in the isolation ward detected by the differential pressure sensor will be obtained in real time, and based on the first static pressure Value and preset target negative pressure value to adjust the fan speed of the main exhaust device.
  • the specific way to adjust the fan speed of the main exhaust device can be: according to the first static pressure value and the preset target negative pressure value, determine the fan required for the negative pressure value in the isolation ward to reach the target negative pressure value
  • the wind speed adjustment value is used to adjust the wind speed of the fan of the main exhaust device according to the wind speed adjustment value of the fan, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the main exhaust device may be determining the difference between the first static pressure value and the preset target negative pressure value; according to the difference, the increase or decrease of the fan speed of the main exhaust fan device is determined, and the increase or The reduced value is the above-mentioned fan wind speed adjustment value; the fan speed of the main exhaust fan device is adjusted according to the increased value or the reduced value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the difference corresponds to an increase value
  • the main exhaust device is controlled to increase on the basis of the existing fan speed, and the above increase value is increased, for example, if the main exhaust device has an existing fan The speed is A, the increase value is B, then the adjusted fan speed is A+B.
  • the mapping relationship between the preset static pressure difference and the wind speed adjustment value of the fan is preset. Therefore, the mapping relationship can be searched to determine the fan corresponding to the difference between the first static pressure value and the preset target negative pressure value.
  • the wind speed adjustment value that is, the above-mentioned increase or decrease value
  • the mapping relationship between the static pressure difference value and the wind speed adjustment value of the fan is determined through a large number of experiments, or a mapping relationship obtained based on machine learning algorithm training.
  • the main exhaust device In order to avoid the failure of the main exhaust device, leading to the failure of the entire negative pressure system, the main exhaust device will also be tested, that is, whether the main exhaust device is malfunctioning. When the main exhaust device fails, the backup exhaust will be activated.
  • the way to start the standby exhaust device can be: obtain the fifth static pressure value detected by the differential pressure sensor, and search for the mapping relationship between the preset static pressure value and the fan speed according to the fifth static pressure value , Determine the fan speed corresponding to the fifth static pressure value, and start the standby exhaust device according to the fifth static pressure value.
  • a backup exhaust device can be used to replace the main exhaust device to avoid the negative pressure system and the isolation ward from being unavailable due to the failure of the main exhaust device, which improves the reliability of the isolation ward.
  • the second static pressure value in the isolation ward detected by the differential pressure sensor will be obtained in real time, and the second static pressure value and The preset target negative pressure value adjusts the fan speed of the backup exhaust device so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the way to adjust the fan speed of the standby exhaust device can be: according to the second static pressure value and the preset target negative pressure value, determine the fan wind speed required for the negative pressure value in the isolation ward to reach the target negative pressure value
  • the adjustment value is to adjust the fan wind speed of the standby exhaust device according to the fan wind speed adjustment value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the difference between the second static pressure value and the preset target negative pressure value may be determined, and the increase or decrease value of the fan speed of the standby exhaust fan device may be determined according to the difference, and the increase or The reduced value is the above-mentioned fan wind speed adjustment value; the fan speed of the standby exhaust fan device is adjusted according to the increased value or the reduced value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the backup exhaust device is controlled to decrease based on the existing fan speed, and the above-mentioned decrease value is increased or smaller, for example, if the existing fan of the backup exhaust device
  • the rotation speed is a1
  • the reduction value is b1
  • the adjusted fan rotation speed is a1-b1.
  • the mapping relationship between the preset static pressure difference and the wind speed adjustment value of the fan is preset. Therefore, the mapping relationship can be searched to determine the fan corresponding to the difference between the second static pressure value and the preset target negative pressure value.
  • Wind speed adjustment value that is, the above-mentioned increase or decrease value.
  • the method for adjusting the fan speed of the standby exhaust fan device may be: determining the difference between the fourth static pressure value and the preset target negative pressure value, and determining the increase in the fan speed of the standby exhaust fan device according to the difference. Larger value or reduced value; according to the increased value or decreased value, the fan speed of the standby exhaust fan device is adjusted so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the backup exhaust device is controlled to decrease based on the existing fan speed, and the above-mentioned decrease value is increased or smaller, for example, if the existing fan of the backup exhaust device
  • the rotation speed is a1
  • the reduction value is b1
  • the adjusted fan rotation speed is a1-b1.
  • the mapping relationship between the difference and the fan adjustment speed is preset. Therefore, the mapping relationship can be searched to determine the fan adjustment speed corresponding to the difference between the fourth static pressure value and the preset target negative pressure value, that is, the aforementioned Increase or decrease the value.
  • the fan speed of the air inlet device is increased from the second fan speed to the first fan speed.
  • the air pressure inside the isolation ward will be balanced with the air pressure outside the isolation ward and even higher than the air pressure outside the isolation ward, causing the polluted gas inside the isolation ward to be output to the outside of the ward.
  • the fan speed of the air inlet device is reduced from the first fan speed to the preset second fan speed, so that the amount of air input in the isolation ward is reduced, even when the door is opened At the same time, the air pressure inside the isolation ward will still be lower than the air pressure outside the isolation ward.
  • the fan speed of the air inlet device is increased from the second fan speed to the first fan speed, so that the fan speed of the air inlet device can return to normal.
  • the differential pressure sensor will also be detected.
  • the currently operating exhaust device will be controlled to run at the fan speed under the preset fault state and output Failure warnings enable timely reminders of failures, facilitating timely maintenance by maintenance personnel.
  • the speed of the fan of the currently operating exhaust device can be adjusted according to the static pressure value detected by the differential pressure sensor and the preset target negative pressure value, so as to isolate
  • the negative pressure value in the ward can be maintained at the target negative pressure value to ensure that the negative pressure value in the isolation ward is stable
  • a backup exhaust device is also set on the basis of the main exhaust device, so that the main exhaust device fails Bottom, can use the spare exhaust device, strengthen the reliability of the isolation ward.
  • FIG. 3 is a schematic structural diagram of the negative pressure control device of the isolation ward in the embodiment of this application.
  • the negative pressure control device is used to control the negative pressure system.
  • the negative pressure system of the isolation ward includes: a main exhaust device, a backup exhaust Wind device and differential pressure sensor, negative pressure control device includes:
  • the obtaining module 301 is used to obtain the first static pressure value in the isolation ward detected by the differential pressure sensor in real time when the main exhaust device is operating normally;
  • the first adjustment module 302 is configured to adjust the fan speed of the main exhaust device according to the first static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value;
  • the activation acquisition module 303 is used to activate the backup ventilation device when the failure of the main ventilation device is detected, and to acquire the second static pressure value in the isolation ward detected by the differential pressure sensor in real time after the backup ventilation device is normally started ;
  • the second adjustment module 304 adjusts the fan speed of the standby exhaust device according to the second static pressure value and the preset target negative pressure value, so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • the speed of the fan of the currently operating exhaust device can be adjusted according to the static pressure value detected by the differential pressure sensor and the preset target negative pressure value, so as to isolate
  • the negative pressure value in the ward can be maintained at the target negative pressure value to ensure that the negative pressure value in the isolation ward is stable, and a backup exhaust device is also provided on the basis of the main exhaust device, so that the main exhaust device fails Bottom, can use the spare exhaust device, enhance the reliability of the isolation ward.
  • Fig. 4 shows a structural diagram of a control component of an isolation ward in an embodiment.
  • the isolation ward includes a processor, a memory and a network interface connected by a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the isolation ward stores an operating system and may also store a computer program.
  • the processor can realize the age identification method.
  • a computer program can also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute the age identification method.
  • the specific isolation ward can be Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • an isolation ward which includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps:
  • the backup exhaust device When a failure of the main exhaust device is detected, the backup exhaust device is activated, and after the backup exhaust device is started normally, the second exhaust device in the isolation ward detected by the differential pressure sensor is obtained in real time. Static pressure
  • the fan speed of the standby exhaust device is adjusted so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor executes the following steps:
  • the backup exhaust device When a failure of the main exhaust device is detected, the backup exhaust device is activated, and after the backup exhaust device is started normally, the second exhaust device in the isolation ward detected by the differential pressure sensor is obtained in real time. Static pressure
  • the fan speed of the standby exhaust device is adjusted so that the negative pressure value in the isolation ward is maintained at the target negative pressure value.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种隔离病房的负压控制方法及装置、存储介质及隔离病房,当主排风装置正常运行时,获取压差传感器检测到的隔离病房内的第一静压值(101);根据第一静压值及目标负压值,对主排风装置的风机转速进行调整(102);当检测到主排风装置故障时,启动备用排风装置,且在备用排风装置正常启动之后,实时获取第二静压值(103);根据第二静压值及目标负压值,对备用排风装置的风机转速进行调整(104)。通过设置压差传感器、主排风装置及备用排风装置,使得隔离病房内的负压值能够保持在目标负压值,确保隔离病房内的负压值稳定,且使得在主排风装置出现故障的情况下,能够使用备用排风装置,增强了隔离病房的可靠性。

Description

隔离病房的负压控制方法及装置、存储介质及隔离病房 技术领域
本发明涉及负压控制技术领域,尤其涉及一种隔离病房的负压控制方法及装置、存储介质及隔离病房。
背景技术
呼吸道传感病患者,或者其他的具有传染性疾病的患者,均需要在隔离病房内进行治疗,隔离病房通常采用负压隔离技术,即使得病房内部与外部空间保持负压状态,以不使病房内的污染控制泄露到外部。
技术问题
然而,目前仍然存在隔离病房内部空间负压不稳定的情况,导致隔离病房内部污染气体泄露到外部,且还存在排风风机出现故障导致整个隔离病房不能使用的问题,可靠性低。
技术解决方案
基于此,有必要针对上述问题,提出了一种隔离病房的负压控制方法及装置、存储介质及隔离病房,能够有效控制隔离病房内的负压,保持负压稳定,且通过设置备用排风装置的方式,使得在主排风装置出现故障时,可以启动备用排风装置,增强了隔离病房的可靠性。
在第一方面,本申请实施例提供一种隔离病房的负压控制方法,所述方法包括:
当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
可选地,所述当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值,之前还包括:
接收负压系统启动指令,获取所述压差传感器检测到的所述隔离病房内的第三静压值;
根据所述第三静压值启动所述主排风装置,且在所述主排风装置正常启动后,继续执行所述当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值的步骤。
可选地,所述根据所述第三静压值启动所述主排风装置包括:
查找预设的静压值与风机风速之间的映射关系,确定与所述第三静压值对应的风机风速;
按照与所述第三静压值对应的风机风速启动所述排风装置。
可选地,所述方法还包括:
当所述主排风装置未正常启动时,则根据所述第三静压值启动所述备用排风装置;
在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第四静压值;
根据所述第四静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
可选地,所述隔离病房还包括进风装置;
则在所述主排风装置正常启动之后,或者,在主排风装置未正常启动的情况下所述备用排风装置正常启动之后,所述方法还包括:
间隔预设时长,获取所述进风装置预设的第一风机转速,并按照所述第一风机转速启动所述进风装置。
可选地,所述方法还包括:
当检测到所述隔离病房的开门指令时,将所述进风装置的风机转速从所述第一风机转速降低至预设的第二风机转速;
当检测到所述隔离病房的关门指令时,将所述进风装置的风机转速从所述第二风机转速增高至所述第一风机转速。
可选地,所述根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值,包括:
根据所述第一静压值及预设的目标负压值,确定所述隔离病房内的负压值达到所述目标负压值所需要的风机风速调整值;
根据所述风机风速调整值对所述主排风装置的风机风速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
可选地,所述根据所述第一静压值及预设的目标负压值,确定所述隔离病房内的负压值达到所述目标负压值所需要的风机风速调整值,包括:
确定所述第一静压值与所述预设的目标负压值的差值;
根据所述差值确定所述主排风机装置的风机转速的增大值或者减小值,所述增大值或减小值为所述风机风速调整值;
按照所述增大值或减小值对所述主排风机装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
可选地,所述根据所述差值确定所述主排风机装置的风机转速的增大值或者减小值,包括:
查找预设的静压差值与风机风速调整值之间的映射关系,确定与所述差值对应的风机风速调整值,所述风机风速调整值即为所述增大值或者减少值。
可选地,所述方法还包括:
若检测到压差传感器发生故障,则控制当前运行的排风装置以预设的故障状态下的风机转速运行,并输出故障警告。
在第二方面,本申请实施例还提供一种隔离病房的负压控制装置,所述隔离病房包含主排风装置、备用排风装置及压差传感器,所述负压控制装置包括:
获取模块,用于当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
第一调整模块,用于根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
启动获取模块,用于当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
第二调整模块,用于根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
在第三方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如第一方面所述的各个步骤。
在第四方面,本申请实施例还提供一种隔离病房,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如第一方面中的各个步骤。
有益效果
采用本发明实施例,具有如下有益效果:隔离病房包含主排风装置、备用排风装置及压差传感器,当主排风装置正常运行时,实时获取压差传感器检测到的隔离病房内的第一静压值;根据该第一静压值及预设的目标负压值,对主排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值;当检测到主排风装置故障时,启动备用排风装置,且在备用排风装置正常启动之后,实时获取压差传感器检测到的隔离病房内的第二静压值;根据第二静压值及预设的目标负压值,对备用排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。通过设置压差传感器,使得能够根据该压差传感器检测到的静压值及预设的目标负压值,对当前运行的排风装置的风机转速进行调整,使得隔离病房内的负压值能够保持在目标负压值,确保隔离病房内的负压值稳定,且在主排风装置的基础上还设置备用排风装置,使得在主排风装置出现故障的情况下,能够使用备用排风装置,增强了隔离病房的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请实施例中隔离病房的负压控制方法的流程示意图;
图2为本申请实施例中隔离病房的负压控制方法的另一流程示意图;
图3为本申请实施例中隔离病房的负压控制装置的结构示意图;
图4为本申请实施例中隔离病房的控制组件的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请实施例中,隔离病房可以是可移动可展开的装置,用于对病人进行隔离治疗,且该隔离病房包含排风装置及压差传感器,且排风装置及压差传感器均设置在隔离病房的结构体上。其中,该排风装置在运行时可将隔离病房内的空气传输至隔离病房外,压差传感器用于检测隔离病房内的气压及隔离病房外的气压,使得能够利用隔离病房内的气压减去隔离病房外的气压得到压差,该压差即为隔离病房内的静压值,且当该压差为负数时,则表明该静压值具体为负压值,当该压差为正数时,则表明该静压值为正压值。
具体的,该隔离病房包含主排风装置、备用排风装置及压差传感器,且主排风装置、备用排风装置、及压差传感器均设置在隔离病房的结构体上。其中,该主排风装置在运行时可将隔离病房内的空气传输至隔离病房外,备用排风装置在运行时也可将隔离病房内的空气传输至隔离病房外,且优先使用主排风装置,且在主排风装置出现故障时,利用备用排风装置替代主排风装置使用。其中,压差传感器用于检测隔离病房内的气压及隔离病房外的气压,使得能够利用隔离病房内的气压减去隔离病房外的气压得到压差,该压差即为隔离病房内的静压值。
进一步的,上述隔离病房还可以包含进风装置,该进风装置设置在隔离病房的结构体上,且在一种可行的实现方式中,该进风装置与上述的主排风装置及备用排风装置均呈现对角设置。
请参阅图1,为本申请实施例中隔离病房的负压控制方法的流程示意图,该方法包括:
步骤101、当主排风装置正常运行时,实时获取压差传感器检测到的隔离病房内的第一静压值;
步骤102、根据第一静压值及预设的目标负压值,对主排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值;
步骤103、当检测到主排风装置故障时,启动备用排风装置,且在备用排风装置正常启动之后,实时获取压差传感器检测到的隔离病房内的第二静压值;
步骤104、根据第二静压值及预设的目标负压值,对备用排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。
在本申请实施例中,上述的隔离病房的负压控制方法可以由隔离病房的负压控制装置实现,该负压控制装置为程序模块,保存在隔离病房的存储介质中,且隔离病房还包括控制器,控制器可以调用并执行存储介质中的负压控制装置,以实现上述的负压控制方法。
其中,在有主排风装置和备用排风装置的情况下,优先启动主排风装置,且在主排风装置正常运行的过程中,可对隔离病房内的负压值进行控制,使得隔离病房内的负压值保持在预设的目标负压值,使得负压能够保持稳定。
当主排风装置正常运行时,可实时获取压差传感器检测到的隔离病房内的第一静压值,需要说明的是,在本申请实施例中,将会涉及到第一静压值、第二静压值、第三静压值、第四静压值及第五静压值,其中的“第一”、“第二”、“第三”、“第四”及“第五”是用于对不同时刻或者不同场景下的静压值进行区分,并不对静压值本身造成限定。
进一步的,将根据第一静压值及预设的目标负压值,实时对主排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。
在本申请实施例中,还将对主排风装置的运行进行监控,当监控到主排风装置出现故障时,将启动备用排风装置,且在备用排风装置正常启动之后,实时获取压差传感器检测到的隔离病房内的第二静压值,并根据该第二静压值与预设的目标负压值,对备用排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。
需要说明的是,不论是使用主排风装置还是使用备用排风装置,对排风装置的风机转速的调整方式都是一样的,且目的均是使得隔离病房内的负压值保持在目标负压值。
在本申请实施例中,通过设置压差传感器,使得能够根据该压差传感器检测到的静压值及预设的目标负压值,对当前运行的排风装置的风机转速进行调整,使得隔离病房内的负压值能够保持在目标负压值,确保隔离病房内的负压值稳定,且在主排风装置的基础上还设置备用排风装置,使得在主排风装置出现故障的情况下,能够使用备用排风装置,增强了隔离病房的可靠性。
为了更好的理解本申请实施例中的技术方案,下面将从隔离病房的负压系统的启动,及启动之后控制隔离病房内的负压值保持在目标负压值等进行全面的描述。请参阅图2,为本申请实施例中,隔离病房的负压控制方法的流程示意图,该方法包括:
步骤201、接收负压系统启动指令,获取压差传感器检测到的隔离病房内的第三静压值;
步骤202、根据第三静压值启动主排风装置;
步骤203、判断主排风装置是否正常启动,若正常启动,则执行步骤204,若未正常启动,则执行步骤211;
步骤204、间隔预设时长之后,获取进风装置预设的第一风机转速,并按照第一风机转速启动进风装置;
步骤205、实时获取压差传感器检测到的隔离病房内的第一静压值;
步骤206、根据第一静压值及预设的目标负压值,对主排风装置的风机转速进行调整;
步骤207、检测主排风装置是否故障;当主排风装置出现故障时,则继续执行步骤208,若主排风装置未出现故障,则继续执行步骤205;
步骤208、启动备用排风装置,且在备用排风装置正常启动之后,实时获取压差传感器检测到的隔离病房内的第二静压值;
步骤209、根据第二静压值及预设的目标负压值,对备用排风装置的风机转速进行调整;
步骤210、根据所述第三静压值启动备用排风装置;
步骤211、间隔预设时长,获取进风装置预设的第一风机转速,并按照所述第一风机转速启动进风装置;
步骤212、实时获取压差传感器检测到的隔离病房内的第四静压值;
步骤213、根据第四静压值及预设的目标负压值,对备用排风装置的风机转速进行调整。
在本申请实施例中,隔离病房的负压系统包括但不限于主排风装置、备用排风装置、压差传感器及进风装置,若接收到负压系统启动指令,则将获取到压差传感器检测到的隔离病房内的第三静压值,并根据该第三静压值启动主排风装置。
其中,根据第三静压值启动主排风装置的方式具体可以是:利用该第三静压值查找预先设置的静压值与风机转速之间的映射关系,确定与该第三静压值对应的风机转速,并按照该第三静压值对应的风机转速启动主排风装置,即该第三静压值对应的风机转速为主排风装置的初始风机转速。其中该映射关系可以是通过大量实验确定的映射关系,或者也可以是通过机器学习算法训练得到的模型。其中,启动方式可以是向主排风装置发送启动指令,且该启动指令中包含上述的初始风机转速。且将进一步的判断主排风装置是否正常启动。
其中,主排风装置正常启动是指主排风装置能够启动,且在预设时长内达到初始风机转速。
当判断主排风装置能正常启动时,则将进一步启动进风装置,且由于需要形成负压,因此,需要在主排风装置启动之后,间隔预设时长,获取进风装置预设的第一风机转速,并按照该第一风机转速启动进风装置。且在进风装置完成启动之后,则表明完成了负压系统的启动。
上述是主排风装置能正常启动的情况下,通过启动主排风装置及进风装置实现负压系统的启动的过程,还有一种情况则是主排风装置不能正常启动,即主排风装置存在故障无法启动,负压系统的启动过程。
当主排风装置不能正常启动,则将根据第三静压值启动备用排风装置,其中,根据第三静压值启动备用排风装置的方式具体可以是:利用该第三静压值查找预先设置的静压值与风机转速之间的映射关系,确定与该第三静压值对应的风机转速,并按照该风机转速启动备用排风装置,即该第三静压值对应的风机转速为备用排风装置的初始风机转速。
且在启动备用排风装置之后,将间隔预设时长,获取进风装置预设的第一风机转速,并按照该第一风机转速启动进风装置。且在备用排风装置及进风装置都启动之后,则完成了负压系统的启动。
在本申请实施例中,负压系统启动之后,将进入负压系统的运行过程,且负压系统的运行过程也有两种情况,一种是主排风装置与进风装置在运行,另外一种是备用排风装置与进风装置在运行,下面将分别进行介绍。
(1)在负压系统启动时,启动的是主排风装置与进风装置场景下,将实时获取压差传感器检测到的隔离病房内的第一静压值,并根据该第一静压值及预设的目标负压值,对主排风装置的风机转速进行调整。
其中,对主排风装置的风机转速进行调整的具体方式可以为:根据第一静压值及预设的目标负压值,确定隔离病房内的负压值达到目标负压值所需要的风机风速调整值,根据该风机风速调整值对主排风装置的风机风速进行调整,使得隔离病房内的负压值保持在目标负压值。进一步地,可以为确定该第一静压值与预设的目标负压值的差值;根据该差值确定主排风机装置的风机转速的增大值或者减小值,该增大值或减小值即为上述的风机风速调整值;按照该增大值或减小值对主排风机装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。其中,若差值对应的是增大值,则控制主排风装置在已有的风机转速的基础上增大,且增大上述的增大值,例如,若主排风装置已有的风机转速为A,增大值为B,则调整之后的风机转速为A+B。
其中,预先设置预设的静压差值与风机风速调整值之间的映射关系,因此,可以查找该映射关系,确定第一静压值与预设的目标负压值的差值对应的风机风速调整值,即上述的增大值或减小值,该静压差值与风机风速调整值之间的映射关系是通过大量实验确定的,或者基于机器学习算法训练得到的映射关系。
为了避免主排风装置出现故障,导致整个负压系统故障,还将对主排风装置进行检测,即检测主排风装置是否出现故障,当主排风装置出现故障时,则将启动备用排风装置,此时,启动备用排风装置的方式可以是:获取压差传感器检测到的第五静压值,根据该第五静压值查找预设的静压值与风机转速之间的映射关系,确定与该第五静压值对应的风机转速,并按照该第五静压值启动备用排风装置。因此,在主排风装置出现故障的情况下,可以使用备用排风装置替换主排风装置,避免负压系统及隔离病房因为主排风装置故障而无法使用,提高了隔离病房使用的可靠性。
且在使用备用排风装置替换主排风装置,且备用排风装置正常启动之后,将实时获取压差传感器检测到的隔离病房内的第二静压值,并根据该第二静压值及预设的目标负压值,对备用排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。
其中,对备用排风装置的风机转速进行调整的方式可以为:根据第二静压值及预设的目标负压值,确定隔离病房内的负压值达到目标负压值所需要的风机风速调整值,根据该风机风速调整值对备用排风装置的风机风速进行调整,使得隔离病房内的负压值保持在目标负压值。进一步地,可以为确定该第二静压值与预设的目标负压值的差值,根据该差值确定备用排风机装置的风机转速的增大值或者减小值,该增大值或减小值即为上述的风机风速调整值;按照该增大值或减小值对备用排风机装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。其中,若差值对应的是减小值,则控制备用排风装置在已有的风机转速的基础上减小,且增小上述的减小值,例如,若备用排风装置已有的风机转速为a1,减小值为b1,则调整之后的风机转速为a1-b1。
其中,预先设置预设的静压差值与风机风速调整值之间的映射关系,因此,可以查找该映射关系,确定第二静压值与预设的目标负压值的差值对应的风机风速调整值,即上述的增大值或减小值。
(2)在负压系统启动时,启动的是备用排风装置与进风装置场景下,将实时获取压差传感器检测到的隔离病房内的第四静压值,并根据该第四静压值及预设的目标负压值,对备用排风装置的风机转速进行调整。
其中,对备用排风装置的风机转速进行调整的方式可以为:确定该第四静压值与预设的目标负压值的差值,根据该差值确定备用排风机装置的风机转速的增大值或者减小值;按照该增大值或减小值对备用排风机装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。其中,若差值对应的是减小值,则控制备用排风装置在已有的风机转速的基础上减小,且增小上述的减小值,例如,若备用排风装置已有的风机转速为a1,减小值为b1,则调整之后的风机转速为a1-b1。
其中,预先设置差值与风机调整转速之间的映射关系,因此,可以查找该映射关系,确定第四静压值与预设的目标负压值的差值对应的风机调整转速,即上述的增大值或减小值。
在本申请实施例中,在上述描述的多种场景或者情况下,还包括以下步骤:
当检测到隔离病房的开门指令时,将进风装置的风机转速从第一风机转速降低至预设的第二风机转速;
当检测到隔离病房的关门指令时,将进风装置的风机转速从第二风机转速增高至第一风机转速。
在本申请实施例中,考虑到隔离病房的门打开时,隔离病房内部的气压将与隔离病房外部的气压平衡甚至高于隔离病房外部的气压,导致隔离病房内部的污染气体向病房外输出,造成泄漏,因此,在检测到隔离病房的开门指令时,将进风装置的风机转速从第一风机转速降低至预设的第二风机转速,使得隔离病房内输入的空气量减少,即使在开门的时候,隔离病房内部的气压还是会小于隔离病房外部的气压。此外,当检测到隔离病房的关门指令时,则将进风装置的风机转速从第二风机转速增高至第一风机转速,使得进风装置的风机转速能够恢复正常。
进一步的,还将对压差传感器进行检测,当检测到压差传感器发生故障时,例如没有数据传输,则将控制当前运行的排风装置以预设的故障状态下的风机转速运行,并输出故障警告,使得能够及时对故障进行提醒,便于维护人员及时维护。
在本申请实施例中,通过设置压差传感器,使得能够根据该压差传感器检测到的静压值及预设的目标负压值,对当前运行的排风装置的风机转速进行调整,使得隔离病房内的负压值能够保持在目标负压值,确保隔离病房内的负压值稳定,且在主排风装置的基础上还设置备用排风装置,使得在主排风装置出现故障的情况下,能够使用备用排风装置,增强了隔离病房的可靠性。
请参阅图3,为本申请实施例中隔离病房的负压控制装置的结构示意图,负压控制装置用于对负压系统进行控制,隔离病房的负压系统包括:主排风装置、备用排风装置及压差传感器,负压控制装置包括:
获取模块301,用于当主排风装置正常运行时,实时获取压差传感器检测到的隔离病房内的第一静压值;
第一调整模块302,用于根据第一静压值及预设的目标负压值,对主排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值;
启动获取模块303,用于当检测到主排风装置故障时,启动备用排风装置,且在备用排风装置正常启动之后,实时获取压差传感器检测到的隔离病房内的第二静压值;
第二调整模块304,根据第二静压值及预设的目标负压值,对备用排风装置的风机转速进行调整,使得隔离病房内的负压值保持在目标负压值。
在本申请实施例中,通过设置压差传感器,使得能够根据该压差传感器检测到的静压值及预设的目标负压值,对当前运行的排风装置的风机转速进行调整,使得隔离病房内的负压值能够保持在目标负压值,确保隔离病房内的负压值稳定,且在主排风装置的基础上还设置备用排风装置,使得在主排风装置出现故障的情况下,能够使用备用排风装置,增强了隔离病房的可靠性。
图4示出了一个实施例中隔离病房的控制组件的结构图。如图4所示,该隔离病房包括通过系统总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介质和内存储器。该隔离病房的非易失性存储介质存储有操作系统,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现年龄识别方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行年龄识别方法。本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的隔离病房的限定,具体的隔离病房可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提出了一种隔离病房,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:
当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
在一个实施例中,提出了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:
当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种隔离病房的负压控制方法,其特征在于,所述隔离病房包含主排风装置、备用排风装置及压差传感器,所述方法包括:
    当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
    根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
    当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
    根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值,之前还包括:
    接收负压系统启动指令,获取所述压差传感器检测到的所述隔离病房内的第三静压值;
    根据所述第三静压值启动所述主排风装置,且在所述主排风装置正常启动后,继续执行所述当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值的步骤。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第三静压值启动所述主排风装置包括:
    查找预设的静压值与风机风速之间的映射关系,确定与所述第三静压值对应的风机风速;
    按照与所述第三静压值对应的风机风速启动所述主排风装置。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述主排风装置未正常启动时,则根据所述第三静压值启动所述备用排风装置;
    在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第四静压值;
    根据所述第四静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
  5. 根据权利要求2或4所述的方法,其特征在于,所述隔离病房还包括进风装置;
    则在所述主排风装置正常启动之后,或者,在主排风装置未正常启动的情况下所述备用排风装置正常启动之后,所述方法还包括:
    间隔预设时长,获取所述进风装置预设的第一风机转速,并按照所述第一风机转速启动所述进风装置。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当检测到所述隔离病房的开门指令时,将所述进风装置的风机转速从所述第一风机转速降低至预设的第二风机转速;
    当检测到所述隔离病房的关门指令时,将所述进风装置的风机转速从所述第二风机转速增高至所述第一风机转速。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值,包括:
    根据所述第一静压值及预设的目标负压值,确定所述隔离病房内的负压值达到所述目标负压值所需要的风机风速调整值;
    根据所述风机风速调整值对所述主排风装置的风机风速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一静压值及预设的目标负压值,确定所述隔离病房内的负压值达到所述目标负压值所需要的风机风速调整值,包括:
    确定所述第一静压值与所述预设的目标负压值的差值;
    根据所述差值确定所述主排风机装置的风机转速的增大值或者减小值,所述增大值或减小值为所述风机风速调整值;
    按照所述增大值或减小值对所述主排风机装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述差值确定所述主排风机装置的风机转速的增大值或者减小值,包括:
    查找预设的静压差值与风机风速调整值之间的映射关系,确定与所述差值对应的风机风速调整值,所述风机风速调整值即为所述增大值或者减少值。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若检测到压差传感器发生故障,则控制当前运行的排风装置以预设的故障状态下的风机转速运行,并输出故障警告。
  11. 一种隔离病房的负压控制装置,其特征在于,所述隔离病房包含主排风装置、备用排风装置及压差传感器,所述负压控制装置包括:
    获取模块,用于当所述主排风装置正常运行时,实时获取所述压差传感器检测到的所述隔离病房内的第一静压值;
    第一调整模块,用于根据所述第一静压值及预设的目标负压值,对所述主排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值;
    启动获取模块,用于当检测到所述主排风装置故障时,启动所述备用排风装置,且在所述备用排风装置正常启动之后,实时获取所述压差传感器检测到的所述隔离病房内的第二静压值;
    第二调整模块,用于根据所述第二静压值及预设的目标负压值,对所述备用排风装置的风机转速进行调整,使得所述隔离病房内的负压值保持在所述目标负压值。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
  13. 一种隔离病房,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
PCT/CN2020/102956 2020-06-24 2020-07-20 隔离病房的负压控制方法及装置、存储介质及隔离病房 WO2021258443A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010595792.7 2020-06-24
CN202010595793.1 2020-06-24
CN202010595793.1A CN111750476B (zh) 2020-06-24 2020-06-24 负压控制方法及装置、存储介质及隔离病房
CN202010595792.7A CN111765579B (zh) 2020-06-24 2020-06-24 隔离病房的负压控制方法及装置、存储介质及隔离病房

Publications (1)

Publication Number Publication Date
WO2021258443A1 true WO2021258443A1 (zh) 2021-12-30

Family

ID=79282565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102956 WO2021258443A1 (zh) 2020-06-24 2020-07-20 隔离病房的负压控制方法及装置、存储介质及隔离病房

Country Status (1)

Country Link
WO (1) WO2021258443A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115059976A (zh) * 2022-06-28 2022-09-16 广州汇锦能效科技有限公司 一种负压隔离病房压差动态控制系统
CN115463530A (zh) * 2022-07-29 2022-12-13 北京京仪自动化装备技术股份有限公司 负压控制方法、半导体废气处理设备及存储介质
CN115823716A (zh) * 2022-11-25 2023-03-21 珠海格力电器股份有限公司 一种室内静压调节方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074894A (en) * 1991-02-01 1991-12-24 Component Systems, Inc. Apparatus for isolating contagious respiratory hospital patients
CN204704964U (zh) * 2015-06-09 2015-10-14 北京城建六建设集团有限公司 具有正压和负压转换功能的手术室
CN208920480U (zh) * 2018-10-31 2019-05-31 北京博锐尚格节能技术股份有限公司 负压调节装置及调节系统
CN111076335A (zh) * 2019-12-23 2020-04-28 天津市海河医院 负压隔离病房新风系统及其调试方法
CN210485893U (zh) * 2019-06-28 2020-05-08 广东雅士电器有限公司 一种一用一备的风机空调机组及控制系统
CN111322680A (zh) * 2020-03-31 2020-06-23 重庆海润绿色科技集团有限公司 平疫双用的移动应急隔离方舱通风空调控制系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074894A (en) * 1991-02-01 1991-12-24 Component Systems, Inc. Apparatus for isolating contagious respiratory hospital patients
CN204704964U (zh) * 2015-06-09 2015-10-14 北京城建六建设集团有限公司 具有正压和负压转换功能的手术室
CN208920480U (zh) * 2018-10-31 2019-05-31 北京博锐尚格节能技术股份有限公司 负压调节装置及调节系统
CN210485893U (zh) * 2019-06-28 2020-05-08 广东雅士电器有限公司 一种一用一备的风机空调机组及控制系统
CN111076335A (zh) * 2019-12-23 2020-04-28 天津市海河医院 负压隔离病房新风系统及其调试方法
CN111322680A (zh) * 2020-03-31 2020-06-23 重庆海润绿色科技集团有限公司 平疫双用的移动应急隔离方舱通风空调控制系统及控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115059976A (zh) * 2022-06-28 2022-09-16 广州汇锦能效科技有限公司 一种负压隔离病房压差动态控制系统
CN115463530A (zh) * 2022-07-29 2022-12-13 北京京仪自动化装备技术股份有限公司 负压控制方法、半导体废气处理设备及存储介质
CN115463530B (zh) * 2022-07-29 2023-10-13 北京京仪自动化装备技术股份有限公司 负压控制方法、半导体废气处理设备及存储介质
CN115823716A (zh) * 2022-11-25 2023-03-21 珠海格力电器股份有限公司 一种室内静压调节方法、装置、电子设备和存储介质

Similar Documents

Publication Publication Date Title
WO2021258443A1 (zh) 隔离病房的负压控制方法及装置、存储介质及隔离病房
US8327691B2 (en) Vacuum decay testing method
JP5888413B2 (ja) サーモスタット故障検出装置及びサーモスタット故障検出方法
JP2009145117A (ja) 車両用情報記憶装置
JP2005532541A (ja) 内燃機関の駆動方法
US20200132023A1 (en) Evaporative fuel processing system
WO2015096575A1 (zh) 海拔修正系数获取方法和装置
CN110926707B (zh) 储氢系统泄漏的检测方法、装置及设备
KR101459891B1 (ko) 서모스탯 고장 진단방법
CN112485010A (zh) 发动机电控执行器响应状态的检测方法及系统
CN111765579B (zh) 隔离病房的负压控制方法及装置、存储介质及隔离病房
WO2023010636A1 (zh) 空调器的高低压阀状态检测方法、装置、空调器与介质
CN105045146A (zh) 一种具有复位功能的系统及其重启控制方法
CN111750476B (zh) 负压控制方法及装置、存储介质及隔离病房
CN112664455B (zh) 一种压缩机的润滑调节方法、装置、电子设备及存储介质
CN111927640A (zh) 发动机故障检测方法、装置、设备及计算机可读存储介质
JP2009270492A (ja) 気筒休止システムの故障診断装置。
CN110332667A (zh) 回油感温包失效的自修复控制方法、装置和系统
US7418930B2 (en) Method and device for controlling variable gas exchange valve in an internal combustion engine
US11549735B2 (en) Apparatus, method, and program for estimating amount of refrigerant
JP2002371924A (ja) エバポパージシステムの故障診断装置
KR101558977B1 (ko) 가스 누출 감지를 위한 압력 스위치의 고착 진단 장치 및 그 방법
CN113375287B (zh) 低压传感器故障识别控制方法、装置及多联机空调系统
WO2017177690A1 (zh) 一种向Linux内核传递内存大小参数的方法及系统
WO2018207840A1 (ja) 学習装置及び学習方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941832

Country of ref document: EP

Kind code of ref document: A1